
Reducible Di¤usions with Time-Varying Transformations

with Application to Short-Term Interest Rates

Ruijun Bu�

University of Liverpool

Jie Cheng
Xi�an Jiaotong-Liverpool University

Kaddour Hadri
Queen�s University Belfast

�Corresponding author: Management School, Chatham Street, Liverpool, L69 7ZH, UK, Tel: +44-151-795-3122,
Fax: +44-151-795-3004, Email: RuijunBu@liv.ac.uk (Ruijun Bu).

1



Reducible Di¤usions with Time-Varying Transformations
with Application to Short-Term Interest Rates

Abstract

Reducible di¤usions (RDs) are nonlinear transformations of analytically solvable Basic Di¤u-
sions (BDs). Hence, by construction RDs are analytically tractable and �exible di¤usion processes.
Existing literature on RDs has mostly focused on time-homogeneous transformations, which to
a signi�cant extent fail to explore the full potential of RDs from both theoretical and practical
point of views. In this paper, we propose �exible and economically justi�able time variations to
the transformations of RDs. Concentrating on the Constant Elasticity Variance (CEV) RDs, we
consider nonlinear dynamics for our time-varying transformations with both deterministic and
stochastic designs. Such time variations can greatly enhance the �exibility of RDs while maintain
su¢ cient tractability of the resulting models. In the meantime, our modelling approach enjoys
the bene�ts of classical inferential techniques such as the Maximum Likelihood (ML). Our ap-
plication to UK and US short-term interest rates suggests that from an empirical point of view
time-varying transformations are highly relevant and statistically signi�cant. We expect that the
proposed models can describe more truthfully the dynamic time-varying behavior of economic and
�nancial variables and potentially improve out-of-sample forecasts signi�cantly.

JEL Classi�cation: C13, C32, G12
Keywords: Stochastic Di¤erential Equation; Reducible Di¤usion; Constant Elasticity Variance; Time-

Varying Transformation; Maximum Likelihood Estimation; Short-Term Interest Rate.
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1. Introduction

Since the seminal work of Merton (1973), continuous-time di¤usion models have proved to be
extremely useful in modelling �nancial and economic dynamics. They have been frequently applied
to research in consumption, savings and investment problems, contingent claim pricing, asset
return dynamics and so on. In particular, probably more models have been put forward to explain
the behavior of short-term interest rates (short-rates) than for any other issue in �nance (cf. Chan
et al. 1992).
The basic dynamics for a univariate continuous-time di¤usion fYt; t � 0g is described by the

following Stochastic Di¤erential Equation (SDE), also known as the Ito�s di¤usion:

dYt = �Y (Yt) dt+ �Y (Yt) dWt (1)

where �Y (y) and �
2
Y (y) are the instantaneous drift and di¤usion functions respectively, and

fWt; t � 0g is a standard Brownian motion. Parametric di¤usions, which form the majority in
the literature, assume that �Y and �

2
Y are known functions up to an unknown parameter vector

�, i.e. �Y (y) = �Y (y; �) and �
2
Y (y) = �

2
Y (y; �). Well known examples of parametric di¤usions in

�nance include Merton (1973), Brennan and Schwartz (1979), Vasicek (1977), Cox (1975), Dothan
(1978), Cox et al. (1980, 1985), Courtadon (1982), Constantinides and Ingersoll (1984), Constan-
tinides (1992), Du¢ e and Kan (1996), Aït-Sahalia (1996b), Conley et al. (1997), Ahn and Gao
(1999) (AG), Bu et al. (2011) and so on. Nonparametric and semiparametric approaches which
deviate from the full parametric assumptions have also been proposed in the literature for their
functional �exibility. Notable examples include Aït-Sahalia (1996a), Stanton (1997), Jiang and
Knight (1997), Kristensen (2010), and most recently Bu et al. (2014).
From an econometric point of view, parametric di¤usions often provide a more intuitive and

convenient way to specify the dynamics of the state variable. In the meantime, it is also convenient
to apply classical inferential techniques such as Maximum Likelihood (ML) and Method of Mo-
ments as long as the likelihood function or certain moment functions can be evaluated e¤ectively.
In this regard, inference for nonparametric or semiparametric di¤usions can be signi�cantly more
complicated and ine¢ cient (cf. Kristensen 2010). Thus, from a practical point of view, paramet-
ric di¤usions are much more abundant and widely used than nonparametric or semiparametric
di¤usions in empirical applications.
Consequently, a great deal of e¤ort has been spent searching for e¢ cient ways to estimate

parametric di¤usions. ML is typically the method of choice for its proclaimed e¢ ciency gain.
Nevertheless, di¤usion models are speci�ed in continuous time, but empirical data are always
sampled at discrete-time intervals. Little can be said about the implications of the dynamics in
equation (1) for longer time intervals. In �nance, Black and Scholes (1973), Vasicek (1977), Cox
et al. (1985), Ahn and Gao (1999) are the few rare cases where the discrete-time transition Proba-
bility Density Function (PDF) is known in closed form. However, substantial nonlinearity beyond
the assumptions of these cases has been documented in the literature. In the context of short-rate
modelling, Aït-Sahalia (1996b) for example concluded that the majority of existing parametric dif-
fusion models were rejected by his data. This then became the motivation behind his well known
Aït-Sahalia (1996b) general parametric speci�cation1. Meanwhile, in a fully nonparametric set-
ting, Stanton (1997) also observed strong nonlinearity in di¤usion models for the short-rate series.

1The Aït-Sahalia (1996b) speci�cation assumes that �Y (y) = ��1y
�1 + �0 + �1y + �2y

2 and �2Y (y) = �0 +
�1y + �2y

�3 .
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The di¢ culty of almost all nonlinear di¤usions are two fold. On one hand, they normally have no
closed-form transition PDFs. Hence, considerable energy has been employed in developing various
density approximation schemes. However, a price has to be paid for approximation errors and
computational burden (cf. Durham and Gallant 2002). On the other hand, some parameters of
highly nonlinear models can sometimes be hard to identify from the data (cf. Elerian et al. 2001).
Therefore, the problem of �exible modelling and e¢ cient estimation of nonlinear continuous-time
di¤usions remains to be an important issue in practice.
In view of these di¢ culties, Bu et al. (2011) proposed a novel approach for modeling di¤usions

using Reducible Di¤usions (RDs). RDs are de�ned by Kloeden and Platen (1992) as monotone
transformations of analytically tractable Basic Di¤usions (BDs) that have closed-form solutions.
Since RDs are usually constructed by nonlinear transformations, they are potentially more �exible
to capture complex dynamics of stochastic processes but at the same time possess desirable ana-
lytical tractability inherited from tractable BDs. Bu et al. (2011) considered two classes of RDs.
The �rst class are di¤usions transformed from the Ornstein-Uhlenbeck (OU) process (cf. Vasicek
1977) and the second are transformations of the square-root (CIR) process (cf. Cox et al. 1985).
Since the OU and the CIR processes have renowned analytical tractability, both OU-reducible
di¤usions (OU-RDs) and CIR-reducible di¤usions (CIR-RDs) have similar degrees of tractability.
In the context of short-rate modelling, they investigated RDs with Constant Elasticity Variance
(CEV) di¤usion speci�cation, i.e. �2Y (y) = �

