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“For a successful technology, reality must take precedence over public relations,

for Nature cannot be fooled.”

Richard Feynman, in conclusion to his report on

the Space Shuttle Challenger disaster of 1986.

“MEN WANTED ... For Hazardous Journey. Small wages, bitter cold, long

months of complete darkness, constant danger. Safe return doubtful. Honour and

recognition in case of success ...”

Sir Ernest Henry Shackleton’s advertisement for the

Imperial Trans-Antarctic Expedition 1914-17.

“As the nuclear surface is approached, take heed, for there be dragons ...”

Professor Rodi Herzberg, on the dangers of mankind’s

venture to the edge of the mesoscopic world.
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Abstract

Excited states in the neutron-deficient nuclei 163Re88 and 165Re90 have been popu-

lated in the 106Cd(60Ni,p2nγ) and 92Mo(78Kr,3p2nγ) fusion-evaporation reactions at

bombarding energies of 270 MeV and 357 MeV, respectively. Gamma rays were de-

tected at the target position using the jurogam spectrometer array while recoiling

ions were separated in-flight by the ritu gas-filled recoil separator and implanted

into the double-sided silicon strip detectors of the great spectrometer. The level

excitation schemes for 163Re and 165Re have been identified using recoil-decay corre-

lation techniques. At low spin, the yrast bands of these isotopes are strongly coupled

bands based on a single πh11/2 quasiproton configuration. The bands display large

signature splitting consistent with the soft triaxial shape typical of transitional nu-

clei above N = 82. The configurations of the excited states are proposed within the

framework of the cranked shell model.
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Chapter 1

Introduction

The atomic nucleus is a unique and fascinating system of strongly interacting fermions.

Its landmark discovery in 1911 by Ernest Rutherford [1] revolutionised our under-

standing of the mesoscopic world and laid the foundations for a wealth of further

research.

When the motion of a significant fraction of these constituent nucleons becomes

coherent, collective excitations arise that may in some cases lead to a deformation of

the nuclear shape. Understanding the evolution of this collective behaviour and the

fundamental influence of specific quasiparticle configurations across isotopic chains

has been of long-standing importance in nuclear physics. It is well understood

that nuclei near closed shells will exhibit phenomena derived from single-particle

excitations. However, as valance nucleons are added to or removed from closed shells,

couplings between these constituent particles will give rise to collective phenomena,

such as deformation and rotation.

The complex interactions between the constituent nucleons in this many-body

quantised system are far from fully understood and, furthermore, the computing

resources required to solve any analytical calculations for all but the lightest nuclei

make this approach utterly impractical. A solution to this problem is to adopt
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models that can approximate the nuclear potential and still allow for meaningful

insight into this complex and unique system.

The validation of models established in the early 20th century to describe the

atomic nucleus used experimental investigations of nuclei relatively close to stabil-

ity. Using advances in accelerator science and radiation detection systems, it has

now become possible to investigate the properties of nuclei in the regions far from

stability, which had previously remained elusive. This allows for the testing of nu-

clear models under extreme conditions such as, for example, those of high neutron

deficiency.

Gamma-ray spectroscopy has played a key role in such developments. In particu-

lar, the recoil decay tagging (rdt) technique [2] allows for γ-ray data to be correlated

with specific nuclei by utilising spatial and temporal correlations with the implanta-

tion of an isotope and its subsequent decay. The advent of this innovative technique

and its use in conjunction with large γ-ray spectrometers has allowed for the evolu-

tion of nuclear structure to be better understood in the extremely neutron-deficient

Ta-W-Re-Os-Ir-Pt region [3]. This region holds a particular interest due to the fact

that the interplay between single-particle excitations and collective behaviour is ob-

served for nuclei with N v 90, where the nuclear structure can evolve swiftly within

the range of a few neutrons.

The spectroscopy of excited states in the A v 170 region of neutron-deficient

isotopes presents two principal experimental challenges. First, the desired fusion

exit channels exhibit low population cross-sections (which rapidly diminish further

from the line of stability), and second, fission events result in the presence of high

γ-ray backgrounds.

On a chart of nuclides, the boundary beyond which nuclei are unstable against

proton emission is known as the proton drip line. This work is concerned with nuclei

in the neutron-deficient region close to this boundary and theN = 82 shell closure, as

2



FIGURE 1.0.1: Nuclides in the neutron-deficient region close to the proton drip
line and the N = 82 shell closure. 163Re and 165Re have been highlighted, and
colour-coding is used to indicate the nuclear decay mode.

shown in Figure 1.0.1. Nuclei in this region can be considered as quantised systems

comprising valance nucleons coupled to a semi-magic 146Gd core [4]. Thus, the

orbitals available for proton occupation are 1h11/2, 2d3/2 and 3s1/2, while neutrons

occupy the 2f7/2, 1h9/2 and 1i13/2 orbitals.

The yrast structures of the odd-Z Re isotopes are expected to evolve from the

vibrational states in the the proton emitter 161Re [5] to the strongly coupled collec-

tive band structures observed in 167Re [3] and the heavier isotopes [6, 7, 8, 9, 10]. A

Swedish adjective, yrast is the superlative of yr and literally translates to dizziest,

referring to the greatest obtainable angular momentum for a given energy. The yrast

structure of 163Re and 165Re is based on the 11/2− α-decaying isomeric state [11, 12].
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In both nuclei, this structure is shown to comprise a strongly coupled band which

indicates a collective behaviour not dissimilar to that of the heavier isotopes. In

163Re, two further candidates for strongly coupled band structures are observed in

this work. Quasiparticle configurations are assigned to each of these bands, based

on a comparison with cranked shell model (csm) calculations and considerations of

the observed signature splitting.

Prior to the results discussed in this thesis, excited configurations in 163Re had

been only tentatively assigned, and excited states in 165Re had not been observed.

As a result, this work presents the first study of the evolution of nuclear structure

in the transitional region between 161Re and the heavier isotopes.
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Chapter 2

Concepts in Nuclear Physics

2.1 Nuclear models

2.1.1 The many-body nuclear problem

The atomic nucleus is a many-body problem involving numerous interacting nucle-

ons. In principle, understanding this complex quantum system involves solving the

Schrödinger equation (2.1.1) for a given nucleus

ĤΨ = ih̄
∂Ψ

∂t
, (2.1.1)

where Ψ is the total wave function of the nucleus and is dependent on the spatial,

temporal, spin and isospin coordinates of the constituent nucleons. The Hamiltonian

(2.1.2) for such a system has two terms: the first is the kinetic energy of the nucleons

and the second is an interaction potential energy between the nucleons consisting of

a Coulomb and a central potential.

Ĥ =
A∑
i=1

Ti +
∑
i 6=j

Vij (2.1.2)
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2.1. NUCLEAR MODELS

For the stationary states of the nucleus Φ, the Schrödinger equation thus becomes

(2.1.3) where E is the energy of the stationary states.

ĤΦ =

(
A∑
i=1

Ti +
∑
i 6=j

Vij

)
Φ = EΦ (2.1.3)

The problem for nuclear physics is that this nuclear interaction is not fully un-

derstood and cannot take into account all of the complex two-nucleon residual in-

teractions exhibited by the nucleus. As a result, the Schrödinger equation is only

analytically solvable for a few simple nuclei. The current solution to this problem

is to adopt models which can approximate the nuclear potential yet still give mean-

ingful insight into this complex and unique system. These models fall broadly into

two categories; single-particle and collective.

2.1.2 The single-particle model

The single-particle model treats the motion of independent nucleons as moving in

a mean-field potential generated by the interactions of all the other nucleons. The

Hamiltonian is given by (2.1.4) where Ĥi represents the potential experienced by

each individual nucleon, V (r) is the mean-field nuclear potential and the perturba-

tion term ĥri corrects for the residual interaction between the nucleons.

Ĥ = Ĥ0 + ĥri (2.1.4)

Ĥ0 =
A∑
i=1

Ĥi (2.1.5)

Ĥi = Ti + V (r) (2.1.6)

6



2.1. NUCLEAR MODELS

To yield energy eigenvalues for the single-particle orbits and obtain a realis-

tic model that will describe experimentally observed features of the nucleus, the

Schrödinger equation must be solved using an appropriate nuclear potential. Two

such potentials frequently used within the framework of the single-particle model

are the harmonic oscillator and the Woods-Saxon potential [13].

2.1.3 Harmonic oscillator potential

The harmonic oscillator potential allows for an analytical solution to the Schrödinger

equation and is defined as

V (r) =


−V0

[
1−

(
r
R

)2]
, for r ≤ R

0, for r > R

(2.1.7)

where V0 is the depth of the potential well, r is the distance from the centre of

the nucleus and R is the nuclear radius. By solving the Schrödinger equation one

obtains the energy eigenvalues

EN =

[
N +

3

2

]
h̄ω, (2.1.8)

where N is the principal (and a good1) quantum number and each N level (or

oscillator shell) exhibits (N + 1)(N + 2) degeneracy. Each oscillator shell must

contain states with the same parity π (also a good quantum number) such that

π = (−1)N = (−1)l, (2.1.9)

1For a given Hamiltonian, a good quantum number is an eigenvalue whose corresponding eigen-
vectors remain eigenvectors of the operator, with the same eigenvalue, as time evolves. A classical
analogy is that of quantities that are conserved over time.
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2.1. NUCLEAR MODELS

where l is the orbital angular momentum quantum number. The harmonic oscillator

is not a realistic potential because V (r)→∞ as r becomes large. This implies that

surface nucleons experience a larger potential than nucleons within the core, which

is unphysical. Furthermore, the harmonic oscillator potential does not reproduce

the experimentally observed “magic numbers”.

2.1.4 Woods-Saxon potential

The Woods-Saxon potential, which describes a more realistic finite potential where

V (r)→ 0 for r > R, is defined by

V (r) =
V0

1 + e
r−R0

a

, (2.1.10)

where a is a measure of the diffuseness of the nuclear surface. The potential also

describes a more realistic flat-bottomed potential well; an advantageous feature as

nucleons in the core experience no net force (∇V = 0). The nuclear radius is

given by R0 = r0A
1/3 where r0 = 1.2 fm. The depth of the potential V0 can be

varied to agree with experimentally derived values.2 This potential does give an

excellent approximation of the distribution of nuclear matter in the nucleus, but it

does not allow for analytical solutions to the Schrödinger equation; moreover, the

experimentally observed magic numbers are not reproduced. However, this potential

does lift the degeneracy associated with the harmonic oscillator shells.

2.1.5 The spherical nuclear shell model (SNSM)

The spherical nuclear shell model is the most representative of the single-particle

models, and is based on considerable experimental evidence. For instance, there is a

greater abundance of elements with certain “magic” neutron numbers where the zero

2A typical value for this potential might be V0 v 50 MeV.
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2.1. NUCLEAR MODELS

electric quadrupole moments for these nuclei are indicative of a spherical nuclear

shape. In addition, a discontinuity in the binding energies and the deviation of

experimental masses from the liquid drop model3 at magic nucleon numbers indicate

that these magic nuclei are more tightly bound relative to their neighbours.

The central argument of the snsm is that these relatively tightly bound nuclei

with certain nucleon numbers and a spherical nuclear shape correspond to filled

nucleonic shells. As nucleons occupying a given orbital tend to form pairs with their

angular momentum coupling to zero, magic nuclei are thus a special case of nuclei

with an even number of nucleons in the outer shell where all the nucleons are paired.

The Hamiltonian Ĥi for the individual energy states in the snsm is defined by

(2.1.11) and consists of a mean-field non-perturbed Hamiltonian Ĥmf which must

be corrected with the spin-orbit correction term c′l · s.

Ĥi = Ĥmf − c′l · s (2.1.11)

A harmonic oscillator potential represented by Ĥho may also be used (2.1.12); how-

ever, an additional surface correction term cL2 is also required.

Ĥi = Ĥho − cL2 − c′l · s. (2.1.12)

Working within the framework of the spherical nuclear shell model, successive single-

particle orbitals are filled with nucleons - observing Pauli’s exclusion principle - to

obtain the ground state of a given nucleus.

A manifestation of the residual interaction term in the single-particle Hamilto-

nian given by (2.1.4) is the pairing of nucleons; nucleons occupying a given orbital

3The liquid drop model approximates the nucleus as a “drop” of nuclear fluid with terms
accounting for its volume, surface tension, Coulomb energy, nucleon asymmetry and pairing. The
general trend for the binding energy per nucleon is well reproduced except for deviations by light
nuclei (where the liquid drop concept is not well suited) and nuclei near closed nucleon shells.
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2.1. NUCLEAR MODELS

form pairs with total angular momentum coupled to zero due the time-reversal sym-

metry of their individual orbits. An orbital of total angular momentum j can contain

(2j + 1) individual nucleons whilst respecting the exclusion principle.

Nuclei with filled proton and neutron shells are known as doubly magic nuclei,

e.g. 16
8O, 20

40Ca and 208
82Pb. Figure 2.1.1 shows the single-particle states with the magic

nucleon numbers at 2, 8, 20, 28, 50, 82, 126 marked. Spectroscopic notation4 of the

form nlj is used to label each orbital, where n is the principal quantum number, l is

the orbital angular momentum and the spectroscopic labels s, p, d, f, g... correspond

to orbital angular momenta of 0, h̄, 2h̄, 3h̄, 4h̄ etc..

Spin-orbit coupling

In order to successfully reproduce the magic numbers observed experimentally, it is

necessary to introduce a spin-orbit coupling term to the nuclear Hamiltonian. This

term accounts for the coupling of the intrinsic spin s = ±1
2

of the nucleon to its

orbital angular momentum l, such that the total angular momentum is defined by

the vector sum j = l + s. The total angular momentum quantum number for a

nucleon in an orbit l is then l ± 1
2
. With such a coupling, the force experienced by

a nucleon differs according to whether its spin and orbital angular momentum are

aligned parallel or antiparallel. Thus the degeneracy of each nl state, such as 1g, is

lifted and the level is split into two orbits, 1g9/2 and 1g7/2, which are lowered and

raised in energy, respectively.

