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ABSTRACT 

Effective larviciding to manage mosquito aquatic habitats offers an additional strategy for 

malaria vector control by complementing benefits already achieved by long lasting insecticide-

treated nets (LLINs) and indoor residual spraying (IRS). Sustainable implementation of 

larviciding requires comprehensive understanding of the ecology of disease vectors and robust 

monitoring of factors governing local disease transmission. Treatment of aquatic habitats with the 

juvenile hormone analogue Pyriproxyfen (PPF), inhibits adult mosquito emergence at extremely 

low concentrations that are potentially deliverable by PPF-contaminated gravid adult females, a 

phenomenon termed „autodissemination‟.  

The primary aim of this thesis was to investigate a range of adult mosquito behaviours that might 

be exploited to disseminate PPF. The effectiveness of PPF to sterilize adult mosquitoes for 

malaria vector control was also assessed in a controlled system. Vector dynamics, malaria 

transmission intensity and risk factors were evaluated at the field site where the PPF 

autodissemination strategy would be evaluated in field trials and potentially implemented. 

Field monitoring of indoor malaria transmission risk factors revealed that even in the 

communities with high coverage of bednets, LLINs did not reduce the  indoor densities of An. 

gambiae s.l (RR= 0.74 (0.50 - 1.11, p > 0.05) but reduced An. funestus  indoor densities by 56% 

(RR= 0.44 (0.23 - 0.87, p < 0.05)). Houses with eave gaps had 3.3 and 5.5 times more An. 

gambiae s.l. (RR= 3.3 (2.39 - 4.56, p < 0.05)) and An. funestus ((RR = 5.55 (3.25 - 9.46, p < 

0.05)) respectively. Intact screening over windows reduced up to 66% (RR = 0.34 (0.17 - 0.69)) 

and 83% (RR = 0.17 (0.08 - 0.39)) indoor entry of An. gambiae s.l. and An. funestus respectively.  

Furthermore, surveillance of wild malaria vectors populations and susceptibility to insecticide 

resistance demonstrated significant increase in An. funestus densities in 2012 (RR=1.56 (1.33-

1.69)) compared to An.gambiae s.l. (p <0.0001). In 2014, the proportion of An. gambiae s.l. 

catches (67%; 4373/6373) was higher than An. funestus (33%; 2100/6373). PCR results revealed 

change in relative proportion between the two sibling species of An.gambaie s.l. with a 

significant decrease in An. gambiae s.s. from approximately 14% (414/2,924) in 2008 to 0% 

(0/435) in 2014. Insecticide susceptibility tests indicated high resistance in An. funestus against 

deltamethrin (mortality rate in discriminating dose assay = 87%), lambda cyhalothrin (74%), 

permethrin (65%), bendiocarb (65%), and DDT (66%). Similarly, An. arabiensis showed 

insecticide resistance to permethrin (77%), deltamethrin (64%) and lambda cyhalothrin (42%) in 

2014. 

In large screened cages it was demonstrated that adult An. arabiensis can disseminate PPF from 

clay pots treated with PPF to the aquatic habitats, resulting in 76.5% reduction in adult 

emergence, with higher mean proportion of adult emerging from untreated chamber, 0.95 (0.56 - 

1.34) compared to the treated chamber, 0.21 (0.09 - 0.51, p < 0.0001). Treatment of a single clay 

pot resulted in 58% reduction in adult emergence in six habitats, with mean proportion of 0.34 

(0.21 – 0.45) compared to the controls, 0.98 (0.96 – 1.00, p < 0.0001), showing a high level of 

habitats coverage amplification of the autodissemination event. After treating the walls and 

ceilings of cattle shelters with PPF, mosquito sterilization resulted in > 95% (89.3 - 102.9%) 

reduction in adult An. arabiensis production.  

This research provides evidence on the need of better housing and larviciding to complement 

LLINs in controlling the remaining malaria transmission transmitted by An. funestus and An. 

arabiensis. It also demonstrated for the first time that the PPF autodissemination strategy and 

sterilization of adult females present a promising malaria vector control option for field trial. 

PPF-autodissemination can be integrated into a vector management toolbox to control outdoor 

malaria transmission and also target multiple disease-carrying mosquitoes that share aquatic 

habitats with malaria vectors. These findings highlight the potential of PPF for controlling 

outdoor and indoor malaria vectors and call for further testing in the field.  
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CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Malaria  

 

Throughout the world, vector borne diseases cause significant morbidity and mortality 

(Becker et al., 2006). Malaria is one of the most important vector borne diseases and 

continues to put 3.2 billion people at risk, with more than one malaria case occurring per 

1000 people (WHO, 2014). In 2013, malaria was estimated to have caused 198 million 

clinical cases and claimed approximately 584,000 lives worldwide, of which 80% of 

total cases and 90% of deaths occurred in Africa (WHO, 2014). Another analysis of 

malaria deaths from all endemic countries (Murray et al., 2012), estimated that malaria 

killed 1.24 million people globally in 2010. Although mainly impacting children under 5 

years of age and pregnant women (Adam et al., 2005; Lawn et al., 2005), it also 

significantly affects adults across all age groups (Murray et al., 2012).  

 

The disease is disproportionately abundant in tropical and subtropical regions of Africa 

where it continues to destabilize social and economic development (Fig. 1.1.1). A 

decade ago, malaria was estimated to account for 10% of the African disease burden in 

terms of disability adjusted life years or DALYs (Goodman et al., 2001). Moreover, the 

disease was estimated to account for an annual loss of 1.3% Gross Domestic Product 

(GDP) in Africa and approximately 40% of public health expenditure in sub-Saharan 

Africa (RMB, 2008).  
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Figure 1.1.1: Maps showing A) clinical burden of Plasmodium falciparum in all age 

groups, in 2007, B) spatial distribution of Plasmodium falciparum entomological 

inoculation rate in 2010 in Africa (from http://www.map.ox.ac.uk/browse-resources/). 

 

1.1.1 Malaria parasites and transmission 

 

Malaria is caused by single-celled protozoan parasites within the genus Plasmodium. To 

date, there are five species that are known to infect humans naturally: Plasmodium 

falciparum, P.vivax, P.ovale, P.malariae (Beier, 1998; Weller, 2003) and P. knowlesi 

(Singh et al., 2004). However, P.malariae also infects non-human primates (Garnham, 

1966).  Transmission occurs from human to human via the vector mosquito in most 

cases. P. falciparum is by far the most common and deadliest form, accounting for the 

http://www.map.ox.ac.uk/browse-resources/
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majority of human malaria cases worldwide (Mueller et al., 2007), with most severe 

disease occurring in people with low protective immunity (Warrell et al., 1990; Baird, 

1998). The severity of P. falciparum is associated with the parasite blood stages‟ binding 

ability to the endothelial blood capillaries as well as the sequestration ability in the liver, 

brain and kidney, which eventually results in large parasite loads and harmful toxins 

produced by the parasites in the bloodstream (Buffet et al., 2011). These pathological 

processes lead to initial nonspecific disease symptoms which include headache, fatigue, 

fever, chill, joint aches, abdominal discomfort, vomiting and body malaise (Reyburn, 

2010; WHO, 2010). Delayed or ineffective treatment of the disease usually results in 

clinical complications of malaria such as liver failure, encephalopathy, coma as well as 

anaemia (Mackintosh et al., 2004). Several studies have reported that the severity of the 

P.falciparum can either be reduced (Maitland et al., 1997) or amplified (Rogerson & 

Carter, 2008) during co-infection with P.vivax. 

 

Malaria parasites are transmitted only by female mosquitoes within the genus Anopheles 

(Diptera: Culicidae) during feeding on human blood (Bruce-Chwatt et al., 1966). The 

parasite transmission pathway is complex and cyclical between human and mosquito 

vectors, with a sporogonic or sexual stage in mosquitoes (Beier, 1998), and a schizogony 

or asexual stage in humans, in both non-blood (exo-erythrocyte) and blood (erythrocyte) 

stages (Cox, 2010) (Fig 1.1.2).  
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Figure 1.1.2: A schematic illustration of the generalized malaria parasite life cycle. 

Infected mosquito bite and person and inject asexual form of parasites (1) which migrate 

to the liver, multiply and released (2, 3, 4) into bloodstream where the parasite invade 

red blood cells, multiply and develop to sexual form of parasites (5, 6) which are 

ingested when mosquito bites an infected person and develop inside mosquito to an 

infective asexual parasites (7, 8, 9) transmitted via mosquito bite (10), (from 

www.malariavaccine.org/malvac-lifecycle.php). 

 

 

 

http://www.malariavaccine.org/malvac-lifecycle.php
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1.1.2 Malaria vectors 

 

There are more than 400 species of Anopheles mosquitoes, and 70 that are known to 

transmit malaria worldwide (Service, 1993; Sinka et al., 2012). Of these, Anopheles 

gambiae Giles, and An. funestus Giles are the most widespread and efficient vectors in 

Africa (Coetzee et al., 2000; Fontenille & Simard, 2004; Okara et al., 2010) (Fig. 1.1.3). 

Both of these are species complexes (Section 1.1.3), and include species that feed 

preferentially on humans and that are highly efficient at transmitting malaria (Bruce-

Chwatt et al., 1966). Adult mosquitoes develop through four developmental stages, 

eggs, larvae, pupae and adults, of which the first three are aquatic.  

                 

Figure 1.1.3:  Map showing distribution of the dominant malaria vectors in Africa 

(Sinka et al., 2012). 
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1.1.3 Biology of the main African anopheline vectors 

 

The An. gambiae complex (Anopheles gambiae sensu lato, or s.l.) comprises seven 

sibling species, of which Anopheles arabiensis and Anopheles gambiae sensu stricto 

(hereafter termed An. gambiae s.s.) are primary vectors of malaria (White, 1974). An. 

arabiensis and An. gambiae s.s. typically share the same freshwater habitats (Gilles et 

al., 1961; Takken & Lindsay, 2004), ranging from small temporary water bodies to 

margins of permanent streams or ponds or large irrigated expanses (Fillinger & Lindsay, 

2006). 

 

Anopheles funestus group or An. funestus s.l., is also an important malaria vector, 

comprising nine species. An. funestus s.s.  is the most efficient malaria vector due to its 

anthropophagic and endophilic behaviour, while the rest are mainly zoophilic.  An. 

funestus prefers to breed in large and permanent or semi-permanent fresh and turbid 

shaded water bodies with emergent vegetation (Gilles et al., 1961; Gillies, 1962; Gillies 

& de Meillon, 1968; Coetzee et al., 2000). Members of both complexes are widely 

distributed all over Africa and often co-exist (Sinka et al., 2012) (Fig. 1.1.3).   

 

During the rainy season, An. gambiae s.s. numbers typically increase, possibly due to 

this species‟ ability to outcompete An. arabiensis population in the larval habitat under 

the environmental conditions in that season (Schneider et al., 2000; Koenraadt & 

Takken, 2003). Conversely, during the dry season, An. arabiensis survives better than 

An. gambiae s.s. and typically becomes dominant (Lindsay et al., 1998). An. funestus 

mosquitoes which breed typically in permanent and semi-permanent larger, clear and 

turbid shaded water bodies (Gilles et al., 1961; Mosha & Subra, 1983), also increases in 
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numbers in the dry season and often account for much of the dry season transmission 

(Charlwood et al., 2000).  

 

Characterization of malaria vector resting behaviour post-blood feeding has been well 

established across different mosquito species, as a crucial facet of effective mosquito 

control and successful evaluation of the interventions involved (Gillies & Smith, 1960).  

Although mosquito resting behaviour between species is generally categorized either as 

endophilic or exophilic, it has been also documented that the same mosquito species can 

display both endophilic and exophilic resting behaviours (Lines et al., 1986; Githeko et 

al., 1996).  

 

Endophilic behaviour is the tendency for mosquitoes to prefer resting inside human 

houses; typically this is during the period after feeding and before the onset of the search 

for an oviposition site. Exophilic behaviour is when mosquitoes prefer to rest outside 

human dwellings (Pates & Curtis, 2005). Although efficient vectors of malaria, notably 

An. gambiae s.s. and An. funestus s.s. are mostly recognised as endophilic mosquitoes 

(Gillies, 1954; Mnzava et al., 1995; Githeko et al., 1996), exophilic behaviour has been 

also observed (Fontenille et al., 1990; Bockarie et al., 1994). An. arabiensis, is a mainly 

exophilic mosquito (Mnzava et al., 1995; Tirados et al., 2006), also found to rest indoors 

(Faye et al., 1997; Animut et al., 2013).  Development of new vector control tools to 

target different species of malaria vector must appreciate these resting behaviour 

preferences to maximize the efficacy of targeted interventions. 
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1.2 Control of malaria vectors and challenges to existing approaches 

 

Available vector control strategies can target immature or adult stages of mosquitoes. 

The current, most widely used and most efficient approaches are those that target the 

adult mosquito stages.  These control strategies primarily involve two tools: insecticide-

treated nets (ITNs; currently long-lasting insecticidal nets are most used, termed LLINs) 

and indoor residual spraying (IRS).  LLINs target mosquitoes that feed on humans 

indoors at night by reducing human-vector contacts through physical barrier of a net and 

impregnated insecticide which increase LLINs protective efficacy, either through excito-

repellency, reducing survival or killing mosquitoes that come into contact with the 

LLINs (Takken, 2002; Lengeler, 2004).  IRS targets mosquitoes that rest on the interior 

surfaces (walls, eaves and ceiling) of the houses or domestic animal shelters that have 

been sprayed with insecticides by killing/repelling and reducing adult mosquito 

longevity. LLINs target host-seeking mosquitoes, while IRS is more effective in 

targeting blood fed resting mosquitoes compared to non-blood fed host seeking due to its 

extended residual effect which can kill mosquitoes resting on sprayed surfaces inside 

houses and/or animal shelters during blood digestion (WHO, 2006, 2013a). Both have 

contributed to control programmes and helped to significantly reduce malaria 

transmission in many African settings (WHO, 1995; Mabaso et al., 2004; Griffin  et al., 

2010; Russell et al., 2010; WHO, 2014). However, these methods are designed to 

address indoor malaria transmission and even where they have been successful and in 

use over many years, transmission has not been interrupted completely and there are still 

high estimates of human exposure to malaria (Seyoum et al., 2012; Huho et al., 2013; 

Bayoh et al., 2014).  This is termed „residual transmission‟ and most experts agree that it 

cannot be addressed by those two main control measures alone (Griffin  et al., 2010; 

Killeen, 2014). 
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Outdoor malaria transmission undoubtedly contributes a high proportion of residual 

malaria transmission (Durnez & Coosemans, 2013; Killeen, 2014). Several studies 

suggest that continuous use of indoor‟ based interventions (LLINs and IRS), while 

reducing the density of indoor‟ biting mosquitoes in targeted communities, may have 

resulted in an increased proportion of outdoor transmission. Accelerated behavioural 

changes in malaria vector populations leading to higher proportions feeding outdoors 

earlier times in the morning and evening, to avoid contact with insecticides, has been 

reported, although evidence to date shows that this has resulted from species shifts rather 

than evolved changes in a single target species (Pates & Curtis, 2005; Van Bortel et al., 

2010; Bugoro et al., 2011a; Russell et al., 2011b; Kitau et al., 2012; Reddy et al., 2012; 

Kiware et al., 2012a; Kiware et al., 2012b).   

 

These shifts in species, arose due to LLINs and IRS killing species that were 

predominantly endophagic, endophilic and anthropophilic, particularly An. gambiae s.s., 

which historically was dominant in  malaria transmission (Gillies & de Meillon, 1968; 

White, 1974). An. arabiensis, which feeds outdoors as well as indoors and on cattle as 

well as humans benefited from that selective targeting and has become increasingly 

important in sustaining residual malaria transmission (Coluzzi et al., 1979; Bayoh et al., 

2010; Russell et al., 2010). It is clear that An. arabiensis cannot be controlled adequately 

with existing LLINs and IRS strategies (Durnez & Coosemans, 2013; Killeen, 2014). 

 

Moreover, the future of both LLINs and IRS are threatened by insecticide resistance.  

Today, target site and metabolic forms of resistance to all four major classes of 

insecticides that are widely used in vector control (organochlorines, organophosphates, 

carbamates and pyrethroids) have been reported widely (Kelly-Hope et al., 2008; 

Ranson et al., 2009; Ranson et al., 2011; Jones et al., 2013). Of particular and 
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immediate concern is resistance to the pyrethroids, which constitute over 80% of the 

global spray utility (the surface area covered by an active ingredient) (van den Berg et 

al., 2012), and are the only insecticide class approved for use on LLINs, due to their low 

human toxicity, rapid knockdown of mosquitoes and residual effect (Hougard et al., 

2002; Hougard et al., 2003). Following the rapid spread of resistance in recent years 

(Ranson et al., 2011), there is no country in Africa where the major malaria vectors 

remain fully susceptible to pyrethroids (WHO, 2012a; Hemingway, 2014). 

Consequently, WHO strongly recommend a pro-active strategy for resistance 

management as an essential component of vector control programmes i.e. early 

monitoring for the possibility of resistance development in mosquitoes rather than 

waiting and react when a vector control product/intervention fails  (WHO, 2011a, 

2012a).    

 

Hence, despite the substantial reductions in mosquito-vector densities that have been 

achieved with LLINs and IRS, their efficiency and longevity have been compromised to 

the point where the ability to continue to combat malaria transmission with these tools 

alone is under threat.  Clearly, new tools and strategies are urgently needed. 

 

1.2.1 Integrated vector management  

 

As part of ongoing efforts to address the aforementioned challenges, WHO has 

recommended an integrated vector management (IVM) approach (WHO, 2004a; Beier et 

al., 2008), emphasising the importance of resistance management strategies (Nauen, 

2007; Penilla et al., 2007; Sharp, et al., 2007; Kleinschmidt  et al., 2009) and optimal 

use of resources to ensure comprehensive future control of malaria vectors.  Integrated 

vector management is defined as “a rational decision-making process for the optimal use 
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of resources for vector control” with ultimate aim of reducing or interrupting 

transmission of vector borne diseases (WHO, 2004a).  

Integration of non-chemical based approaches with existing vector control tools, robust 

entomological and epidemiological surveillance systems to guide evidence-based 

decision making and targeted control are among the five key elements emphasized by 

the Global Strategic Framework for IVM (WHO, 2004a; Beier et al., 2008).  

In recent years there have been concerted efforts for developing tools to tackle the major 

challenge of outdoor malaria transmission, involving approaches such as repellents 

(Barnard, 2000), outdoor baited traps augmented with killing agents (Lwetoijera et al., 

2010; Okumu et al., 2010c; Matowo et al., 2013) and larval source reduction (Walker & 

Lynch, 2007; Fillinger & Lindsay, 2011; Tusting et al., 2013).  All are intended to 

complement the use of LLINs and IRS, by protecting people when not under bed nets or 

while outside their houses.  

 

1.2.2 Sustainable larval control 

 

Various active formulations and compounds have been tested, recommended and 

approved by WHOPES for controlling mosquito larvae (WHO, 2013b). These larvicides 

can be categorized into different classes as follows 

1) Oil and surface agent such as petroleum distillates which kill larvae via suffocation by 

preventing them from resting at the surface due to the reduced water surface tension 

(Rozendaal, 1997).  

2) Synthetic organic compounds can comprise of a wide range of active ingredients for 

larviciding, such as malathion, pirimiphos-methyl, fenthion and temephos; all of these 
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compounds kill mosquito larvae by blocking the nerve transmission pathways by 

interference with enzymatic activities (Rozendaal, 1997; WHO, 2013b). 

3) Bacterial larvicides, such as Bacillus thuringiensis var. israelensis (Bti) and Bacillus 

sphaericus (Bs). 

4) Insect growth regulators (IGR), such as pyriproxyfen and methoprene, represent an 

ideal in many ways because they combine high efficaciousness with low mammalian 

toxicity and minimal impact to non-target organisms (Schaefer et al., 1988; López et al., 

2005). While bacterial larvicides kill larvae by destroying the gut with endotoxin-

proteins (Charles et al., 1996; Bravo et al., 2007), the insect growth regulators prevent 

the development of mosquito larvae and pupae into adults by disrupting the normal 

function of insect developmental hormones (Wilson, 2004).  

The use of larvicides to target immature mosquito stages is considered by many to be a 

potentially effective supplementary approach to existing LLINs and IRS based 

programmes which target adult-disease transmitting mosquitoes, since even with 

maximum scaling up, LLINSs and/or IRS may eventually reach a threshold that cannot 

be further reduced by these interventions alone (Townson et al., 2005; Fillinger et al., 

2009; Tusting et al., 2013).  However, when adult populations are small, the capacity for 

population recovery increases, therefore, the addition of larval insecticides might be 

used to maintain strong larval density dependence that will limit mosquito population‟s 

potential for recovery by rendering the aquatic habitats which sustain the remain 

population unproductive (Russell et al., 2011a). 

The benefits of integrating larval control with existing malaria adult control 

interventions have been documented in a number of studies, many of which have 

achieved significant reductions in adult vector densities and associated malaria 

transmission (Utzinger et al., 2001; Gu et al., 2006; Killeen et al., 2006; Fillinger et al., 

2008; Gu et al., 2008; Tusting et al., 2013). 
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Sustainable larval control implementation needs an in-depth understanding of local 

disease transmission driven by the ecology of disease vectors (Fillinger & Lindsay, 

2006; Baragatti et al., 2009). In urban areas, where larval habitats are more identifiable 

and accessible, it is relatively easy to target the habitats and complement the widely used 

LLINs and IRS (Fillinger et al., 2008). However, in rural areas, especially during the 

rainy season, larval habitats can be myriad, ranging from small and ephemeral pools to 

large and permanent swamps (Gimnig et al., 2001; Minakawa et al., 2004). The nature 

of these habitats presents difficulties in their identification as well as treatment, 

processes that are expensive, time-consuming and labour intensive (Majambere et al., 

2007; Gu et al., 2008).  

 

In rural Gambia, both standardized and non-standardized field trials achieved 95% 

reductions in Anopheles gambiae s.l. densities when either Bacillus thuringiensis var. 

israelensis (Bti) or Bacillus sphaericus (Bs) were applied in the surveyed breeding 

habitats at weekly intervals (Majambere et al., 2007). Although the reduction in 

abundance and larval mortality might sometimes serve as proxy indicators for microbial 

efficacy, it is imperative to show an impact on adult density reduction and especially on 

malaria transmission within the targeted community, before effectiveness in disease 

control can be inferred (WHO, 2012b). Fillinger and others (Fillinger et al., 2008) 

reported 96% and 31% density reductions in anophelines and malaria transmission 

respectively within one year of starting larval intervention in urban Dar es Salaam. 

These findings were not only associated with the efficaciousness of larvicides used but 

also because breeding habitats in urban settings are relatively easier to find and treat 

compared to rural settings (WHO, 2013b). Although larviciding with Bti and Bs are 

operationally cost effective in comparison to LLINs and IRS (Worrall & Fillinger, 

2011), safe for the environment and highly efficacious against malaria vectors, issues 

such as selective action and low persistence in the environment at high temperatures 
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(Majambere et al., 2008; WHO, 1999; Fillinger et al., 2003; Fillinger & Lindsay, 2006), 

remain among the limitations for the strategy (Fillinger & Lindsay, 2006).  

 

In efforts to address the aforementioned challenges to existing chemical and biological 

larvicides, it is worth exploring the other larvicides with relative high persistence under 

field settings that are also potentially efficient and cost-effective tools for field 

implementation. This necessitates the development of novel, ecologically sound, cost-

effective and sustainable approaches.  One such approach that offers considerable 

potential is the autodissemination of larvicides (Schlein & Pener, 1990) by adult 

mosquitoes.   

 

1.2.3  Larval control by autodissemination of pyriproxyfen 

 

Pyriproxyfen (PPF) is a synthetic hormone analogue derived from insects‟ naturally 

occurring juvenile hormones (JH) responsible for growth and reproduction 

(Wigglesworth, 1934; Wilson, 2004). The autodissemination technique for larviciding is 

an approach whereby insects are co-opted to perform transfer of insecticides to other 

insects via different behavioural activities including oviposition, mating, aggregation, 

resting and host seeking (Devine et al., 2009; Gaugler et al., 2011; Geden & Devine, 

2012). The auto-transfer of insecticides can either be horizontally (i.e. the transfer of 

Pyriproxyfen (PPF) from contaminated adults to larvae or pupae in the breeding 

habitats) (Chism & Apperson, 2003) or vertically (i.e. failure in production of viable 

eggs within PPF contaminated females or sperm formation in male mosquitoes, without 

interfering with adult fitness) (Itoh et al., 1994; Sihuincha et al., 2005). Ohashi and 

others also demonstrated the occurrence of adult mortality and reduced survival when 

mosquitoes are contaminated with high doses of PPF (Ohashi et al., 2012).  
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The horizontal transfer of PPF is mediated through 1) picking up the insecticides by 

insects (contamination), 2) retention of the picked-up particles / dosage and 3) successful 

delivery of the dosage either to the breeding habitats or an individual mosquito 

(dissemination). The autodissemination approach with PPF is environmentally benign 

(accurate targeting of potential habitats) and economically sound (labour and product 

cost saving) than conventional larviciding approaches which directly target the breeding 

environment and are expensive and less accurate in application (Killeen et al., 2006; 

Vanek et al., 2006; Chaki et al., 2009; Gaugler et al., 2011). Furthermore, it is has been 

demonstrated mathematically that larviciding with non-repellent larvicide, which does 

not prevent mosquitoes to utilized the treated/contaminated  aquatic habitats, can result 

to significant reduction of mosquito density up to 96% with 80% treatment / removal of 

the productive habitats (Smith et al., 2013). Similarly, the deployment of 

autodisssemination approach, which solely relies on adult mosquito‟ egg laying 

behaviour to disseminate non-repellent larvicides such as PPF to their aquatic habitats, 

offers high possibilities of covering most productive aquatic habitats especially when the 

habitats are limited. 

 

1.3 Insect Development and Reproduction Hormones 

 

Development and reproduction are regulated by juvenile and ecdysone hormones in all 

insects, where ecdysone control insect moulting and transformation (metamorphosis), 

and juvenile hormone (JH) regulates larval growth and inhibit metamorphosis (Wyatt & 

Davey, 1996; Dhadialla et al., 1998; Riddiford, 2008). The coordination of insect 

development is maintained under a balanced ratio of these hormones. Juvenile hormone 

has been found to be most common in several insect species in a form of JHIII (Cusson 

& Palli, 2000) and is responsible for controlling metamorphosis, reproduction and insect 

behaviour (Wyatt & Davey, 1996; Hiruma, 2003; Riddiford et al., 2003). Juvenile 
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hormone is produced by the corpus allatum region of the insect‟s brain where its 

production and removal from an insect is under neurohormonal (Wigglesworth, 1934., 

1936) and enzymatic control respectively (Feng et al., 1999). In the adult insect, JH is 

also responsible for regulating reproductive processes (Wyatt & Davey, 1996). 

 

1.3.1 Insect Growth Regulators 

 

Understanding of hormones mode of action on development and reproduction at the 

molecular level has led to successful development of synthetic compounds or analogues, 

termed insect‟s growth regulators (IGRs), which operate as mimics to deregulate the 

normal functioning of the insect‟s natural developmental hormones (Dhadialla et al., 

1998). This has led to the exploitation of IGRs to control many insect pests of medical 

and agricultural importance (Wilson, 2004).  

 

In the past, IGRs were labelled as bio-rational and third-generation insecticides due to 

their extreme minimal human risk, selective action, low likelihood for resistance 

development and environmental safety compared to existing conventional adult 

insecticides such as DDT and organophosphates (Mulla, 1991). However, recent 

findings indicate the likelihood for resistance development in the targeted insects 

(Schaefer & Mulligan III, 1991; Crowder et al., 2008; Shah et al., 2015). While the term 

IGR encompasses all hormone mimics capable of disrupting normal functioning of an 

insect‟s endocrine hormones, this review limits itself to only those IGRs that interfere 

with juvenile hormone (JH) activity.  
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The intrinsic role of JH and its potential to inhibit insect development was first described 

in the blood sucking bug, Rhodnius prolixus (Wigglesworth, 1934). In light of this 

finding and after several decades of concerted efforts in synthesis, the first juvenile 

hormone analogues (JHA) were suggested as safe agents for controlling insect pests and 

disease vectors (Williams, 1967). Synthetic JHAs can either be classified as terpenoids 

such as kinoprene and methoprene (Slama et al., 1974) or phenoxy e.g. pyriproxyfen and 

fenoxycarb (Dhadialla et al., 2005). 

 

Based on mode of action, IGRs can be classified as: (Harris & Waindle, 1980). 

1) Hormonal inhibitors (e.g. Pyriproxyfen, methoprene and fenoxycarb), encompassing 

JHAs and ecdysone inhibitors that interfere with normal functions of JH and ecdysone 

hormone respectively.  

2) Enzymatic / Chitin inhibitors (e.g. Diflubenzuron) - inhibit enzymatic activities 

during cuticle formation in insect larvae as well as disrupting chitin synthesis which is 

required for exoskeleton formation in pharate adults.  

3) Anti-Juvenile hormones which work by blocking JH production, and in turn result in 

malfunctioning adult insects and death from premature moulting  

 

1.3.2 Mechanism of action of Juvenile Hormone Analogues 

 

While the mode of action of JHAs is not fully understood (Charles et al., 2011), it is 

believed that JHAs are involved in regulating the activation and expression of genes 

responsible for the release of the insect‟s developmental hormones, most notably 

juvenile and ecdysone hormones. Physiologically, larval growth requires the presence of 

juvenile hormone, after when the endogenous JH titre must drop below a threshold level 
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for larval-pupal transformation to occur, an event that is controlled by ecdysone 

hormone (Wilson, 2004).  Hence, by treating the immature mosquito stage with JH 

exactly when low levels are critical, the ecdysone-mediated metamorphic transformation 

from pupa to adult is severely disrupted resulting in emergence inhibition and eventual 

mortality of pupae / pharate adults (Wilson, 2004). 

 

At the molecular level, by selectively binding to the insect DNA, JHAs interact with 

many different proteins required for signal transduction and transcription regulation 

(Wheeler & Nijhout, 2003; Zhang et al., 2011). Following absorption by contaminated 

insects, JHAs binds to putative transcriptional receptor proteins such as methoprene-

tolerant (MET) (Ashok et al., 1998) and Ultraspiracle (USP) (Riddiford et al., 2001; 

Iwema et al., 2007) and form a JHA–transcription protein receptor complex that either 

modifies normal gene expression or partially interferes with primary ecdysone-regulated 

gene products such as broad complex (BR-C) (Wilson, 2004)  Thus, JHAs prevent 

pupal-adult transition (Kiss et al., 1988; Konopova & Jindra, 2008) by preventing 

normal developmental physiology (Restifo & Wilson, 1998; Wilson et al., 2006) via 

interference with certain essential genes that regulate normal developmental processes 

(Dunne et al., 2002; Sempere et al., 2003; Wilson, 2004).  Ultimately, treated pharate 

adults fail to emerge and die. 

 

1.4 Pyriproxyfen for control of mosquito vectors and other pests 

 

Pyriproxyfen has been used against various insect pests of agricultural and medical 

importance including whiteflies (Hemiptera: Aleyrodidae), fruit flies (Diptera: 

Drosophilidae), tsetse flies (Diptera: Glossinidae), fleas (Pulicidae: Siphonaptera), 

midges (Diptera: Chironomidae), houseflies (Diptera: Muscidae), cockroaches 
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(Blattodea: Blattidae) and other insects (Meola et al., 2001; Saltzmann et al., 2006; 

Tassou & Schulz, 2009; Riddiford et al., 2010; Geden & Devine, 2012; Moshitzky & 

Morin, 2014). 

 

In agriculture and horticulture, PPF has been the most widely used insect growth 

regulator for controlling Lepidoptera and Hemiptera following the development of 

resistance to widely used organophosphate, carbamate and pyrethroids pesticides 

(Grafton-Cardwell et al., 2005; Sullivan & Goh, 2008).  PPF has been applied 

extensively in controlling pests such as California red scale (Aonidiella aurantii) on 

citrus crops, apple leafminers (Phyllonorycter species), silverleaf whitefly (Bemisia 

argentifolii) on cotton, pear psylla (Cacopsylla pyricola) and pests such as the San Jose 

scale (Diaspidotus perniciosus) on Stone and pome fruits and nuts, mainly in North 

America (Grafton-Cardwell et al., 2005; Sullivan & Goh, 2008).  However, in routine 

practice, PPF must be managed like any other insecticide in order to reduce its impact on 

non-target insects or natural enemies of pests (Ellsworth & Martinez-Carrillo, 2001) and 

to minimize the risks of resistance developing in treated populations, as already reported 

in whiteflies on cotton (Crowder et al 2008).  

 

In public health, the development of PPF for mosquito control dates back over three 

decades, when laboratory experiments demonstrated full susceptibility of Culex, 

Anopheles and Aedes mosquitoes to PPF (Hatakoshi et al., 1987). Afterwards, evaluation 

of PPF efficacy in the field against immature stages of Anopheles (Okazawa et al., 1991; 

Kawada et al., 1993;Yapabandara & Curtis, 2004), Aedes (Lee, 2001; Sihuincha et al., 

2005; Vythilingam et al., 2005), and Culex mosquitoes (Kamimura and Arakawa., 1991; 

Chavasse et al., 1995; Lee, 2002) demonstrated significant adult emergence inhibition 

when PPF was applied directly to the breeding habitats.  PPF persistence in a granular 
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form has been demonstrated to be very high in water with residual activities of up to 6 

months recorded under field conditions (Kawada et al., 1988; Nayar et al., 

2002;Yapabandara & Curtis, 2002; Sulaiman et al., 2004; Seng et al., 2006), reducing 

the need for frequent reapplication and making field interventions with this product cost-

effective, especially during dry-season when new habitats cannot be created and existing 

ones cannot be diluted. In addition, PPF-based interventions are environmental friendly 

owing to the lower doses of PPF (<1 ppb) required to deliver lethal effect against 

immature mosquitoes in the breeding habitats (Sihuincha et al., 2005).  

 

To overcome environmental degradation and short persistence of PPF when deployed in 

the field (Mian & Mulla, 1982), various formulations classified into solubilized 

emulsifiable concentrate (SEC), wettable powder (WP) and granular (G) have been 

proposed and tested for their effectiveness against mosquitoes. Granular formulations 

have been more effective under laboratory and field conditions than WP and SEC 

formulations (Kawada et al., 1988).  To date, PPF has been made available through 

various registered commercial products such as Sumilarv
®

, Admiral
®

 and Knack
®

 

(Dhadialla et al., 2005).  

 

PPF is a very potent compound with high levels of activity and specificity, compared to 

other classes of chemical insecticides recommended for mosquito control (Mulla et al., 

1989). It is a safe compound with minimal level toxicity to mammals and a high margin 

of safety to non-target organisms in PPF-contaminated habitats (Schaefer et al., 1988; 

Mulla et al., 1989). WHO has approved PPF for public health uses, including mosquito 

control, at a dose of 50 - 100 ppb, below the recommended limit of 300 ppb in human 

drinking water (WHO, 2004b; Sihuincha et al., 2005). 
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1.4.1 Effect of pyriproxyfen on non-target organisms  

 

Mosquito aquatic habitats are also occupied by a wide range of organisms including 

nematodes, other insects (e.g. dragonflies, damselflies, beetles, copepods, cladocerans), 

fish and countless other micro-organisms all of which contribute to the balance of this 

aquatic ecosystem, including roles as mosquito prey or predator (Schaefer et al., 1988). 

Clearly, the impact of PPF on non-target organisms depends on the concentration and 

accumulation of PPF applied as well as the species sensitivity to PPF itself (Schaefer et 

al., 1988; Wang et al., 2005). Laboratory and field experiments conducted using an 

effective PPF dosage of 0.01 ppm for mosquito control reported no adverse effect 

against a wide range of non-target mosquito predators (Schaefer et al., 1988).  

However, some minimal impact has been documented in crustaceans, particularly 

cladocerans and copepods, where PPF mimics the crustacean juvenile hormone methyl 

farnesoate (Reddy et al., 2004; Nagaraju & Borst, 2008). However, the impact is usually 

short-lived and does not compromise the crustacean‟s survival (Schaefer & Miura, 1990) 

although this might also be due to the low persistence of PPF under sunlight and its high 

adsorption to organic material (Sullivan & Goh, 2008).  