2
0y
2�, which they named as OU-CEV and CIR-CEV

RDs respectively. They showed that OU-CEV and CIR-CEV RDs are power � functions of the
OU and the CIR processes respectively and nest many known parametric models that have exact
closed-form transition PDFs.
Modelling with nonlinear RDs has a number of advantages. Firstly, since RDs are transfor-

mations of BDs, additional (often substantial) �exibility can be achieved by specifying suitable
nonlinear transformations. Secondly, the most important property of RDs is that their transition
PDFs can be expressed in closed form via a transformation of the closed-form transition PDFs of
BDs. Thus, the likelihood function for discretely observed samples can be evaluated and then op-
timized e¢ ciently and standard likelihood-based inferential techniques can be used conveniently.
Thirdly, the conditional Cumulative Distribution Functions (CDFs) of RDs, also known as the
cumulative transition distributions, are also in closed form. This property makes CDF-based or
quantile-based analyses very convenient. Such examples include Value-at-Risk analysis (Jorion
2006), pricing options (Black and Scholes 1973), conditional copula modelling (Patton 2006a,b
and 2009), evaluating predictive densities (Diebold et al. 1998), etc. Finally, the monotonicity of
the transformations of RDs implies that crucial time series properties of discretely observed RDs
such as stationarity, ergodicity and mixing are trivially implied from their BDs. See Doukhan
(1994) and Forman and Sørensen (2014) for more detailed discussions.
While RDs potentially have many important advantages, the speci�cations suggested by Bu

et al. (2011) are relatively restrictive compared to the vast literature on nonlinear stochastic
modelling. It is quite unlikely that their time-homogeneous structure can be su¢ cient in describing
various empirical dynamics except for only a few very special circumstances. Therefore, useful
generalizations of this valuable framework and feasible extensions of existing speci�cations are
extremely important from both theoretical and practical point of views.
The main contribution of this paper is to propose a number of �exible and easy-to-implement

extensions to the speci�cation of RDs and examine their empirical performance. Our objective is
to generate su¢ ciently �exible transition densities on the basis of time-homogeneous RDs while
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maintain su¢ cient tractability so that classic inferential techniques such as ML estimation can
be easily implemented. The concept of conditional time variation in �nancial modelling �nd
its root in the pioneering work of Engle (1982) Autoregressive Conditional Heteroskedasticity
(ARCH) speci�cation for conditional variances. This insight was then generalized by Hansen
(1994) in his general Autoregressive Conditional Density (ACD) framework. Hansen�s suggestion
is to select a distribution which depends upon a low-dimensional parameter vector, and then allow
this parameter vector to vary as a function of the conditional variables. While Hansen�s approach
assumes that the conditioning set is perfectly adaptive (i.e. observable in the �ltration of the
process), there is a popular view that the dynamics of economic variables may depend on di¤erent
states of the world or regimes. This is often referred to as state-dependent dynamic behavior.
Depending on whether or not the state of the world at any given point in time is known with
certainty in advance, the regime process can be either deterministic or stochastic. The latter case
is particularly appealing, since it e¤ectively creates a two factor stochastic process. See Chang et
al. (2014) for the latest development in regime switching stochastic processes.
Although in theory time variations can be imposed on all elements of the parameter vector of

the baseline model, in practice this is not always feasible. On one hand, imposing time variation
on too many parameters tends to reduce the tractability of the model. On the other hand, it
also reduces the interpretability and economic justi�cation of the econometric model. Thus, in
this paper we only allow the transformation parameter to be time-dependent. In other words, we
e¤ectively restrict our attention to RDs with time-varying transformations. In fact, one potential
interpretation of RDs is that the BDs represent the fundamental risk factor and the empirically
observed processes are transformed measures of this risk process. In this sense, by allowing the
transformations to be time-dependent in our RDs, this interpretation may be further enhanced
and enriched.
Since the philosophy behind our extensions is applicable to all parametric RDs, our exposition

will focus on the CIR-CEV RD only due to its parsimony. Another reason of this choice is that
the underlying BD (i.e. CIR) has non-Gaussian transition PDF, which to some extent re�ects
the general need for deviation from the classic Gaussian framework. Moreover, the domain of
the CIR-CEV RD can be more conveniently de�ned on the positive real line than the OU-CEV
speci�cation. This property is particularly appealing for �nancial modelling since the support of
many �nancial variables (e.g. nominal interests) must be positive.
As we will see in Section 3, the transformation function of the CIR-CEV RD depends on a

single parameter �. We therefore propose a total of �ve distinct time variation schemes to allow
� to be time-varying by introducing dynamics of �t to the model. In Model 1, we specify �t as
a deterministic function of the �rst lag of the state variable, i.e. Yt�� where � is the �xed time
interval. In Model 2 to 5, we introduce a regime switching mechanism. Speci�cally, Model 2 is
a Self-Exited Threshold (SET) regime switching process where the threshold variable is taken as
Yt��. In order to allow regimes switching to be a continuous process, Model 3 is speci�ed as a
Logistic Smooth Transition (LST) process. Note that for Model 1 to 3, the time dependence of
�t are deterministic. To overcome this limitation, Model 4 and 5 allow the transition of states to
follow a two state Markov chain. Model 4 assumes that the transition probability between states
are independent of the history of Yt and hence completely exogenous, whereas Model 5 allows
potential nonlinear endogeneity in the transition probabilities. Our benchmark CIR-CEV model
is named as Model 0.
As an illustration, we apply our time-varying RD models to UK and US short-rates data.
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ML was chosen to be our inferential method. For both rates, overwhelming evidence of time
variations in the transformation function was found. Our results suggest that while the naive time-
invariant CIR-CEV RD is insu¢ cient in capturing complex dynamics of the data, the proposed
time-varying transformation models appear to be very e¤ective in picking up additional variability
in the dynamics of the data. In particular, evidence of endogenous regime switching was found in
our data, which is consistent with the �ndings of Chang et al. (2014).
The remainder of the paper is organized as follows. In Section 2, we brie�y review the RD

framework. Section 3 outlines the details of our baseline model and reviews some of its properties.
In Section 4, we present in detail �ve distinct but representative time-varying transformation
schemes. An empirical study based on weekly UK and US short-rates is presented in Section 5.
Section 6 concludes.