Figure 2.1.2 shows the l·s coupling with components projected onto the rotational

axis. The angular momenta vectors l and s precess around the vector j, which in

turn precesses around the symmetry axis. The projection jx of the total angular

momentum on to the symmetry axis is constant, whereas lx and sx will vary. In

4The labels s, p, d, f and then g, h, i etc. correspond to sharp, principal, diffuse, fundamental,
and then continue alphabetically. These historical terms originate from the observed properties
of spectral series in alkali metals, dating from before the concept of atomic orbitals was fully
understood.

10



2.1. NUCLEAR MODELS

FIGURE 2.1.1: Single-particle states for a simple harmonic oscillator (sho) poten-
tial; a modified harmonic oscillator with an l2 correction term; and a more realistic
shell model potential (e.g. Woods-Saxon) with l2 and l · s terms. The i13/2 intruder
orbital is highlighted in red.
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2.1. NUCLEAR MODELS

FIGURE 2.1.2: The l · s coupling shown with components projected onto the rota-
tional axis.

order for the j = l + 1/2 states to have lower-lying energies than the j = l − 1/2

states - as is observed experimentally - the spin-orbit force must be attractive.

The splittings introduced by the spin-orbit coupling are comparable in magnitude

to those between adjacent multiplets of the harmonic oscillator potential (see Figure

2.1.1). Thus, the spin-orbit force must be of substantial absolute strength in order

to reproduce the correct magic numbers. Indeed, the constant h̄ω0 of the harmonic

oscillator is found to be h̄ω0 = 41/A1/3 (so v 8 MeV for medium and heavy nuclei),

ergo the strength of the spin-orbit force must be comparable in magnitude.

The spin-orbit interaction, which is primarily a surface phenomenon [14], takes

the form

Vl·s = −Vls
∂V (r)

∂r
l · s, (2.1.13)

where Vls is a strength constant and V (r) is the chosen central potential (e.g. Woods-

Saxon) in the Hamiltonian.

The (2n+ l) degeneracy of the levels of the harmonic oscillator potential results

12



2.1. NUCLEAR MODELS

in shells containing sets of l values which differ by even numbers. Thus, all levels of a

given harmonic oscillator shell must have the same parity. Whilst this is not altered

by the addition of a small l2 correction to the Hamiltonian, the introduction of a spin-

orbit term can sufficiently lower the energy of an N -shell high-j orbital (j = l+ 1
2
) so

that it intrudes into the (N − 1) shell - a phenomena required for the reproduction

of the magic numbers. These depressed states are know as unique parity orbits or

intruder states, and are of particular importance in understanding regimes of high

angular momentum and large deformation. An example of an intruder orbital is the

i13/2 orbital shown in Figure 2.1.1.

2.1.6 Deformation parameters and nuclear shapes

There is considerable experimental evidence for static nuclear deformation; prin-

cipally that nuclei away from closed shells exhibit large quadrupole moments and

rotational bands. The equilibrium shape of a nucleus results from a competition

between shell-structure influences, which favour spherical symmetry, and the effects

of residual interactions, which give rise to deformation. In closed-shell regions, the

shell structure dominates and results in spherically symmetric nuclei.

The deforming power of additional valence nucleons drives the equilibrium shape

away from spherical symmetry. For a sufficient number of additional valence nucle-

ons, the nucleus develops an ellipsoidal deformation and collective rotational modes

arise.

This moving nuclear surface can be characterised by considering the radius vector

R(θ, φ, t) from the centre of the nucleus to its surface at time t, as an expansion of

13



2.1. NUCLEAR MODELS

spherical harmonics5 with time-dependent shape parameters as coefficients

R(θ, φ, t) = R0

(
1 + α0,0 +

∞∑
λ=1

λ∑
µ=−λ

αλ,µ(t)Yλ,µ(θ, φ)

)
, (2.1.14)

whereR0 is the radius of a sphere with a volume equal to that of an ellipsoidal nucleus

and α0,0 is introduced to ensure the conservation of volume. The time-dependent

amplitudes αλ,µ(t) are tensors, which describe the distortion of the nuclear surface

with λ defining the deformation type.

Of particular interest in this investigation is quadrupole deformation (λ = 2),

which causes (2.1.14) to become

R(θ, φ) = R0

(
1 + α0,0 +

∑
µ

α2µY2µ(θ, φ)

)
, (2.1.15)

where α2µ is the quadrupole deformation tensor. Since the nuclear radius must

be real, by applying R(θ, φ, t) = R∗(θ, φ, t) to (2.1.14) and using Y ∗λ,µ(θ, φ) =

(−1)µYλ−µ(θ, φ) (a property of all spherical harmonics), one can show that α2µ must

fulfil the condition α∗λ,µ = (−1)µαλ−µ and, therefore, that α2µ has five independent

degrees of freedom; α2,0 (since α2,0 = α∗2,0), and the real and imaginary parts of α2,1

and α2,2. Explicitly, this gives the coefficients

α2,2 α2,1 α2,0 α2,−1 α2,−2, (2.1.16)

which describe specific properties of the nuclear shape [15], as detailed in Table 2.1.

For nuclei that exhibit axial symmetry, the quadrupole deformation tensors are

5Spherical harmonics of the form Y m
l (θ, φ) are the angular component of the solution to

Laplace’s equation in spherical coordinates, and thus satisfy the spherical harmonic differential
equation.
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2.1. NUCLEAR MODELS

TABLE 2.1: The specific properties of the nuclear shape associated with the
quadrupole deformation tensor α2µ.

Coefficient Property of nuclear shape
α20 Describes stretching along the z axis with respect to the x and y

axes.
α22, α2−2 Describes the relative length of the x axis compared to the y axis,

along with the oblique deformation in the x− y plane.
α21, α2−1 Describes an oblique deformation along the z axis.

constrained such that

α2,2 = α2,−2 α2,1 = α2,−1 = 0. (2.1.17)

When these are combined with the three Euler angles, which govern the transfor-

mation to the intrinsic frame, the nuclear shape can be completely defined. Using

the polar coordinates β and γ, the coefficients α2,2 and α2,−0 can be expressed using

an alternative parameterisation, such that

α2,2 =
1√
2
β sin γ, (2.1.18)

α2,−2 = β cos γ, (2.1.19)

where ∑
mu

|α2,µ|2 = β2. (2.1.20)

The RMS deviation of the nuclear surface from a sphere of radius R0 is given by

the quadrupole deformation parameter β. How this deviation is distributed over the

nuclear surface is then given by the triaxiality parameter γ. This allows (2.1.15) to

be expressed as

R(θ, φ) = R0

(
1 +

√
5

16π
β cos γ(3 cos2 θ − 1) +

√
3 sin γ sin2 θ cos 2φ

)
. (2.1.21)
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2.1. NUCLEAR MODELS

Lund Convention

The Lund Convention, shown in Figure 2.1.3, provides a useful framework for de-

scribing quadrupole shapes. Axially symmetric shapes appear at γ equal to -120°,

-60°, 0° or 60° and correspond to non-collective prolate, collective oblate, collective

prolate and non-collective oblate shapes, respectively. The quadrupole deformation

parameter β then quantifies the degree to which the structure has become deformed.

Figure 2.1.4 illustrates the triaxial deformation of the nuclear surface. Note the an-

gular momentum vector L, which lies in the principal plane formed by the short and

intermediate axes.

2.1.7 The Nilsson model

The principal maxim of the shell model is that individual nucleons move in indepen-

dent orbits due to the mean-field potential produced by the other nucleons. Whilst

this may be an accurate model for nuclei with near-magic numbers, there is a wealth

of experimental evidence to suggest that many nuclei are not adequately described

by a spherical mean-field potential. To describe non-spherical nuclei, one must use

a deformed potential (such as the Nilsson potential) in the nuclear Hamiltonian.

Non-spherical nuclear shapes provide a certain conceptual difficulty; they require

the separation of the motion of individual (valence) nucleons at the Fermi surface

from the rotations of the core itself, and these motions can be very different.

A qualitative approach to the Nilsson diagram

The Nilsson diagram shows how the (2j+ 1) degeneracy of the snsm (incorporating

the spin-orbit and l2 corrections) is relieved as a function of quadrupole deformation.

Consider a single valence nucleon orbiting a prolate-deformed nucleus in an equato-

rial plane, as shown by orbit Ω1 in Figure 2.1.5. Now consider that this nucleus can
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FIGURE 2.1.3: The Lund Convention for describing nuclear shapes.
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FIGURE 2.1.4: Triaxial deformation of the nuclear surface, with the angular mo-
mentum vector L which lies in the principal plane formed by the short and inter-
mediate axes.

rotate about an axis perpendicular to the symmetry axis. For a rapid rotation the

time-averaged shape of the nuclear core has become oblate. The subsequent shape

of the single nucleon’s orbit is then dependent on the extent to which its motion is

coupled to that of the core; that is to say, it is dependent on the separation of the

rotational and single-particle degrees of freedom.

For frequencies of nucleonic motion much greater than the frequency of rotation

of the core, an approximate separation can be made by assuming that a nucleon

performs many orbits of the core during a single nuclear rotation; that is to say, the

nucleus can be considered stationary during a single nucleonic orbit. However, to

effectively explore nuclei in high-spin states using modern experimental techniques,

one can no longer consider these two distinct motions as separate, and must instead

explicitly incorporate the effects of coupling to a single-particle rotating core.
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j

FIGURE 2.1.5: Two single-particle orbitals, Ω1 and Ω2, at different inclinations to
a prolate deformed nucleus.

To construct a qualitative understanding of the Nilsson diagram and a number

of the principal features of the Nilsson wave functions, an intuitive approach is to

consider a deformed single-particle potential (such as a shell model potential with a

quadrupole deformation β) whilst recognising that the nuclear force is both short-

range and attractive.

Consider a valence nucleon in a single-j orbital in a prolate deformed potential.

The projection of its angular momentum on the symmetry axis is labelled Ω2 in

Figure 2.1.5. It is clear that the Ω1 orbit must be lower in energy than the orbit

labelled Ω2, as it follows a path with a greater overlap of the core. Thus, the energy

of the orbit depends on its orientation with respect to the nuclear symmetry axis.

This orientation is quantified by the projection of the total angular momentum on

the symmetry axis, as shown in Figure 2.1.6 and denoted by the symbol Ω.

Figure 2.1.6 shows the quantum numbers used to describe the projections of

the single-particle angular momenta for a deformed rotating nucleus. Note that
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FIGURE 2.1.6: Projections of single-particle angular momenta for a deformed ro-
tating nucleus.

Ω = Λ + Σ and K =
∑

Ω. As has been shown for a deformed nucleus, the energy

of a valence nucleon is dependent on the spatial orientation of its orbit. For j

orientated nearly perpendicular to the symmetry axis, Ω is small and the nucleon is

said to be in a rotationally aligned (low-Ω) orbit. Conversely, for j orientated nearly

perpendicular to the rotational axis, Ω is large and the nucleon is said to be in a

deformation-aligned (high-Ω) orbit. The lowest energy orbital for a prolate nucleus

is that with the lowest Ω value, and vice versa for an oblate nucleus.

Next consider the classical orbit angles corresponding to varying values of Ω. For

the i13/2 orbit (i.e. j = 13/2), Ω is permitted to have the values Ω = 1/2, 3/2, ..., 13/2.

Approximating the angle of the orbital plane using θ = arcsin (Ω/j), one observes

that θ changes very slowly for low Ω and more rapidly for high Ω values. Thus,

one would expect the energy difference for low Ω values to be small, and to increase

rapidly for high Ω values, known as Ω-splitting. This is illustrated in Figure 2.1.7,

which shows how the degeneracy of the single-j states is relieved as a function of
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FIGURE 2.1.7: Variation in the single-particle energies of i13/2 orbits for different
Ω projections as a function of deformation parameter β.

deformation.

To construct the full Nilsson diagram of deformed single-particle energies as a

function of deformation, as shown in Figure 2.1.8, the combination of several j values

needs to be considered. This requires that the configuration mixing of different j

values be superimposed onto the splitting discussed above. Having noted that no two

levels with the same quantum numbers may cross, and that the only good quantum

number for these orbits is Ω, it then follows that no two lines in the Nilsson diagram

(which correspond to the same Ω value and π) may cross. With the understanding

that any two such lines approaching each other must repel, it then becomes possible

to incorporate many j values into the Nilsson diagram, with the final step being to

extend the diagram to realistic deformations where the energies of different orbits

will interweave.
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FIGURE 2.1.8: Nilsson diagram for protons in the 50 ≤ Z ≤ 82 region. The
diagram shows how the degeneracy of the spherical shell model single-particle states
is relieved for non-zero values of the quadrupole deformation parameter ε2.
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Each line in the full Nilsson diagram represents a single-particle Nilsson state

and slopes either upwards or downwards, depending on the angle of the orbital

relative to the rotating core of the nucleus. A state will only start to curve when

it mixes with another state of the same Ω and parity. Thus, the entire structure of

the Nilsson diagram is dependent on only three factors; the initial input of single-

particle shell model energies (valid only for β = 0), Ω-splitting (arising from the

effects of the short-range nuclear interaction in a non-spherical potential) and the

repulsion between individual Nilsson states of the same Ω and π.

The Nilsson or modified oscillator potential

The Nilsson (or axially deformed shell-) model is a single-particle model that pro-

vides a microscopic foundation for the existence of rotational and vibrational collec-

tive motion. The model uses an anharmonic oscillator with an ellipsoidal potential

to calculate the energies of the single-particle orbits.

The Nilsson potential defined by (2.1.22) arises from the anharmonic oscillator

potential (2.1.23) for an aspheroidal nucleus deformed along the z-axis.

VNilsson = Vosc − κh̄ω0

[
2(l·s) + µ

(
I2 − 〈I2〉N

)]
(2.1.22)

Vosc =
M

2

[
ω2
⊥
(
x2 + y2

)
+ ω2

zz
2
]

(2.1.23)

The (I2 − 〈I2〉N) term accounts for nucleons near the nuclear surface - which

experience a greater potential than those near the core - by flattening the potential

to give it a more realistic shape. The κ and µ coefficients parameterise the coupling

strength and are determined by making fits to experimental energy levels; these pa-

rameters will be different for each major oscillator shell. To reproduce the shell gaps

at magic numbers, the spin-orbit coupling term l·s is introduced to lift the degen-
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eracy from the j = l±1
2

orbitals. ω⊥ and ωz are the frequency of simple harmonic

motions (oscillation) perpendicular and parallel to the axis of symmetry, respec-

tively, and are inversely proportional to the length of the deformed nucleus along

each axis. Note that for conservation of volume (assuming the incompressibility of

nuclear matter) ω3
0 = ω2

⊥ωz.