 

A separate laboratory study conducted by (Wang et al., 2005) assessing the impact of 

PPF at high concentration of 0.1 ppm on two species of crustaceans copepods 

(Mesocyclops pehpeiensis and Megacyclops viridis), showed significant mortality and 

reduced reproductive success on Megacyclops viridis but not on the Mesocyclops 

pehpeiensis. Although, the adverse effects were observed on the immature stages of M. 

viridis, it was proposed that the improved reproductive fitness, development and 

longevity, and predation ability in the surviving individuals was likely to sustain the 

population (Schaefer & Miura, 1990).  In addition, it has been also demonstrated that 

rapid accumulation of PPF via repeated application at short intervals can cause 
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significant mortalities in non-target organisms in the treated mosquito aquatic habitats 

(Wang et al., 2005). Regarding PPF that can be naturally transferred by contaminated 

mosquitoes, it seems likely that the extremely low quantities transferred would be 

unlikely to raise significantly the concentration of PPF in the aquatic habitats to levels 

approaching those that might impact on non-target organisms. 

 

1.4.2 Potential for pyriproxyfen to impact on malaria transmission 

 

The impact of PPF on malaria transmission would be achieved through reduction of 

mosquito abundance, a key determinant of vectorial capacity and malaria transmission   

(Macdonald, 1957). In the contaminated breeding habitats, PPF acts on 4
th

 larva and 

especially on non-feeding pupal stages by preventing emergence into adults until pupae 

die without developing further. Although PPF neither kills nor prevents oviposition by 

adult mosquitoes transmitting malaria it might impact on female mosquito reproductive 

and feeding success at higher doses (Itoh et al., 1994; Sihuincha et al., 2005). Adult 

feeding inhibition has been observed in An. balabacensis (Iwanaga & Kanda, 1988), and 

sterility induction has been documented in Ae. aegypti (Sihuincha et al., 2005), An. 

gambiae s.s. (Ohashi et al., 2012) and An. arabiensis (Harris et al., 2013) following their 

exposure to PPF.  

 

Most of the existing empirical evidence on mosquito control using PPF has largely come 

from laboratory and small-scale field trials. The potential for using adult mosquitoes for 

PPF dissemination has been established in controlled environments (Itoh et al., 1994; 

Chism & Apperson, 2003; Sihuincha et al., 2005; Gaugler et al., 2011). Unlike the 

traditional chemical insecticides which quickly kill the adult after exposure, PPF does 
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not kill adult mosquito (Kawada et al., 1993; Devine et al., 2009), but it slightly 

interfere with adult‟s longevity (Ohashi et al., 2012).  

 

Field trials in Peru demonstrated that the primary vector of dengue, Ae. aegypti, can be 

used to disseminate PPF into their own breeding habitats (Devine et al., 2009). In the 

study, a 4% coverage of the mosquito resting sites with PPF resulted in 98% larval 

mortality and 42-98% adult emergence reduction. For this process to be successful wild 

mosquitoes had to pick up the larvicide from contamination surfaces and retain it until 

reaching a breeding habitat, where during the oviposition process, they contaminated the 

water. In addition, the biology and ecology of the mosquito involved contributed to the 

success of these trials. Ae. aegypti has pulvilli on the feet and a relatively hairy body, 

exhibits skip oviposition (i.e. small batch of eggs are distributed in multiples water 

bodies) and oviposits in small, multiple and mostly man-made containers, partly 

explaining the success of autodissemination approach with this species (refs).  

 

Most African anophelines have less hairy body, lack pulvilli and are not efficient skip 

ovipositor when compared to Aedes sp. mosquitoes (Chadee & Corbet, 1991; Chen et 

al., 2006; Herrera-Varela et al., 2014; Okal et al., 2015), factors which might limit 

successful auto-transfer of PPF to the targeted destinations. It can be hypothesized that 

purpose-built or contamination surfaces treated with PPF, which are highly preferred for 

visiting and resting by host-seeking and resting mosquitoes, could be developed by 

baiting the surfaces with mosquito attractants/cues such as sugar, or honey so that 

mosquitoes will visit the surfaces and stay longer while feeding  (Gary & Foster, 2004 ; 

Muller & Schlein, 2006).  Furthermore, hosts such as cattle could be used as the PPF 

contamination or sterilization strategy, exploiting their innate attractiveness to zoophagic 

and exophilic anopheline mosquitoes. In addition, creating suitable resting sites such as 
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clay pots made dark inside could retain mosquitoes over a longer period of time and 

amplify PPF uptake. Most importantly, designing suitable PPF formulations which can 

easily be picked up by mosquitoes, retained and successfully released at the aquatic 

habitats is fundamental for successful field implementation of autodissemination 

approach. 

 

Malaria vectors such as An. gambiae s.s., An. arabiensis and An. funestus utilize diverse 

and cryptic aquatic habitats within rural settings. In these settings, where numerous 

aquatic habitats of different sizes are scattered, the PPF-autodissemination strategy 

might be beneficial and an optimal solution in identifying and targeting mosquito 

breeding habitats, which cannot be effectively located with human efforts. However, 

acquisition of blood meal is a prerequisite prior to the mosquito‟s visit and transfer of 

PPF to the breeding habitats.  

 

The success of the PPF autodissemination strategy is most likely to be influenced by 

malaria mosquito host-seeking and resting behaviours which have been well 

documented elsewhere (Gillies & de Meillon, 1968; Boreham & Port, 1982). While 

malaria vectors can come into contact with PPF-treated surfaces either before or after 

blood feeding (Aiku et al., 2006; Harris et al., 2013), targeting them while resting after 

blood meal would not only ensure longer PPF-mosquito contact times during blood 

digestion but also eventual dissemination of picked-up PPF to the habitats during egg-

laying events. Importantly, suitable contamination sites that will be visited by a large 

proportion of the adult female mosquito population must be identified. Previous studies 

have suggested that bed nets, curtains, and interior house walls (Lengeler, 2004; Pluess 

et al., 2010), cattle (Rowland et al., 2001), odour baited stations (OBS) (Okumu et al., 

2010c), and clay pots (Odiere et al., 2007; Farenhorst et al., 2008) could be used to 
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expose mosquitoes to insecticides and potentially could be used to transfer PPF to 

mosquitoes.  

 

The deployment of a PPF-autodissemination strategy is envisaged to interrupt malaria 

transmission through reducing adult density, and therefore biting, by rendering the 

breeding habitats unproductive (i.e. larval source reduction). The integration of the PPF-

autodissemination technique in combination with other malaria prevention measures 

such as LLINs and IRS could simultaneously provide community-wide benefits and 

personal protection through adult mortality and reduced survival of contaminated 

mosquito populations (Ohashi et al., 2012). 

 

Furthermore, at low adult mosquito densities, where the capacity for population recovery 

is high and the existing LLINs and IRS interventions are less effective in regulating it 

(Russell et al., 2011a), the deployment of PPF-autodissemination offers the possibility to 

limit the vector population‟s potential for recovery. This could be achieved through 

robust density-dependent regulation of larval/pupal stages by rendering larval habitats 

unproductive (Killeen et al., 2002). Finally, at high levels of LLINs coverage (exceeding 

80%) the use of the PPF- autodissemination strategy could be expected to be more 

beneficial and cost-effective than extensive IRS because of its potential to target 

mosquito juveniles at aquatic habitats (Okumu & Moore, 2011; White et al., 2012).  

 

1.4.3 Evolution of resistance to PPF 

 

As with all insecticides and control measures there has been concern over the possible 

evolution of resistance to pyriproxyfen in mosquitoes. While the impetus of JHA 
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development was motivated by the assumption that they would be unable to develop 

resistance (Williams, 1967), studies have documented resistance to methoprene in 

insects such as beetles, houseflies (Cerf & Georghiou, 1972; Dyte, 1972) and in Ae. 

nigromaculis mosquitoes (Cornel et al., 2002). To date there is no evidence on PPF 

resistance development in mosquitoes (Invest & Lucas, 2008). Moreover, many studies 

have demonstrated lack of cross resistance of PPF with other classes of conventional 

insecticides, but also mosquitoes resistant to other chemical insecticides show 

susceptibility to PPF (Hemingway & Bonning, 1988; Schaefer & Mulligan III, 1991; 

Kawada et al., 1993).  

 

Following recent evidence on high level of PPF resistance demonstrated by houseflies, 

Musca domestica (Diptera: Muscidae) (Shah et al., 2015) and whiteflies, Bemisia tabaci 

(Hemiptera: Aleyrodidae) (Crowder et al., 2008), the possibility of targeted malaria 

mosquitoes to develop resistance against PPF should be considered as a potential future 

threat to this intervention. Therefore, despite the potential of integrating PPF with the 

existing tools for malaria vectors control (Nauen, 2007), PPF must be used as part of 

integrated resistance and pest management strategies (Schaefer & Mulligan III, 1991; 

Geden & Devine, 2012). 

 

1.4.4 Dry season implementation of autodissemination strategy 

 

The dry season, which is characterized by few, semi-permanent and permanent mosquito 

breeding habitats compared to rainy season (Charlwood et al., 2000; Killeen et al., 2002; 

Fillinger et al., 2004), provides an optimal timing for future field implementation of the 

autodissemination strategy in interrupting malaria transmission. Although this season 

would be associated with low mosquito abundance, it is envisaged that the effective 
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transfer of lethal PPF dosage to the breeding habitats would be derived from a PPF 

accumulation effect derived from multiple visits over the course of a mosquito‟s 

consecutive and overlapping gonotrophic cycles (Devine & Killeen, 2010).  

 

Deployment of the autodissemination strategy in the rainy season is likely to be 

impractical due to the dilution of PPF concentration in the breeding habitats by 

continuous water flooding and flushing (Devine & Killeen, 2010). Moreover, during the 

rainy season, breeding habitats are abundant and expansive, and this might pose 

challenges in attaining optimum concentration required to prevent adult emergence and 

cause lethal effect against immature mosquitoes regardless of high mosquito densities 

(Fillinger et al., 2004; Koenraadt et al., 2004).  

 

1.5 Rationale of the study 

 

Larval source management (LSM) with conventional larviciding can be an additional 

strategy to support adult vector control in Africa (WHO, 2013b; Tusting et al., 2013). 

The transfer of PPF by mosquitoes (autodissemination) as previously demonstrated with 

container breeding Aedes sp. mosquitoes (Itoh et al., 1994; Devine et al., 2009; Caputo 

et al., 2012; Suman et al., 2014) offers a possible method to overcome these limitations.  

For the first time, exploiting malaria mosquitoes to kill their own offspring presents a 

unique opportunity for sustainable malaria vector control. An additional benefit of this 

strategy is the potential to also impact mosquito vectors of other diseases and nuisance 

mosquitoes coexisting in the same habitats.  
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This study aimed to investigate and identify effective mechanisms for wild mosquitoes 

to pick up PPF and successfully transfer sufficient levels to contaminate targeted 

breeding habitats, thus preventing further adult mosquito emergence from those sites.  

 

1.5.1 Project goal and specific objectives 

 

The overall goal of the study was to evaluate the potential for exploiting adult An. 

arabiensis behaviour and ecology to disseminate PPF into mosquito breeding habitats 

for population control, and to assess its effectiveness in sterilizing adult malaria vectors, 

An. arabiensis under controlled semi-field settings. 

This goal was approached under the following specific objectives: 

1. Assess malaria vector dynamics, transmission intensity and associated risk 

factors under field settings 

2. Design and evaluate potential tools for delivering PPF to An. arabiensis 

mosquitoes under semi-field settings 

 

3. Evaluate the potential of pyriproxyfen-treated cattle shelters for sterilizing An. 

arabiensis under semi-field settings 

 

 

1.5.2 Thesis outline 

 

Chapter 2 provides a description of how entry behaviour and indoor densities of An. 

arabiensis and An. funestus are associated with different house characteristics in villages 
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in Kilombero Valley, the location where the proposed PPF-based vector control 

strategies eventually would be deployed and evaluated.  

Chapter 3 documents the recent shift in malaria vectors distribution in Kilombero 

Valley, with significant increases seen in the abundance and vectorial role of An. 

arabiensis and An. funestus and coincident reduction of An. gambiae s.s. to negligible 

levels.  

Chapter 4 aims to provide a proof of principle for autodissemination of PPF to breeding 

habitats by malaria vectors, in a semi-field system. 

Chapter 5 examines the sterilization rates in malaria vectors achieved by applying PPF 

on walls and ceiling of cattle shelters. 

Chapter 6 discusses and synthesises the research findings in terms of their implications 

for future PPF-based vector control strategies aimed at interrupting malaria transmission 

in the context of IVM, insecticide resistance and outdoor transmission. 
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CHAPTER 2 

 

A NEED FOR BETTER HOUSING TO FURTHER REDUCE INDOOR 

MALARIA TRANSMISSION IN AREAS WITH HIGH BED NET COVERAGE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results reported in this chapter have been published in a slightly different form 

as Lwetoijera et al.  Parasites & Vectors 2013, Volume 6, Issue 57 
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2.1 Abstract 

 

Introduction: The suppression of indoor malaria transmission requires additional 

interventions that complement the use of insecticide treated nets (LLINs) and indoor 

residual spraying (IRS). Previous studies have examined the impact of house structure 

on malaria transmission in areas of low transmission. This study was conducted in a high 

transmission setting and presents further evidence about the association between specific 

house characteristics and the abundance of endophilic malaria vectors. 

Methodology: Mosquitoes were sampled using CDC light traps from 72 randomly 

selected houses in two villages, at monthly intervals from 2008 to 2011 in rural southern 

Tanzania. Negative binomial regression with robust error estimates and with adjustment 

for clustering effects within houses was used to analyse the association of house 

characteristics, number of occupants and ITN usage with mean catches of malaria 

vectors (An.gambiae s.l. and An. funestus). Furthermore, analysis of linear trend between 

indoor mosquito densities and covariates was performed using correlation analysis. 

Results: A total of 36,490 female An. gambiae s.l. were collected in Namwawala village 

and 21,266 in Idete village. When both villages were combined, less number of 

mosquitoes were collected in large houses (RR = 0.66 (0.45 - 0.97)), with many (>4) 

rooms (RR = 0.50 (0.27 - 0.95)), many (>5) windows (RR= 0.44 (0.28 - 0.68)), intact net 

over windows (RR = 0.34 (0.17 - 0.69)), plastered walls (RR = 0.62 (0.43 - 0.89), metal 

roofing (RR = 0.48 (0.34 - 0.68)) relative to their reference category for mean catches 

for An. gambiae s.l., (p < 0.05). However, more mosquitoes were collected inside the 

house with eave gaps (RR= 3.3 (2.39 - 4.56, p < 0.05)) and many (>3) occupants (RR= 

1.91 (1.35 – 2.69, p < 0.05)). The presence of treated bednets had no impact in reducing 

number of mosquitoes indoor (RR= 0.74 (0.50 - 1.11, p > 0.05).  

Furthermore, a total, 2,268 An. funestus females were collected in Namwawala and 

3,398 in Idete villages. Similarly, when both villages were combined, less number of 
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mosquitoes were collected in houses with many rooms (RR = 0.65 (0.54 - 0.78)), doors 

(RR= 0.61 (0.45 - 0.82)), windows (RR= 0.84 (0.78 - 0.91)), intact net over windows 

(RR = 0.17 (0.08 - 0.39)), plastered walls (RR = 0.29 (0.17 - 0.51), metal roofing (RR = 

0.24 (0.13 - 0.43)) relative to their reference category for mean catches for An. funestus, 

(p < 0.05). Houses with eave gaps had more mosquitoes (RR = 5.55 (3.25 - 9.46, p < 

0.05)), and many occupants had no impact on An. funestus mean catches indoors (RR = 

0.64 (0.29 - 1.42, p > 0.05)). The presence of treated bednets reduced the number of 

mosquitoes indoor (RR= 0.44 (0.23 – 0.87, p < 0.05). 

Conclusion: Despite significant reductions in vector density and malaria transmission 

caused by high coverage of LLINs, high numbers of host-seeking malaria vectors are 

still found indoors partly due to house designs that favour mosquito entry. In addition to 

LLINs and IRS, significant efforts should focus on improving house design by building 

modern house structures with screened eaves, windows and doors to prevent mosquito 

entry and eliminate indoor malaria transmission.   

 

 

2.2 Introduction 

 

The An. gambiae and An. funestus complexes comprise the major and most efficient 

malaria vectors in sub-Saharan Africa (Sinka et al., 2012). Their transmission efficiency 

is mediated by their behavioural adaptation to feed indoors on humans (Gillies & de 

Meillon, 1968). To date, insecticide treated nets (LLINs) and indoor residual spraying 

(IRS) are the mainstay for controlling malaria vectors and associated malaria 

transmission (Pluess et al., 2010; WHO, 2014). Despite the huge success of these 

interventions, residual malaria transmission cannot be addressed by LLINs and IRS 

alone, even at very high coverage (Griffin et al., 2010; Kiware et al., 2012b).  Moreover, 
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their sustainability is threatened by a widespread increase in insecticide resistance in the 

target species (Bayoh et al., 2010; Ranson et al., 2011). In Senegal, the initial successes 

of an ITN distribution program were partially confounded by an increase in insecticide 

resistance and a consequent rebound in malaria incidence (Trape et al., 2011) and in 

northern Tanzania the predominant vector An. arabiensis has been reported to display 

avoidance behaviour against LLINs (Kitau et al., 2012). The integration of existing 

interventions with environmental management and socio-economic development 

through house improvement and screening offers a non-insecticidal, complementary 

approach to increasing protection against mosquito bites (Baragatti et al., 2009; Graves 

et al., 2009). These additional interventions could enhance the interruption of malaria 

transmission through the reduction and prevention of human-vector contacts inside 

human dwellings.  It has long been established that the transmission of many vector-

borne diseases is facilitated by house designs that favour mosquito entry (Schofield & 

White, 1984; Webb, 1985; (Lindsay et al., 2002 ; Kumar et al., 2004) and that housing 

improvements and screening have made substantial contributions to the control and 

elimination of malaria vectors in many richer countries (Lindsay et al., 2002). Therefore, 

understanding house risk factors that are associated with reduction of indoor mosquito 

bites and disease transmission in different settings is crucial for disease vector control 

and elimination. 

 

Several studies have identified and documented various house characteristics associated 

with mosquito entry. Presence of eave gaps, lack of a ceiling and lack of screening over 

windows and doors proved to be the major contributors to mosquito entry (Lindsay & 

Snow, 1988; Lindsay et al., 2002; Lindsay et al., 2003; Kirby et al., 2008; Kirby et al., 

2009). Furthermore, it has been shown in a randomised control trial that blocking all 

potential house entry points for mosquitoes substantially reduces vector densities and 

entomological inoculation rates (EIR) (Kirby et al., 2009). Other than protection against 
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malaria mosquitoes, the use of screened houses offers protection against nuisance bites, 

other mosquito borne diseases (Kumar et al., 2004; Ogoma et al., 2010) and it associated 

anaemia reduction in children (Kirby et al., 2009).   

 

While this strategy is deemed efficient in reducing indoor mosquito biting, malaria 

morbidity and anaemia in children in low malaria transmission settings (Lindsay et al., 

2002; Kirby et al., 2009), its impact was yet to be examined in areas experiencing 

moderate to high malaria transmission and with high LLINs coverage such as the 

Kilombero valley in south-eastern Tanzania. However, a most recent study conducted in 

western and south-eastern Uganda in areas with moderate to high malaria transmission 

has demonstrated lack of an association between house screening/improvement and 

indoor vector densities where malaria vectors are less endophagic (Wanzirah et al., 

2015).  

 

A recent study in northern Tanzania has shown a strong association between houses, 

individual and behavioural risk factors and malaria transmission that were 

epidemiologically assessed by testing the presence of malaria parasites in children 

during household survey (Winskill et al., 2012). However, the authors argued that it was 

important to complement these findings with entomological data in order to have a fuller 

understanding of malaria transmission inside human dwellings (Winskill et al., 2012). 

This study therefore assessed the impact of house characteristics on indoor vector 

abundance in communities with a high coverage of ITNs. 
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2.3 Methods and materials 

 

Study site 

The study was carried out in Namwawala and Idete villages located in the flood plain of 

the Kilombero River (8.1° S and 36.6° E) in south-eastern Tanzania (Figure 2.3.1). The 

epidemiology of malaria transmission and associated disease vector species composition 

within these villages has been well studied and documented over the past years (Killeen 

et al., 2007; Russell et al., 2010). Both villages experience an annual rainy season (Dec 

– May) and the main crops are rice and maize. However, both villages have a relatively 

similar number of houses (Namwawala = 804 and Idete = 844), Namwawala has a high 

number of households (3909) compared to Idete (2932). Houses in Idete are built on 

relatively elevated areas compared to Namwawala. Approximately 92% of community 

members sleep under a treated net (Russell et al., 2010). 
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Figure 2.3.1:  Kilombero and Ulanga districts (8.1°S and 36.6°E) in Tanzania showing 

Namwawala and Idete villages (left) and spatial distribution of sentinel houses used for 

mosquito sampling (right) (Russell et al., 2013). 

 

Study design 

This longitudinal study was conducted over four years. A total of 72 houses from each 

village were randomly selected from Ifakara Health Institute (IHI) Demographic 

Surveillance System household list (Schellenberg et al., 2001). All selected houses were 

geo-located using a handheld GPS (eTrex, Vista, Garmin, USA).  Each of the 72 houses 

was sampled monthly (i.e. 6 houses per day, 4 days per week and 3 weeks per month). 

This longitudinal study was carried out between January 2008 and December 2011, 

during which mosquitoes were sampled every month during 2008 and 2011, for 6 

months of the wet/rain season (January to June) in 2009 and for 6 months of the dry 

season (July to December) in 2010.  This totals 36 months of sampling. 

 

House risk factors 

Structured questionnaires were used to record ownership, number and status of bed nets 

(either treated or untreated) including the one LLINs provided by the research team in 

this study, and the number of house occupants. The house characteristics which were 

recorded include house size, number of sleeping rooms, presence and size of eave gaps, 

number of windows, presence of window screening, number of doors, presence of 

ceiling, wall and roof types. These factors were correlated with mosquito densities 

indoors (an indicator of human biting rate) over time in both villages, at house level and 

were monitored yearly to accommodate any significant changes. Representative house 

types, which are commonly found in the study area, are shown in Figure 2.3.2 
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Figure 2.3.2:  Representative house types commonly available in Idete and Namwawala 

villages. A traditional house (A) and a modern house (B) 

 

Mosquito sampling and processing 

Mosquitoes were sampled using miniature Centre for Disease Control (CDC) light traps 

(model 512, USA). One CDC light trap was set per house, placed 1 – 1.5m above the 

ground close to the foot of a bed with an occupant sleeping under a treated net, and left 

to run for 12 h (7pm-7am). For every participating house, one LLINs (Olyset, A to Z 

Textiles Mills, Arusha, Tanzania) was provided to protect the bed occupant where the 

CDC trap was set. Each morning of a sampling night, mosquitoes were collected and 

killed using chloroform and were morphologically identified in the field. Furthermore, 

female mosquitoes were classified as being unfed, partially fed, and fully fed or gravid 

(M. Gillies & de Meillon, 1968). Sub-samples of five mosquitoes from each trap were 

individually stored inside a tube containing cotton wad and silica gel beneath. 

Polymerase chain reaction (PCR) was used for identification of Anopheles gambiae 

(Scott et al., 1993) and An. funestus Giles (Koekemoer et al., 2002) complexes, whereas 

an enzyme-linked immune-sorbent assay (ELISA) was used to determine sporozoite 
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infection in malaria vectors (Burkot et al., 1984). Unprocessed mosquito samples were 

stored on silica gel at room temperature.  

 

Data analysis 

To assess the impact of individual house factors on the mean catches of An. gambiae s.l. 

and An. funestus for both villages, data analyses were performed using negative 

binomial regression with robust error estimates and with adjustment for clustering 

effects within houses, in STATA 13 software package (StataCorp 2013.  Effect sizes for 

each house factor are shown as incidence rate ratios (IRRs) with their 95% confidence 

intervals.  Effect sizes significance at the conventional 5% level (or higher) are shown in 

bold type; effect sizes borderline significant (i.e. at the 10% level) are underlined. For 

each species of a mosquito, the two villages were analysed separately and then 

combined; for the combined village analyses, effect sizes were covariates adjusted for 

differences between villages.  

 

We categorized the house factors as follows: Eave gap: present or absent, eave gap size 

(small: < 9 cm, medium: 9 - 15 cm, large > 15cm), roof type: grass or metal roofs, wall 

type: mud or cement, number of occupants: up to three or more than three, windows: up 

to three or more than three, netting over window: intact, present but damaged or absent, 

doors: one or more than one, rooms: one or more than one, house size: small or large 

(small house considered to be the one with 1 room and/or 1 door and less than 37.4
 
m

3
), 

bed nets: treated or untreated. All houses had nets, and they were considered treated if 

the number of treated nets divided by the total number of nets in the house was greater 

than 0.5; otherwise they were classed as untreated.  
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In addition, a correlation analysis (linear trend) was performed for covariates that were 

either continuous or ordinal and reduced to categories. The generated RR values 

correlated the proportional change in mosquito numbers for a unit change in the 

covariate. The percentage relative effect for increasing risk was calculated as (RR – 1) × 

100, while for decreasing risk was (1-RR) ×100.  

 

Ethical clearance and protection of human participants 

The study approval was granted by the Ifakara Health Institute Institutional Review 

Board (IHRDC/IRB/No.A-32) and the National Institute of Medical Research 

(NIMR/HQ/R.8a/Vol. IX/764). The benefits and possible risks associated with the study 

were explained to all house occupants before commencement. After consenting, the head 

of the house was asked to sign two copies of the informed consent forms, of which, one 

remained with the head of the house and the other copy was kept by the study 

investigator. 

 

 

2.4 Results 

 

Mosquito collections 

A total of 36490 female An. gambiae s.l., were collected in Namwawala village 

compared to 21266 from Idete village. Of these, approximately 98% were non-blood 

fed, 1.7% were blood fed and the remaining 0.3% were gravid. Namwawala had fewer 

female An. funestus 2268 than Idete village 3398. Although there were variations in 

catches, changes in vector abundance patterns between villages were similar over time. 

A PCR analysis of 6755 mosquitoes of the Anopheles gambiae complex yielded 607 
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(9%) An. gambiae s.s. and 6148 (91%) An. arabiensis. Furthermore, a sub-sample of 

3025 An. funestus analysed for species identification comprised 2805 (93%) An. funestus 

s.s., 120 (4%) An. rivulorum, and 100 (3%) An. leesoni.  

 

House risk factors associated with An. gambiae s.l. indoor abundance 

Table 2.4.1 shows effect size with confidence intervals on the mean catches for An. 

gambiae s.l., and the significance level of each house factor when assessed at individual 

or combined village levels. More mosquitoes were collected during the rainy season 

compared to the dry season (p < 0.05), with up to 99% significant reduction in mosquito 

density recorded between seasons in both villages, either separately or combined.  

 

All factors, except bed nets, had a significant impact (p < 0.05) on the mean catches of 

indoor mosquitoes when both villages were combined. However, the impact of 

individual factors on indoor mean catches was between villages and when both villages 

were combined. All factors had an impact on indoor mosquito entry with exception of 

number of rooms and wall type in Idete village, whereas bed net status and house size 

did so in Namwawala village. 

 

Houses with eave openings had 146% increase in An. gambiae s.l. mean catches in Idete 

(RR= 2.46 (1.67 - 3.55)), a 550% increase in Namwawala (RR= 6.50 (4.40 - 9.60)) and a 

230% increase when both villages were combined (RR= 3.3 (2.39 - 4.56)) compared to 

when eaves were closed.  Higher mosquito mean catches were correlated with houses 

with medium eave sizes (9-15cm) as seen by increases of 88% in Idete 148% in 

Namwawala and 120% when both were combined, (p < 0.05).  This was not the case 

with houses where eave sizes were >15cm (p > 0.05), when compared to houses with 
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small eave sizes at both villages, either separately or combined.  Houses with more 

people inside (>3) had high numbers of mosquitoes (increase of 80% in Idete; 97% in 

Namwawala; 91% when villages are combined) compared to houses with three or fewer 

people (p < 0.05).  

 

Mosquito mean catches significantly reduced with increased number of doors in 

Namwawala village (RR = 0.58 (0.44 - 0.75), p < 0.05)) and both villages were 

combined (RR = 0.77 (0.64 - 0.91, p < 0.05)) but not in Idete village (RR = 0.84 (0.67 - 

1.05). While houses with two doors consistently had lower number of mosquitoes at 

village level and when combined (p < 0.05), the effect size within of more than three 

doors was only observed in Namwawala village (RR = 0.29 (0.18 - 0.45, p <0.05)) but 

not in Idete and when villages were combined (p > 0.05).   

 

There was a strong correlation between number of windows and mean mosquito catches 

at village level; Idete (RR = 0.90 (0.87 - 0.94, p < 0.05)), Namwawala (RR = 0.83 (0.71 

- 0.98, p < 0.05)) and when combined (RR = 0.89 (0.85 - 0.94, p < 0.05)).  Although, 

houses with three to four windows had no significant difference in terms of mosquito 

mean catches, only houses with five or more windows had significantly lower number of 

mosquitoes mean catches at village levels as well as when combined (p < 0.05). 

 

Similarly, houses with many rooms were correlated with low numbers of mosquito 

collections in Namwawala village and when both villages were combined (p < 0.05) but 

not in Idete village (p < 0.05). Compared to a window with no netting, a house with 

intact netting on the window had 55% lower indoor mean catches of An. gambiae s.l. in 

Idete (RR = 0.45 (0.19 - 1.08), p > 0.1)), 81% lower in Namwawala village (RR = 0.19 



57 

 

(0.13 – 0.29)), p < 0.05)) and 66% when both villages were combined (RR = (0.34  (0.17 

- 0.69)), p < 0.05)). However, no decreases in mosquito catches were observed in houses 

with damaged netting on the windows compared to those without net (p > 0.05). 

Furthermore, houses with either cement plastered walls or metal roofing had 54% lower 

numbers of mosquitoes (RR = 0.48 (0.30 - 0.76)) in Idete, and 38% lower when both 

villages were combined (RR = 0.62 (0.43 - 0.89)), when compared to mud walls and 

grass/thatch roofing (p < 0.05). There was no difference in the number of mosquito 

caught between houses with cement plastered walls with metal roofing and those with 

mud walls and grass/thatch roofing in Namwawala village (p > 0.05). 

 

The presence of bednets was associated with lower mean catches, approximately 38% 

significant reduction compared to those with treated bed nets in Idete village (RR = 0.62 

(0.39 - 0.97), p < 0.05)) and 26% non-significant reduction when both villages where 

combined (p > 0.05). However, this was not the case in Namwawala village where 

houses with treated nets had 32% higher mosquito mean catches (RR = 1.32 (0.69 - 

2.50)), than those with untreated nets (p < 0.05). The ownership rate of nets in 

Namwawala village was 89% for treated and 11% for untreated nets, whereas in Idete 

village it was 50% for treated and 50% for untreated nets. 
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  Table 2.4.1 Factors associated with Anopheles gambiae s.l. density in Idete and Namwawala villages 

An. gambiae s.l.  Idete (n = 70)  Namwawala (n = 72)  Both villages combined (n = 142) 

Factor  N Mean (95% CI) RR (95% CI)  N Mean (95% CI) RR (95% CI)  N Mean (95% CI) RR (95% CI)† 

             

Season                     rainy  70 18.6 (14.0 : 23.2) ---  72 32.8 (24.0 : 41.5) ---  142 25.7 (20.7 : 30.7) --- 

                               dry  70   0.3 (<0.1 :   0.6) 0.017 (0.007 : 0.041)  72   0.3 (  0.2 :   0.3) 0.009 (0.007 : 0.012)  142   0.3 (  0.2 :   0.5) 0.012 (0.008 : 0.020) 

             

Number of rooms          1  11   9.3 (5.0 : 13.5) ---  18 16.2 (  8.0 : 24.4) ---    29 13.7 (  8.1 : 19.3) --- 

2  26 10.9 (6.3 : 15.5) 1.175 (0.637 : 2.167)  39 18.6 (12.3 : 25.0) 1.152 (0.632 : 2.102)    65 15.5 (11.2 : 19.7) 1.150 (0.732 : 1.806) 

3  21   9.7 (5.9 : 13.6) 1.050 (0.580 : 1.901)    8 11.0 (  4.4 : 17.6) 0.679 (0.314 : 1.469)    29 10.1 (  6.8 : 13.4) 0.869 (0.529 : 1.427) 

4+  12   6.1 (2.1 : 10.2) 0.662 (0.300 : 1.461)    7   5.4 (  1.3 :   9.6) 0.335 (0.135 : 0.828)    19   5.9 (  2.9 :   8.8) 0.502 (0.266 : 0.948) 

linear trend  70 --- 0.881 (0.748 : 1.038)  72 --- 0.680 (0.532 : 0.869)  142 --- 0.822 (0.712 : 0.948) 

             

Number of doors           1  30 11.9 (7.6 : 16.2) ---  51 18.3 (12.7 : 23.9) ---  81 16.0 (12.1 : 19.8)  

2  30   6.5 (4.3 :   8.7) 0.545 (0.335 : 0.886)  18 10.5 (  6.4 : 14.7) 0.575 (0.352 : 0.939)  48   8.0 (  5.9 : 10.2) 0.551 (0.391 : 0.777) 

3+  10 10.8 (4.5 : 17.1) 0.906 (0.462 : 1.775)    3   5.3 (  3.4 :   7.1) 0.287 (0.182 : 0.452)  13   9.4 (  4.5 : 14.4) 0.739 (0.397 : 1.374) 

linear trend  70 --- 0.840 (0.674 : 1.046)  72 --- 0.579 (0.444 : 0.753)  142 --- 0.765 (0.643 : 0.909) 

             

Number of windows  0-2  18 13.6 (7.4 : 19.9) ---  44 17.0 (11.2 : 22.9) ---  62 16.1 (11.5 : 20.6) --- 

3-4  26   9.3 (5.9 : 12.8) 0.684 (0.384 : 1.219)  17 20.4 (12.5 : 28.2) 1.196 (0.719 : 1.990)  43 13.7 (  9.7 : 17.7) 0.898 (0.609 : 1.324) 

5+  26   6.7 (4.1 :   9.3) 0.494 (0.275 : 0.886)  11   4.6 (  2.2 :   7.0) 0.271 (0.146 : 0.504)  37   6.1 (  4.1 :   8.0) 0.437 (0.280 : 0.682) 

linear trend  70 --- 0.904 (0.865 : 0.944)  72 --- 0.834 (0.712 : 0.977)  142 --- 0.893 (0.851 : 0.936) 

             

Netting over window             

absent  50 10.7 (  7.7 : 13.7) ---  60 17.1 (12.6 : 21.7) ---  110 14.2 (11.4 : 17.1) --- 

present but damaged  16   6.5 (  3.1 :   9.9) 0.605 (0.337 : 1.084)    9 11.6 (   0   : 23.9) 0.679 (0.232 : 1.983)    25   8.4 (  3.3 : 13.6) 0.631 (0.357 : 1.157) 

intact    4   4.9 (  0.8 :   8.9) 0.452 (0.190 : 1.075)    3   3.2 (  2.2 :   4.4) 0.192 (0.127 : 0.292)      7   4.2 (  1.8 :   6.6) 0.338 (0.166 : 0.690) 

             

Wall type                   mud  19 15.4 (  9.4 : 21.4) ---  44 17.5 (11.8 : 23.2) ---  63 16.8 (12.5 : 21.2) --- 

cement  51   7.3 (  5.3 :   9.3) 0.475 (0.297 : 0.758)  28 13.3 (  7.4 : 19.2) 0.763 (0.445 : 1.308)  79   9.5 (  7.0 : 12.1) 0.618 (0.429 : 0.890) 

             

† : adjusted for differences between Villages, Significant effect size of a factor at 5% are bolded, and factor effect size with borderline significant (at 10% level) are underlined  
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Table 2.4.1 Factors associated with Anopheles gambiae s.l. density in Idete and Namwawala villages (contd.) 

