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Abstract

This thesis constitutes a research work on Bonus-Malus (BM) systems

in insurance portfolios, featuring designing pricing strategies and ex-

amining associated solvency risks. The first piece of work proposed

two different pricing models via the Bayesian approach. Results im-

ply adverse attitudes towards policyholders having a history of many

small claims, when the modelling for claim severities takes different

forms. On the other hand, the rest of the work dedicated to embed-

ding a BM structure under a risk analysis framework, where the focus

lies in measuring the underlying ruin probabilities. It was necessary to

initially investigate a discrete model where such probability could be

obtained through recursions. As for a continuous model, BM feature

was reflected by a Bayesian estimator for premium adjustment. Such

construction normally brings in a dependence structure to the risk

model thus violating classical assumptions. One way was to inspect

how different it is from a classical risk model. Then through some

conditional arguments one could find accordingly a solution based on

results in literature. From another perspective, it has been found that

for a No Claim Discount (NCD) or a Bonus system, an alteration in

premium rates could be transformed equivalently to an interchange of

distribution between inter-claim times. Then some Markov properties

were able to be diagnosed under higher dimensions, which leads to a

further possibility of computations. Results can be found in the form

of simulations.
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Chapter 1

Preliminaries

This chapter serves as a foundation of the work to be presented in this thesis. As

this research is to employ mathematical models in an insurance context, concepts

from this background will be introduced. Technically, probability distributions

and some statistical approaches will be demonstrated since it is strongly related

to the contents in Chapter 3. Most of the definitions in the first three subsections

follow Rolski et al. [2009] and Klugman et al. [1998]. Furthermore, a classical risk

model will also be addressed here and further details can be found in Asmussen

and Albrecher [2010].

1.1 Actuarial Concepts

Here are some basic definitions in the insurance context which will be seen through

out the thesis:

• An insurance premium, or simply referred to as ’premium’ in the sequel,

is the amount of money that policyholders pay to an insurance company

for the coverage of associated risks. There are many ways to calculate or

estimate the value of this payment. (see premium calculation principles

below)

• Claims are the amount of losses an insurer is entitled to pay for an insured

product. The monetary value of a claim is also referred to as claim size/cost
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1. PRELIMINARIES

or claim severity and is considered as a non-negative random variable. The

number of claims or sometimes called claim counts/frequency in a certain

period is also a non-negative random variable. The claim counting process

is often denoted by {N(t), t ≥ 0} where N(t) is the number of claims up to

time t.

• An epoch of a claim, or sometimes called a claim arrival time, is literally

the time at which a claim happens (assuming its cost to be cleared instan-

taneously). If we denote the epochs by τ1, τ2, . . ., then Tn = τn−τn−1, n ≥ 1

are called the inter-arrival times in-between successive claims.

• The counting process denoted by {N(t)}t≥0 counts the number of claims up

to time t. It is a random process which will be discussed further in the

sequel.

• A risk surplus/reserve is the amount of funds in operation in an insurance

system which accumulates through premium incomes and drops by claims,

whose process is normally described by the following equation.

U(t) = u+ P (t)− S(t), t ≥ 0,

where u = U(0) is the initial level of reserve, P (t) is the premium income

collected up to time t and S(t) =
∑N(t)

i=1 Yi is the aggregate claim amount

with individual claim sizes Yi, i = 1, 2, . . . N(t) and the number of claims

up to time t as N(t).

• Premium calculation principles are a list of different rules which could be

followed when conducting premium calculations. Some commonly seen ones

are displayed below while others could be found in Asmussen and Albrecher

[2010]. Notice that it does not related to stochastic processes, but for a

single risk X.

The net premium principle p(X) = E[X]. This is the basic principle

in the sense that premiums should be the expected value of losses. In our

work Chapter 3.2, we followed exactly this principle and used the product

2



1. PRELIMINARIES

of the expected individual loss and the expected frequency as a proposed

premium.

The expected value principle p(X) = E[X] = (1 + η)E[X]. Here, η is

referred to as the safety loading. Normally, it is assumed in a classical risk

model that η > 0, which is the so-called Net Profit Condition (NPC).

The variance principle p(X) = E[X]+ηV ar[X], which adds a variation

of X.

The above concepts are relatively general but will be illustrated further in

the following chapters. We will see how these elements can be modelled under

different scenarios.

1.2 Probability Distributions

Discrete Distributions

Poisson distribution with the notation Poi(λ) is the most commonly used

discrete distribution in this topic defined as

P(N = n) =
λn

n!
e−λ,

for n = 0, 1, . . . and λ > 0 with mean and variance both equal to λ. The moment

generating function is

MN(t) = E[etN ] = eλ(et−1).

Negative Binomial distribution denoted by NB(α, p) is a discrete probability

distribution defined by the following probability mass function.

P(N = n) =

(
α + n− 1

n

)
(1− p)αpn,

for n = 0, 1, . . ., α > 0, 0 < p < 1. The mean is then αp
1−p while the variance

3



1. PRELIMINARIES

equals to αp
(1−p)2 . Its moment generating function is given by

MN(t) =

(
1− p

1− pet

)α
.

Geometric distribution is another well-known discrete probability distribution.

There are two ways to define such a random variable. Type 1 says that X is the

number of trials until the first success of an experiment and X ∼ Geo(p) with

0 < p ≤ 1 as the success probability of an individual trial.

P(X = k) = (1− p)k−1p, k = 1, 2, . . . .

In contrast, Type 2 defines a random variable Y as the number of failures until the

first success of an experiment and Y ∼ Geo(p) with a successful rate of 0 < p ≤ 1

for each trial.

P(Y = k) = (1− p)kp, k = 0, 1, . . . .

The expectations are given by E[X] = 1
p

and E[Y ] = 1−p
p

respectively while the

variances take the same form V ar[X] = V ar[Y ] = 1−p
p2

.

Continuous Distributions

Exponential distribution is one of the most widely considered continuous dis-

tributions when analysing an actuarial model. With the notation X ∼ Exp(λ),

its probability density function is shown as

f(x) = λe−λx, x > 0.

The mean is 1
λ

and the variance is 1
λ2

. It has many nice properties such as

the memory-less nature which will be explained further in later chapters when

concrete models are taken into account and its moment generating function has

a simple form

MX(t) =
λ

λ− t
, for t < λ.

4



1. PRELIMINARIES

Gamma distribution denoted as Γ(α, λ) has a probability density function

f(x) =
λαxα−1e−λx

Γ(α)
, x ≥ 0,

where α, λ > 0 are real numbers and Γ(α) is a Gamma function

Γ(α) =

∫ ∞
0

xα−1e−xdx, x > 0.

When α ∈ N, it is called an Erlang distribution Erl(α, λ) and Γ(α) simply be-

comes (α−1)!. Erlang distribution could be considered as a sum of α independent

exponential distributions with a common parameter λ.

Beta distribution Beta(α, β) has a probability density function shown below

f(x) =
xα(1− x)β−1

B(α, β)
, 0 < x < 1,

where B(α, β) is the Beta function

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt =

∫ ∞
0

tβ−1

(1 + t)α+β
dt, α, β > 0. (1.1)

Notice that there is a relation between the Gamma function and the Beta

function.

B(α, β) = B(β, α) =
Γ(α)Γ(β)

Γ(α + β)
. (1.2)

Remark 1.1. (1.1) is derived through a change of variable t = 1
x+1

where x ∈
(0,∞). Thus, the integral becomes∫ ∞

0

(1 + x)1−α
(

x

x+ 1

)β−1

x−2dx =

∫ ∞
0

xβ−1

(1 + x)α+β
dx.

The first equality in (1.2) results from the fact that Beta function is a convolution.

5



1. PRELIMINARIES

The relation with Gamma function is illustrated below.

B(α, β)Γ(α + β) =

∫ ∞
0

∫ 1

0

tα−1(1− t)β−1yα+β−1e−ydt dy

=

∫ ∞
0

∫ 1

0

(yt)α−1(y − yt)β−1y dt e−ydy

=

∫ ∞
0

∫ y

0

xα−1(y − x)β−1dx e−ydy

=

∫ ∞
0

xα−1

∫ ∞
x

e−y(y − x)β−1dy dx

=

∫ ∞
0

xα−1e−x
∫ ∞

0

e−zzβ−1dz dx

= Γ(β)

∫ ∞
0

xα−1e−xdx

= Γ(α)Γ(β)

which gives the desired result.

Lévy distribution is one of the few stable (1/2 stable) distributions that has

an analytical probability density function. A standard Lévy(0, c) is represented

as

f(x) =

√
c

2πx3
exp

(
− c

2x

)
, x > 0.

where c is the scale parameter. Notice that in Chapter 3.2, we are considering

such a distribution with c replaced by c2/2.

Weibull distribution. The density of X ∼Weibull(λ, k) could be written as

f(x) =
k

λ
xk−1exp

(
−x

k

λ

)
, x ≥ 0.

When 0 < k < 1, it is a heavy-tailed distribution which means the tail F̄ (x) =

1− F (x) is not bounded by an exponential tail e−σx for all σ > 0, i.e.,

lim
x→∞

F̄ (x)

e−σx
=∞.

We used this distribution in Chapter 3.2 resulting from a mixing of Lévy and

exponential distribution having a shape parameter k = 1
2
. Its rth moment is

6



1. PRELIMINARIES

calculated by

E[Xr] =

∫ ∞
0

k

λ
xk−1exp

(
−x

k

λ

)
xrdx.

To proceed with this, let y = xk

λ
∈ (0,∞), then x = (λy)1− 1

k , dy = k
λ
xk−1dx

substituting these back in yields

E[Xr] = k

∫ ∞
0

y(λy)
r−1
k e−y

λ

k
(λy)

1
k
−1dy

= λ
r
k

∫ ∞
0

y
r
k

+1−1e−ydy

= λ
r
kΓ
( r
k

+ 1
)
.

When k = 1
2
, E[X] = 2λ2 and V ar[X] = λ

2
k

[
Γ( 2

k
+ 1)− (Γ( 1

k
+ 1))2

]
= 20λ4.

Pareto distribution denoted by X ∼Par(s,m) is another heavy-tailed distri-

bution with p.d.f

f(x) =
sms

(x+m)s+1
, x ≥ 0,

Its tail has a power decay which is obviously not bounded by an exponential one.

Its mean E[X] could be derived through

E[X] =

∫ ∞
0

sms

(x+m)s+1
xdx

=
sms

−s

∫ ∞
0

xd(x+m)−s

= ms

∫ ∞
0

(x+m)−sdx

= − ms

1− s
(x+m)−s+1|∞0

=
m

s− 1
, s > 1.

7



1. PRELIMINARIES

1.3 Statistical Methods-Parameter Estimation

1.3.1 Method of Moments

This is a basic approach to estimate parameters in a statistical model. Suppose

that there are k parameters θ1, θ2, . . . , θk to be estimated in a distribution function

FX(x;θ) of the random variable X. The idea is to use the sample moments to

represent those of the population. Then the 1st − kth moment can be expressed

in terms of θ = (θ1, θ2, . . . , θk).

E[X] = m1 = g1(θ1, θ2, . . . , θk);

E[X2] = m2 = g2(θ1, θ2, . . . , θk);
...

E[Xk] = mk = gk(θ1, θ2, . . . , θk).

Solving k parameters from a system of k equations will result in parameter esti-

mators. On a given data set x1, . . . , xn of size n, we could use the sample moments

calculated as

m̂i =
1

n

n∑
j=1

xij, for i = 1, . . . , k

to estimate the population moments so that the estimates for parameters could

be obtained by

m̂1 = g1(θ̂1, θ̂2, . . . , θ̂k);

m̂2 = g2(θ̂1, θ̂2, . . . , θ̂k);
...

m̂k = gk(θ̂1, θ̂2, . . . , θ̂k).

This method is simple to implement but the estimation may not always be un-

biased partly because it only considers several features rather than the whole

behaviour of the data set. An unbiased estimator is defined to be an estimator

whose expected value is the real value of the unknown parameter to be estimated.

An alternative way is to use the Maximum Likelihood Estimation.

8



1. PRELIMINARIES

1.3.2 Maximum Likelihood Estimation (MLE)

The key reasoning behind this approach is to figure out a set of values for the

parameters under which the possibilities of obtaining the observed data are max-

imised. We call the joint probability of observing the data x1, x2, . . . , xn given

the vector of parameters θ the Likelihood Function.

L(θ) =
n∏
j=1

P(Xj ∈ dAj|θ) =
n∏
j=1

fX(xj|θ),

where fX(x|θ) denotes the probability density function for a random variable X

given the parameter vector θ and dAj is the corresponding Xj’s infinitesimal set.

Sometimes, it is easier to consider the Log-likelihood Function

lnL(θ) =
n∑
j=1

ln fX(xj|θ).

MLE is to define an estimator θ̂ for θ so that the likelihood function or log-

likelihood function is maximised.

1.3.3 Bayesian Estimation

While the previous methods make the assumption that the probability distribu-

tion for each sample is fixed and it is the difference among samples that causes

the variation in data, Bayesian estimation takes the population distribution to

be variable and relies on observed data to estimate the probability of a param-

eter taking a certain value. So instead of showing a deterministic value for a

parameter, Bayesian estimation generates its distribution.

Several concepts need to be clarified first.

• Prior Distribution is the distribution of a parameter assumed before any

observation, normally denoted by π(θ).

• Posterior Distribution is the estimated distribution for the parameter

based on the observed data x = (x1, x2, . . . , k). Technically speaking, it is

a conditional probability of θ given x, i.e., πΘ|X(θ|x).

9



1. PRELIMINARIES

• Model Distribution or sometimes called Sampling Distribution is the

distribution of the underlying random variable X conditioning on a par-

ticular value for the parameter. We write it as fX|Θ(x|θ), which coincides

with the likelihood function as defined in MLE.

• Marginal Distribution is the mixing distribution for X when the param-

eter is assumed to have a prior distribution and its pdf is

fX(x) =

∫
fX|Θ(x|θ)π(θ)dθ.

• Predictive Distribution is a distribution that predicts a new observation

y when all previous data x is taken into account, fY |X(y|x).

The core of this approach lies with the Bayes’ Theorem.

πΘ|X(θ|x) =
fX|Θ(x|θ)π(θ)∫
fX|Θ(x|θ)π(θ)dθ

.

In addition, the predictive distribution is computed by

fY |X(y|x) =

∫
fY |Θ(y|θ)πΘ|X(θ|x)dθ.

In practice, it is normally required to present an estimate for the parame-

ter. To find such an estimate, we often try to minimise the difference from the

real value. A quadratic loss function l(θ̂, θ) = (θ̂ − θ)2 is commonly used in this

context. As a result, the Bayes estimate is the mean of the parameter, whose

reasoning is very similar to the least squared method applied in linear regressions.

Compared to other approaches, Bayesian analysis is more flexible because

it allows the model to dynamically adjust to the observed data. However, as

there are integrals or sums involved, computational complexity has increased

and sometimes an explicit form is not easy to achieve. For instance, we had to

introduce Bessel functions in our work (Chapter 3.2) to conduct the analysis.

10



1. PRELIMINARIES

1.4 Continuous risk models

The establishment of risk theory originated from Filip Lundberg whose work was

then explained and further developed by Harald Cramér. Their work pioneered

probabilistic modelling under an insurance context and boost the emerging the-

ory of stochastic processes. One of the main goals of this thesis is to study this

theory and make further extensions from a classical risk model. This section will

briefly discuss the construction of a risk model under the continuous time hori-

zon and how the probability of ruin are derived with demonstration on current

existing results. We do not include a section describing a discrete risk model for

now because it is to some extent similar to a continuous one and would be better

explained under a specific model, e.g., (4.1).

Usually, a risk surplus process is written as.

U(t) = u+ ct−
N(t)∑
k=0

Yk, t ≥ 0, (1.3)

where u = U(0). This appears very often in the classical insurance risk theory

and describes the amount of surplus U(t) of an insurance portfolio at time t,

where c represents a constant rate of premium inflow, N(t) is a claim counting

process that counts the number of claims incurred during the time interval (0, t]

and {Yk}k≥0 is a sequence of independent and identically distributed (i.i.d.) claim

sizes, independent of the claim arrival process N(t). Normally it is assumed that

U(t) → +∞ a.s. as t → +∞, which is equivalently to a net profit condition

(NPC). One of the crucial quantities to investigate in this context is the proba-

bility that at some point in time the reserves in the portfolio will not be sufficient

to cover the claims, i.e., U(t) < 0, which is called ruin. More formally,

Definition 1.2. Let τ(u) denote the time that the surplus process drops below

zero for the first time when the initial capital is u, i.e.,

τ(u) := inf{t ≥ 0 : U(t) < 0|U(0) = u}, (1.4)

then the event of ultimate ruin is {τ(u) <∞}. Thus, the ultimate ruin prob-

11



1. PRELIMINARIES

ability denoted by ψ(u) is defined by

ψ(u) := P(τ(u) <∞). (1.5)

If on the other hand, only a finite time horizon is considered, i.e., {τ(u) < T},
then a finite ruin probability is defined as

ψ(u, T ) := P(τ(u) < T ),

where τ(u) := inf{0 ≤ t ≤ T : U(t) < 0|U(0) = u}.

For simplicity, if it is not otherwise stated, we write τ instead of τ(u) and by

default we assume U(0) = u in the sequel. This thesis is only interested in the

ultimate ruin probability (under an infinite time horizon).

We further call

S(t) =

N(t)∑
k=0

Yk − ct, t ≥ 0

the claim surplus process which has a supremum M = supt≥0 S(t). Then

equivalently,

ψ(u) = P(M > u|U(0) = u).

Sometimes is is easier to work with the claim surplus process as a connection

with a random walk could be built up. Intuitively, it could be understood that

an increment per unit time is given by ρ− c where

1

t

N(t)∑
k=1

Yk
a.s→ ρ, as t→∞,

due to a strong law of large numbers. Then if ρ − c ≥ 0, the process {S(t)}
will drift to infinity as t → ∞. That indicates ψ(u) = 1,∀u. On the contrary, if

ρ− c < 0, M <∞ a.s. and ψ(u) < 1, which is the case worth studying Asmussen

and Albrecher [2010]. Therefore, it again verifies our NPC assumption and we

need

η =
c− ρ
ρ

> 0.

12



1. PRELIMINARIES

Obviously, the stochasticity of the process originates from two components -

the claim jumps and the arrival process. For the former one, we only consider

light-tailed case when calculating ruin probability in this thesis and often work

with exponential distributed claims for simplicity, whereas the latter one draws

the main attention here. The simplest example is the Poisson process which

is defined in various ways. A summary can be found in Theorem 5.2.1 in Rolski

et al. [2009].

Definition 1.3. If {N(t)} has stationary and independent increments, and for

each fixed t ≥ 0, the random variable N(t) has a Poisson distribution, i.e., X ∼
Poi(λt), then it is defined that {N(t)} is a Poisson process with intensity λ.

Proposition 1.4. A well-known result is that when {N(t)} is a Poisson process

with intensity λ > 0, the sequence of inter-arrival times {τn}n∈N is that of i.i.d

exponential random variables, i.e., τi ∼ Exp(λ) for i ∈ N.

