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Introduction.

The knots and links which arise as the closure E of some 3-braid § € Bs form a
small class among all links, and often have rather restricted properties. A sufficient list of
representative braids Is given in [Mu] with very few suspected duplications.

The Alexander polynomial AE has been calculated [M] for all closed 3-braids B. 1t was

conjectured there, because of the form of the calculations, that a could be recovered from
knowledge of A or at any rate from the 2-variable Alexander polynomial of the ‘complete
closure’ U Lg, where Lg is the axis of the closed braid 8.

In this note we show that there are many examples of 3-braids «,# with the same
Alexander polynomial for their complete closure, while & and B are different knots. These
examples date from the second author’s visit to Zaragoza in 1984. Birman [B2] indepen-
dently produced another method for constructing such examples, although in general there
is more difficulty in guaranteeing that her pairs & and ﬁ are distinct.

The examples produced, showing that 3-braid closures are rather more varied than at
first, apparent, have figured importantly in later work with the new 2-variable knot invariant
P. For closed 3-braids this invariant P can be found from the Alexander polynomial of the
complete closure, although this is not true for (n + 1)-braids in general [MS], so that the
pairs provided easily handled knots having the same P.

These pairs were used [MS] to try to relate the polynomial P for a cable about a knot
C' to the polynomial for C. This led to the unexpected result, using the simplest of the pairs
described here, ofo; ' and o] *ofojoiofos, that two knots could have the same P, while
similarly constructed cables about each had a different P.

Alexander polynomials of closed braids.

Let 8 be an (n + 1)-string braid, an element of the braid group Bn4i. Write B for its

closure, and Ly for the axis of the closed braid. Then BULp is a link, called in [M] the com-
pleie closure of 3, whose Alexander polynomial is given by AﬁuL (@,t) = det(al — B(t)),
a

where z,t are represented by meridians of Lg and ﬁ respectively, oriented as in figure 1,
and B(t) is the reduced Burau matrix of 3.

Figure 1
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where w(83) is the algebraic number of crossings in 3, since det B(t) = (—#)¥(¥),

Notation. Here and elsewhere we write = to mean equal up to a multiple of +a"#*.

Definition. We shall call this Alexander polynomial, det(zI— B(?)), the Burau polynomial
of the braid 3.

Remark. The Buran polynomial determines the Alexander polynomial of the closure of the
braid, and for 3-braids can be recovered from this and the sum w(#g).

Lemma 1. (Birman [B1)]) The element ¢ = A%, € B,y representing a full twist has
reduced Burau matrix *+17.

We shall use this, and the symmetry of general Alexander polynomials, as shown by
Torres [T] in the multivariable case, to construct pairs of 3-braids with the same Burau
polynomial. At the same time we note the conditions needed for a similar construction on
(n+ 1)-braids.

Lemma 2. (Torres [T]) The multivariable Alexander polynomial of a link I with m
separately coloured components satisfies Az (f1,...,tm) =~ Ap(t71,... b

Corollary. The polynomial AﬁuL (z,t) 2"+ fi(t)e" 4.+ faor (D 4+ (=) (1)
B
satisfies f;(1™1) = fai() (=)= (=1)" for each i.

Proof: By Lemma 2,
2 4+ A2 4 fasa(@)z A ()P (1)
et AT 4 e 4 (=) TP (),

Multiply the right hand side by (—t)*(®)(—1)® and compare coefficients of #™~* on each
side. O

Lemma 3. Let ¥ be the mirror imnage of £, i.e. the braid with the signs of all crossings
reversed. Then Azy,p (2,1) ~ AﬁuLﬁ(m’t_l)’ where v = M.

Proof: The mirror image homeomorphism & : S% — (fU L) — S% — (U L,), refiecting
iIn a plane perpendicular to the axis, preserves the orientation of the axis meridian while
reversing the orientation of the braid meridians. O

As a consequence we have:




Theorem 1. Let 8 € Bnyi, and let o = ¢?3¥. Then AﬁuLﬁ(w’t) ~ Agup, (1)
if and only if

(1) n(n+ 1)d = 2w(f) and

(2 fi() = fE" DM =1 n -1

Proof: By lemma 1, if 8™ has Burau matrix BM(f), then o = ¢?#M has matrix A(t) =
t(n+l)dBM(t).
Hence
Agup, (x.1) & det(zl —tn+14M (1))
~ det(zt—("HI4T — BM (1))
~ det (£ — BM (1))

~ A”}’\UL»Y(E’i)'

where £ = gt~ (*+1)4 3n0 4 = gM,
Now A7uL7(§,t) Y AﬁuLﬁ(ﬁ,t_l) by lemma 3.