An. gambiae s.l.  Idete (n = 70)  Namwawala (n = 72)  Both villages combined (n = 142) 

Factor  N Mean (95% CI) RR (95% CI)  N Mean (95% CI) RR (95% CI)  N Mean (95% CI) RR (95% CI)† 

             

Roof type                 grass  24 13.8 (  9.0 : 18.7) ---  53 18.6 (13.2 : 24.0) ---    77 17.1 (13.1 : 21.1) --- 

metal  46   7.1 (  5.0 :   9.3) 0.516 (0.326 : 0.815)  19   8.4 (  4.7 : 12.1) 0.451 (0.269 : 0.759)    65   7.5 (  5.7 :   9.4) 0.484 (0.343 : 0.683) 

             

Eaves gap              absent  24   4.8 (3.6 :   6.1) ---  10   2.8 (  1.9 :   3.6) ---    34   4.2 (  3.3 :   5.1) --- 

present  46 11.9 (8.6 : 15.2) 2.455 (1.699 : 3.546)  62 18.0 (13.4 : 22.7) 6.501 (4.403 : 9.598)  108 15.4 (12.4 : 18.5) 3.300 (2.387 : 4.562) 

             

Eaves size                            

small (<9 cm)  26   6.5 (3.8 :   9.2) ---  15   9.5 (  2.3 : 16.7) ---  41   7.6 (  4.6 : 10.8) --- 

medium (9 – 15 cm)  30 12.3 (7.8 : 16.7) 1.879 (1.091 : 3.236)  34 23.5 (16.3 : 30.7) 2.479 (1.109 : 5.541)  64 18.3 (13.8 : 22.9) 2.196 (1.381 : 3.491) 

large (>15 cm)  14   9.0 (5.6 : 12.5) 1.387 (0.797 : 2.414)  23   9.0 (  6.0 : 11.1) 0.904 (0.405 : 2.014)  37   8.7 (  6.7 : 10.8) 1.086 (0.682 : 1.727) 

linear trend  -- --- 1.022 (0.999 : 1.046)   --- 0.986 (0.956 : 1.018)   --- 1.007 (0.989 : 1.026) 

             

Number of occupants                   

up to 3  15   5.7 (3.4 :   8.0) ---  34 10.4 (  6.8 : 13.9) ---  49   9.1 (  6.4 : 11.7) --- 

more than 3  55 10.3 (7.5 : 13.1) 1.804 (1.117 : 2.914)  38 20.5 (13.7 : 27.3) 1.973 (1.233 : 3.157)  93 14.5 (11.1 : 17.8) 1.907 (1.354 : 2.687) 

linear trend  -- --- 1.016 (0.911 : 1.133)   --- 1.199 (1.084 : 1.326)   --- 1.125 (1.043 : 1.214) 

             

Bed net status             

untreated  47 10.6 (  7.5 : 13.7) ---    6 12.3 (  5.0 : 19.5) ---    53 10.8 (  8.0 : 13.6) --- 

Treated  23   6.5 (  4.2 :   8.9) 0.615 (0.393 : 0.966)  66 16.1 (11.6 : 20.6) 1.315 (0.693 : 2.496)    89 13.9 (10.3 : 17.4) 0.744 (0.498 : 1.112) 

             

House size                small  11 17.2 (  8.3 : 26.0) ---  32 17.7 (10.5 : 25.0) ---  43 17.6 (11.8 : 23.4) --- 

large  59   8.0 (  6.0 : 10.0) 0.466 (0.266 : 0.818)  40 14.3 (  9.5 : 19.1) 0.805 (0.479 : 1.355)  99 10.6 (  8.2 : 13.0) 0.659 (0.446 : 0.974) 

             

† : adjusted for differences between Villages, Significant effect size of a factor at 5% are bolded, and factor effect size with borderline significant (at 10% level) are underlined. 
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House risk factors associated with An. funestus indoor abundance 

 

The effect sizes (with confidence intervals) of the individual house risk characteristics, 

number of occupants and the bed-net status with their association with the mean catches 

for An. funestus for both villages, either individually or combined, are presented in Table 

2.4.2. The density of mosquitoes changed with seasons, although the changes were not 

consistent across villages. While there was a reduction of 48% in mosquitoes collected 

during the dry season compared to the rainy season, (RR= 0.52 (0.30 - 0.89, p < 0.05)) 

in Idete village, in Namwawala mosquito catches increased slightly (1.4%) but the 

increase was not significant (RR = 1.01 (0.71 - 1.45), p > 0.05)).  When both villages 

were combined, the mean catches of mosquitoes remained unchanged across seasons (p 

>0.05). However, when the probability of significance was adjusted to 10% from 5%, a 

significant decrease of 27.4% in the mean An. funestus catch in the dry season compared 

to rainy season was observed when both villages were combined, (RR = 0.73 (0.54 - 

1.00), p < 0.1)).  

 

 

The presence of eave openings in the house correlated with increased mean catches of 

An. funestus at village level, approximately 4 times in Idete (RR = 4.34 (2.26 - 8.42), 12 

times more in Namwawala (RR = 12.04 (6.34 - 22.87), and 6 times when both villages 

were combined (RR =  5.55 (3.25 - 9.46)) compared to when eave gaps were absent (p < 

0.05).  Although increases in mosquito mean catches were significantly associated with 

medium (RR = 2.94 (1.04 - 8.35)) and large (RR = 3.33 (1.45 - 7.63)) eave sizes 

compared to houses with small eaves (< 9cm) in Idete village, the changes in mean 

catches in Namwawala village and when both villages were combined were not 

significant (p> 0.05). Houses of larger size and higher numbers of people inside, either 

at village level or both villages combined, did not affect An. funestus mean catches in 

those houses when compared to small houses and houses with fewer people respectively 
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(p > 0.05). Similarly, increases in number of rooms or doors in the houses were 

correlated with decrease in mean catches of An. funestus in both villages either 

separately or combined (p < 0.05).  In Idete and Namwawala, houses with more than 

four rooms had 78.7% and 89.7% reductions in mosquito mean catches respectively 

compared to the houses with one room (p < 0.05). Although the mean catches in houses 

with two rooms remained unchanged compared to houses with one room (p > 0.05), 

houses with three rooms had a 63.4% reduction in the mean catches when both villages 

were combined (p < 0.05) compared to houses with one room. Similarly, houses with 

two and more than three doors had 62.3% and 62.7% reduction respectively compared to 

houses with one door (p < 0.05) between study villages, either separately or combined.  

 

 

Increases in numbers of windows were correlated with a decrease in mean catches of An. 

funestus in both villages either separately or combined (p < 0.05).  Houses with > 5 

windows had mean catches that were significantly (p < 0.05) lower than houses with 0 - 

2 windows in Idete (77.3%), Namwawala (90.4%) and both (83.8%). However, there 

was no difference of mosquito mean catches between houses with 0 – 2 windows and 

those with 3 – 4 windows (p > 0.05).   Furthermore, the presence of netting over 

windows, whether damaged or intact, was associated with reduction in the mean catches 

in both villages either separately or combined (p < 0.05). The mean catches of An. 

funestus were lower (p < 0.05) in the houses with cement-plastered walls in Idete village 

(85.5% reduction) and with both villages combined (81% reduction) than in houses 

made of mud walls. However, there was no difference in the mean catches in 

Namwawala village.  Houses with metal roofs had lower mosquito mean catches of 

83.7% in Idete, 63.4% in Namwawala, and 76.5% when both villages combined, 

compared to grass roofs.  
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Although the presence of treated bed nets did not impact mosquito catches when villages 

were separate (p > 0.05), when villages were combined, a reduction of approximately 

56% was recorded in the presence of treated bednets when compared to the untreated 

bednets (p < 0.05). Furthermore, there was only a borderline reduction of 50.3% in the 

mean catches in Idete (p < 0.1) but not in Namwawala village (p > 0.1). 
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Table 2.4.2 Factors associated with Anopheles funestus density in Idete and Namwawala villages 

An. funestus  Idete (n = 70)  Namwawala (n = 72)  Both villages combined (n = 142) 

Factor  N Mean (95% CI) RR (95% CI)  N Mean (95% CI) RR (95% CI)  N Mean (95% CI) RR (95% CI)† 

             

Season                      Rainy  70 2.00 (1.16 : 2.85) ---  72 0.94 (0.53 : 1.35) ---  142 1.47 (1.00 : 1.95) --- 

Dry  70 1.04 (0.10 : 1.99) 0.520 (0.303 : 0.890)  72 0.96 (0.42 : 1.49) 1.014 (0.709 : 1.451)  142 1.00 (0.47 : 1.52) 0.726 (0.526 : 1.002) 

             

Number of rooms          1  11 2.30 (0.32 : 4.29) ---  18 1.26 (0.15 : 2.36) ---    29 1.63 (0.62 : 2.64) --- 

2  26 2.21 (0.15 : 4.28) 0.960 (0.275 : 3.348)  39 1.07 (0.44 : 1.70) 0.851 (0.300 : 2.415)    65 1.53 (0.61 : 2.45) 0.887 (0.396 : 1.989) 

3  21 0.89 (0.40 : 1.38) 0.386 (0.141 : 1.053)    8 0.48 (0.00 : 1.02) 0.383 (0.095 : 1.547)    29 0.77 (0.39 : 1.15) 0.366 (0.158 : 0.847) 

4+  12 0.49 (0.34 : 0.64) 0.213 (0.087 : 0.523)    7 0.13 (0.01 : 0.25) 0.103 (0.030 : 0.357)    19 0.36 (0.23 : 0.49) 0.168 (0.080 : 0.351) 

linear trend  70 --- 0.682 (0.554 : 0.839)  72 --- 0.552 (0.398 : 0.768)  142 --- 0.648 (0.537 : 0.782) 

             

Number of doors            1  30 2.44 (0.52 : 4.37) ---  51 1.14 (0.53 : 1.75) ---    81 1.62 (0.81 : 2.43) --- 

2  30 0.78 (0.35 : 1.20) 0.318 (0.124 : 0.816)  18 0.53 (0.12 : 0.95) 0.468 (0.185 : 1.183)    48 0.68 (0.38 : 0.99) 0.377 (0.194 : 0.734) 

3+  10 0.97 (0.17 : 1.77) 0.397 (0.129 : 1.219)    3 0.24 (0.08 : 0.40) 0.210 (0.090 : 0.493)    13 0.79 (0.16 : 1.42) 0.372 (0.149 : 0.927) 

linear trend  70 --- 0.640 (0.449 : 0.912)  72 --- 0.490 (0.287 : 0.836)  142 --- 0.605 (0.446 : 0.821) 

             

Number of windows  0-2  18 1.96 (0.77 : 3.16) ---  44 1.19 (0.50 : 1.88) ---    62 1.41 (0.81 : 2.01) --- 

3-4  26 2.27 (0.18 : 4.35) 1.153 (0.390 : 3.405)  17 0.92 (0.32 : 1.53) 0.777 (0.329 : 1.838)    43 1.73 (0.45 : 3.01) 0.891 (0.447 : 1.776) 

5+  26 0.45 (0.34 : 0.56) 0.229 (0.121 : 0.436)  11 0.11 (0.03 : 0.20) 0.096 (0.038 : 0.244)    37 0.34 (0.25 : 0.44) 0.162 (0.094 : 0.281) 

linear trend  70 --- 0.863 (0.805 : 0.926)  72 --- 0.747 (0.620 : 0.901)  142 --- 0.841 (0.779 : 0.909) 

             

Netting over window             

absent  50 1.93 (0.72 : 3.13) ---  60 1.11 (0.58 : 1.64) ---  110 1.48 (0.87 : 2.10) --- 

present but damaged  16 0.50 (0.30 : 0.70) 0.259 (0.125 : 0.536)    9 0.21 (0.12 : 0.29) 0.185 (0.100 : 0.342)    25 0.39 (0.25 : 0.53) 0.228 (0.135 : 0.385) 

intact    4 0.48 (0.16 : 0.81) 0.250 (0.101 : 0.616)    3 0.07 (   0   : 0.16) 0.062 (0.015 : 0.246)      7 0.31 (0.06 : 0.55) 0.173 (0.076 : 0.392) 

             

Wall type                   mud  19 4.10 (1.17 : 7.03) ---  44 1.16 (0.45 : 1.87) ---  63 2.04 (0.99 : 3.10) --- 

cement  51 0.59 (0.44 : 0.75) 0.145 (0.069 : 0.306)  28 0.64 (0.31 : 0.97) 0.548 (0.249 : 1.204)  79 0.61 (0.46 : 0.76) 0.290 (0.165 : 0.509) 

             

† : adjusted for differences between Villages, Significant effect size of a factor at 5% are bolded, and factor effect size with borderline significant (at 10% level) are underlined.  
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 Table 2.4.2 Factors associated with Anopheles funestus density in Idete and Namwawala villages (contd.) 

An. funestus  Idete (n = 70)  Namwawala (n = 72)  Both villages combined (n = 142) 

Factor  N Mean (95% CI) RR (95% CI)  N Mean (95% CI) RR (95% CI)  N Mean (95% CI) RR (95% CI)† 

             

Roof type                 grass  24 3.38 (1.03 : 5.73) ---  53 1.15 (0.56 : 1.74) ---    77 1.85 (0.98 : 2.71) --- 

metal  46  0.55 (0.42 : 0.69) 0.163 (0.079 : 0.337)  19  0.42 (0.07 : 0.77) 0.366 (0.141 : 0.954)    65  0.51 (0.37 : 0.65) 0.235 (0.127 : 0.434) 

             

Eaves gap              absent  24 0.48 (0.37 : 0.58) ---  10 0.09 (0.05 : 0.13) ---    34 0.36 (0.26 : 0.45) --- 

present  46  2.08 (0.77 : 3.40) 4.359 (2.258 : 8.415)  62  1.10 (0.58 : 1.61) 12.04 (6.339 : 22.87)  108  1.51 (0.88 : 2.14) 5.549 (3.254 : 9.461) 

             

Eaves size                            

small (<9 cm)  26 0.67 (0.37 : 0.97) ---  15 0.98 (   0    : 2.15) ---  41 0.78 (0.31 : 1.26) --- 

medium (9 – 15 cm)  30  1.96 (0.07 : 3.85) 2.941 (1.036 : 8.354)  34  1.10 (0.62 : 1.58) 1.116 (0.320 : 3.893)  64  1.49 (0.59 : 2.40) 1.866 (0.788 : 4.419) 

large (>15 cm)  14  2.22 (0.63 : 3.81) 3.327 (1.450 : 7.634)  23  0.70 (   0    : 1.62) 0.714 (0.125 : 4.087)  37  1.28 (0.42 : 2.14) 1.565 (0.586 : 4.181) 

linear trend  -- --- 1.045 (1.016 : 1.074)   --- 0.993 (0.926 : 1.065)   --- 1.023 (0.992 : 1.056) 

             

Number of occupants                   

up to 3  15 3.14 (  0    : 7.09) ---  34 0.96 (0.24 : 1.67) ---  49 1.58 (0.32 : 2.84) --- 

more than 3  55  1.13 (0.66 : 1.61) 0.360 (0.098 : 1.324)  38  0.94 (0.38 : 1.50) 0.980 (0.384 : 2.502)  93  1.05 (0.70 : 1.41) 0.637 (0.286 : 1.416) 

linear trend  -- --- 0.790 (0.655 : 0.953)   --- 1.027 (0.871 : 1.211)   --- 0.926 (0.822 : 1.043) 

             

Bed net status             

Untreated  47 1.78 (0.56 : 3.01) ---    6 2.37 (   0    : 5.40) ---    53 1.85 (0.72 : 2.98) --- 

Treated  23  0.87 (0.58 : 1.20) 0.497 (0.233 : 1.061)  66  0.81 (0.44 : 1.19) 0.344 (0.090 : 1.313)    89  0.83 (0.54 : 1.12) 0.443 (0.226 : 0.871) 

             

House size                small  11 2.42 (0.62 : 4.23) ---  32 1.23 (0.33 : 2.14) ---  43 1.54 (0.72 : 2.36) --- 

large  59  1.35 (0.38 : 2.33) 0.559 (0.202 : 1.551)  40  0.73 (0.37 : 1.09) 1.231 (0.597 : 2.535)  99  1.10 (0.51 : 1.69) 0.583 (0.300 : 1.133) 

             

† : adjusted for differences between Villages, Significant effect size of a factor at 5% are bolded, and factor effect size with borderline significant (at 10% level) are underlined.  
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2.5 Discussion 

 

Despite high coverage and extensive usage of insecticide treated nets in rural 

communities of southern Tanzania (Russell et al., 2010), partly designed to deter and 

divert mosquitoes from entering houses (Okumu & Moore, 2011), a high number of 

malaria vectors are still found indoors with an average of 22.2 (CI=16.9 – 27.5) An. 

gambiae s.l. and 1.4 (CI= 1.1 – 1.6) An. funestus mosquitoes per trap night per house in 

Namwawala.  In addition, an average of 13.1 (CI=10.9 – 15.3) An.gambiae s.l. and 2.1 

(CI=1.6 – 2.6) An. funestus were collected in Idete per trap night in a house. 

 

Small houses, constituting the minority of houses in the study area, characterized by 

relatively low numbers of windows, doors and rooms were associated with relatively 

high densities of malaria vectors. The correlation matrix also indicated a strong 

association between small houses (with low number of rooms, doors and windows) and 

higher indoor mosquito entry. This increase was associated with the possibility that 

smaller houses are likely to concentrate more human odours as result of poor air 

circulation and more warm, which would attract high mosquito numbers. Conversely, 

houses with more sleeping rooms had a lower density of vectors because they usually 

have more sleeping spaces, which is likely to encourage consistent use of bed nets by 

sleepers (Toe et al., 2009; Iwashita et al., 2010). Moreover, houses with many rooms are 

likely to have more nets, which collectively might reduce the number of mosquitoes 

indoors. 

 

Houses made of mud walls and grass roofs had an increased risk of mosquito bites 

indoors. Such houses create cooler, darker conditions favoured by resting mosquitoes 

(Harbison et al., 2006; Odiere et al., 2007). Moreover, mud walls as well as grass roofs 
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often have crevices used by mosquitoes to enter the houses unlike cement walls and 

metal roofs (Kirby et al., 2008). However, in Namwawala village, houses with cement-

plastered walls had similar risk of indoor mosquito entry when compared to houses with 

mud walls. This might be due to cracks in the plastered walls that allowed An. gambiae 

s.l. and An. funestus entry, but which were not documented during the house 

characteristics survey. 

 

In addition, the presence of intact screening over windows prevented indoor entry of An. 

funestus and An. gambiae s.l. Although damaged screening over windows appeared to 

significantly reduce the mean catches of An. funestus between study villages and when 

combined, there was no protective effect of damaged screening against An. gambiae s.l.  

While houses with damaged screening are likely to poses similar risk as those without 

screening, the observed protection of damaged screening against An. funestus might be 

unrealistic probably due to the very low numbers of An. funestus collected during the 

study compared to An. gambiae s.l. 

 

Furthermore, houses with open eaves provided entry points that led to increase An. 

gambiae s.l. and An. funestus mosquito abundance inside the houses. The lack of 

correlation between different eave sizes and indoor densities of both An. gambiae s.l. 

and An. funestus, supports the argument that the presence of an eave gap, regardless of 

its size, poses an important risk for indoor mosquito entry. These findings are consistent 

with other studies (Smith & Hudson, 1972; Lindsay et al., 2002; Sintasath et al., 2005; 

Ernst et al., 2006; Yé et al., 2006; Kirby et al., 2008; Njie et al., 2009) which 

demonstrated that poorly constructed houses (with mud walls, grass roofs, lack of 

screening and with open eave tend to have increased human-vector exposure, resulting 

in a higher risk of malaria transmission.   
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It has been documented that houses with many occupants tend to attract vectors of 

disease (White, 1969; Konradsen et al., 2003; Kirby et al., 2008). In this study, the 

presence of many sleepers in a house exposed them to a higher risk of An. gambiae s.l. 

bites but not from An. funestus. Large amounts of human emanations from houses with 

more occupants tend to increase mosquito attractiveness towards that particular house 

compared to ones with fewer sleepers (Port et al., 1980; Takken & Knols, 1999). The 

lack of relationship between An. funestus and number of occupants inside the house was 

unexpected and a challenge to deliver an explanation; however, it might have resulted 

from uneven distribution of An. funestus within the villages. Higher numbers of An. 

funestus collected during the dry season (Smith et al., 1995) were mostly and 

consistently from a cluster of a few houses located in a particular village hamlet. 

Therefore, the majority of houses within the sampling area experienced none or low 

catches. Furthermore, significant impacts of house risk factors and house occupants on 

An. funestus indoor mean catches were not consistent between villages. While this 

observation remains inconclusive, one explanation might be the far lower numbers of 

An. funestus collected between villages compared to An. gambiae s.l.  

 

Treated nets provided more protective advantages than untreated ones as also observed 

in previous studies (Lengeler, 2004; Killeen et al., 2007; Russell et al., 2010; Winskill et 

al., 2012). However, the density of An. gambiae s.l. in Namwawala was higher 

compared to Idete despite 90% ITNs coverage in Namwawala. These results indicate 

that even at high coverage levels, ITNs still have limitations in reducing the number of 

malaria vectors entering the houses. Furthermore, recent studies (Pulford et al., 2011; 

von Seidlein et al., 2012) have indicated that poor compliance and usage of bed nets by 

communities in the tropics is associated with heat discomfort associated with poor 

airflow caused by bed nets. Although bed nets were procured individually and a 

distribution campaign was underway during the study period, the age of ITNs as well as 

frequency of usage were not systematically investigated in this study.  However, the 
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results illustrate that a risk of transmission remains whenever people are not using 

treated nets in an optimal way. In addition, as shown by recent findings from western 

and south-eastern Uganda where there was no association between the far less 

endophagic An. arabiensis and surveyed house characteristics (Wanzirah et al, 2015), it 

is important to consider the diversity of malaria vectors before drawing conclusions on 

the impact of different house factors‟ effect size on indoor mosquito entry. 

 

Improved house designs, and modifications to existing houses could substantially reduce 

the risk of mosquito-human contact. Although house improvement has been advocated 

as an efficient intervention for malaria control, the majority of houses in poor rural 

Africa are temporary and built with minimal material resources. This renders 

improvements expensive and/or impractical in most rural communities in the short term. 

Modern houses (Figure 2B) could be easily and cheaply modified by screening eaves, 

windows and doors accompanied by community sensitization towards intervention 

sustainability. Traditional houses (Figure 2A) are less amenable to modifications unless 

they are rebuilt as permanent structures.  This would have to be addressed through a 

long-term strategy that sought to build better, inexpensive house models using better 

construction materials and sustainable financing initiatives, which can be adopted in 

poor settings. Such an intervention is likely to be beneficial in reducing vector borne 

diseases and other diseases linked to poor hygiene. 

 

 

2.6 Conclusion 

 

This study shows the impact of different housing characteristics on malaria vector 

density and the associated risk of indoor disease transmission. It also shows that even at 

high coverage levels of LLINs, there remains a high risk of human-mosquito contact and 

also that this transmission risk can be mitigated by changing the house structure. 
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Communities with modern, spacious and screened houses are at lower risk of indoor 

malaria transmission than temporary, small and unscreened houses. 
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CHAPTER 3 

 

INCREASING ROLE OF ANOPHELES FUNESTUS AND ANOPHELES 

ARABIENSIS IN MALARIA TRANSMISSION IN THE KILOMBERO VALLEY, 

TANZANIA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results reported in this chapter have been published in a slightly different form 

as Lwetoijera et al. Malaria Journal 2014, Volume 13, Issue 1, 331 
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3.1 Abstract 

 

Background: In order to sustain the gains achieved by current malaria control 

strategies, robust surveillance systems that monitor dynamics of vectors and their roles 

in malaria transmission over time are essential. This longitudinal study demonstrates the 

trends in malaria vector dynamics and their relative contribution to malaria transmission 

in one hyperendemic transmission setting in Tanzania. 

 

Methods: The study was conducted in two villages within the Kilombero Valley, in 

rural Tanzania for seven consecutive years (2008-2014). Seventy-two houses were 

selected per village and each house was sampled for mosquitoes monthly using a CDC 

light trap. Collected mosquitoes were assessed for species identity and sporozoite 

infection status using PCR and ELISA, respectively. Anopheles funestus and Anopheles 

arabiensis susceptibility to insecticides was assessed using WHO guidelines.  

 

Results: A total of 196,685 malaria vectors were collected, of which 74% were 

Anopheles gambiae s.l. and 26% were An. funestus. Between 2008-2011, the proportion 

of the total catch of An. gambiae s.l. was higher than An. funestus in both villages. 

However, in 2012, the proportion of An. funestus 62% (32,228) exceeded An. gambiae 

s.l. 38% (19,926) in both villages.  In 2013, the proportions remained similar between 

two species across villages, but in 2014 the proportions of An. gambiae s.l. was again 

higher than that of An. funestus in both villages combined. 

Of 3,160 An. funestus samples that successful amplified with PCR, 98% were An. 

funestus s.s., 1% were Anopheles rivorulum and 1% Anopheles leesoni. For An. gambiae 

s.l. (n = 9,117), 93% were An. arabiensis and 7% were Anopheles gambiae s.s. The 

proportion of An. gambiae s.s. identified by PCR (2,924) declined from 0.2% in the year 

2008 to undetectable levels in 2012-2014. Malaria transmission intensity significantly 

decreased from an EIR of 78 infectious bites/person/year in 2008 to 35 ib/p/yr in 2011 
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but rebounded to 226 ib/p/yr in 2012, coinciding with an increased role of An. funestus 

in malaria transmission. Insecticide susceptibility tests indicated high levels of resistance 

in An. funestus against deltamethrin (87%), lambda cyhalothrin (74%), permethrin 

(65%), bendiocarb (65%), and DDT (66%). Similarly, An. arabiensis showed insecticide 

resistance to permethrin (77%), deltamethrin (64%) and lambda cyhalothrin (42%) in 

2014. 

 

Conclusion: The results indicate the continuing role of An. arabiensis and the increasing 

importance of An. funestus in malaria transmission, and pyrethroid resistance 

development in both species. Complementary vector control and surveillance tools are 

needed that target the ecology, behaviour and insecticide resistance management of 

these vector species, in order to preserve the efficacy of LLINs.  

  

Keywords: Malaria, Anopheles, transmission, vector, surveillance, gambiae, arabiensis, 

funestus, season, insecticide, susceptibility, EIR, Kilombero, Tanzania. 
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3.2 Background 

 

Malaria transmission in humans is sustained through vector-human interactions (Bruce-

Chwatt et al., 1966) and vector control interventions, such as long-lasting, insecticidal 

nets (LLINs), aim to break this interaction. Major promotion of LLINs in recent years 

has resulted in average household ownership rates and usage of LLINs of approximately 

49% (range 44-54%) and 44% (range 39-48%), respectively, in sub-Saharan Africa 

(WHO, 2014). In mainland Tanzania, a recent report by the Tanzania HIV and Malaria 

Indicator Survey (THMIS) indicates that above average LLINs ownership and usage 

(approximately 90 and 66%, respectively) was associated with improved malaria control 

and overall reduction in malaria prevalence (Tanzania Commission for AIDS  & ICF 

International Calverton, 2013).   

 

 

One outcome of LLINs use is that, by limiting availability of human hosts (Bayoh et al., 

2010; Mwangangi et al., 2013; Okumu et al., 2013), vector species composition in any 

given area can change considerably after a long period of LLINs use. Anopheles 

gambiae s.s, An. arabiensis and An. funestus are the primary malaria vectors in sub-

Saharan Africa (Mzilahowa et al., 2012; Sinka et al., 2012), often occurring 

sympatrically (Coetzee et al., 2000). Anopheles gambiae s.s. is often regarded as the 

most important vector species across Africa (Gillies & Coetzee, 1987; Coetzee et al., 

2000; Russell et al., 2010) and, because of its strongly anthropophagic and endophilic 

behaviour, it is the species that has been targeted most effectively by LLINs.   

 

 

However, in some locations, populations of An. gambiae s.s. have developed insecticide 

resistance and it continues to be the dominant vector (Corbel et al., 2004; N'Guessan et 

al., 2007b). In other locations, An. gambiae s.s. populations have crashed and the 
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relative importance of the remaining vector species has shifted, with An. arabiensis 

becoming the major malaria vector (Bayoh et al., 2010; Russell et al., 2010; Mwangangi 

et al., 2013). 

 

 

Since single populations of An. arabiensis can exhibit a range of behaviours, biting and 

resting indoors as well as outdoors and feeding on both humans and animals, 

interventions that optimally target indoor resting and biting vectors often impact far less 

on this species (White et al., 1972; Tirados et al., 2006; Muriu et al., 2008; Russell et 

al., 2010; Kitau et al., 2012). The primary vector of the An. funestus complex, An. 

funestus is also a very anthropophilic and endophilic mosquito and it too can be a highly 

efficient malaria vector (Gillies & de Meillon, 1968; Gillies & Coetzee, 1987; Mendis et 

al., 2000).  

 

 

Kilombero Valley in southern Tanzania has been subject to a large number of studies on 

malaria epidemiology, dating back many years, with malaria parasite prevalence rates of 

up to 70% and an entomological inoculation rate (EIR) of 300 infectious bites per person 

per year (ib/p/yr) being recorded in the 1990s, the period before the introduction of bed 

nets (Smith et al., 1993). Following the scaling up of untreated nets in the early 2000s 

(Killeen et al., 2007) and insecticide-treated bed nets (ITNs) and LLINs from 2004 to 

2011 (Mulligan et al., 2008; Alba et al., 2011; Renggli et al., 2013), a continuous 

decline in malaria vector numbers and malaria transmission has been seen (Russell et al., 

2010; Tanzania Commission for AIDS  & ICF International Calverton, 2013). Although 

the populations of An. gambiae s.s. are significantly dwindling in southern and other 

parts of Tanzania (Russell et al., 2010), the remaining populations of An. arabiensis and 

An. funestus appears to have shifted their blood-feeding periodicity by biting peoples 

outdoors to optimize their chances to obtain blood meal from their preferred hosts even 
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in the time of low LLINs coverage (Russell et al., 2011b). It is however suggested that 

prolonged, widespread use of LLINs is likely to favour outdoor and early biting, either 

as an expression of the mosquito‟s innate phenotypic plasticity or possibly as a heritable, 

selectable trait that might be expected to increase in frequency (Russell et al., 2011b; 

Killeen, 2014).  

 

 

The malaria vector populations in this area are subject to ongoing rigorous monitoring 

and herein seven years of data to the end of 2014 are reported; describing changes in 

vector species composition and relative abundance, insecticide susceptibility and their 

contribution to malaria transmission following the years of widespread LLINs use since 

first introduced in 2004.  

 

 

3.3 Methods and materials 

 

Study site 

 

The study was carried out in Namwawala (8.154425°S and 36.393005°E) and Idete 

(8.098190°S and 36.510350°E) villages (see figure 3.3.1) located in the flood plain of 

the Kilombero River (8.1°S and 36.6°E) in southeastern Tanzania. The epidemiology of 

malaria transmission and associated vector species composition within these villages has 

been documented over many years (Killeen et al., 2007; Russell et al., 2011b). Both 

villages experience an annual rainy season (January-May) and the main crops are rice 

and maize. Both villages are similar in size (Namwawala = 844 and Idete = 804) and 

approximately 92% of community members sleep under an ITN or LLIN (Russell et al., 

2010).  
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Figure 3.3.1: A map showing sentinel houses for mosquito sampling in Idete and 

Namwawala villages, in Kilombero Valley, Tanzania 

 

Study design 

This study was conducted over five years between January 2008 and December 2014. A 

total of 72 houses from each village were randomly selected from the Ifakara Health 

Institute (IHI) Demographic Surveillance System household list (Schellenberg et al., 

2001). All selected houses were geolocated using a handheld GPS (eTrex, Vista, 

Garmin, USA). Mosquitoes were sampled in every house each month during 2008, 2011 

and 2014 and for six months from January to June in 2009 and July to December in 

2010. 
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Mosquito sampling and processing 

 

Mosquitoes were sampled using miniature Center for Disease Control (CDC) light traps 

(model 512, USA). One CDC light trap was used overnight per house, placed 1-1.5m 

from the fan above the ground close to the foot end of an occupied bed, and left to run 

for 12 h (19.00-07.00) (Lines et al., 1991; Mboera et al., 1998). For every participating 

house, one LLIN (Olyset, A to Z Textiles Mills, Arusha, Tanzania) was provided to 

protect the bed occupant where the CDC trap was set. The following morning, CDC 

light traps were collected and mosquitoes killed using chloroform, and identified in the 

field using a morphological key (Gillies & de Meillon, 1968). Female mosquitoes were 

classified as being unfed, partially fed, fully fed or gravid. Subsamples of five 

mosquitoes from each trap for An. arabiensis and An. funestus species were individually 

stored inside a tube containing cotton wool and silica gel beneath for further individual 

molecular species identification using polymerase chain reaction (PCR) assay for the An. 

gambiae complex (Scott et al., 1993) and An. funestus group (Koekemoer et al., 2002) 

and sporozoite infection status using enzyme-linked immune-sorbent assay (ELISA) 

(Burkot et al., 1984) in the laboratory (species identification for the An. funestus group 

did not begin until 2009).  

 

 

All the sorting information and laboratory analysis results were recorded using 

designated data collection forms for entomological studies (Kiware et al., unpublished). 

In addition, variations in malaria transmission by different vector species over time were 

assessed and compared using the annual EIR calculated by biting rate (total 

collections/trap nights/year) and the proportion of females infected with sporozoites 

(Kelly-Hope & McKenzie, 2009). Monthly average rainfall data for 2008-2011 were 

obtained from the Kilombero Valley Teak Company (approximately 15 km from Idete 
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village), and data for year 2012 obtained using rain gauges installed in Namwawala 

village.  

 

 

Insecticide susceptibility test 

 

Following an increase in the An. funestus population in 2012 despite extensive usage of 

LLINs in the study area, it was unclear whether this was due to its reduced susceptibility 

to the insecticides used in LLINs. The insecticide susceptibility tests were conducted 

using WHO standard procedures and test kits for adult female mosquitoes of An. 

arabiensis and An. funestus (WHO, 2013c) in Namwawala villages from January to June 

2013. Biossays were repeated in June 2014 for both species.  

 

Five classes of insecticides currently recommended for vector control were tested using 

discriminating concentrations impregnated in pre-prepared test papers as follows: 

bendiocarb (0.1%), DDT (4%), deltamethrin (0.05%), lambda cyhalothrin (0.05%), and 

permethrin (0.75%). Unfed female wild An. funestus collected using CDC light traps 

were used for insecticide exposure bioassays, as recommended by WHO for this 

difficult-to-colonize species (WHO, 2013c). This method is limited by greater variation 

in susceptibility due to unknown age differences between test mosquitoes, it is though 

simple to carry in the field with minimal infrastructure and test mosquitoes highly 

representative of the natural population (WHO, 2013c).   

 

Prior to exposure, morphologically identified mosquitoes were maintained on 10% 

glucose solution for at least five hours prior to testing; whereas, for An. arabiensis, F1 

female mosquitoes two to three days old (recommended age group) were used for 

bioassays from reared Anopheles larvae collected from the breeding habitats in the study 
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sites (Chouaibou et al., 2012; Jones et al., 2012). Species identification was carried out 

after bioassays on dead mosquitoes using PCR.  

 

 

A total of 100 mosquitoes were exposed per discriminating concentration in five 

replicates of 20 mosquitoes each, and compared to a control with same number of 

mosquitoes per replicate. In an exposure tube set in a vertical position, mosquitoes were 

held for a total of one hour in intervals of 10, 15, 20, 30, 40, 50, and 60 minutes. After 

the first hour of exposure, mosquitoes were transferred to non-insecticide treated, clean, 

holding tubes and observed for a further 20 minutes (WHO, 2013c). After 80 minutes 

(initial 60 min + further 20 min) of knockdown monitoring, all mosquitoes were 

transferred to non-insecticide treated, clean, holding tubes and kept for 24 h and 

provided with 10% glucose solution, after which mortality was monitored and recorded. 