Proof. In general, we have P(N(t) = n) = (λt)ne−λt

n!
. Let Tn denote the nth

claim arrival time, Tn =
∑n

k=1 τk. Then, for the first claim arrival time σ1 = τ1,

P(τ1 > t) = P(N(t) = 0) = e−λ, which indicates that τ1 has an exponential

density fτ1(t) = λe−λt. Then for any 0 < s < t, m ≥ n ≥ 0, P(N(s) = n,N(t) =

m) = P(N(s) = n,N(t) − N(s) = m − n). By independent increment and

stationary property, it further equals

P(X(s) = n)P(N(t)−N(s) = m− n)

= P(X(s) = n)P(N(t− s) = m− n)

=
(λs)ne−λs

n!

(λ(t− s))(m−n)e−λ(t−s)

(m− n)!

=
(λt)me−λt

m!

(
m

n

)
sn(t− s)m−n.

Then the conditional probability

P(N(t) = m|N(s) = n) =
(λ)m−ne−λ(t−s)

(m− n)!
(t− s)m−n.

If m = n, that means Tn ≤ s < t < Tn+1, i.e., Tn+1 − Tn > t − s. We can then

13



1. PRELIMINARIES

write

P(N(t) = n|N(s) = n) = P(Tn+1 − Tn > t− s) = P(τn > t− s) = e−λ(t−s).

Since τn is arbitrary, we have proved the assertion.

To be more general, {N(t)} can be extended to a renewal process, which

means given a sequence of arrival epochs {Tn}n≥0, the inter-arrival times τn =

Tn − Tn−1, n ≥ 1 with T0 = τ0 = 0 are i.i.d. It is worth knowing that Poisson

is the most commonly used renewal process and probably the easiest. The other

extension is to adopt a mixed Poisson process whose definition is given by

Definition 1.5. Rolski et al. [2009] The counting process {N(t), t ≥ 0} is called

a mixed Poisson process if there exists a positive random variable, the mixing

random variable Λ with distribution function F (λ) = P(Λ ≤ λ) such that for each

n = 1, 2, . . ., for each sequence {kr; r = 1, 2, . . . , n} of non-negative integers, and

for 0 ≤ a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ an ≤ bn,

P

(
n⋂
r=1

{N(br)−N(ar) = kr}

)
=

∫ ∞
0

n∏
r=1

(λ(br − ar))kr
kr!

e−λ(br−ar)dF (λ).

The difference from a Poisson process is that a randomness is introduced in

the intensity parameter λ, whose use will be addressed further in Chapter 5.1.

Furthermore, Chapter 5.2 considers a regenerative process where the re-

newal does not happen at each claim epoch. Rather, it renews after a few inter-

claim times. A more formal definition is given by Asmussen and Albrecher [2010]

Definition 1.6. Let {Tn} be a renewal process. A stochastic process {Xt}t≥0 with

a general state space E is called regenerative with respect to {Tn} if for any k,

the post-Tk process {XTk+t}t≥0 is independent of T0, T1, . . . , Tk (or equivalently of

τ0, τ1, . . . , τk), and its distribution does not depend on k.
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1.5 Ruin probabilities

There are three main approaches in literature to tackle the problem of finding

ruin probabilities in a classical risk model. To be precise, a classical risk

model is the one where {N(t)}t≥0 is a Poisson process with intensity λ, {Yk}k∈N
is a sequence of i.i.d light-tailed claim distributions with a common distribution

function F (x) and is also independent from {N(t)}t≥0.

The first one is the use of its renewal property from which an integral equation

could be established sometimes also for the survival probability Φ(u) = 1− ψ(u)

by conditioning upon the first time a claim arrives, i.e., Φ(u) = E[Φ(u+cT1−X1)]

Φ(u) =

∫ ∞
0

λe−λtdt

∫ u+ct

0

Φ(u+ ct− x)dF (x),

where u is the initial value of U(t). In fact this has a connection with another

integral equation which could be used directly to seek for a solution. First using

the change of variables y = u+ ct and taking the derivative w.r.t u finally gives

Φ′(u) =
λ

c
Φ(u)− λ

c

∫ u

0

Φ(u− x)dF (x).

Then integrating over (0, t) yields,

Φ(u) = 1− λµ

c
+
λ

c

∫ u

0

Φ(u− y)F̄ (y)dy.

Next replace survival probability by ruin probability (not necessary but more

intuitive to work with) from where Laplace transform serves as the main tool as

there is a convolution involved. Consequently, ruin probability could be defined

by the Pollaczek-Khinchin formula.

ψ(u) =

(
1− λµ

c

) ∞∑
n=1

(
λµ

c

)n
(F̄ s

Y )∗n(u), (1.6)

where E[Y ] = µ, c is the premium rate and F̄ s
Y (y) = 1−F s

Y (y) = 1−µ
∫ y

0
F̄Y (x)dx, y ≥

0 is the tail of the integrated tail distribution. The term (F̄ s
Y )∗n(u) is an n-fold

convolution of FY . Since FY is the distribution function of Y , the nth convolution
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power of FY gives the distribution function of the sum of n independent random

variables with identical distribution FY . It is worth mentioning here that when

claims are exponentially distributed with parameter 1/µ, the ruin probability is

ψ(u) =
λµ

c
e−( 1

µ
−λ
c )u, u ≥ 0

The second common method properly adopts the martingale techniques. In

Subsection 5.2.4 there will be a detailed explanation of how ruin probability could

be estimated by using a change of measure based on a construction of a martin-

gale. Another popular way of analysis is through simulations for which Subsection

5.2.5 gives a more concrete explanation via identifying a Markov additive process.

Of course there is a lot of work focusing on approximations as well as bounds and

asymptotics about which Section 5.4 in Rolski et al. [2009] presented a good range

of literature.
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Chapter 2

Introduction

2.1 Bonus-Malus systems

A Bonus-Malus (BM) System is referring to a merit rating system where poli-

cyholders get discounts for no claims and they are punished for making claims.

That is to say, the premiums for a policyholder to pay depend very much on his

past claim records. This system has now been widely used in many European

insurance companies for auto-mobile insurance. There are a few reasons for the

necessity of the system. Initially, it has been claimed that BM systems could to

some extent reduce the risk an insurer is faced with. Dionne and Ghali [2005]

studied the influence of BM system on road safety in Tunisia. As a consequence,

they found that BM systems did help to cut down the number of reported ac-

cidents from the insured who do not switch companies. On the other hand,

Moreno et al. [2006] suggested BM systems as the only mechanism to cope with

alleviating insurance fraud under the condition that policyholders are loyal to the

insurance company. Insurance fraud is interpreted as misreporting the true loss

of a claim in their paper. Because of the existence of asymmetry in information,

adverse selection is possible. Dionne et al. [1999] found evidence of adverse selec-

tion in insurance market by conducting some empirical tests. Moreno et al. [2006]

claimed that insurance fraud was traditionally resolved by auditing process which

incurred costs to the company. They then demonstrated that, however, BM sys-

tems could assist in weakening this kind of phenomenon by adjusting premiums
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2. INTRODUCTION

without any risk-bearing costs. Furthermore, BM systems play a significant role

in eliminating the problem of moral hazard. By moral hazard, we mean the sit-

uation where policyholders are likely to maximise their own benefits when they

are protected from the risk by sacrificing the insurer. For instance, a policyholder

can be less careful when driving because he is assured for the risk. Thus, BM

systems have been introduced to deal with this effect by imposing a financial

punishment on policyholders who intend to behave like this. A structured list of

the studies related to this system can be found in Lemaire [1995]. This thesis will

first work on a pricing model for such system and then move onto a more risk

analysis orientation.

However, due to the particular feature of a BM system, one of the biggest is-

sues related to introducing the system is the bonus hunger problem. This means

that in order to achieve a premium discount in the following year, the insured

may not report some small claims and pay the costs themselves. So the insurance

company is missing some useful information for calculating individual premi-

ums. To our knowledge so far, this phenomenon has initially been addressed by

Grenander [1957] and Straub [1968] from a game-theoretical perspective. Then

Norberg [1975] found optimal premium strategies under two situations according

to policyholders’ behaviours. By using a least-squared-like approach, he found

an explicit linear credibility formulae when policyholders choose a fixed barrier

strategy. For the case when the barrier is determined through a comparison with

the present value of all future increase in premiums caused by a particular claim,

he gave some numerical results. In Chapter 3, we represent the premiums using

the same structure as in Frangos and Vrontos [2001] where the analysis is im-

plemented when the total claim size is kept fixed. As a consequence, our model

generates a premium function that reflects a discouragement on the bonus hunger

reaction.

The design of BM systems can date back to the middle of the 20th century

since when only the number of claims reported in the past was considered in the

calculation of the future premium a policyholder is to pay. In this case, Picard

[1976] claimed that problems might arise if one had a claim worth much more

18
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money while the other had lots of small claims. The original objective to develop

a fair system is then violated and the sharing of the premiums is not fair among

these two policyholders. Thus, introducing the claim severity component is a

natural consideration.

Following this thought, Lemaire [1995] first applied Picard [1976] method

to Belgian data which distinguishes between small and large claims. However,

Lemaire [1995] found that this classification would still lead to serious practi-

cal problems, since it is time consuming to assess the exact amount and many

policyholders who have claims just over the limit argue a lot. Thus, instead of

categorising the claim types, Frangos and Vrontos [2001] proposed a specific mod-

elling of claim severities. Since the claim sizes in motor insurance seem to exhibit

long-tails, distributions with this property are thought-out. For instances, Valdez

and Frees used a distribution called the Burr XII long-tailed distribution to fit

the claim sizes data from Singapore Motor Insurance. Another obvious choice

to obtain, e.g. Pareto (Frangos and Vrontos [2001]), is mixing the exponential

parameter with an Inverse Gamma. In fact, they used Negative Binomial dis-

tribution to model the claim frequency component and Pareto distribution to

describe the claim severity component. Based on the Bayes’ theorem, a posterior

mean was adopted to represent the expections for both components. Additionally,

they also incorporated several a priori information and used regression analysis to

obtain the estimations of parameters. We have combined the result of mixing dis-

tribution presented in Albrecher et al. [2011] and the idea of applying the Bayes’

theorem as proposed by Frangos and Vrontos [2001], for Weibull severities instead

of Pareto, which will be shown in Section 3.2. We will discuss in detail the mo-

tivation and the consequences of choosing a Weibull distribution for the severities.

Our motivation could be interpreted from both academic and practical per-

spectives. Technically speaking, since Pareto in Frangos and Vrontos [2001]

turned out to fit well on the data especially in the tails, it is preferable to have

some similar-shaped distributions, and Weibull distribution is a reasonable can-

didate. Even though Weibull distribution does not have tails as long as Pareto, in

reality, it can rely on reinsurance which usually alleviates the burden of extremely
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large claims. Thus, practically speaking, if Weibull distribution fits well the mod-

erate claims of an insurance company, this combined with reinsurance would be

the best choice. The additional value of choosing a Weibull fit in some instances is

that this could address the bonus hunger problem, as it will be illustrated later in

Section 3.2. This is an advantage of such choice, since by carrying out this model,

the tendency of policyholders for not reporting small claims could be discouraged.

We fitted an exponential, a Weibull and a Pareto on a given data set, but

first let us look in theory what they are like. All the upper tails of the three

distributions are written as follows with one common parameter θ.

Exponential : P (X > x) = exp(−θx);

Weibull : P (X > x) = exp(−θxγ);

Pareto : P (X > x) =

(
θ

θ + x

)s
.

It can be seen that if γ < 1, the tail of a Weibull distribution is fatter than that of

the Exponential but thinner than that of the Pareto distribution. However, when

γ > 1, the Weibull tail is lighter than that of the Exponential and a special case

appears when γ = 1 where the Weibull distribution becomes an Exponential dis-

tribution. Thus, we aim to find a Weibull distribution with its shape parameter

less than 1 so that a heavy-tail property can be retained. Fortunately enough,

we have found that the heterogeneity of the claim severity could be described

by a Lévy (1/2 Stable) distribution. Consequently, when the mixing of this dis-

tribution is carried out on an Exponential distribution, a Weibull distribution is

obtained in the end (Albrecher et al. [2011]). What is more motivating is that the

shape parameter γ is known and equal to 1/2, which is less than 1, fitting our aim.

Section 3.1-3.3 discusses the procedure of deriving the premium levels for the

proposed model. The core of this chapter lies in Section 3.2. It involves explana-

tion of how the mixing distribution is achieved as well as the Bayesian approach.

The premium formula is obtained in the end with several analysis described in

the subsequent subsection. Section 3.3 is dedicated to applying both our Weibull
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model and the one using Pareto claim severities on some given data. Results

suggest that the bonus-hunger problem in some sense could be alleviated because

the system punishes less on people with many small claims when the total cost

is fixed.

According to the findings in the first half of the chapter, it has been suggested

to use a hybrid model, where claim severities are assumed to be distinguished by

’small’ and ’big’ taking Weibull and Pareto distributions respectively. The claim

frequency component is altered accordingly. Bayesian approach was employed

again just under a more complicated setting. As a consequence, net premiums

for small claims behave similar to the previous model, whereas those for large

ones see a monotone increase with the frequency. Both models tend to suggest

a milder strategy towards policyholders with many small claims while total ex-

penses are kept fixed. Therefore, they serve as an encouragement for reporting

each additional small claims so that insurers are aware of these potential risks.

2.2 BM embeded in a discrete risk model

With the ever growing popularity of BM systems, one interesting question to

study would be whether it really reduces the associated risk and how much it

does. A common measure to assess risks that an insurer is exposed to is the ruin

probability. Motivated by such kind of problems, we try to compute the proba-

bility of ruin for models incorporating BM structures in this thesis, starting from

a discrete model.

From Chapter 4, we will step into this risk analysis world. In general, under

a discrete time horizon, the risk surplus process can be written

Un = u+ cn−
n∑
i=1

Yi,

where u is the starting reserve, c is the amount of premium income in a single year
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and Yi, i = 1 . . . n are assumed to be i.i.d representing an aggregate claim in each

year. When considering a BM system, c becomes random, e.g. (4.1). Initially,

Wagner [2002] worked on a similar risk model having a two-state Markov Chain

and introduced a recursive relation for ruin probabilities. Then Wu et al. applied

the same recursion approach in a model under a two-class BM setting, or more

precisely a No Claim Discount system. However, the ’ruin probabilities’ under

these settings are not exactly as how it is defined in a continuous model. The

resulting probability is actually for ruin starting from a specific state and is for an

individual rather than a collective risk. But it is still worth studying for the sake

of understanding the process and the dynamics of the system. One pioneering

work under a discrete time framework was Dufresne [1988]. By computing first

the stationary distribution of a BM system iteratively, he then showed an inher-

ent relation between such distribution and the ruin probability. He also gave an

example using a 22-class Swiss BM system with a specified rule and calculated

associated ruin probabilities. This paper built up a strong connection of a BM

system and ruin theory.

It could be seen that the most crucial step in discrete risk models is the re-

cursions. One premise though is to identify the states first. In Chapter 4, we are

able to figure out a five-state Markov chain for our three-class BM system. We

did not simply add a third state from Wu et al.. The idea originates from a prac-

tical problem in a reinsurance company where concerns lie in catastrophic risks.

Hence, the model set-up relies on the construction of this Markov chain. Then

by recursion, what is left is only computational complexities and solving bound-

ary conditions. Results are shown in the form of probability generating functions.

2.3 BM embedded in a continuous risk model

There is an extensive research literature under this topic. A brief introduction

was given in Preliminaries 1.4 and 1.5. However, we would like to emphasise here

some recent work on the ruin probabilities associated with BM systems. It started

from the idea of randomising premiums income in a classical risk process. Temnov
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[2004] assumed another Poisson process for premium incomes independent from

the claim process and found a Pollaczek-Khinchin-formula-like ruin functions,

whereas Wang et al. [2007] extended it by adding a stochastic investment return

according to a Lévy process and obtained bounds for the underlying probability.

While these work performed only under a quasi-BM structure, Afonso et al. [2009,

2015] conducted calculations for ruin probabilities under a realistic BM framework

and even worked with real data to find out the effects BM systems have on ruin

probabilities. They have a novel setting with the risk surplus denoted by

U(t) = u+
i−1∑
j=1

Pj + (t− i+ 1)Pi − S(t),

where i is the integer representing the ith policy year and t ∈ [i− 1, i), Pi is the

premium in the corresponding year and S(t) still describes the aggregate claims.

The interesting idea here is that they first analysed ruin probabilities for a single

year by conditioning on the reserve level at the beginning and the end of the year.

Since the premium rate is constant within a year, a classical technique could be

borrowed. Rather than moving forward by recursion, they used approximations

and worked with some data. In this thesis, we will introduce two other ways to

identify ruin probabilities in risk models with different architectures.

2.3.1 Premium adjusted via a Bayesian estimator

Comparing to the classical collective risk models, one of the main assumptions

is that premiums are arriving at a constant rate c and thus the surplus of the

company evolves over time as (1.3), where u is the initial capital and Yk are the

claim sizes (i.i.d. random variables) arriving according to a Poisson process N(t)

with intensity λ. Ruin is defined as the first time the surplus process crosses zero.

The time of ruin is denoted by τ and the probability of ruin

ψ(u) = P
(

inf
t≥0

U(t) < 0|U(0) = u

)
= P(τ <∞|U(0) = u), (2.1)

is a function of the initial reserve u, as defined in Definition 1.2.
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In an attempt to provide more realistic models, non-constant premium rates

have been proposed in collective risk literature. One such approach considers

the premium to be a function of the current level of the risk reserve U(t), see

e.g. Chapter VIII of Asmussen and Albrecher [2010]. Another approach explores

adjusting the premium rate according to the claims history - main feature of BM

merit systems, see Bühlmann [2007] for a contextual history of the models. One

way to achieve this is via a randomisation of the Poisson parameter, either at the

beginning of the process, Lundberg [1948], or iteratively during the whole time

of the process, Ammeter [1948].

Furthermore, in Bühlmann [1972] it is assumed that the Poisson parameter

has a Gamma distribution and additionally introduces a model where premiums

are adjusted based on the claims experience to date - a first presence of a BM

premium system within risk theory framework. Furthermore, Dubey [1977] builds

upon Bühlmann [1972] and employs the Bayesian estimation of the premium ad-

justment. This method permits a general distribution of the Poisson parameter.

In Constantinescu et al. [2012] the analysis is extended from a Poisson process

to more general counting processes and Jasiulewicz [2001] obtains the ruin prob-

ability of a surplus Cox process with the premium rate being a function of the

claim arrivals.

We will focus on the premium rates adjusted according to the claim history

in Section 5.1 as introduced by Bühlmann [1972] and refined in Dubey [1977].

Specifically, the risk reserve process is defined as

U(t) = u+ c

∫ t

0

λ̂(s)ds−
N(t)∑
k=0

Yk, t ≥ 0, (2.2)

where λ̂(t) = E[Λ|N(t)] is the Bayesian esimator of Λ conditioning upon the

counting process {N(t)}t≥0, which is illustrated further by (2.3). Hence, instead

of a constant premium rate as shown in the classical collective risk process (1.3),

the premium rates are dynamically adjusted, by randomising the expected num-

ber of claims Λ over time. In fact, the underlying counting process {N(t), t ≥ 0}
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is a mixed Poisson process whose formal definition is given by Definition 1.5 and

could also be found in Rolski et al. [2009]. This is an inhomogeneous Poisson

process, but conditioning on the random variable Λ, {N(t), t ≥ 0} becomes a

homogeneous Poisson process. The randomness of Λ reflects a heterogeneous en-

vironment in an insurance portfolio.

