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Abstract 
This paper considers the competition between two ports involving both hinterland shipments 

and transhipments. Taking a transport chain perspective including deep-sea, port, feeder and 

inland transportation, we present a static cost model to examine ports’ relative 

competitiveness and justify the development of game models. A non-cooperative game model 

is then formulated for a two-ports-one-ocean carrier system. The optimal ports’ pricing and 

the carrier’s port-of-call decisions are derived. A centralized supply chain model is then 

discussed. The game model is further extended to uncertain demand situations. A case study 

of Southampton and Liverpool ports is provided to illustrate the results. 
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1. Introduction 

Port competition is an accepted and important phenomenon, and a key driver of performance 

improvement, in the shipping industry. This is particularly evident in the container shipping 

sector where container port operations, cargo handling and equipment are standardized. 

Competition is intensified as ocean carriers can relatively easily switch their service routes 

and ports of call (denoted as portcall for simplicity) between different container ports. For 

example, among the UK container ports, in recent years it was reported that Evergreen moved 

to Felixstowe from Thamesport; a joint Hapag-Lloyd/OOCL transatlantic service was 

switched to Southampton from Thamesport; BG Freight Line (a subsidiary of CMA CGM) 

moved most of its services from Tilbury to Thamesport; the Southern Africa Europe 

Container Service was switched to London Gateway port from Tilbury (Porter 2013). 

 

Many factors affect ocean carriers’ and shippers’ decisions on the selection of ports, e.g. 

availability of hinterland connections, port tariffs, immediacy of consumers (large hinterland), 

feeder connectivity, environmental issues and the total portfolio of the port (Wiegmans et al., 

2008). From a global supply chain perspective, the total transport chain’s cost/ profit is 

regarded as the most significant criterion for port choice (Liu et al. 2014). This paper 

attempts to address the competitive challenge between two container ports involving both 

hinterland shipments and transhipments from the transport chain’s cost perspective including 

port prices, deep sea transport cost, hinterland transport cost, and feeder service cost. 

 

There is a rich and varied body of literature on the subject of port competition. Port 

competition may be classified into three categories: intra-port competition between terminal 

operators within a single container port, inter-port competition between operators/ authorities 

in neighbouring ports, and inter-port competition between operators/ authorities in different 

port ranges. A typical example of the first category is the rivalry among the three major 

terminals in Rotterdam: the Euromax Container Terminal (operated by Hutchison Ports), the 

Rotterdam World Gateway terminal (operated by DP World), and the APMT MVII terminal 

(operated by APM Terminals) (Barnard 2014). Another example has been highlighted by 
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Saeed and Larsen (2010) who studied the intra-port competition among three container 

terminals located in a port in Pakistan, and examined the different types of coalitions among 

the container terminals using a two-stage game method. 

 

In the second category, competitive ports are located in the same port region competing for 

the same hinterland shipments (and may also compete for the same transhipments). For 

example, Southampton and Liverpool ports compete for the hinterland shipments from 

England and also compete for the transhipment cargoes from Scotland and Ireland. Cullinane 

et al. (2005) analyzed the relative competitiveness of the two neighbouring container ports of 

Shanghai and Ningbo with respect to price, quality of service and generalized cost. De Borger 

et al. (2008) applied a two-stage game to analyze the interaction between the pricing 

behaviour of two competing ports and the capacity investment policies in the ports and 

hinterland. Both port congestion and hinterland congestion are considered in the model. Li 

and Oh (2010) studied the competition and cooperation between neighbouring ports in a case 

study of Shanghai port and Ningbo-Zhoushan port. Luo et al. (2012) developed a two-stage 

game model for a new port and an existing port that serve the same hinterland with different 

competitive conditions. They focused on port pricing and capacity expansion decisions. The 

case of Hong Kong and Shenzhen ports was discussed. 

 

In the third category, competitive ports are located in different port ranges and therefore 

mainly compete for transhipment cargoes. Veldman and Buckmann (2003) applied a logit 

model to quantify the routing choice among European container hub-ports. Yap and Lam 

(2006) examined whether there exists a long run relationship between various ports in East 

Asia using a co-integration test based on historical data. Co-integration refers to a linear 

combination of variables that are non-stationary with a relationship present between them. 

Anderson et al. (2008) investigated the competition between two hub ports: Busan and 

Shanghai. They developed a game-theoretic response model for the purpose of understanding 

how a competing port would best respond to the development of the focal port, and whether 

the focal port would be able to capture or defend market share through investment in capacity. 

Ishii et al. (2013) applied a non-cooperative game theoretic model to examine the effect of 

inter-port competition between two ports using the case of Busan and Kobe. Working under 

the assumption that both the levels and timings of capacity investment are pre-determined, 

they aimed to determine the pricing behaviour of the two ports at each time period of port 

capacity investment. Zhuang et al. (2014) used duopoly games to model the competition 

between two ports that service two types of cargoes. They found that inter-port competition 

may lead to port specialization in terms of port service choice and cargo type. Bae et al. 

(2013) studied container port competition for transhipment cargoes in a duopoly market. A 

non-cooperative game was applied to a vertical marketing channel consisting of two ports 

and multiple shipping lines. They showed the existence of the Nash equilibrium including 

shipping lines’ portcall decisions and ports’ pricing decisions. A defining contribution of this 

paper is the joint/ interactive decision-making of ports and shipping lines, while most other 

literature on port competition has primarily focused on the ports’ decisions only.  

 

In addition to port competition, there have been a number of empirical studies examining the 

competitiveness of container ports. For example, Tongzon and Heng (2005) conducted an 

empirical evaluation of the impact of port privatization on port efficiency and identified the 

determinants of port competitiveness. Yeo et al. (2008) considered the competitiveness of 

container ports in the regions of Korea and China. They conducted a regional survey of 

shipping companies to identify and evaluate the determining factors influencing port 
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competitiveness. Notteboom and Yap (2012) discussed port competition and competitiveness. 

They introduced the concept of container ‘port range’, which is defined as a geographically 

defined area with a number of ports that possess largely overlapping hinterlands and thus 

serve mostly the same customers. Related to port competition and competitiveness, other 

researchers have addressed the issues of port cooperation and regionalization. For example, 

Song (2002) took a strategic perspective to examine the possible competition and cooperation 

between Hong Kong port and the adjacent container ports in South China. It was reported that 

port cooperation could be achieved through the same terminal operator or through common 

ownership. Luo and Grigalunas (2003) presented a simulation model to estimate port-related 

demand for major US coastal container ports. The demand regionalization was achieved 

through simulating the multimodal container transportation process based on the shortest path 

method. 

 

It can be observed that the literature on port competition has focused on either competing for 

hinterland shipments, or competing for transhipments. Very little research has considered 

port competition involving both hinterland shipments and transhipments explicitly. Given the 

fact that the majority of deep sea ports handle both hinterland shipments and transhipment 

cargoes (although their ratios may vary from port to port), it is appropriate to model port 

competition by including both types of shipments. More importantly, the port competition 

models developed so far have primarily concentrated on the port performance and related 

decisions (e.g. price, investment, congestion); ocean carriers’ decisions have been often 

neglected except in one paper (i.e., Bae et al. 2013). Since ocean carriers are the immediate 

and primary customers of container ports, and ocean carriers’ portcall decisions depend on 

the entire transport chain, it is desirable to model port competition in the context of the 

transport chain by considering port pricing, deep sea transport cost, hinterland transport cost, 

and feeder service cost simultaneously. In addition, it is also useful to investigate the 

centralized management model for the transport chain in an integrated manner since ports and 

ocean carriers may seek strategic collaboration and make decisions jointly. A loosely related 

research stream is shipping network design (Brouer et al. 2014; Meng et al. 2014), which is 

aimed at designing or selecting shipping service routes, port choice, port rotation, and inland 

transportation in order to meet customer demands (Tavasszy et al. 2011; Liu et al. 2014). 

However, this research stream (on shipping network design) has not considered the 

competition between ports, i.e. port pricing has not been treated as a decision variable. In this 

study, we aim to address the port competition and ocean carrier’s port-of-call decision 

problem from the transport chain’s perspective by considering deep sea, port, feeder and 

inland transportation. Our focus is on short-term or medium-term decisions. Thus the long-

term decisions such as port capacity choice and investment are fixed and treated as 

exogenous input variables. 

 

The main contributions of this paper include: (i) an analysis of a novel port competition 

problem involving both hinterland shipments and transhipment cargoes, by taking the 

transport chain’s cost perspective including port handling charges, deep sea transport cost, 

hinterland transport cost, and feeder service cost; (ii) the development of a static cost model 

for two competitive ports with specific services and analysis of their relative cost in the 

transport chain, supported by a case study; (iii) the presentation of a non-cooperative game 

model for two competitive ports and one ocean carrier with multiple shipping services 

concerning both ports’ pricing decisions and the ocean carrier’s portcall decision. A closed-

form of the optimal solution is derived. New managerial insights are obtained, e.g. when the 

ocean carrier attaches more weight to the congestion cost on either port, then both ports tend 
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to increase their port prices; (iv) the relative difference between the total profits of the 

centralized supply chain and the non-cooperative decentralized supply chain is obtained 

analytically, which quantifies the benefit of the integrated container transport chain; (v) the 

non-cooperative game model is extended to uncertain demand situations. It is shown that both 

ports will increase their port handling charges compared to deterministic demand situations; 

(vi) the results are illustrated using numerical examples based on a case study of 

Southampton and Liverpool ports.   

 

The rest of the paper is organized as follows. In Section 2, a static cost model is presented for 

two competitive ports involving hinterland shipments and transhipments with specific 

shipping services. The purpose is to investigate their relative competitiveness from the 

transport chain perspective and demonstrate the importance of developing a game model. In 

Section 3, a non-cooperative game model is formulated for two competitive ports and one 

ocean carrier with multiple shipping services. The optimal solution is derived and the model 

is analyzed to generate managerial insights. In Section 4, the associated centralized supply 

chain model is formulated and compared to the decentralized supply chain model. In Section 

5, the non-cooperative game model is extended to uncertain demand situations. In Section 6, 

a case study is provided to illustrate the results. In Section 7, we provide a discussion for 

extending the non-cooperative game model to three-port competition situations. Finally, 

conclusions are presented in Section 8. 

 

2. Static cost model of two competitive ports for specific shipping services 

Consider two container ports competing for the same geographic market of hinterland traffic 

(catchment area) and the same geographic market of transhipment traffic. For example, 

Liverpool and Southampton ports both serve the UK hinterland market and the transhipment 

markets including Scotland, Ireland, and Northern Ireland. With the development of the new, 

deep-water Liverpool 2 container terminal, these two container ports may compete for the UK 

hinterland market and the associated transhipment markets.  

 

Suppose an ocean carrier operates a specific deep sea service and a feeder service to serve the 

container traffic with the option of choosing one of these two ports in its service routes. This 

gives rise to two alternatives depending on which port is selected. This section analyses the 

relative cost of these two alternatives. We make the following assumptions: 

 

Assumption 1. Both the main service and the feeder service are weekly services. The port 

times at the two competitive ports are the same. The round-trip journey times of the 

corresponding service routes (main service or feeder service) for the two alternatives are the 

same.  