All these procedures were performed in the field under average ambient temperatures of 

26 ± 2°C and a relative humidity of 78 ± 3% in both bioassay rounds. Percentage 

knockdown in the observed mosquitoes was recorded immediately for each time 

interval, and mosquito mortality in each bioassay was expressed as the proportion of 

dead mosquitoes to total exposed, for each tested insecticide.  Execution and 

interpretation followed recently updated WHO test procedures for insecticide resistance 

monitoring in malaria vector mosquitoes (WHO, 2013c).  

 

 

 

Data analysis 

Only data pertaining to An. gambiae s.l. and An. funestus were analysed, using SPSS 

version 20 (SPSS Inc, Chicago, USA). Data were fitted with generalized linear models 

(GLMs) using a negative binomial distribution with log-link function, and relative rates 

(RR) with 95% confidence intervals calculated to estimate yearly mean mosquito 
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catches, relative to the reference year. Species (An. gambiae s.l. and An. funestus) were 

treated as predictors and total number of mosquitoes as a dependent variable; the 

statistical differences in dependent variables was evaluated as a function of villages 

(Idete and Namwawala), seasons (wet and dry) and years (2008-2012).  

Insecticide susceptibility test biossay data were considered for each diagnostic 

concentration and year of testing. Mortality was calculated as the percentage of 

mosquitoes dead post 24 hr‟ exposure to insecticide, and the results assessed according 

to WHO testing procedure for insecticide resistance monitoring in malaria vectors 

(WHO, 2013c). Mortality rates between 98 and 100% indicate full susceptibility, 90-

97% is suggestive of resistance and requires further investigation, and mortality rates 

less than 90% confirm the existence of resistance.  

 

 

Ethical clearance and protection of human participants 

 

The study approval was granted by the Ifakara Health Institutional Review Board 

(IHRDC/IRB/No.A-32) and the National Institute of Medical Research 

(NIMR/HQ/R.8a/Vol. IX/764). On first visiting each house, the benefits and possible 

risks associated with the study were explained to the house occupants and informed 

consent to proceed was requested. After consenting, the head of the house was asked to 

sign two copies of the informed consent forms, (retained by the head of the house and 

the study investigator). 
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3.4 Results 

 

Relative abundance of malaria vector species 

 

During the seven consecutive years of sampling with CDC light traps in sentinel houses, 

a total of 196,685 malaria vectors were collected of which 74% were An. gambiae sensu 

lato and 26% were An. funestus. In each of the first four years (2008-2011), An. gambiae 

s.l. was the most abundant mosquito group, with significantly higher numbers than An. 

funestus in both study villages (p <0.0001): proportions in total catches in Namwawala 

were 93% (65,894) and 6% (4,754), and in Idete were 86% (49,344) and 14% (7,854) 

for An. gambiae s.l. and An. funestus, respectively.  

 

In 2012, collections of An. funestus exceeded An. gambiae s.l. comprising 56% of the 

total catch (RR (95% CI) = 1.56 (1.33-1.69), p <0.0001)); higher proportions of An. 

funestus were recorded in Namwawala (58%, 15,334/26302) and Idete (65%, 

16,894/25,852).  In 2013, collections of An. funestus in Namwawala again were higher, 

(RR (95%CI) = 1.59 (1.38 -1.64), p <0.0001), with a proportion of total catches of 59% 

(2,265/3,852).  Conversely, at Idete in 2013, the An. gambiae s.l. proportion was 63% 

(4,044/6,460), significantly higher than An. funestus (p <0.0001). When the 2013 catches 

from both villages were combined, the mean catches (±SD) of An. gambiae s.l., 3.5 

(±13.4) and An. funestus, 3 (±13. 2) were similar (p > 0.05).  In 2014, collections of An. 

gambiae s.l. were higher than An. funestus in both villages (p <0.0001), with higher 

proportions recorded in both Namwawala (63%, 2,206/3,489) and Idete (72% 

(2,067/2,884).  

 

From a total of 10,847 An. gambiae s.l. processed by PCR for species identification, 

84.05% were successfully identified, and comprised 93% An. arabiensis (n = 8,510) and 

7% An. gambiae s.s. (n = 607). The relative proportions of the species were similar in 
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Idete (An. arabiensis 97% (n = 4,507), An. gambiae s.s. 3% (n = 151) and in 

Namwawala 90% (n = 4,122) An. arabiensis, 10% (n = 456) An. gambiae s.s. However, 

the relative proportion between the two sibling species changed over time, with a 

significant decrease seen in An. gambiae s.s. from approximately 14% (414/2,924 ) in 

2008 to 0% (0/435 ) in 2014 (Table 3.4.1). 

 

Of the 5,037 An. funestus samples that were analysed by PCR, 63% (3160) were 

successfully identified, of which 98% were An. funestus s.s. (n = 3,100), 1% were An. 

rivorulum (n = 33) and 1% An. leesoni (n = 33). The species composition of An. funestus 

in Idete was 97.69% (n = 1,776) An. funestus s.s, 1.43% (n = 26) An. rivorulum and 

0.88% (n = 16) An. leesoni. In Namwawala it was 97.41% (n = 1,393) An. funestus s.s., 

0.56% (n = 8) An. rivorulum and 2.03% (n = 29) An. leesoni, (Table 3.4.1). 
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Table 3.4.1:  Malaria vector composition, sporozoite prevalence (S), biting rate (B) and 

entomological inoculation rate (EIR) for Anopheles gambiae s.s., Anopheles arabiensis 

and Anopheles funestus and their annual contribution to malaria transmission between 

2008 and 2014 in the study area 

Species     2008   2009/10  2011  2012 2013  2014 

An. gambiae sensu lato species proportion   

     An. gambiae s.s.  0.14 0.15 0.002 0 0 0 

     An. arabiensis  0.86 0.85 0.998 1 1 1 

         No. of PCR amplifications       2,924     1,307 2,542 1,362 471 435 

        

An. funestus group species proportion   

     An. funestus s.s.  - 0.887 0.956 1 1 0.968 

     An. rivulorum  - 0.013 0.021 0 0 0.002 

     An. leesoni  - 0 0.023 0 0 0.029 

     An. parensis  - 0 0.001 0 0 0 

         No. of PCR amplifications  -      330   880 1,527 185 442 

        

Sporozoite prevalence (S ;%)   

     An. gambiae s.s.  1.18 0.04 0 0           -   - 

     An. arabiensis  0.16 0.36 0.07 1.47      - - 

     An. funestus  1.71 0 0.43 2.20           - - 

        

Biting rate (B; b/p/n)   

     An. gambiae s.s.  8.52 6.05 0.04 0 0 0 

     An. arabiensis    52.37 35.51 59.74 20.70 5.849 5.771 

     An. funestus  1.74 12.84 10.09 14.31 2.231 1.251 

        

Entomological Inoculation Rate (EIR; ib/p/y)   

     An. gambiae s.s.  36.70 1.61 0 0 - - 

     An. arabiensis  30.58 55.51 15.17 110.90 - - 

     An. funestus  10.86 0 15.58 115.10 - - 

     Total  78.14 57.12 31.05 226.0 - - 

 
 

Note: Sporozoite prevalence = Number of positive sporozoite mosquitoes/total tested; 

Biting rate = Total collections/trap nights/calibration factor, 0.3 for An. gambiae 

complex, and 0.68 for An. funestus (Killeen et al., 2007), EIR = S × B × 365  
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Seasonal variation in vector abundance  

 

Throughout the study, the period from January to May was categorized as the wet 

season, during which time the average (±SD) rainfall was 264 (±161) mm/month.  June 

to December was the dry season, with an average rainfall of 23 (±57) mm/month (Figure 

3.4.1). The abundance of both An. gambiae s.l. and An. funestus peaked in the wet 

season in both villages. The mean number (±SD) of An. gambiae s.l. caught per trap per 

night was 15 (±40) and 21 (±88) during the wet season, and 0.8 (±5) and 0.8 (±5) in the 

dry season at Idete and Namwawala, respectively. Furthermore, An. gambiae s.s. was 

present in the wet season only in the first three years (2008-2009/10) and was not 

detected in last four years of sampling (2011- 2014). In contrast, both An. arabiensis, 

and An. funestus s.s. were found in both seasons. 
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Figure 3.4.1:  Monthly average rainfall in the Kilombero Valley (A), and abundance as 

estimated using CDC monthly biting rates, for An. gambiae s.l. (B) and An. funestus (C), 

in Idete and Namwawala villages from 2008 to 2014. 
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The mean number of An. funestus per trap per night in the wet and dry season of the first 

four years of study (2008-2011) was consistently similar in both villages. In the wet 

season, the mean catches (±SD) were 1.23 (±4.7) in 2008, 2.15 (±7.5) in 2009/10, 0.64 

(±1.9) in 2011 compared to 1.15 (±5.2), 0.77 (±4.3) and 1.62 (±5.5) of the respective 

years in the dry season. In 2012, the mean catch of An. funestus, both in wet and dry 

seasons, was approximately six times higher than in the previous years (p <0.0001): 11.8 

(±45.8) and 8.3 (±25.6) of wet and dry season, respectively. From 2013-2014, the mean 

catches ((±SD) of An. funestus in both wet and dry seasons, was lower than in 2012 (p < 

0.0001). In the wet season, mean catches were 3.1 (±10.6) in 2013, 1.3 (±5.6) in 2014 

compared to 3 (±14.6) and 2 (±7.9) in the dry season catches for the respective year.  

  

 

Malaria transmission 

 

A total of 10,138 mosquitoes (530 An. gambiae s.s., 7,130 An. arabiensis and 2,478 An. 

funestus s.s.) were screened for Plasmodium falciparum sporozoites of which 75 were 

positive (0.74% sporozoite prevalence). Although An. gambiae s.s. was the major 

malaria vector with a sporozoite prevalence of 1.2% in 2008, its dominance decreased 

with time to zero in 2011 and 2012, following its control to undetectable levels. 

Conversely, the importance of An. arabiensis and An. funestus s.s. increased with time 

from a sporozoite prevalence of 0.16% in 2008 to 1.5% in 2012 for An. arabiensis, and 

from 1.7% in 2008 to 2.2% in 2012 for An. funestus s.s. the EIR for the two consecutive 

years (2013-2014) were not calculated due to missing data. 

 

Similarly, the EIR of An. gambiae s.s. decreased drastically from 30.70 ib/p/yr in 2008 

to 0 ib/p/yr in 2012, whereas those of An. arabiensis increased approximately four times 

from 30.58 in 2008 to 110.9 in 2012 and that of An. funestus s.s. increased 11 times from 

10.86 in 2008 to 115.10 in 2012. 
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Overall, the level of malaria transmission in the study villages markedly decreased with 

time from an EIR of 78.14 ib/p/yr in 2008 to 31.05 ib/p/yr in 2011 but increased sharply 

to 226 ib/p/yr in 2012, approximately seven times more than in the previous year (Table 

3.4.1).  

 

 

Anopheles arabiensis and Anopheles funestus insecticide susceptibility tests 

 

In the WHO bioassay testing, as the results indicated (Figure 3.4.2), An. funestus was 

fully susceptible to deltamethrin (100% mortality) with reduced susceptibility to 

permethrin (93%), and lambda cyhalothrin (91%) and confirmed resistance to DDT 

(86%) in 2013. In 2014, An. funestus was resistant to permethrin (65%), lambda 

cyhalothrin (74%), bendiocarb (65%), and even to deltamethrin (87%) to which it was 

fully susceptible in 2013. Mortality in control tubes was 4% in both testing rounds. All 

tested mosquitoes were amplified as An. funestus, using PCR. 

 

 

In 2013, An. arabiensis was fully susceptible to bendiocarb (100% mortality) and 

deltamethrin (98.3%), reduced susceptibility against DDT (97%), and confirmed 

resistance to permethrin (83.3%) and lambda cyhalothrin (78%), with a control mortality 

of 0% across all test concentrations. Similar levels of resistance were maintained across 

tested diagnostic concentrations in year 2014, whereby the mosquitoes were fully 

susceptible to bendiocarb (98% mortality) and resistant to deltamethrin (64%), 

permethrin (77%), and lambda cyhalothrin (42%), with a control mortality of 0% across 

all test concentrations.  
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Figure 3.4.2:  Results of WHO bioassay test for insecticide susceptibility status of wild 

female Anopheles funestus (white bars) and Anopheles arabiensis (grey bars) from the 

study sites in the Kilombero Valley, Tanzania, in January 2013 and June 2014; The 

graph shows percentage 24 h mortality rate after a one-hour exposure to the WHO 

diagnostic doses of insecticide. The minimum sample size for these assays was 100. 

 

 

3.5 Discussion 

  

This study provides substantial information on malaria vector dynamics and their 

contribution to malaria transmission in rural southern Tanzania over a seven years 
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period. Consistent with other studies, which have documented a shift in malaria vector 

composition and a change in malaria transmission dynamics seemingly as a result of 

extensive use of LLINs (Bayoh et al., 2010; Derua et al., 2012; Mwangangi et al., 

2013), this study reports a steady decrease to undetectable levels of An. gambiae s.s. 

with steady increase in the proportion of its sibling species An. arabiensis and a surge in 

the abundance of An. funestus s.s. in 2012 followed by its decrease in 2013 and 2014.  

 

During species identification using PCR between 2010 and 2014, an average of 16% of 

An. gambiae s.l. and 37% An. funestus group did not amplify by PCR and were not 

identified to sibling species. Potentially, this might have resulted in either 

underestimation or over-estimation of the relative proportions of the various species. 

Causes of PCR non-amplification could have included inadequate optimization of 

standard operating practices in the molecular laboratory where samples were processed 

and analysed. Following optimization by 1) increasing primer concentration, 2) setting 

up and running PCR reaction immediately after DNA extraction to prevent loss of DNA 

quality because of over-storage and 3) running PCR reactions at appropriate and 

recommended temperatures in the laboratory to prevent background reactions before the 

actual PCR reactions, significantly improved the amplification rate for An. gambiae s.l. 

and An. funestus group submitted samples up to 91% in year 2014 (Mr Deogratius 

Roman, personal communication).  

 

Anopheles gambiae s.s. preferentially feeds and rests inside houses. This makes it more 

vulnerable to insecticides applied to nets (LLINs) and walls (indoor residual spraying 

(IRS)) while An. arabiensis, with its opportunistic feeding behaviour both on humans 

and animals (Kelly-Hope & McKenzie, 2009; Russell et al., 2010) and its potential to 

rest outside human dwellings, make it less affected by LLINs.  
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Early evening and outdoor feeding behaviour in An. arabiensis and An. funestus (Wilkes 

et al., 1996; Russell et al., 2011b) in order avoid contact LLINs have been recorded 

previously.  Potentially, similar behavioural changes might have occurred in the present 

study and would have been detected if routine outdoor mosquito collections had been 

included in the design. 

 

 

A significant increase in An. funestus abundance and EIR occurred 2012 followed by a 

decrease in year 2013-2014. This shift poses great concern in malaria control efforts due 

to its efficiency in transmitting malaria. Historically the control of An. funestus s.s. was 

successful through extensive IRS, taking advantage of its highly anthropophagic and 

endophilic behaviour, using dieldrin in Pare, Taveta, northern Tanzania (Gillies & 

Smith, 1960; Smith, 1966) Malindi on the coast of Kenya, using DDT (Gillies & 

Furlong, 1964) as well as in South Africa (Sharp et al., 2007). This is partly because 

they spend a longer time on insecticide-treated materials (Davidson, 1953). However, 

the vector eventually resurged six years later due to a lack of IRS programme continuity 

and consolidation (Gillies & Furlong, 1964; The malERA Consultative Group on Vector 

Control, 2011). A similar scenario was expected in this particular region, where usage of 

LLINs is high (Koehler & Patterson, 1991; Tanzania Commission for AIDS  & ICF 

International Calverton, 2013).  

 

The steady increase in An. funestus population density, despite extensive usage of LLINs 

in the study area, was associated with reduced susceptibility to the insecticides used in 

LLINs. Recent findings from western Kenya have demonstrated similar phenomenon of 

resurging An. funestus populations, chiefly being due to resistance development to the 

pyrethroids used in LLINs (McCann et al., 2014). However, decreasing in An. funestus 

mean catches in 2013 and 2014 compared to 2012 indicate the existence of other drivers 
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apart from resistance to insecticides which might have contributed to the observed 

resurgence of An. funestus in year 2012.  

 

Preliminary findings from this study demonstrated resistance of An. funestus and An. 

arabiensis to pyrethroids, deltamethrin, lambda cyhalothrin and permethrin, used in 

Olyset LLINs, distributed in the study area in June 2011 (Tanzania Commission for 

AIDS  & ICF International Calverton, 2013). Overall, there was great variation of the 

resistance status between 2013 and 2014 in both species tested; however, the variation 

was surprisingly large in An. funestus, more so An. arabiensis, which might be due to 

inconsistency in unknown age of the used An. funestus used in the bioassay (WHO, 

2013c). 

 

 

Due to the absence of organochlorine insecticide DDT and carbamate insecticide 

bendiocarb deployment for malaria vector control in the study area, the source of 

resistance in mosquitoes to these insecticides remains unknown. Although not tested in 

this particular study, pyrethroid (DDT and pyrethroid) carbamate cross-resistance was 

considered to be a probable cause of An. funestus resistance to DDT and bendiocarb, 

respectively, which has been proved to exist in malaria vectors elsewhere (Brooke et al., 

2001; Protopopoff et al., 2013). In addition, the continuous and illegal use of DDT as a 

pesticide in agriculture in the region might have contaminated malaria vector breeding 

habitats and caused physiological resistance in mosquitoes (Nkya et al., 2013).  

 

Pyrethroid resistance in both species has been documented in multiple countries and 

regions of East Africa (Matambo et al., 2007; Morgan et al., 2010; McCann et al., 

2014), southern Africa (Hargreaves et al., 2003; Casimiro et al., 2006; Kloke et al., 

2011; Wondji et al., 2012) and West Africa (Okoye et al., 2008; Djouaka et al., 2011; 

Ranson et al., 2011). Further detailed studies are urgently required to establish current 
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vector control operational impacts associated with this level of resistance. These 

findings suggest an increased contribution of these vectors to malaria transmission and 

hence great threat to the future use of LLINs in controlling these vectors.  

 

 

The other probable cause for the observed increase in An. funestus population in this 

study area, which is the limitation of this study and requires further investigation, might 

be a temporary shift of An. funestus to outdoor and early evening and daytime biting 

behaviours, which increased their chances to survive and reproduce by feeding on 

unprotected humans, as recently documented An. funestus behaviours in Benin (Moiroux 

et al., 2012) and Senegal (Sougoufara et al., 2014), West Africa. 

 

 

The decrease in An. funestus proportions in catches from 2013-2014 compared to 2012 

demonstrated the still unpredictable ecology of this vector.  It must be assumed that the 

ecology of An. funestus is driven by ecological factors yet to be documented 

highlighting need for further research on the larval ecology and adult population 

dynamics of this important vector in different transmission settings.  Although average 

annual rainfall was similar across years 2012-2014, the changes recorded might have 

been caused by varying in stability of An. funestus aquatic habitats as the result of 

changing in landscape due to agriculture and underground water movements during the 

study period (Hardy et al., 2013).  

 

In this study, both An. funestus and An. gambiae s.l. vector abundance varied with 

season. Although semi- and permanent aquatic habitats support development of An. 

gambiae s.l. (Fillinger & Lindsay, 2011), habitually, the increases in An. gambiae s.l. 

densities are facilitated by a wide range of ephemeral, sunlit, breeding habitats, such as 

hoof prints, rice puddles and ground depressions created during the rainy season (Gillies 
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& de Meillon, 1968; Minakawa et al., 2004). The temporary nature of these habitats 

tends to reduce predation rate but also allows quick development of the juvenile stages, 

which results in An. gambiae s.l. dominating during the rainy season (Gillies & de 

Meillon, 1968). On the contrary, An. funestus prefer vegetated semi-permanent and 

permanent breeding habitats, such as spring-fed ponds and river channels lined with 

riparian vegetation, particularly trees, with dense canopies (Gillies & de Meillon, 1968; 

Hardy et al., 2013). Anopheles funestus remained at a reasonable and detectable density 

across the rainy and dry seasons in the study areas and were significantly more abundant 

than An. gambiae s.l. in the dry season, probably due to their aquatic habitat stability 

against desiccation sustained by streams or stream margins and groundwater-fed natural 

springs (Gillies & de Meillon, 1968; Charlwood et al., 2000; Hardy et al., 2013).  

 

 

Irrespective of seasonal variation in vector abundance, An. funestus s.s., An. gambiae s.s. 

and An. arabiensis were all-important malaria vectors in the study area (Russell et al., 

2010).  Despite high abundance of An. arabiensis and a higher EIR between 2008 and 

2010, An. funestus contributed a relatively higher or equal EIR in 2011 and 2012. 

Historically, An. funestus has displayed high sporozoite prevalence (Charlwood et al., 

1995) similar to that observed in this study and in a recent study conducted in 

neighbouring villages within the valley (Kaindoa et al., unpublished). This trend of 

increase in abundance and high sporozoite prevalence of An. funestus has been also 

observed in Asembo district, western Kenya (McCann et al., 2014) and so appears to 

represent a trend across several regions of East Africa. 

 

The huge increase in potential malaria transmission in 2012 (EIR = 226) coincided with 

an increase in abundance and sporozoite rates in An. funestus as it did in a neighbouring 

village in the valley (EIR = 156) (Kaindoa et al., unpublished). The unpredictable 

changing patterns involving substantial increase in An. funestus and its reduced 
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susceptibility to pyrethroids poses a serious threat that needs attention from vector 

control stakeholders. A separate study in West Africa also reported a rebound in malaria 

transmission partly being caused by resistance development in An. gambiae to 

pyrethroids (Trape et al., 2011).  

 

 

A previous study has shown that despite high coverage and usage of LLINs, a high 

proportion of mosquitoes still enters houses (Gatton et al., 2013). Therefore, the increase 

in An. funestus, particularly in the dry season, is likely to exacerbate the problem. 

Therefore, new strategies to address resistance and outdoor biting behaviour in the early 

part of the evening as displayed by An. funestus and An. arabiensis are required. This 

can be achieved through improving the LLINs; for instance, recent development of nets 

which can target multiple resistant mosquitoes, Olyset
® 

Plus  (Pennetier et al., 2013), 

and by targeting vectors while outdoors using non-resistant compounds, either through 

larval source management in the dry season via autodissemination of insect juvenile 

hormone, e.g., pyriproxyfen (Devine et al., 2009; Lwetoijera et al., 2014, See Chapter 5, 

Section 5.4), or by mosquito sterilization with pyriproxyfen (Lwetoijera et al., 2014, See 

Chapter 5, Section 5.4), and killing them with toxic sugar-baited traps (Muller & 

Schlein, 2008), non-chemical electric grid (Majambere et al., 2013) and odour-baited 

traps (Matowo et al., 2013).  

 

 

3.6 Conclusion 

 

This study showed the importance of An. funestus and An. arabiensis in sustaining 

residual malaria transmission.  A substantial increase in An. funestus coincided with a 

dramatic reduction in An. gambiae s.s. in the year 2012. Malaria transmission 

significantly declined from 2008 to 2011 and rebounded in 2012 coinciding with the 
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increased role of An. arabiensis and An. funestus in malaria transmission. Although fully 

susceptible to deltamethrin, An. arabiensis and An. funestus were found to be resistant 

and with reduced susceptibility respectively, to Permethrin, one of the pyrethroids used 

on LLINs. These findings call for thorough ecological studies of An. funestus and, in the 

longer term, for complementary vector control tools, robust vector surveillance systems, 

and an insecticide resistance management plan to complement and preserve the efficacy 

of LLINs. 
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CHAPTER 4 

 

EFFECTIVE AUTODISSEMINATION OF PYRIPROXYFEN TO BREEDING 

SITES BY THE EXOPHILIC MALARIA VECTOR ANOPHELES 

ARABIENSIS IN SEMI-FIELD SETTINGS IN TANZANIA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results reported in this chapter have been published in a slightly different form 

as Lwetoijera et al. Malaria Journal 2014, Volume 13, Issue 1, 161 
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4.1 Abstract 

 

Background: Malaria vector control strategies that target adult female mosquitoes are 

challenged by the emergence of insecticide resistance and behavioural resilience. 

Conventional larviciding is restricted by high operational costs and inadequate 

knowledge of mosquito-breeding habitats in rural settings that might be overcome by the 

juvenile hormone analogue, pyriproxyfen (PPF). This study assessed the potential for 

Anopheles arabiensis to pick up and transfer lethal doses of PPF from contamination 

sites to their breeding habitats (i.e. autodissemination of PPF). 

 

Methodology: A semi-field system (SFS) with four identical separate chambers was 

used to evaluate PPF-treated clay pots for delivering PPF to resting adult female 

mosquitoes for subsequent autodissemination to artificial breeding habitats within the 

chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, 

unfed female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot 

linings were dusted with 0.2 – 0.3 g AI PPF per pot.  Pupae were removed from the 

artificial habitats daily, and emergence rates calculated. Impact of PPF on emergence 

was determined by comparing treatment with an appropriate control group.  

 

Results: The mean proportion (95%CI) of adult emerged from PPF-treated section were 

fewer, 0.21 (0.09 – 0.51) than adult emerged in the untreated control chamber 0.95 (0.56 

– 1.34, p < 0.0001), resulting to 76.5% reduction in adult emergence in the treatment 

section.  Laboratory bioassay of water samples from artificial habitats in these 

experiments resulted in lower number of adults emerged in treated chambers, with mean 

proportion of 0.62 (0.16 – 1.07) compared to controls, 0.99 (0.95 – 1.03, p < 0.003). In 

experiments where no mosquitoes introduced, there were no significant differences in 
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the number of adults emerged between control and treatment, indicating that transfer of 

PPF to breeding sites only occurred when mosquitoes were present; i.e. that 

autodissemination had occurred.  

Treatment of a single clay pot resulted in 58% reduction in adult emergence in six 

habitats, with mean proportion of 0.34 (0.21 – 0.45) compared to the controls, 0.98 (0.96 

– 1.00, p < 0.0001), showing a high level of habitats coverage amplification of the 

autodissemination event.  

 

Conclusion:  The study provides proof of principle for the autodissemination of PPF to 

breeding habitats by malaria vectors. These findings highlight the potential for this 

technique for outdoor control of malaria vectors and call for the testing of this technique 

in field trials. 

 

4.2 Introduction  

 

Malaria remains one of mankind‟s leading public health challenges and a major 

economic burden for the developing nations where it is endemic. Disproportionately, 

90% of all malaria deaths globally occur in Africa mostly in children under 5 years of 

age who account 78% of all deaths occurring in Africa (WHO, 2014). The World Health 

Organization (WHO) continues to recommend a range of combined strategies for 

malaria prevention with vector control, primarily through the use of long lasting 

insecticide-treated nets (LLINSs) and indoor residual insecticide spraying (IRS), a key 

component of those strategies (Mwangangi et al., 2013; Okumu et al., 2013; WHO, 

2014). Despite great progress in reducing malaria transmission in Africa over the past 

decade, the future use of both of these interventions, and indeed any approach that relies 

on chemical insecticides, is seriously threatened by the emergence and ongoing spread 
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of insecticide resistance (Ranson et al., 2011; WHO, 2011b; Coetzee & Koekemoer, 

2013; Sokhna et al., 2013). Moreover, LLINs and IRS target only vectors that are active 

indoors, and even in areas where this has been successful, malaria transmission by 

outdoor biting and outdoor resting vector populations of Anopheles arabiensis and 

Anopheles funestus remains a serious public health challenge (Russell et al., 2011b; 

Reddy et al., 2012). Effective sustainable tools or approaches with proven impact on 

outdoor biting and resting vector populations have yet to be developed. 

 

Targeting the aquatic larval stages of the vector with conventional insecticides 

(larviciding), as a complement to LLINs and IRS, can be an effective method to 

suppress vector density (Fillinger et al., 2009: Geissbuhler et al., 2009; Tusting et al., 

2013), but it is limited by the difficult task of identifying and treating sufficient 

mosquito breeding habitats to impact the vector population (Majambere et al., 2007; Gu 

et al., 2008). WHO recommendations limit the use of larviciding to settings where larval 

habitats are few, findable, and easy to map and treat; typically this restricts larviciding to 

urban and rural settings at times when these habitats are restricted in number size and 

numbers (WHO, 2012b). In rural settings where breeding habitats are abundant in 

number and character, this is a far greater challenge for which novel approaches are 

urgently needed.  

 

Pyriproxyfen (PPF) is a juvenile hormone analogue (JHA) that interrupts normal 

development and metamorphosis of targeted mosquitoes (Dhadialla et al., 1998). Highly 

potent in terms of activity and specificity, it has low toxicity and a high margin of safety 

to non-target organisms (Mulla et al., 1989). To date, there has been no evidence of PPF 

resistance in any mosquito (Invest & Lucas, 2008), however the possibility of resistance 

development in mosquitoes is highly likely to occur (Schaefer & Mulligan III, 1991), as 
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it has been documented in other insects (Crowder et al., 2008; Shah et al., 2015). For 

effective mosquito control, WHO recommends a PPF dosage limit of 50 ppb, an 

extremely low level considering the maximum permissible level in drinking water is 300 

ppb (WHO, 2004b). PPF can be delivered in formulations that persist in treated aquatic 

habitats for up to six months under field conditions (Kawada et al., 1988; Yapabandara 

& Curtis, 2002). PPF also has an additional unique benefit, termed autodissemination, 

which is defined as the ability of adult mosquitoes to pick up PPF from treated solid 

surfaces, retain and transfer it to breeding habitats in sufficient quantities to contaminate 

those habitats, rendering them unproductive either by killing larvae or preventing pupae 

from emerging to adults (Devine et al., 2009).  

 

The few studies demonstrating the potential of autodissemination of PPF in vector 

control have been limited to the Aedes vectors of dengue and chikungunya viruses 

(Devine et al., 2009; Caputo et al., 2012). Small field trials in urban settings in Peru and 

Italy, against Aedes aegypti (Devine et al., 2009) and Aedes albopictus (Caputo et al., 

2012) respectively, resulted in significant adult emergence inhibition in treated areas. 

Many aspects of the biology of these Aedes species, such as their aggressive feeding, 

skip-oviposition (distributing portions of each egg batch in multiple habitats) and 

preference for relatively small volume man-made containers as breeding habitats, 

undoubtedly contribute to the prospect for exploiting autodissemination in urban control 

programs for dengue and chikungunya (Kawada et al., 1988; Devine et al., 2009; Caputo 

et al., 2012) and fabrication of efficient PPF contamination sites/stations (Gaugler et al., 

2011; Caputo et al., 2012). The outdoor-active Anopheles spp. that transmit malaria in 

rural Africa breed in a wide variety of breeding habitats, ranging in size and character 

and across much larger areas (Fillinger & Lindsay, 2006) and are a much greater 

challenge for this approach. 
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This study reports on the first experiments undertaken in a large semi-field system in 

Tanzania, evaluating the potential of PPF autodissemination for control of An. 

arabiensis and probably other African malaria vectors.  Here, the results of controlled 

experiments quantifying the efficacy of clay pots, a simple inexpensive PPF 

contamination station, for delivering PPF to resting adult female Anopheles arabiensis at 

levels that prevent emergence at untreated breeding habitats are presented, 

demonstrating for the first time that, in principle autodissemination of PPF can occur at 

operationally effective rates in an An. arabiensis, an efficient African malaria vector. 

 

4.3 Methods and materials 

 

Study site 

This study was carried out at Kining‟ina village (8.11417°S, 36.67484°E), in rural 

southern Tanzania, between May 2012 and October 2013 inside a semi-field system 

(SFS). Details of the design and use of this SFS have been provided previously 

(Ferguson et al., 2008; Ng'habi et al., 2010).  Briefly, the SFS is an outdoor construction 

with mesh walls 4.53 m high, measuring 552.96 m
2
 in total area but partitioned into six 

separate chambers each measuring 9.6 × 9.6 m. The concrete floors of the chambers 

were filled to a depth of 40 cm with local soil, and vegetation growing naturally from the 

seeds therein. Although the SFS had six chambers, only four chambers were used for the 

experiments. A simple mud hut (1.75m x 1.5 m, 2m high) was built within each chamber 

to provide a shelter for a tethered cow bait, and possible resting location for mosquitoes. 

The simple mud hut was built to mimic the shelters used by communities to keep cows 

and not to represent an indoor set up. 
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Mosquitoes   

All experiments were performed using insectary-reared unfed mated An. arabiensis 

females aged 3 – 9 days post eclosion. It was assumed that mosquitoes at this age would 

have mated (Charlwood & Jones, 1979).  The An. arabiensis colony was established in 

March 2010, originating from individuals collected in Lupiro village within the 

Kilombero valley. It is reared routinely inside under natural temperature and 12: 12 h 

light: dark photoperiod of that area. Larvae were fed Tetramin® fish food and adults 

maintained on 6% glucose solution and human blood (on voluntary basis). Mosquitoes 

were starved of sugar and water six hours prior to release in the experiments. 

 

Experimental procedures and study design 

Five experiments were conducted between May 2012 and September 2013: first, to 

investigate the existence of PPF autodissemination from PPF-treated clay pots to the 

breeding habitats by contaminated mosquitoes; second, to confirm that the observed PPF 

contamination at the experimental breeding habitats was mosquito-borne; third, to 

investigate mosquito‟ resting site preferences inside the SFS; fourth, to measure the 

proportion of mosquitoes resting inside the clay pots that were subsequently able to 

contaminate oviposition sites; fifth, to measure amplification of autodissemination from 

limited numbers of treatment points to a greater number of breeding sites. 

 

Experiment 1:  Evaluation of PPF-treated clay pots for the delivery of pyriproxyfen to 

resting adult female mosquitoes for subsequent autodissemination  

In every replicate of this experiment, 1500 – 5000 adult female An. arabiensis were 

released inside an SFS chamber, where a cow tethered inside the mud hut was provided 

for blood feeding, clay pots as resting sites during egg development, and water 
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containers as oviposition sites. Clay pots have been used for sampling wild An. 

arabiensis, as adult females of this and other species will rest within these and similar 

vessels (Odiere et al., 2007; Wong et al., 2013).   

 

Eight 10 L clay pots were placed on the ground: 5 around the perimeter of the SFS 

chamber and the other 3 around the walls of the mud hut. Each pot was lined with black 

cotton that had been dampened with water and dusted with PPF powder (0.2 – 0.3 g AI 

per clay pot; Sumilarv
®

,
 
Sumitomo Chemical Co. Ltd., Japan).  Dusting was done by 

unevenly sprinkling  2 – 3 g of 10% AI PPF powder over all surface of dampen cotton 

cloth  using  a makeup/painting brush. The cotton cloth was treated with PPF after being 

attached inside around the circumference of clay pot using 3 mm aluminium wire to 

ensure maximum containment of PPF powder (Fig 4.3.1C).  Pots were dried for 24 h, 

facilitating the PPF powder to attach lightly to the fabric while not hindering its pickup 

by mosquitoes that contacted it. Two identical artificial breeding habitats (2.5 L plastic 

basins, 21 cm in diameter; filled with 250 g of soil and 2L of water; water levels were 

replenished as required) were buried with the rim at ground level, 5 m apart and between 

1 and 8 m from clay pots (Fig 4.3.1).  
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Figure 4.3.1:  (A) The semi-field system used in experiments;  (B) adjoining chambers 

with huts for housing bait cows visible in each; (C), pyriproxyfen-treated cloth interior 

of a clay resting pot placed on the ground within a chamber; (D) plastic basin sunk in the 

ground within a chamber to provide the artificial habitat for egg laying. 

 

The experiment was run for 25 days following release of the mosquitoes, to allow 10 

days until the first pupae developed and a further 15 days to harvest all pupae from the 

artificial aquatic habitats that successively developed from eggs laid by released 

mosquitoes.  The breeding habitats were visually examined daily for the presence of 

eggs and larvae to confirm if mosquitoes visited the habitats.  Each day, pupae 

developed from deposited eggs were removed, counted and transferred to an insectary 



105 

 

where they were maintained under the cage in cups containing water from the habitats 

until they emerged as adults or died.  