More precisely, in (2.2), the intensity is a random variable Λ which is estimated

based on the history of claims as

λ̂(t) = E[Λ|N(t)]. (2.3)

This is a Bayesian estimator, frequently used in the BM literature for the cal-

culation of the premium in terms of past claim frequencies, see e.g. Ni et al.

[2014a]. As a side note, Λ following a Gamma distribution produces a credibility

estimator that constitutes the basis for pricing BM systems in the Swiss liability

car insurance Dubey [1977].

We will look at the defectiveness of Λ and thus introduce and analyse two

streams of risks, the ’historical’ stream and the ’unforeseeable’ stream. In gen-

eral, one can write P(Λ = 0) = p, where 0 ≤ p < 11. The case where p = 0

is that Λ is non-defective whereas when 0 < p < 1 it means that Λ is defective

at {0}. We refer to the ’historical’ stream as the former case where the proba-

bility of no claims is zero. In the ’unforeseeable’ stream, we will have a positive

probability of non-occurrence of a claim. Intuitively, claims will happen for sure

in the ’historical’ stream as Λ > 0 holds almost surely, which means Λ is non-

defective and this is normally an assumption in a risk model. We can regard

claims in this stream as those coming from policies on which we have historical

data and a certain amount of knowledge. On the contrary, policies associated

with the ’unforeseeable’ stream contain less information at the beginning and

bear a potential to either cause no claims at all or to incur a large amount of

1We omit it when p = 1 because it is not worth considering in this model as this is a
situation where λ is deterministic and equals to 0. That simply means no claims occur and
thus the ruin probability is 0. This could be verified by substituting p = 1 in (2.7), which gives
the desired result.
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claims. This stream could be understood as a collection of risks that are relatively

new and innovative. For car insurance specifically, a recent example would be an

autonomous vehicle technology introduced by Google Thrun [2010]. They have

already done a lot of road tests of their self-driving cars for a couple of years and

had very few accidents, and these occurred either due to other drivers in traffic,

or when the car was operated by a human (Pritchard), meaning none of the ac-

cidents were caused by the cars themselves. If this good news carries on, then

insurance companies would receive no claims from Google for the launch of these

autonomous cars. Unlike the ’historical’ one, that means the probability of claims

occurring in the ’unforeseeable’ stream is less than 1 because Λ is defective at {0}.

If a claim is in the ’unforeseeable’ stream, it is usually followed by a series of

claims, which might be a big concern for an insurance company. These claims

are called ’latent’. One example of ’latent’ claims is asbestos, which have led to

a burst of related diseases and thus an increase in claims to be paid Brooks et al.

[2013]. In recent years, we have started concerns about our health and safety as a

result of new technology, pollution and so on. These risks which nowadays have

been included in the internal models of insurance companies can be referred to

as ’latent’ or ’emerging’ because their effects are unknown when signing a pol-

icy but might become more obvious as time moves on. ’Latent’ claims normally

come in as a bunch or a cluster due to the same cause of origin. So the positive

part of Λ in the ’unforeseeable’ stream would possibly be large. Therefore, two

extremes could be seen in such a risk stream and thus premiums are adjusted

in a very sensitive way to the number of claims observed. Like in the previous

example of self-driving cars, the experimental safety seems quite satisfying but

people still have very little information on it and we have no knowledge about

its performance when it really enters the market. It is ’so far so good’. So based

on the current information, the premium rate could still be kept low before a big

jump at the first witness of an accident due to the functioning of the car itself.

Hence, it would be justifiable to look further into a model incorporating the ’un-

foreseeable’ stream. We will conduct analysis on the ’unforeseeable’ stream alone

as well as a model with a combination of the two streams in Section 5.1.
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Since Section 5.1 is mainly based on Dubey [1977], a brief introduction will be

presented here first. This is a paper of André Dubey, written in French, published

in Mitteilungen der Vereinigung schweiz Versicherungsmathematiker, in 1977. It

discusses the ruin probability for an adjusted risk surplus process shown as (2.2).

It presents an analysis of the probability of ruin under three scenarios based on

different ways of estimating λ̂(t).

1. λ̂(t) = E[Λ|N(t)] (Bayes/Credibility estimation);

2. λ̂(t) = N(t)/t;

3. λ̂(t) = a+N(t)
b+t

, where a, b are parameters (special case of 1.).

Note first that Scenario 3 is actually a special case of Scenario 1 when Λ is

non-defective, i.e., P(Λ = 0) = 0, with Λ ∼ Gamma(a, b). This is in fact a com-

mon assumption in a BM system context, see e.g. Ni et al. [2014a].

For Scenario 2, regardless of whether Λ is defective or not, a general relation

between the ruin probability in the adjusted model which we denote here by ψA

(A stands for ’Average’ per unit time) and a classical one has been established in

Dubey [1977].

ψA(u) = [1− P(Λ = 0)]

(
1− F (u) +

∫ u

0

ψC(u− y)dF (y)

)
.

The focus of our work is Scenario 1. As in Dubey [1977], we first distinguish

two cases according to the defectiveness of Λ for Scenario 1:

(a) Non-Defective

P(Λ = 0) = 0; (2.4)

(b) Defective

P(Λ = 0) = p > 0. (2.5)

Dubey [1977] shows that for Scenario 1 under the condition (a), i.e. a risk

model with premiums adjusted to the history of claims arriving according to a
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mixed Poisson process with parameter Λ continuous non-defective random vari-

able, the ruin probability coincides with that of a classical risk model with con-

stant premium rate. Translated in our language, when all claims are from the

’historical’ stream, the following relation holds:

ψH(u) = ψC(u), (2.6)

where ψC(u) refers to the ruin probability in a classical risk model (1.3) with

deterministic intensity λ = 1 and ψH describes the probability of ruin in a mixed

Poisson model (2.2), with a non-defective parameter Λ estimated via the Bayesian

estimator (2.3). Here H stands for the ’historical’ stream of risks involved in the

model. The most important step in the proof is that the premium collected in

one period Pn+1, n ≥ 1, conditioning on the previous claim arrival time Tn, n ≥ 1

is simply exponentially distributed, i.e., P(Pn+1 ≥ x|Tn = y) = e−x.

On the other hand, for Scenario 1 under the condition (b) which we call

the ’unforeseeable’ stream here, he simply states results of ruin probabilities for

specific claim sizes (i.e. exponentially distributed, or equal claims of size one).

However, since no explicit relation between the ruin probability in such model

versus a classical one has been presented in Dubey [1977], our work focuses first

on the derivation and analysis on (b) under Scenario 1, meaning when only ’un-

foreseeable’ risks are considered.

Obviously, a (2.6)-type relationship will no longer hold, but we can still es-

tablish that (see also Theorem 5.1)

ψL(u) = ψC(u)− pψC
(
u+ c ln

1

p

)
, (2.7)

whenever ψL denotes the ruin probability of a risk model (2.2) with only the

’unforeseeable’ stream of risks and ψC(u) again refers to the ruin probability in

a classical risk model (1.3) with deterministic intensity λ = 1. We chose ’L’ in

the ψL to stand for ’Latent’ as there will probably be such claims in this stream.

Consequently, in a risk model with known claim distribution the ruin probability
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can be expressed explicitly. See Example 5.2 for exponential claims, as in Dubey

[1977].

Our second contribution introduces a more realistic scenario of the model

(2.2), still under Scenario 1, featuring a mixture of both known and unknown

risks, whose ruin probability will be denoted by ψM , with M for ’Mixture’. In

order to combine the above two cases we need a well chosen estimator for the

intensity of this number of claims process. The estimator of choice is

λ̂(t) = E[Λ(1) + Λ(2)|N(t)], (2.8)

where P(Λ(1) = 0) = 0 and P(Λ(2) = 0) = p > 0.

In this case, the relation between the ruin probability of the adjusted premium

model ψM versus the classical one ψC is more elaborated, and can be derived only

when Λ(1) ∼ Γ(α, λ0) and Λ(2)|Λ(2)>0 ∼ Γ(β, λ0) for some α, β, λ0 > 0,

ψM(u) =
1− p
B(α, β)

∫
(0,1)

ψCθ (u)θα−1(1− θ)β−1 dθ + p · ψC1 (u).

where B(α, β) is a Beta function and ψCθ (u) is the classical ruin probability con-

ditioning on θ, whose claim sizes have common distribution function Hθ(y) =

F (y) + (1 − θ)G(y), with F,G denoting claim distributions in the ’historical’

stream and the ’unforeseeable’ stream respectively.

ψCθ (u) = P

(
τ <∞

∣∣∣∣U(0) = u,
Λ(1)

Λ(1) + Λ(2)
= θ

)
.

For detailed proof of results and explanations, please refer to Section 5.1.

2.3.2 Premium varying according to number of claims in

a past fixed window

Section 5.2 will explain another approach to reflect a BM feature into the risk

models. It could be considered as equivalent to changing the distribution of the
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Figure 2.1: Model transformation

subsequent inter-claim time if the current one satisfies a certain condition thus

introducing a dependence structure into the process. Without loss of general-

ity, Figure 2.1 plots an example of such risk processes and demonstrates how we

transfer a particular model to a form that is easier to be implemented. The graph

on the left shows a two-level no claim discount system (Bonus system) where the

premium rate decreases after a relatively long wait which exceeds a fixed num-

ber ξ. In reality, this fixed window could be understood as a calendar year for

instance, because many insurances companies charge different premiums based

on only last year’s claim histories. After that, since the second waiting interval

is less than ξ, the premium rate returns to its original value and so on and so

forth. Equivalently, this could be transferred to a model where the adjustment on

premium rates is reflected in inter arrival times switching between two different

random variables, as long as the increment of U(t) in this time interval is kept

the same. That is to say, whenever a large inter arrival time, i.e., above ξ, is

witnessed, the next one will switch to a different distribution. As we work only

with the ruin probabilities under an infinite-time horizon, such transformation

would not affect the results. For a model with realistic sense, τ̃ is assumed to

have a smaller mean than τ . Additionally, for computational reasons, we made

an assumption that the inter-exchange of the randomness of inter arrival times

only happens after a jump rather than a precise end of the fixed window.

It is mainly based on a regenerative structure which has been studied by Pal-

mowski and Zwart [2007], Palmowski and Zwart [2010]. Such processes are more
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general than a renewal process and often involve a dependence architecture. Pal-

mowski and Zwart [2007] derived asymptotic results for ruin probabilities when

three forms of claim distributions were taken into account, heavy-tailed, interme-

diate and light-tailed case (Cramér assumption), for a general regenerative pro-

cess. Section 5.2 will focus on the Cramér case only. On the other hand, a Marko-

vian environment could still be found in such system even though there involves

dependence. Rather than the usual Markov processes, a simple two-dimensional

Markov chain can be identified which is the so-called discrete Markov additive

process. Furthermore, results can be simulated through a change of measure tech-

nique. There is extensive literature on such approach to be found in Asmussen

and Albrecher [2010]. But due to the simplicity of our model, a classical change

of measure via exponential families is enough. There will also be some calcula-

tions based on integral equations in the end, yet not helping seeking for analytical

solutions.

The rest of the thesis will be organised as follows. Chapter 3 describes two

pricing models for BM system via a Bayesian estimation which is based on the

papers Ni et al. [2014a] and Ni et al. [2014b]. Chapter 4 shows how to deal with

ruin probabilities in a real-world example of discrete BM system. Inspired by

Chapter 3, a Bayesian estimator is lodged in a continuous risk model discussed

in the first half of Chapter 5. By introducing an innovative stream of risks, ruin

probabilities are derived through a comparison with a classical one for two cases.

The results of this section was recently published in the journal Insurance: Math-

ematics and Economics Li et al. [2015]. The second half in this chapter paved

the way into a more risk analysis study by constructing a dependence structure

mimicking a no claim discount system. It is still a working progress with some

results presented at several conferences Constantinescu et al. [2015b]. Appendix

A provides proofs as well as the data frame used in Chapter 3. Appendix B

presents proofs and also some remarks for Chapter 5. A list of bibliography can

be found at the end of the thesis.
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Chapter 3

Pricing a BM system by

addressing claim severity

distributions

One of the pricing strategies for Bonus-Malus (BM) systems relies on the decom-

position of the claims’ randomness into one part accounting for claims’ frequency

and the other part for claims’ severity. This chapter serves as a kick-off study

through statistical analyses, aiming at providing an introduction and explanation

of a BM system and addressing the issue of modelling claim costs. Two papers

(Ni et al. [2014a], Ni et al. [2014b]) were published based on this chapter. Firstly,

by mixing an Exponential with a Lévy distribution, we treated the claim severity

component as a Weibull distribution. For a Negative Binomial number of claims,

we employ the Bayesian approach to derive the BM premiums for Weibull sever-

ities. We then compared our closed form formulas for calculating premiums and

numerical results with those for Pareto severities that were studied by Frangos

and Vrontos [2001]. Based on our findings, we suggest a hybrid model for claim

severities using the same approach, which will be discussed in the second section.

Despite gaining deep understanding of a BM system from conducting this initial

study, readers could also get prepared with Bayesian statistics/estimation which

will be further incorporated in an insurance risk model in Chapter 5.1.
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3.1 Modelling Claim Frequencies

The modelling of the claim counts is borrowed from Frangos and Vrontos [2001],

so that a comparison of the results can be clearer. A very brief explanation will

be given here in order to avoid duplications. More details are available in Frangos

and Vrontos [2001].

Mixing the Poisson intensity Λ with a Gamma(α, τ) yields a Negative Bino-

mial probability mass function (p.m.f).

P (N = n) =

∫ ∞
0

e−λλn

n!
· λ

α−1ταe−τλ

Γ(α)
dλ =

(
n+ α− 1

n

)(
τ

1 + τ

)α(
1

1 + τ

)n
.

Furthermore, by applying the Bayesian approach, the posterior distribution is

given by,

µ(λ|n1, n2, . . . , nt) =
(τ + t)K+αλK+α−1e−(t+τ)λ

Γ(α +K)
,

where K =
∑t

i=1 ni represents the total claim frequency over t years with ni

denoting the claim numbers in each year respectively. It is easily seen that this

posterior distribution is still a gamma but with new parameters K +α and t+ τ .

When a quadratic loss function is considered, the posterior mean is the best

estimate, which is given as follows.

λt+1(n1, n2, . . . , nt) =
α +K

t+ τ
. (3.1)

This also represents the expected claim frequency for the coming period, since

the mean of a Poisson is λ itself.

3.2 Modelling Claim Severities

In this chapter, our focus lies in the claim severity distribution. We use the

Weibull distribution to model the claim severities whose applications appear not

only in reliability engineering and failure analysis, but also in insurance survival

analysis and sometimes in reinsurance (Boland [2007]). Its probability density
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function (p.d.f) is

f(x) = cγxγ−1exp(−cxγ), x ≥ 0, c > 0, γ > 0,

and its cumulative density function (c.d.f) is

F (x) = 1− exp(−cxγ), x ≥ 0.

It was found by Albrecher et al. [2011] that a mixing of a Lévy distribution on

the exponential distribution would result in a Weibull distribution with its shape

parameter known as 1/2. Suppose the exponential distribution is denoted as

f(X = x|θ) = θe−θx,

with a distribution function (c.d.f)

F (X ≤ x|θ) = 1− e−θx.

And the parameter θ is assumed to be Lévy distributed which is also referred

to as the stable (1/2) distribution. Then we have a prior distribution described

below.

π(Θ = θ) =
c

2
√
πθ3

exp

(
− c

2

4θ

)
, θ > 0.

Hence, we obtained the distribution function as follows. (Proof in Appendix A)

F (x) = 1− exp(−c
√
x), x ≥ 0.

It is the Weibull distribution with shape parameter equal to 1/2.

Furthermore, with a similar approach to Frangos and Vrontos [2001], we need

to find the posterior distribution using the Bayes’ Theorem. Suppose the in-

surance company receives a sequence of claim costs {x1, x2, . . . , xK} from a pol-

icyholder with total of K claims over the time horizon considered. If we let

M =
∑K

i=1 xi ≥ 0 to describe the total amount of all these claims, the posterior
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structure function is written in the following form according to Bayes’ theorem.

π(θ|x1, x2, . . . , xK) =
[
∏K

i=1 f(xi|θ)]π(θ)∫∞
0

[
∏K

i=1 f(xi|θ)]π(θ)dθ
=

θK−
2
3 exp

(
−
(
Mθ + c2

4θ

))
∫∞

0
θK−

2
3 exp

(
−
(
Mθ + c2

4θ

))
dθ
.

(3.2)

We know that after the integration, the denominator will become independent

from θ. By omitting all terms which are not related to θ, we can obtain the kernel

of this distribution.

π(θ|x1, x2, . . . , xK) ∝ θK−
2
3 exp

(
−
(
Mθ +

c2

4θ

))
,

π(θ|x1, x2, . . . , xK) ∝ θpexp

(
−
(
θ

q
+
r

θ

))
.

where, p = K− 3
2
, q = 1

M
, r = c2

4
. This is a form of a Generalized Inverse Gaussian

distribution (Tremblay [1992]). Going back to (3.2), by slightly modifying the

variables, it can be rewritten as,

π(θ|x1, x2, . . . , xK) =

(
c

2
√
M

)−(K− 1
2)
θK−

2
3 exp

(
−
(
Mθ + c2

4θ

))
∫∞

0

(
2
√
Mθ
c

)K− 3
2
exp

(
− c
√
M

2

(
2
√
Mθ
c

+ c
2
√
Mθ

))
d
(

2
√
Mθ
c

) .
(3.3)

The integral on the denominator can be transformed to a modified Bessel func-

tion, whose integral representation is normally given as follows (Abramowitz and

Stegun [1964]).

Bv(x) =

∫ ∞
0

e−x cosh t cosh(vt)dt.

However, we cannot make a direct connection between this expression and what

we have.

Proposition 3.1. An alternative integral representation of the modified Bessel

function is given as follows.

Bv(x) =
1

2

∫ ∞
0

exp

(
−1

2
x

(
y +

1

y

))
yv−1dy, x > 0.
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Proof. Appendix A.

As compared to the integral in (3.3), it is not difficult to rewrite the posterior

distribution in the form below.

π(θ) =

(
c

2
√
M

)−(K− 1
2)
θK−

3
2 exp

(
−
(
Mθ + c2

4θ

))
2BK− 1

2
(c
√
M)

.

Or alternatively as,

π(θ) =

(
α′

β′

) v
2
θv−1exp

(
−1

2

(
α′θ + β′

θ

))
2Bv

(√
α′β′

) .

where α′ = 2M,β′ = c2

2
, v = K − 1

2
. From the properties of a Generalised Inverse

Gaussian distribution, the expectation is shown below (Embrechts [1983]).

E[GIG] =

√
β′

α′
Bv+1

(√
α′β′

)
Bv

(√
α′β′

) .

Since our model distribution was assumed to be exponential whose conditional

mean is given by E(X|θ) = 1
θ
. By integrating 1/θ with respect to the posterior

distribution π(θ), one gets

E[ClaimSeverity] =
2
√
M

c

BK− 3
2
(c
√
M)

BK− 1
2
(c
√
M)

.