The eigenvalues, or Nilsson orbitals, obtained by solving the Schrödinger equa-

tion, are then labelled by the asymptotic quantum numbers

[N nz Λ]Ωπ (2.1.24)

valid for both large deformation and axially symmetric nuclear shapes where

N = Principal quantum number of major shell,

nz = Number of nodes in the Nilsson wave function along the z-axis,

Λ = Projection of orbital angular momentum l on the axis of symmetry,

Ω = Projection of total angular momentum j on the axis of symmetry,

π = Parity of the Nilsson state
[
= (−1)N

]
.

The projection Ω of total angular momentum on the axis of symmetry and the

parity π are now the only good quantum numbers. N , nz, and Λ are not good

quantum numbers at low deformations and only become good at larger deformations;

hence they are said to be to be asymptotic.

Figure 2.1.6 shows the quantum numbers used to describe the projections of the

single-particle angular momenta for a deformed rotating nucleus. Note that Ω = Λ+

Σ andK =
∑

Ω. In a deformed nucleus, the energy of a valence nucleon is dependent

on the spatial orientation of its orbit. For j orientated nearly perpendicular to the

symmetry axis, Ω is small and the nucleon is said to be in a rotationally aligned
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(low-Ω) orbit. Conversely, for j orientated nearly perpendicular to the rotational

axis, Ω is large and the nucleon is said to be in a deformation-aligned (high-Ω) orbit.

The lowest energy orbital for a prolate nucleus is that with the lowest Ω value and

vice versa for an oblate nucleus.

Each Nilsson state with ±Ω is two-fold degenerate. As the deformation increases

and the nucleus moves away from spherical symmetry, the (2j+1) degeneracy of the

spherical shell-model states is lifted. For example, in the case of the 1d5/2 orbital

the degeneracy would be lifted to give (2× (5/2))+1 = 6 discrete energy levels with

Ω = ±1/2,±3/2,±5/2.

2.1.8 Quadrupole moments

The electric quadrupole moment Q0 is a quantity which gives a measure of the

charge distribution of the nucleus, and hence the deviation of the nucleus away

from spherical symmetry. A nucleus exhibiting spherical symmetry would have a

quadrupole moment of zero, whilst positive (negative) moments are characteristic

of prolate (oblate) deformed shapes. Values of Q0 are typically expressed in units

of 1.6× 10−43 cm2 = 1 eb.

The operator corresponding to the electric quadrupole moment is given by

Q̂(r) = e

∫
ρe(r)r

(
3 cos2 θ − 1

)
dV, (2.1.25)

where ρe(r) is the electric charge density function and θ is the angle subtended

by the radius vector r. The (intrinsic) quadrupole moment is then defined as the

expectation value of Q̂ for a nucleus in the state |I,M〉 as

Q0 = 〈I,M | Q̂(r) |I,M〉 , (2.1.26)
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where I is the total angular momentum of the nucleus and M is the magnetic

quantum number. The intrinsic quadrupole moment can also be related to the

quadrupole deformation parameter β by

Q0 =
3√
5π
ZR2β2

[
1 +

1

8

√
5

π
β2

]
. (2.1.27)

2.1.9 Nuclear transitions

γ-decay within the QED framework

Quantum theory as formulated prior to 1925 is now considered to be more a heuris-

tic collection of incomplete and non-self-consistent corrections to classical mechanics

rather than the rigorous mathematical framework with which we are familiar today.

These early attempts at a quantum theory could not successfully describe the phe-

nomenon of spontaneous γ-decay, as they did not allow for the electromagnetic field

to be properly quantised. As the overlap between the ground state and excited

state nuclear wave functions is zero, a nucleus cannot decay between these states

in the absence of a quantised electromagnetic field. The extension of quantum me-

chanics to a quantum field theory, in which the electromagnetic field is quantised

at every point in space, is described using quantum electrodynamics (qed). Within

this framework, the electromagnetic field has a fluctuating ground state, the qed

vacuum, which can mix with the stationary states of the nucleus and thus induce a

decay via γ-ray emission.

All nuclei with bound excited states exhibit γ-ray decay due to this nucleus-

electromagnetic field interaction; an excited nucleus will lose energy via the emission

of a γ-ray photon of energy Eγ equal to the transition energy between the initial

and final nuclear states6, typically between 0.1 and 10 MeV.

6This is neglecting the recoil energy of the emitting nucleus; a reasonable assumption, as the
recoil momentum transfer is usually approximately 1 part in 105.
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FIGURE 2.1.9: Diagram showing the initial and final spins, parities and energies
for an electromagnetic transition.

This electromagnetic radiation is quantised - the emitted photon must have a

discrete energy and angular momentum - and is emitted as oscillations of electric

or magnetic moments. An oscillating electric charge distribution (due to proton

motion) coupled with the external electric field generates the emission of electric

EL-type radiation. Likewise, the coupling of the intrinsic magnetic moment of a

nucleon with the magnetic field - induced by current loops due to proton orbitals

- generates the emission of magnetic ML-type radiation. Magnetic transitions are

thus sensitive to nuclear magnetic moments and so yield information about the

single-particle properties of the nucleus. Conversely, electric transitions are sensitive

to the nuclear charge distribution and so yield information about collective effects

such as deformation.

Selection rules

The electromagnetic transitions between two states - as shown in Figure 2.1.9 -

observe the angular momentum and parity π selection rules give by (2.1.28) and

(2.1.30), where L is the multipolarity of the emitted radiation.
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|Ji − Jf | ≤ L ≤ Ji + Jf (2.1.28a)

Lmin = |Ji − Jf | (2.1.28b)

Multipolarity is a measure of the angular momentum carried away by the photon. A

photon with l units of angular momentum is a 2l-pole photon, i.e. l = 1 corresponds

to a dipole, l = 2 to a quadrupole and l = 3 to an octupole. The parity of a given

state is given by

π = (−1)l, (2.1.29)

where l is the corresponding orbital angular momentum quantum number. The

change in parity for a transition of given type - electric (EL) or magnetic (ML) -

and multipolarity is thus given by

∆π(EL) = (−1)L ∆π(ML) = (−1)L+1 (2.1.30)

Note that L cannot be equal to zero. As the photon has an intrinsic spin of 1, it

must take away a minimum angular momentum of L = 1.

2.1.10 Summary of nuclear models

Thus far, this chapter has discussed a series of corrections to the spherical nuclear

shell model which contribute to a significantly more realistic nuclear model. These

corrections are illustrated schematically in Figure 2.1.10. This figure shows how

an axial deformation of the nuclear shape relieves the degeneracy of the spherical

shell model states, and how an interplay of centrifugal and Coriolis forces gives rise

to new symmetries in the nuclear Hamiltonian (π, α). These concepts provide a

foundation for the understanding of nuclear rotations which are fundamental to the

results presented in this thesis.
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FIGURE 2.1.10: Corrections made to the spherical shell model which produce in-
creasingly realistic models. The lifting of (N+1)(N+2) degeneracy associated with
the N = 2 oscillator shell is illustrated schematically for each model, along with the
respective degeneracy and the remaining good quantum numbers. Each regime is
then characterised by the nuclear shape shown at the bottom of the figure. The
1/2− intruder state (shown in red) is the negative-parity 2p1/2 orbital of the N = 3
oscillator shell, which is lowered in energy by the spin-orbit interaction to lie below
the N = 2 3/2+ Nilsson state.
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2.2 Collective nuclear rotation

2.2.1 Collective motion

Collective excitations arise from the coherent motion of constituent nucleons. It is

this coherent motion of nucleons which leads to nuclear deformation and the col-

lective rotational and vibrational degrees of freedom. These collective excitations

result in regular sequences of excited states constituting rotational bands. As nu-

cleons are added to (or removed from) a closed shell, polarisation of the mean-field

potential, or core polarisation, removes spherical symmetry and the nucleus can take

on a deformed equilibrium shape.

2.2.2 Particle-core coupling and the particle-rotor model

(PRM)

The particle-rotor model was first introduced as an angular momentum-conserving

phenomenological description of odd-A deformed nuclei. Originally formulated for

axially symmetric nuclei, notable extensions to the model now allow for the descrip-

tion of triaxial deformation [16].

More specifically, the model describes a coupling between the single-particle

motion of a small number of independent nucleons to a deformed nuclear core.

This coupling can occur between two extreme regimes; the rotation-alignment limit

(ral) and the deformation-alignment limit (dal). Figure 2.2.1 illustrates these two

regimes.

The particle-rotor system will approach the rotation-aligned limit for rapid ro-

tation and smaller deformations. In this regime, the Coriolis force exerts a strong

influence on the valence-nucleon orbitals and aligns the angular momentum of the

nucleon(s) with the axis of rotation. The angular momentum vector J now precesses
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FIGURE 2.2.1: Angular momentum coupling of the single-particle motion of a
valance nucleon to a deformed core. The symmetry axis is perpendicular to the
rotational axis and indicated by the dashed line.

about the rotation axis and the orbit of the nucleon lies in the symmetry plane.

For low rotational frequencies and larger deformations, the deformation-aligned

limit is approached. In this case, the Coriolis force is too weak to align the single-

particle orbits with the axis of rotation. The single-particle Routhians have become

near-degenerate levels and exhibit minimal staggering.

Coriolis coupling

Classically, a particle of mass m moving with velocity ν in a rotating reference

frame with angular momentum Ω appears to be influenced by an additional force
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term F̂ = −2m(Ω × ν), known as the Coriolis force [17]. In nuclei, Coriolis effects

arise due to the orbital motion of valence nucleons in the field of a rotating nuclear

core. The resulting Coriolis force will always act to align the angular momenta

of these valence nucleons along the rotational axis of the core. The effect is most

pronounced where valence nucleons occupy high-j orbitals.

Assuming a rigid, axially symmetric deformed core, a simple Hamiltonian for a

deformed odd-A nuclei is given by

Ĥ = Ĥin + Ĥrot, (2.2.1a)

Ĥrot = Ĥ0
rot + ĤCoriolis, (2.2.1b)

where Ĥin corresponds to the intrinsic valence odd-particle Hamiltonian in the ab-

sence of any core rotation, and Ĥrot corresponds to an even-even axially symmetric

rotor. Ĥ0
rot and ĤCoriolis are purely rotational and Coriolis terms, respectively. It

is important to distinguish between the particle-core coupling, which is contained

within Ĥin, and the particle-rotation coupling, which is contained within Ĥrot. The

major contribution to the coupling between valence nucleons and the nuclear core

is spherically symmetric, and not central to this discussion; however, for a core

which is deformed, there is then a coupling to the deformation which must be con-

sidered. For nuclei exhibiting large deformation and strong particle-core coupling,

valence nuclei will follow the core as it rotates. Coriolis effects are then observable

as perturbations to the purely rotational spectra.

The coupling between valence nucleons and the nuclear core rotation, however,

arises from their sharing of the total angular momentum of the core-particle system.
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FIGURE 2.2.2: A pair of valence nucleons in time-reversed orbits (left) with angular
momentum coupled to zero. As spin is increased the pair recouples (right), such that
their angular momenta are aligned with the rotational axis. The symmetry axis is
perpendicular to the rotational axis and indicated by the dashed line.

Rotation-aligned coupling RAL

At high spin, the Coriolis and centrifugal forces break the time-reversal symmetry of

valence nucleon pairs and align the orbital angular momenta vectors j1 and j2 with

the rotational axis. Figure 2.2.2 shows a pair of valence nucleons in time-reversed

orbits (left) with angular momentum coupled to zero. As spin is increased the pair

recouples (right), such that their angular momenta are aligned with the rotational

axis.

The aligned angular momentum I of a rotating deformed nucleus is given by

(2.2.2), where R is the collective angular momentum due to the rotation of the core

and J is the sum of the intrinsic single-particle angular momenta of the valence
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nucleons.

Î = R̂ + Ĵ (2.2.2)

If the axis of symmetry is chosen as the z-axis then R will be perpendicular to it,

and the projection of I and J will be equal and denoted by K.

The rotational alignment ix [18, 19] is quantified as the projection on the axis

of rotation of the vector sum of the angular momentum of the valence nucleons

J =
∑
j, and is given by (2.2.3).

ix =
√
I(I + 1)−K2 − Iref (2.2.3)

Iref is the total aligned angular momentum of a reference configuration and is used

to subtract the rotation of the nuclear core, such that the first rotational band

exhibits almost constant alignment at low spin.

The aligned configuration will have an angular momentum greater than that of

the rotational band constructed with all the nucleons paired. On a plot of angular

momentum as a function of frequency, this is seen as backbending at the crossover

frequency ωc at which the alignment occurs. This backbending is interpreted as the

crossing of two distinct rotational bands, each with their own intrinsic configuration.

The sharpness of the backbending corresponds to the strength of the interaction be-

tween the two crossing bands, with a steeper slope indicating a stronger interaction.

2.2.3 The cranked shell model (CSM)

The cranking model was originally introduced [20, 21] within the framework of a

single-particle model, and approximated the collective motion of nucleons (associ-

ated with a change in nuclear shape) through the introduction of a non-spherical

distortion to the zero-order wave functions of the shell model. This model was later

extended [22] so as to be based on the self-consistent mean-field theory of a deformed
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rotating body.

A further reformulation [23] of the self-consistent cranking model is the cranked

shell model (csm); this variation exhibits a greatly increased applicability over pre-

vious models, and is widely used in the analysis of band crossing and other high-spin

nuclear phenomena [16]. This formulation, which applies to well-deformed axially

symmetric nuclei and is used in this work, is known as principal-axis cranking (pac),

and assumes that collective rotations occur about a principal axis which is perpen-

dicular to the axis of symmetry.