2. Parametric Reducible Di¤usions

Bu et al. (2011) proposed to model stochastic processes in �nance by parametric RDs. They
assume that the dynamics of the state variable Yt is described by

dYt = �Y (Yt; �) dt+ �Y (Yt; �) dWt (2)

and crucially (2) belongs to the reducible class de�ned by Kloeden and Platen (1992). Specif-
ically, the time-homogeneous RD Yt in (2) is de�ned as a strictly monotone time-independent
transformation of an analytically solvable parametric BD Xt, that is

Yt = V (Xt; �)

where Xt is driven by
dXt = �X (Xt; !) dt+ �X (Xt; !) dWt (3)

which depends on parameter vector !. As such, V (x; �) is the transformation function satisfying
@V (x; �) /@x 6= 0 for all x and � is the transformation parameter vector. Note that the two
standard Brownian motions in (2) and (3) are indeed the same Brownian motion, since V (x; �) is
deterministic and Wt in (3) is the only source of uncertainty. Also, we will usually have � = ! [ �
provided that Xt is suitably normalized.
Ito�s Lemma determines that

�Y (y; �) = �X (U (y) ; !)V
0 (U (y) ; �) +

1

2
�2X (U (y) ; !)V

00 (U (y) ; �) (4)

�Y (y; �) = �X (U (y) ; !)V
0 (U (y) ; �) (5)

where U (y) = V �1 (y) (which may be called the reduction function) is the unique inverse function
of V (x), and V 0 (x) and V 00 (x) are the �rst and second derivatives of V (x) respectively.
The most important task in modelling parametric RDs is the speci�cation of �Y (y; �) and

�2Y (y; �) in (2). In this framework, the choice of (3) is typically restricted within the class of
parametric di¤usions that have closed-form transition PDFs. Hence, �X (x; !) and �X (x; !) are
often easy to determine. Bu et al. (2011) noted that in theory for a given BD Xt, the knowledge of
the functional form of any one of V (x; �), �Y (y; �) or �

2
Y (y; �) can lead to unique solutions of the

other two functions. This can be easily veri�ed by Ito�s Lemma. Thus, there are three di¤erent
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ways of specifying Yt. However, in practice they are not equally feasible. Directly specifying
V (x; �)may not be straightforward mainly because there is generally a lack of guidance for making
such a parametric choice. Starting with a known function �Y (y; �) is also infeasible, since one has
to solve a 2nd-order Ordinary Di¤erential Equation (ODE) to get V (x; �) and �2Y (y; �). Analytical
solutions do not usually exist except for very special cases. Bu et al. (2011) argue that the most
analytically tractable and economically justi�able approach is to start with a desired di¤usion
function �2Y (y; �). In this case, one only needs to solve a 1st-order ODE which involves at most
a one-dimensional numerical integration. From the economic perspective, the drift term is more
related to the long-run behavior of the state variable, whereas the di¤usion term is more important
in �nancial applications such as volatility estimation and option pricing which rely mostly on the
short-run dynamics of the stochastic process. Moreover, since the drift function is signi�cantly
more di¢ cult to estimate than the di¤usion term from discrete samples, the preference on the
shape of the drift or even the existence of nonlinearity for certain types of data is still debatable
(see Choi 2009 for more discussion).
In practice, it is often more convenient to work with the reduction function U (y). Starting

from any given �2Y (y; �), U (y) is simply the solution to the following 1st-order ODE

@U (y)

@y
=
�X (U (y) ; !)

�Y (y; �)
(6)

Solving (6) is comparatively easy and in many cases analytical solutions exist. Once U (y) is
identi�ed, the Jacobian of the transformation is in fact given by the right-hand side of (6). De�ne
� as the time interval between neighboring observations and let fX (xtjxt��;!) and fY (ytjyt��;�)
be the transition PDFs of Xt and Yt, respectively. It follows from the distribution transformation
that

fY (ytjyt��;�) = jU 0 (yt; �)j fX (U (yt; �) jU (yt��; �) ;!)
where U 0 (y) = @U (y) =@y. Let FX (xtjxt��;!) and FY (ytjyt��;�) be the corresponding condi-
tional CDFs, we will further have

FY (ytjyt��;�) = FX (U (yt; �) jU (yt��; �) ;!)

for @V (x; �) /@x > 0 or

FY (ytjyt��;�) = 1� FX (U (yt; �) jU (yt��; �) ;!)

for @V (x; �) /@x < 0. Under the assumption that Xt is strictly stationary, so will be Yt. Hence,
the above relationships hold for their marginal distributions too.

3. CIR-Reducible CEV Di¤usion

The CEV di¤usion was introduced by Chan et al. (1992) who considered a linear drift term and
claimed that it was the best �tting model in their study. The CEV speci�cation was further
studied by Aït-Sahalia (1996b) who promoted the use of a nonlinear drift function to provide a
better mean reversion e¤ect. The same type of speci�cation was also estimated by Conley et al.
(1997) and Gallant and Tauchen (1998). Choi (2009) recently studied a Markov switching CEV
di¤usion with a nonlinear drift.
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3.1. Transformation Function and SDE

The CEV di¤usion function is given by �2Y (y; �) = �
2
0y
2� where � 2 (0; 1) [ (1;1). Following the

discussion above, for a desired di¤usion term and a given BD, the transformation function can be
uniquely determined from (6). Bu et al. (2011) suggested that one convenient choice of BD is the
square-root (CIR) process which can be written as

dXt = (�2 + �1Xt) dt+ �X
1=2
t dWt (7)

where �1 < 0, �2 > 0 and � > 0. Using the CIR process as the BD has at least three advantages.
Firstly, the CIR process has well known closed-form transition PDF which follows a non-central
�2 distribution with fractional degrees of freedom. Secondly, when �2Y (y; �) = �

2
0y
2�, the ODE in

(6) can be solved analytically and the solution U (y) is a simple power function. See eq. (8) below.
Thirdly, unlike the OU process which has domain on (�1;+1), the domain of the CIR process
can be rigorously restricted to (0;+1), which ensures that the required power transformation is
strictly monotone and that the domain of Yt is also on (0;+1) as required by many �nancial
variables.
After suitably normalizing the scale of Xt by setting �0 = �, it follows that the CIR-reducible

CEV di¤usion has the following transformation (reduction) function

x = U (y; �) = (1 /4)
�
y1�� /(1� �)

�2
(8)

Since U 0 (y) = y1�2�= (2� 2�), the above transformation is strictly monotone on (0;+1) for any
given � 2 (0; 1) [ (1;1). The SDE of the CIR-CEV process is then obtained as

dYt =

��
2�2 (1� �) +

1

2
�2 (2� � 1)

�
Y 2��1t +

�1Yt
(2� 2�)

�
dt+ �Y �t dWt (9)

Thus, the parameter vector of the CIR-CEV RD is � = (�1; �2; �
2; �) in which � is the sole

transformation parameter.
It is worth mentioning that the drift and di¤usion terms of (9) are both nonlinear. In particular,

in addition to having a CEV di¤usion term, the drift term also exhibits a much stronger pull at
high levels of the state variable than the linear drift. Both properties are consistent with empirical
�ndings about the two functions reported in Aït-Sahalia (1996a,b), Conley et al. (1997), Stanton
(1997) and many others. Moreover, the SDE in (9) encompasses the AG model with � = 1:5 and
obviously the CIR model itself with � = 0:5. Clearly, the CIR-CEV process is a more general
setup which not only provides the nonlinearity in both terms but also allows for extra degrees of
freedom in the data-driven choice of �.