 

Assumption 2. At a specific port, the container loading and unloading handling charges are 

the same. All the containers are measured in TEUs (20-foot equivalent unit). One FEU (40-

foot equivalent unit) is treated as two TEUs. 

 

Assumption 3. All vessels deployed for the same service are of a similar type. 

 

Assumption 4. The number of containers flowing into a port by sea is the same as the 

number of containers flowing out of the port by sea. 
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Assumption 1 implies that the same numbers of deep sea vessels (and feeder vessels) are 

deployed in the two alternatives. Note that one alternative selects one competitive port, 

whereas the other alternative selects the other competitive port. Therefore, the total sailing 

distances in the round-trip journey in both alternatives are different. Thus, the planned sailing 

speeds of the vessels will be different in each alternative in order to maintain the same sailing 

time at sea in a single round-trip. Assumption 2 is reasonable in the sense that loading and 

unloading activities (for both laden and empty containers) are very similar. It greatly 

simplifies the mathematical expressions and makes the results easy to interpret from the 

practitioners’ perspective. However, it should be noted that loading and unloading charges for 

hinterland shipments could be different from that for transhipment cargoes, particularly at 

large transhipment ports. Assumption 3 is common in practice because sister vessels are often 

deployed on the same service route. Assumption 4 follows the common principle of container 

flow balancing in the literature (e.g. Song and Dong 2013). Note that liner shipping service is 

a regular service with consecutive round-trip voyages. 

 

We introduce the following notation. 

Notation 

 j: index of two competitive ports under consideration, i.e. j=1,2; 

h: the hinterland shipment volume in TEUs via two ports in the dominant direction;  

g: the transhipment volume in TEUs via two ports in the dominant direction; 

: the ratio of the portcalls of feeder services to the portcalls of main services at the selected 

port; 

c
h

j: the unit transportation cost in US$ in the hinterland associated with port j;  

wj: the unit handling cost in US$ at port j; this is regarded as the price that port j charges 

ocean carriers. 

c
fuel

: the marine fuel cost in US$ per tonne,  

s
ms

0: the designed speed in knots of the vessels in the main service;  

s
fs

0: the designed speed in knots of the vessel in the feeder service;  

s
ms

j: the sailing speed in knots of the vessels in the main service if calling at port j;  

s
fs

j: the sailing speed in knots of the vessels in the feeder service if calling at port j;  

d
ms

j: the sailing distance in nautical miles of the round-trip journey of the main service if 

calling at port j;  

d
fs

j: the sailing distance in nautical miles of the round-trip journey of the feeder service if 

calling at port j;  

FCPD
ms

: the fuel consumption in tonnes per day when a vessel in the main service sails at its 

designed speed; 

FCPD
fs
: the fuel consumption in tonnes per day when a vessel in the feeder service sails at its 

designed speed; 

G
ms

(s
ms

j): the fuel consumption in tonnes per day when a vessel in the main service sails at 

the speed s
ms

j; 

G
fs
(s

fs
j): the fuel consumption in tonnes per day when a vessel in the feeder service sails at the 

speed s
fs

j. 

 

Depending on the transhipment volume and the feeder vessel size, the number of feeder 

service portcalls is often not equal to the number of main service portcalls. The parameter  

is introduced to represent their ratio. 

 

From the transport chain perspective, the total cost includes the following main components: 

the deployed ship costs (for a time-chartered ship, it refers to the daily charter hire); the fuel 
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consumption costs by the deployed ships; the port handling charges that incur at ports/ 

terminals; the inland transportation costs (by trucks or trains); the feeder service costs (ships 

and fuel consumption costs). Note that we are focusing on the cost competitiveness analysis 

of two alternatives (corresponding to which of two competitive ports is selected in the 

shipping supply chain). To simplify the narrative, we can exclude the common elements of 

the costs of each alternative (e.g. the ship costs are the same because the same number of 

vessels are deployed in both the main service and the feeder service over the same period of 

time; the port costs, except at the competitive ports under consideration, are the same). 

Therefore, the total relevant cost in the transport chain associated with one main service port-

of-call at port j is given by, 

TRCj = c
fuel
 d

ms
j G

ms
(s

ms
j)/(24s

ms
j) + 2(h + g)wj + 2hch

j  

+   c
fuel
 d

fs
j  G

fs
(s

fs
j) /(24s

fs
j) + 2gwj; (1) 

 

Where the first term on the right-hand side of (1) represents the total fuel cost for a vessel 

sailing the journey distance in the main service (per call at port j); the second term is the port 

handling costs for unloading/loading the hinterland shipments and the transhipments at port j 

associated with the main service; the third term is the hinterland transportation costs (forward 

and backward); the fourth term represents the total fuel cost of the feeder vessel sailing the 

journey distance in the feeder service (per call at port j); the fifth term is the 

loading/unloading costs at port j associated with the feeder service. 

 

It should be noted that we did not consider the economy of scale effect with respect to 

hinterland transport and port handling costs. However, the economy of scale effect for the 

deep sea main service and feeder service is considered because the fuel consumptions are 

calculated on a vessel basis rather than on a container basis. The reason for the above 

treatment is that the economy of scale effect is more prominent in seaborne transport than at 

port and hinterland.  

 

From Assumption 1, we have the following relationship between the vessel sailing speeds for 

the two alternatives, 
msmsmsms dsds 1122 /  and fsfsfsfs dsds 1122 /  (2) 

 

It is commonly accepted that the vessel’s fuel consumption has a cubic relationship with its 

sailing speed. Following the literature, e.g. Ronen (2011), Song and Dong (2013), we assume: 

G
ms

(s
ms

j) = FCPD
ms

  (s
ms

j/ s
ms

0)
3
 and G

fs
(s

fs
j) = FCPD

fs
  (s

fs
j/ s

fs
0)

3
. Together with (1) and (2), 

we have 

2

1

3

2

3

1

3

0

2

1
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)(24
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ms

msms

ms

msmsfuel

d

dd

s

sFCPDc
TRCTRC







  

+   
2

1

3

2

3

1

3

0

2

1
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)()(

)(24

)(
fs

fsfs

fs

fsfsfuel

d

dd

s

sFCPDc 





 

+ )(2))(2(2 2121

hh cchwwgh   (3) 

 

Lemma 1. Suppose that port 1 has a closer proximity to maritime routes (i.e. d
ms

1 < d
ms

2), 

whereas port 2 has a closer proximity to hinterland markets and to transhipment markets (i.e. 

c
h

2 < c
h

1 and d
fs

2 < d
fs

1). We have, 

(i) TRC1 – TRC2 is quadratically decreasing in s
ms

1; 

(ii) TRC1 – TRC2 is quadratically increasing in s
fs

1; 
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(iii) TRC1 – TRC2 is linearly increasing in w1 – w2; 

(iv) TRC1 – TRC2 is linearly increasing in c
h

1 – c
h

2; 

(v) TRC1 – TRC2 is linearly increasing in h. 

 

The results in Lemma 1 can be obtained from (3) in a straightforward manner. Port 1 

becomes more competitive when the planned sailing speed in the main service route increases, 

but becomes less competitive when the planned sailing speed in the feed service route 

increases. Port 2 will be more competitive if it charges less terminal handling fees, or if it has 

a lower hinterland transport cost than port 1. As the hinterland shipment volume h increases, 

port 2 becomes more competitive. The results in Lemma 1 are qualitative. We present a case 

study to analyse the relative cost competitiveness and sensitivity quantitatively. 

 

Case study 
Consider two competitive ports: Southampton (port 1) and Liverpool (port 2), in which 

Southampton has a closer proximity to maritime routes, whereas Liverpool may have a closer 

proximity to hinterland markets (as it is situated centrally in the UK) and to transhipment 

markets (closer to Ireland and Scotland). Notteboom et al. (2014) provided historical data in 

terms of transhipment market share at Southampton and Liverpool, which shows 

Southampton has transhipment percentage at 6.0% in 2004 and 5.5% in 2012; whereas 

Liverpool has transhipment percentage at 6.2% in 2004 and 8.0% in 2012. In the base 

scenario, we assume that the hinterland shipment volume is 1000 TEUs and the transhipment 

volume is 100 TEUs (about 10% transhipment market share). It should be noted that there are 

more main (deep sea) services calling at Southampton than feeder services due to the low 

transhipment volume and the deployment of feeder vessels with capacity 500 ~ 1000 TEUs. 

Approximately, five main service portcalls correspond to one feeder service portcall. Thus, 

we take the ratio  =1/5 in our calculation.  
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Figure 1. Graphic illustrations of the network configurations with deep sea service AX1 

(bottom) and feeder service SLX II (top) (based on NYK Lines and X-Press Lines) 

 

In Alternative 1, we select AX1 service (operated by Grand Alliance: 

www2.nykline.com/liner/service_network/ax1.html) as the main deep sea service, which has 

the port rotation: Le Havre -> Rotterdam -> Hamburg -> Southampton -> New York -> 

Norfolk -> Charleston -> Le Havre. It has a journey distance d
ms

1 = 8556 nautical miles. Five 

vessels are deployed to provide a weekly service in this main service route with each vessel 

having a capacity of 8750 TEUs. The feeder service is the SLX II service (operated by X-

Press Container Lines: www.dpworldsouthampton.com) with the port rotation: Southampton 

-> Dublin -> Belfast -> Greenock -> Southampton. It has a journey distance d
fs

1 = 1141 

nautical miles. One vessel with the capacity 900 TEUs is deployed to provide the weekly 

feeder service. Figure 1 provides a graphic illustration of the network configurations with 

deep sea service AX1 and feeder service SLX II. 

 

In Alternative 2, the main service and feeder service have the same port rotation as 

Alternative 1 except that Southampton is replaced with Liverpool. The journey distance of 

the main service d
ms

2 = 8949 nautical miles, and the journey distance of the feeder service d
fs

2 

= 517 nautical miles.  

 

The system parameters are set up as follows (based on Carou 2011, Song and Dong 2013, and 
Pocuca 2006): the fuel price c

fuel
 = 400 US$/tonne; the vessel’s designed speed s

ms
0 = 24.6 

knots in the main service and s
fs

0 = 19 knots in the feeder service; the daily fuel consumption 

http://www.dpworldsouthampton.com/
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of the vessel sailing at the designed speed FCPD
ms

 = 272 tonnes in the main service, and 

FCPD
fs
 = 50 tonnes in the feeder service. We take the vessel planned sailing speed s

ms
1 = 

s
fs

1= 18 knots, which is a common sailing speed due to the adoption of slow steaming. In the 

following, we conduct two groups of experiments to examine the impact of system 

parameters (or decisions) on the cost competitiveness of the two alternatives. 