The csm assumes a set of independent nucleons moving in a time-dependent po-

tential ν̄(x, y, z, t), which is non-invariant under rotation. This potential consists of a

time-independent potential ν(x1, x2, x3), which is given a constant angular velocity

ω, or cranked about a fixed axis. The wave function of a nucleon in the labora-

tory frame (x, y, z) is given by Ψ̄(x, y, z, t), and in the rotating frame (x1, x2, x3) by

Ψ(x1, x2, x3, t). The rotation operator R̂ = e−iwjt is then defined such that (2.2.4)

transforms the wave function of the nucleon from the laboratory frame to the rotat-

ing frame (2.2.5) with angular momentum j,

Ψ̄ = R̂Ψ, (2.2.4)

Ψ̄(x, y, z, t) = e−iwjtΨ(x1, x2, x3, t). (2.2.5)

The time-dependent Schrödinger equation

ih̄
∂

∂t
Ψ̄(x, y, z, t) = ĥΨ̄(x, y, z, t) = EΨ̄(x, y, z, t), (2.2.6)

with the single particle Hamiltonian given by

ĥ = t+ ν̄(x, y, z, t), (2.2.7)
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can thus be transformed into the time-independent Schrödinger equation

ih̄
∂

∂t
R̂Ψ = ih̄

∂

∂t
e−iwjtΨ(x1, x2, x3, t),

= (ĥ− h̄ωj)Ψ(x1, x2, x3, t),

= h̄ωΨ(x1, x2, x3, t),

(2.2.8)

in the rotating frame with the cranking one-particle Hamiltonian or Routhian oper-

ator, given by

h̄ω = ĥ− h̄ωj. (2.2.9)

This allows for the single-particle excitation energies in the rotating reference frame,

or Routhians, to be determined. Summing (2.2.9) over all independent particles in

the system gives the total cranking Hamiltonian

Hω = Ĥ − h̄ωJ, (2.2.10)

where the use of capitals denotes summed quantities corresponding to a system of

many independent nucleons, i.e. a nucleus.

2.2.4 Signature splitting

In the csm, the nucleon states are described by two symmetry quantum numbers;

signature α which defines the allowed spin sequence for a band through the relation

I = α + 2n (n = 0, 1, 2, ...), and parity π. Signature is related to the invariance of

a system with quadrupole deformation under a rotation of 180° around a principal

axis. For an axially symmetric system, the signature quantum number can therefore

only be defined by a rotation around any principal axis other than the symmetry

axis [24]. Hence, signature is a consequence of the deformation of a system, and

corresponds to a deformation invariance with respect to space and time [25]. As
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the single-particle Routhian ˆ̄h
ω

is invariant under a rotation R̂x = e−iθjx around the

x-axis by an angle θ, the single-particle states may then be classified according to

their symmetry with respect to the rotation R̂x(θ),

R̂x|αix〉 = e−iθjx|αix〉 = e−iθα|αix〉 α = ±1

2
. (2.2.11)

This symmetry of the nuclear wave function with respect to R̂x(θ) allows for a

relationship to be established between the states separated by ∆I = 2. For odd A

nuclei, the energetically favourable signature αf is lowered relative to the unfavoured

signature αu, where j is the angular momentum of the odd nucleon.

αf =
1

2
(−1)j−

1
2 αu =

1

2
(−1)j+

1
2 (2.2.12)

The experimental signature splitting ∆e′ is then defined as the energy differ-

ence at a given rotational frequency between the favoured and unfavoured signature

sequences of a rotational band. As this energy difference is often very small (espe-

cially in the case of some axially prolate deformations), an energy staggering index

or staggering parameter is introduced to provide a more usable measurement [26].

The staggering parameter S(I) as a function of spin is thus defined by

S(I) = E(I)− E(I − 1)− 1/2[E(I + 1)

− E(I) + E(I − 1)− E(I − 2)],

(2.2.13)

where E(I) is the excitation energy of a state I. A large degree of signature splitting

(and hence a large staggering parameter) in a high-Ω orbital is indicative of triaxial

deformation and minimal splitting (and hence a small staggering parameter) of an

axial prolate deformation [3].

For odd-A nuclei, states with angular momentum I = 1/2, 5/2, 9/2, ... correspond
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to α = +1/2, and the states I = 3/2, 7/2, 11/2, ... correspond to α = −1/2. These

two sequences form independent decay paths along the yrast line with cascades of

E2 transitions.

2.3 Nucleonic configurations

Central to this work is the concept that a given isotope can exist in different states

with valence nucleons coupled in certain configurations, depending on the excitation

energy and spin angular momentum of the nucleus. The specific nucleon orbitals

which are then involved in forming such couplings have a dramatic effect on the

nuclear shape and deformation properties. For example, the rotational alignment

of a pair of i13/2 neutrons at high spin will drive the nuclear shape towards prolate

deformation, whereas an odd-proton in the πh11/2 orbital at low spin is characteristic

of triaxial deformation.

A nucleus formed at a given excitation energy and spin (for example in a fusion

evaporation reaction) will have its valence nucleons coupled into a given configu-

ration. As the nucleus loses energy and spin through the emission of γ radiation,

its valence nucleons will then recouple into more energetically favourable configura-

tions, accompanied by any corresponding change in nuclear shape. The energy levels

(between which these γ-ray transitions occur) associated with a given configuration

then form band structures characteristic of that configuration. Take, for example,

a rotationally excited nucleus, where the excitation energies (which will generally

be lower in energy than those which occur due to single-particle excitations) form

bands of levels which satisfy the relation

Erot =
h̄2

2J
I(I + 1), (2.3.1)

where J is the moment of inertia. This chapter briefly discusses a range of nuclear
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phenomena which underpin the work undertaken in this thesis, and these are: band

crossing (2.3.1), configuration mixing (2.3.2) and backbending (2.3.3).

2.3.1 Band crossing

Consider an excited band with a greater moment of inertia than that of the ground

band. The energy levels in the excited band increase more slowly with J and at

sufficiently high spin, levels with a given J can occur lower in energy than levels of

the same spin in the ground band. Alternatively phrased, the lowest energy states

of a given spin (the yrast states) become those of an excited configuration. This

phenomenon is known as band crossing (see Figure 2.3.1). This is best thought of as

an interaction region with an apparent crossing (see Figure 2.3.2) and a recoupling

of nucleons into a new configuration.

2.3.2 Two-state mixing

When two bands cross they either interact or mix. Mixing occurs when levels of the

same spin and parity lie close in energy and repel each other due to the exclusion

principle. Consider the simple case of two states from the ground and excited bands

in the crossing region, as indicated in Figure 2.3.1. The (perturbed) wave functions

corresponding to each observed state ψ0 and ψ1, shown in Figure 2.3.2, can be

written as a linear combination of the pure wave functions φ0 and φ1, corresponding

to the ground configuration state and the excited configuration state, respectively.

This gives

ψ0 = αφ1 − β0, ψ1 = −β1 + αφ0, (2.3.2)

39



2.3. NUCLEONIC CONFIGURATIONS

FIGURE 2.3.1: A plot showing the ground and excited bands and their crossing
region. The expanded view of a band crossing region shows how the two bands in-
teract - leading to an interchange of the intrinsic nuclear structure - without explicitly
crossing. The lower solid line (labelled) indicates the observed (perturbed) energy
as a result of two-state mixing whilst the dashed red lines indicate the unmixed
“pure” energies.

where α and β are the amplitudes of the wave function components such that

α2 + β2 = 1. (2.3.3)

The perturbed (observed) energies Eobv of the two levels in the crossing region are

related to the unperturbed energies through the interaction matrix element V , such

that

E−0 V

V E+
1


φ0

φ1

 = Eobv

φ0

φ1

 , (2.3.4)
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FIGURE 2.3.2: A plot of excitation energy against a given nuclear structure param-
eter (e.g. spin) shows the inflection point between two admixed states.

where E−0 and E+
1 are the unperturbed energies of the upper and lower states,

respectively. The two solutions for Eobv are then found by rearranging (2.3.4) and

diagonalising the resulting matrix, giving

E1,2 =
1

2

[(
E−0 + E+

1

)
±
√(

E−0 − E+
1

)2
+ 4V 2

]
. (2.3.5)

2.3.3 Backbending

For a normal rotational band, a plot of 2I/h̄ against h̄ω is flat or increases slightly

for low h̄ω. This is due to Eγ(J) being linear in J and the moment of inertia at

low spins being either constant or slightly increasing due to, for example, centrifugal

stretching.

At the band crossing, however, there is a more radical change; in the insert

in Figure 2.3.1 one can see that, for a narrow range of spins, the γ-ray transition

energies between yrast states can actually decrease; as h̄ω = Eγ/2, a plot of 2I/h̄
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FIGURE 2.3.3: A plot of 2I/h̄ against h̄ω illustrating the backbending phenomenon.

against h̄ω will in fact move “backwards” (i.e. to the left) in the band crossing

region, as shown in Figure 2.3.3. However, at J values above the band crossing, the

level energies again approach a J(J + 1) dependence, and so Eγ (or h̄ω) increases

again with spin (i.e. moves to the right) but at a higher energy (since the yrast states

are now a continuation of the crossing band, which has a larger value of 2I/h̄).

The sharpness of the backbend is indicative of the strength of the interaction

between the different configurations at the crossing. A weaker interaction will be

characterised by a backbend which moves sharply to the left, before moving sharply

right again as h̄ω increases.
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Chapter 3

Experimental Apparatus

The study of exotic nuclei far from stability faces a number of challenges for experi-

mental physics. The heavy neutron-deficient nuclei under investigation are produced

with low cross-sections in the fusion evaporation reactions used and have to be iso-

lated from high fission γ-ray backgrounds. To overcome this problem, recoil decay

tagging is utilised. This technique takes advantage of the distinct α-decay energy

of the nucleus under investigation to identify γ-ray transitions between its excited

states.

Implantation detection systems (for example the great spectrometer) combined

with in-flight recoil separators (for example the ritu gas-filled separator) to suppress

fission products and transmit fusion recoils, form one of the most powerful tools

available for investigating nuclear phenomena far from stability. Such systems offer

efficient separation of the nuclei of interest coupled with sensitive detection of these

reaction products and their subsequent radioactive decays. The exploitation of

recoil-decay tagging (rdt) techniques has furthermore allowed the spectroscopic

study of their excited states to flourish [27].

Figure 3.0.1 shows the experimental apparatus used in this investigation, which

consists of three main components: the jurogam spectrometer array, which sur-
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FIGURE 3.0.1: Render of the jurogam, ritu and great spectrometer assembly
with the beam line incident from right to left. Figure courtesy of Ref.[27].

rounds the target position, the ritu gas-filled recoil separator and the great spec-

trometer. Using great as a tagging spectrometer in conjunction with a target

position prompt γ-ray detector array, a delayed coincidence technique, has the limi-

tation of severe deadtime losses in the data acquisition system when using conven-

tional triggering methods. To circumvent this problem, an innovative triggerless

total-data-readout (tdr) data acquisition method has been developed for this ap-

plication [28].

The incident heavy-ion beam enters the jurogam detector array and collides

with the self-supporting thin foil target, producing a large number of prompt γ rays.

Fusion products are then separated in-flight from the scattered beam and other re-

action products by the ritu gas-filled separator [29, 30] before being implanted into

the double-sided silicon strip detectors (dssds) of the great spectrometer [27]. The
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triggerless total-data-readout (tdr) data acquisition system is then used to inde-

pendently record all detector output signals where they are time-stamped with a

precision of 10 ns. This allows for accurate temporal correlations between recoil im-

plants and subsequent radioactive decays to be performed using the grain software

package [31].

In the off-line analysis, the jurogam data is used to produce two-dimensional

symmetric matrices from which excited states level schemes can be constructed for

the nucleus under investigation using the escl8r software package [32].

3.1 Heavy-ion fusion evaporation reactions

Fusion evaporation reactions are the most effective experimental method for giving

the largest possible angular momentum to the nucleus of interest [33]. Such reactions

involve the collision of a beam of heavy ions with a stationary, self-supporting, thin

foil target to produce the compound nuclei with a large density of states. These

nuclei are highly excited and will “evaporate” particles to lose energy; the nature of

the evaporated particles (i.e. alphas, protons or neutrons) depends on the energy and

spin of the compound nucleus. These evaporated particles have a statistical energy

spectrum and remove approximately 5-8 MeV per nucleon from the excitation energy

of the compound system, whilst only 1-2 h̄ of angular momentum is carried away.

Thin foil targets are approximately of the order of 1 mg cm−2 and are bombarded

by beams of typically a few particle nano-Amps (v 1010 particles s−1).

Figure 3.1.1 shows the various types of heavy-ion collision as a function of impact

parameter b. Fusion reactions only take place for small values of b, with other

reactions occurring at increased target-beam distances. For beam energies around

the Coulomb barrier (3-5 MeV A−1) the total fusion cross-sections are typically of

the order of 1 barn (10−28 m). For heavier nuclei where fission begins to dominate
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FIGURE 3.1.1: Impact parameter b for various nuclear reaction mechanisms.

over fusion evaporation, the fusion cross section drops dramatically.

Figure 3.1.2 shows the fusion reaction by which a 60Ni nucleus fuses with a 106Cd

nucleus in the foil target to produce the highly excited 166Os compound system with

a large angular momentum. This compound nucleus is a hot1 nuclear system with

a sufficient lifetime (> 10−20 s) to reach thermodynamic equilibrium. During this

time the nucleus loses all information on its composition from constituent beam and

target nuclei [34]. However, quantities such as total energy and angular momentum

are conserved.

A given combination of beam and target will produce compound nuclei which

can de-excite via a variety of possible exit channels; an appropriate choice of beam

energy may then allow for preferential population of particular channels of interest.

The excitation energy and spin of the compound nucleus define its proximity to

the yrast line upon formation; thus determining the amount and type of particle

evaporation possible and hence the exit channels available for de-excitation.

Figure 3.1.3 shows the typical de-excitation process for a compound nucleus,

1A hot nucleus is an excited nucleus where its energy is shared between many degrees of freedom.
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FIGURE 3.1.2: A 60Ni beam nucleus fuses with a 106Cd target to form a 166Os
compound system which decays to 163Re via the p2n exit channel. An approximate
time scale for each step in the process is given. A typical value for ω would be
2× 1022 Hz.

using the p2n exit channel as an example. Approximately 10−16 s after its formation,

the compound system will undergo nucleon evaporation until the nucleus is within

a fraction of the proton and neutron separation energies from the yrast line, known

as the particle evaporation threshold. At this stage the nucleus is considered to be

an evaporation residue. The only method by which the newly synthesised nucleon,

which is highly excited and with a large angular momentum, can de-excite further

(and hence move closer to the yrast line) is now by γ-ray emission. Initially, there

is still a relatively high density of states and the resulting transitions do not form

resolvable peaks. These emitted γ rays are said to be statistical. As the nucleus

de-excites further towards the yrast line, the density of states is much smaller and

transitions in this region, known as γ-ray cascades, become resolvable.