With the claim frequency (3.1) considered, this expression contributes to the

closed form formula of the estimated net premium for the following period.

Premium =
α +K

t+ τ
·

(
2
√
M

c

BK− 3
2
(c
√
M)

BK− 1
2
(c
√
M)

)
.

Now the problem has reduced to calculate the ratio of the above two Bessel

functions. As described by Lemaire [1995], two properties of the modified Bessel

function could be considered here, i.e., for any x > 0, Bv(x) satisfies the following

36



3. PRICING A BM SYSTEM BY ADDRESSING CLAIM
SEVERITY DISTRIBUTIONS

two conditions.

B−v(x) = Bv(x),

Bv+1(x) =
2v

x
Bv(x) +Bv−1(x).

If we let,

Bv−1(c
√
M)

Bv(c
√
M)

=
BK− 3

2
(c
√
M)

BK− 1
2
(c
√
M)

= QK(c
√
M).

Then it can be easily seen that Q1 = 1 from the first condition. Additionally, we

can write a recursive function for QK based on the second condition.

1

QK+1(c
√
M)

=
2K − 1

c
√
M

+QK(c
√
M), K > 1.

This will finally contribute to the calculation of the premium.

On the other hand, however, it is not difficult to see that our premium model

is not defined when M = 0. This denotes the scenario where there are no claims.

So at the same time K = 0. Hence, we will redefine the premium for this case.

Since we assumed the claim severity is Weibull distributed in a single year for

each policyholder, it would be convenient to assume that our initial premium

is equal to the product of the mean claim frequency (Negative Binomial) and

severity (Weibull). Therefore, the base premium for any new entrant is set as

follows.

P0 =
α

τ
· 2

c2
.

Then after, premiums for the following years if no claims are filed will be given

by,

Premium|M=0 =

(
α

t+ τ

)(
2

c2

)
. (3.4)

This means that when there are no claims reported the premium would be dis-

counted with the time a policyholder is within the company.

In the following part, we would like to address further on the premium func-

tions from Frangos and Vrontos [2001] as well as ours. Their premium function
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is concave. Nevertheless, our model presents a more complex shape, as one can

see by analysing the difference equations of the premium functions with respect

to the accumulated number of claims in t years.

Initially, let us see the premium expression given by Frangos and Vrontos

[2001].

PFV =
α +K

t+ τ
· m+M

s+K − 1

where m > 0, s > 1 are the parameters in the Pareto distribution originally

coming from the Inverse Gamma distribution, and other notations are the same

as above. The difference equation with respect to K is obtained as follows.

PFV (K + 1)− PFV (K) =
M +m

t+ τ
· s− α− 1

(s+K − 1)(s+K)
. (3.5)

Since K > 0, s > 1, if s−α− 1 > 0, which is normally the case, we can conclude

that the premium is strictly increasing with K. This will be further illustrated

with our following numerical example.

Subsequently, we look at the monotonicity of our Weibull model regarding the

variable K when we keep M fixed. By analysing the ratio of two successive K

values for the premium function we obtained above, we have,

Premium(K + 1)

Premium(K)
=
α +K + 1

α +K
· QK+1(c

√
M)

QK(c
√
M)

.

Clearly, the left half of the above formula is larger than 1. However, the right

half is less than 1, which is explained as follows.

QK+1(c
√
M)

QK(c
√
M)

=
B2
K− 1

2

(c
√
M)

BK− 3
2
(c
√
M)BK+ 1

2
(c
√
M)

< 1.

The ’<’ comes from the Turán-type inequalities whose proof can be found in

Ismail and Muldoon [1978] and Lorch [1994]:

B2
v(x) < Bv−1(x)Bv+1(x).

Thus, the monotonicity is not seen analytically and may depend much on chosen
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parameters. This gives evidence that our premium function distinguishes from the

Pareto model. In our numerical example, we have identified the specific pattern

of our premium.

3.3 Numerical Illustration I

3.3.1 Parameter Estimation

In this small section, application of the model proposed in Section 3.2 will be

illustrated in more details. Initially, a brief description of the data will be given.

The data structure is originally obtained from Table 2.27 of Klugman et al. [1998].

But we skewed and scaled the data in the British currency. By keeping the group

structure unchanged, the sample size was also shrunken to 250. The grouped

data could be found in Appendix A. However, for some computational reasons,

we have randomly generated a data set based on this grouped data. A summary

of the data is shown below with its histogram underneath (Figure 3.1).

Table 3.1: Description of the Data

Min. 1st Qu. Median Mean 3rd Qu. Max.
10 240 1395 4538 4103 102722

As can be seen from this histogram, most of the claims lie below £20, 000.

The situation where claim severities exceed £45, 000 is very rare. In our sample,

there are a total of 3 policyholders claiming more than this amount. In this work,

we are treating these as outliers for illustration purposes.

In order to compare with Frangos and Vrontos [2001], both of the two distri-

butions used to model claim severity will be fitted using our data set. Initially,

the Pareto distribution is applied. Our estimates are obtained using R. The

results of our maximum likelihood estimation for Pareto distribution is{
m = 1999.985031,

s = 1.343437.
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Histogram of Claim Severities
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Figure 3.1: Histogram of the Data

In Figure 3.2 the dot-dashed curve is the fitted Pareto distribution for the data

without the three outliers. On the other hand, the parameter in our Weibull

distribution was also estimated through maximum likelihood estimation (We have

a known shape parameter equal to 1/2). The estimated scale parameter is equal

to 2227.752. However, in our case, the p.d.f of the Weibull distribution was

written in the form,

f(x) =
c

2
x−

1
2 e−c

√
x, x > 0

Hence, the estimate for our parameter c is obtained by modifying the scale pa-

rameter, where c = 2227.752−
1
2 = 0.02118686. The fitted curve is shown by the

solid line in the figure below.

There is another fitted curve in this graph, which is drawn by the dashed

line, and it is an exponential distribution fitting to the data. The two mixing

distributions appear to fit much better than the exponential distribution. On

the other hand, in order to see clearly how the curves are fitted to the data,

corresponding QQ plots are presented as follows. The tail behaviours of the

three distributions can be seen clearly and are consistent with what is discussed

in Chapter 2.1.
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Fitting Exponential, Pareto and Weibull Distributions
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Figure 3.2: The Fitted Curves on the Data without the Outliers
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Figure 3.3: QQ-Plot of the Exponential Distribution versus the Sample Data

It is shown on this sketch that the exponential distribution fits the data rela-

tively better up to around £12, 500. At the tail where there are extremely large
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claim sizes, it fails to estimate the probability accurately.
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Figure 3.4: QQ-Plot of the Pareto Distribution versus the Sample Data

The first QQ plot (Figure 3.4) shows the goodness-of-fit of the Pareto distri-

bution to our data. Several over-estimations for some small and medium sized

claims are present. Nevertheless, it fits well especially for very expensive claims.

This has emphasised its heavy-tail feature.

Figure 3.5 suggests that Weibull distribution fits very well up to £40, 000, al-

though there is slight perturbation. In the tail, it fits better than the Exponential

distribution but worse than the Pareto distribution, as what is expected.

Overall, the exponential distribution does not perform well compared to the

other two. While Weibull fits better for smaller claims, Pareto yields the best

performance for very large claim sizes. From these plots, it is likely to suggest a

mixture of strategies. When the claim sizes are moderate, the insurer is advised

to adopt the Weibull claim severities. Particularly when reinsurance is in place,

Weibull distribution can be the better choice. On the contrary, for very large

claim sizes, Pareto distribution plays the key role due to its long-tail property.
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Figure 3.5: QQ-Plot of the Weibull Distribution versus the Sample Data

3.3.2 Calculations for Net Premiums

As mentioned before, the net premiums are calculated via the product of the

expected claim frequency and the expected claim severity with independence be-

tween the two components assumed. Regarding the claim frequency component,

we proceed as Frangos and Vrontos [2001]. Their estimates for the parameters α

and τ are {
α = 0.228,

τ = 2.825.

In terms of the claim severity component, our first task is to estimate QK ,

as mentioned in the final part of last section. Since we have a recursive function

for QK and its initial value is known as 1, this can be easily calculated. We

used MATLAB to generate the solutions for K = 1, 2, 3, 4, 5 and t = 1, 2, 3, 4, 5.

The first two tables underneath demonstrate the resulting premium rates for

our Weibull model, and the other two show those for the Pareto model. The

first column in each table denotes the scenario where no claims are reported to

the company (M = 0). While we derive these values from (3.4), Frangos and

Vrontos [2001] used the following formula to calculate the first column premium
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rates. Notice that tables with different total claim severities have the same first

column.

PFV |(M = 0) =
α

τ + t
· m

s− 1
.

Year Number of Claims

t 0 1 2 3 4 5
0 359.6 N/A
1 265.6 2624.6 3082.1 3022.9 2856.7 2704.7
2 210.5 2080.6 2443.3 2396.4 2264.7 2144.2
3 174.4 1723.4 2023.9 1985.0 1875.9 1776.1
4 148.8 1470.9 1727.3 1694.2 1601.0 1515.8
5 129.8 1282.9 1506.6 1477.7 1396.4 1322.1

Table 3.2: Optimal Net Premiums with Weibull Severities and Total Claim Cost
M = 7, 500

Year Number of Claims

t 0 1 2 3 4 5
0 359.6 N/A
1 265.6 3030.6 3735.4 3802.0 3677.7 3528.7
2 210.5 2402.5 2961.3 3014.0 2915.5 2797.4
3 174.4 1990.1 2452.9 2496.6 2415.0 2317.1
4 148.8 1698.5 2093.5 2130.8 2061.1 1977.6
5 129.8 1481.4 1826.0 1858.5 1797.7 1724.9

Table 3.3: Optimal Net Premiums with Weibull Severities and Total Claim Cost
M = 10, 000

First, let us look into details on our premiums. The upper table describes the

premium levels for the situation where the accumulative claim costs are £7, 500.

The lower table gives the rates where the total claim amounts are £10, 000.

Overall, it follows the pattern that the premium decreases over time if claim

frequencies are kept constant. How the BM system works will be illustrated in

the next example. For instance, if a policyholder has a claim which costs £7, 500

in his first policy year, his premium will be raised to £2624.6 (Table 3.2). If in

the subsequent year, he has another claim whose severity is £2, 500. The total

accumulated number of claims is now 2 and the total size amounts to £10, 000
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(Table 3.3). He is then subject to pay £2961.3 in the next year. And if no more

claims are filed in the following 3 years, his payment will reduce to £1826.0 from

the beginning of year 6. Now it is essential to see how the BM system using the

Pareto model works. Again the following two tables represent the total claim cost

of £7, 500 and £10, 000 respectively.

Year Number of Claims

t 0 1 2 3 4 5
0 470.0 N/A
1 347.1 2270.2 2361.3 2397.9 2417.6 2430.0
2 275.2 1799.7 1871.9 1900.9 1916.6 1926.4
3 227.9 1490.8 1550.6 1574.6 1587.6 1595.7
4 194.5 1272.3 1323.4 1343.9 1354.9 1361.9
5 169.7 1109.7 1154.3 1172.1 1181.8 1187.8

Table 3.4: Optimal Net Premiums with Pareto Severities and Total Claim Cost
M = 7, 500

Year Number of Claims

t 0 1 2 3 4 5
0 470.0 N/A
1 347.1 2867.7 2982.7 3028.9 3053.9 3069.5
2 275.2 2273.3 2364.5 2401.2 2420.9 2433.3
3 227.9 1883.1 1958.6 1989.0 2005.3 2015.6
4 194.5 1607.2 1671.6 1697.5 1711.5 1720.3
5 169.7 1401.8 1458.0 1480.6 1492.8 1500.4

Table 3.5: Optimal Net Premiums with Pareto Severities and Total Claim Cost
M = 10, 000

For the same insured we described before, this system will in general punish

less severely than the previous one. Specifically, this customer will pay £470 at

the start. Due to one claim reported in the first year, his premium rate is raised

to £2270.2 (Table 3.4). Then after a second claim in the subsequent year, an

increase to £2364.5 occurs (Table 3.5). If he has no more claims till the end of

the 5th year, his premium payment could go down to £1458.0. Up to now, the

flow of the two systems appears to be similar except that the punishment is less

severe in the latter one.
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However, for this dataset, there is an unexpected finding of our results. Unlike

the Pareto fitting, when the total claim size is fixed, our premium is not strictly

increasing with the number of claims, but starts to drop slightly for more than

2 or 3 claims in our example. The last few columns in Table 3.2 and Table 3.3

have demonstrated this phenomenon. In order to see how our premium rates

behaves when compared to the Pareto model. We have plotted the premiums

for large quantities of claims (K = 100) when the total claim severity is kept

unchanged (Figure 3.6). Again, two cases where the total cost of claims is £7, 500

and £10, 000 respectively are analysed. This irregular behaviour of the severity

component of this premium formula may be different depending on the nature of

the dataset to which the Weibull model is applied because the monotonicity of

our premium function is affected by the parameters as mentioned in section 3.2.
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Figure 3.6: Behaviours of Premium Rates with respect to the Number of Claims
when the Total Claim Sizes is £7, 500 and £10, 000

As presented in Figure 3.6, under a fixed total claim cost, our premium func-

tion is not strictly increasing with the number of claims. It reaches a peak at some

point and then decreases and finally asymptotically converges. To our knowledge

so far, this behaviour has not appeared in classical models. However, with this
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effect, the bonus hunger problems could in some way be alleviated. As seen

in our previous tables, if one client has already claimed twice with a total cost

slightly less than £7, 500 in one particular year. In the system using Pareto claim

severities, it is very likely that he will bear the cost himself if he has one more

small accident and does not disclose this information to the insurer because of

otherwise the growth in premium payment. However, in our system, there will

be a reward if he reveals the true information to the company for a further small

claim. It is where the premiums start to decrease. Notice that our premiums

only drop a little when the additional claim size is not very large. If one has one

more severe claim, he will be paying more than the current amount. Hence, our

model is helpful to encourage the insured to be truthful to insurance companies.

In this way, it is a flexible decision for the insurer to either fix the premium after

a certain level of claim frequency or to reward the policyholders for disclosing

true information about cheap claims.

On the other hand, this model actually distinguishes the premium payments

more according to various claim costs. We punish more on those who make few

large claims than the ones who report many small claims. An extreme example

could be seen in Figure 3.6. When comparing an insured person who makes one

claim worth £7, 500 and the other who has 10 claims summing up to £7, 500,

which means he has an average of £750 for each claim, we could see that the

former one is paying a similar amount to the latter one or even slightly more.

Obviously this is not the case in the Pareto model. This observation implies that

our model emphasises more on the claim severity component while the Pareto

model addresses more on the frequency level.

It is also noticeable that our initial premium payments are lower than the

Pareto model which might be more preferable to starting policyholders thus cre-

ating more competitiveness to the insurer. Hence, we proposed a slightly different

pricing strategy for insurance companies here. This additional option for insurers

leads to a diversity of premium strategies where a suitable one could be chosen

from to adapt to certain needs.

As we have seen from our results, the BM system adopting the Weibull sever-

ities provides a lower entrance premium level and punish more on people who

have large sized claims and less on those who make plenty of small claims. This
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could be considered as one of the options when insurers are deciding on pricing

strategies. We would suggest our model to be adopted by those who prefer to

offer a mild treatment to policyholders with many small claims. In practice, it

is reasonable and this kind of strategy helps the alleviation of hunger for bonus

phenomenon. Therefore, it is suggested that an insurance company could always

consider all these factors when choosing among models. Sometimes a mixture of

the models would be the most rational choice, which will be introduced in the

next section.

3.4 A hybrid Model

Inspired by previous results, we assume that the claims which cost less than a

threshold z are distributed according to a Weibull and those whose sizes are over

z conform to a Pareto distribution. For convenience, we will refer the former kind

as ’small claims’ and the latter as ’big claims’ in the sequel.

Based on the thought of implementing hybrid distributions on the claim size

modelling, we can simply write our premiums in the following form which is a

linear combination of the two expected aggregate claim costs.

Premium = Π[X]Π[N ] = Π[Xw]Π[Nw](1− ρ) + Π[Xp]Π[Np]ρ

where Π[·] denotes the posterior mean because we also applied Bayesian analysis

under this circumstance. Here X denotes the claim severity, N the number of

claims and ρ is the probability of being above the threshold.

Corollary 3.2. Suppose the number of claims N is a negative binomial distributed

random variable with p.m.f

P (N = n) =

(
n+ α− 1

n

)(
τ

1 + τ

)α(
1

1 + τ

)n
.

Distinguishing the claims by a limiting amount z results in two random variables

counting the corresponding frequency in each category. Then one of the decom-

posed random variables follows a NB(α, τ/ρ) and the other a NB(α, τ/(1− ρ)),

where ρ relates to the probability of the categorisation.
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Proof. We know that the number of claims is assumed to be Negative Bino-

mial distributed, i.e., N ∼ NB(α, τ). Firstly, we denote the frequency of large

claims by Np and it can be written that,

Np = I1 + I2 + . . .+ IN , where I ∼ Bernoulli(ρ).

That means,

Pr(Ij = 1) = Pr(Xj > z) = 1− FX(z) = ρ;

Pr(Ij = 0) = Pr(Xj ≤ z) = FX(z) = 1− ρ.

Its moment generating function (m.g.f) is then given by,

mI(s) = E[esI ] = ρes + (1− ρ)e0 = 1− ρ+ ρes.

Hence, the m.g.f of Np is computed as

mNp(s) = PN(mI(s))

=

(
τ

τ + ρ− ρes

)α
=

 τ
τ+ρ

1−
(

1− τ
τ+ρ

)
es

α

,

where PN represents the probability generating function (p.g.f) of N . It is thus

clear that Np is still Negative Binomial distributed with a new parameter, i.e.,

Np ∼ NB(α, τ/ρ). Therefore, the mean claim frequency of large sized claims

is, E[Np] = αρ
τ

. Similarly, we can obtain that the distribution of Nw is also a

Negative Binomial, i.e., Nw ∼ NB(α, τ/(1− ρ)) and its mean is E[Nw] = α(1−ρ)
τ

.

Therefore,

Corollary 3.3. The posterior means of the random variables Nw and Np are
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given by

Π[Np] =
α +K1

τ/ρ+ t
;

Π[Nw] =
α +K2

τ/(1− ρ) + t
.

where K1 and K2 represent the number of small and large claims respectively.

Proof. Replacing all the τ with τ/ρ and τ/(1 − ρ) respectively which does

not affect the integration will lead to the results as claimed above.

Corollary 3.4. The posterior expectation of the size of large claims is

Π[Xp] =
1

ρ

(
M2 +m

M2 +m+ z

)K2+s(
z +

M2 +m+ z

K2 + s

)
;

And the posterior expectation of that for small claims is given by

Π[Xw] =
1

1− ρ
2
√
M1

c

Bv−1(c
√
M1)

Bv(c
√
M1)

− 1

1− ρ

(
M1

M1 + z

) v
2
[
z
Bv(c
√
M1 + z)

Bv(c
√
M1)

+
2
√
M1 + z

c
· Bv−1(c

√
M1 + z)

Bv(c
√
M1)

]
.

where v = K1 − 1
2

and K1,M1 > 0, K2,M2 ≥ 0.