 

In the first group, we assume that two ports have the same terminal handling charge, i.e. w1 = 

w2. We vary the difference of their hinterland transportation costs, e.g. let c
h

1 – c
h
2 take values 

from $0, $20, $40, $60, $80 respectively. This represents the fact that Liverpool is relatively 

closer to the hinterland markets than Southampton. The hinterland shipment volume h ranges 

from 1000 TEUs to 1200, 1400, and 1600 TEUs. Figure 2 shows the results of the 

experiments, in which each cluster of the bars corresponds to different levels of the hinterland 

shipment volume. It can be observed that when the difference between the hinterland 

transportation costs is less than $20, Alternative 1 is more cost efficient. When c
h

1 – c
h
2 is 

greater than $40 and the hinterland shipment volume is greater than 1400 TEUs, Alternative 

2 is more cost efficient. This implies that larger hinterland markets would be in favour of 

shipping services calling at Liverpool.  
 

In the second group, we assume Liverpool port’s terminal handling charge is $20 less than 

Southampton’s. The relevant cost differences between two alternatives with varying c
h

1 – c
h
2 

and h are shown in Figure 3. It can be observed that Alternative 2 now becomes more 

competitive than Alternative 1 in most scenarios. Note that in the current shipping market, the 

shipment volume is relatively low. Liverpool port is further away from the maritime routes 

than Southampton, it is reasonable for Liverpool port (and the shipping lines) to lower the 

terminal handling charge to be competitive. This reflects the current practice, e.g. CMA 

CGM’s terminal handling charge at Liverpool is £15 (about 22 US$) less than that at 

Southampton. 
 

 
Figure 2. Total relevant cost difference (TRC1 – TRC2) with w1 = w2  
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Figure 3. Total relevant cost difference (TRC1 – TRC2) with w1 – w2 = $20  

 

The above case study illustrates that either of the two neighbouring ports can be more cost 

efficient under certain conditions, or by appropriately adjusting their terminal handling 

charge. Together with other experiments, we observed that higher planned vessel sailing 

speeds and higher fuel cost would favour Southampton’s selection, whereas higher hinterland 

shipment and higher transhipment volumes would favour Liverpool. In particular, the port 

handling charges at the two ports have a significant impact on their relative competitiveness. 

Therefore, it is more likely that each of the competitive ports can attract a fraction of total 

shipping services.  

 

The cost model in (3) provides a simple way to analyze the relative competitiveness of two 

competitive ports for specific shipping supply chains. However, the model is static and does 

not take into account the issues such as: ports’ interactive decisions on pricing (as game 

scenarios), port capacity and congestion, and the carrier’s multiple service decisions (e.g. the 

ports-of-call split between two competitive ports) influenced by the port pricing and port 

congestion. In particular, when one port changes its port charge, the other port may respond. 

This may affect the ocean carrier’s decision of portcalls since the port handling charge is one 

key component of the total transport chain cost. Therefore, it is important to model the port 

competition within a game framework in the transport chain context. The remainder of this 

paper will extend the static cost model into a game framework and allow the portcalls to be 

split between two competitive ports in response to the ports’ pricing decisions.  

 

3. Game cost model for two ports and one carrier with multiple services 

Consider a system consisting of a single shipping line (or an alliance) and two competitive 

container ports (j=1, 2), in which both ports serve the same (or partially overlapped) 

hinterland market and the same transhipment markets. The focus on a single shipping line can 

be justified as follows. Firstly, major shipping lines have formed into different alliances, e.g. 

M2, Ocean3, G6 and CKYHE. The alliance may be treated as an aggregated shipping line 

from the operational perspective. Secondly, dedicated container terminals normally service a 

single shipping line. Thirdly, a single shipping line case is easy to analyze technically and can 

provide intuitive managerial insights for practitioners. 

 

The total amount of hinterland containers via the two ports is assumed fixed, but their split 

between the two ports is proportional to their split of vessel portcalls. Similarly, it is assumed 
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that the total amount of transhipment containers via the two ports is fixed, but the 

transhipment volume via each port depends on the number of vessel portcalls at the 

corresponding port. This assumption is based on Bae et al. (2013). It should be noted that, in 

practice, the split of shipments may be affected by other factors such as terminal handling 

charge and service level. In our study, both the main deep sea service and feeder service are 

operated by the aggregated shipping line (most global shipping lines operate both deep sea 

services and feeder services, or have a long-term contract with feeder operators). We 

introduce the notation for the game model as follows: 

 

Additional notation: 

p
h
: the hinterland shipment unit price (revenue) in US$; we assume that the return shipment 

price has been factored into p
h
; 

p
t
: the transhipment unit price (revenue) in US$; we assume that the return transhipment price 

has been factored into p
t
; 

qj: the fraction of vessel portcalls at port j; Here qj is the shipping line’s decision variable 

such that 0 ≤ q1 ≤ 1 and q2 = 1 – q1, which may depend on port handling capacity, port 

congestion, port prices, hinterland transportation costs, transhipment costs, and other 

relevant cost parameters; 

c
s
j: the  deep sea vessel fuel cost at sea per port-of-call at port j; this can be defined as the first 

term in Eq. (1); 

c
t
j: the feeder vessel fuel cost at sea per port-of-call at port j; this can be defined as the fourth 

term in Eq. (1); 

Fj: the number of containers in TEUs that are handled at port j (loading and unloading are 

counted separately);  

Kj: the effective handling capacity at port j; 

aj: a positive coefficient, representing the congestion cost in US$ when the utilization of port 

j reaches its effective capacity; 

Rj: the effective hinterland transport capacity at port j; 

bj: a positive coefficient, representing the congestion cost in US$ when the utilization of 

hinterland transport of port j reaches its effective capacity; 

cj: the unit operating cost at port j; 

mj: the unit handling capacity investment at port j; 

 

It is assumed that the competitive shipments via each port are proportional to the fraction of 

portcalls at the corresponding port (Bae et al. 2013). The shipment (g and h) in our study 

refers to the laden containers in the dominant direction. Under Assumption 4, vessels and 

ports have to handle the container flows in both directions. More specifically, an importing 

transhipment container will first be lifted off from the mother vessel to the port; then lifted 

onto a feeder vessel from the port. After the feeder vessel reaches the destination port, the 

container will be discharged and unpacked and becomes empty. The empty container may be 

reloaded with new goods for export or returned as an empty container; the returned container 

will then be lifted off from the feeder vessel to the port; then lifted onto a mother vessel from 

the port. Therefore, one transhipment container implies four lifts in total. It follows,  

Fj = 2(h + 2g)  qj, for j=1,2;   

 

The port congestion cost is assumed to be a function as follows, 

Gj = aj (Fj / Kj)
n
 = aj [2(h + 2g)qj / Kj]

n
 , for j=1,2 (4) 
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Normally, we would have Fj ≤ Kj. Hence, Fj / Kj can be regarded as the port j’s utilization. 

The coefficient n ≥ 1 indicates the relationship between the port congestion cost and the port 

utilization. If n=1, then the congestion cost is linear to its utilization (e.g. De Borger and Van 

Dender 2006). If n=2, then the relationship is quadratic (e.g. Bae et al. 2013). Similarly, the 

hinterland transport congestion cost can be defined as 

Hj = bj [2hqj / Rj]
n
 , for j=1,2 (5) 

 

The above function can be regarded as a simplified model of De Borger et al. (2008) by 

ignoring the non-container local traffic that share the hinterland transport road/ railway. It is 

noted that including non-container local traffic would complicate the narrative and discussion, 

but would not affect the main results. 

  

The shipping line’s profit function is given by,  

l
 = j [(p

h
– 2c

h
j – 2wj)  hqj + (p

t
 – 4wj)gqj – c

s
jqj – c

t
jqj – Gj – Hj] (6) 

s.t. 

0 ≤ q1, q2 ≤ 1; and q2 = 1 – q1  

 

The ports’ profit functions (for j=1,2) are given by, 

j = (wj – cj)  Fj – mj  Kj = (wj – cj)  2(h + 2g)  qj – mj  Kj (7) 

In practice, ports’ pricing decisions are bounded, denoted by Lj ≤ wj ≤ Uj. 

 

3.1 The non-cooperative game model 

In a non-cooperative game, each player makes decisions independently. It can be formulated 

as a two stage problem. At the first stage, each port makes port handling pricing decisions to 

maximize its profit. At the second stage, the shipping line makes portcall decisions to 

maximize its profit by observing the ports’ congestion, prices, transhipment level, hinterland 

shipment level, deep sea vessel operating cost, hinterland transportation cost, and feeder 

vessel operating cost.  

 

To solve the problem, the backwards induction approach is used (e.g. Bae et al. 2013). The 

approach can be summarized as follows: (i) For the second stage, the sub-game Nash 

equilibrium can be obtained. The portcall decision variables can be represented as a function 

of port capacities, prices, transhipment and hinterland shipment levels; (ii) For the first stage, 

by utilizing the portcall decisions obtained at the second stage, the Nash equilibrium port 

prices can then be derived; (iii) Finally, the optimal port prices would yield the shipping 

line’s portcall decisions.  

 

From Eqs. (4)~(6), we have, 

l
 = [(p

h
 – 2c

h
1 – 2w1)  h q1 + (p

t
 – 4w1)  g  q1– c

s
1q1 – c

t
1q1] 

+ [(p
h
 – 2c

h
2 – 2w2)  h  (1 – q1) + (p

t
 – 4w2)  g  (1 – q1) – c

s
2(1 – q1) – c

t
2(1 – q1)] 

– 
n

n

K

qgha

1

11 ))2(2( 
 – 

n

n

K

qgha

2

12 ))1)(2(2( 
– 

n

n

R

hqb

1

11 )2(
 – 

n

n

R

qhb

2

12 ))1(2( 
  (8) 

 

Lemma 2. For the given port prices w1 and w2, the optimal profit of the shipping line, l
, is 

concave with respect to q1 in the interval [0, 1].  
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For narrative and discussion expediency, we have placed the proofs of all lemmas and 

propositions in the Appendix with those regarded as straightforward being simplified or 

omitted.  

 

Lemma 2 indicates that for the given port prices w1 and w2,
l
/q1 is a monotonic decreasing 

function in q1 in the interval [0, 1]. Therefore, there is a unique, optimal solution q1
*
 in the 

interval [0, 1]. More specifically, q1
*
 = 0 if l

/q1 < 0 for any q1  [0 , 1]; q1
*
 = 1 if l

/q1 > 

0 for any q1  [0 , 1]; and q1
*
  (0 , 1), otherwise.   

 

Note that in Lemma 2, the port prices have not been optimized. Next, we will examine two 

ports’ decisions by taking into account the shipping line’s behaviour. To make the problem 

analytically tractable and explore more managerial insights, we consider the case with n = 2 

in the rest of the paper. 

  

3.2 The optimal solution 

To simplify the narrative, letA1 := 8a1 (h + 2g)
2
/K1

2
 + 8b1h

2
/R1

2
; A2 := 8a2 (h + 2g)

2
/K2

2
 + 

8b2h
2
/R2

2
; and B := 2(c

h
2 – c

h
1)  h + c

s
2 – c

s
1 + c

t
2 – c

t
1. The portcall decision variables can be 

represented as a function of port prices as follows. 