Figure 3.1.4 shows the greatest angular momentum obtainable by the compound

nucleus for a given energy for different nucleon configurations. As the angular mo-

mentum decreases below a certain value for a given configuration, it becomes more

energetically favourable for the nucleons to recouple into a new configuration with
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FIGURE 3.1.3: De-excitation of a compound nucleus via the p2n exit channel.
Energy is carried away from the nucleus by particle emission until the evaporation
residue is within the particle evaporation threshold. The nucleus then continues
to de-excite towards the yrast line via statistical γ rays before finally de-exciting
further via a cascade of γ-ray transitions between states close to the yrast line.

lower excitation energy for that value of spin. Thus the de-exciting compound nu-

cleus will continue to emit γ rays - following the yrast line as it loses energy - until

the ground state is reached.

3.2 JUROGAM

The jurogam detector array consists of 43 eurogam phase I and gasp-type [35]

Compton-suppressed high-purity germanium (HPGe) detectors distributed in six

rings with each ring at an angle relative to the beam direction as given in Table 3.1.

Compton suppression is a technique that allows for the removal of Compton-
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FIGURE 3.1.4: A plot of excitation energy against spin showing the greatest angular
momentum obtainable for a given energy; known as the yrast line (red).

scattered γ-rays from the HPGe detector output signal. As the high-resolution solid

state germanium detectors are of finite size, many γ rays will Compton-scatter out

of the detector before they have deposited all of their energy, thus only a fraction

of the energy of the incident γ radiation is detected. By surrounding the main

HPGe detector with a larger low-resolution suppression detector (usually a bismuth

germanate (bgo) scintillator) and running the pair in anticoincidence, a scattered γ

ray that is detected by both detectors can be safely ignored. The larger suppression

detector has a greater stopping power than the main detector and thus it is highly

unlikely that a γ ray will scatter out of both devices.

Figure 3.2.1 shows the jurogam detector array at the University of Jyväskylä

Accelerator Laboratory. Figure 3.2.2 shows the target position of the detector with

the beam line coming in from the left. The first vertically focusing quadrupole

magnet of the ritu gas-filled separator can be seen downsteam of the target position

on the right-hand side.
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TABLE 3.1: The ring number, angle from the beam axis, array positions and the
maximum number of detector positions per ring, for each ring in the jurogam
spectrometer.

Ring number Ring angle θ Array positions (Maximum) number of detectors

1 157.60 1 - 5 5
2 133.57 6 - 15 10
3 107.94 16 - 25 10
4 94.16 26 - 30 5
5 85.84 31 - 35 5
6 72.05 36 - 45 10

3.3 Recoil ion transportation unit (RITU)

Typically, the collision of a heavy-ion beam with a thin foil target produces a multi-

tude of reaction products including those from fusion-induced fission, deep-inelastic-

type reactions and often up to a dozen fusion exit channels. The role of any recoil

separator type device is then to separate and collect the recoiling fusion products

from the unwanted contaminants and the much more intense flux of beam particles.

Such devices typically achieve this by some configuration of electric and magnetic

fields [36], which allows for the primary beam to be dumped and for the ions to

be separated by their mass over charge state. ritu however, as a gas-filled recoil

separator, operates on the principle of charge state focusing.

ritu uses an ion optical configuration of QνDQhQν where quadrupole magnets

are denoted by Q and dipole magnets by D. Vertical and horizontal focussing is

denoted by the subscripts ν and h respectively. The first Qν magnet collects and

focuses the beam from the target position, ensuring that the recoil cone matches

acceptance of the dipole magnet. This second magnet then separates the recoils

from the beam before dumping the beam in a beam stop located inside the dipole

magnet chamber. The Qh and Qν quadrupole magnets then provide final focusing of

the fusion products before implantation into the dssd of the great spectrometer.
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FIGURE 3.2.1: The jurogam γ-ray spectrometer array at the University of
Jyväskylä.

Most gas-filled separators utilise a DQQ configuration; it is the addition of the

front Qν magnet which makes it possible to place an efficient γ-ray detector, such

as jurogam, around the target position without losing angular acceptance.

The separator vacuum chamber is filled with helium gas from the target region

to the great spectrometer at the focal plane. A 0.5 mg/cm2 Ni foil separates the

high vacuum of the beam line from the low pressure helium gas and a thin Mylar2

window separates the ritu separator chamber from the methylpropane used in the

mwpc of the great spectrometer.

High transmission efficiency is achieved as a result of filling the field region with

the dilute helium gas; collisions between reaction products and the gas atoms lead

to a charge state focusing effect where the ions follow a trajectory approximately

2Mylar, developed in the mid-1950s, is a trade name for biaxially-orientated polyethylene tereph-
thalate (BoPET), which is a polyester film used for its high tensile strength, dimensional and
chemical stability, transparency, electrical insulation and gas barrier properties.
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FIGURE 3.2.2: The target position of the jurogam detector array and the first
quadrupole magnet Qν of ritu. The beam pipe can be seen entering the array from
the left.

determined by their average charge state in the gas and independent of their original

charge state at the exit of the target position. As a result, velocity and charge

acceptance may both approach 100% and transmission is mainly limited only by

angular acceptance and losses inside the separator due to scattering [30]. Figure 3.3.1

shows the jurogam detector array just visible at the target position in the top

left corner followed downbeam by the QνDQhQν magnet configuration. At the

focal plane of ritu in the bottom left hand corner is the great spectrometer.
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(GREAT) SPECTROMETER

FIGURE 3.3.1: ritu and the great spectrometer with the jurogam detector
array just visible at the top left.

Figure 3.3.2 shows the QνDQhQν magnet configuration of the ritu separator with

the beam incident at the target position on the left hand side. The beam stop region

inside the dipole magnet chamber is indicated by the red line.

3.4 Gamma recoil electron alpha tagging

(GREAT) spectrometer

Situated at the focal plane of ritu - see Figure 3.0.1 - the Gamma Recoil Electron

Alpha Tagging (great) spectrometer [27] is a composite detector array consisting

of two Double-sided Silicon Strip Detectors (dssds), a MultiWire Proportional Gas-

Counter (mwpc), a planar High Purity Germanium (HPGe) detector and an array
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(GREAT) SPECTROMETER

FIGURE 3.3.2: Top-down view of the ritu gas-filled separator showing the
QνDQhQν ion optical magnetic configuration and beam stop region (indicated by
the red line).

of 28 Si pin diode detectors. The arrangement of these detector systems is shown in

Figure 3.4.1. To detect high energy γ rays, a high-efficiency segmented clover-type

HPGe detector is situated directly above the great spectrometer.

3.4.1 Multi-wire proportional counter (MWPC)

The multi-wire proportional counter (mwpc) is a type of gaseous ionization detector

used to count particles of ionizing radiation. As it can measure the energy of incident

radiation, mwpcs are widely used where it is necessary to distinguish between dif-

ferent radiation types, for example α and β particles. Practically, a mwpc consists

of a collection of thin, parallel and equally spaced wires, sandwiched symmetrically

between two cathode planes.
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(GREAT) SPECTROMETER

FIGURE 3.4.1: Schematic drawing of the great spectrometer showing the arrange-
ment of the silicon and germanium detectors. The dssds are then highlighted in
red. Recoiling nuclei would pass through the mwpc (not shown) and the enter the
detector system from the left. Original image courtesy of Ref. [27].

The anode wires are grounded and as a negative potential is applied to the cath-

ode an electric field is established. This field is then approximately uniform between

the electrodes, except for the region near the wires where it becomes distorted. As

a charged particle passes through the gas volume, charges are liberated in ionisation

events and the particle will leave behind it a trail of electron-ion pairs. Electrons

will then drift to the nearest wire causing a voltage pulse to be recorded.

3.4.2 Double-sided silicon strip detectors (DSSDs)

The dssds are used to measure the energy, time and position of implanted ions and

of their subsequent radioactive decay products (protons, alpha and beta particles).

A dssd consists of two 60 × 40 mm2 active windows with 200 individual strips

at a pitch of 1 mm in both directions, giving a total of 4800 independent pixels.

Approximately 80% of the distribution of fusion products in the focal plane is then

covered by the active area of the dssd. The array of Si pin diode detectors then
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(GREAT) SPECTROMETER

surrounds the perimeter of the two dssd windows in order to measure the energy of

conversion electrons emitted during the decay of implanted ions.

3.4.3 Silicon PIN diode array

Situated between the dssds and mwpc is an array of 28 pin diode silicon detectors,

as shown in Figure 3.4.1. A pin diode is a (photo)diode with a wide, lightly doped

near intrinsic region placed between the (typically heavily doped) p-type and n-

type semiconductor regions. The utilisation of such a near intrinsic region makes

a pin-type diode more suitable for photodetection applications. Each diode has a

thickness of 500 µm and an active area of 28 × 28 mm2. Although their primary

function is the detection of conversion electrons and β decays, the array can also be

used to reconstruct energy information of α particles which escape the dssds.

An α particle emitted from the dssds towards the pin diode array in the upbeam

direction will deposit its energy shared between the dssds and the array. Thus

the full energy of the α decay can be reconstructed, although the accuracy of this

technique is limited by energy losses in the two detectors. This add-back technique

is a powerful method of increasing statistics, as typically 40% of events will escape

the dssds.

3.4.4 Planar Germanium (HPGe) strip detector

The role of the planar double-sided germanium strip detector is to measure the

energies of X-rays and low energy γ transitions; providing positional information

that can be correlated with data from the other great detectors. The detector is

mounted approximately 10 mm downbeam of the dssds and is housed in its own

cryostat with a thin beryllium3 entrance window. To minimise attenuation of low-

3Because of its low density and atomic mass, beryllium is relatively transparent to X-rays and
other forms of ionising radiation; thus making it particularly suitable as a window material.
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energy photons the detector is mounted inside great vacuum chamber. Like that

of the dssds, the detector has an active area of 60× 120 mm2.

As high-energy γ rays will pass through the detector, to be absorbed by the sur-

rounding clover detectors, the planar detector’s (relatively) low thickness of 15 mm

gives a maximum efficiency at < 100 keV. To allow for spatial correlations to be

made with the dssds, a strip pitch of 5 mm in both x and y directions gives a

total of 288 pixels. Like the four clover detectors, the planar detector utilises the

v 0.5 µs time-of-flight from jurogam to implantation in the dssds to look for

isomer-delayed transitions.

3.4.5 Clover detectors

Clover-type silicon detectors are so called because each detector consists of a seg-

mented assembly of four co-axial n-type HPGe crystals resembling the shape of a

four-leaf clover. Four clover detectors (totalling 16 crystals) are situated left, right,

above and downbeam of the focal plane. Housed outside of the vacuum chamber,

as shown in Figure 3.4.1, the clover-type detectors can be used for the detection of

high-energy γ rays emitted from isomeric states.

3.5 Total data readout (TDR)

Prior to around 2002, rdt experiments often suffered from a common deadtime due

to the use of hardware-based data-acquisition systems. In this setup, a typical trigger

condition might be that any focal plane detector fires (e.g. detection of an implanted

recoil). This would occur some microseconds after correlated γ radiation had been

emitted at the target position (due to the time-of-flight through the separator)

and a delayed coincidence mode is then used in the analogue-to-digital converters

(adcs) instrumenting the target array to overcome this flight delay. By collecting
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signals from detectors only for a fixed period of time after a trigger condition has

passed, a system-wide deadtime is introduced in which further events of interest

may be missed. For low triggering rates, this is not an inadequate method of data

acquisition.

However, for high triggering rates or when events of interest are frequent com-

pared to background counts, such conventional data acquisition systems are no

longer sufficient. The total data readout (rdt) technique [28] circumvents these

severe deadtime losses by reading from all detectors individually and simultaneously

without the requirement for a triggering condition to have been passed. Each signal

is then time stamped to a precision of 10 ns by a 100 MHz clock which is distributed

and synchronised throughout the system. Spatial and temporal correlations made

with a software trigger are then used to build events offline in a software-based event

builder (events can also be built using online data for monitoring purposes).

One essential advantage of the rdt technique, in which the γ-ray data of interest

precedes the triggering condition(s) by several milliseconds, is that correlations can

be made over relatively long periods of time without missing other events of interest

that may have occurred during this time. A second considerable advantage is that

data correlated to a triggering event can be collected prior to the event without

difficulty.

Of course, collecting the total data output from an experiment - much of which is

of little or no interest - would demand a vast storage capacity. Therefore a pre-filter

is employed to limit the amount of data which is stored. Such a pre-filter might be

the requirement that all stored data must be correlated with an event in the dssds.

Thus, in the offline analysis, all correlations made when sorting the data must be

made relative to events which occur in the dssds (e.g. a recoil followed by an α

decay).
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Chapter 4

Experimental Methodology

4.1 Recoil decay tagging (RDT) technique

Typically, in fusion-evaporation reactions, γ rays from the heavy neutron-deficient

nuclei under investigation (which often exhibit low production cross-sections) have

to be isolated from the high fission γ-ray backgrounds and γ rays produced in the

de-excitation of the target material and other, more highly populated, evaporation

channels. The recoil decay tagging technique [2] allows for γ-ray data collected by

jurogam and great to be correlated with a specific reaction channel by utilising

spatial and temporal correlations with an implanted recoil and subsequent decay

events.

Signals in the dssds are processed to distinguish between recoil and subsequent

decay events, and decays are correlated with a previous event in the same dssd

pixel. If the decay is preceded by a recoil, the energy and decay time characteristics

of the recoil-decay events are checked to determine whether they match those of

the nucleus of interest. If these conditions are passed, correlated γ rays from other

detectors are assigned to that particular nucleus.