 

Control experiments were run simultaneously in a separate chamber using an identical 

protocol but without any PPF application to the cotton lining of the clay pots.  A total of 

6 replicates of both treatment and control experiments were run, over a period of 6 

months. Treatment and control chambers were separated by a distance of 3.2 m and, to 

avoid PPF contamination of the control chamber, the same SFS chambers were used in 

all replicates for treatment and control. Of importance, control and treatment were not 

rotated but fixed between chambers, when one replicate was on-going in a pair of 

control and treatment chambers; the other pair of control and treatment chambers was 

put into use. Where control and treatment chambers were adjacent to each other, a panel 

of white cloth was mounted on one side of partition net to prevent movement of PPF 

particles between chambers.  A break of at least seven days between replicates 

minimized the chance of any mosquitoes surviving from the previous replicate. PPF 

contamination between replicates was minimized by spraying the chamber structure, the 

hut and vegetation with water, new plastic basins were used and cow were thoroughly 

cleaned by washing with only water without soap before each replicate.  Successful 

contamination and dissemination was evaluated by comparing the differences in pupal 

mortality and emergence inhibition from the basins between treated experiments and 

controls. 

 

PPF contamination of water in the experimental breeding habitats was investigated 

further by two methods. First, immediately after recording first stage larvae in the 

breeding habitats (typically 5-8 days after mosquito release), three 150 ml water sub-

samples were collected from each habitat and transferred to separate 250 ml glass 
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beakers. Twenty 2
nd

 or 3
rd

 instar An. arabiensis larvae taken from the laboratory colony 

(i.e. fresh uncontaminated individuals) were placed in each beaker and daily mortality 

and emergence rates recorded until all were dead or had emerged as adults.  The 

procedures were repeated twice, i.e. only in two consecutive experiments of the 6 

experimental replicates. 

 

In a second bioassay, at the termination of each experimental replicates (i.e. day 25 

following initial introduction of adult females) and after pupation of all larvae and 

removal of all pupae, 250 second or third instar An. arabiensis larvae taken from the 

laboratory colony (i.e. fresh uncontaminated individuals) were introduced in each 

breeding habitat (assumed to be contaminated with PPF from previously released adults) 

and daily mortality and emergence recorded until all were dead or had emerged as 

adults. The procedures were repeated twice, i.e. only in two consecutive experiments of 

the 6 experimental replicates.   

 

Experiment 2:  Confirmation that pyriproxyfen contamination of breeding habitats 

was mosquito-borne 

To examine whether the PPF impact on adult emergence from the breeding habitats 

observed in the previous experiment might have resulted from passive carriage by wind 

currents, or by other organisms (e.g. other invertebrates, amphibians, rodents, etc.), two 

tests were conducted using the setup of experiment 1. 

 

In the first test, 250 second or third instar An. arabiensis larvae taken from the 

laboratory colony were introduced in the two breeding habitats with fresh water and soil 

in both treatment and control SFS chambers, which had been prepared exactly as 
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described for Experiment 1.  No adult mosquitoes were released in either chamber. The 

daily pupation, mortality and emergence rates were recorded until all pupae were dead 

or had emerged as adults. The experiment was allowed to run until all had pupated. 

 

In the second test, the chambers used for treatment and control were reversed, i.e. the 

control was run in the chamber previously used for treatment and vice versa.  A total of 

5000 adult female mosquitoes were released in each chamber and two replicates of the 

second test were conducted and breeding habitats productivity were monitored as 

described in experiment 1. 

 

Experiment 3: Mosquito resting site preference inside the semi field systems 

To determine the proportions of released mosquitoes that rested inside the clay pots in 

the experimental setup, adult female mosquitoes were released inside treated and control 

SFS chambers, as described for experiment 1.  On each morning over the following 

three days (an average period for eggs development before mosquito visits the habitats 

to lay eggs), all mosquitoes found resting inside clay pots and walls and ceiling of the 

cattle hut were collected using mouth aspirators, counted and recorded as either fed or 

unfed. The experiment was repeated twice, first with 2000 mosquitoes and then with 

4000 mosquitoes released in each chamber (released mosquitoes were increased in the 

second replicate to increase the proportion of mosquitoes to be recaptured).  

 

Experiment 4: Determining contamination rates of the Anopheles arabiensis 

population resting inside clay pots 

To estimate the proportion of An. arabiensis contaminated with PPF in this setup, 5000 

unfed adult female mosquitoes were released inside both treated and control SFS 
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chambers, where only clay pots were treated with PPF as described in experiment 1. On 

each of the three mornings after release, a maximum of 60 mosquitoes (30 from each of 

the resting sites) were collected inside all clay pots and mud huts (walls and ceiling) and 

assessed for their feeding status. Following resting behaviour in mosquito after acquiring 

a blood meal, mosquitoes were collected 36 h after release to ensure that high proportion 

was blood-fed. Individual mosquitoes were collected with separate mouth aspirators and 

held in a plastic cup (approximately 30 – 60 minutes) to avoid cross-contamination until 

use.  Mosquitos were killed by refrigeration and each mosquito was suspended in 50 ml 

of water containing 10 third stage larvae of laboratory-reared An. arabiensis to monitor 

larval mortality and pupa emergence inhibition, over 12 days. In addition, the plastic 

collection aspirators were rinsed with water to remove any possible PPF particles and 

clean water added to a total volume of 50 ml in which 10 third-stage larvae were 

suspended, and followed up as just described. The experiment was repeated twice.  

 

To calculate the proportion contaminated, a maximum mortality threshold above an 

upper 95% CI from a control section was set.  Thus an observed larval or pupal mortality 

in a bioassay cup above the set threshold in the treatment arm, implied that the 

suspended mosquito was contaminated. The estimated contamination in the treatment 

section was corrected using Abbot‟s formula (Abbott, 1925), where the control larval 

mortality was greater than 5%.  Corrected contamination = [% Contamination – % 

mortality in control) / (100 – % mortality in control)] × 100. 

 

Experiment 5:  Determination of autodissemination efficiency with fewer treatment 

points and more breeding habitats 

The impact of only 1 – 2 treated clay pots with PPF to deliver PPF contamination to 

resting mosquitoes was determined in two tests.  In the first test, only two of the eight 
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pots were treated with PPF and compared to a control section where all eight pots 

remained untreated. A batch of 5000 unfed female An. arabiensis was released once in a 

control and treatment chambers. 

 

In the second test, only one pot was treated with PPF in treatment section, and 5000 

unfed female An. arabiensis were released in a control and treatment chambers, in three 

consecutive batches of 2000, then 2000 and lastly 1000, with an interval of one day 

between releases. The rationale of releasing different mosquito batches was to facilitate 

multiple visiting events of mosquitoes to the habitats, which were likely to occur when 

mosquitoes are released in different batches rather than single batch. This also mimic 

what is likely to happen in nature where different mosquitoes are likely to transit in the 

same clay pots over time. In both tests, six breeding habitats were provided, and pupae 

collected from individual habitat were monitored as described until all were dead or had 

emerged as adults. 

 

Data analysis 

All data were analysed using R v2.12.2 (R Core Team, 2013) and the lme4 package 

(Bates et al., 2013) for generalized linear mixed effects models. A visual inspection of 

the plots of error versus fitted values distribution was used to determine the best model 

fit. The model was then tested with each nested parameter separately to determine the 

underlying variation. SFS section was found to count for a lot of variation and therefore, 

required the full nested model to be retained. The differences in the total number of 

pupae collected and proportion emerged between control and treatment SFS chambers 

were determined with Poisson and binomial distribution respectively using a best-fit 

generalized linear mixed effect model. While treatment groups (with/without PPF) were 

classified as fixed effect in the model, experimental replicates, numbers of mosquito 
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released, numbers of larvae, total numbers of pupae collected per control and treatment 

chambers, and numbers of breeding habitats per control and treatment chambers were 

assigned as random effects for the autodissemination of PPF and larval bioassay data.  

 

 

4.4 Results 

 

Experiment 1: Evaluation of PPF-treated clay pots for the delivery of pyriproxyfen to 

resting adult female mosquitoes for subsequent autodissemination  

The results of the experiments measuring the impact of PPF-treated resting pots on 

emergence from nearby breeding habitats are summarized in Figure 4.4.1. In the 6 

replicates carried out, there was no difference in the mean number (95%CI) of pupae 

collected from the treatment group 717 (94 – 1340) compared with the control group 

590 (369 – 811, p = 0.579) [Fig 4.4.1A], suggesting that oviposition behaviour of 

mosquitoes after PPF treatment was not affected by the treatment.  The mean (95%CI) 

number of adult emerged from collected pupae were high in the control group, 558 (356 

– 760) compared with the treatment group, 131 (25 – 286, p < 0.0001) [Fig 4.4.1B]. 

Similarly, an average proportion (95%CI) of adult emerged per experimental replicate 

was higher in the control group, 0.95 (0.56 – 1.34) compared to the PPF treatments 

group, 0.21 (0.09 – 0.51, p < 0.0001) [Fig 4.4.1C]. Low adult emergence rate observed 

in the treatment chambers strongly suggest the occurrence of PPF autodissemination 

events mediated by gravid female mosquitoes attempting to oviposit.  

 

In the laboratory bioassay measuring the effect of breeding habitat water on 

development of larvae, an average proportion (95%CI) of 0.99 (0.95 – 1.03) emerged to 
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adults in water from the controls, while only 0.62 (0.16 – 1.07) emerged from the 

treatment group (p = 0.003), [Fig. 4.4.1D].  
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Figure 4.4.1:  Number of pupae produced (A), adults emerged (B), proportion of adult 

emerged (C) in the breeding habitats and proportion of adult emerged from larval 
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bioassay on water samples from control and PPF - treated sections (D). The line 

represents 95%CI across the mean. 

 

In the second larval bioassay, laboratory-reared larvae placed in the breeding habitats 

after the clay pot experiment ended, had lower average (95%CI) emergence proportion 

in the treatment chamber, 0.16 (0.07 – 0.39) compared to the control chamber, 0.97 

(0.92 – 1.02, p < 0.0001), which confirm auto dissemination of PPF to the breeding 

sites. Attrition of introduced larvae due to predation and other natural causes were 

similar in both groups (315/500 and 359/500 larvae accounted for in control and treated 

groups respectively) and there was no evidence of any increase in larval mortality due to 

PPF (p = 0.773).  All introduced larvae emerged successfully or died within 20 days of 

the start of the experiment. 

 

Experiment 2:  Confirmation that pyriproxyfen contamination of breeding habitats 

was mosquito-borne 

In the first test of experiment 2 carried out, laboratory-reared larvae were placed in the 

breeding habitats of control and treatment chambers, prepared as described for 

experiment 1, except that here, no mosquitoes were released.  The result of the single 

replicate showed that there was no difference in average (95%CI) proportion adult 

emergence per day between treatment, 0.63 (0.39 – 0.87) and control sections, 0.69 

(0.37 – 1.01, p < 0.0001). The total number of pupae collected from breeding habitats in 

the control (n= 379) and treatment (n= 392) chambers were not different (p>0.05). 

 

In the second test of experiment 2, the design of experiment 1 was repeated by releasing 

5000 adult female mosquitoes in each experimental chamber except here, the control 
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was run in an SFS chamber previously used for PPF treatment, and vice versa for the 

treatment. Average (95%CI) adult mosquito proportion emergence were higher in the 

control group, both before, 0.95 (0.56 – 1.34) and after, 0.72 (0.38 – 1.06) the locations 

were switched compared to the treatment, 0.21 (0.09 – 0.51) and 0.05 (0.02 – 0.12, p < 

0.0001).  The results of both experiments demonstrated that reductions in emergence 

rates in the breeding habitats occurred only when adult mosquitoes were present in the 

PPF-treated chamber. 

 

Experiment 3:  Mosquito resting site preference inside the semi-field systems  

All recaptured mosquitoes from different resting sites were blood fed. A mean (95%CI) 

recapture rate of 0.39 (0.37 – 0.41) was achieved in all replicates, with no difference 

seen between control, 0.38 (0.37 – 0.39) and treatment groups, 0.39 (0.37 – 0.41, p = 

0.266). Although, total number of mosquitoes recaptured increased when the number of 

mosquitoes released was greater (p = 0.006), the proportion of mosquito recaptured 

remains similar between replicates (p = 0.543).  As figure 3 shows, the majority of 

mosquitoes were collected from the ceiling and walls within the hut with 17% found 

within the resting pots.  
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Figure 4.4.2: Average number (±SE) of mosquitoes collected at different resting sites 

inside the Semi-field systems. 

 

 

Experiment 4:  Determining contamination rates of Anopheles arabiensis population 

resting inside clay pots 

As determined by their ability to inhibit adult emergence in a laboratory bioassay, all 

mosquitoes collected inside treated clay pots were PPF-contaminated, while 

approximately 72% of those found resting in the hut within the treated chamber, were 

contaminated. Average mosquitoes from PPF treated clay pots and huts caused 0.01 (0 – 

0.02) and 0.52 (0.46 – 0.58) average ((95%CI) adult emergence proportion from 

exposed larvae respectively in larval bioassay. In the control chamber, an average 

(95%CI) of 0.93 (0.85 – 1.01) of all larvae successful emerged to adults during larval 
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bioassay using mosquitoes collected from clay pots and cattle shed in the control 

chamber.   

 

Experiment 5:  Determination of autodissemination efficiency with fewer treatment 

points and more breeding habitats 

In both tests, impacts of PPF on pupal emergence were observed in all habitats in the 

treated chambers. When two clay pots were tested, the mean (95%CI) pupae collected 

from all breeding habitats were similar between control (52.57 ± 26.98) and treatment 

(62.92 ± 34.15) chambers, (p = 0.522). Similarly, the mean number of pupae collected 

was not different between control (100.34 ± 19.65) and treatment (104.88 ± 23.66) 

chambers when one clay pot was tested (p = 0.883). There was reduction in mean 

proportion (95%CI) of emerged adults in the treated chambers when two, 0.33 (0.15 – 

0.51) or only one clay pots, 0.34 (0.21 – 0.47) clay pots were treated compared with the 

respective controls, 0.82 (0.70 – 0.94); 0.98 (0.96 – 1.00, p < 0.0001). Furthermore, the 

mean (95%CI) number of adult emerged from collected pupae was higher in the control 

group, 97 (60.3 – 133.7) than in a treatment group, 41 (13.7 – 68.3) when one clay pot 

was tested, p < 0.05). Similarly, when two clay pots were tested, control group had 

higher adult emergence, 44 (17.6 – 60.4) compared to the treatment group, 28 (11.4 – 

44.6, p < 0.05).  

 

4.5 Discussion 

 

Previous field studies have demonstrated the potential for the autodissemination 

technique when applied to free flying population Aedes mosquito species under field 

settings (Devine et al., 2009; Caputo et al., 2012). In this study, we also proved the 

occurrence of PPF autodissemination using captive populations of malaria vector An. 
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arabiensis under semi-field settings. Overall, autodissemination of PPF by An. 

arabiensis inhibited 76.5% of adult emergence, which is approximately to the control 

level of 80% recommended by WHOPES for controlling malaria vector juvenile stages 

(WHO, 2005) under semi-field conditions.  In some cases, for example experiment 1, 

Fig. 2C, total emergence inhibition in PPF-treated sections was achieved with no single 

adult mosquito emerging from these habitats. Larval bioassays showed a lower adult 

emergence rate in the treatment sections compared to the control further confirming the 

delivery of PPF to the breeding habitats in all experiments. More importantly, by 

introducing insectary larvae directly in the habitats, an even lower emergence rate was 

observed compared to the control sections. This could be due to the presence of organic 

matter in the breeding habitats that would allow PPF adsorption and could prolong its 

persistence in aquatic habitats (Schaefer et al., 1988).   

 

Though not clearly elucidated by the data presented here, it remains as a limitation of 

current study, that wide range and many number of mosquito released (1500 – 5000) in 

relation to number and size of breeding habitats might have affected the productivity of 

the habitats provided (pupae as a proxy indicator) by causing high larval mortality in the 

habitats due to overcrowding factors (Ye-Ebiyo et al., 2003), and result in relative small 

number of pupae collected.  However, the reason for a wide age range of mosquito 

released was due to a shortage of mosquitoes of the same age whereas many mosquitoes 

were released to make sure that our experiments were not confounded by shortage of 

mosquitoes following natural mortality and scavenging natural enemies such as ants, 

spiders and others which were likely to be present in the SFS. 

 

Surprisingly, variations in the numbers of mosquitoes released did not affect the 

proportions of adults that ultimately emerged from the pupae in the contaminated 
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aquatic habitats, the inclusion of the numbers of mosquitoes released resulted in the best 

model. Since the numbers of mosquitoes visiting contamination stations would have 

differed between experiments and replicates, variation in mosquito numbers released and 

pupae collected were described as random rather than fixed factors.   

 

Importantly, similar emergence rates recorded in the absence of mosquitoes between 

control and treatment chambers indicated that passive transfer of PPF (which might have 

confounded or potentially artificially enhanced any observed impact) did not occur at 

any stage in these studies. In addition, similar impact of PPF on adult emergence 

observed as the results of released mosquitoes before and after switching locations of 

control and treatment chambers confirmed that dissemination by ovipositing mosquitoes 

alone was responsible for transfer of the effective dosages of PPF to the breeding 

habitats.  

 

In assessing potential mosquito resting sites for targeting with PPF inside SFS, similar 

number of mosquitoes recaptured between control and treatment groups indicated that 

PPF does not repel resting mosquitoes. Overall, the proportions of recaptured adult 

female mosquitoes were few; this might have been caused by restricted collections from 

few designated places, and missed those resting in the vegetation grown inside the 

experimental chambers. High number of mosquitoes collected from the wall and ceiling 

of the mud hut compared to the clay pots, highlight the potential of targeting these sites 

with PPF. 

 

In the experiment to assess autodissemination efficiency with fewer treatment points and 

more aquatic habitats, it was demonstrated that only one treated resting pot competing 
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with alternative untreated resting sites including seven clay pots and resting sites within 

the mud hut was sufficient to inhibit 58% adult emergence in six breeding habitats via 

ovipositing mosquitoes alone. These findings are very promising and highlight the 

potential that autodissemination offers for amplification of limited numbers of treatment 

points to significant levels of effective breeding habitat treatment coverage.  Clearly, 

field-based experiments and mathematical modelling should now be designed to 

investigate this further and establish the relationship between contamination stations and 

habitats coverage.  

 

The mechanism of PPF delivery to mosquitoes is crucial for the overall success of the 

autodissemination technique (Devine et al., 2009; Gaugler et al., 2011; Caputo et al., 

2012). In this study, the use of clay pots as a point source for PPF application effectively 

delivered PPF to the mosquitoes resting within and at rates sufficient to enable 

autodissemination. The attractiveness and usefulness of clay pots as an outdoor and 

indoor sampling tool for malaria and other disease vectors as well as a delivery tool for 

entomopathogenic fungi has been described elsewhere (Odiere et al., 2007; Farenhorst et 

al., 2008; van den Bijllaardt et al., 2009). Although absolute numbers of mosquitoes 

resting inside clay pots are relatively low, these tools are considered to be efficient for 

sampling blood fed mosquitoes compared to many other sampling techniques (Wong et 

al., 2013). The results presented here indicate that this simple and affordable method has 

additional potential in vector control.  

 

When aquatic habitats are limited, mosquitoes that are contaminated in clay pots and 

then carry lethal doses of PPF to their aquatic habitats also affect the offspring of 

uncontaminated mosquitoes. Thus, contaminated adults amplify the impact of their own 

contamination by affecting the offspring of all mosquitoes that share the contaminated 
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mosquito‟s breeding site (Fillinger et al., 2004; Harris et al., 2011). Although not 

investigated in this study, field deployment of autodissemination approach is predicted 

to be affected by number of mosquitoes visiting the habitats, size of the breeding 

habitats and distance of the habitats from PPF contamination stations and this necessitate 

detailed assessment of these parameters.   

 

Moreover, targeting only the clay pots with PPF resulted in the effective contamination 

of mosquitoes that were ultimately collected from the huts, suggesting that blood-fed 

mosquitoes move between resting sites during that phase of their gonotrophic cycle. This 

is clearly an advantage in terms of optimizing the effect of PPF through further 

“coverage amplification of the habitats”  whereby PPF is likely to be delivered to many 

breeding habitats  by PPF-contaminated mosquitoes using few habitats, and potentially 

might act to reduce the number and costs of contamination stations required (Devine & 

Killeen, 2010).  Clay pots, by providing shelter from rain and sunlight, might also 

prolong the lifespan of single PPF treatments, an important consideration in any 

„insecticide‟-based program. However, it should be noted that this experimental design 

provides only estimates, rather than actual numbers, of mosquitoes that rest or pass 

through clay pots and of whether they are contaminated or not.  

 

The impact of PPF varies at different stages of the mosquito‟s life cycle. Previous work 

has shown that mosquitoes that are contaminated within 24 h of a bloodmeal become 

sterilized and do not lay eggs (Harris et al., 2013; Lwetoijera et al., 2014, See Chapter 5, 

Section 5.4) but this sterilization effect does not occur when exposure to PPF occurs 

beyond 24 h after the bloodmeal.  However, in the experiments reported here, the test 

mosquitoes produced large numbers of developing offspring in the artificial habitats 

provided, suggesting that the clay pots set outside the cattle sheds, were not visited by 
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blood-fed mosquitoes until sometime after completion of feeding when egg-maturation 

was underway. If so, then it was while resting outdoors after the bloodmeal that these 

mosquitoes were contaminated, and targeting this stage of the gonotrophic cycle (i.e. 

>24 h after blood feeding) may maximize delivery of PPF to the breeding habitats 

(Gaugler et al., 2011). Alternatively, if PPF-contamination occurred immediately after 

or within 24 h of bloodfeeding, then it suggests that these PPF-sterilized mosquitoes, 

despite not being gravid, went on to visit the breeding habitats where they prevented 

emergence of the next generation of mosquitoes from the eggs laid by uncontaminated 

adults. 

 

Although a key necessity for its success is the development of efficient contamination 

stations, a role performed well by the clay pots in the experiments reported here, the 

autodissemination technique. This can potentially target both indoor and outdoor biting 

mosquitoes, susceptible and pyrethroid resistant mosquito strains at their larval habitat, 

with impacts on adult mosquito density and malaria transmission (Macdonald, 1957; 

Devine & Killeen, 2010; WHO, 2012b). The integration of this method of control with 

current vector control measures (LLINs and IRS) could help in the control of outdoor 

biting vectors such as An. arabiensis as well as providing an approach to managing 

insecticide resistance (Haji et al., 2013). The autodissemination of insecticides by adult 

mosquitoes for the control of malaria is likely to work better in the dry season when the 

breeding habitats are few and stable with reduced water flushing (Fillinger et al., 2004; 

Devine & Killeen, 2010). With recent development of highly potent formulations up to 

10% AI PPF dust, it might be possible to effectively contaminate greater volumes than 

current possible using malaria vectors and other mosquitoes that share the habitats with 

anophelines mosquitoes.  
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This is the first study to investigate the potential for using PPF autodissemination for the 

control of An. arabiensis, one of the efficient African malaria vectors. The results are 

very promising and indicate that this approach offers an opportunity to be considered 

amongst future malaria control strategies in Africa. Before its full potential can be 

assessed, further vector studies will be required in key areas: 1) the effectiveness seen in 

these semi-field experiments must be demonstrated under full field conditions; 2) 

quantitative studies on „amplification‟ are required to determine the numbers and 

densities of treatment points required to deliver effective control at breeding sites; 3) 

investigations of impacts on other species sharing the breeding sites, including other 

vectors, nuisance mosquitoes and non-target species. 
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CHAPTER 5 

STERILIZATION OF MALARIA VECTORS ANOPHELES ARABIENSIS 

USING PYRIPROXYFEN UNDER SEMI-FIELD SETTINGS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results reported in this chapter have been published in a slightly different form 

as Lwetoijera et al. American Journal of Tropical Medicine and Hygiene 2014, Volume 

90, Issue 5, 852-855 
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5.1 Abstract 

 

Introduction: One of the main challenges to malaria elimination is the resilience of 

vectors, such as Anopheles arabiensis, that evade lethal exposure to insecticidal control 

measures or express resistance to their active ingredients. This study investigated a novel 

technology for population control that sterilizes mosquitoes using pyriproxyfen, a 

juvenile hormone analogue.  

 

Methodology: Females of An. arabiensis were released in a semifield system divided 

into four equal sections, and each section had a mud hut sheltering a tethered cow 

providing a blood source for mosquitoes. In all sections, the inner mud hut walls and 

roofs were lined with black cotton cloth. In one-half of the sections, the cloth was dusted 

with pyriproxyfen.  

 

Results: 96% (89.3 – 102.7%) reduction in adult production was achieved in 

pyriproxyfen-treated sections compared with control sections.  

 

Conclusion: This high level of control can be exploited to design new vector control 

strategies that particularly target existing behaviourally resilient and insecticide-resistant 

populations. 
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5.2 Introduction 

 

Current frontline malaria vector control interventions, such as long-lasting insecticide-

treated nets (LLINs) and indoor residual spraying (IRS) have contributed greatly to the 

recent successes in malaria control (WHO, 2014). However, these tools are more 

effective against vector species that primarily feed indoors on humans and rest indoors. 

They are less effective against outdoor feeding and resting mosquitoes. Anopheles 

arabiensis, currently mediating most of the residual malaria transmission in east Africa, 

(Bayoh et al., 2010; Russell et al., 2011b) is not optimally controlled by LLINs and IRS, 

because it commonly feeds outdoors on humans or cattle, rests outdoors, and can enter 

but then rapidly exit houses containing these products without exposure to lethal doses 

of their active ingredients (AIs) (Russell et al., 2011b; Okumu et al., 2013). Another 

challenge to malaria vector control is the development of resistance in malaria vectors 

against all classes of insecticides currently used for LLINs and IRS, particularly 

pyrethroids, the most widely used and the only class approved for use in bednets (WHO, 

2012a).  

 

Pyriproxyfen (PPF) is a juvenile hormone analogue that traditionally has been used in 

aquatic habitats to prevent mosquito larvae and pupae from developing into adults. 

However, it can also sterilize adult mosquitoes on contact (Ohashi et al., 2012; Harris et 

al., 2013; Ohba et al., 2013, Mbare et al., 2014). This study builds from our previous 

work performed in laboratory conditions showing that An. arabiensis mosquitoes were 

particularly vulnerable to sterilization immediately after blood feeding (Harris et al., 

2013). Adult mosquitoes can also transfer PPF from resting sites to breeding sites to 

interfere with immature development (Devine et al., 2009; Caputo et al., 2012). Here, 

we show, an operational practicable means of controlling a free-flying captive 

population of An. arabiensis using PPF. 
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5.3 Methods and materials 

 

This study was carried out at Kining‟ina village (8.11417°S, 36.67484°E), rural southern 

Tanzania inside a semi-field system (SFS) with walls consisting of netting only, and 

therefore, the microclimate inside it closely resembled the natural environment outside 

of it (Ferguson et al., 2008). The SFS was divided into four equal sections, with a space 

volume of approximately 417.5 m
3
 each. In each section, a mud hut sheltering a tethered 

cow, eight clay pots, and four plastic basins with soil and water were designed to 

provide blood, resting, and oviposition sites for mosquitoes (Figure 5.3.1). In all 

sections, the inner mud hut walls and roofs were lined with black cotton cloth, and in 

one-half of the sections, the cloth was dusted with PPF powder (0.6–0.8 g AI/m2). In 

total, 5,000 unfed 3 to 9 days old insectary-reared An. arabiensis females, previously 

caged with equivalent numbers of males, were released per section, with a cow to 

provide blood for the first 3 days only. Mosquitoes used in the experiments were starved 

6 h before release. Therefore, they fed on the cow, and after 3 days, a solution of 6% 

glucose was set up at multiple locations inside the SFS for sugar feeding.  
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Figure 5.3.1:  Semi-field system set up: Semi-field system (A) with mud huts built 

inside each section to shelter a cow (B), and breeding habitats (C). Mud huts were lined 

with black cloth and dusted with PPF in treatment sections (D), (Lwetoijera et al., 2014, 

See Chapter 4, Section 4.3). 

 

These mosquitoes remained in the SFS to complete their gonotrophic cycle. All pupae 

that subsequently developed from the aquatic habitat were removed, counted, and reared 

in small cages to monitor the numbers of emerging adults and therefore, the impact of 

PPF exposure on the mosquitoes‟ ability to produce viable offspring. Seven days after 

larvae were observed in the habitats, 150 mL water were collected from every habitat 

using a glass beaker to determine whether PPF had been transferred to these habitats by 

contaminated mosquitoes during oviposition (Devine & Killeen, 2010). To assess the 

presence of PPF in each beaker, larval bioassays were conducted using second and third 
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instar larvae from the insectary. Twenty An. arabiensis larvae were introduced in each 

beaker and monitored daily until all larvae and pupae had either died or developed and 

emerged to adults.  

 

Five replicates each of the control and treatment were completed in three separate 

experiments in the following setup. In the first experiment, two replicates (treatment and 

control) were run (5,000 × 4= 20,000 mosquitoes); in the second experiment, two 

replicates (treatment and control) were run (5,000 × 4 = 20,000 mosquitoes), and in the 

third experiment, one replicate (treatment and control) was run (5,000 × 2 = 10,000 

mosquitoes), making a total of 50,000 mosquitoes reared and released. 

 

Data analysis 

All statistical analyses were conducted in R v2.12.2 (R Core Team, 2013) using the lme4 

package for generalized linear mixed effects models (Bates et al., 2013). To determine 

any differences in the numbers of pupae or adults produced between treated and control 

sections, a generalized linear mixed effects model with a Poisson distribution and a log 

link function for count data was performed. The treatment group (control or PPF) was 

classified as a fixed effect, whereas SFS section nested within experiment was put in as 

a random effect as per the experimental design. A visual inspection of the plots of error 

versus fitted values distribution was used to determine the best model fit by To 

determine the best model, we performed a model reduction by comparing the full nested 

(including all parameters from the experiment) model with reduced model (i.e. trying 

different combinations with one parameter removed at each time). The model was then 

tested with each nested parameter separately to determine the underlying variation. SFS 

section was found to count for a lot of variation and therefore, required the full nested 

model to be retained. The differences in pupal emergence rates in both SFS habitats and 
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the bioassays experiments were compared by fitting a generalized linear mixed effects 

model with binomial error structure and logit link function for proportion data. The data 

were fitted to a model including treatment as a fixed effect and breeding habitat nested 

within SFS section nested within experiment as a random effect as per the experimental 

design. Visual inspection of the plots of error versus fitted values distribution was used 

to determine the best model fit. Model reduction was conducted by removing nested 

parameters one by one; however, the full nested model was retained.  

 

5.4 Results  

 

Experiments lasted between 11 and 16 days from release of adult mosquitoes to 

collection of the last pupae in the breeding habitats. An overwhelming 95% reduction in 

pupal production and 96% reduction in adult production were achieved in PPF-treated 

sections compared with control sections (Figure 5.4.2A and B). In four of five replicates, 

exposure to this juvenile hormone analogue completely sterilized all mosquitoes; not a 

single pupae or new adult was seen. The few adults emerging from a PPF-treated section 

in the fifth replicate probably resulted from mosquitoes that had been contaminated with 

PPF but were not completely sterilized and managed to lay eggs. The pupae collected in 

the PPF-treated section showed a lower emergence rate (82%; 164/201) compared with 

the control (95%; 4,132/4,349; 
2
 [1] = 65.6, P < 0.001) (Figure 2C). This result 

suggested possible PPF-autodissemination to the breeding habitats by contaminated 

mosquitoes. However, bioassays with insectary larvae reared in water from the control 

and PPF-treated habitats showed similar emergence rates (Figure 5.4.2D). A similar 

pattern has been observed in recent studies (Lwetoijera et al., 2014, See Chapter 4, 

Section 4.3), where PPF activity is more pronounced in breeding habitats with organic 

material than water samples kept in glass beakers.  
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Figure 5.4.2:  Impact of pyriproxyfen on adult mosquito emergence: Number of pupae 

produced (A) and adults emerging (B) from control and treated sections; and the 

proportion of adult emergence in SFS (C) and insectary bioassays (D). 
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5.5 Discussion 

 

The high level of sterilization seen in this key malaria vector reveals an exciting new 

opportunity for malaria vector control. This technology is a practical, novel technology 

for population control that sterilizes mosquitoes rather than killing them. It offers the 

chance to develop new tools that are not compromised by existing resistance 

mechanisms. New paradigms in vector control are in great demand, especially for 

vectors such as An. arabiensis (Kitau et al., 2012; Okumu et al., 2013) and other 

anophelines (Elliott, 1972) that exhibit flexibility in feeding and resting indoors and 

outdoors and minimize their contact with conventional adulticides applied indoors.  

 

The findings reported here have limitations given that the experiments were conducted 

within an enclosed environment on insectary-reared mosquitoes that had never been 

subjected to insecticide pressure but also PPF exposed mosquitoes were not dissected to 

assess abdominal egg retention and egg viability.  However, this technology can be 

readily adapted in natural conditions to assess its impact on wild populations of An. 

arabiensis. Treating walls and roof linings with PPF comprehensively sterilizes captive 

populations of free-flying An. arabiensis, making it a potential control tool and 

complement to LLINs and IRS. For IRS formats, durable wall linings with PPF can be 

designed, for controlling indoor resistant malaria vectors. PPF-treated materials could be 

deployed outdoors in areas where mosquitoes rest or transit, such as areas where people 

gather in the early hours of the evening and inside and outside of cattle sheds. These 

treated materials could also be specifically designed to attract resting mosquitoes. 

Similar substrates are already exploited for the delivery of conventional insecticides 

(Messenger et al., 2012). 
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Our prototype (PPF-treated wall and roof linings) uses a safe and registered insecticide 

class that has yet to be deployed against adult malaria vectors. Alternatives to 

conventional adulticides are desperately needed. The physiological resistance to 

pyrethroids, recently characterized in populations of An. arabiensis from Zanzibar, 

precipitated the substitution of pyrethroids for a carbamate compound with a history of 

resistance development in malaria vectors (Okoye et al., 2008; Haji et al., 2013). No 

resistance to PPF has been reported in mosquitoes, and no cross-resistance has been 

observed between PPF and other classes of insecticides of public health interest (Invest 

& Lucas, 2008). As with other insecticides, the possibilities of malaria vectors 

developing resistance against this compound in future should not be dismissed (Schaefer 

& Mulligan III, 1991). PPF could be applied in combination, mosaics, or rotations with 

current insecticides to mitigate the emergence of resistance (WHO, 2012a). It is 

remarkably stable in the shade and available in a variety of commercial formulations that 

fit this new application. The indication that the few mosquitoes that managed to lay eggs 

from the PPF-treated section also transferred PPF to their breeding habitats and 

significantly reduced subsequent mosquito emergence is a welcome development. The 

autodissemination of PPF by adult mosquitoes has been already observed in Aedes 

species (Devine et al., 2009; Caputo et al., 2012), and we have proven same 

phenomenon in malaria vectors (Lwetoijera et al., 2014, Chapter 4, Section 4.4). 
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CHAPTER 6 

 

DISCUSSION 

 

6.1 Research findings 

 

This thesis aimed at evaluating the potential of exploiting adult mosquito behaviour to 

disseminate pyriproxyfen (PPF) into mosquito‟ breeding habitats for malaria‟ vector 

control. In this chapter, present and future implications of these findings in controlling 

malaria vectors are comprehensively discussed. 

 

The first objective of this research was to conduct a robust mosquito surveillance system 

to establish the association between house characteristics and abundance of malaria 

vectors indoors, as well as for an in-depth understanding of malaria vector population 

dynamics and recent changes in transmission patterns of the disease in the study area. 

The outcome of this surveillance helped to establish baseline information for future 

evaluation of the impact of pyriproxyfen-based vector control strategies on malaria 

vectors in this area with high bed net coverage. It was demonstrated that even in the 

communities with high coverage of long lasting insecticide treated nets (LLINs), the 

density of An. arabiensis and An. funestus malaria vectors remained high inside houses. 