Proof. Since both distributions are the results of a mixing over exponen-

tial. We initially compute the conditional expectation of the exponential for each

segment.

E[X|X ≤ z] =
1

1− ρ

[
1

θ
−
(
z +

1

θ

)
e−θz

]
; (3.6)

E[X|X > z] =
1

ρ

(
z +

1

θ

)
e−θz. (3.7)

Since when X ≤ z, we have the posterior distribution for θ as follows Ni et al.

[2014a],

π1(θ) =

(
c

2
√
M1

)−(K1− 1
2)
θK1− 3

2 exp
(
−
(
M1θ + c2

4θ

))
2BK1− 1

2
(c
√
M1)

. (3.8)
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Integrating (3.7) and (3.8) yields the desired result. Only one part of the inte-
gration is illustrated as shown below since other parts are computed in a very
similar way.

I1 =

∫ ∞
0

1

θ
e−θzπ1(θ)dθ =

(√
M1

M1 + z

)K1− 1
2

2
√
M1 + z

c
·

1

BK1− 1
2

(c
√
M1)∫ ∞

0

(
2
√
M1 + z

c
θ

)K− 5
2

exp

(
−

1

2
c
√
M1 + z

(
2
√
M1 + z

c
θ +

c

2
√
M1 + zθ

))
d

(
2
√
M1 + z

c
θ

)

=

(√
M1

M1 + z

)K1− 1
2

2
√
M1 + z

c
·
BK1− 3

2
(c
√
M1 + z)

BK1− 1
2

(c
√
M1)

.

The posterior distribution of θ for the second component, i.e., when X > z, is

given by,

π2(θ) =
θK2+s−1e−(M2+m)θ(M2 +m)K2+s

Γ(K2 + s)
. (3.9)

Integrating (3.7) and (3.9) will lead to the value as claimed in Corollary 3.4.

Henceforth, our premium function is thus modified to

Premium =
α +K1

τ/(1− ρ) + t
· Π[Xw](1− ρ) +

α +K2

τ/ρ+ t
· Π[Xp]ρ. (3.10)

where Π[Xw] and Π[Xp] are as discussed in Corollary 3.4. In order to find the

premium values, unlike in 3.2, we need not only the sum of total claim severity

but also the respective sums of the severities of each kind of claims. Similarly,

it is sufficient to know the number of small claims K1 and the number of large

claims K2. Clearly we have M = M1 + M2 and K = K1 + K2 where M and K

denote the total size and total number of claims for an individual over a period

of t years.

3.5 Parameter Computations

In this section, we do not use conventional methods to do the parameter estima-

tions. Instead, by using some properties of our model and under the following

reasonable assumptions, we estimate the parameters in a special way.

Assumptions
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1. The probability density function f(x) for the claim sizes can be represented

as follows

f(x) =

{
c
2
x−

1
2 e−c

√
x , 0 6 x 6 z,

sms

(x+m)s+1 , x > z,

with f(z−) = f(z+). We assume that it is continuous but may not be

differentiable at z. Hence, the probability of a given claims size which is

less or more than the threshold value z can be written respectively by

Pr(X 6 z) = F (z−) =

∫ z

0

c

2
x−

1
2 e−c

√
x;

Pr(X > z) = 1− F (z+) =

∫ ∞
z

sms

(x+m)s+1
.

2. Both z and ρ are observations from the sample data. z is computed from

the intersection of the Weibull and Pareto distributions as in Section 3.2.

ρ is the proportion of claims in the portfolio that is over the value z. They

could be obtained by running simulations, but we will illustrate our model

by using one dataset.

3. The estimation of the parameters for the claim frequency component is

based on the maximum likelihood method as often seen in literature. We

use the same results as in Frangos and Vrontos [2001], namely{
α = 0.228,

τ = 2.825.

The Scale Parameter in Weibull Distribution Based on the fact that the

proportion of claims which are below the threshold z is 1− ρ, we can write∫ z

0

c

2
x−

1
2 e−c

√
xdx = 1− exp(−c

√
z) = 1− ρ. (3.11)

The Parameters in Pareto Distribution Similarly, the rest of the portfolio

is ρ and thus, ∫ ∞
z

sms

(x+m)s+1
dx =

(
m

z +m

)s
= ρ.
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{
F̄ (z) =

(
m
z+m

)s
,

f(z−) = f(z+).

⇔ { (
m
m+z

)s
= ρ,

c
2
z−

1
2 e−c

√
z = sms

(z+m)s+1 .
(3.12)

(3.11) and (3.12) will then be able to form a system of equations where all the

parameters c, m and s can be calculated with known values of z and ρ.

3.6 Numerical Illustration II

Again the data was sourced from Klugman et al. [1998] and details could be seen

in Appendix A. This serves as an example of illustration how our hybrid model

works.

Applying the model on the same dataset as we have used before yields the

following results. Initially, by observation, the value of z and ρ are observed

as explained above and they are z = 5784.47, ρ = 0.184. Substitute these into

(3.11), c can be easily obtained which is c = 0.02225763.

Subsequently, following the same steps to estimate the parameters in the

Pareto distribution and combining (3.11) and (3.12), the estimates of m and s

can be calculated as {
m = 1475.0447,

s = 1.0622451.

with the help of the values of z and ρ.

Hence, figure 3.7 shows a hybrid distribution fitting to the dataset. Compared

to our former results, this yields a better fit.

Premium Calculations Again we analysed several scenarios similar to Section

3.2. But now we need to specify the number of small and large claims and fix the

corresponding total costs accordingly. Note that since we have a threshold z =

5784.47, a reasonable setting of the scenarios should satisfy several constraints.

M1 6 min{zK1}, M2 > min{zK2}, K1, K2 ∈ N.
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Figure 3.7: Distribution of Claim Severities.

For instance, if K1 ranges from 1 to 5, M1 6 z and similarly if K1 > 2, M1 6 2z.

Thus, we will be looking at several special scenarios as described below.

Scenario 1 One simple scenario is that policyholders only make small claims

and no big ones, i.e., K2 = M2 = 0. Fixing the total cost M1 = 5000 and

employing (5.4) would yield the following results as shown in Table 3.6.

Scenario 2 On the contrary, we also consider a case where a policyholder has

only big claims and no small ones, i.e., K1 = M1 = 0. Keeping the total large

claim size fixed at M2 = 30000, we obtained Table 3.7. It is essential to mention

it here that since (5.4) is not defined when M1 = 0, we redefine the expected
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Table 3.6: Premiums for Scenario 1

M1 = 5000,M2 = K2 = 0, t = 1, 2

K1 = 1 2 3 4 5

t = 1 707.907 1061.181 1346.342 1530.187 1628.134

t = 2 617.699 906.294 1139.247 1289.434 1369.448

Table 3.7: Premiums for Scenario 2

M1 = K1 = 0,M2 = 30000, t = 1

K2 = 1 2 3 4 5

t = 1 1471.1 1665.3 1694.0 1653.0 1577.8

t = 2 1360.4 1543.4 1570.5 1531.8 1461.0

claim size for small claims using,

Π[Xw|M1 = 0] =
1

1− ρ
· 2

c2

Scenario 3 This is when a policyholder has £5000 worth small claims and

£30000 worth big claims in a single year. We analysed 25 different scenarios

where the number of both the small and large claims vary from 1 to 5. And

for simplicity, we only look at the first two years’ premium levels. Results are

demonstrated in Table 3.8 and Table 3.9 respectively. A clearer comparison could

be seen in Figure 3.8 and Figure 3.9.

We have actually looked at premium levels for claimers only. Generally speak-

ing, premiums decrease overtime. According to Table 3.6 and Table 3.7, it is also

obvious that a policyholder with both small and large claims would definitely

pay more than those who have small claims only knowing that their costs of

small claims are the same. Furthermore, by comparing Scenario 2 and 3, each

additional small claim adds quickly on the premium levels.

Moving into details, clearly the premium levels jump upwards column-wise.

In a practical language, when the aggregate costs of claims are fixed, the higher
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Table 3.8: Premiums for Scenario 3 t = 1

M1 = 5000,M2 = 30000, t = 1

K2 = 1 2 3 4 5

K1 = 1 1658.7 1852.8 1881.6 1840.5 1765.4

2 2011.9 2206.1 2234.9 2193.8 2118.7

3 2297.1 2491.3 2520.0 2479.0 2403.9

4 2480.9 2675.1 2703.9 2662.8 2587.7

5 2578.9 2773.1 2801.8 2760.8 2685.6

Table 3.9: Premiums for Scenario 3 t = 2

M1 = 5000,M2 = 30000, t = 2

K2 = 1 2 3 4 5

K1 = 1 1513.7 1696.7 1723.7 1685.1 1614.3

2 1802.3 1985.3 2012.3 1973.7 1902.9

3 2035.2 2218.2 2245.3 2206.6 2135.8

4 2185.4 2368.4 2395.5 2356.8 2286.0

5 2265.4 2448.4 2475.5 2436.8 2366.0

their frequency is the cheaper is each claim. The increase in premiums suggests

that this system punishes severely on people who frequently make small claims.

It is also noticeable that the increase of premiums with respect to K1, i.e., the

number of small claims, is faster than that with regard to K2, i.e., the number

of large claims. In fact, premiums almost stay quite stable with the change in

K2. There is even a decreasing trend starting from the 4th column in Table 3.7-

3.9. However, this does not mean the rise in claim frequency would lead to lower

premium level. Notice that the total claim size is fixed. So when the counts

of large claims move towards right, it only implies that each individual claim

actually costs less. Such reduction in premiums could be understood as when it

comes to large claims, the system punishes less if the frequency is high. Figure

3.8 and 3.9 reinforces this statement and notice that the premium does not drop

much.
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Figure 3.8: Premiums for Scenario 3 t = 1.

Figure 3.9: Premiums for Scenario 3 t = 2.
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This means that our model makes more emphasise on the total claim severity

rather than the claim frequency component for large claims and vice versa for

small ones. In other words, the proposed model punishes more on someone making

a lot of small claims while such punishment is not obvious when large claims are

made. On the other hand, when the frequency of large sized claims is raised, the

per-claim cost actually is smaller which might fall into our smaller size claims

category. For instance, the K2 cannot increase further after a sum of 5 claims

worth £30, 000 in total (Table 3.7, 3.8, 3.9), because otherwise the average size of

the claims would fall below z and will be reconsidered as small claims. We penalise

less because the drivers having claims valued near the threshold are actually not

affecting the income of a company too much and in addition they have informed

the insurer about their claims. Such information is valuable in estimation and

forecast. Technically speaking, this is due to the fact that M2+m
M2+m+z

is between

(0, 1) as can be seen in Π[Xp] in Corollary 3.4.

However, for small claims, the premium still rises as the frequency increases

when the total costs are kept constant. These behaviours can also be seen from

Figure 3.8 and Figure 3.9, the colour gets warmer when moving upwards on the

K1 axis. Practically speaking, one reason would be that frequently dealing with

small claims would probably induce more administrative costs which should be

offset by forcing higher premiums. In addition, it is very likely that people with

many small claims would create a big loss in the future. They are potential risks

and likely to cause a sudden loss to the insurer.

That is to say, this model assigns more attention on potential risks and is

relatively milder in penalising those who already reported a larger claim. In

fact, it is often the case that these people would be more careful in the future,

while those constantly filing small claimers possibly have a potential to create an

unexpected attack to the insurance company.

Another interesting question to ask is how this model compares to the previous

one in Section 3.2. So let us look at the same example where a policyholder reports

one claim worth £7500 and then £2500 in the subsequent year. That means a

’big’ claim in the first and a ’small’ in the second year using the hybrid model and

the resulting premium for the second year should be £554.7 and £646.3 for the

third year. These figures are much smaller than those of both the Weibull and
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Pareto models. It could be the reason that the fitting of this hybrid distribution

performs better for small claims and also the data does not contain many large

claims.

3.7 Summary

In conclusion, this chapter first extended Frangos and Vrontos [2001] by choosing

a different severity distribution. They worked on both the a priori and the a

posteriori information, whereas we analysed the BM system only considering the

a posteriori information. For the latter case, while Frangos and Vrontos [2001]

adopted Negative Binomial distribution for to describe the claim frequencies and

Parteo distribution to model the claim severity component, this work maintains

other modelling factors and only alters the claim severity distribution to Weibull.

By comparing the two models when applied to the same dataset, although we

provide worse estimation in the tail, we offer cheaper initial premiums and more

reasonable especially to those who claim many times but with small severities.

Furthermore, on this dataset our model seems to discourage the hunger for bonus

phenomenon, which is empirically significant.

Then based on these results, the idea of a mixed strategy for claim severity

distributions was adopted. Under the given dataset, a similar trend can be wit-

nessed in the large claims zone, i.e., the increase in frequencies not necessarily

gives rise to that in premiums when the total expenses are fixed. It seems that as

long as the total costs for large claims are kept constant, the system is kind with

the increase in frequency for these claims. However, it holds the opposite attitude

within the small claims zone. Notice that penalties on the increasing number of

large claims have an upper limit due to the fact that a rising frequency for these

claims would possibly mean claims fall into the ’small’ categorisation again.

Future extensions are possible with directions including study on the a priori

information (regression analysis), sensitivity analysis as well as improved param-

eter estimation techniques. Moreover, one consideration on modelling would be

to incorporate the deductibles as a more realistic case. This piece of work has

laid a foundation on BM systems and facilitated studies in Bayesian inference,

enough to provide a reasonable introduction to the following researches.
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Chapter 4

Risk Analysis of a BM system in

discrete risk models

This chapter serves as the first step into the risk theory analysis world. For sure,

it is a very popular topic not only among the academics but also practitioners.

Normally, in insurance industry, one good measure for solvency/insolvency is the

ruin probability, which has already been introduced in the preliminaries. Just to

ring a bell, it describes how likely it is that an insurer does not have adequate

funds to cover claims. Taking an initial move, this chapter looks at a discrete

model for a BM system with three classes. For simplicity, we assume all monetary

terms here including premium income, claims sizes as well as the initial capital

to be integers only. Although it is an unrealistic assumption, this piece of work

helped to establish insights into industry and comprehension in risk models. The

construction of the BM system is inspired by an industrial partner. It suggests

the use of a BM system for reinsurance companies, resembling a merit rating to

customers who are insurance companies under this concern. This also interprets

the BM idea into a collective risk model where the ruin probability is well-defined.

This work was done in collaboration with Dr. Bo Li1 from Nankai University.

1School of Mathematical Sciences, Nankai University, Tianjin 300071, China
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4.1 Model Set-up

The motivation of this piece of work originates from a reinsurance company who

would like to employ the BM idea in order to deal with catastrophic risks. For

a peaceful period, ceding companies pay the base reinsurance premium. When

a catastrophic event occurs, the re-insurer raises the premiums by 50% for the

subsequent year. Such events are revealed by the aggregate claims observed in

the previous year. If the aggregate amount of claims in a year is below the value

of concern, then the reinsurance premium returns to the base level. It also could

happen that no claims are reported for a consecutive 3 years from all the cedents

being insured. Then a 50% discount is offered. In this way, the re-insurer could

gain its competitiveness in the market during ’good’ years whereas the same time

acquires the security when extreme events happen. Notice that rather than an

adjustment according to individual histories as in the BM systems used in car

insurance, this model relies more on the whole external environment and provides

mutual bonuses and maluses on the premium levels for all ceding companies. In

the following contents, we use a BM system to model this idea. So when it comes

to moving to a class, it implies the environment changes and the reinsurance

premium levels for all ceding companies vary at the same time.

The BM system we are trying to model consists of 3 classes, S1, S2 and S3.

Correspondingly, three premium levels assigned to each of these classes are 50%,

100% and 150% respectively. The transition rule is stated as follows. Under nor-

mal circumstances, ceding companies pay the base reinsurance premium which

is 100%. With 3 consecutive years of no claims, ceding companies are able to

jump to S1, paying 50% of the base premium. However, if someone has claims

in a single year with the total severity exceeding a predetermined threshold R,

this customer will move to S3 and pay 150% of the base premium. This system

is relatively mild in the sense that it only punishes customers who report catas-

trophic claims. Of course, such system is not limited to auto-mobile insurance.

According to the description, by assuming that claims made in each year

are independent from each other, we are able to establish the following Markov
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chain {Jn}n∈N, where J0, J1 . . . are states occupied in each policy year for ceding

companies. In this Markov chain, we recognised 5 states and they are:

0. One or more claims made in the preceding year but the aggregate amount

is not big enough to be considered as a catastrophe;

1. No claims in the preceding year, but claims made in the second last year;

2. No claims in the last 2 consecutive years period, but claims made in the

third last year;

3. No claims made in the last 3 consecutive years period;

4. Aggregate claims exceeding the threshold in the preceding year.

Translating into the mathematical language, we write {Jn}n∈N with state space

E = {0, 1, 2, 3, 4}. Let q denote the probability of cedents making no claims and

p the probability of making claims with aggregate amount less than R, whereas

r represents the probability of having huge claims in a single policy year. Then,

the transition probability matrix of {Jn}n∈N is given by

P =



0 1 2 3 4

0 p q 0 0 r

1 p 0 q 0 r

2 p 0 0 q r

3 p 0 0 q r

4 p q 0 0 r

.

Obviously, we have p + q + r = 1. Since P is irreducible and aperiodic, there

exists a unique stationary distribution π = (p, q(p+ r), q2(p+ r), q3, r). We make

the simplest assumption that premium levels take values 1, 2, 3 respectively with

regard to the three different percentages as described at the beginning of this

section. Specifically, the current premium level at each state is displayed below.

States 0 1 2 3 4

Premiums 2 2 3 1 3
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For example, if the current state is 0, i.e., ceding companies had claims last year

which cost less than the threshold in total, then the current premium level is 2

which is the base premium.

Let us now consider a discrete risk surplus process for an individual from the

company’s perspective.

U(n) = u+
n∑
i=1

Ci −
N(n)∑
i=1

Zi, n = 0, 1, . . . , (4.1)

where u ∈ N is the initial capital reserved for this individual and Ci here is a

random variable denoting the premium payment received in the ith year. N(n) =∑n
i=1 1{Zi > 0} represents the total number of years with claims (either normal

or extreme ones) with the i.i.d random variable Zi describing the aggregate claim

size in the ith year. For convenience, we define Z in the following way.

Z
d
=


X, P(0 < Z ≤ R) = p;

Y, P(Z > R) = r;

0, P(Z = 0) = q,

recalling that R is the threshold we set to distinguish normal from extreme claims.

X and Y have distribution functions F (x) with mean µF and G(x) with mean

µG, respectively. Furthermore, we define the ruin time by

T (u) = inf{n : U(n) < 0|U(0) = u},

and the ruin probability in this case by

ψi(u) = P(T (u) <∞|J0 = i), i ∈ E, (4.2)

where J0 stands for the starting state as mentioned before. Thus, corresponding

survival probabilities are

Φi(u) = 1− ψi(u), i ∈ E. (4.3)
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Since the claims are assumed to be i.i.d, a safety loading condition needs to be

satisfied.

p(2−µF )+q(p+r)2+q2(p+r)2+q3 +r(3−µG) = 2+r−q3−(p+r)µ > 0, (4.4)

where µ = p
p+r

µF + r
p+r

µG.