3.2. Statistical Properties

Bu et al. (2011) studied the CIR-CEV process in signi�cant details. In this section, we brie�y
review some of its most important statistical properties. First of all, the following proposition
regulates the stationarity, boundary behavior, and temporal dependence properties of the CIR-
CEV process.
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Proposition 3.1. Let fYt; t � 0g be a CIR-CEV process de�ned in (9). The necessary and suf-
�cient conditions for mean reversion and the unattainability of the boundaries, i.e. 0 and 1,
in �nite expected time are: (i) �1 < 0 and 4�2=�2 > (2� � 1) = (� � 1) if � 2 (1;1); and (ii)
�1 < 0 and 4�2=�2 > 1= (1� �) if � 2 (0; 1). Under the same conditions, the discretely observed
random sequence fYi�; i = 1; :::; ng is strictly stationary and �-mixing (hence ergodic) satisfying
k�� (k)! 0 as k ! +1 for some �xed � > 1.

The conditions in (i) and (ii) are valid for arbitrary values of � 2 (0; 1) [ (1;1). Thus, they
are more general than the conditions given by Cox et al. (1985) for the CIR model and Ahn
and Gao (1999) for the AG model, which are both special cases of (9) with � = 0:5 and 1:5
respectively. Under either (i) or (ii), the CIR-CEV process is strictly positive, mean reverting
and stationary. The �-mixing property ensures that the classical asymptotic theory holds for the
ML inference based on discretely observed random samples. The proof of this proposition follows
straightforwardly from the regularity conditions set out in Aït-Sahalia (1996b). See Bu et al.
(2011) for more details.
Secondly, the next proposition summarizes the distributional properties of discretely observed

random sequence of the CIR-CEV process.

Proposition 3.2. Under condition (i) or (ii), the transition PDF of the CIR-CEV process is
unique and can be expressed in closed form as

fY (ytjyt��;�) =
1

2

y1�2�t

j1� �jce
�u�v

�v
u

�q=2
Iq

h
2 (uv)1=2

i
(10)

where c = 2�1
��
�2
�
e�1� � 1

��
, u =

�
ce�1� /4

� �
y1��t�� /(1� �)

�2
, v = (c /4)

�
y1��t /(1� �)

�2
,

q = 2�2 /�
2 � 1 and Iq (�) is the modi�ed Bessel function of the �rst kind of order q. The

corresponding closed-form conditional CDF is given by

FY (ytjyt��;�) =
�

D (2cxt; 2q + 2; 2u) for � 2 (0; 1)
1�D (2cxt; 2q + 2; 2u) for � 2 (1;1) (11)

where xt is given in (8) andD (�; 2q + 2; 2u) is the non-central �2 distribution with 2q+2 degrees of
freedom and non-centrality parameter 2u. Meanwhile, the marginal distribution of the CIR-CEV
process exists and is given by

� (y;�) =
1

2

y1�2�

j1� �jg
�
x;
2�2
�2
;�2�1

�2

�
(12)

where x is given in (8) and g (�; 2�2=�2;�2�1=�2) is the PDF of the Gamma distribution with
shape parameter 2�2=�2 and scale parameter �2�1=�2. The corresponding closed-form marginal
CDF is given by

�Y (y;�) =

�
G
�
x; 2�2

�2
;�2�1

�2

�
for � 2 (0; 1)

1�G
�
x; 2�2

�2
;�2�1

�2

�
for � 2 (1;1) (13)

where G (�; 2�2=�2;�2�1=�2) is the Gamma CDF.
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The closed-form transition PDF in (10) allows the users to implement exact ML inference
without any computational burden. This is in contrast to the majority of parametric di¤usions
in the literature (cf. Durham and Gallant 2002). Moreover, the closed-form conditional CDF in
(11) is a convenient tool for various statistical and �nancial applications which rely essentially on
conditional quantiles (cf. Jorion 2006, Patton 2009, Diebold et al. 1998). Generally speaking, all
parametric RDs have at least these advantages by construction.
Finally, the explicit closed-form expressions of the conditional and unconditional moment func-

tions of discretely observed random sequence of the CIR-CEV process are provided in the next
proposition.

Proposition 3.3. Under condition (i) or (ii), the conditional moment functions of the CIR-CEV
process are given by

E (ymt jyt��;�)

= [2 j1� �j]
m
1�� c�

m
2(1��) e�u

�
�
q + m

2(1��) + 1
�

� (1 + q)
1F1

�
q +

m

2 (1� �) + 1; 1 + q; u
�

(14)

for m > 0, where 1F1 (�; �; �) is the con�uent hypergeometric function2 de�ned as

1F1 (a; b; y) =
1X
j=0

(a)j y
j

(b)j j!
=

� (b)

� (b� a) � (a)

Z 1

0

eyzza�1 (1� z)b�a�1 dz

with �(�) being the Gamma function. The corresponding unconditional moment functions are
given by

E [ym;�] = [2 j1� �j]
m
1��

�
�2�1
�2

�� m
2(1��) �

�
2�2
�2
+ m

2(1��)

�
�
�
2�2
�2

� (15)

These explicit moment functions are potentially very useful for implementing moment-based
estimations and goodness-of-�t tests. In particular,m in (14) and (15) is allowed to be any positive
real numbers. Thus, (14) and (15) in fact permit the evaluation of the fractional moments of the
CIR-CEV process. A sketch of the proofs of (10) to (15) can be found in Bu et al. (2011).

4. Time-Varying Transformations

The RD framework of Bu et al. (2011) was developed under the assumption that time-invariant
transformations are imposed on time-homogeneous BDs to form time-homogeneous RDs. Although
this modelling strategy is original, the maintained assumption of time-homogeneity may prove to
be restrictive from the practical point of view3. In their empirical application of OU-CEV and
CIR-CEV models, they found evidence of time variation in their transformations. There are two
ways to make RDs (or more generally transformation models) more �exible. One way is to use
more �exible underlying processes. However, in the context of di¤usions, the choices of models

2Abadir (1999) provided a detailed account of the hypergeometric functions and their applications in economics.
Also, see Abadir and Rockinger (2003) and Bu and Hadri (2007) for applications in �nance.