Thus
AEuLﬂ(m’t) ~ Agyr, (@)
if and only if
- o A —(n+1)d ;-1
AﬂuLﬂ (2,1) AﬁuLﬂ (xt A0
Multiply the right hand side by "(*+1)4 and compare coefficients of 2"~ to get the con-
dition that
fi(t) — tn(n+1)dt—(n+1)d(n.—i)f‘_(t—1)
— fi(t_l)t(n-l-l)id.

Condition {1) comes from comparing the constant terms. |

Remark. Condition (1) is simply the requirement that w(a) = w(f). It shows that w({g)
must be a multiple of n(n + 1)/2 for any choice of d to be possible, and given this, it

determines d.

Corollary 1. A,@UL = A?‘-’Lv where v = ¥ if and only if w(8) =0 and f;(¥) = fi(t™Y)
B
for each 1. '

Theorem 2, Where # is a 3-braid, and « = ¢?8™ we have AEUL = Agy, if and only
s
if w(f) = 6m for some m and d = 2m.

Proof of Theorem 2: We have n = 2 so we require w(f3) = 3d and f1(t) =129 f1(1~1). Now
(=)@ f1(t~1) = fi(t), by corollary to Lemma 2.

Our conditions become w(f#) = 3d and (—t)*#) = ¢3¢ Hence w(p)} is even, so d = 2m,
say, and w(f) = 6m. 0




Remark. In the examples that follow we shall use pairs § and a = ¢*™gM where w(j3) =
6m, having the same Burau polynomial, We can equally use ¢?# and c®a for any d, which
are in fact also of the same form.

Signature.

We can now construct many pairs o, of 3-braids with the sarne Burau polynormial.

We can also show that @ and J are not equivalent in many of these cases by using Murasugi’s
calculations for their signature, although other methods can frequently be used instead. We
shall concentrate on braids in Murasugi’s class 5 which represent the vast majority of
3-braids.

Notation. We write sig(f) for the signature of the kaot J.

Proposition. (Murasugi [Mu, p43,62])
If f=0cfto; ... 0f" 0%, p;,q: > 1, and d is even, then sig(c?8) = 4d + w(7).
If d is odd, then sig(c?B) = 4d + w(p) + ¢, where £ = 0,42

Corollary 1. The braids 8 = ¢}'e; ... 68705 ", pi,¢i > 1, with w(f) = 6m and
a = ¢?™AM have inequivalent closures for. m # 0, but the same Burau polynomial.

Corollary 2. The same is true for the pairs e?3,ede for d even; it holds as well for d odd,
at least when |m| > 1.

Proof of corollary 1: Tt is enough to show that sig(a) # sig().

Now sig(f) = w(f) and sig(a) = 8m + sig(AM) = 8m — w(B). Since w(f) = 6m we
have sig(a) # sig(6). O

Proof of corollary 2: For d even, sig(c?p) — sig(cla) = sig(B) — sig(a).

For d odd, sig(c?B) — sig(c’a) = sig(8) — sig{a) + & where § = €1 — €5 and each
g = 0,£2. Thus [§] < 4.
Now {sig(8) — sig(a)| = 4|m]. O

Examples.

The simplest such examples are B = ¢o5? with p— ¢ = 6m.

Then a = ¢*™ofo;? has a different closure for [m| > 0, as do the pairs c?ofo;? and
cd+2mgPr 1 under the conditions of corollary 2.

The example with fewest crossings is # = ofo;' with & = c2o7 ‘ga conjugate to

o73020}0%0}ay. This is the original pair whose 2-cables are studied in [MS].
Remark. In the same vein, 8 = ¢™'6;! and o = (:2’"0’1:7;(6'""'1) close to knots with
the same polynomial P as the (2,6m 4-1) torus knot. It can be shown [E] that any closed
3-braid having this as its polynomial P is either a torus knot or the closure of .




Birman’s second class of examples appear more difficult to distinguish; they are generally
not of the form discussed here, as her pairs, again with the same Burau polynomial, have
the same signature. The examples of this class considered by [MS] could be distinguished
by P when applied to their 2-cables, although not by the Jones polynomials of the cables.

Our examples above show that even if we restrict attention to positive 3-braids (which
ensures among other things that their closures are fibred) we can still find pairs with the
same Burau polynomial, simply by using corcllary 2 with d large enough to make both
braids positive.
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