 

Lemma 3. For the given port prices w1 and w2, the shipping line’s optimal portcall decisions 

are given by 

















11

10

00

1

11

1

*

1

D

DD

D

q ;  

and q2
*
 = 1 – q1

*
; where D1 := [B + A2 + 2(w2 – w1)(h + 2g)] / (A1 + A2). 

 

By utilizing the portcall decisions in Lemma 3 (at the second stage), the Nash equilibrium 

port prices can then be derived at the first stage, which then leads to the shipping line’s 

optimal portcall decisions. The following proposition summarizes the main results. 

 

Proposition 1. The optimal decisions of the shipping line and two ports are given by (with 

q2
*
 = 1 – q1

*
):  

(i) if D1 < 0, then q1
*
 = 0; w1

*
 and w2

*
 are given by  

(w1
*
, w2

*
) = max{(w1, w2) | L1 ≤ w1 ≤ U1, L2 ≤ w2 ≤ U2 and w2 – w1 < (–A2 – B)/(2h + 4g)} 

(ii) if D1 > 1, then q1
*
 = 1; w1

*
 and w2

*
 are by  

(w1
*
, w2

*
) = max{(w1, w2) | L1 ≤ w1 ≤ U1, L2 ≤ w2 ≤ U2 and w2 – w1 > (A1 – B)/(2h + 4g)} 

(iii) if 0 ≤ D1 ≤ 1, L1 ≤ w1 ≤ U1, and L2 ≤ w2 ≤ U2, then w1
*
, w2

*
, and q1

*
 are given by 

3

2

)2(6

)2( 2121*

1

cc

gh

BAA
w







  (9) 

3

2

)2(6

)2( 2121*

2

cc

gh

BAA
w







  (10) 

)(3

)2()(22

21

1221*

1
AA

ghccBAA
q




  (11) 

 

Proposition 1 provides the optimal decisions of the two ports and the shipping line in the non-

cooperative game system. Proposition 1(i) and (ii) represent the cases that one of the ports 
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will gain no business in the competitive hinterland and transhipment markets. This is unusual 

in practice as we explained in the static cost model. Proposition 1(iii) is a more interesting 

case, in which the optimal decisions do not take the boundary values. It provides the Nash 

equilibrium solution to the non-cooperative game. The three conditions in Proposition 1(iii) 

can be replaced by the following explicit inequalities (cf. the proof of Proposition 1): 

1
1221

2
)2(3

)2)((2)(
A

gh

ghccBAA
A 




  (12) 

1
2121

1
3

2

)2(6

)2(
U

cc

gh

BAA
L 







  (13) 

2
2121

2
3

2

)2(6

)2(
U

cc

gh

BAA
L 







  (14) 

 

Proposition 2. Under the conditions (12)~(14), the optimal profit functions for the two ports 

and the shipping line are given by:  

11

21

2

1221*

1
)(9

)]2)((22[
Km

AA

ghccBAA





  

22

21

2

2121*

2
)(9

)]2)((22[
Km

AA

ghccBAA





  

tsthhl ccgwphwcp 22

*

2

*

22

* )4()22(   

2/)1(2/))2)((2( 2*

12

2*

11

*

1

*

1

*

2 qAqAqghwwB   

Where w1
*
 and w2

*
 are given in (9) and (10); q1

*
 is given in (11). 

 

3.3 Analysis of the optimal solutions 

Now we analyse the impact of important input parameters on the optimal decisions of the two 

ports and the ocean carrier in the non-cooperative game context. 

 

Lemma 4. Under the conditions (12)~(14), the impact of the hinterland shipment and the 

transhipment volume on decision variables is given by:  

(i) w1
*
/h = [A1 + 2A2 + 32b1hg/R1

2
 + 64b2hg/R2

2
 + 2(c

h
2 – c

h
1)(h+2g) – B] / [6(h+2g)

2
] 

(ii) w1
*
/g = [A1 + 2A2 –16b1h

2
/R1

2
 –32b2h

2
/R2

2
 – B] / [3(h+2g)

2
] 

(iii) w2
*
/h = [2A1 + A2 + 64b1hg/R1

2
 + 32b2hg/R2

2
 – 2(c

h
2 – c

h
1)(h+2g) + B)] / [6(h+2g)

2
] 

(iv) w2
*
/g = [2A1 + A2 – 32b1h

2
/R1

2
 – 16b2h

2
/R2

2
 + B] / [3(h+2g)

2
] 

 

From Lemma 4, it can be seen that: (a) note that 2(c
h

2 – c
h

1)(h+2g) – B = 4(c
h

2 – c
h

1)g – c
s
2 + 

c
s
1– c

t
2 + c

t
1. If 4(c

h
2 – c

h
1)g – c

s
2 + c

s
1– c

t
2 + c

t
1 ≥ 0, then we always have: w1

*
/h > 0. This 

implies that w1
*
 is strictly increasing in h. If 4(c

h
2 – c

h
1)g – c

s
2 + c

s
1– c

t
2 + c

t
1<0, then w1

*
/h 

is strictly increasing in h and converges to a finite positive number. Thus, there exists a 

threshold value h1
*
≥0, when h≥h1

*
, w1

*
/h is always greater than 0. The implication is that 

port 1’s price will increase in h when h reaches a certain level. (b) If A1 + 2A2 –16b1h
2
/R1

2
 –

32b2h
2
/R2

2
 – B ≥ 0, then w1

*
/g is greater than 0, i.e. w1

*
 is increasing in g. If A1 + 2A2 –

16b1h
2
/R1

2
 –32b2h

2
/R2

2
 – B < 0, then w1

*
/g is increasing in g and converges to a finite 

positive number; Thus, there exists a threshold value g1
*
≥0, when g≥g1

*
, w1

*
/g is always 

greater than 0. Similar interpretations to port 2’s pricing decisions with respect to h and g can 

be obtained from assertions (iii) and (iv). Finally, the expressions of the partial derivative of 
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the ocean carrier’s portcall decision with respect to the hinterland volume and the 

transhipment volume are complicated and have been omitted. 

 

The above results provide the relationships between the players’ (two ports and the ocean 

carrier) decisions and the hinterland volume and the transhipment volume. In summary, it is 

not guaranteed that ports’ prices will increase in the hinterland shipments or the transhipment 

volume. However, as g and h reach certain threshold levels, the two ports’ handling prices are 

indeed increasing in g and h. This is intuitive since sufficiently high hinterland shipments or 

transhipment volumes would encourage both ports to raise their handling charges. However, 

the interesting point here is that we provide a simple formula to analytically determine the 

threshold levels that are able to characterize the ports’ pricing behaviours. 

 

Consider the case of Southampton (port 1) and Liverpool (port 2). Since Southampton has a 

closer proximity to maritime routes, whereas Liverpool may have a closer proximity to 

transhipment markets (closer to Ireland and Scotland), taking into account the vessel sizes in 

the deep sea and feeder services, we have: c
s
2 – c

s
1 + c

t
2 – c

t
1 > 0 (based on the case study in 

Section 2). Assume that c
h

2 = c
h
1, c2 = c1, a2 = a1, K2 = K1, b2 = b1, R2 = R1, i.e. the two ports 

have similar unit hinterland transport cost, unit port handling cost, congestion coefficients, 

port capacity and hinterland transport capacity. From Lemma 4(i) and (iii), it follows: 

w1
*
/h < w2

*
/h. Because in general we have w1

*
/h > 0, this implies that Liverpool’s port 

price is increasing more quickly than Southampton as the hinterland shipment volume 

increases. A similar pattern can be observed with respect to the transhipment volume. The 

implication is that Liverpool may become more competitive when the hinterland or 

transhipment market is larger. Thus, a strategy to expand market size is more desirable and 

important for the Liverpool port to compete with Southampton. Our model provides 

knowledge of the relationship between the shipment market size and the relative 

competitiveness of the two ports. 

 

Lemma 5. Under the conditions (12)~(14), the impact of key cost parameters on decision 

variables is given by:  

(i) w1
*
/c1 = w2

*
/c2 = 2/3; 

(ii) w2
*
/c1 = w1

*
/c2 = 1/3; 

(iii) q1
*
/c1 = –2(h+2g)/[3(A1 + A2)], and q1

*
/c2 = 2(h+2g)/[3(A1 + A2)]; 

(iv) w1
*
/c

s
1 = w2

*
/c

s
2 = –1/[6(h+2g)]; w1

*
/c

s
2 = w2

*
/c

s
1 =1/[6(h+2g)]; 

(v) q1
*
/c

s
1 = –1/[3(A1 + A2)], and q1

*
/c

s
2 = 1/[3(A1 + A2)]; 

(vi) w1
*
/c

h
1 = w2

*
/c

h
2 = –h/[3(h + 2g)]; w1

*
/c

h
2 = w2

*
/c

h
1 = h/[3(h + 2g)]; 

(vii) q1
*
/c

h
1 = –2h/[3(A1 + A2)], and q1

*
/c

h
2 = 2h/[3(A1 + A2)]; 

(viii) w1
*
/c

t
1 = w2

*
/c

t
2 = –g/[6(h + 2g)]; w1

*
/c

t
2 = w2

*
/c

t
1 = g/[6(h + 2g)]; 

(ix) q1
*
/c

t
1 = –g/[3(A1 + A2)], and q1

*
/c

t
2 = g/[3(A1 + A2)]; 

 

Lemma 5(i)~(iii) reveals that: the two ports’ optimal prices are both increasing with constant 

rates as either port’s unit operating cost (i.e. cj) increases. However, the port’s price is more 

sensitive to its own operating cost than to the other port’s operating cost. In addition, the 

shipping line’s optimal portcall fraction is decreasing in the corresponding port’s operating 

cost, which is reasonable since the port’s handling charge is increasing. It should be noted 

that the ports’ prices and unit operating cost are influenced by port development doctrines 

(Lee and Flynn 2011), which may vary between regions. 
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Lemma 5(iv)~(v) reveals that: port 1’s price will be decreasing as the fuel cost at deep sea 

service associated with port 1 (c
s
1) increases, and will be increasing at the same rate if the 

fuel cost at deep sea service associated with port 2 (c
s
2) increases. The shipping line’s portcall 

fraction to port 1 is decreasing when c
s
1 increases, or c

s
2 decreases. Physically, if port 1 has a 

closer proximity to maritime routes (with lower c
s
1), port 2 tends to reduce its handling 

charge to attract the shipping line’s portcall. 

 

Lemma 5(vi)-(vii) reveals that if port 1 is further away from the hinterland market (with 

higher c
h

1), then port 1 tends to reduce its handling charge, whereas port 2 is able to increase 

its handling charge. The shipping line would increase the portcall fraction to the port with 

closer proximity to the hinterland market. Similar phenomena can be observed in terms of the 

impact of the fuel cost of the feeder vessels (i.e. c
t
1) on the ports’ pricing decisions and the 

shipping line’s portcall decisions.  