For this technique to be successful, recoil and decay events must be distinguished
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experimentally. Recoil events are transported to the dssds via the ritu gas-filled

separator, and therefore must pass through the mwpc before becoming implanted in

a dssd pixel. As this is not the case for decay events, which will originate from this

same pixel, they will not be accompanied by an mwpc signal. Whilst this allows

for decays to be distinguished from recoil events, unreacted beam fragments - which

have eluded the separation process - will also carry an accompanying mwpc signal

before becoming implanted in the dssds. Differences in the liberated charge and

the mwpc-to-dssd flight time are considered so as to ensure that these fragments

are identified and discarded.

The velocity of the unreacted beam fragments is typically greater than that of

the recoiling compound nuclei, thus the time-of-flight (tof) between the mwpc and

dssd is smaller. Furthermore, recoils will typically carry a greater charge than the

beam fragments and therefore cause more ionisation in the mwpc, depositing a larger

amount of energy. These differences allow for beam fragments to be isolated from

evaporation residues, as shown in Figure 4.1.1. A 2-dimensional gating condition is

used to ensure that, for an event to be defined as a recoil, its deposited energy and

mwpc to dssd time-of-flight must be within certain limits.

In order for dssd events to be processed, they must be stored in a software

tagger. A tagger is a 3-dimensional array in which two dimensions correspond to

the coordinates of the dssd pixel in which the event became implanted, and a third

corresponds to the time-frame in which events occur. Each element in the array

then corresponds to a pixel of a dssd, and when an event occurs in a given pixel,

it is stored in that corresponding element until a prespecified time interval1 has

passed. Further events which occur in that pixel are then added to the tagger, in

addition to those already stored. When an event is identified as a decay, the previous

1A typical time interval, or tagger length, might be five times the alpha-decay half-life of the
nucleus of interest. For example, when investigating 165Re

(
t1/2 = 1740 ms

)
, a tagger length of

10 s is used.
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APPLICATION OF THE RDT TECHNIQUE

FIGURE 4.1.1: Energy deposited in the mwpc against the mwpc to dssd flight
time. The scattered beam can be isolated from the recoiling evaporation residues
by considering differences in the time of flight and the amount of energy deposited.

events in that pixel are then available for correlation, as discussed above. All sig-

nals are timestamped with a precision of 10 ns, making these temporal correlations

straightforward to perform.

4.2 Gamma-ray correlations: a practical

application of the RDT technique

In order for γ rays detected in the jurogam array and focal plane detectors to be

correlated with the implantation and subsequent decay of a nucleus of interest, a

number of considerations must be taken into account. Establishing such correlations

is a superb example of a practical application of the rdt technique, and also serves

to demonstrate the power of software event building using triggerless tdr systems.

The periodicity of the K130 cyclotron [37] is shorter than the flight time through

the ritu gas-filled separator, v 70 ns and v 0.5 µs, respectively, and as a result
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APPLICATION OF THE RDT TECHNIQUE

FIGURE 4.2.1: Recoil-γ time difference against the time of flight between the mwpc
and the dssds. A high density (red) of γ rays collects at the average recoil-γ time
difference corresponding to the ritu flight time. The smaller periodic regions of high
intensity correspond to the resonant frequency of the cyclotron; there is a greater
probability of a reaction and thus the detection of the largest number of γ rays.

many fusion reactions occur at the target position in the time it takes a recoil to

reach the focal plane, thus introducing a large γ-ray background. By taking into

account the average ritu time-of-flight and ignoring any data which deviate from

this range, γ rays detected at the target position can be correlated with recoil events

in the dssds. This technique is demonstrated in Figure 4.2.1.

Recoils can also be correlated with transitions detected in the focal plane planar

and clover-type detectors of the great spectrometer array. As the dssds are also

located at the focal plane, the average flight time does not need to be taken into

account, and instead only the decay time is considered. As a result, γ rays detected

at the focal plane are collected only if they occur within a specified time gate of an

event in a dssd pixel.

There are three major limitations to recoil decay tagging; the successful applica-

tion of the technique is dependent on the α-decay half-life and branching ratio of the
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nucleus of interest, along with the recoil implantation rate. Nuclei with half-lives

shorter than the average ritu time-of-flight, i.e. less than v 0.5 µs, will often decay

before reaching the focal plane spectrometer, thus preventing the nucleus from being

identified via its characteristic α decay. Furthermore, for nuclei with longer half-

lives - i.e. more than v 0.1 s - identification becomes problematic when the recoil

rate at the focal plane is significantly high. This combination of long decay time

and high implantation rate results in an increased likelihood for misscorrelations to

be made. Finally, the applicability of the rdt technique is limited for nuclei which

exhibit low α-decay branching ratios.

At high recoil implantation rates, γ rays can be miscorrelated with random

implantations during the data analysis. This occurs when an unrelated recoil is im-

planted into a dssd pixel after a recoil of interest, but before that recoil has decayed.

Tagging on the decay of the recoil of interest thus causes it to be miscorrelated with

the unrelated recoil, introducing contamination.

However, for nuclei which exhibit suitable α-decay characteristics, the rdt tech-

nique allows for spectroscopic studies to be performed where relatively low produc-

tion cross-sections and large γ-ray backgrounds would otherwise prevent transitions

from being assigned to the nuclei of interest.

4.3 Doppler-shift correction

The reaction products formed during heavy-ion fusion evaporation reactions are not

produced at rest. Consequently, the energy of any γ radiation emitted by a particle

with such a non-zero velocity will be Doppler shifted according to

E = E0

(
1 +

vrecoil
c

cos θ
)

(4.3.1)
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FIGURE 4.3.1: An rdt spectrum produced by gating on the 163Rem α decay. Rings
1 and 6 are at angles of 157.60° and 72.05° from the beam axis, respectively. (a)
Before a Doppler correction is applied, energies recorded in Ring 1 are redshifted
whilst those in Ring 6 are blueshifted. Notice the greater energy shift in Ring 1,
caused by this ring being positioned further from the 90°position than Ring 6. (b)
The true energy of the transitions after the application of a Doppler correction of
β = 0.0317.

E − E0

E0

= β cos θ β =
vrecoil
c

(4.3.2)

where E and E0 are the observed and true γ-ray energies, respectively, vrecoil is the

recoil velocity of the compound nucleus and θ is the angle of the emitted γ ray with

respect to the beam direction. Table 3.1 gives the angle from the beam axis for

each ring in the jurogam spectrometer array. The effect of the Doppler shift on

rings 1 and 6 at angles 157.60°and 72.05°, respectively, is shown in Figure 4.3.1. The

corrected spectrum (b) is shown for comparison.
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The true γ-ray energy E0 is the energy that would be recorded in a detector

at 90° to the target position. Since there is no detector positioned at this angle,

the midpoint between the energies recorded in rings 4 and 5, located at 91.16°and

85.84°, respectively, is taken as the true energy. This is a valid technique, as the

energy recorded in each ring is Doppler shifted by an equal but opposite amount;

thus, by taking the midpoint energy the shifting effect is cancelled out. The Doppler

shift correction parameter β is then determined from the straight-line gradient of

the observed energy E for a given transition as a function of cos θ.

4.4 Analysis of coincidence γ rays using

RADWARE

4.4.1 The RADWARE software package

The analysis of γγ coincidence matrices has been performed using the radware

escl8r software package [32]. escl8r allows a matrix to be inspected by setting

gates, i.e. by specifying a particular prompt γ-ray energy, or gate, and producing a

gated spectra of the intensity of coincident γ rays as a function of energy.

The coincidence data set is stored as a 2k×2k-channel matrix2 - or two-dimensional

histogram of energy vs. energy - and is symmetrised such that the two energy axes

are equivalent. To fully exploit the high sensitivity of the state-of-the-art detector

arrays used in this experiment, it is crucial that the background level is properly

understood and well-estimated. As the analysis in the present work uses discrete

photopeak - or full-energy - coincidence measurements, it is necessary to establish

the degree of Compton scattering in the data set.

In addition, in order to perform the analysis of a given γγ coincidence matrix,

2The data set is initially sorted into a 4k×4k-channel matrix and then compressed to a 2k×2k-
channel matrix.
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escl8r also requires knowledge of the efficiency and energy calibrations as well as

peak shapes and widths as a function of γ-ray energy. A two-dimensional background

subtraction algorithm is used to account for the Compton-scattered γ rays and qua-

sicontinuum transitions. The background is subtracted from each gate individually,

rather than using a matrix with the background already removed; this allows the

programme to keep track of the individual uncertainties on the counts-per-channel

in the gated spectrum.

The gate width is set as the fwhm of the corresponding energy peak, which

greatly simplifies the analysis of the coincidence matrix. The fwhm, in units of

channels, is given by 4.4.1, where x is the channel number.

fwhm(x) = f + g

√
x

1000
+ h

x

1000
(4.4.1)

The f term arises from noise in the detector and amplification circuits, and the

second term from the statistics of the charge collection process. The third (linear)

term is due to the emission of γ rays from recoiling residual nuclei causing a Doppler

broadening of the peaks. By using a thick target, it is possible to prevent these

recoils, in which case the last term can be set to zero. The values of f , g and h and

can be set within escl8r, or fitted by least squares regression to a selected gated

spectrum, to allow for the best agreement between the level scheme predictions and

the observed data.

In the analysis of the excited states, escl8r displays a proposed level scheme

which is continually modified as the analysis progresses. This level scheme is then

used to calculate expected coincidence energies and intensities for comparison with

the observed experimental data. The user can add bands and levels to the scheme

using the graphical user interface (gui). escl8r will propose a corresponding spin-

parity and energy for each level, which the user can then edit as the scheme is
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RADWARE

developed.

escl8r makes it simple for the user to take and view gates on the matrix. As

a gate only specifies the mean energy, the energy width must also be considered;

by default this is taken as the fwhm, as given by 4.4.1. The user may also gate

on two energies simultaneously, to produce a spectrum of the γ rays which are in

coincidence with both transitions; this tool is particularly useful in the analysis

process. When a gate is selected, all transitions with energies that lie within the

gate limits are highlighted in the level scheme window. escl8r then displays the

observed and calculated spectra, the difference spectrum and the residual spectrum3.

This then allows the user to easily locate areas where the proposed level scheme fails

to reproduce the observed data and make appropriate modifications.

4.4.2 Building the excited states level scheme

A level scheme is an ordered decay scheme of the excited states of the nucleus under

investigation, and is constructed from the mutually coincident γ rays emitted as the

nucleus loses energy. There may be several decay paths leading to or from a single

state and, in principle, the intensity flow into a given state will be equal to the flow

out of that state. An exception to the latter is the ground state or any isomeric

state that may decay outside of the coincidence time-frame.

The specific order of transitions within a given decay path is deduced from their

intensities. When more than one possible decay path exists, consistency require-

ments of the excitation energies are used to offer greater insight. Two γ rays both

feeding or de-exciting the same state will not be in coincidence, and any two coin-

cident γ rays must be located somewhere in the same decay path.

Figure 4.4.1 is a simple γγ symmetrised coincidence matrix which serves to

3The residual spectrum is given by dividing the difference spectrum by the experimental uncer-
tainty.
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FIGURE 4.4.1: A simple γγ symmetrised coincidence matrix to demonstrate the
analytical technique.

demonstrate the analytical technique used in this work. Figure 4.4.2 then shows

the gates taken on every value of Eγ2 for which there are coincident γ rays, and the

energy Eγ1 projected onto the horizontal axis.

Firstly, note that (a) the 600 keV transition is not present in the 900 or 800 keV

gates and that the 900 and 800 keV transitions are not present in the 600 keV gate;

also that (b) the 800 keV transition is present in the 900 keV gate and vice versa.

Secondly, note that (c) the 600, 800 and 900 keV transitions are all present in both

the 200 and the 400 keV gates.

From (a) and (b), one can deduce that the 900 and the 800 keV and the 600 keV

transitions occur in two separate decay paths, or events. From (c), one can then fur-

ther infer that these two decay paths must converge before reaching the ground state.

This is shown in Figure 4.4.3, which is the completed level scheme corresponding to

the matrix.

Where two transitions have a similar energy - within perhaps 1 - 2 keV - their
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FIGURE 4.4.2: Gates taken on every value of Eγ2 for which there are coincident γ
rays, with the energy Eγ1 projected onto the horizontal axis.
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FIGURE 4.4.3: Completed level scheme corresponding to the simple γγ symmetrised
coincidence matrix shown in Figure 4.4.1.

spectral peaks will overlap and the two γ rays are said to form a doublet. If these two

transitions are then in coincidence, the doublet is said to be self-coincident. Both

doublets and self-coincident doublets often complicate the process of building an

excited states level scheme, as well as reducing the effectiveness of some analytical

techniques such as reduced transition probability ratios and angular correlations.
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Chapter 5

Collective Excitations in 163Re88

and 165Re90

The development of coherent behaviour in atomic nuclei generated by the interac-

tions between their constituent nucleons is an issue of central importance in nuclear

physics [38, 39]. The evolution of collectivity in nuclei as a function of nucleon num-

ber is reflected in the spectrum of low-lying excited states, which vary according

to the available valence space. The largest range of nuclei where excited states can

be identified with contemporary experimental techniques spans the 82 ≤ N ≤ 126

neutron shell. The spectroscopy of excited states at the extremes of this shell is

challenging, yet has been achieved through the application of selective experimen-

tal techniques. For example, excited states have been identified in many of the Re

isotopes from 159Re (N = 84) [40] to 196Re (N = 121) [41].

The neutron-deficient nuclei near both the N = 82 shell gap and the proton drip

line are usually synthesised with low production cross-sections. In many cases, the

ordering of excited states can only be unravelled through the analysis of recoil-decay

correlated γ-ray coincidence data [2]. Proton radioactivity studies have revealed that

the ground states of the near-spherical Re isotopes are based on the low-Ω s1/2 or
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d3/2 proton states with a low-lying isomer formed by exciting the odd proton into

the high-Ω h11/2 state [40, 42, 43, 44]. Recoil-decay correlations with the charac-

teristic proton emissions of 160Re (N = 85) [45, 46] and 161Re (N = 86) [5] have

revealed excited states based on the ground state and an isomeric configuration.

These arise from coupling the odd proton to the few valence neutrons in the f7/2,

h9/2 and i13/2 states. As the proton and neutron occupancy of the valence space

increases approaching the neutron and proton midshells at N = 104 and Z = 66,

a concomitant increase of the deformation is expected, which will influence the rel-

ative positions of orbitals at the Fermi surface and the excitation energies of their

associated configurations.