While poor housing structures (with many openings and no screening) and high human 

biomass per house were associated with an increase of indoor malaria vector densities 

and hence high malaria risk to communities in this locality; surprisingly the presence of 

LLINs on the other hand appeared not to negatively affect these populations.  These 

findings emphasize not only the insufficiency of LLINs to control indoor biting 
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exposure via its repellence effect but also the benefit of improving house design to 

prevent indoor vector abundance.   

 

Furthermore, in describing changes in vector species composition and relative 

abundance, insecticide susceptibility and their contribution to malaria transmission, it 

was clear that indoor densities of An. gambiae s.s. were controlled with LLINs 

undoubtedly due to its anthropophagic and endophilic tendencies.  However, the 

remaining population of An. arabiensis and An. funestus were resistant to pyrethroids, 

carbamates and organochlorines that are approved for use in malaria vector control. The 

proportion of An. funestus in this area has been fluctuating sometimes higher than other 

malaria vectors, and their level of Plasmodium infection rates suggest that transmission 

by An. funestus was >6 times higher than the more widespread An. arabiensis.  

 

These observations provide evidence that in addition to An. arabiensis, An. funestus was 

emerging as the greatest malaria challenge to vector control efforts (McCann et al., 

2014) (Lwetoijera et al, 2014, See Chapter 3, Section 3.4) in terms of increasing in 

densities with high sporozoite rates, insecticide resistance,   and this calls for urgent 

development of novel and complementary approaches to sustain the gains already 

achieved with continuous use of LLINs (Hemingway, 2014; Killeen, 2014; Strode et al., 

2014; WHO, 2014).   

 

Lack of outdoor mosquito collections was a limitation of this surveillance in explaining 

outdoor biting patterns. However, previous and recent findings showed that An. 

arabiensis and An. funestus feed outdoors in early morning and evening hours as a 

means to avoid lethal LLINs contacts, a behaviour that might be heritable or due to 
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phenotypic plasticity (Coluzzi et al., 1977; Russell et al., 2011b; Moiroux et al., 2012; 

Gatton et al., 2013; Sougoufara et al., 2014). Therefore, outdoor based interventions, 

such as larviciding may have the potential of controlling immature stages at the aquatic 

habitat, and prevent build-up of adult mosquito population that would have preferred 

either to feed indoors or outdoors.  

 

The second objective was to design and evaluate an efficient mechanism of 

contaminating mosquitoes with PPF that has potential for field implementation and that 

could be integrated in existing vector control strategies. This process exclusively relied 

on vector behaviours, namely host seeking, feeding, resting and oviposition that might 

be exploited to disseminate or target PPF.  

 

Using laboratory‟ reared captive populations of An. arabiensis, it was proved for the first 

time under controlled conditions that An. arabiensis were capable of disseminating 

lethal dose of PPF to their aquatic habitats from PPF treated clay pots (i.e. 

Autodissemination) and render them unproductive. The autodissemination of PPF to 

aquatic habitats has been extensively studied using Aedes mosquitoes and demonstrated 

to be effective in controlling juvenile stages of the targeted Aedes mosquitoes under 

laboratory and field settings (Devine et al., 2009; Caputo et al., 2012; Suman et al., 

2014), but was not yet proven for malaria vectors under semi-field and field settings. 

 

Because they are attractive to resting mosquitoes (Odiere et al., 2007; Farenhorst et al., 

2008), clay pots were selected as the autodissemination tool for contaminating resting 

mosquitoes with PPF. Although absolute numbers of mosquitoes resting inside clay pots 

are relatively low (van den Bijllaardt et al., 2009), clay pots have potential of attracting 
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blood fed mosquitoes to rest compared to many other sampling techniques (Wong et al., 

2013). This is likely to: 1) make it more efficient in ensuring long PPF-mosquito contact 

during blood digestion, 2) target mosquitoes later after blood feeding and closest to the 

egg-laying time, 3) target mosquitoes at the time the eggs have been formed and about to 

be laid, and hence maximise the chances for dissemination of picked up PPF to the 

habitats during egg laying events. In addition to its internal cool and humid microclimate 

which is preferred by resting mosquitoes, the clay pots protect PPF against destructive 

UV-light and extend their lifetime, and their small internal surface area for PPF 

application is advantageous in minimizing the human contact as well as intervention 

cost. For example, PPF powder applied inside clay pots was still effective in causing up 

to 80% mosquito emergence inhibition two months post treatment (Nzumbi, personal 

communication). Despite all these desirable characteristics of clay pots for delivering 

PPF to resisting mosquitoes, in the field settings, it is most likely to compete with 

surrounding vegetation for resting mosquitoes which might reduce the proportion of 

mosquitoes to be contaminated with PPF.  

 

Of importance, one treated resting pot competing with alternative untreated resting sites 

including seven clay pots and resting sites within the mud hut was sufficient to inhibit > 

65% adult emergence in six breeding habitats via ovipositing mosquitoes alone. These 

findings are very promising and highlight the potential that autodissemination offers for 

amplification of limited numbers of treatment points to significant levels of effective 

breeding habitat treatment coverage. In addition, when aquatic habitats are limited, the 

minority of mosquitoes that are contaminated in clay pots and then carry lethal doses of 

PPF to their aquatic habitats also affect the offspring of uncontaminated mosquitoes. 

Thus, contaminated adults amplify the impact of their own contamination by affecting 

the offspring of all mosquitoes that share the contaminated mosquito‟s breeding site 

(Fillinger et al., 2013; Harris et al., 2013). 
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Recently, the chemosterilant effect of PPF on adult Anopheles mosquitoes i.e. its ability 

to negatively impact mosquito fecundity and fertility has been demonstrated (Ohashi et 

al., 2012; Harris et al., 2013; Mbare et al., 2014).  Similarly, captive populations of 

susceptible An. arabiensis were sterilized using PPF treated ceiling and wall linings of 

cattle shelters inside the semi-field systems (Lwetoijera et al., 2014, See Chapter 5, 

Section 5.4).  The high preference of blood-fed mosquitoes to rest on the ceiling and 

walls of cattle shelter made these ideal vehicles for contamination with PPF.  

 

The sterilization of malaria vectors was indirectly recorded by monitoring the absence of 

eggs/larva/pupae in the breeding habitats. One limitation of this study was that PPF 

exposed mosquitoes were not dissected to assess abdominal egg retention and egg 

viability. However, a separate study performed in the laboratory using mosquitoes from 

the same colony, demonstrated complete sterilization (100% reduced fertility, confirmed 

via dissection) when mosquitoes were contaminated within 24 h of a blood meal (Harris 

et al., 2013). This, and the absence of eggs, larvae and pupae in the available aquatic 

habitats show that there were profound sterilization effect taking place inside the SFS. 

 

6.2 Future perspectives 

 

The future implementation of PPF-autodissemination as a potential larviciding method 

against immature mosquitoes, together with the chemosterilant effect of PPF on adult 

mosquitoes in interrupting malaria transmission would be governed by its uniqueness for 

controlling susceptible and resistant mosquitoes (Ngufor et al., 2014; White et al., 

2014). Despite continuous development of mosquito resistance against the different 

insecticides recommend by WHO for malaria vector control (WHO, 2014), to date, there 

is no established evidence of resistance and/or cross resistance development in malaria 
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vectors against PPF (Invest & Lucas, 2008). However, following recent evidence of PPF 

resistance in houseflies and whiteflies (Crowder et al., 2008; Shah et al., 2015), the 

possibility of targeted malaria mosquitoes to develop resistance against PPF should not 

be dismissed. PPF has low toxicity to mammals and non-target organisms and is already 

approved by the WHO for some public health uses (WHO, 2008).  

 

The study of PPF autodissemination in controlling Aedes mosquitoes has progressed 

from proof of principle to effective implementation in the field (Devine et al., 2009; 

Caputo et al., 2012, Suman et al., 2014), and its potential for controlling vectors of 

malaria is promising, although at a more preliminary stage. This thesis describes the first 

steps towards malaria vector control with autodissemination of PPF. Further experiments 

will evaluate its efficacy using a self-propagating captive population, and will describe 

the field settings under which the technique might be applied.  

 

The evaluation of interventions in the field experiments are usually costly, take a long 

time to implement and are complicated by variables that cannot be accounted and 

controlled for. However, semi-field experiments using a self-propagating colony in 

conditions closest to the natural environment of wild type population can provide a 

better early-stage system to evaluate multiple factors that might be of importance in 

optimizing pyriproxyfen-based control strategies. In the process of proving the 

autodissemination and sterilization principles, these studies utilized exceptionally large 

numbers of mosquito and small artificial aquatic habitats. The impact of PPF was 

evaluated via a single gonotrophic cycle and contamination event of released mosquitoes 

and was not necessarily representing the ecology of malaria vector under field settings.  
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In such experimental settings, it is therefore indispensable to establish self-propagating 

populations of An. arabiensis, which will be used to:- 1) assess the proportion of 

mosquitoes that could be contaminated with clay pots treated with PPF and  the 

proportion of contaminated mosquitoes that are actually visiting the breeding habitats, 

and how many of these are enough to render a habitat unproductive, 2) estimate a 

minimum number of clay pots treated with PPF and how often it should be re-treated to 

completely crash the established self-propagating An. arabiensis population. Although, 

it is envisaged that the impact of PPF on the established population of An. arabiensis 

would be mainly due to autodissemination of PPF to the habitats, it would remain 

imperative to also assess the contribution of adult sterilization to the overall mosquito 

population reduction.  

 

6.2.1 Field evaluation 

  

Before any new vector control tool, in this context PPF, is adopted for large scale 

implementation it has to be evaluated under field settings. Variation in malaria vectors 

distribution and abundance is mainly associated with season. Dry season could be the 

prime time for deployment of PPF-autodissemination strategy due to the stable and 

limited number of mosquito breeding habitats compared to the rainy season (Charlwood 

et al., 2000; Fillinger et al., 2004).  Although this season would be associated with low 

mosquito abundance and wide range of existing natural resting sites which might 

compete with target contamination sites, it is envisaged that the effective contamination 

and transfer of lethal PPF dosage to the aquatic habitats would be derived from 

attractiveness of the contamination stations to resting mosquitoes and PPF accumulation 

from multiple visit during the mosquito‟s gonotrophic cycles (Devine & Killeen, 2010). 

Importantly, Culex mosquitoes which occur relatively in higher numbers throughout the 

year and visit the same breeding habitats as Anopheles may also enhance the 



139 

 

autodissemination process (Robert et al., 1998; Keating et al., 2003; Muturi et al., 2008; 

Russell et al., 2010; Kudom et al., 2012; Mbare et al., 2013). 

 

The efficacy and sustainability of PPF-autodissemination strategies will depend on the: 

1) optimization of contamination methods such as the PPF formulations with increased 

active ingredient and longer shelf life, attractiveness to resting mosquitoes, electrostatic 

substrates that can easily offload maximum PPF onto mosquitoes upon contact 

(Andriessen et al., 2015), exploitation of male mosquitoes to transfer PPF to the 

breeding habitats and to cross-contaminate females (Mains et al., 2015), 2) assessing the 

role of non-target vehicles such as Culex species in the autodissemination of PPF and 3) 

assessment of residual activity of PPF in the field.  

 

6.2.2 Impact on resistant vectors 

 

Extensive use of LLINs and IRS are not only changing the distribution and abundance of 

malaria vectors but also imposing considerable selection pressure for the evolution of 

resistance against the chemicals they use (Strode et al., 2014).  Currently all vector 

species of malaria across Africa are resistant to all pyrethroids used in LLINs and to 

more than 80% of pyrethroids used for IRS (Hemingway, 2014; Strode et al., 2014). 

Because malaria vectors are still fully susceptible to pyriproxyfen it could be applied 

either directly in semi/permanent breeding habitats or effectively combined with existing 

insecticidal interventions to help control resistant vector populations of both An. 

arabiensis and An. funestus (Ohashi et al., 2012; Harris et al., 2013; Kawada et al., 

2014; White et al., 2014). 
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Recent empirical evidence of the impact of PPF on pyrethroid-resistant An. gambiae 

(Kawada et al., 2014; Ngufor et al., 2014) together with a mathematical model (White et 

al., 2014) demonstrate the capacity of PPF / pyrethroid mixtures to reduce the frequency 

of pyrethroid-resistant alleles in a population. These support the potential of integration 

of pyriproxyfen-based strategies, in managing resistant malaria vectors and improving 

malaria control sustainability. For example, in the agricultural sector, PPF has been 

successfully used as a rotational alternative with other insecticides in control 

programmes targeting resistant whitefly, Bemisia tabaci, a pest that has shown the 

potential to cause financial loss in cotton damage and lost yields in North America 

(Ellsworth & Jones, 2001; Ellsworth & Martinez-Carrillo, 2001).  

 

With the increasing importance of An. arabiensis in sustaining residual malaria 

transmission due to its feeding flexibility mainly on cattle apart from human but also its 

physiological resistance against insecticides used for LLINs and IRS; targeting cattle 

with PPF could potentially control both susceptible and pyrethroid-resistant An. 

arabiensis.  Similar to the treatment of cattle with pyrethroids which was proven 

effective but challenged by resistance to the pyrethroids (Rowland et al., 2001), cattle 

could be sprayed with PPF to sterilize hosting seeking An. arabiensis and hence prevent 

the propagation of pyrethroid-resistant alleles in its population.  Of importance, cattle 

treated with PPF have shown neither to repel nor inhibit mosquitoes from feeding 

(Lwetoijera et al, unpublished).  

 

6.3 Conclusions  

 

For the first time, using clay pots as contamination tools, it was demonstrated that adult 

An. arabiensis can disseminate PPF to their aquatic habitats resulting in substantial 



141 

 

reduction (76.5%) in number of adult produced. Similarly, using cattle shelters (walls 

and ceilings) treated with PPF, An. arabiensis were almost completely sterilized 

resulting in > 95% reduction in adult production. These findings provide a range of 

options for future field evaluation. 

 

PPF-autodissemination can potentially control pyrethroid resistant and susceptible 

malaria vectors indoors and outdoors, in their aquatic habitats and by imposing a huge 

reproductive fitness cost. It can also target mosquitoes of other diseases which share 

aquatic habitats with malaria vectors, such as Culex mosquitoes. The treatment of walls 

and ceilings of cattle shelters with PPF could be further optimised into an IRS format for 

areas known to harbour large numbers of resting mosquitoes. 

 

Surveillance of wild malaria vectors populations dominated by An. arabiensis and An. 

funestus, showed increasing levels of resistance to all classes of insecticides 

recommended for mosquito control. This hampers the effectiveness of existing malaria 

interventions and hence the increased risk for malaria transmission. PPF-

autodissemination and sterilization of adult females could complement existing vector 

control measures to target these problematic mosquito populations. 
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A need for better housing to further reduce
indoor malaria transmission in areas with high
bed net coverage
Dickson W Lwetoijera1,2*, Samson S Kiware1,3, Zawadi D Mageni1, Stefan Dongus1,2, Caroline Harris1,2,
Gregor J Devine4 and Silas Majambere1,2
Abstract

Background: The suppression of indoor malaria transmission requires additional interventions that complement
the use of insecticide treated nets (ITNs) and indoor residual spraying (IRS). Previous studies have examined the
impact of house structure on malaria transmission in areas of low transmission. This study was conducted in a high
transmission setting and presents further evidence about the association between specific house characteristics and
the abundance of endophilic malaria vectors.

Methods: Mosquitoes were sampled using CDC light traps from 72 randomly selected houses in two villages on a
monthly basis from 2008 to 2011 in rural Southern Tanzania. Generalized linear models using Poisson distributions
were used to analyze the association of house characteristics (eave gaps, wall types, roof types, number of
windows, rooms and doors, window screens, house size), number of occupants and ITN usage with mean catches
of malaria vectors (An.gambiae s.l. and An. funestus).

Results: A total of 36490 female An. gambiae s.l. were collected in Namwawala village and 21266 in Idete village. As
for An. funestus females, 2268 were collected in Namwawala and 3398 in Idete. Individually, each house factor had a
statistically significant impact (p < 0.05) on the mean catches for An. gambiae s.l. but not An. funestus. A multivariate
analysis indicated that the combined absence or presence of eaves, treated or untreated bed-nets, the number of
house occupants, house size, netting over windows, and roof type were significantly related (p < 0.05) to An.
gambiae s.l. and An. funestus house entry in both villages.

Conclusions: Despite significant reductions in vector density and malaria transmission caused by high coverage of
ITNs, high numbers of host-seeking malaria vectors are still found indoors due to house designs that favour
mosquito entry. In addition to ITNs and IRS, significant efforts should focus on improving house design to prevent
mosquito entry and eliminate indoor malaria transmission.

Keywords: House risk factors, Anopheles gambiae s.l., Anopheles funestus, ITNs, Malaria
Background
The Anopheles gambiae and Anopheles funestus com-
plexes comprise the major and most efficient malaria
vectors in sub-Saharan Africa [1]. Their transmission ef-
ficiency is mediated by their behavioural adaptation to
feed indoors on humans [2]. To date, insecticide treated
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nets (ITNs) and indoor residual spraying (IRS) are the
mainstay for controlling malaria vectors and associated
malaria transmission [3,4]. Despite the huge success of
these interventions, residual malaria transmission cannot
be addressed by ITNs and IRS alone, even at very high
coverage [5,6]. Moreover, their sustainability is threat-
ened by a widespread increase in insecticide resistance
in the target species [7,8]. In Senegal, the initial suc-
cesses of an ITN distribution program were partially
confounded by an increase in insecticide resistance and
a consequent rebound in malaria incidence [9] and in
tral Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.
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northern Tanzania the predominant vector An. arabiensis
has been reported to display avoidance behaviour against
ITNs [10]. The integration of existing interventions with
environmental management and socio-economic develop-
ment through house improvement and screening offers a
non-insecticidal, complementary approach to increasing
protection against mosquito bites [11,12]. These additional
interventions could enhance the interruption of malaria
transmission through the reduction and prevention of
human-vector contacts inside human dwellings. It has long
been established that the transmission of many vector-
borne diseases is facilitated by house designs that favour
mosquito entry [13-15] and that housing improvements
and screening have made substantial contributions to the
control and elimination of malaria vectors in many richer
countries [16]. Therefore, understanding house risk factors
that are associated with reduction of indoor mosquito bites
and disease transmission in different settings is crucial for
disease vector control and elimination.
Several studies have identified and documented vari-

ous house characteristics associated with mosquito
entry. Presence of eave gaps, lack of a ceiling and lack of
screening over windows and doors proved to be the
major contributors to mosquito entry [16-20]. Further-
more, it has been shown in a randomised control trial that
blocking all potential house entry points for mosquitoes
substantially reduces vector densities and entomological
inoculation rates (EIR) [19]. Other than protection against
malaria mosquitoes, the use of screened houses offers
Figure 1 Kilombero and Ulanga districts (8.1°S and 36.6°E) in Tanzani
distribution of sentinel houses used for mosquito sampling (right) [25
protection against nuisance bites and other mosquito
borne diseases [15,21].
While this strategy is deemed efficient in reducing in-

door biting and disease morbidity in low malaria trans-
mission settings [16], its impact is yet to be examined in
areas experiencing moderate to high malaria transmis-
sion and with high ITN coverage such as the Kilombero
valley in south-eastern Tanzania.
A recent study in Northern Tanzania has shown a

strong association between houses, individual and be-
havioural risk factors and malaria transmission [22].
However, the authors argued that it was important to
complement these findings with entomological data in
order to have a fuller understanding of malaria transmis-
sion inside human dwellings [22]. This study therefore
assessed the impact of house characteristics on indoor
vector abundance in communities with a high coverage
of ITNs.

Methods
Study site
The study was carried out in Namwawala and Idete vil-
lages located in the flood plain of the Kilombero River
(8.1°S and 36.6°E) in south-eastern Tanzania (Figure 1).
The epidemiology of malaria transmission and associ-
ated disease vector species composition within these vil-
lages has been well studied and documented over the
past years [23,24]. Both villages experience an annual
rainy season (Dec – May) and the main crops are rice
a showing Namwawala and Idete villages (left) and spatial
].
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and maize. However, both villages have a relatively similar
number of houses (Namwawala = 804 and Idete = 844),
Namwawala has a high number of households (3909)
compared to Idete (2932). Houses in Idete are built on
relatively elevated areas compared to Namwawala. Ap-
proximately 92% of community members sleep under a
treated net [23].
Study design
This longitudinal study was conducted over four years.
A total of 72 houses from each village were randomly se-
lected from Ifakara Health Institute (IHI) Demographic
Surveillance System household list [26]. All selected
houses were geo-located using a handheld GPS (eTrex,
Vista, Garmin, USA). Each of the 72 houses was sampled
monthly (i.e. 6 houses per day, 4 days per week and 3
weeks per month). This longitudinal study was carried
out between January 2008 and December 2011, during
which mosquitoes were sampled every month during
2008 and 2011, for 6 months of the wet/rain season
(January to June) in 2009 and for 6 months of the dry
season (July to December) in 2010. This totals 36 months
of sampling.
House risk factors
Structured questionnaires were used to record owner-
ship, number and status of bed nets (either treated or
untreated) including the one LLIN provided by the re-
search team in this study, and the number of house oc-
cupants. The house characteristics which were recorded
include house size, number of sleeping rooms, presence
and size of eave gaps, number of windows, presence of
window screening, number of doors, presence of ceiling,
wall and roof types. These factors were correlated with
mosquito densities indoors (an indicator of human bit-
ing rate) over time in both villages, at house level and
were monitored yearly to accommodate any significant
changes. Representative house types, which are com-
monly found in the study area are shown in Figure 2.
Figure 2 Representative house types commonly available in Idete an
house (b).
Mosquito sampling and processing
Mosquitoes were sampled using miniature Centre for
Disease Control (CDC) light traps (model 512, USA).
One CDC light trap was set per house, placed 1–1.5 m
above the ground close to the foot of a bed with an oc-
cupant sleeping under a treated net, and left to run for
12 hours (7 pm–7 am). For every participating house,
one LLIN (Olyset, A to Z Textiles Mills, Arusha,
Tanzania) was provided to protect the bed occupant
where the CDC trap was set. Each morning of a sam-
pling night, mosquitoes were collected and killed using
chloroform and were morphologically identified in the
field. Furthermore, female mosquitoes were classified as
being unfed, partially fed, fully fed or gravid [2]. Sub-
samples of five mosquitoes from each trap were indi-
vidually stored inside a tube containing cotton wad and
silica gel beneath. Polymerase chain reaction (PCR) was
used for identification of Anopheles gambiae [27] and
An. funestus Giles [28] complexes, whereas an enzyme-
linked immunosorbent assay (ELISA) was used to de-
termine sporozoite infection in malaria vectors [29].
Unprocessed mosquito samples were stored on silica
gel at room temperature.

Ethics
The study approval was granted by the Ifakara Health
Institute Institutional Review Board (IHRDC/IRB/No.
A-32) and the National Institute of Medical Research
(NIMR/HQ/R.8a/Vol. IX/764). The benefits and possible
risks associated with the study were explained to the house
occupants before commencement. After consenting, the
head of the house was asked to sign two copies of the in-
formed consent forms, of which, one remained with the
head of the house and the other copy was kept by the study
investigator.

Data analysis
The analysis was performed using generalized linear
models (GLM) (MATLAB R2012a, Poisson distribution,
95% confidence interval) to assess the impact of each
d Namwawala villages. A temporary house (a) and a permanent
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individual house factor on the mean catches of An.
gambiae s.l. and An. funestus for both villages. Model es-
timate (ME) value was generated for each factor in com-
parison to a reference category. If the sum of ME for a
factor and reference category was more than that of ME
for a reference category then a factor increases indoor
Table 1 Parameters associated with Anopheles gambiae s.l. de

An.gambiae Idete (N = 70)

Factor N Estimate

Number Of Rooms
aOne 37 2.31

More than One 33 -0.24

Number Of Doors
aOne 30 2.45

More than One 40 -0.47

Number Of Windows
aUp to 3 26 2.50

More than 3 44 -0.51

Netting Over Window
aAbsent 50 2.35

Present but damaged 16 -0.59

Intact 4 -085

House Status
aSmall 12 2.76

Large 58 -0.71

Wall Type
aMud 52 2.65

Cement 18 -0.66

Roof Type
aGrass 46 2.58

Metal 24 -0.65

Eave Status
aAbsent 46 1.50

Present 24 0.94

Eave Size
aSmall 26 1.80

Medium 14 0.67

Large 30 0.36

Number of Occupants
aUp to 3 15 1.76

More than 3 55 0.54

Bed-net Status
aUntreated 47 2.33

Treated 23 -0.45
a reference category, N = number of observations.
Note: Model estimate (ME) value for a factor indicates by how much a factor increa
reference category.
mean catches of mosquitoes, otherwise it decreases.
Thus, ME value for a factor indicates by how much a
factor increases or decreases the indoor mean catches
when compared to a reference category. We categorized
the house factors as follows: Eave gap: present or absent,
eave gap size (small: <9 cm, medium: 9–15 cm, large >
nsity in Idete and Namwawala villages

Namwawala (N = 72)

P value Estimate N P value

0.0000 2.89 57 0.0000

0.0035 -0.76 15 <0.0001

0.0000 2.93 51 0.0000

<0.0001 -0.64 21 <0.0001

0.0000 2.85 53 0.0000

<0.0001 -0.29 19 <0.0001

0.0000 2.85 60 0.0000

0.0004 -1.65 9 <0.0001

<0.0001 -0.35 3 0.0005

0.0000 2.88 34 0.0000

<0.0001 -0.19 28 0.0008

0.0000 2.88 32 0.0000

<0.0001 -0.28 40 <0.0001

0.0000 2.94 19 0.0000

<0.0001 -0.81 53 <0.0001

0.0000 1.06 62 0.0000

<0.0001 1.84 10 <0.0001

0.0000 2.89 22 0.0000

<0.0001 -0.05 27 0.4452

0.0028 -6.24 23 <0.0001

0.0000 2.35 34 0.0000

<0.0001 0.70 38 <0.0001

0.0000 2.58 6 0.0000

<0.0001 0.22 66 0.0588

ses or decreases the indoor mean catches when compared to a



Lwetoijera et al. Parasites & Vectors 2013, 6:57 Page 5 of 9
http://www.parasitesandvectors.com/content/6/1/57
15 cm), roof type: grass or metal roofs, wall type: mud
or cement, number of occupants: up to three or more
than three, windows: up to three or more than three,
netting over window: intact, present but damaged or ab-
sent, doors: one or more than one, rooms: one or more
than one, house size: small or large (small house consid-
ered to be the one with 1 room and/or 1 door and less
than 37.4 m3), bed nets: treated or untreated. All houses
had nets, and they were considered treated if the num-
ber of treated nets divided by the total number of nets
in the house was greater than 0.5, otherwise untreated.

Results
Mosquito collections
A total of 36490 female An. gambiae s.l., were collected
in Namwawala village compared to 21266 from Idete vil-
lage. Of these, approximately 98% were non-blood fed,
1.7% were blood fed and the remaining 0.3% were gravid.
Namwawala had fewer female An. funestus 2268 than
Idete village 3398. Although there were variations in
catches, changes in vector abundance patterns between
villages were similar over time. A PCR analysis of 6755
mosquitoes of the Anopheles gambiae complex yielded
607 (9%) An.gambiae s.s. and 6148 (91%) An. arabiensis
mosquitoes. Furthermore, a sub-sample of 3025 An.
funestus analyzed for species identification comprised
2805 (93%) An. funestus s.s., 120 (4%) An. rivulorum,
and 100 (3%) An. leesoni.

House risk factors associated with An. gambiae s.l. indoor
abundance
Table 1 provides parameter estimates of each house risk
characteristic when run individually in a univariate
model and their significance on the mean catches for
An. gambiae s.l. All factors in both villages had a statisti-
cally significant impact (p < 0.05) on the indoor mos-
quito mean catches except bed net status in Namwawala
(p > 0.05). Houses where an eave gap was present had
significantly higher An. gambiae s.l. mean catches (ME
0.94 in Idete and 1.84 in Namwawala) compared to
when it was absent (ME 1.50 in Idete and 1.06 in
Namwawala). Mosquito density increased with more
people inside the house but decreased with large houses
(more rooms, windows, and doors). Compared to a win-
dow with no netting, a house with a damaged net on the
window had lower mean catches of An.gambiae s.l. and
the catches decreased further for houses with an intact
net. Furthermore, houses with either mud walls or grass/
thatch roofing had higher numbers of mosquitoes when
compared to cement plastered walls and metal roofing.
The presence of bednets was significantly correlated to

lower mean catches in Idete village (p < 0.05). However,
this was not the case in Namwawala village (p > 0.05).
The ownership rate of nets in Namwawala village was
89% for treated and 11% for untreated nets, whereas in
Idete village it was 50% for treated and 50% for un-
treated nets.

House risk factors associated with An. funestus indoor
abundance
The model estimates and p-values of each of the individ-
ual house risk characteristics, number of occupants and
the bed-net status with their association with the mean
catches for An. funestus for both villages are presented
in Table 2. The presence of eave gap in the house was
significantly correlated with increased mean catches of
An. funestus (ME 1.42 in Idete, 2.48 in Namwawala, p <
0.05) compared to when eave gaps were absent (ME -0
.73 in Idete, -2.39). House size did not significantly affect
mean catches in Namwawala (p > 0.05) but in Idete
mean catches for An. funestus decreased with large
houses (ME -0.60, p < 0.05), when compared to small
houses (ME 0.85). Similarly, houses with more than one
room or door had lower mean catches in both villages.
Increase in number of windows did not significantly
affect the An. funestus mean catches (p > 0.05), however,
the mean catches of An. funestus significantly decreased
with increased number of people in the houses in Idete
(p < 0.05) but not in Namwawala (p > 0.05). Netting over
windows did not reduce the mean catches in both vil-
lages. The mean catches of An. funestus were signifi-
cantly lower (p < 0.05) in the houses with cement
plastered walls (ME -1.52 Idete, -0.55 Namwawala) com-
pared to mud walls, as well as where metal roofs were
present (ME -1.78 Idete, -0.89 Namwawala), compared
to grass roofs. Mosquito catches decreased significantly
(p < 0.05) in the presence of treated bednets (ME -0.52
Idete, -1.03 Namwawala) when compared to the un-
treated bednet (ME 0.52 Idete, ME 0.85 Namwawala).

Multivariate analysis
A correlation matrix for all of the parameters was cre-
ated to analyse the relationship among the house risk
characteristics but no clear conclusion could be drawn.
Thus, a multivariate analysis was performed using a
‘stepwise regression approach’ in which at each step the
best variable (i.e. a house risk characteristic) with a sig-
nificant level (p < 0.05) is added. This analysis indicated
that the presence of an eave gap, bednet status, number
of occupants, house size and wall type had a significant
impact on the mean catches of An.gambiae in both
Namwawala and Idete. In Namwawala, also roof type
and number of doors had a significant impact on the
mean catches of An.gambiae.
Bednet status, number of occupants, house size, roof

type and number of windows had a significant impact
on the mean catches of An. funestus in Idete while net-
ting over windows, presence of eave gap, bednet status,



Table 2 Parameters associated with Anopheles funestus density in Idete and Namwawala villages

An.funestus Idete (N = 70) Namwawala (N = 72)

Factor N Estimate P value Estimate N P value

Number Of Rooms
aOne 37 0.76 0.0000 0.11 57 0.3485

More than One 33 -1.10 <0.0001 -1.25 15 0.0081

Number Of Doors
aOne 30 0.86 0.0000 0.13 51 0.3207

More than One 40 -1.11 <0.0001 -0.79 21 0.0167

Number Of Windows
aUp to 3 26 0.52 0.0003 0.07 53 0.5748

More than 3 44 -0.26 0.1997 -0.55 19 0.0868

Netting Over Window
aAbsent 50 0.61 0.0000 0.10 60 0.3877

Present but damaged 16 -1.29 0.0003 -2.76 9 0.2057

Intact 4 -1.40 0.0603 -1.59 3 0.0251

House Status
aSmall 12 0.85 0.0000 0.12 34 0.4408

Large 58 -0.60 0.0065 -0.34 28 0.1534

Wall Type
aMud 52 1.25 0.0000 0.14 32 0.3365

Cement 18 -1.52 <0.0001 -0.55 40 0.0439

Roof Type
aGrass 46 1.17 0.0000 0.13 19 0.3283

Metal 24 -1.78 <0.0001 -0.89 53 0.0131

Eave Status
aAbsent 46 -0.73 0.0124 -2.39 62 0.0222

Present 24 1.42 <0.0001 2.48 10 0.0183

Eave Size
aSmall 26 -0.42 0.0778 0.12 22 0.4612

Medium 14 1.04 0.0001 -0.36 27 0.1860

Large 30 1.21 <0.0001 -0.24 23 0.4563

Number of Occupants
aUp to 3 15 1.05 0.0000 -0.04 34 0.8015

More than 3 55 -0.96 <0.0001 -0.00 38 0.9968

Bed-net Status
aUntreated 47 0.52 0.0000 0.85 6 0.0014

Treated 23 -0.52 0.0273 -1.03 66 0.0005
a reference category, N = number of observations.
Note: Model estimate (ME) value for a factor indicates by how much a factor increases or decreases the indoor mean catches when compared to a
reference category.
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and number of doors had a significant impact on the
mean catches of An. funestus in Namwawala.

Discussion
Despite high coverage and extensive usage of insecti-
cide treated nets in rural communities of southern
Tanzania [23], partly designed to deter and divert mos-
quitoes from entering houses [30], a high number of
malaria vectors are still found indoors with an average
of 22.22 (CI = 16.93 – 27.51) An. gambiae s.l. and 1.35
(CI = 1.07 – 1.63) An. funestus mosquitoes per trap
night per house in Namwawala. In addition, an average
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of 13.12 (CI = 10.94 – 15.30) An.gambiae s.l. and 2.09
(CI = 1.56 – 2.63) An. funestus were collected in Idete
per trap night in a house.
Small houses, constituting the majority of houses in the

study area, characterized by relatively low numbers of win-
dows, doors and rooms were associated with relatively
high densities of malaria vectors. Although the association
of house size and indoor mosquito density remains un-
known, it was, however, assumed that smaller houses are
likely to concentrate more human odours, which would
attract high mosquito numbers. Conversely, houses with
more sleeping rooms had a lower density of vectors be-
cause they usually have more sleeping spaces, which is
likely to encourage consistent use of bed nets by sleepers
[31,32]. Moreover, houses with many rooms are likely to
have more nets, which collectively might reduce the num-
ber of mosquitoes indoors.
Houses made of mud walls and grass roofs had an in-

creased risk of mosquito bites indoors. Such houses create
cooler, darker conditions favoured by resting mosquitoes
[33,34]. Moreover, mud walls as well as grass roofs often
have crevices used by mosquitoes to enter the houses un-
like cement walls and metal roofs [18]. In addition, lack of
or damaged screening over windows as well as open eaves
provided entry points and led to increased mosquito
abundance inside the houses. These findings are consist-
ent with other studies [16,35-38] which demonstrated that
poorly constructed houses (with mud walls, grass roofs,
lack of screening and with eave gaps tend to have in-
creased human-vector exposure), resulting in a higher risk
of malaria transmission.
It has been documented that houses with many occu-

pants tend to attract vectors of disease [39,40]. In this
study, the presence of many sleepers in a small house
exposed them to a higher risk of An.gambiae s.l. bites
but to a lower risk from An. funestus. Large amounts of
human emanations from houses with more occupants
tend to increase mosquito attractiveness towards that
particular house compared to ones with fewer sleepers
[41,42]. The observed inverse relationship between An.
funestus and number of occupants inside the house was
unexpected; however, it might be due to uneven distri-
bution of An. funestus within the villages. Higher num-
bers of An. funestus collected during the dry season [43]
were mostly and consistently from a cluster of a few
houses located in a particular village hamlet. Therefore,
the majority of houses within the sampling area experi-
enced none or low catches.
Furthermore, significant impacts of house risk factors

on An. funestus indoor mean catches were not consist-
ent between villages. While this observation remains in-
conclusive, we postulated the cause to be exceedingly
low numbers of An. funestus collected between villages
compared to An. gambiae s.l.
Treated nets provided more protective advantages
than untreated ones as also observed in previous studies
[22,23,44,45]. However, the density of An. gambiae s.l. in
Namwawala was higher compared to Idete despite 90%
ITN coverage in Namwawala. These results indicate that
even at high coverage levels, ITNs still have limitations
in reducing the number of malaria vectors entering the
houses. Furthermore, recent studies [46,47] have indi-
cated that poor compliance and usage of bed nets by
communities in the tropics is associated with heat dis-
comfort associated with poor airflow caused by bed nets.
Although bed nets were procured individually and there
was a distribution campaign during the study period, the
age of nets as well as usage of ITNs was not systematic-
ally investigated in this study, our results illustrate that a
risk of transmission remains whenever people are not
using treated nets in an optimal way. Improved house
designs, and modifications to existing houses could sub-
stantially reduce the risk of mosquito-human contact.
Although house improvement has been advocated as an
efficient intervention for malaria control, the majority of
houses in poor rural Africa are temporary and built with
minimal material resources. This renders improvements
expensive and/or impractical in most rural communities in
the short term. Permanent houses (Figure 2b) could be eas-
ily and cheaply modified by screening eaves, windows and
doors accompanied by community sensitization towards
intervention sustainability. Temporary houses (Figure 2a)
are less amenable to modifications unless they are rebuilt
as more permanent structures. This would have to be
addressed through a long-term strategy that sought to
build better, inexpensive house models using better con-
struction materials and sustainable financing initiatives,
which can be adopted in poor settings. Such an interven-
tion is likely to be beneficial in reducing vector borne dis-
eases and other diseases linked to poor hygiene.