 

Consider the case of Southampton (port 1) and Liverpool (port 2). Note that Liverpool may 

have a closer proximity to hinterland markets (as it is situated centrally in the UK). This can 

be represented by c
h

2 < c
h

1. From Lemma 5(vi)-(vii), as Southampton’s hinterland transport 

cost c
h

1 increases, the optimal port price at Southampton w1
*
 is decreasing, the optimal port 

price at Liverpool w2
*
 is increasing, and the optimal portcall fraction at Southampton is 

decreasing. The implication is that Liverpool has a disadvantage of longer distance from 

maritime routes, which makes its port price less competitive than Southampton (e.g. CMA 

CGM’s terminal handling charge at Liverpool is £15 less than that at Southampton). However, 

its close proximity to hinterland markets can improve its competitiveness, reduce the price 

gap, and even outperform Southampton in terms of the portcall fraction as shown in Figure 7. 

 

Lemma 6. Under the conditions (12)~(14), the impact of port congestion cost and handling 

capacity on decision variables is given by:  

(i) w1
*
/a1 = 4(h + 2g)/(3K1

2
); w2

*
/a1 = 8(h + 2g)/(3K1

2
); 

(ii) q1
*
/a1 = –8[A2 + B + 2(c2 – c1) (h+2g)] (h + 2g)

2
 / [3K1

2
 (A1 + A2)

2
]; 

(iii) w1
*
/a2 = 8(h + 2g)/(3K2

2
); w2

*
/a2 = 4(h + 2g)/(3K2

2
); 

(iv) q1
*
/a2 = 8[A1 – B – 2(c2 – c1) (h+2g)] (h + 2g)

2
 / [3K2

2
(A1 + A2)

2
]; 

(v) w1
*
/K1 = –8(h + 2g)a1/(3K1

3
); w2

*
/K1 = –16(h + 2g)a1/(3K1

3
); 

(vi) q1
*
/K1 = 16[A2 + B + 2(c2 – c1) (h+2g)] a1(h + 2g)

2
 / [3K1

3
 (A1 + A2)

2
]; 

(vii) w1
*
/K2 = –16(h + 2g)a2/(3K2

3
); w2

*
/K2 = –8(h + 2g)a2/(3K2

3
); 

(viii) q1
*
/K2 = –16[A1 – B – 2(c2 – c1) (h+2g)] a2(h + 2g)

2
 / [3K2

3
(A1 + A2)

2
]; 

(ix) w1
*
/R1 = –8 b1h

2
/[3R1

3
(h + 2g)]; w2

*
/R1 = –16 b1h

2
/[3R1

3
(h + 2g)];  

(x) q1
*
/R1 = 16[A2 + B + 2(c2 – c1) (h+2g)] b1 h

2
 / [3R1

3
 (A1 + A2)

2
]; 

 

Note that the coefficient aj can be regarded as the weight that the shipping line places on the 

congestion situation at port j. From Lemma 6, it can be seen that: (a) the two ports’ prices are 

increasing as either a1 or a2 increases. In addition, port 1’s price is more sensitive to the 

congestion cost coefficient at port 2 than that at port 1. As a1 increases, the shipping line’s 

portcall fraction at port 1, q1
*
, will be decreasing if A2 + B + 2(c2 – c1) (h+2g) > 0; (b) both 

ports’ prices are decreasing as either port’s effective handling capacity (i.e. Kj) is increasing. 

Port 1’s price is more sensitive to the handling capacity at port 2 than that at port 1. In 

addition, as K1 increases, the shipping line’s portcall decision q1
*
 will be increasing if A2 + B 

+ 2(c2 – c1) (h+2g) > 0; (c) both ports’ prices are decreasing as either port’s hinterland 

transport capacity (i.e. Rj) is increasing. Port 1’s price is more sensitive to the hinterland 
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transport capacity at port 2 than that at port 1. In addition, as R1 increases, the shipping line’s 

portcall decision q1
*
 will be increasing if A2 + B + 2(c2 – c1) (h+2g) > 0. 

 

Two interesting and revealing phenomena can be observed. Intuitively, when the shipping 

line attaches more weight to the congestion cost at port 1 (by increasing a1), port 1 may 

decrease its price to attract the shipping line’s portcall to cancel out the impact of the higher 

congestion cost. However, Lemma 6(i) indicates that port 1 will actually increase its price. 

This behaviour may be explained by the fact that when the shipping line attaches more 

weight to the congestion cost, the shipping line becomes more willing to accommodate 

relatively higher port prices for a less congested port. More specifically, suppose a1 is 

increased. This breaks the current Nash equilibrium and the shipping line may shift some 

portcall from port 1 to port 2. Such shift enables port 2 to increase its port price, which then 

results in the increase of price at port 1 to reach a new Nash equilibrium. This also explains 

why port 2’s price is more sensitive to a1 than port 1’s price. The above discussion is based 

on an implicit assumption that the shipping line bears the congestion costs (e.g. in the 

situations of door-to-door service, the shipping line is responsible for the entire journey of the 

container movements). However, in practice shipping lines may impose a congestion 

surcharge to shippers to compensate for the incurred port congestion cost for those ports that 

are congested regularly, in which case the model should be extended to include shippers as 

one of the decision makers. 

 

The second phenomenon is that when a port’s handling capacity increases, the ports’ prices 

are decreasing. Intuitively, as ports’ handling capacity increases, they become more attractive 

due to less congestion and therefore ports could increase their port prices to generate more 

revenue. However, this counter-intuitive behaviour may be explained as follows: suppose 

port 1 increases the handling capacity; this will break the current Nash equilibrium and result 

in a portcall shift from port 2 to port 1. Such a shift may drive port 2 to decrease the port 

price, which leads to the reduction of port price at port 1 in order to maintain competitiveness. 

Eventually, a new Nash equilibrium will be achieved. This can also explain why port 2’s 

price is more sensitive to K1 than port 1’s price. We can observe that when port 1 increases its 

handling capacity, it can generally attract more portcalls and cargoes. This in turn increases 

the congestion of the hinterland transport at port 1, which may affect the hinterland shipment 

volume. Lemma 6(vi) and (viii) represent such interactions. In addition, as port 1 increases its 

handling capacity, port 1’s congestion will decrease if and only if K1q1
*
/K1 < q1

*
. 

 

In terms of the portcall decision with respect to the congestion cost coefficient, note that A2 > 

0 and B + 2(c2 – c1) (h+2g) = 2(c
h

2 – c
h

1)  h + (c
s
2 – c

s
1 + c

t
2 – c

t
1) + 2(c2 – c1) (h+2g); if two 

ports have the similar capacity investment cost per unit (i.e. c2 = c1), similar hinterland 

transportation cost (i.e. c
h

2 = c
h
1), and port 1 is closer to the maritime route overall (i.e. c

s
2 – 

c
s
1 + c

t
2 – c

t
1 > 0), then Lemma 6(ii) indicates that the portcall fraction at port 1 will be 

decreasing as port 1’s congestion cost coefficient (i.e. a1) increases. This implies that 

although port 1 is more competitive than port 2, the shipping line will still shift some 

portcalls to port 2 if the congestion concern increases at port 1.  

 

4. The centralized management model for two ports and one carrier 

In the previous section, we considered a decentralized supply chain in which each player (the 

shipping line or either of two ports) is making decisions to maximize its own profit. In this 

section we consider a centralized supply chain in which the overall supply chain profit can be 

maximized.  
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Investigating the centralized scenario is helpful even for a single shipping line case. This may 

be explained by the following. First, a centralized management scenario implies vertical 

integration between ports and the shipping line, which is an important strategy to cut 

operational costs and compete with other carriers or shipping supply chains. In practice, 

many global shipping lines are also the terminal operators and/or have leased dedicated 

container terminals to achieve vertical integration to some extent. Second, the coordination 

between two ports (modelled in the centralized scenario) is of practical interest. For example, 

Ningbo port and Zhoushan port have been centrally managed by the local government. 

Cooperation between Hong Kong and Yantian is achieved through the HPH Group’s 

common ownership (Song 2002).  

 

In the centralized management model, ports’ prices are internalized and ports’ demands are 

mainly affected by port capacity, hinterland shipment volume, transhipment volume, and the 

relevant costs associated with the ports. Under the condition 0 ≤ D1 ≤ 1, which ensures that 

q1
*
  [0, 1], the supply chain profit for a given set of decisions (w1, w2, q1) is defined by, 

(w1, w2, q1) = 1(w1, w2, q1) + 2(w1, w2, q1) + 
l
(w1, w2, q1)  

= (p
h
 – 2c

h
2)h + p

t
 g – c

s
2 – c

t
2 – 2c2(h + 2g) – m1  K1– m2  K2  

– A2/2 + [B + 2(c2 – c1)  (h + 2g)]q1 + A2q1 – A1q1
2
/2 – A2q1

2
/2  (15) 

 

The port prices disappear in the above expression since the port prices are internalized from 

the supply chain profit’s perspective, i.e. the port revenue and the shipping line’s port cost are 

cancelled out due to their equality. Therefore, we can simply denote the supply chain profit 

(w1, w2, q1) as (q1). Let q1,c
*
 denote the optimal portcall decision at port 1 under the 

centralized management model. Define 

D2 :=
21

122 )2()(2

AA

ghccBA




 (16) 

 

The shipping line’s optimal portcall decision, the centralized supply chain’s optimal profit, 

and its difference from the decentralized supply chain are given as follows. 

 

Proposition 3. Suppose the conditions (12)~(14) are satisfied.  

(i) the optimal portcall decision at port 1, q1,c
*
, is given by 

















00

10

11

2

22

2

*

,1

D

DD

D

q c  (17) 

(ii) if 0 ≤ D2 ≤ 1, then the centralized supply chain profit under q1,c
*
 = D2 is give by 

(q1,c
*
) = (p

h
 – 2c

h
2)h + p

t
 g – c

s
2 – c

t
2 – 2c2(h + 2g) – m1  K1– m2  K2 – A2/2  

+ [B + 2(c2 – c1)(h + 2g) + A2]
2
 / [2( A1 + A2)]  (18) 

 (iii) if 0 ≤ D2 ≤ 1,  then the difference in total profits between the centralized supply chain 

and the decentralized supply chain is given by:  

[2B + 4(c2 – c1)  (h + 2g) + A2 – A1]
2
 / [18(A1 + A2)] (19) 

 

Note that the portcall fraction in (17) is different from (11). Since (17) maximizes the total 

supply chain profit, it is clear that the total profit of the centralized supply chain (under (17)) 

is not less than the total profit of the decentralized supply chain (under (11)). This intuition is 

confirmed in Proposition 3(iii). 
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5. Game cost models for two ports and one carrier with multiple services in uncertain 

demand situations 

In reality, customer demands are often subject to uncertainty. A significant number of studies 

on container shipping have considered uncertain demands, e.g. Dong and Song (2009) and 

Meng et al. (2012). However, very few studies on port competition have considered demand 

uncertainty. This section extends the non-cooperative game cost model to situations with 

uncertain demand volumes. We assume that the hinterland shipments and the transhipment 

demand are represented by two random variables  and  respectively, s.t. E = h, E = g, 

Var() = h
2
, and Var() = g

2
. Here, h and g are standard deviations of  and  

respectively.  