With the addition of only a few neutrons, collective excitations are well estab-

lished in 167Re (N = 92) [3]. The level scheme for 167Re is typical of the heavy

N ∼ 90 odd-Z nuclei, which are soft to triaxial deformation (γ) due to spatial den-

sity distributions of the proton and neutron orbitals at the top or bottom of their

respective shells [47]. The γ-soft cores in these nuclei are sensitive to the occupation

of specific orbital configurations, which can polarize the nucleus towards different

shapes. For example, in 167Re the degeneracy of the h11/2 signature partners is re-

lieved due to the triaxiality of the γ-soft core, yet restored at higher spins due to the

rotational alignment of a pair of i13/2 neutrons, which is interpreted as the transition

to an axially prolate shape [3].

This chapter discusses the structure of the neutron-deficient nuclei 163Re (N =

88) and 165Re (N = 90), which occupy a transitional region in which collectivity

evolves rapidly over the range of a few neutrons, and the interplay between single-

particle and collective behaviour is most pronounced. The new structures identified

in 163Re and 165Re are interpreted in terms of quasiparticle configurations within the

framework of the cranked shell model with the aid of total Routhian calculations.

Previous work [11] has observed a strongly-coupled yrast structure for 163Re
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(N = 88) up to a spin of 23/2 h̄ as based on the 11/2− isomeric state. This

indicated a collective structure akin to the heavier isotopes. Further strongly coupled

structures comprising low-energy transitions were also observed to feed the low-spin

states of this yrast band. These low-spin yrast states were shown to exhibit a higher

degree of signature splitting than in the heavier isotopes, reinforcing the trend of

greater signature splitting with increasing neutron deficiency. Prior to the work

presented in this thesis, a level scheme for 165Re (N = 90) had not been established.

The level schemes presented in this thesis for both 163Re and 165Re are original

work. The scope of this work spans the Java script used in the initial data sort to

the analysis of the level schemes and the calculation of total Routhians for 163Re.

5.1 Experimental details

Excited states in 163Re and 165Re were populated using the reactions listed in Ta-

ble 5.1. The beam species were accelerated by the K130 cyclotron at the University

of Jyväskylä Accelerator Laboratory. Prompt γ rays were detected at the target

position by the jurogam γ-ray spectrometer [48], comprising 43 eurogam-type

escape-suppressed germanium spectrometers [35]. The recoiling fusion-evaporation

residues were separated from fission products and scattered beam by the ritu gas-

filled recoil separator [29, 30] and deposited into the double-sided silicon strip de-

tectors of the great spectrometer [27] at the separator’s focal plane.

All detector signals from the jurogam and great spectrometers were passed

to the total-data-readout acquisition system [28], where they were time-stamped

with a precision of 10 ns. This allowed for the accurate temporal correlation of

γ rays (detected at the target position) with recoil implantations and their subse-

quent radioactive decays (detected at the focal plane). These triggerless data were

sorted into α(ARe)-correlated γγ matrices using grain [31], and analysed with the
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radware [32] software package.

5.2 Results

5.2.1 Excited states in 163Re

In-beam γ-ray spectroscopy of heavy nuclei approaching the proton drip line is

challenging for several reasons. Typically, the production cross-sections for very

neutron-deficient nuclei are much lower (< 200 µb) than for nuclei populated closer

to the line of stability. Furthermore, heavy-ion induced fission is a strong reaction

exit channel and produces a large background of γ rays. These obstacles have been

mitigated by the application of the recoil-decay tagging technique [2], which employs

spatial and temporal correlations to associate γ rays emitted by a specific nucleus at

the target position with their subsequent characteristic radioactive decays detected

at the focal plane of the recoil separator.

Previous decay spectroscopy experiments [49, 50, 51] have identified α-decay

branches from both the 1/2+ ground state and a low-lying 11/2− isomer in 163Re.

These decay properties, given in Table 5.2, are well-suited for tagging experiments.

This is due to a high α-branching ratio and a relatively short half-life, which sub-

sequently results in fewer miscorrelations. However, the overlapping α(163Re) peaks

render it difficult to assign γ rays above the s1/2 ground state unambiguously, as

the fusion evaporation reaction preferentially populates excited yrast states based

on the h11/2 state.

A total of 1.67×106 full-energy (Eα=5920 keV) α(163mRe) decays were detected

during the experiment. The production cross-section is estimated to be 150 µb,

assuming a ritu separation efficiency of 50% and a 65% full-energy α-particle de-

tection efficiency.

Figure 5.2.1(a) shows γ rays detected at the target position and correlated with
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TABLE 5.2: α-decay properties for the 1/2+ ground state and 11/2− isomer of
163Re. The level energies are quoted relative to the ground state. Values taken from
Ref. [49, 50].

Jπ Level energy
(keV)

Decay Energy
(keV)

Half-life (ms) Branching
ratio (%)

1/2+ 0.0 5870(5) 390(72) 32(3)
11/2− 115(4) 5920(5) 214(5) 66(4)

any recoiling nucleus implanted in the great focal plane spectrometer. Gamma rays

from 163Re are swamped by the emissions from nuclei produced in other reaction

channels with higher production cross-sections. For example, the prominent γ rays

at 288 keV and 433 keV originate from 163Ta [52] populated via the 3p exit channel,

and the 384 keV, 506 keV and 555 keV transitions belong to 163W [53] produced in

the 2pn reaction channel. Figure 5.2.1(b) shows a γ-ray spectrum correlated with

recoils which are followed by an α decay from the 11/2− isomer in 163Re within

the same pixel of the dssd. This spectrum shows that the γ rays arising from

the strongest reaction channels are suppressed, leaving intense γ-ray transitions at

577 keV and 688 keV which are not immediately apparent in the recoil-correlated

spectrum. Thus, these transitions are assigned to 163Re. Such deductions serve well

to demonstrate the power of the rdt technique.

The excitation level scheme for 163Re was deduced from the analysis of γ-ray

coincidences correlated with the distinct α decay of the 11/2− isomer in 163Re.

A total of 2.4×105 α-correlated γγ coincidences were incremented into a Eγ1 −Eγ2

coincidence matrix. The recoil-decay time correlation was limited to 214 ms to avoid

false correlations with the dominant reaction channel 163W, which has a longer α-

decay half-life t1/2 = 2800(170) ms [51]. The level scheme deduced from these data

is shown in Figure 5.2.2. Table 5.3 gives the measured gamma-ray energies and

intensities, along with the spin assignments of the initial and final states.

Figure 5.2.3 shows γ rays in coincidence with the 577 keV, 688 keV and 466 keV
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FIGURE 5.2.1: (a) Prompt γ rays detected in the jurogam spectrometer and
correlated with any recoil implantation detected in the great implantation detector,
located at the focal plane of the ritu separator. Note that both 163W and 163Re have
associated 384 keV transitions. (b) Gamma rays correlated with recoil implantations
followed by the characteristic α decay from the 11/2− isomer in 163Re within the
same dssd pixel of the great spectrometer. The recoil-α correlation time was
limited to 214 ms. 77
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5.2. RESULTS

transitions. The γ-ray coincidence analysis reveals that the yrast sequence is a

strongly coupled band at low spin. The ordering of the states at low-excitation

energy is fixed by coincidence relationships between the low-lying band members

and the high-energy transitions feeding them. Collective excitations based on the

favoured (α=−1/2) and unfavoured (α=+1/2) signature partners are connected by

interleaving transitions, which are assumed to have M1/E2 multipolarities. The γ-

ray intensities for the ∆I = 1 transitions from the unfavoured to favoured signatures

are much stronger than the transitions linking in the opposite direction.

This band is expected to have a similar structure to the yrast bands in the

heavier Re isotopes [3, 6, 7, 8, 9], which are based on an odd-proton occupying

the h11/2 [514]9/2− Nilsson orbital. In 163Re, the 11/2− → 9/2− γ-ray transition

is not observed. Trends in the light Re isotopes suggest that the energy difference

between the 11/2− state and the 9/2− band head becomes very small as N = 88 is

approached. Indeed, the measured energy difference between the 11/2− and 9/2−

states in 173Re [10], 171Re [8, 9], 169Re [6, 7] and 167Re [40] are 160 keV, 157 keV,

136 keV and 92 keV, respectively. Assuming this trend extrapolates to 163Re, the

excitation energies of the 11/2− state and the 9/2− bandhead are inverted, and the

resulting low-energy M1 transition (∼50 keV) would be detected with low efficiency

by the jurogam spectrometer.

Figure 5.2.4 shows γ rays in coincidence with the 733 keV, 792 keV and 156 keV

transitions. The 192 keV, 384 keV and 431 keV γ-ray transitions are common to

these spectra and form the basis of an excited band structure (labelled Band 2 in

Fig. 5.2.2). Furthermore, these spectra indicate that the 733 keV and 156 keV

transitions form a parallel decay path to the 97 keV and 792 keV γ rays from a

common state at Ex = 2154 keV relative to the 11/2− state.

The 577 keV transition is observed to be a doublet. The first and most strongly

populated component depopulates the 577 keV (15/2−2) state, whilst there are two
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5.2. RESULTS

FIGURE 5.2.3: Spectra of prompt γ rays detected in the jurogam spectrometer,
extracted from an Eγ1−Eγ2 coincidence matrix correlated with recoil implantations
followed by the α decay from the 11/2− isomer in 163Re detected within the same
dssd pixel of the great spectrometer. The time for recoil-decay correlations was
limited to 214 ms. The spectra show coincidences with (a) the 577 keV transition,
(b) the 688 keV transition, and (c) the 466 keV transition.
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5.2. RESULTS

FIGURE 5.2.4: Spectra of prompt γ rays detected in the jurogam spectrometer,
extracted from an Eγ1−Eγ2 coincidence matrix correlated with recoil implantations
followed by the α decay from the 11/2− isomer in 163Re detected within the same
dssd pixel of the great spectrometer. The time for recoil-decay correlations was
limited to 214 ms. The spectra show coincidences with (a) the 733 keV transition,
(b) the 792 keV transition and (c) the 156 keV transition.
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5.2. RESULTS

possible locations for the second component of the doublet in the level scheme. The

energy difference suggests that the 576 keV transition could be an in-band transition

depopulating, the 2729 keV state. However, an alternative placement from the

2346 keV state to the 1771 keV (21/2−) state is also possible within experimental

uncertainties, and cannot be ruled out with these data.

Figure 5.2.5 shows γ-ray coincidences with the 349 keV, 251 keV and 377 keV

transitions. A series of γ-ray transitions at 228 keV, 251 keV, 259 keV, 275 keV,

309 keV, 349 keV and 377 keV are observed to be in coincidence with each other, yet

it has not been possible to place these transitions in the level scheme unambiguously.

These γ rays are not in coincidence with the transitions assigned to Band 2, and are

therefore likely to form another band (Band 3) and its decay path. The 228 keV γ ray

is prominent in the spectra in Fig. 5.2.3, Fig. 5.2.4(a) and Fig. 5.2.5, which suggests

that this transition is placed at the bottom of Band 3. The 228 keV transition feeds

the excited states at 1998 keV, 2072 keV and 2286 keV, which are depopulated by

the 733 keV, 807 keV and 1022 keV γ-ray transitions, respectively; however, discrete

decay paths from Band 3 to these states could not be confirmed with the present

data.

The development of the excited states level scheme and its subsequent analy-

sis is complicated by a significant number of doublet and triplet transitions. As

a result, B(M1 : I → I − 1)/B(E2 : I → I − 2) ratios of reduced transition prob-

abilities could not be measured. Furthermore, poor statistics have made reliable

angular intensity correlations impossible and, for this reason, RDCO ratios have not

been used in this analysis.

5.2.2 Excited states in 165Re

Previous decay spectroscopy experiments have identified α-decay branches from both

the 1/2+ ground state and a low-lying 11/2− isomer in 165Re [51, 12, 54]. These
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5.2. RESULTS

FIGURE 5.2.5: Spectra of prompt γ rays detected in the jurogam spectrometer,
extracted from an Eγ1−Eγ2 coincidence matrix correlated with recoil implantations
followed by the α decay from the 11/2− isomer in 163Re detected within the same
dssd pixel of the great spectrometer. The time for recoil-decay correlations was
limited to 214 ms. The spectra show coincidences with (a) the 349 keV transition,
(b) the 251 keV transition, and (c) the 376 keV transition.
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5.2. RESULTS

TABLE 5.4: α-decay properties for the 1/2+ ground state and 11/2− isomer of
165Re. The level energies are quoted relative to the ground state. Values taken from
Ref. [51, 12, 54].

Jπ Level energy
(keV)

Decay Energy
(keV)

Half-life (ms) Branching
ratio (%)

1/2+ 0.0 5556(6) 1600(600) 14(8)
11/2− 115(4) 5520(6) 1740(60) 13(1)

decay properties, given in Table 5.4, are not ideal for tagging experiments due to

their relatively long half-lives and low branching ratios. Furthermore, the α(165mRe)

decay overlaps the characteristic α-decay peaks from 166Re [Eα = 5533(10) keV, t1/2

= 2120(380) ms [51, 55, 56] and 162W [Eα = 5541(5) keV, t1/2 = 1200(100) ms,

bα=44(2)%] [51], which are produced in the fusion-evaporation reaction via the 3pn

and α2p2n exit channels, respectively. Uniquely assigning γ rays to 165Re using the

recoil-decay tagging technique is thus problematic due to the similar properties of

these unresolved α decays.

Figure 5.2.6 shows γ-ray coincidence spectra generated from an α(5520 keV)-

correlated γγ matrix. The recoil-decay correlation time was limited to 5 s. The

coincidences demanded with the 337 keV, 202 keV and 672 keV γ rays provide

evidence for a new strongly coupled band. A strongly coupled band must be based

on a configuration with at least one odd nucleon in a deformation-aligned (high-Ω)

orbital, which in this region of the nuclear chart is likely to be the odd proton in

the h11/2 orbital. This would limit the assignment of the new band to either 165Re

or 166Re, rather than the even-even nucleus 162W.