4.2 Recursive relations

As this discrete process also renews at the end of each policy year, it is reasonable

to establish the following relations similar to a classical model, except that at each

step the increment has several possibilities. Further implementing the law of total

probability, the survival probabilities Φi, i ∈ E for u ∈ N can be written as,

Φ0(u) = pE[Φ0(u+ 2−X)] + qΦ1(u+ 2) + rE[Φ4(u+ 2− Y )] (4.5)

Φ1(u) = pE[Φ0(u+ 2−X)] + qΦ2(u+ 2) + rE[Φ4(u+ 2− Y )] (4.6)

Φ2(u) = pE[Φ0(u+ 2−X)] + qΦ3(u+ 2) + rE[Φ4(u+ 2− Y )] (4.7)

Φ3(u) = pE[Φ0(u+ 1−X)] + qΦ3(u+ 1) + rE[Φ4(u+ 1− Y )] (4.8)

Φ4(u) = pE[Φ0(u+ 3−X)] + qΦ1(u+ 3) + rE[Φ4(u+ 3− Y )] (4.9)

Pairing equations (4.5) with (4.9) and (4.7) with (4.8) suggests that

Φ4(u) = Φ0(u+ 1) and Φ2(u) = Φ3(u+ 1).

Additionally, it can be observed from (4.5)-(4.7) that

pE[Φ0(u+ 2−X)] + rE[Φ4(u+ 2− Y )]

= Φ0(u)− qΦ1(u+ 2)

= Φ1(u)− qΦ2(u+ 2)

= Φ3(u+ 1)− qΦ3(u+ 2) for u ≥ 0
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Then we have, in terms of Φ3(·), for u ≥ 0
Φ0(u)=Φ3(u+ 1)− qΦ3(u+ 2) + qΦ3(u+ 3)− q2Φ3(u+ 4) + q2Φ3(u+ 5)

Φ1(u)=Φ3(u+ 1)− qΦ3(u+ 2) + qΦ3(u+ 3)

Φ2(u)=Φ3(u+ 1)

Φ4(u)=Φ3(u+ 2)− qΦ3(u+ 3) + qΦ3(u+ 4)− q2Φ3(u+ 5) + q2Φ3(u+ 6)

(4.10)

Note that Φ(·) is only defined on [0,∞), (4.8) has limited X by X ≤ u+ 1 and Y

by Y ≤ u+1, for u ≥ 0. Before we proceed, let us define a probability generating

transform to be used in the sequel.

Definition 4.1. A probability generating transform on a function Φ(n), n ∈ N
with respect to n is

Φ̂(s) =
∞∑
n=0

snΦ(n).

Denote this also in the operator form by PsΦ.

It resembles the Laplace transform except that it is in a discrete time hori-

zon based on probability generating functions. Then we could derive a similar

property for its operation on convolutions.

Lemma 4.2. Given two functions l1(·) and l2(·) defined on N and their convo-

lution l1 ∗ l2(x), the probability generating transform of this convolution is the

product

Ps{l1 ∗ l2(x)} = l̂1(s)l̂2(s). (4.11)

Proof.

Ps{l1 ∗ l2(x)} =
∞∑
x=0

sx
x∑

n=0

l1(x− n)l2(n)

=
∞∑
n=0

snl2(n)
∞∑
x=n

sx−nl1(x− n)

= l̂1(s)l̂2(s)

Then we can start our calculations. First we give the following statement.
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Theorem 4.3. A shifted probability generating transform on the survival function

initialising from state 3, PsΦ3(u+ 6), will satisfy the following relation.

−PsΦ3(u+ 6)w0(s) = Φ3(0) + Φ3(1)w1(s) + Φ3(2)w2(s)

+Φ3(3)w3(s) + Φ3(4)w4(s) + Φ3(5)w5(s), (4.12)

where

w0(s) = s6 − qs5 − pF̂ (s)

s

(
s5 − qs4 + qs3 − q2s2 + q2s

)
− r Ĝ(s)

s

(
s4 − qs3 + qs2 − q2s+ q2

)
;

w1(s) = s− q − pF̂ (s)

s
;

w2(s) = s2 − qs− pF̂ (s)

s
(s− q)− r Ĝ(s)

s
;

w3(s) = s3 − qs2 − pF̂ (s)

s
(s2 − qs+ q)− r Ĝ(s)

s
(s− q);

w4(s) = s4 − qs3 − pF̂ (s)

s
(s3 − qs2 + qs− q2)− r Ĝ(s)

s
(s2 − qs+ q);

w5(s) = s5 − qs4 − pF̂ (s)

s
(s4 − qs3 + qs2 − q2s+ q2)− r Ĝ(s)

s
(s3 − qs2 + qs− q2).

Proof. First taking the probability generating transform on both side of the

equation (4.8) with respect to u gives us

Φ̂3(s) =
p

s

[
Φ̂0(s)F̂ (s)− Φ0 ∗ F (0)

]
+
q

s

[
Φ̂3(s)− Φ3(0)

]
+
r

s

[
Φ̂4(s)Ĝ(s)− Φ4 ∗G(0)

]
.

Those minus terms are due to shifted transform. One example could be

∞∑
u=0

suE[Φ0(u+ 1−X)] =
∞∑
u=0

su
u+1∑
x=0

Φ0(u+ 1− x)F (x)

=
1

s

∞∑
u=1

sk
k∑
x=0

Φ0(k − x)F (x)

=
1

s

[
∞∑
u=0

sk
k∑
x=0

Φ0(k − x)F (x)− Φ0 ∗ F (0)

]
=

1

s

[
Φ̂0(s)F̂ (s)− Φ0 ∗ F (0)

]
.
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Then plugging (4.10) in yields terms with shifted transform again. For instance,

Φ̂0(s) =
∞∑
u=0

suΦ0(u) =
∞∑
u=0

suΦ3(u+ 1)− q
∞∑
u=0

suΦ3(u+ 2)

+q
∞∑
u=0

suΦ3(u+ 3)− q3

∞∑
u=0

suΦ3(u+ 4) + q2

∞∑
u=0

suΦ3(u+ 5),

with
∞∑
u=0

suΦ3(u+ 1) =
1

s

∞∑
k=1

skΦ3(k) =
1

s
(Φ̂3(s)− Φ3(0)),

and so on. Rearranging these terms will lead to

(s− q)Φ̂3(s) + qΦ3(0)

=
1

s6
Φ̂3(s)

(
spF̂ (s)(s4 − qs3 + qs2 − q2s+ q2) + rĜ(s)(s4 − qs3 + qs2 − q2s+ q2)

)
+

1

s6
Φ3(0)

(
−spF̂ (s)(s4 − qs3 + qs2 − q2s+ q2)− rĜ(s)(s4 − qs3 + qs2 − q2s+ q2)

)
+

1

s5
Φ3(1)

(
spF̂ (s)(qs3 − qs2 + q2s− q2) + rĜ(s)(−s4 + qs3 − qs2 + q2s− q2)

)
+

1

s4
Φ3(2)

(
spF̂ (s)(−qs2 + q2s− q2) + rĜ(s)(qs3 − qs2 + q2s− q2)

)
+

1

s3
Φ3(3)

(
spF̂ (s)(q2s− q2) + rĜ(s)(−qs2 + q2s− q2)

)
+

1

s2
Φ3(4)

(
spF̂ (s)(−q2) + rĜ(s)(q2s− q2)

)
+

1

s
Φ3(5)

(
rĜ(s)(−q2)

)
.

We know that PsΦ3(u+6) =
∑∞

u=0 s
uΦ3(u+6) = 1

s6
(Φ̂3(s)−Φ3(0)−

∑5
k=1 s

kΦ3(k)).
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Substituting this into the right hand side of the above equation will give us

(s− q)Φ̂3(s) + qΦ3(0)

=PsΦ3(u+ 6)
(
pF̂ (s)(s5 − qs4 + qs3 − q2s2 + q2s) + rĜ(s)(s4 − qs3 + qs2 − q2s+ q2)

)
+ Φ3(5)

(
pF̂ (s)(s4 − qs3 + qs2 − q2s+ q2) + rĜ(s)(s3 − qs2 + qs− q2)

)
+ Φ3(4)

(
pF̂ (s)(s3 − qs2 + qs− q2) + rĜ(s)(s2 − qs+ q)

)
+ Φ3(3)

(
pF̂ (s)(s2 − qs+ q) + rĜ(s)(s− q)

)
+ Φ3(2)

(
pF̂ (s)(s− q) + rĜ(s)

)
+ Φ3(1)

(
pF̂ (s)

)
.

Further replacing Φ̂3(s) by PsΦ3(u + 6) eventually shows the result as stated in

the theorem.

4.3 Boundary conditions

It is clear from Theorem 4.3 that once we know the boundary values for Φ3(0)−
Φ3(5), we could have an explicit form of the such transform on survival probability.

Hence, this section explains how to find these conditions.

Remark 4.4. Under the positive safety loading condition (4.4), it could be known

that Φ3(u) → 1 as u goes to ∞, thus (1 − s)Φ̂3(s) = Φ3(0) +
∑

u≥1 s
n(Φ3(u) −

Φ3(u − 1)) → 1, as s → 1−. Actually the conclusion can also be derived from

Tauber theorem, let s→ 1, (4.12) gives

Φ3(0) + rΦ3(1) + pqΦ3(2) + rqΦ3(3) + pq2Φ3(4) + rq2Φ3(5) = 2 + r − q3 − (1− q)µ
(4.13)

Remark 4.5. If G(1) = 0, which is equivalent to Ĝ(s)
s
|s=0 = 0, then it follows

from (4.12) that

Φ3(0)− qΦ3(1) = pf1

(
Φ3(1)− qΦ3(2) + qΦ3(3)− q2Φ3(4) + q2Φ3(5)

)
(4.14)
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In fact, the above identity can also be derived from (4.8) by setting u = 0.

In the later of this section, we may assume that G(1) = 0 (this assumption

also makes sense in practice as Y represents huge claim costs) and introduce a

new probability measure {hu = (1− q)−1(pfu+1 + rgu+2)}u≥0, theu
∑

u≥0 hu = 1,

aud

(1− q)Ĥ(s) =
∑
u≥0

suhu = p
F̂ (s)

s
+ r

Ĝ(s)

s2
,

(1− q)µH = p(µF − 1) + r(µG − 2) < 1 + q − q3;

Ĥ(s)− 1

s− 1
=
∑
u≥1

su − 1

s− 1
hu =

∑
u≥1

u−1∑
k=0

skhu =
∑
k≥0

sk(1−H(k)),

where the inequality comes from the safety loading condition (4.4), and the coef-

ficient of PsΦ3(u+ 6) can be rewritten as

s6 − qs5 − s(s4 − qs3 + qs2 − q2s+ q2)(1− q)Ĥ(s)

=s
(
s5 − qs4 − (1− q)Ĥ(s)

(
s4 − q(s− 1)(s2 + q)

))
=s(s− 1)

(
s4 + (1− q)q(s2 + q)− (1− q)Ĥ(s)− 1

s− 1

(
s4 − q(s− 1)(s2 + q)

))

To find the probability generating transform PsΦ3(u+6) from equation (4.12)

explicitly, 4 more boundary conditions have to be solved. Here, we use a similar

argument as in Albrecher and Boxma [2005], by proving a sufficient condition

that (
s4 + (1− q)q(s2 + q)− (1− q)Ĥ(s)− 1

s− 1

(
s4 − q(s− 1)(s2 + q)

))

has exactly 4 roots in {s ∈ C : |s| < 1} under the safety loading condition (4.4).
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Let M(x) be a matrix in the form

M(s)
def
=


(1− q)Ĥ(s)− s q 0 0

(1− q)Ĥ(s) −s2 q 0

(1− q)Ĥ(s) 0 −s2 q

(1− q)Ĥ(s) 0 0 q − s

 (4.15)

then Det[M(s)] = s
(
s5 − qs4 − (1− q)Ĥ(s) (s4 − q(s− 1)(s2 + q))

)
,

Det [M(s)]

s− 1

∣∣∣∣
s=1

=

1 + q − q3 − (1− q)µ. The existence of roots is proved by the Rouche’s theorem

for the case of a matrix and the following lemma, see De Smit [1983] for example.

Lemma 4.6. If A = (aij) is a complex n× n-matrix, then Det(A) 6= 0 if one of

following condition holds

1. |aii| >
∑n

j=1,j 6=i |aij| for all i = 1, 2, · · · , n, or

2. A is indecomposable and |aii| ≥
∑n

j=1,j 6=i |aij| for all i = 1, 2, · · · , n, with

strictly inequality for at least one i

It is known that, for s ∈ {s ∈ C : |s| ≤ 1}, |Ĥ(s)| ≤ 1, |q− s| = (1− q) only if

s = 1. Lemma 4.6 shows Det [M(s)] 6= 0 for s 6= 1, hence

(
1

1− s
Det [M(s)]

)
6= 0

for s 6= 1, and

(
1

1− s
Det [M(s)]

)∣∣∣∣
s=1

= −(1 + q − q3 − (1− q)µH) 6= 0.

Theorem 4.7.
Det [M(s)]

1− s
= 0 has 5 roots in the complex plane {s ∈ C : |s| < 1}.

Proof of Theorem 4.7. Based on the observation that
1

1−s
q

1−s
q2

1−s
q3

(1−s)(1−q)

0 1 0 0

0 0 1 0

0 0 0 1

M(s) =


Ĥ(s)−s

1−s q(1 + s) q2(1 + s) q3

1−q

(1− q)Ĥ(s) −s2 q 0

(1− q)Ĥ(s) 0 −s2 q

(1− q)Ĥ(s) 0 0 q − s

 ,
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we introduce an L(λ, s) on [0, 1]× {s ∈ C : |s| ≤ 1}

L(λ, s) =


λ Ĥ(s)−s

1−s + (1− λ) λq(1 + s) λq2(1 + s) λ q3

1−q

(1− q)Ĥ(s) −s2 q 0

(1− q)Ĥ(s) 0 −s2 q

(1− q)Ĥ(s) 0 0 q − s

 .

Then Det [L(λ, s)] is analytical in {s ∈ C : |s| < 1} and continuous with re-

spect to (λ, s), Det [L(λ, s)] = λDet [L(1, s)] + (1 − λ)s4(q − s), Det [L(1, s)] =
1

(1− s)
Det [M(s)] for s 6= 1.

Following the idea of De Smit [1983], if for every λ ∈ [0, 1], Det [L(λ, s)] 6= 0 on

the boundary {s ∈ C : |s| = 1}, then the number of roots of Det [L(λ, s)] = 0 re-

mains constant. Taking their multiplicities into consideration, since Det [L(0, s)] =

−ξs4(s− q) has exactly 5 roots within the bounded regime {s ∈ C : |s| < 1}, our

conclusion can be proved.

Case 1 For s = 1, Det [L(λ, s)] = −λ(1+q−q3−(1−q)µH)−(1−λ)(1−q) < 0

for all λ ∈ [0, 1].

Case 2 For s 6= 1, |q − s| > (1− q) ≥ |(1− q)Ĥ(s)|
(1− s) −q(1− s) −q2(1− s) − q3(1−s)

1−q

0 1 0 0

0 0 1 0

0 0 0 1

L(λ, s)

=


(1− λ)(1− s) + λ

(
(1− q)Ĥ(s)− s

)
λq 0 0

(1− q)Ĥ(s) −s2 q 0

(1− q)Ĥ(s) 0 −s2 q

(1− q)Ĥ(s) 0 0 q − s


and |(1− λ)(1− s) + λ

(
(1− q)Ĥ(s)− s

)
| = |(1− λ) + λ

(
(1− q)Ĥ(s)

)
− s| ≥

1− (1− λ)− λ(1− q) = λq, once again, Lemma 4.6 says the matrix is invertible

and Det [L(λ, s)] 6= 0.

71



4. RISK ANALYSIS OF A BM SYSTEM IN DISCRETE RISK
MODELS

4.4 Discussions

As PsΦ3(u + 6) has an explicit form and we proved the existence of boundary

conditions, next step is to take an inverse transform and obtain a formulae for

Φ3(u), which still needs some tedious calculations in the future. Once Φ3(u) is

achieved, survival probabilities originating from other states are not difficult to

be derived.

This section serves as an attempt to seek ruin probabilities of a simple discrete

BM system, where ruin probabilities refer to the probability of not being able to

cover claims using fund reserved from a reinsurance company’s perspective. It is

true that even for a BM system with only three classes, although the model itself

does not seem difficult, the calculations are complex and tedious. There are also

several unrealistic assumptions, such as the premium levels taking exact values

1, 2, 3. It has been found that changing these values would further complicate all

the calculations. Above all, it is a model with everything being discrete, which is

not consistent with real life scenarios.

However, the main idea here is to understand the ruin theory and how a

renewal process is established. Also, the construction of a proper Markov chain

is crucial in the first place. Such thought will be held and passed on to the next

stage of research, and this time a continuous time framework will be considered,

which is slightly different when setting up the model.
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Chapter 5

Risk Analysis of a BM system in

continuous risk models

Having looked at pricing BM systems and the renewal aspect of ruin theory in pre-

vious chapters, we are now ready to move on to more realistic models with these

two concepts combined. This chapter will demonstrate two ways of incorporating

a BM feature into a classical risk model under a continuous time framework. First,

a Bayesian estimation would be adopted to reflect an overtime premium adjust-

ment according to historical claim frequencies. Dubey [1977] pioneered this idea,

whereas we further extended his model and interpret it in a practical manner.

Ruin probabilities were obtained in terms of a link with classical results. This

was a joint work with Dr. Bo Li and my supervisor Dr. Corina Constantinescu,

presented at several conferences and published at Insurance: Mathematics and

Economics in 2015. The second section in this chapter demonstrates an approach

via constructing a dependence structure between consecutive inter-arrival times

thus forming a regenerative process which was extensively supported by Prof.

Zbigniew Palmowski (University of Wroclaw, Poland). As a joint work with Prof.

Palmowski, Suhang Dai (PhD at University of Liverpool) and my supervisor, the

work has been presented at both local and international seminars and confer-

ences and the paper is expected to be submitted soon. In this piece of work we

presented some analytical calculations and also simulated ruin probabilities using

two different methods.
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5.1 Via a Bayesian estimation approach

Classical compound Poisson risk models consider the premium rate to be con-

stant. By adjusting the premium rate to the claims history, one can emulate

a Bonus-Malus system within the ruin theory context. One way to implement

such adjustment is by considering the Poisson parameter to be a continuous ran-

dom variable and use credibility theory arguments to adjust the premium rate a

posteriori. Depending on the defectiveness of this random variable, respectively

referred to as ’unforeseeable’ (defective) versus ’historical’ (non-defective) risks,

one obtains different relations between the ruin probability with constant versus

adjusted premium rate. A combination of these two kinds of risks also leads to

a relation between the two ruin probabilities, when the a posteriori estimator of

the number of claims is carefully chosen. This section will present main results

from the published paper Li et al. [2015].