 

In the uncertain demand situation, the shipping line’s expected profit is given by,  

l
 = Ej [(p

h
– 2c

h
j – 2wj)  qj + (p

t
 – 4wj) qj – c

s
jqj – c

t
jqj – Gj– Hj]] (20) 

where Gj = aj [2( + 2)qj / Kj]
n
 , and Hj = bj [2qj / Rj]

n
 ,  for j=1,2. In the case n = 2, Eq. 

(20) can be re-written as  

l
 = (p

h
 – 2c

h
2 – 2w2)  h + (p

t
 – 4w2)g – c

s
2 – c

t
2 + (B + 2(w2 – w1)(h + 2g))q1  

– 
2

1

2

1

2

1 )2(4

K

qgha 
 – 

2

2

2

1

2

2 )1()2(4

K

qgha 
– 

2

1

2

11 )2(

R

hqb
 – 

2

2

2

12 ))1(2(

R

qhb 
 

– 
2

1

2

1

22

1 )4(4

K

qa gh  
 – 

2

2

2

1

22

2 )1)(4(4

K

qa gh  
– 

2

1

2

1

2

14

R

qb h
 – 

2

2

2

1

2

2 )1(4

R

qb h 
 (21) 

Eq. (21) yields the following result by letting l
/q1 = 0. 

Lemma 7. For the given port prices w1 and w2 in the uncertain demand situation, the shipping 

line’s optimal portcall decisions are given by 

















11

10

00

3

33

3

*

1

D

DD

D

q ;  

and q2
*
 = 1 – q1

*
; where  

D3 = 
2121

2212 )2()(2

EEAA

EAghwwB




; (22) 

E1 = 8a1 (h
2
 + 4g

2
)/K1

2
 + 8b1h

2
/R1

2
;   (23) 

E2 = 8a2 (h
2
 + 4g

2
)/K2

2
 + 8b2 h

2
/R2

2
. (24) 

 

Proposition 4. Under the conditions 0 ≤ D3 ≤ 1, L1 ≤ w1 ≤ U1, and L2 ≤ w2 ≤ U2, the optimal 

decisions of the shipping line and two ports in uncertain demand situations, (w1
*
, w2

*
, and q1

*
), 

are given by (with q2
*
 = 1 – q1

*
):  

3

2

)2(6

22 212121*

1

cc

gh

EEBAA
w







  (25) 

3

2

)2(6

22 212121*

2

cc

gh

EEBAA
w







  (26) 

q
*
1 =

)(3

2)2()(22

2121

211221

EEAA

EEghccBAA




 (27) 
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Proposition 4 provides the Nash equilibrium solution to the non-cooperative game in an 

uncertain demand situation. The conditions in Proposition 4 can be replaced by the following 

explicit inequalities by substituting (w1, w2) with (w1
*
, w2

*
): 






)2(2

22

gh

EA

3)2(6

122121 cc

gh

EEBAA 





 

)2(2

11

gh

EA




  (28) 

L1 ≤
3

2

)2(6

22 212121 cc

gh

EEBAA 





≤U1 (29) 

L2 ≤
3

2

)2(6

22 212121 cc

gh

EEBAA 





≤U2 (30) 

 

Proposition 5. Under the conditions (12)~(14) and (28)~(30): (i) two ports’ optimal prices in 

uncertain demand situations are greater than those in the deterministic demand situations; (ii) 

two ports’ optimal prices are increasing as the standard deviations of demand uncertainties 

increase; (iii) the analytical expressions of the optimal profits for two ports and the shipping 

line can be obtained by inserting (25)~(27) into Eqs. (7) and (21).  

 

Proposition 5 (i)-(ii) can be obtained by comparing (25)~(26) with (9)~(10) respectively, 

together with the definitions of E1 and E2 in relation to the standard deviations h and g. The 

results indicate that at least one port will definitely benefit from the uncertainty in hinterland 

shipment and transhipment volume, and such benefit is increasing as the standard deviations 

of the uncertainties increase. This may be explained as follows: firstly, the fluctuation of 

demands leads to uneven traffics at ports, which result in more severe peaks and troughs at 

ports than with deterministic situations. This enables ports to justify higher terminal handling 

charges. Secondly, since the same amount of total shipment volume (statistically) has to be 

handled at two ports in total, higher port handling charges will generate more revenue for at 

least one port. The numerical examples show that both ports can benefit from the uncertainty 

in customer demands. On the other hand, the shipping line will be worse off in the uncertain 

demand situations because it has to pay higher port handling charges than in the deterministic 

demand situations.  

 

It is interesting to contrast our results to the relevant literature in other transport modes. 

D’Ouville and McDonald (1990) analyzed the effect of uncertain demand on optimal 

highway capacity and congestion tolls. They found that the optimal capacity under demand 

uncertainty exceeded that for the certainty case, whereas the optimal toll may be either larger 

or smaller (depending on the parameters of the problem) than that for the certainty case, 

which confirmed the numerical results in Kraus (1982). Xiao et al. (2013) examined the 

effects of demand uncertainty on airport capacity choices. They showed that the optimal 

airport capacity under demand uncertainty will be larger than the certainty case if demand 

variation is high or capacity cost is low. The implication is that the uncertain demand could 

have a significant impact on pricing and capacity decisions. 

 

6. A case study 

In this section, we will verify some of the analytical results and further explore the 

managerial insights through a case study with different scenarios. Four groups of experiments 

are reported. In the first group, we examine the impact of the hinterland volume and the 

transhipment volume on the optimal decisions (two ports’ pricing decisions and the shipping 

line’s portcall decision) and on the players’ profits. In the second group, we show the effect 

of fuel price and the hinterland transportation cost on the optimal decisions and the players’ 
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profits. In the third group, we evaluate the impact of the port congestion cost coefficient and 

the port handling capacity on the system performance. In the above three groups, the 

centralized management model and the decentralized non-cooperative model are compared in 

terms of the portcall decision and the relative supply chain profit. In the fourth group, we 

illustrate the results of the game model in uncertain demand situations in comparison with the 

results of the deterministic situations. 

 

The base experiment settings 

The experiment settings will be based on the case in Section 2: Southampton versus 

Liverpool. We calibrate the data into two ports-of-call per day for the main services. In the 

base scenario, we assume ports’ daily handling capacity K1 = K2 = 6000 TEUs, which is 

equivalent to an annual capacity 360*6000 = 2.16 million TEUs, which is close to 

Southampton’s capacity and also to Liverpool’s capacity after the development of Liverpool 

2. For every two portcalls, the hinterland shipments h = 2000 TEUs, and the transhipment 

volume g = 300 TEUs with the projection that two ports would attract slightly more 

transhipments after the development of Liverpool’s new container terminal. That means on 

average there are 1100 TEUs per port-of-call. The shipment price p
h
 = p

t
 = 2000 US$/TEU is 

based on the current freight rates in two major shipping routes: Europe-Asia and Trans-

Atlantic routes. The deep sea vessel fuel cost at sea per port-of-call at port j (i.e. c
s
j) is 

defined as the first term in Eq. (1) multiplied by 2; the feeder vessel fuel cost at sea per port-

of-call at port j (i.e. c
t
j) is defined as the fourth term in Eq. (1) multiplied by 2, because we 

assumed two portcalls per day for the main service. The port congestion cost coefficient is set 

as 500,000 US$, which represents the cost to the shipping line when the port’s utilization 

reaches its maximum capacity (i.e. extremely long waiting time). This is about 50 days’ 

charter hire for a 10,000 TEU vessel (Ronen 2011). It should be noted that the value of the 

congestion cost coefficient in this paper is somewhat hypothetical due to the lack of the real 

data. The ports’ unit operating cost (cj) is assumed to be 50 US$/TEU at both ports. The unit 

handling capacity investment is assumed to be 30 US$/TEU, which is based on the Liverpool 

2 project, i.e. £300 million investment for 600,000 TEU annual capacity amortized over 25 

years (www.co.uk/projects/liverpool2). As there is a lack of data in terms of hinterland 

transport capacity and congestion costs, we neglect them in this case study by assuming 

infinite capacity or zero congestion cost for the hinterland transport. 

 

Similarly to Section 2, the fuel price c
fuel

 = 400 US$/tonne, and Southampton and Liverpool 

have the same unit hinterland transport cost, i.e. c
h

1 = c
h

2 = 300 US$/TEU in the base 

scenario.  

 

6.1 Impact of the hinterland volume and the transhipment volume 

Firstly, we vary the hinterland shipment volume from 2000 TEUs to 2200, 2400, 2600, and 

2800 TEUs, but keep other parameters the same as the base scenario. Figure 4 shows the 

impact of the hinterland shipment volume on the decision variables and the players’ profits. 

Secondly, we vary the transhipment volume from 300 TEUs to 400, 500, 600, and 700 TEUs, 

but keep other parameters the same as the base scenario. Figure 5 shows the impact of the 

transhipment volume on the decision variables and the players’ profits. In the figures below, 

the same scale of the vertical axis is used, e.g. the port prices are displayed in the range from 

$150 to $250, the portcall fraction at port 1 is displayed in the range from 0.49 to 0.59, and 

the players’ profits are displayed in the range from 0 to $900 K. 

 

http://www.co.uk/projects/liverpool2
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From Lemma 4, it is easy to calculate that w1
*
/h > 0, w2

*
/h > 0, q1

*
/h < 0, w1

*
/g > 0, 

w2
*
/g > 0 and q1

*
/g < 0, which indicates that the optimal port prices are increasing 

whereas the optimal portcall at port 1 is decreasing in both sets of cases, as shown in Figure 

4(a) and Figure 5(a). The two ports’ profits are increasing in both sets of cases, and the port 

prices are more sensitive to the transhipment volume. This is in agreement with intuition. 

However, the shipping line’s profit is less intuitive. In Figure 4, the shipping line’s profit is 

increasing, whereas in Figure 5, the shipping line’s profit is increasing first and then 

decreasing. The complicated response of the shipping line’s profit may be explained by the 

fact that, as shown in Figure 5, the port prices are increasing much quicker than in Figure 4 

and the transhipment incurs double handling charges at ports compared to the hinterland 

shipment. This implies that the shipping line’s profit from an additional transhipment may be 

cancelled out by the increasing port charges at a certain transhipment level. For example, 

when the transhipment volume g increases from 300 TEUs to 700 TEUs in Figure 5, the port 

prices w1
*
 and w2

*
 are increasing from $209 and $180 to $250 and $228, respectively. Such 

significant increases in port prices create a considerable impact on the shipping line’s profit 

and diminishes the profit generated from the additional transhipment volume.   