Conclusions
This study shows the impact of specific housing charac-
teristics on malaria vector density and the associated risk
of indoor disease transmission. It also shows that even at
high coverage levels of ITNs, there remains a high risk
of human-mosquito contact and also that this transmis-
sion risk can be mitigated by changing house structure.
Communities with permanent, spacious and screened
houses are at lower risk of indoor malaria transmission.
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Abstract

Background: In order to sustain the gains achieved by current malaria control strategies, robust surveillance
systems that monitor dynamics of vectors and their roles in malaria transmission over time are essential. This
longitudinal study demonstrates the trends in malaria vector dynamics and their relative contribution to malaria
transmission in hyperendemic transmission settings in Tanzania.

Methods: The study was conducted in two villages within the Kilombero Valley, in rural Tanzania for five
consecutive years (2008–2012). Seventy-two houses were selected per village and each house was sampled for
mosquitoes monthly using a CDC light trap. Collected mosquitoes were assessed for species identity and sporozoite
infection status using PCR and ELISA, respectively. Anopheles funestus and Anopheles arabiensis susceptibility to
insecticides was assessed using WHO guidelines.

Results: A total of 100,810 malaria vectors were collected, of which 76% were Anopheles gambiae s. l. and 24%
were An. funestus. Of all An. funestus samples that amplified with PCR (n = 2,737), 97% were An. funestus s.s., 2%
were Anopheles rivorulum and 1% Anopheles leesoni. Whereas for An. gambiae s.l. (n = 8,117), 93% were An. arabiensis
and 7% were Anopheles gambiae s.s. The proportion of An. gambiae s.s. identified by PCR (2,924) declined from 0.2%
in the year 2008 to undetectable levels in 2012. Malaria transmission intensity significantly decreased from an EIR of
78.14 infectious bites/person/year in 2008 to 35 ib/p/yr in 2011 but rebounded to 226 ib/p/yr in 2012 coinciding
with an increased role of An. funestus in malaria transmission. Insecticide susceptibility tests indicated high levels of
resistance in An. funestus against deltamethrin (87%), permethrin (65%), lambda cyhalothrin (74%), bendiocarb
(65%), and DDT (66%). Similarly, An. arabiensis showed insecticide resistance to deltamethrin (64%), permethrin
(77%) and lambda cyhalothrin (42%) in 2014.

Conclusion: The results indicate the continuing role of An. arabiensis and the increasing importance of An. funestus
in malaria transmission, and pyrethroid resistance development in both species. Complementary vector control and
surveillance tools are needed that target the ecology, behaviour and insecticide resistance management of these
vector species, in order to preserve the efficacy of LLINs.
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Background
Malaria transmission in humans is sustained through
vector-human interactions [1] and vector control inter-
ventions, such as long-lasting, insecticidal nets (LLINs),
aim to break this interaction. Major promotion of LLINs
in recent years has resulted in average household owner-
ship rates and usage of LLINs of approximately 42 and
36%, respectively, in sub-Saharan Africa [2]. In mainland
Tanzania, a recent report by the Tanzania HIV and Mal-
aria Indicator Survey (THMIS) indicates that above aver-
age LLIN ownership and usage (approximately 90 and
66%, respectively) was associated with improved malaria
control and overall reduction in malaria prevalence [3].
One outcome of LLIN use is that, by limiting availabil-

ity of human hosts [4-6], vector species composition in
any given area can change considerably after a long
period of LLIN use. Anopheles gambiae sensu stricto,
Anopheles arabiensis and Anopheles funestus are the pri-
mary malaria vectors in sub-Saharan Africa [7,8], often
occurring sympatrically [9]. Anopheles gambiae s.s. is
often regarded as the most important vector species
across Africa [9-11] and, because of its almost entirely
anthropophagic and endophilic behaviour, it is the spe-
cies that has been targeted most effectively by LLINs.
However, in some locations, populations of An. gam-

biae s.s. have developed insecticide resistance and it con-
tinues to be the dominant vector [12,13]. In other
locations, An. gambiae s.s. populations have crashed and
the relative importance of the remaining vector species
has shifted, with An. arabiensis becoming the major
malaria vector [4,5,11].
Since single populations of An. arabiensis can exhibit

a range of behaviours, biting and resting indoors as well
as outdoors and feeding on both humans and animals,
interventions that optimally target indoor resting and
biting vectors often impact far less on this species
[11,14-17]. The primary vector of the An. funestus com-
plex, An. funestus is also a very anthropophilic and
endophilic mosquito and it too can be a highly efficient
malaria vector [10,18,19].
Kilombero Valley in southern Tanzania has been sub-

ject to a large number of studies on malaria epidemi-
ology, dating back many years, with malaria parasite
prevalence rates of up to 70% and an entomological in-
oculation rate (EIR) of 300 infectious bites per person
per year (ib/p/yr) being recorded in the 1990s, the
period before the introduction of bed nets [20]. Follow-
ing the scaling up of untreated nets in the early 2000s
[21] and insecticide-treated bed nets (ITNs) and LLINs
from 2004 to 2011 [22-24], a continuous decline in mal-
aria vector numbers and malaria transmission has been
seen [3,12]. Although the populations of An. gambiae s.s.
are significantly dwindling in southern and other parts
of Tanzania [12], the remaining populations of An.
arabiensis and An. funestus appears to have shifted their
blood-feeding periodicity to optimize their chances to
obtain blood meal from their preferred hosts even in the
time of low LLIN coverage [25]. It is however suggested
that prolonged, widespread use of LLINs is likely to
favour outdoor and early biting, either as an expression
of the mosquito’s innate phenotypic plasticity or possibly
as a heritable, selectable trait that might be expected to
increase in frequency [25].
The malaria vector populations in this area are subject

to ongoing rigorous monitoring and herein five years of
data to the end of 2012 are reported; describing changes
in vector species composition and relative abundance,
insecticide susceptibility and their contribution to mal-
aria transmission following the years of widespread LLIN
use since first introduced in 2004.

Methods
Study site
The study was carried out in Namwawala (8.154425°S
and 36.393005°E) and Idete (8.098190°S and 36.510350°
E) villages (Figure 1) located in the flood plain of the
Kilombero River (8.1°S and 36.6°E) in southeastern
Tanzania. The epidemiology of malaria transmission and
associated vector species composition within these villages
has been documented over many years [21,25]. Both vil-
lages experience an annual rainy season (January-May)
and the main crops are rice and maize. Both villages are
similar in size (Namwawala = 844 and Idete = 804) and ap-
proximately 92% of community members sleep under an
ITN or LLIN [12].

Study design
This study was conducted over five years between Janu-
ary 2008 and December 2012. A total of 72 houses from
each village were randomly selected from the Ifakara
Health Institute (IHI) Demographic Surveillance System
household list [26]. All selected houses were geolocated
using a handheld GPS (eTrex, Vista, Garmin, USA).
Mosquitoes were sampled in every house each month
during 2008, 2011 and 2012 and for six months from
January to June in 2009 and July to December in 2010.

Mosquito sampling and processing
Mosquitoes were sampled using miniature Center for
Disease Control (CDC) light traps (model 512, USA).
One CDC light trap was used overnight per house,
placed 1–1.5 m from the fan above the ground close to
the foot end of an occupied bed, and left to run for
12 hours (19.00-07.00) [27,28]. For every participating
house, one LLIN (Olyset, A to Z Textiles Mills, Arusha,
Tanzania) was provided to protect the bed occupant
where the CDC trap was set. The following morning,
CDC light traps were collected and mosquitoes killed



Figure 1 A map showing sentinel houses for mosquito sampling in Idete and Namwawala villages, within Kilombero Valley, in
Kilombero district, Tanzania.
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using chloroform, and identified in the field using a mor-
phological key [18]. Female mosquitoes were classified as
being unfed, partially fed, fully fed or gravid. Subsamples
of five mosquitoes from each trap for An. arabiensis and
An. funestus species were individually stored inside a tube
containing cotton wool and silica gel beneath for further
individual molecular species identification using polymer-
ase chain reaction (PCR) assay for the An. gambiae com-
plex [29] and An. funestus group [30] and sporozoite
infection status using enzyme-linked immunosorbent
assay (ELISA) [31] in the laboratory (species identification
for the An. funestus group did not begin until 2009).
All the sorting information and laboratory analysis re-

sults were recorded using designated data collection
forms for entomological studies (Kiware et al., unpub-
lished). In addition, variations in malaria transmission by
different vector species over time were assessed and
compared using the annual EIR calculated by biting rate
(total collections/trap nights/year) and the proportion of
females infected with sporozoites [32]. Monthly average
rainfall data for 2008–2011 were obtained from the Kilo-
mbero Valley Teak Company (approximately 15 km
from Idete village), and data for year 2012 data were ob-
tained using rain gauges installed in Namwawala village.

Insecticide susceptibility tests
Following significant increase in An. funestus population
in 2012, despite extensive usage of LLIN in the study area,
it was unclear whether this was due to its reduced suscep-
tibility to the insecticides used in LLINs. The tests were
conducted using WHO standard procedures and test
kits for adult female mosquitoes of An. arabiensis and
An. funestus [33] in Namwawala villages from January to
June 2013. As the confirmatory process, the biossays were
repeated in June 2014 for both species.
Five classes of insecticides currently recommended for

vector control were tested using discriminating concen-
trations impregnated in pre-prepared test papers as fol-
lows: deltamethrin (0.05%), permethrin (0.75%), lambda
cyhalothrin (0.05%), bendiocarb (0.1%), and DDT (4%).
Unfed female wild An. funestus collected using CDC
light traps were used for insecticide exposure bioassays,
as recommended by WHO for this difficult-to-colonize
species [33]. However, this method is limited by greater
variation in susceptibility due to unknown age differ-
ences between test mosquitoes, it is simple to carry in
the field with minimal infrastructure and test mosqui-
toes highly representative of the natural population [33].
Prior to exposure, morphologically identified mosqui-

toes were maintained on 10% glucose solution for at least
five hours prior to testing; whereas, for An. arabiensis, F1
female mosquitoes two to three days old (recommended
age group) were used for bioassays from reared Anopheles
larvae collected from the breeding habitats in the study
sites [34,35]. Species identification was carried out after
bioassays on dead mosquitoes using PCR.
A total of 100 mosquitoes were exposed per discriminat-

ing concentration in five replicates of 20 mosquitoes each,
and compared to a control with same number of mosqui-
toes per replicate. In an exposure tube, mosquitoes were
held for a total of one hour in intervals of 10, 15, 20, 30,
40, 50, and 60 minutes. After the first hour of exposure,
mosquitoes were transferred to non-insecticide treated,
clean, holding tubes and observed for a further 20 minutes
[33]. After 80 minutes (initial 60 min + further 20 min) of
knockdown monitoring, all mosquitoes were transferred
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to non-insecticide treated, clean, holding tubes and kept
for 24 hours and provided with 10% glucose solution, after
which mortality was monitored and recorded. All these
procedures were performed in the field under average am-
bient temperatures of 26 ± 2°C and a relative humidity of
78 ± 3% in both bioassay rounds. Percentage knockdown
in the observed mosquitoes was recorded immediately for
each time interval, and mosquito mortality in each bio-
assay was expressed as the proportion of dead mosquitoes
to total exposed, for each tested insecticide. Execution and
interpretation followed recently updated WHO test proce-
dures for insecticide resistance monitoring in malaria vec-
tor mosquitoes [33].

Statistical analyses
Only data pertaining to An. gambiae s.l. and An. funestus
were analysed, using SPSS version 20 (SPSS Inc, Chicago,
USA). Data were fitted with generalized linear models
(GLMs) using a negative binomial distribution with log-
link function, and relative rates (RR) with 95% confidence
intervals calculated to estimate yearly mean mosquito
catches, relative to the reference year. Species (An. gambiae
s.l. and An. funestus) were treated as predictors and total
number of mosquitoes as a dependent variable; the statis-
tical differences in dependent variables was evaluated as a
function of villages (Idete and Namwawala), seasons (wet
and dry) and years (2008–2012).
Insecticide susceptibility test biossay data were consid-

ered for each diagnostic concentration and year of testing.
Mortality was calculated as the percentage of mosquitoes
dead post 24 hours’ exposure to insecticide, and the re-
sults were assessed according to WHO testing procedure
for insecticide resistance monitoring in malaria vectors
[33]. Mortality rates between 98 and 100% indicate full
susceptibility, 90-97% is suggestive of resistance and re-
quires further investigation, and mortality rates less than
90% confirm the existence of resistance.

Ethical considerations
The study approval was granted by the Ifakara Health
Institutional Review Board (IHRDC/IRB/No.A-32) and
the National Institute of Medical Research (NIMR/HQ/
R.8a/Vol. IX/764). On first visiting each house, the bene-
fits and possible risks associated with the study were ex-
plained to the house occupants and informed consent to
proceed was requested. After consenting, the head of the
house was asked to sign two copies of the informed con-
sent forms, (retained by the head of the house and the
study investigator).

Results
Relative abundance of malaria vector species
During the five consecutive years of sampling with CDC
light traps in sentinel houses, a total of 100,810 malaria
vectors were collected of which 76% were Anopheles
gambiae sensu lato and 24% were An. funestus. In each
of the first four years (2008–2011), the proportion of
An. gambiae s.l. was significantly higher than An. funestus
in both study villages (p <0.0001): proportions in total
catches in Namwawala were 94% (40,028) and 6% (2,398),
and in Idete were 87% (24,869) and 13% (3,730) for
An. gambiae s.l. and An. funestus, respectively. However,
in 2012, the proportion of total catch of An. funestus was
significantly higher than An. gambiae s.l. in both villages:
42% (6,622) and 58% (8,953) in Namwawala and 35%
(4,479) and 65% (8,447) in Idete for An. gambiae s.l. and
An. funestus, respectively, (RR (95% CI) = 1.35 (1.23-1.49),
p <0.0001).
A total of 8,117 An. gambiae s.l. were successfully

identified by PCR and comprised 93% An. arabiensis (n
= 7,549) and 7% An. gambiae s.s. (n = 568). The relative
proportions of the species were similar in Idete (An. ara-
biensis 96% (n = 3,610), An. gambiae s.s. 4% (n = 151)
and in Namwawala 90% (n = 3,900) An. arabiensis, 10%
(n = 456) An. gambiae s.s.. However, the relative propor-
tion between the two sibling species was changing over
time, with significant decrease of An. gambiae s.s. from
14% (409/2,924 ) in year 2008 to disappearance 0% (0/
1,362 ) in year 2012, compared to An. arabiensis increas-
ing from 86% in 2008 to 100% in 2012 (Table 1).
Of the 2,737 An. funestus samples that were identified

by PCR, 97% were An. funestus s.s. (n = 2,655), 2% were
Anopheles rivorulum (n = 55) and 1% Anopheles leesoni
(n = 27). The species composition of An. funestus in
Idete was 98% (n = 1,554) An. funestus s.s, 1.5% (n = 23)
An. rivorulum and 0.4% (n = 6) An. leesoni. In Namwa-
wala it was 98% (n = 1,133) An. funestus s.s., 0.6% (n = 7)
An. rivorulum and 1.2% (n = 14) An. leesoni, (Table 1).

Seasonal variation in vector abundance
During the study, the period from January to May was
categorized as the wet season, receiving an average
(+SD) of rainfall of 281 + 178 mm/month, and June-
December as the dry season, with an average of rainfall
of 24 + 66 mm/month (Figure 2). The abundance of both
An. gambiae s.l. and An. funestus peaked in the wet
season in both villages. The mean number (+SD) of
An. gambiae s.l. caught per trap per night during the
wet season was 19 + 48 and 32 + 110, whereas in the dry
season it decreased to 0.86 + 5.7 and 1.1 + 5.8 at Idete
and Namwawala, respectively. Furthermore, An. gambaie
s.s. was only present in the wet season in the first three
years (2008-2009/10) before its disappearance in 2011/
12, compared to its sibling species An. arabiensis, which
was found to exist in both season, similar to An. funestus
s.s., a dominating member of An. funestus group.
The mean number of An. funestus per trap per night

in the wet and dry season of the first four years of study



Table 1 Malaria vector composition, sporozoite
prevalence (S), biting rate (B) and entomological
inoculation (EIR) for Anopheles gambiae s.s., Anopheles
arabiensis and Anopheles funestus and their overall
estimated yearly contribution to malaria transmission
from year 2008–2012 in the study area

Species 2008 2009/10 2011 2012

An. gambiae complex sibling species proportion

An. gambiae s.s. 0.14 0.15 0.002 0

An. arabiensis 0.86 0.85 0.998 1

No. of PCR amplifications 2,924 1,307 2,542 1,362

An. funestus group sibling species proportion

An. funestus s.s. - 0.887 0.956 1

An. rivulorum - 0.013 0.021 0

An. leesoni - 0 0.023 0

An. parensis - 0 0.001 0

No. of PCR amplifications - 330 880 1,527

Sporozoite prevalence (S;%)

An. gambiae s.s. 1.18 0.04 0 0

An. arabiensis 0.16 0.36 0.07 1.47

An. funestus 1.71 0 0.43 2.20

Biting rate (B; b/p/n)

An. gambiae s.s. 8.52 6.05 0.04 0

An. arabiensis 52.37 35.51 59.74 20.70

An. funestus 1.74 12.84 10.09 14.31

Entomological Inoculation Rate (EIR; ib/p/y)

An. gambiae s.s. 36.70 1.61 0 0

An. arabiensis 30.58 55.51 15.17 110.90

An. funestus 10.86 0 15.58 115.10

Total 78.14 57.12 31.05 226.0

Note: Sporozoite prevalence = Number of positive sporozoite mosquitoes/total
tested; Biting rate = Total collections/trap nights/calibration factor, 0.3 for An.
gambiae complex, and 0.68 for An. funestus [21]; EIR = S × B × 365.
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(2008–2011) was consistently similar in both villages. In
the wet season, the mean catches (+SD) were 1.23 + 4.7
in 2008, 2.15 + 7.5 in 2009/10, 0.64 + 1.9 in 2011 com-
pared to 1.15 + 5.2, 0.77 + 4.3 and 1.62 + 5.52 of the re-
spective years in the dry season. In 2012, the mean catch
of An. funestus, both in wet and dry seasons, was ap-
proximately six times significantly higher than in the
previous years (p <0.0001): 11.75 + 45.8 and 8.3 + 25.6 of
wet and dry season, respectively.

Malaria transmission
A total of 10,138 individual mosquitoes (530 An. gambiae
s.s., 7,130 An. arabiensis and 2,478 An. funestus s.s.) were
screened for Plasmodium falciparum sporozoites of which
75 were positive (0.74% sporozoite prevalence). Although
An. gambiae s.s. was the major malaria vector with a
sporozoite prevalence of 1.18% in 2008, its dominance
decreased with time to zero in 2011 and 2012, following
its control to undetectable levels. Conversely, the import-
ance of An. arabiensis and An. funestus s.s was increasing
with time from a sporozoite prevalence of 0.16% in 2008
to 1.47% in 2012 for An. arabiensis, and from 1.71% in
2008 to 2.2% in 2012 for An. funestus s.s.
Similarly, the EIR of An. gambiae s.s. decreased dras-

tically from 30.70 ib/p/yr in 2008 to 0 ib/p/yr in 2012,
whereas those of An. arabiensis increased approximately
four times from 30.58 in 2008 to 110.9 in 2012 and that
of An. funestus s.s. increased 11 times from 10.86 in
2008 to 115.10 in 2012.
Overall, the level of malaria transmission in the study

villages markedly decreased with time from an EIR of
78.14 ib/p/yr in 2008 to 31.05 ib/p/yr in 2011 but over-
whelmingly increased to 226 ib/p/yr in 2012, approxi-
mately seven times more than in the previous year
(Table 1).

Anopheles arabiensis and Anopheles funestus insecticide
susceptibility tests
In the WHO bioassay testing, as the results indicated
(Figure 3), An. funestus was fully susceptible to delta-
methrin (100% mortality) with reduced susceptibility to
permethrin (93%), and lambda cyhalothrin (91%) and
confirmed resistance to DDT (86%) in year 2013. In
2014, An. funestus was resistant to permethrin (65%),
lambda cyhalothrin (74%), bendiocarb (65%), and even
to deltamethrin (87%) to which it was fully susceptible
in 2013. Mortality in control tubes was 4% in both test-
ing rounds. All tested mosquitoes were amplified as
An. funestus, using PCR.
In year 2013, An. arabiensis was fully susceptible to

bendiocarb (100% mortality) and deltamethrin (98.3%),
reduced susceptibility against DDT (97%), and con-
firmed resistance to permethrin (83.3%) and lambda
cyhalothrin (78%), with a control mortality of 0% across
all test concentrations. Similar levels of resistance were
maintained across tested diagnostic concentrations in
year 2014, whereby the mosquitoes were fully suscep-
tible to bendiocarb (98% mortality) and resistant to
deltamethrin (64%), permethrin (77%), and lambda cyha-
lothrin (42%), with a control mortality of 0% across all
test concentrations.

Discussion
This study provides substantial information on malaria
vector dynamics and their contribution to malaria trans-
mission in rural southern Tanzania over a five year
period. Consistent with other studies, which have docu-
mented a shift in malaria vector composition and a
change in malaria transmission dynamics seemingly as a
result of extensive use of LLINs [4,5,36], this study re-
ports a steady decrease to undetectable levels of An.



Figure 2 Monthly average rainfall in the Kilombero Valley. (A) estimated using CDC monthly biting rates, adjusted by dividing by species-specific
relative efficiency of 0.3 and 0.68 for An. gambiae s.l. (B) and An. funestus (C), respectively [21], in Idete and Namwawala villages over time.
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gambiae s.s. with steady increase in the proportion of its
sibling species An. arabiensis and a surge in the abun-
dance of An. funestus s.s. in year 2012.
Anopheles gambiae s.s. prefers to feed and rest inside

houses. This makes it more vulnerable to insecticides
applied to nets (LLINs) and walls (indoor residual spray-
ing (IRS)) while An. arabiensis, with its opportunistic
feeding behaviour both on humans and animals [12,32]
and its potential to rest outside human dwellings, make
it less affected by LLINs. Although, lack of outdoor mos-
quito collections was a major limitation of this study in
explaining the shift in biting periodicity and outdoor
biting, it has been recently documented elsewhere that
An. arabiensis and An. funestus [25,37] display a behav-
ioural avoidance to contact LLINs by feeding outdoors
in early part of the evening which might increase its
chance to survive current interventions.
A significant increase in An. funestus abundance and
EIR in 2012 is demonstrated. This shift poses great con-
cern in malaria control efforts due to its efficiency in
transmitting malaria. Historically the control of An.
funestus s.s. was successful through extensive IRS, taking
advantage of its highly anthropophagic and endophilic
behaviour, using dieldrin in Pare, Taveta, northern
Tanzania [38,39] Malindi on the coast of Kenya, using
DDT [40] as well as in South Africa [41]. This is partly
because they spend a longer time on insecticide-treated
materials [42]. However, the vector eventually resurged
six years later due to a lack of IRS programme continu-
ity and consolidation [40,43]. A similar scenario was ex-
pected in this particular region, where usage of LLINs is
high [3,44].
The steady increase in An. funestus population density,

despite extensive usage of LLINs in the study area, may



Figure 3 Results of WHO bioassay test for insecticide susceptibility status of wild female Anopheles funestus (white bars) and Anopheles
arabiensis (grey bars) from the study sites in the Kilombero Valley, Tanzania, in January 2013 and June 2014. The graph shows percentage
24 hours mortality rate after a one-hour exposure to the WHO diagnostic doses of insecticide. The minimum sample size for these assays was 100.
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be due to its reduced susceptibility to the insecticides
used in LLINs. Recent findings from western Kenya have
demonstrated similar phenomenon of resurging An.
funestus populations, chiefly being due to resistance de-
velopment to the pyrethroids used in LLINs [45].
Preliminary findings from this study demonstrated

high resistance of An. funestus and An. arabiensis to py-
rethroids, deltamethrin, lambda cyhalothrin and per-
methrin, used in Olyset LLINs, distributed in the study
area in June 2011 [3]. Overall, there was great variation
of the resistance status between 2013 and 2014 in both
species tested; however, the variation was surprisingly
huge in An. funestus than An. arabiensis, which might
be due to inconsistency in unknown age of the used wild
mosquito females [33].
Due to the absence of organochlorine insecticide DDT

and carbamate insecticide bendiocarb deployment for
malaria vector control in the study area, the source of
resistance in mosquitoes to these insecticides remains un-
known. Although not tested in this particular study, pyr-
ethroid (DDT and pyrethroid) carbamate cross-resistance
was considered to be a probable cause of An. funestus re-
sistance to DDT and bendiocarb, respectively, which has
been proved to exist in malaria vectors elsewhere [46,47].
In addition, the continuous and illegitimate use of DDT as
a pesticide in agriculture in the region might have con-
taminated malaria vector breeding habitats and caused
physiological resistance in mosquitoes [48].
Pyrethroid resistance in both species has been docu-
mented in multiple countries and regions of East Africa
[45,49,50], southern Africa [51-54] and West Africa
[55-57]. Further detailed studies are urgently required to
establish current vector control operational impacts
associated with this level of resistance. These findings
suggest an increased contribution of these vectors to
malaria transmission and hence great threat to the fu-
ture use of LLINs in controlling these vectors.
The other probable cause for the observed increase in

An. funestus population in this study area, which re-
quires further investigation, might be a shift of An.
funestus to outdoor and early evening and daytime biting
behaviours, which increase their chances to survive and
reproduce by feeding on unprotected humans, as re-
cently documented An. funestus behaviours in Benin
[58] and Senegal [59], West Africa.
In this study, both An. funestus and An. gambiae s.l.

vector abundance varied with season. Increases in An.
gambiae s.l. densities are facilitated by a wide range of
ephemeral, sunlit, breeding habitats, such as hoof prints,
rice puddles and ground depressions created during the
rainy season [18,60]. The temporary nature of these hab-
itats tends to reduce predation rate but also allows quick
development of the juvenile stages, which results in
An. gambiae s.l. dominating during the rainy season
[18]. On the contrary, An. funestus prefer vegetated
semi-permanent and permanent breeding habitats, such
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as swamps and large ponds [18]. Anopheles funestus
remained at a reasonable and detectable density across
the rainy and dry seasons in the study areas and were
significantly more abundant than An. gambiae s.l. in the
dry season, probably due to their breeding habitat stabil-
ity against desiccation [61].
Irrespective of seasonal variation in vector abundance,

An. funestus s.s., An. gambiae s.s. and An. arabiensis
were all-important malaria vectors in the study area
[12]. Despite high abundance of An. arabiensis and a
higher EIR between 2008 and 2010, An. funestus con-
tributed a relatively higher or equal EIR in 2011 and
2012. Historically, An. funestus has displayed high sporo-
zoite prevalence [62] similar to that observed in this
study and in a recent study conducted in neighbouring
villages within the valley (Kaindoa et al., unpublished).
This trend of increase in abundance and high sporozoite
prevalence of An. funestus has been also observed in
Asembo district, western Kenya [45] and so appears to
represent a trend across several regions of East Africa.
The huge increase in potential malaria transmission in

2012 (EIR = 226) coincided with an increase in abun-
dance and sporozoite rates in An. funestus as it did in a
neighbouring village in the valley (EIR = 467) (Kaindoa
et al., unpublished). The substantial increase in An.
funestus and its reduced susceptibility to pyrethroids
poses a serious threat that needs attention from vector
control stakeholders. A separate study in West Africa
also reported a rebound in malaria transmission partly
being caused by resistance development in An. gambiae
to pyrethroids [63].
A previous study has shown that despite high coverage

and usage of LLINs, a high proportion of mosquitoes
still enter houses [64]. Therefore, the increase in An.
funestus, particularly in the dry season, is likely to ex-
acerbate the problem. Therefore, new strategies to ad-
dress resistance and outdoor biting behaviour in the
early part of the evening as displayed by An. funestus
and An. arabiensis are required. This can be achieved
through improving the LLINs; for instance, recent de-
velopment of nets which can target multiple resistant
mosquitoes, Olyset® Plus [65], and by targeting vectors
while outdoors using non-resistant compounds, either
through larval source management in the dry season via
autodissemination of insect juvenile hormone, e.g., pyri-
proxyfen [66,67], or by mosquito sterilization with pyri-
proxyfen [68], and killing them with toxic sugar-baited
traps [69], non-chemical electric grid [70] and odour-
baited traps [71].

Conclusion
This study shows that An. funestus and An. arabiensis
are important malaria vectors sustaining malaria trans-
mission, with a substantial increase in An. funestus and
drastic reduction in An. gambiae s.s. in the year 2012.
Malaria transmission significantly declined from 2008
to 2011 and rebounded in 2012 coinciding with an in-
creased role of An. arabiensis and An. funestus in malaria
transmission. Although fully susceptible to deltamethrin,
An. arabiensis and An. funestus were found to be resistant
and with reduced susceptibility to permethrin pyrethroid
used for LLINs, respectively. These findings call for com-
plementary vector control tools, robust vector surveillance
systems and an insecticide resistance management plan to
complement and preserve the efficacy of LLINs.
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breeding sites by the exophilic malaria vector
Anopheles arabiensis in semi-field settings in
Tanzania
Dickson Lwetoijera1,2*, Caroline Harris1,3, Samson Kiware1,4, Stefan Dongus1,2,5, Gregor J Devine6, Philip J McCall2

and Silas Majambere1,2
Abstract

Background: Malaria vector control strategies that target adult female mosquitoes are challenged by the
emergence of insecticide resistance and behavioural resilience. Conventional larviciding is restricted by high
operational costs and inadequate knowledge of mosquito-breeding habitats in rural settings that might be
overcome by the juvenile hormone analogue, Pyriproxyfen (PPF). This study assessed the potential for Anopheles
arabiensis to pick up and transfer lethal doses of PPF from contamination sites to their breeding habitats
(i.e. autodissemination of PPF).

Methods: A semi-field system (SFS) with four identical separate chambers was used to evaluate PPF-treated clay
pots for delivering PPF to resting adult female mosquitoes for subsequent autodissemination to artificial breeding
habitats within the chambers. In each chamber, a tethered cow provided blood meals to laboratory-reared, unfed
female An. arabiensis released in the SFS. In PPF-treated chambers, clay pot linings were dusted with 0.2 – 0.3 g AI
PPF per pot. Pupae were removed from the artificial habitats daily, and emergence rates calculated. Impact of PPF
on emergence was determined by comparing treatment with an appropriate control group.

Results: Mean (95% CI) adult emergence rates were (0.21 ± 0.299) and (0.95 ± 0.39) from PPF-treated and controls
respectively (p < 0.0001). Laboratory bioassay of water samples from artificial habitats in these experiments resulted in
significantly lower emergence rates in treated chambers (0.16 ± 0.23) compared to controls 0.97 ± 0.05) (p < 0.0001).
In experiments where no mosquitoes introduced, there were no significant differences between control and
treatment, indicating that transfer of PPF to breeding sites only occurred when mosquitoes were present; i.e.
that autodissemination had occurred. Treatment of a single clay pot reduced adult emergence in six habitats
to (0.34 ± 0.13) compared to (0.98 ± 0.02) in the controls (p < 0.0001), showing a high level of habitats coverage
amplification of the autodissemination event.

Conclusion: The study provides proof of principle for the autodissemination of PPF to breeding habitats by malaria
vectors. These findings highlight the potential for this technique for outdoor control of malaria vectors and call for
the testing of this technique in field trials.
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Background
Malaria remains one of mankind’s leading public health
challenges and a major economic burden for the devel-
oping nations where it is endemic. Disproportionately,
80% of all malaria cases and 90% deaths occur in Africa
[1]. The World Health Organization (WHO) continues
to recommend a range of combined strategies for malaria
prevention with vector control, primarily through the use
of insecticide-treated bed nets (LLINs) and indoor residual
insecticide spraying (IRS), a key component of those strat-
egies [2-4]. Despite great progress in reducing malaria
transmission in Africa over the past decade, the future use
of both of these interventions, and indeed any approach
that relies on chemical insecticides, is seriously threatened
by the emergence and ongoing spread of insecticide resist-
ance [5-8]. Moreover, LLINs and IRS target only vectors
that are active indoors, and even in areas where this has
been successful, malaria transmission by outdoor biting
and outdoor resting vector populations of Anopheles ara-
biensis and Anopheles funestus remains a serious public
health challenge [9,10]. Effective sustainable tools or ap-
proaches with proven impact on outdoor biting and
resting vector populations have yet to be developed.
Targeting the aquatic larval stages of the vector with con-

ventional insecticides (larviciding), as a complement to
LLINs and IRS, can be an effective method to suppress
vector density [11], but it is limited by the difficult task, and
high cost, of identifying and treating sufficient mosquito
breeding habitats to impact the vector population [12,13].
WHO recommendations limit the use of larviciding to
settings where larval habitats are few, findable, and easy to
map and treat; typically this restricts larviciding to urban
settings [14]. In rural settings where breeding habitats are
abundant in number and character, this is a far greater
challenge for which novel approaches are urgently needed.
Pyriproxyfen (PPF) is a juvenile hormone analogue

(JHA) that interrupts normal development and meta-
morphosis of targeted mosquitoes [15]. Highly potent in
terms of activity and specificity, it has low toxicity and a
high margin of safety to non-target organisms [16] and
to date, there has been no evidence of PPF resistance in
any mosquito [17]. For effective mosquito control, WHO
recommends a PPF dosage limit of 50 ppb, an extremely
low level considering the maximum permissible level in
drinking water is 300 ppb [18]. PPF can be delivered in
formulations that persist in treated aquatic habitats for up
to six months under field conditions [19,20]. PPF also has
an additional unique benefit, termed autodissemination,
which is defined as the ability of adult mosquitoes to pick
up PPF from treated solid surfaces, retain and transfer it
to breeding habitats in sufficient quantities to contaminate
those habitats, rendering them unproductive either by
killing larvae or preventing pupae from emerging to
adults [21].
The few studies demonstrating the potential of auto-
dissemination of PPF in vector control have been limited
to the Aedes vectors of dengue and chikungunya viruses
[21,22]. Small field trials in urban settings in Peru and
Italy, against Aedes aegypti [21] and Aedes albopictus
[22] respectively, resulted in significant adult emergence
inhibition in treated areas. Many aspects of the biology
of these Aedes species, such as their aggressive feeding,
skip-oviposition (distributing portions of each egg batch
in multiple habitats) and preference for relatively
small volume man-made containers as breeding habitats,
undoubtedly contribute to the prospect for exploiting
autodissemination in urban control programs for
dengue and chikungunya [19,21,22] and fabrication of
efficient PPF contamination sites/stations [22,23]. The
outdoor-active Anopheles spp. that transmit malaria in
rural Africa breed in a wide variety of breeding habi-
tats, ranging in size and character and across much
larger areas [24] and are a much greater challenge for
this approach.
This study reports on the first experiments undertaken

in a large semi-field system in Tanzania, evaluating the
potential of PPF autodissemination for control of An.
arabiensis and probably other African malaria vectors.
Here, the results of controlled experiments quantifying
the efficacy of clay pots, a simple inexpensive PPF contam-
ination station, for delivering PPF to resting adult female
Anopheles arabiensis at levels that prevent emergence
at untreated breeding habitats are presented, demon-
strating for the first time that, in principle autodisse-
mination of PPF can occur at operationally effective
rates in an Anopheles arabiensis, an efficient African
malaria vector.