5.1.1 Ruin probability under the ’unforeseeable’ stream

The ’Unforeseeable’ stream of risks are defined in the introduction 2.3.1. Let us

first consider the risk model

U(t) = u+ c

∫ t

0

λ̂(s)ds−
N(t)∑
k=0

Yk, t ≥ 0. (5.1)

under such stream. Risks under this stream normally do not have clear informa-

tion at present and we cannot expect claims to occur for sure. However, once

they broke out in a negative way, it would possibly be too late for an insurance

company to control the losses. Technically speaking, the expectation of Λ con-

ditioning on {Λ > 0} here is very large and practically it could be assumed to

be much more than the average number claims in the ’historical’ stream. Hence,

in the ’unforeseeable’ stream, there are two extremes. It could either be with no

claims at all or a burst of claims in the future. The significance of this model

is to control such kind of uncertainty based on observations as a single witness

of a claim in the ’unforeseeable’ stream would mean a dramatic increase in the

premium rate thus helping the insurer to control the losses.
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Moving into technical details, the main difference here from Dubey [1977] is

that Λ has a mix distribution with mass at {0}, which led us to consider the sets

{Λ = 0} and {Λ > 0} separately. And due to the fact that no claims are expected

to be attributed to the risk process on the set {Λ = 0} = {T1 =∞}, we have

P(τ <∞|U(0) = u) = P(τ <∞,Λ > 0|U(0) = u)

= P(τ <∞|U(0) = u,Λ > 0)P(Λ > 0). (5.2)

Thus, it is enough to perform the analysis under the measure P(·|Λ > 0) in this

case and derive the following expression for the underlying ruin probability.

Theorem 5.1. The probability of ruin of the adjusted surplus process (5.1) with

Poisson intensity Λ, a random variable with (2.5) is given by

ψL(u) = ψC(u)− pψC
(
u+ c ln

1

p

)
, (5.3)

where ψC denotes the ruin probability in a classical risk model with jump intensity

λ = 1.

Proof. Let Ti, i = 1, . . . represent the arrival time of the ith claim with the

convention that T0 = 0, and {cPi, i = 1, 2, · · · } denote the premium collected in-

between the (i− 1)th and the ith claim. Similar to Dubey Dubey [1977], we first

analyse the conditional distribution of the sequence of premiums {Pn, n ≥ 1}.
From the definition of the Bayesian estimator, we have for n ≥ 0

E[Λ|N(t) = n] =
E[Λ;N(t) = n]

P[N(t) = n]
=

∫
[0,∞)

λn+1e−λtP(Λ ∈ λ)∫
[0,∞)

λne−λtP(Λ ∈ λ)
=
−V (n+1)(t)

V (n)(t)
,

where V (x) = E(e−Λx). It follows that P1 = ln
(
V (0)
V (T1)

)
and

Pn+1 = ln{V (n)(Tn)/V (n)(Tn+1)}, n ≥ 1. (5.4)
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On the one hand, adopting very similar steps in Dubey [1977] yields for n ≥ 1,

P(Pn+1 ≥ x|Tn = y,Λ > 0) = e−x, n ≥ 1. (5.5)

On the other hand, regarding the distribution of P1, it could be first noticed

that V (x) is a continuous and decreasing function and V (x) ∈ (p, 1], since (2.5).

Hence, for x ≤ − ln p,

P(P1 ≥ x|Λ > 0) = P(V (T1) ≤ e−x|Λ > 0)

= P(T1 ≥ V −1(e−x)|Λ > 0) =

∫
(0,+∞)

e−λV
−1(e−x) · P(Λ ∈ dλ|Λ > 0)

=
1

1− p
(V (V −1(e−x))− p) =

e−x − p
1− p

.

That is to say, under the measure P(·|Λ > 0), the sequence {Pn, n ≥ 2} again

follows an exponential distribution with parameter 1 and P1 conforms to a trun-

cated exponential distribution.

Furthermore, the independence structure for the sequence of premiums still

holds under the measure P(·|Λ > 0). As presented in Dubey [1977], Recall (5.4)

and (5.5) and let us consider the joint Laplace transform of the premiums,

E
[
e−

∑n+1
i=1 siPi

∣∣∣Λ > 0
]

= E
[
E
(
e−

∑n+1
i=1 siPi

∣∣∣T1, T2, · · · , Tn,Λ > 0
)]

= E
{
E
[
e−

∑n
i=1 siPi · E

(
e−sn+1Pn+1

∣∣T1, T2, · · · , Tn,Λ > 0
)∣∣∣T1, T2, · · · , Tn,Λ > 0

]}
= E

{
E
[
e−

∑n
i=1 siPi · E

(
e−sn+1Pn+1

∣∣Tn,Λ > 0
)∣∣∣T1, T2, · · · , Tn,Λ > 0

]}
=

1

1 + sn+1

E
[
E
(
e−

∑n
i=1 siPi

∣∣∣T1, T2, · · · , Tn,Λ > 0
)]

=
1

1 + sn+1

E
[
e−

∑n
i=1 siPi

∣∣∣Λ > 0
]
,

and this finishes the proof of our desired independence structure of premiums.

As a result, conditioning on premium collected before the first claim and
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associate claim size, we have

P(τ <∞|U(0) = u,Λ > 0)

=

∫ ln(1/p)

0

1

1− p
e−t
(∫ u+ct

0

ψC(u+ ct− y)dF (y) + F (u+ ct)

)
dt,

where ψC(u) is the ruin probability of classical risk model with jump intensity 1,

which should satisfy

ψC(u) =

∫ ∞
0

e−t
(
ψC ∗ F (u+ ct) + F (u+ ct)

)
dt.

Eventually, following the identity above we are able to rewrite the formula for

the ruin probability from (5.2) as follows

ψL(u) =

∫ ∞
0

e−t
(
ψC ∗ F (u+ ct) + F (u+ ct)

)
dt

−
∫ ∞
ln(1/p)

e−t
(
ψC ∗ F (u+ ct) + F (u+ ct)

)
dt

= ψC(u)−
∫ ∞

0

e−(x+ln 1
p

)

(
ψC ∗ F (u+ c(x+ ln

1

p
)) + F (u+ c(x+ ln

1

p
)

)
dx

= ψC(u)− pψC(u+ c ln(1/p)).

This completes the proof.

Now we apply this formulae to calculate ruin probabilities for specific claim

distributions.

Example 5.2. (As in Dubey [1977]) Yi follows an exponential distribution with

E(Yk) = 1. A classical risk model (with jump intensity 1) gives an explicit ruin

function, ψC(u) = 1
c
exp

(
− c−1

c
u
)
. Substituting this into (5.3) yields,

ψL(u) =
1

c
e−

c−1
c
u − p

c
e−

c−1
c (u+c ln 1

p) = (1− pc)ψC(u).

Example 5.3. (As in Dubey [1977]) Yk = 1. An approximation has been shown

in classical models, ψC(u) ∼ c−1
1+cr−ce

−ru, where r is the positive solution to ex =
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1 + cx. Applying (5.3) with the above identity also verifies our result.

ψL(u) ∼ c− 1

1 + cr − c
e−ru − p c− 1

1 + cr − c
e−r(u+c ln 1

p) ∼ (1− pcr+1)ψC(u),

when u→∞ with r the same as above.

Example 5.4. Yk ∼ Gamma(m
n
, α) with density function fY (x) = α

m
n

Γ(mn )
x−

m
n e−αx, x ≥

0. It is worth emphasising that m
n

taking integer values also covers the case of

Erlang distributed claims. Employing recent results from Constantinescu et al.

[2015a], where ψC(u) = 1−e−αuu 1
n
−1
∑m+n−1

k=0 mkE 1
n
, 1
n

(
sku

1
n

)
, the required ruin

probability is demonstrated in the following equations.

ψL(u) = 1− p− e−αuu
1
n
−1

m+n−1∑
k=0

mkE 1
n
, 1
n

(
sku

1
n

)
+pe−α(u+c ln 1

p)
(
u+ c ln

1

p

) 1
n
−1 m+n−1∑

k=0

mkE 1
n
, 1
n

(
sk

(
u+ c ln

1

p

) 1
n

)
,

where E 1
n
, 1
n

(
sku

1
n

)
=
∑∞

i=0

(
sku

1
n

)i
Γ( k+1

n )
, mk is a constant to be determined, and sk

solves the equation cxm+n − (cα + 1)xm + α
m
n = 0.

All these examples calculate ruin probabilities for an ’unforeseeable’ risk

stream through connection with classical results. We will derive a similar ap-

proach to obtain ruin probabilities while both risk streams are taken into account

in the next subsection.

5.1.2 Ruin Probability with both the ’historical’ stream

and the ’unforeseeable’ stream

We are further proposing a third estimator for Λ by combining the two scenarios

indicating a consideration for both kinds of risks.

λ̂(t) = E[Λ(1) + Λ(2)|N(t)], (5.6)

where P(Λ(1) = 0) = 0 and P(Λ(2) = 0) = p > 0.
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This combined model actually describes the true situation in an insurance

company. When signing a policy, the insurer decides which stream to assign a

contract to. For the commonly known risks, this model simply adjust the pre-

mium rate according to observed claims using parameters that are estimated from

historical data. For those unknown or innovative risks, since not enough infor-

mation is known at the beginning, it is reasonable to set a lower base premium

until the first claim appears. Then the premium would see a dramatic increase

as a big amount of subsequent claims are expected to burst. Examples of such

unknown risks could be the launch of autonomous vehicles, the consumption of

genetically modified organism (GMO) food, or maybe the use of hydrogen vehi-

cles in the future etc. Our model would deal with this kind of uncertainty and the

use of dynamical adjustment of premiums would help to alleviate sudden attacks

on the insurance company. The main reason for distinguishing between the two

risk streams is that we could set different parameters for premium adjustment.

For the ’unforeseeable’ stream, premiums are expected to be very sensitive to the

number of claims because once a claim occurs, many more are expected to follow.

Hence, one reasonable assumption is that E[Λ(1)] < E[Λ(2)|Λ(2) > 0]. Note this is

a practical assumption that does not affect the results in this work (not needed

in the sequel).

Correspondingly, denoting the respective claim sizes by Y (1) and Y (2) and

claim counts by N (1) and N (2), then the risk surplus process considered in this

section satisfies the following equation

dU(t) = cλ̂(t)dt− dS(1)(t)− dS(2)(t)

= cλ̂(t)dt− dS(t). (5.7)

where S(i)(t) =
∑N(i)(t)

j=1 Y
(i)
j , i = 1, 2, S(t) = S(1)(t) + S(2)(t) =

∑N(t)
k=1 Yk;

N(t) = N (1)(t) + N (2)(t) and λ̂(t) as defined in (5.6). Let F and G denote

the common distribution function of Y (1) and Y (2) respectively. We propose the

following results for the underlying risk surplus process.

Lemma 5.5. Conditioning on {Λ(1) + Λ(2) = λ}, N(·) is a Poisson process with
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intensity λ. Conditioning on
{

Λ(1)

Λ(1)+Λ(2) = θ
}

, the claim sizes are i.i.d with a

common distribution function Hθ(y)
def
= θF (y) + (1− θ)G(y), where F and G are

the distribution functions for Y (1) and Y (2) respectively.

Lemma 5.6. If (Λ(1) +Λ(2)) is independent from
(

Λ(1)

Λ(1)+Λ(2)

)
under P(·|Λ(2) > 0),

then for a given θ ∈ (0, 1], under P
(
·
∣∣∣ Λ(1)

Λ(1)+Λ(2) = θ
)

, Model (5.7) could be reduced

to Case 1 in Dubey [1977] model.

Both proofs could be seen from Appendix B. Generally speaking, there is a

strong dependence between the sequence of claim sizes and the sequence of claim

times. However, under the assumption of Lemma 5.6, we claim that for any fixed

θ ∈ (0, 1], under P
(
·
∣∣∣ Λ(1)

Λ(1)+Λ(2) = θ
)

, the risk surplus process of this extended

model has the same law as

dUθ(t) = cλ̂(t)dt− d
N(t)∑
k=1

Y θ
k ,

which has a mixed Poisson process N(·) and i.i.d claim sizes having common

distribution function Hθ(y). Since the random variable N is positive, the under-

lying conditioned surplus process is then reduced to the same one as Dubey [1977].

Analysing the assumption of Lemma 5.6, it has been found that this indepen-

dence property is satisfied if and only if the two variables have Gamma distribu-

tions with the same scale parameter. (See Lukacs’s proportion-sum independence

theorem in Lukacs [1955].) More precisely, we propose the following lemma whose

proof is presented in Appendix as well.

Lemma 5.7. If Λ(1) ∼ Γ(α, λ0) and Λ(2)|Λ(2)>0 ∼ Γ(β, λ0) for some α, β, λ0 > 0,

then we have

(
Λ(1) + Λ(2)

)
|Λ(2)>0 ∼ Γ(α + β, λ0),

(
Λ(1)

Λ(1) + Λ(2)

)∣∣∣∣
Λ(2)>0

∼ Beta(α, β),

and they are independent.

In other words, we found particular distribution functions for Λ(1) and Λ(2)|Λ(2)>0

in order to ensure the desired condition satisfied. Additionally, a specific distri-
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bution for
(

Λ(1)

Λ(1)+Λ(2)

)∣∣∣
Λ(2)>0

could also be determined which is a Beta in this case.

In the following part, we explain two possible methods to calculate the ruin

probability. To simplify notations, we denote Θ = Λ(1)

Λ(1)+Λ(2) in the sequel.

First of all, according to previous discussions, we know that when both Λ(1)

and Λ(2)|Λ(2)>0 are Gamma(λ0, α) and Gamma(λ0, β), respectively. Θ|Θ6=1 is

Beta(α, β) distributed (Lemma 5.7). In addition, for a fixed θ ∈ (0, 1], condition-

ing on {Θ = θ}, the surplus process can be reduced to the one in Dubey [1977]

where the conditional ruin probability (5.2) coincides with that of the classical

risk process with parameter (c, 1, Hθ(·)) (Lemma 5.5, 5.6). Hence, the ruin prob-

ability for the underlying risk surplus process depends on Θ and could be derived

as,

ψM(u) = E(ψHΘ (u))

=
1− p
B(α, β)

∫
(0,1)

ψHθ (u)θα−1(1− θ)β−1 dθ + p · ψH1 (u)

=
1− p
B(α, β)

∫
(0,1)

ψCθ (u)θα−1(1− θ)β−1 dθ + p · ψC1 (u).

where ψCθ (u) is the ruin probability in a classical risk model with (c, 1, Hθ(·))
conditioning on θ,

ψCθ (u) = P

(
τ <∞

∣∣∣∣U(0) = u,
Λ(1)

Λ(1) + Λ(2)
= θ

)
. (5.8)

Firstly, notice here that ψH1 (u) denotes the ruin probability when Θ = 1, i.e.,

on the set {Λ(2) = 0}. This clearly reduces the model to Case 1 in Dubey [1977]

which means ψH(u) = ψC(u) (Recall ψC(u) from Theorem 5.1). Secondly, since

ψCθ (u) is dependent on the claim size distribution Hθ(·), the ruin probability is

only possible to be calculated for a specific distribution of claims.

However, even for a mixture of two exponential distributions where we could

employ the result from Constantinescu and Lo [2013], due to computational com-

plexity, it is not trivial to obtain an explicit formula for the probability of ruin.
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Alternatively, we found that when the Pollaczek-Khinchin formula is em-

ployed, for θ ∈ (0, 1], the survival probability can be expressed as

1− ψMθ (u) =

{
(1− µθ

c
)
∑

n≥0

(
µθ
c

)n
H∗ne,θ(u) if µθ < c,

0 if µθ ≥ c,
(5.9)

where µθ = θµF + (1 − θ)µG, He,θ(dy) = 1
µθ

(1 −Hθ(y)) dy = µ−1
θ Hθ(y) dy is the

integrated tail distribution of Hθ, and H∗ne,θ(u) is the n-th convolution of He,θ.

Theorem 5.8. If max{µF , µG} < c, then we obtain, for u > 0,

ψMΘ (u)|Θ6=1

= 1− (1− η)
∑

l≥0,m≥0

ηlρm
(
m+ l

l

)
B(l + 1 + α,m+ β)

B(α, β)
F ∗le ∗G∗me (u)

−(1− ρ)
∑

l≥0,m≥0

ηlρm
(
m+ l

l

)
B(l + α,m+ 1 + β)

B(α, β)
F ∗le ∗G∗me (u) (5.10)

where η = µF/c , ρ = µG/c, and Fe(y) = 1
µF

∫ y
0

(1−F (x)) dx, Ge(y) = 1
µG

∫ y
0

(1−
G(x)) dx.

This proof is to be seen in Appendix B. If we further introduce F γ(t, u) and

Gγ(t, u) as follows, for t ∈ (0, 1) and γ > 0,

F γ(t, u) =
∑
l≥0

(
−γ
l

)
(−tη)l (Fe)

∗l (u), Gγ(t, u) =
∑
l≥0

(
−γ
l

)
(−tρ)l (Ge)

∗l (u),(5.11)

Together with the notations introduced above, the ruin probability could be

rewritten in the following way which is proved in Appendix B,

Corollary 5.9. If max{µF , µG} < c, then for u > 0,

ψMΘ (u)|Θ 6=1 = 1− α(1− η)

∫ 1

0

(1− t)α+β−1

∫ u

0

Fα+1(t, u− y)Gβ(t, dy) dt

−β(1− ρ)

∫ 1

0

(1− t)α+β−1

∫ u

0

Fα(t, u− y)Gβ+1(t, dy) dt.(5.12)
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For a better illustration of the result, we consider exponential distributions

with different parameters.

Corollary 5.10. If F ∼ exp(ζ1), G ∼ exp(ζ2) and α, β are integers, the proba-

bility of ruin could be shown by the following formulae.

ψMΘ (u)|Θ 6=1 = 1− α(1− η)

[
1

α + β
+ e−ζ1u

β∑
j=1

(
β

j

)
(ρζ2)j

α+1∑
i=1

(
α + 1

i

)
(ηζ1)i

ui+j−1

Γ(i+ j)

×
∫ 1

0

(1− t)α+β−1ti+jeζ1tηuMX(i,j)(−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u) dt

]
−β(1− ρ)

[
1

α + β
+ e−ζ1u

β+1∑
j=1

(
β + 1

j

)
(ρζ2)j

α∑
i=1

(
α

i

)
(ηζ1)i

ui+j−1

Γ(i+ j)

×
∫ 1

0

(1− t)α+β−1ti+jeζ1tηuMX(i,j)(−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u) dt

]
,(5.13)

where 1F1(·) is a hyper-geometric function with order 1,1 whose definition is given

as follows.

1F1(a; b; z) =
∞∑
k=0

(a)k
(b)k

zk

k!
,

where (c)k = c(c+ 1) . . . (c+ k − 1) with (c)0 = 1.

Detailed proof is available in Appendix B.