 

  
 (a) Impact on decision variables  (b) Impact on profits 

Figure 4. Impact of the hinterland shipment volume 

 

  
(a) Impact on decision variables  (b) Impact on profits 

Figure 5. Impact of the transhipment volume 

 

Table 1 compares the results of the decentralized supply chain and the centralized supply 

chain for the cases in Figures 4 and 5, where q1,d
*
 and d

*
 represent the optimal portcall 

fraction at port 1 and the supply chain profit in the decentralized non-cooperative model, and 

q1,c
*
 and c

*
 represent the optimal portcall fraction at port 1 and the supply chain profit in the 

centralized management model. Table 1 verifies the result in Proposition 3, which provides 

the difference in the supply chain profits between the centralized and decentralized models. It 

can be observed that in the centralized management model, port 1 would have a larger share 

of portcalls than the decentralized non-cooperative model. However, the difference in the 
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supply chain profits is decreasing as either the hinterland shipment or the transhipment 

volume increases. Moreover, the difference appears to be minor (around a few thousand US$), 

which indicates that the full integration of the transport chain does not offer significant 

benefit from the supply chain profit perspective in our case study.  

 

Table 1. Decentralized, non-cooperative model versus centralized model with varying 

shipment volume 

Varying hinterland shipment volume Varying transshipment volume 

h (TEU) q1,d
*
 q1,c

*
 c

*
 – d

*
 g (TEU) q1,d

*
 q1,c

*
 c

*
 – d

*
 

2000 0.550 0.651 $7636 300 0.550 0.651 $7636 

2200 0.544 0.630 $6584 400 0.544 0.630 $6584 

2400 0.538 0.614 $5736 500 0.538 0.614 $5736 

2600 0.533 0.600 $5041 600 0.533 0.600 $5041 

2800 0.530 0.588 $4466 700 0.530 0.588 $4466 

 

6.2 Effect of the fuel price and the hinterland transportation cost 

In this sub-section, we first vary the fuel price from 300 US$/tonne to 350, 400, 450, and 500 

US$/tonne, but keep other parameters the same as the base scenario. Figure 6 shows the 

impact of the fuel price on the decision variables and the players’ profits. Secondly, we vary 

the unit hinterland transportation cost at port 1 (i.e. c
h

1) from $300 to $315, $330, $345, and 

$360, but keep other parameters the same as the base scenario. Figure 7 shows the impact of 

the hinterland transportation cost on the decision variables and the players’ profits.  

 

From Lemma 5, and the definitions of c
s
1, c

s
2, c

t
1, c

t
2, we can derive that w1

*
/c

fuel
 > 0, 

w2
*
/c

fuel
 < 0, q1

*
/c

fuel
 > 0 in our case study. This is verified by Figure 6(a). In addition, 

Figure 6(b) shows that as the fuel price increases, the shipping line’s profit is decreasing 

rapidly. In fact, the shipping line’s profit becomes negative when fuel price reaches $500 per 

tonne in our scenario. In practice, the shipping line may use the bunker adjustment factor 

(fuel surcharge) to pass the costs to shippers. We can also observe that port 1’s profit is 

increasing due to the increase of port price and the portcall fraction, whereas port 2’s profit is 

decreasing due to the decrease of port price and the portcall fraction at port 2. 

 

Regarding the impact of hinterland transportation cost, Lemma 5 yields for w1
*
/c

h
1 < 0, 

w2
*
/c

h
1 > 0, q1

*
/c

h
1 < 0, which are verified in Figure 7(a). Note that increasing c

h
1 

represents the scenarios where port 2 has a close proximity to the hinterland market. This 

enables port 2 to increase its competitiveness, which is reflected by the increasing port price 

at port 2, decreasing port price at port 1, and decreasing portcall fraction at port 1 in Figure 

7(a). In fact, the optimal portcall faction at port 2 becomes greater than that at port 1 when c
h
1 

approaches to $360 (note that c
h

2 = $300). The players’ profits in Figure 7(b) are the 

combined effect of the port prices and the portcall split over the two ports. Generally, as c
h

1 

increases, the shipping line’s profit is decreasing, whereas port 2’s profit is increasing due to 

gaining more market share.  
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(a) Impact on decision variables  (b) Impact on profits 

Figure 6. Impact of the fuel cost 

 

  
(a) Impact on decision variables  (b) Impact on profits 

Figure 7. Impact of the unit hinterland transportation cost at port 1 

 

Table 2 compares the results of the decentralized supply chain and the centralized supply 

chain for the cases in Figures 6 and 7. Similar to Table 1, it confirms that: (i) the centralized 

model achieves a higher supply chain profit than the decentralized non-cooperative model in 

all cases; (ii) the difference in the supply chain profits appears to be minor in our cases. 

However, different to the results presented in Table 1, port 1 could have a smaller share of 

portcalls in the centralized model than in the decentralized model when the unit hinterland 

transportation cost at port 1 (i.e. c
h

1) increases to a certain point (e.g. $360), which represents 

the situation that port 1 become less competitive than port 2. In addition, it shows that the 

profit difference is increasing with respect to the fuel cost, and has a U-shape with respect to 

the unit hinterland transportation cost of port 1 (after experimenting with larger values of c
h

1). 

 

Table 2. Decentralized, non-cooperative model versus centralized model with varying fuel 

cost and port 1’s hinterland transportation cost 

 

Varying fuel cost Varying port 1’s hinterland transport cost 

c
fuel

 q1,d
*
 q1,c

*
 c

*
 – d

*
 c

h
1  q1,d

*
 q1,c

*
 c

*
 – d

*
 

300 0.538 0.613 $4295 300 0.550 0.651 $7636 

350 0.544 0.632 $5847 315 0.537 0.611 $4136 

400 0.550 0.651 $7636 330 0.524 0.571 $1700 

450 0.557 0.670 $9665 345 0.511 0.531 $330 

500 0.563 0.689 $11932 360 0.497 0.492 $24 

 

 

6.3 Impact of the port congestion cost coefficient and the port handling capacity 
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In this sub-section, we first vary port 1’s congestion cost coefficient (i.e. a1) in 5% intervals, 

i.e. from $500000, to $525000, $550000, $575000, and $600000, but keep other parameters 

the same as the base scenario. Figure 8 shows the impact of port 1’s congestion cost on the 

decision variables and the players’ profits. Secondly, we vary the daily handling capacity (i.e. 

K1) at port 1using a 5% interval, i.e. from 6000 TEUs to 6300, 6600, 6900, and 7200 TEUs, 

but keep other parameters the same as the base scenario. Figure 9 shows the impact of 

handling capacity at port 1 on the decision variables and the players’ profits.  

 

Figure 8(a) and Figure 9(a) verify the results in Lemma 6, e.g. both ports’ prices are 

increasing in a1 and decreasing in K1 and port 2’s price is more sensitive to a1 and K1. The 

shipping line’s portcall fraction at port 1 is decreasing in a1 and increasing in K1, which is 

intuitively true. Moreover, from Figures 8(b) and 9(b), the shipping line’s profit is decreasing 

in a1 and increasing in K1. 

  
(a) Impact on decision variables  (b) Impact on profits 

Figure 8. Impact of the congestion cost coefficient at port 1 

 

  
 (a) Impact on decision variables  (b) Impact on profits 

Figure 9. Impact of port 1’s handling capacity 

 

Table 3 compares the results of the decentralized supply chain and the centralized supply 

chain for the cases in Figures 8 and 9. Similar results to Table 1 can be observed. In addition, 

Table 3 illustrates that the profit difference is decreasing in port 1’s congestion cost 

coefficient, and increasing in port 1’s handling capacity. 

 

Table 3. Decentralized, non-cooperative model versus centralized model with varying port 

1’s congestion cost and handling capacity 

Varying port 1’s congestion cost Varying port 1’s handling capacity 

a1 q1,d
*
 q1,c

*
 c

*
 – d

*
 K1  q1,d

*
 q1,c

*
 c

*
 – d

*
 

500000 0.550 0.651 $7636 6000 0.550 0.651 $7636 

525000 0.545 0.635 $6270 6300 0.561 0.683 $10659 

550000 0.540 0.620 $5067 6600 0.571 0.713 $13848 
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575000 0.535 0.606 $4018 6900 0.581 0.742 $17121 

600000 0.531 0.592 $3111 7200 0.590 0.769 $20417 

 

6.4 Comparison of uncertain demands and deterministic demands 

We take the scenarios in Sections 6.1 and 6.2 as examples to compare the results under 

uncertain demands with deterministic demands, in which the coefficient of variation, CoV, 

takes two levels, 0.2 and 0.4 respectively. The results are shown in Table 4, where the first 

column provides the combinations of hinterland demands and transhipment demands in TEUs; 

the second and third columns provide the profit differences in US$ between uncertain 

demand situations and deterministic situations for port 1 and port 2 respectively; the fourth 

column shows the profit differences in US$ for the shipping line; and the fifth column shows 

the total supply chain profit differences in US$.  

 

Table 4. Comparison of deterministic and uncertain demand situations 

 *
1,unc – *

1,det *
2,unc – *

2,det l*
unc – l*

det *
unc – *

det 

CoV = 0.2 

    (h, g) = (2000,300) 44040 17082 -66836 -5713 

(h, g) = (2200,300) 53416 20339 -80310 -6556 

(h, g) = (2400,300) 63675 23873 -95047 -7500 

(h, g) = (2600,300) 74817 27687 -111048 -8544 

(h, g) = (2800,300) 86844 31786 -128315 -9685 

     

(h, g) = (2000,300) 44040 17082 -66836 -5713 

(h, g) = (2000,400) 44140 16847 -66799 -5811 

(h, g) = (2000,500) 44210 16642 -66912 -6060 

(h, g) = (2000,600) 44262 16462 -67163 -6439 

(h, g) = (2000,700) 44300 16304 -67540 -6936 

CoV = 0.4 

    (h, g) = (2000,300) 176551 66143 -264813 -22119 

(h, g) = (2200,300) 214023 78961 -318530 -25546 

(h, g) = (2400,300) 255029 92911 -377315 -29375 

(h, g) = (2600,300) 299573 108002 -441172 -33597 

(h, g) = (2800,300) 347659 124242 -510108 -38206 

     

(h, g) = (2000,300) 176551 66143 -264813 -22119 

(h, g) = (2000,400) 176824 65622 -265194 -22748 

(h, g) = (2000,500) 177026 65129 -266049 -23895 

(h, g) = (2000,600) 177178 64670 -267359 -25512 

(h, g) = (2000,700) 177294 64248 -269108 -27566 

 

It can be seen from Table 4 that both ports gain benefits from the demand uncertainty in 

hinterland shipments and transhipment volumes, and such benefit is increasing up to 3-4 

times when the coefficient of variation (CoV) increases from 0.2 to 0.4; on the other hand, 

the shipping line's profit and the total supply chain profit are both decreasing as the CoV 

increases. In addition, under a fixed degree of demand uncertainty (i.e. fixed CoV), the 

benefits that both ports gained from uncertain demands are increasing in h (i.e. the average 

amount of the hinterland shipments); however, the increase in g (i.e. the average transhipment 

volume) has a mixed impact on the two ports; the difference in the total supply chain profit 



27 

 

between the uncertain demand situation and the deterministic situation is increasing as either 

h or g increases. 