Methods
Study site
This study was carried out at Kining’ina village
(8.11417 S, 36.67484 E), in rural southern Tanzania,
between May 2012 and October 2013 inside a semi-field
system (SFS). Details of the design and use of this SFS
have been provided previously [25,26]. Briefly, the SFS is
an outdoor construction with mesh walls 4.53 m high,
measuring 552.96 m2 in total area but partitioned into
six separate chambers each measuring 9.6 × 9.6 m. The
concrete floors of the chambers were filled to a depth of
40 cm with local soil, and vegetation was allowed to
grow naturally from the seeds therein. Although the SFS
had six chambers, only four chambers were used for the
experiments. A simple mud hut (1.75 m × 1.5 m, 2 m
high) was built within each chamber to provide a shelter
for a tethered cow bait, and possible resting location for
mosquitoes. The simple mud hut was built to mimic the
shelters used by communities to keep cows and not to
represent an indoor set up.
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Mosquitoes
All sets of experiments were performed using insectary-
reared unfed mated An. arabiensis females aged 3 – 9 days
post eclosion. It was assumed that mosquitoes at this age
would have mated [27]. The An. arabiensis colony was
established in March 2010, originating from individuals
collected in Lupiro village within the Kilombero valley. It
is reared routinely inside a semi-field system (SFS) under
natural temperature and 12: 12 h light: dark photoperiod
of that area. Larvae were fed Tetramin® fish food and
adults maintained on human blood and 6% glucose
solution. Mosquitoes were starved of sugar and water six
hours prior to release in the experiments.

Experimental procedures and study design
Five experiments were conducted between May 2012
and September 2013: first, to investigate the existence of
PPF autodissemination from PPF-treated clay pots to the
breeding habitats by contaminated mosquitoes; second,
to confirm that the observed PPF contamination at the
experimental breeding habitats was mosquito-borne;
third, to investigate mosquito resting site preferences
inside the SFS; fourth, to measure the proportion of mos-
quitoes resting inside the clay pots that were subsequently
able to contaminate oviposition sites; fifth, to measure
amplification of autodissemination from limited numbers
of treatment points to a greater number of breeding sites.

Experiment 1: Evaluation of PPF-treated clay pots for
the delivery of pyriproxyfen to resting adult female
mosquitoes for subsequent autodissemination
In every replicate of this experiment, 1500 – 5000 adult
female An. arabiensis were released inside an SFS cham-
ber, where a cow was provided for blood feeding, clay
pots as resting sites during egg development, and water
containers as oviposition sites. Clay pots have been used
for sampling wild An. arabiensis, as adult females of
this and other species will rest within these and similar
vessels [28,29].
Eight 10 L clay pots were placed on the ground: 5

around the perimeter of the SFS chamber and the other
3 around the walls of the mud hut. Each pot was lined
with black cotton that had been dampened with water
and dusted with PPF powder (0.2 – 0.3 g AI per clay
pot; Sumilarv®, Sumitomo Chemical Co. Ltd., Japan).
Dusting was done by unevenly sprinkling 2 – 3 g of 10%
AI PPF powder over all surface of dampen cotton cloth
using a makeup/painting blush. The cotton cloth was
treated with PPF after being attached inside around the
circumference of clay pot using 3 mm aluminium wire to
ensure maximum containment of PPF powder (Figure 1C).
Pots were allowed to dry for 24 hours, facilitating the PPF
powder to attach lightly to the fabric while not hindering
its pickup by mosquitoes that contacted it. Two identical
artificial breeding habitats (2.5 L plastic basins, 21 cm in
diameter; filled with 250 g of soil and 2 L of water; water
levels were replenished as required) were buried with the
rim at ground level, 5 m apart and between 1 and 8 m
from clay pots (Figure 1). At the start of each experiment,
1,500 – 5,000 unfed female mosquitoes (aged between
three and nine days post eclosion and caged with males
until used) were released at 18.00 hrs. A cow, tethered
inside the mud hut, was available for the first three days to
permit blood feeding.
The experiment was allowed to run for 25 days follow-

ing release of the mosquitoes, to allow 10 days until the
first pupae developed and a further 15 days to harvest
all pupae from the artificial aquatic habitats that succes-
sively developed from eggs laid by released mosquitoes.
The breeding habitats were visually examined daily for
the presence of eggs and larvae to confirm if mosquitoes
visited the habitats. Each day, pupae developed from
deposited eggs were removed, counted and transferred
to an insectary where they were maintained under the
cage in cups containing water from the habitats until
they emerged as adults or died.
Control experiments were run simultaneously in a sep-

arate chamber using an identical protocol but without
any PPF application to the cotton lining of the clay pots.
A total of six replicates of both treatment and control
experiments were run, over a period of 6 months. Treat-
ment and control chambers were separated by a distance
of 3.2 m and, to avoid PPF contamination of the control
chamber, the same SFS chambers were used in all repli-
cates for treatment and control. Of importance, control
and treatment were not rotated but fixed between cham-
bers, when one replicate was on-going in a pair of control
and treatment chambers; the other pair of control and
treatment chambers was put into uses. Where control and
treatment chambers were adjacent to each other, a panel
of white cloth was mounted on one side of partition net to
prevent movement of PPF particles between chambers. A
break of at least seven days between replicates minimized
the chance of any mosquitoes surviving from the previous
replicate. PPF contamination between replicates was mini-
mized by spraying the chamber structure, the hut and
vegetation with water, new plastic basins were used and
cow were thoroughly cleaned by washing with only water
without soap before each replicate. Successful contamin-
ation and dissemination was evaluated by comparing
the differences in pupal mortality and emergence in-
hibition from the basins between treated experiments
and controls.
PPF contamination of water in the experimental breed-

ing habitats was investigated further by two methods.
First, immediately after recording first stage larvae in the
breeding habitats (typically 5–8 days after mosquito re-
lease), three 150 ml water sub-samples were collected



Figure 1 (A) The semi field system used in experiments; (B) adjoining chambers with huts for housing bait cows visible in each; (C),
Pyriproxyfen (PPF)-treated cloth interior of a clay resting pot placed on the ground within a chamber; (D) plastic basin sunk in the
ground within a chamber to provide the artificial habitat for egg laying.
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from each habitat and transferred to separate 250 ml glass
beakers. Twenty 2nd or 3rd instar An. arabiensis larvae
taken from the laboratory colony (i.e. fresh uncontamin-
ated individuals) were placed in each beaker and daily
mortality and emergence rates were recorded until all
were dead or had emerged as adults. The procedures were
repeated twice, i.e. only in two consecutive experiments of
the six experimental replicates.
In a second bioassay, at the termination of each ex-

perimental replicates (i.e. day 25 following initial intro-
duction of adult females) and after pupation of all larvae
and removal of all pupae, 250 second or third instar An.
arabiensis larvae taken from the laboratory colony (i.e.
fresh uncontaminated individuals) were introduced in
each breeding habitat (assumed to be contaminated with
PPF from previously released adults) and daily mortality
and emergence was recorded until all were dead or had
emerged as adults. The procedures were repeated twice,
i.e. only in two consecutive experiments of the six
experimental replicates.

Experiment 2: Confirmation that pyriproxyfen
contamination of breeding habitats was mosquito-borne
To examine whether the PPF impact on adult emer-
gence from the breeding habitats observed in the previ-
ous experiment might have resulted from the passive
carriage by wind currents, or by other organisms (e.g. other
invertebrates, amphibians, rodents, etc.), two tests were
conducted using the setup of experiment 1.
In the first test, 250 second or third instar An.

arabiensis larvae taken from the laboratory colony were
introduced in the two breeding habitats with fresh water
and soil in both treatment and control SFS chambers,
which had been prepared exactly as described for Ex-
periment 1. No adult mosquitoes were released in either
chamber. The daily pupation, mortality and emergence
rates were recorded until all pupae were dead or had
emerged as adults. The experiment was allowed to run
until all had pupated.
In the second test, the chambers used for treatment

and control were reversed, i.e. the control was run in the
chamber previously used for treatment and vice versa. A
total of 5,000 adult female mosquitoes were released in
each chamber and two replicates of the second test were
conducted and breeding habitats productivity were mon-
itored as described in experiment 1.

Experiment 3: Mosquito resting site preference inside the
semi field systems
To determine the proportions of released mosquitoes that
rested inside the clay pots in the experimental setup, adult
female mosquitoes were released inside treated and con-
trol SFS chambers, as described for experiment 1. On each
morning over the following three days (an average period
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for eggs development before mosquito visits the habitats
to lay eggs), all mosquitoes found resting inside clay pots
and walls and ceiling of the cattle hut were collected using
mouth aspirators, counted and recorded as either fed or
unfed. The experiment was repeated twice, first with 2,000
mosquitoes and then with 4,000 mosquitoes released in
each chamber (released mosquitoes were increased in the
second replicate to increase the proportion of mosquitoes
to be recaptured).

Experiment 4: Determining contamination rates of the
Anopheles arabiensis population resting inside clay pots
To estimate the proportion of An. arabiensis contami-
nated with PPF in this setup, 5,000 unfed adult female
mosquitoes were released inside both treated and control
SFS chambers, where only clay pots were treated with PPF
as described in experiment 1. On each of the three morn-
ings after release, a maximum of 60 mosquitoes (30 from
each of the resting sites) were collected inside all clay pots
and mud huts (walls and ceiling) and assessed for their
feeding status. Following resting behaviour in mosquito
after acquiring a blood meal, mosquitoes were collected
36 hrs after release to ensure that high proportion was
blood-fed. Individual mosquitoes were collected with sep-
arate mouth aspirators and held in a plastic cup (approxi-
mately 30 – 60 minutes) to avoid cross-contamination
until use. Mosquitos were killed by refrigeration and each
mosquito was suspended in 50 ml of water containing 10
third stage larvae of laboratory-reared An. arabiensis to
monitor larval mortality and pupa emergence inhibition,
over 12 days. In addition, the plastic collection aspirators
were rinsed with water to remove any possible PPF parti-
cles and clean water added to a total volume of 50 ml in
which 10 third-stage larvae were suspended, and followed
up as just described. The experiment was repeated twice.
To calculate the proportion contaminated, a maximum

mortality threshold above an upper 95% CI from a
control section was set. Thus an observed larval or pupal
mortality in a bioassay cup above the set threshold in
the treatment arm, implied that the suspended mosquito
was contaminated. The estimated contamination in the
treatment section was corrected using Abbot’s formula
[30], where the control larval mortality was greater
than 5%. Corrected contamination = [% Contamination –%
mortality in control)/(100 –% mortality in control)] × 100.

Experiment 5: Determination of autodissemination
efficiency with fewer treatment points and more breeding
habitats
The impact of few treated clay pots (1–2) with PPF to
deliver PPF contamination to resting mosquitoes was
determined in two tests. In the first test, only two of the
eight pots were treated with PPF and compared to a
control section where all eight pots remained untreated.
A batch of 5,000 unfed female An. arabiensis were
released once in a control and treatment chambers.
In the second test, only one pot was treated with PPF in

treatment section, and 5,000 unfed female An. arabiensis
were released in a control and treatment chambers, in
three consecutive batches of 2,000, then 2,000 and lastly
1,000, with an interval of one day between releases. The
rationale of releasing different mosquito batches was to
facilitate multiple visiting events of mosquitoes to the hab-
itats, which were likely to occur mosquitoes are released
in different batches rather than single batch. This also
mimic what is likely to happen in nature where different
mosquitoes are likely to transit in the same clay pots
over time.
In both tests, six breeding habitats were provided, and

pupae collected from individual habitat were monitored as
described until all were dead or had emerged as adults.

Data analysis
All data were analysed using R v2.12.2 [31] and the lme4
package [32] for generalized linear mixed effects models.
The differences in the total number of pupae collected
and proportion emerged between control and treatment
SFS chambers were determined with Poisson and bino-
mial distribution respectively using a best-fit generalized
linear mixed effect model. While treatment groups (with/
without PPF) were classified as fixed effect in the model,
experimental replicates, numbers of mosquito released,
numbers of larvae, total numbers of pupae collected per
control and treatment chambers, and numbers of breed-
ing habitats per control and treatment chambers were
assigned as random effects for the autodissemination of
PPF and larval bioassay data.

Results
Experiment 1: Evaluation of PPF-treated clay pots for the
delivery of pyriproxyfen to resting adult female mosqui-
toes for subsequent autodissemination
The results of the experiments measuring the impact of
PPF-treated resting pots on emergence from nearby
breeding habitats are summarized in Figure 2. In the six
replicates carried out, an average proportion (95% CI) of
adult emerged per experimental replicate was 0.95 ±
0.39) in the control group compared to 0.21 ± 2.99) in
the PPF treatments (p < 0.0001) (Figure 2C). There was
no difference in the mean number (95% CI) of pupae
collected from the treatment group (717 ± 622.8) com-
pared with the control group (590 ± 220.9) (p = 0.579)
(Figure 2A), suggesting that oviposition behaviour of
mosquitoes after PPF treatment was not affected by the
treatment. However, mean (95% CI) proportion of adult
emerged from collected pupae were significantly high in
the control group (558 ± 201.9) compared with the treat-
ment group (130.5 ± 155.6) (p < 0.0001) (Figure 2B). Low
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Figure 2 Number of pupae produced (A), adults emerged (B), proportion of adult emerged (C) in the breeding habitats and
proportion of adult emerged from larval bioassay on water samples from control and PPF - treated sections (D).
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adult emergence rate observed in the treatment chambers
strongly suggest the occurrence of PPF autodissemination
events mediated by gravid female mosquitoes attempting
to oviposit.
In the laboratory bioassay measuring the effect of

breeding habitat water on development of larvae, an
average proportion (95% CI) of 0.987 ± 0.02 emerged
to adults in water from the controls, while only 0.62 ±
0.29 emerged from the treatment group (p = 0.0003),
(Figure 2D).
In the second larval bioassay, laboratory-reared lar-

vae placed in the breeding habitats after the clay pot
experiment ended, had significantly lower average (95%
CI) emergence proportion in the treatment chamber
(0.16 ± 0.23) compared to the control chamber (0.97 ±
0.05) (p < 0.0001), which confirm auto dissemination of
PPF to the breeding sites. Attrition of introduced larvae
due to predation and other natural causes were similar in
both groups (315/500 and 359/500 larvae accounted for in
control and treated groups respectively) and there was no
evidence of any increase in larval mortality due to
PPF (p = 0.773). All introduced larvae emerged suc-
cessfully or died within 20 days of the start of the
experiment.
Experiment 2: Confirmation that pyriproxyfen
contamination of breeding habitats was mosquito-borne
In the first test of experiment 2 carried out, laboratory-
reared larvae were placed in the breeding habitats of
control and treatment chambers, prepared as described
for experiment 1, except that here, no mosquitoes were
released. The result of the single replicate showed that
there was no difference in average (95% CI) proportion
adult emergence per day between treatment (0.63 ± 0.24)
and control sections (0.69 ± 0.32), (p < 0.0001). The total
number of pupae collected from breeding habitats in the
control (n = 379) and treatment (n = 392) chambers were
not different (p > 0.05).
In the second test of experiment 2, the design of ex-

periment 1 was repeated by releasing 5,000 adult female
mosquitoes in each experimental chamber except here,
the control was run in an SFS chamber previously used
for PPF treatment, and vice versa for the treatment.
Average (95% CI) adult mosquito proportion emergence
were significantly higher in the control group, both
before (0.95 ± 0.39) and after (0.72 ± 0.34) the locations
were switched compared to the treatment (0.21 ± 2.99)
and (0.05 ± 0.07) (p < 0.0001). The results of both experi-
ments demonstrated that reductions in emergence rates
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in the breeding habitats occurred only when adult
mosquitoes were present in the PPF-treated chamber.
Experiment 3: Mosquito resting site preference inside the
semi field systems
All recaptured mosquitoes from different resting sites
were blood fed. A mean (95% CI) recapture rate of
(0.385 ± 0.02) was achieved in all of the replicates carried
out, with no difference seen between control (0.38 ±
0.005) and treatment groups (0.39 ± 0.021). (p = 0.266).
Although, total number of mosquitoes recaptured increased
when the number of mosquitoes released was greater
(p = 0.006), the proportion of mosquito recaptured re-
mains similar between replicates (p = 0.543). As Figure 3
shows, the majority of mosquitoes were collected from
the ceiling and walls within the hut with 17% found within
the resting pots.
Experiment 4: Determining contamination rates of
Anopheles arabiensis population resting inside clay pots
As determined by their ability to inhibit adult emergence
in a laboratory bioassay, 100% of all mosquitoes col-
lected inside treated clay pots were found to be PPF-
contaminated, while approximately 72% of those found
resting in the hut within the treated chamber, were
contaminated. Mosquitoes from PPF treated clay pots
and huts caused (0.005 ± 0.007) and (0.52 ± 0.06) average
adult emergence proportion from exposed larvae respec-
tively in larval bioassay. In the control chamber, an
average (95% CI) of (0.925 ± 0.08) of all larvae successful
emerged to adults during larval bioassay using mos-
quitoes collected from clay pots and cattle shed in the
control chamber.
Figure 3 Average number of mosquitoes collected at different resting
Experiment 5: Determination of autodissemination
efficiency with fewer treatment points and more breeding
habitats
In both tests, impacts of PPF on pupal emergence were
observed in all habitats in the treated chambers. When
two clay pots were tested, the mean (95% CI) pupae
collected from all breeding habitats were similar between
control (52.57 ± 26.98) and treatment (62.92 ± 34.15)
chambers, (p = 0.522). Similarly, the mean number of pupae
collected was not different between control (100.34 ± 19.65)
and treatment (104.88 ± 23.66) chambers when one clay
pot was tested (p = 0.883). The mean proportion (95% CI)
of emerged adults was significantly reduced in the treated
chambers when two (0.33 ± 0.18) or only one (0.34 ± 0.13)
clay pots were treated compared with the respective
controls (0.82 ± 0.12); (0.98 ± 0.02); p < 0.0001)).

Discussion
Previous field studies have demonstrated the potential
for the autodissemination technique when applied to
free flying population Aedes mosquito species under
field settings [21,22]. In this study, we also proved the
occurrence of PPF autodissemination using captive
populations of malaria vector An. arabiensis under semi-
field settings. Overall, autodissemination of PPF by An.
arabiensis inhibited 82% of adult emergence, which is
compatible with the control level of 80% recommended
by WHOPES for controlling malaria vector juvenile stages
[33] under semi-field conditions. In some cases, for ex-
ample experiment 1, Figure 2C, total emergence inhibition
in PPF-treated sections was achieved with no single adult
mosquito emerging from these habitats. Larval bioassays
showed a significantly lower adult emergence rate in
the treatment sections compared to the control further
sites inside the Semi Field Systems.
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confirming the delivery of PPF to the breeding habitats in
all experiments. More importantly, by introducing insect-
ary larvae directly in the habitats, an even lower emer-
gence rate was observed compared to the control sections.
This could be due to the presence of organic matter in the
breeding habitats that would allow PPF adsorption and
could prolong its persistence in aquatic habitats [34].
Though not clearly elucidated by the data presented

here, it remains as a limitation of current study, that
wide range and many number of mosquito released
(1,500 – 5,000) in relation to number and size of breed-
ing habitats might have affected the productivity of the
habitats provided (pupae as a proxy indicator) by causing
high larval mortality in the habitats due to overcrowding
factors [35], and result in relative small number of pupae
collected. However, the reason for a wide range was due
to shortage of mosquitoes with a same age whereas many
mosquitoes were released to make sure that our experi-
ments were not confounded by shortage of mosquitoes
following natural mortality and scavenging. Surprisingly,
variations in the numbers of mosquitoes released did not
affect the proportions of adults that ultimately emerged
from the pupae in the contaminated breeding habitats, the
inclusion of the numbers of mosquitoes released resulted
in the best model. Since the numbers of mosquitoes visit-
ing contamination stations would have differed between
experiments and replicates, variation in mosquito num-
bers released and pupae collected from the were qualified
as random rather than fixed factor.
Importantly, similar emergence rate recorded in the

absence of mosquitoes between control and treatment
chambers in first test of experiment 2 indicate that passive
transfer of PPF (which might have confounded or poten-
tially artificially enhanced any observed impact) did not
occur at any stage in these studies. In addition, simi-
lar impact of PPF on adult emergence observed in
the second test of experiment 2 as the results of re-
leased mosquitoes before and after switching locations
of control and treatment chambers confirmed that
dissemination by ovipositing mosquitoes alone was respon-
sible for transfer of the effective dosages of PPF to the
breeding habitats.
In assessing potential mosquito resting sites for target-

ing with PPF inside SFS, similar number of mosquitoes
recaptured between control and treatment groups indi-
cated that PPF does not repel resting mosquitoes. Overall,
the proportions of recaptured adult female mosquitoes
were few; this might have been caused by restricted
collections from few designated places, and missed
those resting in the vegetation grown inside the ex-
perimental chambers. High resting preference of mos-
quitoes to the wall and ceiling of the mud hut compared
to the clay pots, highlight the potential of targeting these
sites with PPF.
The results of experiment 5 are of particular import-
ance because they demonstrated that only one treated
resting pot competing with alternative untreated resting
sites including seven clay pots and resting sites within
the mud hut was sufficient to inhibit > 65% adult emer-
gence in six breeding habitats via ovipositing mosquitoes
alone. These findings are very promising and highlight
the potential that autodissemination offers for ampli-
fication of limited numbers of treatment points to sig-
nificant levels of effective breeding habitat treatment
coverage. Clearly, field-based experiments and mathem-
atical modelling should now be designed to investigate
this further and establish the relationship between
contamination stations and habitats coverage.
The mechanism of PPF delivery to mosquitoes is

crucial for the overall success of the autodissemination
technique [21-23]. In this study, the use of clay pots as a
point source for PPF application effectively delivered
PPF to the mosquitoes resting within and at rates suffi-
cient to enable autodissemination. The attractiveness
and usefulness of clay pots as an outdoor and indoor
sampling tool for malaria and other disease vectors as
well as a delivery tool for entomopathogenic fungi has
been described elsewhere [28,36,37]. Although absolute
numbers of mosquitoes resting inside clay pots are
relatively low, these tools are considered to be efficient
for sampling blood fed mosquitoes compared to many
other sampling techniques [29]. The results presented
here indicate that this simple and affordable method has
additional potential in vector control.
When aquatic habitats are limited, the minority of

mosquitoes that are contaminated in clay pots and then
carry lethal doses of PPF to their aquatic habitats also
affect the offspring of uncontaminated mosquitoes. Thus,
contaminated adults amplify the impact of their own con-
tamination by affecting the offspring of all mosquitoes that
share the contaminated mosquito’s breeding site [38,39].
Although not investigated in this study, field deployment
of autodissemination approach is predicted to be affected
by number of mosquitoes visiting the habitats, size of the
breeding habitats and distance of the habitats from PPF
contamination stations. Moreover, targeting only the clay
pots with PPF resulted in the effective contamination of
mosquitoes that were ultimately collected from the huts,
suggesting that blood-fed mosquitoes move between rest-
ing sites during that phase of their gonotrophic cycle. This
is clearly an advantage in terms of optimizing the effect of
PPF through further “coverage amplification of the habi-
tats” whereby PPF is likely to be delivered to many breed-
ing habitats by PPF-contaminated mosquitoes using few
habitats, and potentially might act to reduce the number
and costs of contamination stations required [40]. Clay
pots, by providing shelter from rain and sunlight, might
also prolong the lifespan of single PPF treatments, an
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important consideration in any ‘insecticide’-based pro-
gram. However, it should be noted that this experimental
design provides only estimates, rather than actual num-
bers, of mosquitoes that rest or pass through clay pots
and of whether they are contaminated or not.
The impact of PPF varies at different stages of the

mosquito’s life cycle. Previous work has shown that mos-
quitoes that are contaminated within 24 hrs of a blood
meal become sterilized and do not lay eggs [41,42] but
this sterilization effect does not occur when exposure to
PPF occurs beyond 24 hrs after the blood meal. How-
ever, in the experiments reported here, the test mosqui-
toes produced large numbers of developing offspring in
the artificial habitats provided, suggesting that the clay
pots set outside the cattle sheds, were not visited by
blood-fed mosquitoes until sometime after completion
of feeding when egg-maturation was underway. If so,
then it was while resting outdoors after the blood meal
that these mosquitoes were contaminated, and targeting
this stage of the gonotrophic cycle (i.e. >24 hours after
blood feeding) may maximize delivery of PPF to the
breeding habitats [23]. Alternatively, if PPF-contamination
occurred immediately after or within 24 hours of blood
feeding, then it suggests that these PPF-sterilized mosqui-
toes, despite not being gravid, went on to visit the breed-
ing habitats where they prevented emergence of the next
generation of mosquitoes from the eggs laid by uncontam-
inated adults.
Although a key necessity for its success is the develop-

ment of efficient contamination stations, a role performed
very well by the clay pots in the experiments reported
here, the autodissemination technique potentially can
target both indoor and outdoor biting mosquitoes, suscep-
tible and pyrethroid resistant mosquito strains at their
larval habitat, with impacts on adult mosquito density and
malaria transmission [14,40,43]. The integration of this
method of control with current vector control measures
(LLINs and IRS) could help in the control of outdoor
biting vectors such as An. arabiensis as well as providing
an approach to managing insecticide resistance [44]. The
autodissemination of insecticides by adult mosquitoes for
the control of malaria is likely to work better in the dry
season when the breeding habitats are few and stable with
reduced water flushing [38,40]. With recent development
of highly potent formulation up to 10% AI PPF dust,
which is effective at ultra-low dose, it might be possible to
effectively contaminate greater volumes than current
possible using malaria vectors and other mosquitoes that
share the habitats with Anopheles mosquitoes.
This is the first study to investigate the potential for

using PPF autodissemination for the control of An. ara-
biensis, one of the efficient African malaria vectors. The
results are very promising and indicate that this approach
offers an opportunity to be considered amongst future
malaria control strategies in Africa. Before its full potential
can be assessed, further vector studies will be required in
key areas: 1) the effectiveness seen in these semi-field
experiments must be demonstrated under full field condi-
tions; 2) quantitative studies on ‘amplification’ are required
to determine the numbers and densities of treatment
points required to deliver effective control at breeding
sites; 3) investigations of impacts on other species sharing
the breeding sites, including other vectors, nuisance mos-
quitoes and non-target species.
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Abstract. One of the main challenges to malaria elimination is the resilience of vectors, such as Anopheles arabiensis,
that evade lethal exposure to insecticidal control measures or express resistance to their active ingredients. This study
investigated a novel technology for population control that sterilizes mosquitoes using pyriproxyfen, a juvenile hormone
analogue. Females ofAn. arabiensis were released in a semifield system divided into four equal sections, and each section
had a mud hut sheltering a tethered cow providing a blood source for mosquitoes. In all sections, the inner mud hut walls
and roofs were lined with black cotton cloth. In one-half of the sections, the cloth was dusted with pyriproxyfen. An
overwhelming 96% reduction in adult production was achieved in pyriproxyfen-treated sections compared with control
sections. This unprecedented level of control can be exploited to design new vector control strategies that particularly
target existing behaviorally resilient and insecticide-resistant populations.

INTRODUCTION

Current frontline malaria vector control interventions, such
as long-lasting insecticide-treated nets (LLINs) and indoor
residual spraying (IRS), have contributed greatly to the
recent successes in malaria control.1 However, these tools are
more effective against vector species that primarily feed
indoors on humans and rest indoors. They are less effective
against outdoor feeding and resting mosquitoes. Anopheles
arabiensis, currently mediating most of the residual malaria
transmission in east Africa,2,3 is not optimally controlled by
LLINs and IRS, because it commonly feeds outdoors on
humans or cattle, rests outdoors, and can enter but then rapidly
exit houses containing these products without exposure to
lethal doses of their active ingredients (AIs).3,4

Another challenge to malaria vector control is the develop-
ment of resistance in malaria vectors against all classes of
insecticides currently used for LLINs and IRS, particularly
pyrethroids, the most widely used and the only class approved
for use in bednets.5

Pyriproxyfen (PPF) is a juvenile hormone analogue that
traditionally has been used in aquatic habitats to prevent mos-
quito larvae and pupae from developing into adults. However,
it can also sterilize adult mosquitoes on contact.6–8 This study
builds from our previous work performed in laboratory condi-
tions showing that An. arabiensis mosquitoes were particularly
vulnerable to sterilization immediately after blood feeding.8

Adult mosquitoes can also transfer PPF from resting sites
to breeding sites to interfere with immature development.9,10

Here, we show, for the first time, an operationally practic-
able means of controlling a free-flying captive population of
An. arabiensis using PPF.

MATERIALS AND METHODS

This study was carried out in southern Tanzania inside a
semifield system (SFS) with walls consisting of netting only,

and therefore, the microclimate inside it closely resembled
the natural environment outside of it.11 The SFS was divided
into four equal sections, with a space volume of approxi-
mately 360 m3 each. In each section, a mud hut sheltering a
tethered cow, eight clay pots, and four plastic basins with soil
and water were designed to provide blood, resting, and ovipo-
sition sites for mosquitoes (Figure 1). In all sections, the inner
mud hut walls and roofs were lined with black cotton cloth,
and in one-half of the sections, the cloth was dusted with PPF
powder (0.6–0.8 g AI/m2). In total, 5,000 unfed 3 to 9-day-old
insectary-reared An. arabiensis females, previously caged
with equivalent numbers of males, were released per section,
with a cow to provide blood for the first 3 days only. Mosqui-
toes used in the experiments were starved 6 hours before
release. Therefore, they fed on the cow, and after 3 days, a
solution of 6% glucose was set up at multiple locations inside

the SFS for sugar feeding. These mosquitoes remained in the
SFS to complete their gonotrophic cycle. All pupae that sub-
sequently developed from the aquatic habitats were removed,
counted, and reared in small cages to monitor the numbers of
emerging adults and therefore, the impact of PPF exposure on
the mosquitoes’ ability to produce viable offspring. Seven days
after larvae were observed in the habitats, 150 mL water were
collected from every habitat using a glass beaker to determine
whether PPF had been transferred to these habitats by con-
taminated mosquitoes during oviposition.12 To assess the pres-
ence of PPF in each beaker, larval bioassays were conducted
using second and third instar larvae from the insectary. Twenty
An. arabiensis larvae were introduced in each beaker and mon-
itored daily until all larvae and pupae had either died or devel-
oped and emerged to adults. Five replicates each of the control
and treatment were completed in three separate experiments
in the following setup. In the first experiment, two replicates

(treatment and control) were run (5,000 + 4 = 20,000 mosqui-
toes); in the second experiment, two replicates (treatment and
control) were run (5,000 + 4 = 20,000 mosquitoes), and in the
third experiment, one replicate (treatment and control) was
run (5,000 + 2 = 10,000 mosquitoes), making a total of 50,000
mosquitoes reared and released.
All statistical analyses were conducted in R v2.12.213

(R Development Core Team, University of Auckland,
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Dar es Salaam, Tanzania. E-mail: smajambere@ihi.or.tz
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Auckland, New Zealand) using the lme4 package for general-
ized linear mixed effects models.14 To determine any differences
in the numbers of pupae or adults produced between treated
and control sections, a generalized linear mixed effects model
with a Poisson distribution and a log link function for count data
was performed. The treatment group (control or PPF) was clas-
sified as a fixed effect, whereas SFS section nested within exper-
iment was put in as a random effect as per the experimental
design. A visual inspection of the plots of error versus fitted
values distribution was used to determine the best model fit.
The model was then tested with each nested parameter sepa-
rately to determine the underlying variation. SFS section was
found to count for a lot of variation and therefore, required the
full nested model to be retained. The differences in pupal
emergence rates in both SFS habitats and the bioassays exper-
iments were compared by fitting a generalized linear mixed
effects model with binomial error structure and logit link func-
tion for proportion data. The data were fitted to a model
including treatment as a fixed effect and breeding habitat
nested within SFS section nested within experiment as a ran-
dom effect as per the experimental design. Visual inspection of
the plots of error versus fitted values distribution was used to
determine the best model fit. Model reduction was conducted
by removing nested parameters one by one; however, the full
nested model was retained.

RESULTS

Experiments lasted between 11 and 16 days from release
of adult mosquitoes to collection of the last pupae in the
breeding habitats. An overwhelming 95% reduction in pupal
production and 96% reduction in adult production were
achieved in PPF-treated sections compared with control sec-
tions (Figure 2A and B). In four of five replicates, exposure
to this juvenile hormone analogue completely sterilized all
mosquitoes; not a single pupa or new adult was seen. The

few adults emerging from a PPF-treated section in the fifth
replicate probably resulted from mosquitoes that had been
contaminated with PPF but were not completely sterilized
and managed to lay eggs. The pupae collected in the PPF-
treated section showed a significantly lower emergence rate
(82%; 164/201) compared with the control (95%; 4,132/4,349;
c2 [1] = 65.6, P < 0.001) (Figure 2C). This result suggested
possible PPF autodissemination to the breeding habitats by
contaminated mosquitoes. However, bioassays with insec-
tary larvae reared in water from the control and PPF-treated
habitats showed similar emergence rates (Figure 2D). A sim-
ilar pattern has been observed in recent studies (Lwetoijera
DW and others, unpublished data), where PPF activity is
more pronounced in breeding habitats with organic material
than water samples kept in glass beakers.

DISCUSSION

The striking level of sterilization seen in this key malaria
vector reveals an exciting new opportunity for malaria vector
control. This technology is a practical, novel technology for
population control that sterilizes mosquitoes rather than kill-
ing them. It offers the chance to develop new tools that are
not compromised by existing resistance mechanisms. New
paradigms in vector control are in great demand, especially
for vectors such as An. arabiensis4,15 and other anophelines16

that exhibit flexibility in feeding and resting indoors and out-
doors and minimize their contact with conventional adulticides
applied indoors. The findings reported here have limitations
given that the experiments were conducted within an enclosed
environment on insectary-reared mosquitoes that had never
been subjected to insecticide pressure. However, this tech-
nology can be readily adapted in natural conditions to assess
its impact on wild populations of An. arabiensis.
Treating walls and roof linings with PPF comprehensively

sterilizes captive populations of free-flying An. arabiensis,

Figure 1. Semifield system (SFS) setup. (A) SFS with (B) mud huts built inside each section to shelter a cow and (C) breeding habitats.
(D) Mud huts were lined with black cloth and dusted with PPF in treatment sections.
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making it a powerful control tool and an easy complement to
LLINs and IRS. PPF-treated materials could be deployed
outdoors in areas where mosquitoes rest or transit, such as
areas where people gather in the early hours of the evening
and inside and outside of cattle sheds. These treated materials
could also be specifically designed to attract resting mosqui-
toes. Similar substrates are already exploited for the delivery
of conventional insecticides.17 Our prototype uses a safe and
registered insecticide class that has yet to be deployed against
adult malaria vectors. Alternatives to conventional adulticides
are desperately needed. The physiological resistance to pyre-
throids, recently characterized in populations of An. arabiensis
from Zanzibar, precipitated the substitution of pyrethroids
for a less cost-effective carbamate compound with a history
of resistance development in malaria vectors.18,19 No resis-
tance to PPF has been reported in mosquitoes (J. Invest and
others, unpublished data), and no cross-resistance has been
observed between PPF and other classes of insecticides of
public health interest. PPF could be applied in combination,
mosaics, or rotations with current insecticides to mitigate the
emergence of resistance.5 It is remarkably stable in the shade
and available in a variety of commercial formulations that fit
this new application.
The indication that the few mosquitoes that managed to lay

eggs from the PPF-treated section also transferred PPF to
their breeding habitats and significantly reduced subsequent
mosquito emergence is a welcome development. The auto-
dissemination of PPF by adult mosquitoes has been already
observed in Aedes species,9,10 and we are working to prove
the same phenomenon in malaria vectors.
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