3See Choi (2013) for some empirical evidence of time-inhomogeneity in di¤usion modelling.
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with closed-form solutions are quite limited, which is in fact the motivation behind RD modelling
in the �rst place. Therefore, a more feasible and practical solution is to introduce suitable time
variation dynamics to the transformations.
Focusing on the baseline CIR-CEV model, we can see that the transformation depends on

a single transformation parameter �. Thus, a natural strategy is to consider various feasible
and practical nonlinear time-varying mechanisms for describing the evolution of � over time. We
consider our approach feasible and practical in terms of both econometric tractability and empirical
�exibility. That is, we aim to create models that can account for empirical dynamics as �exibly
as possible, but at the same time we prefer to enable standard inferential methods such the ML
to be implemented without too much di¢ culties following the introduction of additional nonlinear
features.
Generally speaking, time-varying parameter models can be broadly divided into two classes.

The �rst class assume that the value of the varying parameter at time t is non-stochastically de-
termined by values of variables observed up to time t. In contrast, the other class assume that the
time-varying parameter values cannot be observed but are determined by a second unobservable
stochastic process. This implies that one can never be certain about the value of the time-varying
parameter at any particular point in time, but can only assign probabilities to the occurrence of
di¤erent values. In this paper, we consider a total of �ve widely accepted time-varying speci�-
cations representing both classes of time dependence in order to re�ect a variety of economically
and statistically justi�able situations.

4.1. Autoregressive Conditional Transformation (Model 1)

The ARCH speci�cation of Engle (1982) was one of the earliest innovations in �nance for consider-
ing conditional time dependence. This concept of autoregressive conditioning was then generalized
by Hansen (1994) in modelling conditional densities. The suggestion is to model conditional den-
sities (instead of just the mean and the variance) with a small number of parameters and then
model these parameters as functions of the conditioning information.
In the current context, to account for potential time variation in transformation parameter �,

we assume that �t follows the following Autoregressive Conditional Density (ACD) type dynamics

�t = e� ! + pX
i=1

�iY
i
t��

!
(16)

where the link function e� (z) � (1 + e�z) is the reciprocal of the logistic function which restricts
�t on the domain of (1;1) at all times. We can also let the link function to be the logistic function
� (z) � (1 + e�z)�1 to keep �t on (0; 1).
As can be seen from (16), we restrict our forcing variable at time t to be the observation at time

t��, i.e. Yt��. This choice has the advantage of maintaining the �rst-order Markovian property
of the resulting model, which is one of the fundamental assumptions of di¤usion modelling. In
addition, to account for the possibility of nonlinear dependence on Yt��, we consider a polynomial
function of Yt�� and expect that the nonlinear dependence of �t on Y it��, if any, can be picked up
by the signi�cance of coe¢ cient �i. This is analogous to the reasoning behind the RESET test
(cf. Ramsey 1969). Moreover, our polynomial design and the subsequent ML estimation is also
analogous to the sieve estimator in semiparametric statistics (cf. Ai and Chen 2003). Thus, to
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some extent Model 1 has some semiparametric interpretation. In practice, the choice of p should
be decided by some model selection criteria.

4.2. Self-Exited Threshold Transformation (Model 2)

Regime switching models have been used extensively in economic modelling. In most studies, two
regimes designated as high (H) and low (L) states of an economy are introduced with a state
process making one of the regimes take place in each period. A most prominent member of regime
switching models is the threshold model, initially proposed by Tong (1978) and Tong and Lim
(1980), and discussed extensively in Tong (1990), which assumes that the regime that occurs at
time t can be determined by an observable variable relative to some threshold value. In univariate
time series modelling, a special case arises when the threshold variable is taken to be a lagged
value of the time series itself, i.e. Yt�d� for a certain integer d > 0. Since in this case the regime is
determined by the time series itself, the resulting model is called a Self-Excited Threshold (SET)
model.
In the context of RDs with conditional transformations, we assume that the value of �t changes

depending on whether Yt�� (i.e. d = 1) is above an unknown threshold value �SET or not. Thus,
the dynamics of �t can be written as

�t =

�
�L if Yt�� � �SET
�H if Yt�� > �SET

(17)

An alternative way to write the SET model in (17) is

�t = �L (1� I [Yt�� > �SET ]) + �HI [Yt�� > �SET ]

where I[A] is an indicator function with I[A] = 1 if the event A occurs and I[A] = 0 otherwise.
See Tong (1990) for more detailed analyses of this speci�cation.

4.3. Smooth Transition Transformation (Model 3)

The SET model assumes that the border between the two regimes is given by a speci�c value of
the threshold variable Yt��. A more gradual transition between di¤erent regimes can be obtained
by replacing the indicator function by a continuous transition function which changes smoothly
from 0 to 1 as Yt�� increases. Unsurprisingly, a popular choice for the transition function is the
logistic function with

�(Yt��;�; �LST ) =
1

1 + exp [�� (Yt�� � �LST )]
(18)

and the dynamics of �t is written as

�t = �L (1� �(Yt��;�; �LST )) + �H�(Yt��;�; �LST ) (19)

The resulting model is called a Logistic Smooth Transition (LST) model.
The parameter �LST in (18) can be interpreted as the threshold between the two regimes

corresponding to �(�1;�; �LST ) = 0 and �(+1;�; �LST ) = 1, in the sense that the logistic
function changes monotonically from 0 to 1 as Yt�� increases, while �(�LST ;�; �LST ) = 0:5.
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The parameter � determines the smoothness of the change in the value of the logistic function,
and thus the transition from one regime to the other. It is easily veri�ed that as � becomes
very large, the change of �(Yt��;�; �LST ) from 0 to 1 becomes almost instantaneous at Yt�� =
�LST and, consequently, the logistic function �(Yt��;�; �LST ) approaches the indicator function
I [Yt�� > �LST ]. Hence the SET model in (17) can be approximated by the LST model in (19).
When � ! 0, the logistic function becomes equal to a constant (equal to 0:5) and when � = 0,
the LST model reduces to the time-invariant baseline model. See Teräsvirta (1994) and others for
more details of this speci�cation.