The technique of inverse tagging has been used to aid the unambiguous assign-

ment of γ-ray transitions in this new band to a specific nuclide [57]. Inverse tagging

uses γ rays measured at the target position as an additional criterion for the selection

of α-decay chains. Figure 5.2.7(a) shows all α decays detected between 500 ms and

5 s after a recoil implantation within the same dssd pixel. Figure 5.2.7(b) shows
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FIGURE 5.2.6: Spectra of prompt γ rays detected in the jurogam spectrometer,
extracted from an Eγ1−Eγ2 coincidence matrix correlated with recoil implantations
followed by the 5520 keV unresolved α decays from 162W, 165mRe and 166Re detected
within the same dssd pixel of the great spectrometer. The time for recoil-decay
correlations was limited to 5 s. The spectra show coincidences with (a) the 337 keV
transition, (b) the 202 keV transition, and (c) the 672 keV transition.
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FIGURE 5.2.7: (a) Alpha particles detected between 500 ms and 5000 ms after a
recoil implantation in the same pixel of the great dssd. (b) Second generation α-
decays following a recoil implantation and the subsequent decay with energy within
the 5520 keV unresolved α-decay peaks. (c) The same conditions as for panel (b),
with the additional constraint that the decay chain is in delayed coincidence with
the 449 keV transition in 162W, detected at the target position. (d) The same
conditions for panel (b), with the additional constraint that the decay chain is in
delayed coincidence with the 539 keV transition detected at the target position. The
second generation α-decay of 161mTa indicates that the 539 keV γ ray is emitted by
165Re. 88



5.3. DISCUSSION

all second-generation α decays preceded by the detection of a recoil implantation

and the 5520 keV unresolved α-decay peaks. The correlation time between α decays

was limited to 10 s. The 158Hf and 161mTa α-decay peaks, which originate from the

162W and 165mRe precursors, respectively, are prominent in the spectrum while the

162Ta α-decay arising from the decay of 166Re is not observed. There are several

α-decay emissions arising from spurious decay correlations due to the long correla-

tion time between first- and second-generation α decays. Figure 5.2.7(c) shows the

second-generation α decays with the additional condition of a delayed coincidence

with the 449 keV (2+ → 0+) γ-ray transition in 162W detected at the target posi-

tion. An α-decay background has been subtracted to mitigate correlations with the

γ-ray background arising from Compton scattering. The inverse tagging technique

is sufficiently selective to identify the second α decay in the recoil → 162W → 158Hf

decay chain. Similar correlations with the 539 keV γ ray, shown in Fig. 5.2.7(d),

select the recoil → 165mRe → 161mTa decay chain. The strongly coupled band is

assigned to 165Re on the basis of these inverse tagging correlations, and the level

scheme deduced from the α(5520 keV)-γγ coincidence analysis is shown in Fig. 5.2.8.

5.3 Discussion

The level schemes of 163Re and 165Re have many features in common with other

odd-A transitional nuclei above the N = 82 shell gap. The strongly coupled bands

have a large degree of signature splitting at low spin, which is similar to the heavier

known Re isotopes [3, 6, 7, 8, 9] and the analogous structures in the odd-A Ir [58]

and Ta [52, 59, 60] isotopes. Figure 5.3.1 shows the evolution of the 9/2−, 13/2−

(α = +1/2) and 15/2− (α = −1/2) state excitation energies relative to the 11/2−

state as a function of neutron number. The 13/2− states lie near the midpoint

between the 15/2− and 11/2− levels in the isotopes approaching the neutron midshell
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5.3. DISCUSSION

FIGURE 5.2.8: Level scheme deduced for 165Re from an α(5520 keV)-correlated γγ
matrix. The transition energies are given in keV, and their relative intensities are
proportional to the widths of the arrows. Dashed lines and parentheses indicate
tentative assignments.

at N = 104, which is expected for nuclei exhibiting axial prolate symmetry. The

difference in excitation energy between the 15/2− and 13/2− states decreases steadily

below N = 94, showing a greater degree of signature splitting towards N = 82.

The magnitude of the signature splitting can be highlighted by the staggering

parameter S(I) [61], which is defined by

S(I) = E(I)− E(I − 1)− 1/2[E(I + 1)

− E(I) + E(I − 1)− E(I − 2)].

(5.3.1)

Figure 5.3.2 compares the staggering parameter extracted for the h11/2 bands in 163Re

and 165Re with those of the heavier Re isotopes, and clearly illustrates the trend

of increasing signature splitting towards lower neutron numbers. The splitting is

interpreted to arise from the combined core-polarising influences of the high-Ω h11/2

proton and the low-Ω neutron orbitals, which result in a soft triaxial shape.

The staggering parameter becomes very small in the heavier Re isotopes, reflect-
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5.3. DISCUSSION

FIGURE 5.3.1: Evolution of low-lying excited states in the neutron-deficient tran-
sitional Re isotopes as a function of neutron number. The excitation energies of
the 9/2−, 13/2− and 15/2− levels are given in keV and stated relative to the 11/2−

state.

ing the dramatic reduction in signature splitting. The disappearance of signature

splitting is related to the crossing of the single quasiproton configuration by the

three quasiparticle πh11/2 ⊗ (νi13/2)
2 configuration [3, 6, 7, 8, 9]. The rotational

alignment of an i13/2 neutron pair at this crossing brings about a change from γ-soft

triaxial shapes to axially symmetric prolate deformations.

The likely configurations for the lowest-lying three-quasiparticle bands in 163Re

and 165Re can be predicted by considering the total energy of the nucleus in the

rotating frame (or total Routhian E ′). Total Routhians have been calculated for

multi-quasiparticle configurations by summing single-particle Routhians extracted

from cranked-shell model calculations incorporating a Nilsson potential and adding

a γ-deformation-dependent reference, as proposed by Frauendorf and May [62, 63],

such that

E ′(ω, γ) =
∑
µ

e′µ(ω, γ) + E ′Ref (ω, γ), (5.3.2)

where e′µ are the single quasiparticle Routhians and E ′Ref (ω, γ) is a γ-dependent
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5.3. DISCUSSION

FIGURE 5.3.2: Staggering parameter S(I) as a function of spin I for the [514]9/2−

bands in the neutron-deficient odd-A rhenium isotopes 163Re, 165Re, 167Re [3],
169Re [6, 7] and 171Re [8, 9]. The solid (open) symbols represent the α = −1/2
(+1/2) signatures.

reference defined as

E ′ref (ω, γ) =
1

2
Vpo cos(3γ)

− 3

2
ω2

(
J0 +

1

2
ω2J1

)
cos2(γ + 30◦)

(5.3.3)

The parameter Vpo is a prolate-oblate energy difference and J0 and J1 are the Harris

parameters. The total Routhians for 163Re are shown in Fig. 5.3.3. The labelling

convention for the constituent quasiparticles is adopted from Ref. [64], and the

resulting configurations are listed in Table 5.5.

Figure 5.3.3 gives an insight into the microscopic basis for the observed features of

the low-spin h11/2 bands in 163Re and 165Re. The single-quasiproton configurations,
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5.3. DISCUSSION

TABLE 5.5: Labelling convention for single- and three-quasiparticle configurations
in 163Re. The convention adopted is taken from Ref. [64].

Label Signature & Parity Configuration
(α, π)

e (−,−1/2) πh11/2
f (−,+1/2) πh11/2

eEF (−,−1/2) πh11/2⊗ ν(f7/2, h9/2)
2

fEF (−,+1/2) πh11/2⊗ ν(f7/2, h9/2)
2

eAE (+,−1/2) πh11/2⊗
ν[i13/2⊗(f7/2, h9/2)]

fAE (−,+1/2) πh11/2⊗
ν[i13/2⊗(f7/2, h9/2)]

eAF (−,+1/2) πh11/2⊗
ν[i13/2⊗(f7/2, h9/2)]

fAF (−,+3/2) πh11/2⊗
ν[i13/2⊗(f7/2, h9/2)]

eAB (−,−1/2) πh11/2⊗ ν(i13/2)
2

fAB (−,+1/2) πh11/2⊗ ν(i13/2)
2

labelled e and f , represent the negative-parity α = −1/2 and α = +/2 signatures of

the h11/2 orbital, respectively. These configurations exhibit large signature splitting

between the e and f Routhians in the range −80◦ ≤ γ ≤ −10◦, which is consistent

with the experimental staggering parameter obtained at low spins, as shown in

Fig. 5.3.2. The e Routhian has a shallow minimum total energy at γ ∼ −30◦

corresponding to a triaxially deformed rotor.

The calculations predict that the lowest energy three-quasiparticle structures in

163Re should be negative-parity bands based on the eEF and fEF configurations.

These structures are formed by coupling the odd proton to the mixed rotationally

aligned ν(f7/2, h9/2)
2 neutron configuration. The first rotational alignment in the

lighter N = 88 isotones 161Ta [59] and 162W [66, 67] is interpreted as arising from the

same EF quasineutron alignment, which is favoured over the i13/2 (AB) rotational
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5.3. DISCUSSION

FIGURE 5.3.3: Calculated total Routhians as a function of γ deformation for single
and three-quasiparticle configurations in (a) 163Re and (b) 165Re. The Routhians
are calculated at a rotational frequency of 0.2 MeV and assume a prolate-oblate
energy difference Vpo = −0.4 and quadrupole deformation parameters of ε2 = 0.117
and ε2 = 0.117 for 163Re and 165Re, respectively. The deformation parameters are
taken from Ref. [65]. The Harris parameters are fixed at J0= 26 h̄2MeV−1 and J1=
32 h̄4MeV−3 and are taken from Ref. [59]. The e, f , eEF , fEF , eAB and fAB,
configurations have negative parity (blue lines) while the eAE, fAE, eAF and fAF
configurations have positive parity (red lines). The solid (dashed) lines represent
the α = −1/2 (+1/2) signature. 94
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alignment observed in the heavier isotopes. This is a consequence of the higher

excitation energy of the νi13/2 orbitals relative to the ν(f7/2, h9/2) negative-parity

states, which is attributed to the lower average deformation of the isotopes closer

to the N = 82 shell gap. Thus, the eAB/fAB configurations are non-yrast at low

spin in 163Re, see Fig. 5.3.3(a).

The eEF and fEF configurations have their minimum total energy at triax-

ial deformation (γ ∼ −15◦) and exhibit a significant degree of signature splitting.

These configurations are observed to high spin in the lighter odd-Z N = 88 iso-

tone, 161Ta [59], and show a persistence of signature splitting beyond the alignment.

Band 2 in 163Re would be a good candidate for the eEF and fEF configurations

if the 192 keV and 384 keV transitions are the interleaving ∆I = 1 transitions of a

strongly coupled band.

The total Routhians for 165Re suggest that the lowest-energy three-quasiparticle

excitations should be based on configurations involving at least one i13/2 quasineu-

tron orbital, as observed in the other N = 90 isotones 163Ta [52] and 164W [68]. The

lower excitation energy of the i13/2 quasineutron orbital reflects the larger average

deformation of 165Re, when compared with 163Re (c.f. ε2(
165Re) = 0.142, ε2(

163Re)

= 0.117) [65].

The coincidence analysis indicates that the γ rays assigned to Band 3 in 163Re

feed the states depopulated by 733 keV, 807 keV and 1022 keV transitions, although

it has not been possible to elucidate these discrete decay paths in this work. Fig-

ure 5.3.3 predicts that the eEF and fEF configurations are only marginally favoured

over the prolate eAE and fAE positive-parity configurations formed by coupling

the h11/2 proton to the i13/2⊗(f7/2, h9/2) neutron orbitals. Further work is needed to

determine if the transitions belonging to Band 3 are based on this configuration. The

total Routhians for the eAE/fAE configurations in 163Re are significantly higher

than the analogous structures in the lighter odd-Z isotone 161Ta [59], which are yrast
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at high spin (29/2 ≤ I ≤ 43/2h̄). Indeed, the relative positions of the eEF/fEF

and eAE/fAE are inverted in 163Re. This is a consequence of the lower deformation

in 163Re due to the smaller proton valence space (c.f. ε2(
163Re) = 0.133, ε2(

161Ta)

= 0.117) [65].
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Chapter 6

Summary

In this work, excited states in two Re isotopes in the neutron-deficient region close to

the proton drip line and the N = 82 shell closure have been studied. In two separate

experiments, excited states in 163Re and 165Re have been populated using heavy-ion

fusion evaporation reactions, performed at the University of Jyväskylä Accelerator

Laboratory, Finland. Evaporation residues recoiling from the targets were separated

in-flight from the beam species and fission products by the ritu gas-filled separator

and transported to the focal plane, where they were implanted into the dssds of the

great spectrometer. Prompt γ rays emitted at the target position were detected

by the jurogam spectrometer array. Recoil-decay correlations have been used to

unambiguously assign γ-ray transitions to 163Re and 165Re.

This work has allowed for the scheme of excited states in 163Re to be significantly

revised and extended. For the first time, two further band structures, which strongly

feed the low-spin states of the yrast configuration, have been identified. This work

also presents the first observation of γ-ray transitions assigned to 165Re, which have

been placed in a strongly coupled band structure.

Signature splitting considerations and total Routhian calculations within the

framework of the cranked shell model have been used to propose configuration as-
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signments for the observed structures in both nuclei. At low spin, the yrast structure

in 163Re is a strongly coupled band assigned to a deformation-aligned odd proton in

the high-Ω h11/2 orbital. This structure exhibits large signature splitting consistent

with a γ-soft triaxial rotor and no high-spin rotational alignment is observed. This

is consistent the Nilsson model, where there are fewer valence neutrons to drive de-

formation and the prolate-driving low-Ω i13/2 orbital lies at high excitation energy.

The strongly coupled band observed in 165Re is assigned to the single-quasiproton

πh11/2 configuration. This structure exhibits a degree of signature splitting which

is approximately midway between that of 163Re and the heavier isotopes. This is in

agreement with the trend of increasing signature splitting with neutron deficiency.

On the basis of the total Routhian calculations, candidates for the πh11/2⊗

ν(f7/2, h9/2)
2 (eEF/fEF ) and the πh11/2⊗ ν[i13/2⊗(f7/2, h9/2)] (eAE/fAE) three-

quasiparticle configurations in 163Re have been suggested. In addition, these pre-

dictions suggest that, due to its lower average deformation, the relative positions of

the eEF/fEF and and eAE/fAE configurations are inverted in 163Re, relative to

the heavier isotope 165Re and the lighter N = 88 isotones.
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