 

7. Extension of the non-cooperative game model to three-port case  

In this section, we discuss the extension of the non-cooperative game model to a single 

shipping line and three-port case. It is assumed that the customer demands are deterministic.  

 

The shipping line’s profit function is given by,  

l
 = j [(p

h
– 2c

h
j – 2wj)  hqj + (p

t
 – 4wj)gqj – c

s
jqj – c

t
jqj – Gj – Hj] (31) 

where Gj = 4aj [(h + 2g)qj / Kj]
2
, Hj = 4bj [hqj / Rj]

2
, for j=1,2,3, s.t. 0 ≤ q1, q2, q3 ≤ 1; and 

q3 = 1 – q1 – q2. 

 

The ports’ profit functions (for j=1,2,3) are given by, 

j = (wj – cj)  Fj – mj  Kj = (wj – cj)  2(h + 2g)  qj – mj  Kj (32) 

 

To simplify the narrative, let  

Aj := 8aj (h + 2g)
2
/Kj

2
 + 8bjh

2
/Rj

2
, for j=1,2,3; 

B1 := 2(c
h

3 – c
h
1)  h + c

s
3 – c

s
1 + c

t
3 – c

t
1; 

B2 := 2(c
h

3 – c
h
2)  h + c

s
3 – c

s
2 + c

t
3 – c

t
2. 

Then, l
/q1 and l

/q2 can derived as 

l
/q1 = – (A1+A3)q1 – A3q2  + A3 + B1 + 2(w3 – w1)  (h+2g)  

l
/q2 = – A3q1 – (A2+A3)q2 + A3 + B2 + 2(w3 – w2)  (h+2g)  

 

Let the first partial derivatives be zero, i.e. l
/q1 = l

/q2 = 0, we have, 

q1 = [–A3B2 + A3B1 + A2A3 + A2B1 – 2A3 (w1 – w2)  (h+2g) + 2A2 (w3 – w1)  (h+2g)] / (A2A1+ 

A2A3+ A1A3) (33) 

q2 = [A3B2 – A3B1 + A1A3 + A1B2 + 2A3 (w1 – w2)  (h+2g) + 2A1(w3 – w2)  (h+2g)] / (A2A1+ 

A2A3+ A1A3) (34) 

q3 = [A2A1 – A2B1 – A1B2 – 2A2 (w3 – w1)  (h+2g) – 2A1(w3 – w2)  (h+2g)] / (A2A1+ A2A3+ 

A1A3) (35) 

 

Insert the expressions (q1, q2, q3) into the three ports’ profit function respectively. Let their 

first derivatives with respect to the corresponding port price wj be zero. We will obtain three 

linear equations with three unknown variables (w1, w2, w3):  

2[–2(A2 + A3)w1 + A3w2 + A2w3 + c1(A3 + A2)] (h+2g) – A3B2 + A3B1 + A2A3 + A2B1 = 0; 

2[A3w1 – 2(A3 + A1)w2 + A1w3 + c2(A3 + A2)] (h+2g) + A3B2 – A3B1 + A1A3 + A1B2 = 0; 

2[A2w1 + A1w2 – 2(A1 + A2)w3 + c3(A1 + A2)](h+2g) + A2A1 – A2B1 – A1B2 = 0. 

 

Solving the above three linear equations, we can obtain the closed-form of the optimal port 

pricing decisions (w1
*
, w2

*
, w3

*
). Substitute (w1

*
, w2

*
, w3

*
) into Eqs. (33)~(35), we then obtain 

the optimal portcall decisions (q1
*
, q2

*
, q3

*
). However, it is tedious to display the optimal 

solution and therefore we omit it. Nevertheless, the impact of the system parameters on the 

optimal decisions and the optimal profits of each stakeholder can be analyzed in a similar 

manner to the two-port case. 

 

8. Conclusions 

This paper considers a novel port competition problem involving both hinterland shipments 

and transhipment cargoes, analyzed from the transport chain’s cost perspective and taking 
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into account port handling charges, deep sea transport cost, hinterland transport cost, and 

feeder service cost. A static cost model is first presented for two competitive ports with 

specific services to evaluate their relative cost in the transport chain. The case study of 

Southampton and Liverpool ports illustrates that either of the two competitive ports can be 

more cost efficient under certain conditions, or by appropriately adjusting their terminal 

handling charges. For example, higher planned vessel sailing speeds and higher fuel cost 

would be in favour of selecting Southampton; whereas higher hinterland shipment and higher 

transhipment volumes would be in favour of selecting Liverpool. In particular, the port 

handling charges at the two ports have a significant impact on their relative cost profiles. This 

indicates that it is more likely that each of the competitive ports may attract a fraction of the 

shipping services, and demonstrates the necessity of modelling port competition within a 

game framework in the context of the overall transport chain. 

 

We then presented a non-cooperative game model for two competitive ports and one ocean 

carrier with multiple shipping services concerning both ports’ pricing decisions and the ocean 

carrier’s port-of-call decisions. A closed-form of the optimal solution is derived. Revealing 

managerial insights are established and verified in the case study of Southampton and 

Liverpool ports, e.g. (i) it is not guaranteed that ports’ prices will be increasing as the 

hinterland shipments or transhipment volume increases. However, as the hinterland shipment 

or transhipment volume reaches a certain threshold level, the two ports’ handling prices are 

indeed increasing; (ii) when the ocean carrier attaches more weight to the congestion cost on 

either port, both ports will increase their port prices but to different scales; (iii) when either 

port’s handling capacity increases, both ports’ prices are decreasing which leads to the 

decrease of both ports’ profits but to different scales; (iv) the centralized management model 

achieves a higher supply chain profit than the decentralized non-cooperative model. However, 

the difference in the supply chain profits in both models is rather small in our cases. 

Southampton would have a larger share of portcalls in the centralized model than in the 

decentralized model in most scenarios; (v) in the presence of uncertainty in hinterland 

shipments and transhipment volumes, it is shown that both ports will increase their port 

handling charges. Numerical examples show that both ports can benefit from such 

uncertainty in comparison with deterministic demand situations; and the benefit is increasing 

as the degree of uncertainty increases. On the other hand, the shipping line will be worse off 

in uncertain demand situations. The above managerial insights can serve as useful 

information to the port operators and the shipping line when formulating their port pricing 

strategies and port-of-call decisions, and pursuing a policy of supply chain integration.  

 

Further research could be undertaken in the following directions. First, multiple-port 

competition is more realistic or applicable than two-port competition. Although we provided 

an extension of the non-cooperative game model to the three-port competition case, more in-

depth research is required. Second, we focused on a single shipping line (or a shipping 

alliance), which neglected the competition between shipping lines. It would be instructive to 

extend the model to multiple shipping line cases, e.g. Bae et al. (2013) considered multiple 

identical shipping lines. Third, as port capacity choice is an important issue and interwoven 

with pricing decisions, it would be of potential value to investigate the joint capacity 

investment and price decision problem. Fourth, this paper focused on ports’ price decisions 

and shipping line’s portcall decisions. It would be desirable to include shippers’ decision in 

the model. In addition, the environmental aspect of the performance measures such as 

emissions could be included in a revised model.  
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For fixed port prices (w1, w2), take the first partial derivative of Eq. (8) with respect to q1, we 

have, 

l
/q1 = [(p

h
 – 2c

h
1 – 2w1)  h + (p

t
 – 4w1)  g – c

s
1 – c

t
1] 

– [(p
h
 – 2c

h
2 – 2w2)  h + (p

t
 – 4w2)  g – c

s
2 – c

t
2] 

– 
n

nnn

K

qghna

1

1

11 )2(2 
 + 

n

nnn

K

qghna

2

1

12 )1()2(2 
  – 

n

nnn
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1

1

112 

 + 
n

nnn

R

qhnb

2

1

12 )1(2 

  

It follows (note that n≥1): 2l
/

2
q1 ≤ 0. Thus, Eq. (8) is concave with respect to q1 in the 

interval [0, 1]. This completes the proof of Lemma 2. 

 

Proof of Proposition 1. 

It is easy to observe that the condition D1 < 0 is equivalent to w2 – w1 < (–A2 – B)/(2h + 4g); 

D1 > 1 is equivalent to w2 – w1 > (A1 – B)/(2h + 4g); and 0 ≤ D1 ≤ 1 is equivalent to (–A2 – 

B)/(2h + 4g) ≤ w2 – w1 ≤ (A1 – B)/(2h + 4g).  

 

Under the condition D1 < 0, each port’s profit function becomes linear to its price. Hence, 

both ports would choose the port prices as high as possible subject to D1 < 0 to maximize 

their profits, which leads to Proposition 1(i). 

 

Under the condition D1 > 1, similarly, each port’s profit function is also linear to its price. 

Thus, both ports would choose the port prices as high as possible subject to D1 > 1 to 

maximize their profits, which leads to Proposition 1(ii). 

 

Under the condition 0 ≤ D1 ≤ 1, we have, 

1 = 11
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Let the first partial derivatives 1/w1 = 2/w2 = 0. We have, 
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Substituting wi with wi
*
 in the conditions 0 ≤ D1 ≤ 1, L1 ≤ w1 ≤ U1, and L2 ≤ w2 ≤ U2, these 

conditions can be given in explicit forms as follows: 
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The shipping line’s optimal price can be derived in closed-form by Lemma 3. This completes 

the proof of Proposition 1. 

 

Proof of Proposition 3. 

Take the first derivative of (15), we have, 

d(q1)/dq1 = B + 2(c2 – c1)(h + 2g) + A2 – (A1 + A2)q1  
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It is clear that D2 is the solution to d(q1)/dq1 = 0. Note that any q1  [0, 1]. It yields 

Proposition 3(i). Moreover, the centralized supply chain profit under q1,c
*
 = D2 is give in 

Proposition 3(ii). Finally, Proposition 3(iii) can be derived by some algebraic manipulation. 

Note that, 

(q1
*
) = (p

h
 – 2c

h
2)h + p

t
g – c

s
2 – c

t
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It follows, 
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*
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)] / 2 
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2
 / [18(A1 + A2)

2
] 

where q1,c
*
 is given in (16) for the centralized supply chain’s optimal portcall decision; and 

q1
*
 is given in (11) for the decentralized supply chain’s optimal portcall decision. This 

completes the proof.  

 

Proof of Proposition 4: 

It is easy to see that the condition 0 ≤ D3 ≤ 1 is equivalent to: 
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Note that the ports’ expected profits (for j=1,2) under the port price wj are given by, 

j = E [(wj – cj)  2( + 2)  qj – mj  Kj] 

= (wj – cj)  2(h + 2g)  qj – mj  Kj   

From Lemma 7, it follows, 
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2 = 2(w2 – c2)  (h + 2g)  22
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Let the first partial derivatives 1/w1 = 2/w2 = 0, together with Lemma 7, we can obtain 

the results in Proposition 4. This completes the proof. 

 