4.4. Exogenous Regime Switching Transformation (Model 4)

The time-varying speci�cations of �t discussed above are all deterministic with respect to t. How-
ever, there is a large literature supporting the existence of stochastic regime changes in the evo-
lution of �nancial and economic variables. Examples include Hamilton (1988), Cai (1994), Gray
(1996), Garcia and Perron (1996), and recently Chang et al. (2014) and so on. A most recent
study of regime switching di¤usions was by Choi (2009).
Typically, in the context of di¤usions, a continuous-time two state Markov chain with the

conservative in�nitesimal matrix

Q =

�
qLL qHL
qLH qHH

�
=

�
�qLH qHL
qLH �qHL

�
is assumed to govern the switching between two regimes. The intensity parameter qij is the rate
of the probability at which the process switches from the state i to the state j as time goes to zero
and qij > 0 for i 6= j. The corresponding transition matrix is then

P� =
1

qLH + qHL

�
qHL + qLHe

��(qLH+qHL) qHL
�
1� e��(qLH+qHL)

�
qLH

�
1� e��(qLH+qHL)

�
qLH + qHLe

��(qLH+qHL)

�
where � is the time interval between two neighboring observations. Hence, the transition prob-
abilities depend not only on the intensity but also on �. Moreover, �L = qHL= (qLH + qHL) and
�H = qLH= (qLH + qHL) are the unconditional probabilities that the above Markov chain will be
in state L and H, respectively at any time.
If � is small enough, we can assume approximately that at most one regime shift can occur in

the duration of �. Thus, the regime index st is assumed to follow a discrete-time Markov chain
with two states. As such, we can reparameterize P� as

P =

�
pLL pHL
pLH pHH

�
(20)

and the transition probabilities, pij = P (st = jjst�� = i), i; j = L;H are of greater interest than
the intensity parameters in understanding the dynamics of stochastic processes. Representing
stationary distribution of the Markov chain in terms of pLL and pHH , we have

�L =
1� pHH

2� pLL + pHH
and �H =

1� pLL
2� pLL + pHH

which is, not surprisingly, the same as the unconditional probabilities of a discrete-time Markov
chain with transition matrix (20). Consequently, the transition probabilities pLL and pHH and the
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parameters of regime-dependent RDs can be estimated in exactly the same way as discrete-time
Markov switching models using a Hamilton (1989) type �ltering algorithm4.

4.5. Endogenous Regime Switching Transformation (Model 5)

The above standard regime switching model assumes that the transition of the underlying �nite
state Markov chain is independent of the evolutionary path of the observed state variable Yt.
However, studies including Diebold et al. (1994), Kim et al. (2008), Choi (2009), Chang et
al. (2014) among others all reported evidence of endogeneity in regime changes that we observe
widely and frequently for many practical applications. A convenient way to allow endogenous
regime changes in regime switching models is to model the transition probabilities as functions
of the lagged values of the state variable Yt itself. In order to maintain the Markovian property
of the resulting model and allow for su¢ cient nonlinearity in the dependence, we adopt a similar
speci�cation as in Model 1 for the two endogenous transition probabilities as

pLL (Yt��) = P (st = Ljst�� = L; Yt��) = �
 
cL +

pX
i=1

dL;iY
i
t��

!
(21)

pHH (Yt��) = P (st = Hjst�� = H; Yt��) = �
 
cH +

pX
i=1

dH;iY
i
t��

!
(22)

where � is the logistic function5. Clearly, if all coe¢ cients of the powers of Yt�� are jointly zero,
the transition probabilities become constant and the time-varying transition matrix is reduced to
the time-invariant transition matrix (20).
It is worth mentioning that our speci�cations of the endogenous transition probabilities in

(21) and (22) are related to the recent approach by Chang et al. (2014). They assume that
the switching between regimes is determined by whether a latent process is above or below some
unknown threshold value. Crucially, they assume that the innovation term of the latent process and
the observed state variable are correlated. As a consequence, the transition probabilities of their
regime switching model become endogenous, that is, dependent on the lag(s) of the state variable.
Clearly, our speci�cations in (21) and (22) produce similar e¤ects and are therefore consistent
with the logic behind their methodology. However, in contrast to their implicit approach based
on a latent process and an unknown threshold, we choose to directly and explicitly specify pLL
and pHH as �exible functions of Yt�� to introduce similar endogeneity. Nevertheless, our approach
clearly cannot give any intuitive description of the cause of endogeneity as their model does.
For both Model 4 and 5, we de�ne �L as the low-value transformation parameter (corresponding

to the low state) and �H as the higher value transformation parameter (corresponding to the high
state). It is important to emphasize that this de�nition of �L and �H is di¤erent from the one in
Model 2 and 3 where, according to (17) and (18), �L is de�ned as the transformation parameter
corresponding to Yt�� below or equal to the threshold and �H is de�ned corresponding to Yt��
above the threshold.

4The Hamilton (1989) algorithm is fairly standard. For space economy, we do not elaborate speci�c details.
5The choice of link functions here is not unique. Other options include the standard normal CDF function and

others. However, results are usually quite simiar which is true in our applications too.
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5. Application to UK and US Short-Term Interest Rates

Short-term interest rates are often modeled as continuous-time di¤usion processes. Perhaps more
di¤usion speci�cations have been proposed for modelling short-rates than any other �nancial
variables. However, most earlier models are based on time-homogeneous parametric single-factor
di¤usions, which prove to be insu¢ cient for describing complex short-rate dynamics. In this
section, we examine the empirical performance of RDs with time-varying transformations proposed
in this paper.

5.1. The Data

We measure the UK and the US short rates by the 1-Month London Interbank O¤ered Rate
(LIBOR) in British Sterling and the 1-Month Eurodollar Rate (EDR) respectively, both at the
weekly frequency. The LIBORs are obtained from BBA (British Banking Association) database
and the EDRs are collected from the H.15 release of the Federal Reserve website6.
Table 1 provides some summary statistics of the data. The LIBOR data are available from

January 1986 to December 2007 with 1148 weekly observations. The EDR data start from January
1971 to December 2007 yielding 1930 weekly observations. The sample means of the two series
suggest that the LIBOR is on average higher than the EDR, whereas the standard deviations
indicate that the EDR is more volatile than the LIBOR. The departure from normality is con�rmed
by the signi�cance of Jarque-Bera normality tests on the marginal distributions. This suggests
that any models, continuous or discrete, that imply Gaussian marginal distributions will not
be entirely appropriate. While both rates show positive skewness, we note that the LIBOR is
platykurtic whereas the EDR is leptokurtic.
The time series plots of the two series and their �rst di¤erences are provided in Figure 1.

Neither of the two series show discernible trend over its sample period. For the EDR, due to the
shift in monetary policy, the 1980 to 1982 years are characterized by substantially higher levels
than the rest of the sample period. Associated with high levels of interest rates are high levels
of volatility. In fact, this observation has been a main reason that motivates the CEV di¤usion
speci�cation by many authors (cf. Chan et al. 1992, Conley et al. 1997). The LIBOR is highest
around year 1990 as a result of the monetary policy followed at the time. Both rates reached their
lowest levels during the years 2004 and 2005. Generally speaking, some graphical evidence exists
which suggests that short-rates behave quite di¤erently in di¤erent time periods. It is particularly
clear from the lower panel of Figure 1 that the volatilities are time-dependent. We conjecture that
time variations with possibly regime changes are likely to be an important feature of our data.

5.2. ML Estimation

One of the most prominent advantages of RDs is their closed-form transition PDFs. Thus, ML
is chosen to be our preferred estimation method for its e¢ ciency gain and classic inferential
procedure. The ML estimation for Model 0 and Model 1 are straightforward. For Model 2, we
search for the optimal threshold value �SET across the full range of the sample7. Speci�cally, we

6We use the same dataset used by Bu et al. (2011) so that their estimation results can serve as a benchmark.
7Usually it would be su¢ cient to search the middle 70% of the data as threshold at either end 15% is not too

appealing from either economic or econometric point of views.
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take each distinct observation in the sample one at a time as a candidate threshold and use the ML
procedure to obtain the corresponding log-likelihood (LL) of the model. We repeat this procedure
using every distinct observation as the threshold. The estimation results corresponding to the
highest LL are then reported8. For Model 3, the parameter space is assumed to be continuous.
However, in order to �nd the global maximum, we adopt the following procedure to search for
the optimal �LST . We �rst use a similar search procedure as in Model 2 to locate the candidate
threshold which yields the highest LL for the restricted version of Model 3 (i.e. Model 3 with
known threshold). We then use this candidate threshold and the estimates of other parameters
as starting values to estimate the unrestricted version of Model 3. The results obtained in this
way are then reported. Model 4 and 5 are hidden Markov regime switching models. Therefore,
their transition PDFs, i.e. fY (ytjyt��;�), are not immediately available since it depends on the
unobservable state. In this paper, we use the standard �ltering algorithm of Hamilton (1989) to
obtain fY (ytjyt��;�) and implement ML estimation.
It is important to stress that since the focus of this paper is on time-varying transformations we

assume that the underlying BD (i.e. the CIR process) is time-homogeneous. Of course, one can in
theory allow additional parameters to be time-dependent to achieve even better �exibility, but a
price must be paid for additional di¢ culty in numerical stability and interpretation of the model.
On the other hand, depending on whether �t 2 (1;1) or �t 2 (0; 1), fairly general scenarios may
be considered in the context of the models discussed in Section 4. However, for model simplicity
and space economy, we assume �t 2 (1;1) for all t in subsequent analysis. This simplifying
assumption is consistent with the empirical �ndings of Bu et al. (2011).

5.3. Results

Estimation results for the two short-rate series (both measured as percentages, i.e. multiplied
by 100) are reported in Table 2 and 3, respectively. A total of six models (including Model 0
which is our baseline model) were estimated. For each model, we report ML estimates of model
parameters and their standard errors (whenever applicable) obtained by inverting the numerical
Hessian. We also report the maximized LL and the corresponding AIC and BIC values. In order
to test the signi�cance of time variation in the transformation, the Likelihood Ratio (LR) statistics
and the corresponding p-value for each time-varying speci�cation against the baseline model are
also reported in the tables. However, it is important to stress that not all of these p-values are
strictly valid since under the null of Model 0 the parameters of some time-varying speci�cations
are unidenti�ed. Nevertheless, in such cases the p-values are only used as crude indications of
comparative model performances. More details are explained in the sequel.
Results from the baseline Model 0 are identical to those of Bu et al. (2011). The constant

transformation parameter � is signi�cantly di¤erent from either 0:5 or 1:5. Thus, the nested CIR
and AG models are strongly rejected.
Model 1 has the ACD type time-varying speci�cation. The polynomial type dependence on

the �rst lag Yt�� inside the link function captures potential nonlinearity. We report the results
for p = 3 for both data series. For the LIBOR, according to the t-ratios we �nd that only the
coe¢ cients of Y 2t�� and Y

3
t�� are signi�cant. For the EDR, the coe¢ cients of Yt��, Y

2
t�� and Y

3
t��

are signi�cant. This provides clear evidence of signi�cant time variation in the transformation

8This procedure can be regarded as a special grid search procedure in the sense that the grid points we use
simply consist of all distinct observations in the sample.
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parameter. However, including higher powers of Yt�� did not signi�cantly improve the goodness-
of-�t. In fact, Y 4t�� turned out to be insigni�cant for both data series. The LL, AIC and BIC
all improved signi�cantly from the baseline model. Since Model 1 nests Model 0, we calculated
the LR statistic to jointly test the signi�cance of this particular time-varying speci�cation. The
resulting LR statistics are 95:46 for LIBOR and 37:64 for EDR, respectively. Compared to the
�2 distribution with 3 degrees of freedom, the p-values are zero up to at least 4 decimal points,
suggesting strong rejection of the baseline model. To graphically demonstrate the time-varying
e¤ects, we plot the �tted values of �t against the constant � estimated from Model 0 as well as its
95% con�dence bands in Figure 2. The signi�cant proportion of �t outside the con�dence bands
are strong evidence of the time variation of �t.
Model 2-5 all assume that �t can take potentially two distinct values corresponding to the two

states of the world. Such an assumption is economically intuitive since economies are often viewed
to have high or low status. Model 2 is a simple SET model of order 1. As discussed above, we
searched the whole sample space for the value of the threshold �SET to locate the maximum LL.
The optimal �SET is found to be 12:625 for the LIBOR and 11:610 for the EDR. For the LIBOR,
the transformation parameter is larger (�L = 1:648) when Yt�� is lower than the threshold (L)
and smaller (�H = 1:301) when Yt�� is higher than the threshold (H). In contrast, the opposite
situation is observed for the EDR with �L = 1:123 and �H = 1:268. The LL, AIC and BIC all
suggest signi�cant improvements upon the baseline model for both rates. However, the LR test
cannot be used here since under the null of no threshold e¤ect, �SET and the two transformation
parameters �H and �L are unidenti�ed and the resulting LR statistic will not have the usual �2

distribution. Nevertheless, if we crudely resort to the conventional LR test, Model 0 would be
rejected in favor of Model 2 even at 0:01% signi�cance level, indicating some though not strictly
formal evidence in favor of the threshold type regime switching e¤ects for both LIBOR and EDR.
Coincidentally, the goodness-of-�t of Model 1 and 2 in terms of LL, AIC and BIC are surprisingly
close, despite the fact that the time-varying mechanisms of the two models are quite di¤erent.
Model 3 is the threshold model with smooth transition between �H and �L. Related literature

suggests that ST models are often di¢ cult to estimate. In particular, the accuracy in estimating �
is usually poor. Unfortunately, this is true in our application too. As expected, the estimates of �
are extremely large but insigni�cant for both series. In the mean time, other parameter estimates
are fairly close to those of Model 2, the SET model. As discussed in Section 4, the ST model can
approximate the SET model with very large values of �. For this reason, the estimation results of
Model 3 have signi�cant implications. Clearly, they are indicative that for both rates the transition
between �H and �L is unlikely to be smooth. More speci�cally, the two series are both in favor of
the type of transition as speci�ed in Model 2. The fairly similar goodness-of-�t measures of Model
2 and 3 in terms of LL, AIC, and BIC are further con�rmation of this observation. A similar
informal LR statistic comparing Model 3 and 0 and its p-value were also calculated. As expected,
they are practically the same as those of Model 2. Thus, unsurprisingly Model 3 also o¤ers strong
evidence against the baseline model.
Model 4 and 5 di¤er from Model 0-3 in that they represent stochastic transformations and thus

they are e¤ectively two factor random processes. In Model 4, the transition probabilities between
regimes (pHH and pLL) are constant. In other words, the switching between regimes is exogenous.
However, it is worth stressing that the regime switching itself still determines that �t is time-
varying. Estimation results from the two rates suggest that the introduction of random regime
switching (stochastic time variation) substantially improved the goodness-of-�t to the data in a
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way that is substantially better than any of the deterministic type time-varying transformation
models. For both series, the LL, AIC and BIC measures almost all doubled compared to Model
0 and signi�cantly better than Model 1, 2 and 3. Similar to Model 2 and 3, it is also impossible
to use the usual LR statistics to test our regime switching model against the time-homogeneous
case. A similar reason is that the parameters related to the second state of the process are not
identi�ed under the null of no regime switching. There are some researchers who addressed this
problem, but generally testing for multiple regimes is not an easy task (cf. Davis 1987 and Hansen
1992, 1996). However, a similar informal test (as we did for Model 2 and 3) based on the usual
LR statistic and �2 distribution suggests an even stronger rejection of Model 0 in favor of Model
4 at less than 0:01% signi�cance level. In any event, the substantially improved AIC and BIC are
more convincing indications.
For the LIBOR, the estimated transition probabilities pLL = 0:877 and pHH = 0:835 suggest

that the average number of periods that �t stays in the low value is approximately 8 weeks and 6
weeks in high value. This is slightly in contrast to the EDR with pLL = 0:967 and pHH = 0:933
and averages of 30 and 15 weeks respectively. Hamilton (1989)�s algorithm also allows us to infer
the probability of the state at each time period conditional on the full sample. Such inferred
probabilities are also known as the smoothed probabilities. In order to have an indication about
the likelihood of �t in either states at each time step, we plot in Figure 3 the time series of
smoothed probabilities against the time series of Yt itself and its �rst di¤erence. As far as the
EDR is concerned, we �nd that our inferred states coincided, to a reasonable degree, with economic
events happened in the sample period depicted in Choi (2009)9. This suggests that our regime
switching time-varying transformation model can indeed reasonably pick up important features
of the data. Moreover, compared to the di¤erenced series, distinct volatility levels appear to be
characteristic features of di¤erent states. Similar features are also observed for the LIBOR.
Although the exogenous regime switching Model 4 performs distinctively well compared to all

preceding cases, the assumption of exogenous regime switching contradicts the evidence of endo-
geneity in regime changes that we observe widely and frequently for many practical applications
(cf. Chang et al. 2014)10. Model 5 examines the possibility of such endogeneity by specifying
pHH and pLL as nonlinear functions of Yt��. For the same argument as for Model 1, we include
powers of Yt�� up to the 3rd order and use the same algorithm to obtain ML estimation results.
For both rates, the goodness-of-�t of Model 5 improved upon Model 4 in terms of LL and AIC,
but not BIC. This is not surprising because BIC imposes a heavier penalty on increased number
of parameters than AIC and Model 5 has 6 additional parameters relative to Model 4. Both LR
statistics calculated against Model 0 are unsurprisingly higher. As far as individual coe¢ cients
are concerned, no clear signi�cance was found by examining the t-ratios alone. However, since the
regressors are highly correlated, looking at t-ratios individually may not be totally appropriate.
Hence, we perform LR tests to examine all coe¢ cients jointly and test against Model 4. Note that
this is actually a valid LR test since Model 4 is nested in Model 5. The resulting LR statistics
are 36:97 for LIBOR and 21:06 for EDR respectively, which are both highly signi�cant at 1%
signi�cance level. Hence, despite the seemingly insigni�cant coe¢ cients, our LR tests turn out to
be very signi�cant for both LIBOR and EDR. This can be regarded as evidence of nonlinear en-

9Choi (2009) gave a more detailed account of such economic events. For space economy, we do not repeat here.
10Chang et al. (2014) provides a more speci�c and economically justi�able alternative framework for endogenous

regime switching dynamics.
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dogeneity in the regime switching probabilities. To demonstrate this endogeneity graphically, we
plot in Figure 4 the endogenous time-varying transition probabilities pHH (Yt��) and pLL (Yt��)
versus the constant transition probabilities pHH and pLL of Model 4 and the corresponding 95%
con�dence bands. The presence of time variation in these transition probabilities is quite obvious.
Above all, Model 4 and 5 both o¤ered very strong evidence of regime switching type time variation
in �t against other types of speci�cations. Moreover, evidence coming out of Model 5 also suggests
that such regime switches are likely to be endogenously driven. This result is consistent with
recent �ndings made by Chang et al. (2014) in their application to US GDP growth rates and
NYSE/AMEX index returns.

6. Conclusion

In this paper, we proposed the general idea of using RDs with nonlinear time-varying transforma-
tions for modelling �nancial and economic variables. Just as most pure time series models, the
economic intuition behind our model is not immediately evident. However, to a limited extent
one may regard the BD as a fundamental economic factor which drives the evolution of observable
variables and the transformation can be viewed as a nonlinear measure of this factor. Mean-
while, the measure itself may be in�uenced by changing economic environment and therefore the
transformation itself can also evolve over time. We took a feasible and practical approach in the
design of our RDs, so that they are potentially very �exible but analytically very tractable. Both
are appealing properties to empirical users. Using the CIR-CEV process as our baseline model,
we proposed �ve distinct econometric speci�cations to accommodate a variety of economically
justi�able nonlinear time-varying dynamics for the transformation function. Our time-varying
speci�cations represent both deterministic and stochastic time dependences on the �rst lag of the
series. Whenever is feasible and convenient, this dependence is speci�ed in a �exible form which
is to some extent analogous to a nonparametric design. Such a consideration further enhances the
�exibility and captures potential nonlinearity. The application of our speci�cations to UK and US
short-term interest rate data revealed strong evidence of time variations in the transformation of
our RD. Consistent with recent �ndings by Chang et al. (2014), the endogenous regime switching
model appears to be our best performing speci�cation. Because of their �exibility, multifaceted
nonlinearities and realism, we expect that our modelling approach can depict more accurately
the evolution of important economic and �nancial variables and hence lead to better forecasts
potentially. Such improvements will certainly have signi�cant implications for policy makers and
�nancial investors.
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