Remark 5.11. Alternatively, we could take the Laplace Transform of (5.12) and

express the result as

ψ̂MΘ (s)|Θ6=1 =
1

s
− α(1− η)

∫ 1

0

(1− t)α+β−1

(
1− tηζ1

ζ1 + s

)−(α+1)(
1− tρζ2

ζ2 + s

)−β
dt

−β(1− ρ)

∫ 1

0

(1− t)α+β−1

(
1− tηζ1

ζ1 + s

)−α(
1− tρζ2

ζ2 + s

)−(β+1)

dt.
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5.2 Via a dependence structure

In this section, as a connection to a Bonus-only system (Figure 2.1), we analyse

the ruin probability for the Cramér renewal risk process with consideration of

an inter-arrival time depending on the number of claims that have come within

a past fixed time-window. It is naturally believed that the use of BM system

would possibly help reduce the solvency issue meaning decreasing ruin proba-

bilities. This part of the thesis aims to test this belief based. This adjusted

model could actually be explained through a regenerative structure. Asymptotic

results of ruin probabilities for the Cramér case of the claim distributions will be

discussed, while those for the heavy-tailed and intermediate case as defined by

Palmowski and Zwart [2007] will be omitted in this thesis, but could be found

in the paper Constantinescu et al. [2015b]. The focus here will lie in simulation

methods as well as the construction of a Markov additive process. The former one

will focus on overcoming the drawbacks of a crude Monte Carlo simulation and

using importance sampling method to simulate infinite time ruin probabilities,

whereas the latter one will be a further extension which helps to simulate ruin

probabilities in an alternative way. Additionally, the use of integral equations will

be demonstrated in Subsection 5.2.6, although no explicit solutions are obtained.

5.2.1 The model

Before diving into details, recall the collective renewal risk model from (1.3). In

this section, for notation purposes we redefine the ruin probability as follows.

ψ(x) = P(T (x) <∞ | U(0) = x),

where U(0) = x ≥ 0 is the initial capital in the portfolio and

T (x) = inf {t ≥ 0 : U(t) < 0 | U(0) = x}

is the time of ruin for an initial surplus x.

To be more specific, let {τk}k≥0 be the sequence of inter-claim times. In this

section we will analyse the model when the distribution Fτk of τk depends on the
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number of claims that appeared within a fixed time window ξ as follows,

P(τk ≤ x) = Fτk

(
x,N

(
k−1∑
i=0

τi

)
−N

(
k−1∑
i=0

τi − ξ

))
, k = 1, 2, . . .

For k = 0, τ0 denotes the time waited until the first claim. Then

Wk =
k−1∑
i=0

τi, k = 1, 2 . . .

represents the kth arrival time and W0 = 0. The number of arrivals up to time t

is given by

Nt =
∞∑
k=1

1(Wk ≤ t).

Similar to the ordinary renewal process Asmussen and Albrecher [2010], no claims

are assumed at W0 = 0, but notice here that the inter-arrival time starts from

τ0. It is true that when the dependence structure is introduced, a direct use of

renewal theory is no longer applicable as clearly {Wk}k≥0 is not a renewal process.

However, taking a second look, we found that even though it is not renewal at

each jump time, the process in fact renews after several jumps and we call it a

’regeneration’. We define the regenerative epochs for our model here by

Definition 5.12. Regeneration epochs Tk+1, for k = 0, 1, . . . , l = 1, 2, . . . are

defined as

Tk+1 = min {Wl+1 ≥ Tk : N (Wl)−N (Wl − ξ) = 0} ,

= min

{
l∑

i=0

τi ≥ Tk : N

(
l−1∑
i=0

τi

)
−N

(
l−1∑
i=0

τi − ξ

)
= 0

}

with T0 = 0.

A rigorous definition of a regenerative process can be found in the preliminaries

Definition 1.6.

Therefore, it is true that the risk process U(t) is regenerative, with regener-

ation epochs Tk being the arrival times with zero number of arrivals within the

last time window with length ξ. In this case, P(τk ≤ x) = Fτk(x). Notice that we
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define the regenerative epochs in such a way that the concern only lies in whether

there are claims or not in the past fixed window ξ rather than how many of them.

The asymptotic results derived in Palmowski and Zwart [2010, 2007], where a

general regenerative framework was studied, could then be applied to find the

asymptotics of the ruin probability under Cramér assumptions.

Moving into details, let us consider the claim surplus process denoted by

S(t) =

N(t)∑
k=1

Yk − c t,

and

X1 = S(T1), M1 = sup
0≤t≤T1

S(t), M = sup
t≥0

S(t). (5.14)

Equivalently, our purpose is to find ψ(u) = P(M > u).

The simplest case that we focus on is when we choose an inter arrival time

from two distributions of random variables τ and τ̃ . τ corresponds to the situation

where in a past time-window of length ξ there is at least one claim. Otherwise

we assign τ̃ as the inter-arrival time. Hence,

P(τk ≤ x) =

{
P(τ ≤ x), if N(Wk)−N(Wk − ξ) ≥ 1;

P(τ̃ ≤ x), otherwise.

k = 1, 2, . . .. It is a natural choice since usually in and insurance company a long

”silence” translates into a different behaviour of the arrival process just right

after it. To rephrase it, our current model incorporates a dependence structure

between two consecutive inter-arrival times. Whenever an inter-arrival time ex-

ceeds ξ, the next one would have a distribution as τ̃ . Otherwise, it conforms to

τ . Without loss of generality, we assume P(τ0 ≤ x) = P(τ̃ ≤ x).

More interestingly, such model set-up would fit into a basic Bonus system, i.e.,

a system where policyholders enjoy discounts when they do not file claims for a

certain period (but with no penalties). A detailed illustration was given in the

introduction 2.3.2. Just to recall, the key idea is that the change in premium rate
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Figure 5.1: A sample path of the regenerative process

could be equivalently transformed to an alteration in inter-arrival times. Hence,

a sample path of the claim surplus process we will be working with is visually

described by Figure 5.1, assuming starting from τ̃ , up to the first regenerative

epoch. Here T1 is the first time when the last inter-claim time is larger than ξ

and then the process regenerates so on and so forth. It is obvious that the process

renews at each regenerative epoch.

Recall from (5.14) that X1 is the end value at the first regenerative epoch.

Then it is not difficult to observe that it has the same law as

X1
d
= (Y0 − τ̃) + I{τ̃≤ξ}

(
N−1∑
k=1

(Yk − τ ξk ) +
(
YN − τ ξN

))
, (5.15)

where N is a geometric random variable with parameter p = P(τ > ξ). Here

P(N = k) = (1− p)k−1p, k = 1, 2 . . . and τ≤ξk = E[τk|τk ≤ ξ], τ>ξk = E[τk|τk > ξ].

5.2.2 Asymptotic results

A review of the extension of the classical Cramér case from random walks to

perturbed random walks and regenerative processes can be found in Palmowski

and Zwart [2007]. In this subsection, we directly apply their theorems as our

model is described by a specific regenerative process.
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Theorem 5.13 (as in Palmowski and Zwart [2007]). Assume that there exists a

solution κ > 0 to the equation

E[eκX1 ] = 1 such that m = E[X1eκX1 ] <∞.

Assume furthermore that X1 is non-lattice and that E[eκM1 ] <∞. Then

ψ(x) ∼ Ke−κx

with K = 1
κm

E[eκM1−eκ(M+X1);M1 > M+X1] for independent M of X1 and M1.

Then K is bounded from above by

K̄ = E[eκM1 ]/(κm), (5.16)

and even further its upper limited is

K̃ = E[eκ(X1+T1)]/(κm). (5.17)

Note that by (5.15) the Cramér adjustment coefficient κ > 0 solves

E[eκX1 ] = p̃E[eκYE[e−κτ̃ |τ̃ > ξ] + q̃E[eκY ]E[e−κτ̃ |τ̃ ≤ ξ] · E[eκY ]E[e−κτ |τ > ξ]

·
∞∑
k=1

p(1− p)k−1
[
E[eκY ]E[e−κτ |τ ≤ ξ]

]k−1

= pq̃
(E[eκY ])2E[e−κτ |τ > ξ]E[e−κτ̃ |τ̃ ≤ ξ]

1− (1− p)E[eκY ]E[e−κτ |τ ≤ ξ]
+ p̃E[eκY ]E[e−κτ̃ |τ̃ > ξ]

= 1, (5.18)

where p = P(τ > ξ), q = 1−p = P(τ ≤ ξ) and p̃ = P(τ̃ > ξ), q̃ = 1−p̃ = P(τ̃ ≤ ξ).

Let us define the 1m.g.f E[eθX1 ] as

ϕ(θ) = pq̃
(E[eθY ])2E[e−θτ |τ > ξ]E[e−θτ̃ |τ̃ ≤ ξ]

1− (1− p)E[eθY ]E[e−θτ |τ ≤ ξ]
+ p̃E[eθY ]E[e−θτ̃ |τ̃ > ξ] (5.19)

1Here the m.g.f exists since it was assumed that E[eκM1 ] <∞ and E[eκX1 ] ≤ E[eκM1 ] <∞
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Assume there exists a κ such that

ϕ(κ) = 1. (5.20)

At the same time, we can also identify the constant K̃:

K̃ = E
[
eκ(X1+T1)

]
/κm = E

[
eκ
∑N(T1)
i=1 Yi

]
/κm

=
1

κm

∞∑
n=1

(
E
[
eκY
])n P(N = n)

=

(
P(τ̃ > ξ)E[eκY ] + P(τ̃ ≤ ξ)

∞∑
n=2

(
E[eκY ]

)n P(N = n)

)
1

κm

=

(
P(τ̃ > ξ)E[eκY ] +

P(τ̃ ≤ ξ)P(τ > ξ)(E[eκY ])2

1− P(τ ≤ ξ)E[eκY ]

)
1

κm
. (5.21)

under assumption that

m = ϕ′k(κ) <∞.

Remark 5.14. In addition, according to this, one could obtain a net profit con-

dition (NPC) via (5.15). Like the usual NPC, we need the increment of such

’random walk’ to be negative. One obvious reason is that if it were positive, the

process would drift to infinity thus resulting in a ruin probability equal to 1. Here,

since the underlying process renews at each regenerative epoch, we must have

E[X1] = P(τ̃ ≤ ξ)
[
E[Y ]− E[τ>ξ] + E[N − 1](E[Y ]− E[τ≤ξ])

]
+(E[Y ]−E[τ̃ ]) < 0.

Example 5.15. A special example of exponentially distributed τ ∼ Exp(λ1),

τ̃ ∼ Exp(λ2) and Y ∼ Exp(β) would lead to

ϕ(θ) =
λ1λ2

(
e−λ1ξ − e−λ2ξ

) B̂2(θ)e−θξ

(λ1+θ)(λ2+θ)
+ λ2

λ2+θ
B̂(θ)e−(λ2+θ)ξ

1− λ1
λ1+θ

(1− e−(λ1+θ)ξ) B̂(θ)
(5.22)

=

[
λ1λ2

(
e−λ1ξ − e−λ2ξ

) β2e−ξθ

(β − θ)2(λ1 + θ)(λ2 + θ)
+

λ2

λ2 + θ

β

β − θ
e−(λ2+θ)ξ

]
÷[

1− λ1

λ1 + θ

(
1− e−(λ1+θ)ξ

) β

β − θ

]
, (5.23)
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and

K̃ =
β

β − κ
· βe−λ1ξ − κe−λ2ξ

βe−λ1ξ − κ
.

That gives

ψ(x) ∼ β

β − κ
· βe−λ1ξ − κe−λ2ξ

βe−λ1ξ − κ
e−κx.

On the other hand, since

E[τ≤ξ] = E[τ |τ ≤ ξ] =

1
λ1
−
(
ξ + 1

λ1

)
e−λ1ξ

1− e−λ1ξ
;

E[τ>ξ] = E[τ |τ > ξ] = ξ +
1

λ1

,

it will eventually lead to(
1

β
− 1

λ1

)
(1− e−λ2ξ) +

(
1

β
− 1

λ2

)
eλ1ξ < 0, (5.24)

where λ1, λ2, β, ξ ≥ 0 and E[Y ] = 1
β

.

Furthermore, as a connection with Subsection 5.2.3 and 5.2.5, it is worth

mentioning here that the above identity should coincide with(
1

β
− 1

λ1

)
π1 +

(
1

β
− 1

λ2

)
π2 < 0, (5.25)

where

π1 =
1− e−λ2ξ

1− e−λ2ξ + e−λ1ξ
; (5.26)

π2 =
e−λ1ξ

1− e−λ1ξ − e−λ2ξ
, (5.27)

denoting the steady state distribution in the Markovian environment of τ and τ̃ ,

which is clearly defined in Section 5.2.5. That is to say, when the process becomes

stationary, the probability to have an inter-arrival time less or equal to ξ (State 1)

would be π1 while that for it being larger than ξ (State 2) is represented by π2 = 1−
π1. The graph (Figure 5.2) below shows an example of this distribution. It could

be seen that the probability for State 1 in our case is monotonically increasing with
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ξ. The blue line represents the ratio of probabilities between State 1 and State 2

thus having the same monotonicity as the green line. This will be analysed further

via simulation.
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Figure 5.2: Steady State distribution when λ1 = 0.2, λ2 = 10

5.2.3 Monte Carlo Simulation

In this subsection, we show some results via a crude Monte Carlo simulation

method. The key idea is to simulate the process according to the model setting

and simply count the number of times it gets to ruin. Due to the nature of this

approach, a ’maximum’ time should be set beforehand, which means we are in

fact simulating a finite time ruin probability. However, the drawback of it may

be ignored for now as long as we are not getting a lot of zeros.

Our first task is to compare the simulated results with a classical analytical

ruin probability. Hence, for the simplest case of exponentially distributed claim

costs, we plotted both the classic ruin probabilities and our simulated ones on

the same graph as shown below (Figure 5.3).

Solid lines show classical ruin probabilities (infinite-time) as a function of

initial capital u, and each of them denotes an individual choice of Poisson param-

eters (λ1 = 0.15, λ2 = 0.45) with the middle one being the average of the other
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Figure 5.3: Classic ruin probabilities vs our model (Exponential claims)

two (λ = 0.3). It is clear that the larger the Poisson parameter, the higher is

the ruin probability. On the other hand, those dotted lines are simulated results

from our risk model with dependence for the same given pair of Poisson param-

eters λ1 = 0.15 and λ2 = 0.45. The four layers here correspond to four different

choices of values for ξ, i.e., ξ = 1, ξ = 3, ξ = 4.44, ξ = 20. If ξ → 0, the simulated

ruin probability (in fact finite-time) tends to a classical case with the lower claim

arrival intensities (λ1 here), which explains the blue dotted line lying around the

dark blue solid line. On the contrary, if ξ →∞, simulated ruin probabilities ap-

proach the other end. This phenomenon is also theoretically supported by (5.45)

and (5.46) if either these limits (ξ → 0 and ξ →∞) is taken. This then triggered

us to search for a ξ such that the simulated ruin probability coincides with a

classical one. Let us see an example here, if ξ =
1
λ1

+ 1
λ2

2
= 4.44 based on the

parameters we chose in Figure 5.3. That implies the choice of our fixed window

is the average length of the two kinds of inter-arrival times. However, as can be

seen from Figure 5.3, the dotted line with ξ = 3 lies closer than the one with

ξ = 4.44 to the red solid line. This suggests that the choice of ξ will influence

the simulated ruin probabilities and thus the comparison with a classical one. It

is also very likely that there exists a ξ such that our simulated ruin probabilities

concur with the classic one.
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It could be concluded that under two given parameters for Poisson intensity,

simulated finite ruin probabilities in our model lie between two extreme but have

many possibilities in-between. The comparison depends extensively on the value

of ξ. These results also confirmed Theorem 5.13 that the tail of the ruin function

in our case still has an exponential decay and ξ is strongly related to the solution

for κ. In other words, when the dependence is introduced, it is not for sure that

ruin probabilities would see an improvement.

While the first half of the Monte Carlo simulation looked at the influence of ξ

on simulated ruin probabilities, the second step is to see the effects of claim sizes.

Typical representation of light-tailed and heavy-tailed distributions - Exponen-

tial and Pareto - were assumed for claim severities and inter arrival times were

switching between two different exponentially distributed random variables with

parameters λ1 and λ2. Two cases were simulated - either λ1 > λ2 or λ1 < λ2. It

is expected that the effects from claim severity distributions on infinite time ruin

probabilities would be tiny as they normally affects more severely in the deficit

at ruin. Here, since we simulate finite-time ruin probabilities, we are curious

whether the same conclusion can be drawn.

Figure 5.4 displays the two cases for Exponential claims while Figure 5.5 does

that for Pareto claims. All of these four graphs demonstrate a decreasing trend for

simulated finite-time ruin probabilities over the amount of initial capital, which

is as expected. In general, the differences between ruin probabilities for Expo-

nentially distributed claim costs and those for Pareto ones are not significant. To

be more precise, the exact values of these disparities are plotted in Figure 5.6.

The color bar shows the scale of the graph, and yellow represents values around

0. Indeed, the differences are very small. Furthermore, it can be seen that the

disparities behave differently when λ1 < λ2 and when λ1 > λ2. For the former

case, ruin probabilities for Pareto claims tend to be smaller than those for Ex-

ponential claims when the initial capital is not little, whereas there seems to be

no distinction between the two claim distributions in the latter case. One way to

explain this is that claim distributions would have more impact on the deficit at

ruin because the claim frequency is not affected, the same as in an infinite-time
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(a) Ruin probabilities when λ1 =
0.45, λ2 = 0.15, β = 0.5

(b) Ruin probabilities when λ1 =
0.15, λ2 = 0.45, β = 0.5

Figure 5.4: Examples: Ruin probabilities for Exponential Claims

ruin case. However, this is just a sample simulated result from which we cannot

draw a general conclusion.

On the other hand, it could be seen from the projections on the y−z plane that

the magnitude of λ1 and λ2 causes different monotonicity of ruin probabilities with

respect to the fixed window ξ. If λ1 > λ2, the probability of ruin is monotonically

increasing with the increase of ξ. If λ1 < λ2, it appears to be the opposite

monotonicity. This conclusion for monotonicity is true for both models with

heavy-tailed claims and those with light-tailed ones. Such behaviour could also
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(a) Ruin probabilities when λ1 =
0.45, λ2 = 0.15, α = 2

(b) Ruin probabilities when λ1 =
0.15, λ2 = 0.45, α = 2

Figure 5.5: Examples: Ruin probabilities for Pareto claims

be theoretically verified if we look at the stationary distribution of the Markov

Chain created by the exchange of inter claim times given by (5.26) and (5.27).

The increase of ξ will raise the probability of getting an inter-claim time smaller

than ξ at steady state, i.e.,

ξ ↑ ⇒ π1 ↑, π2 ↓ .

And that directly leads to an increasing number of τ . The ruin probability is
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Figure 5.6: Differences in ruin probabilities using two claim distributions

associated with

ST =

N1(T )+N2(T )∑
k=1

Yk −
N1(T )∑
i=1

τ −
N2(T )∑
j=1

τ̃

for any fixed time T , where N1(T ) and N2(T ) denote the number of times τ and

τ̃ appearing in the process. Notice that
∑N1(T )

i=1 τ +
∑N2(T )

j=1 τ̃ = T stays the same

even though the value of ξ alters. So now the magnitude of ST depends only

on N1(T ) + N2(T ) and the distribution of i.i.d Yk. The change of ξ alters only

the former value. Intuitively, a rise in π1 indicates an increase in N1(T ) and a

decrease in N2(T ) whose amount is denoted by ∆N1 and ∆N2 respectively. Since

the sum of τs and τ̃s is kept constant, we have

|∆N1|E[τ ] = |∆N2|E[τ̃ ]∣∣∣∣∆N1

∆N2

∣∣∣∣ =
E[τ̃ ]

E[τ ]

If λ1 > λ2, then E[τ ] < E[τ̃ ], which implies
∣∣∣∆N1

∆N2

∣∣∣ > 1. That is to say, the increase

of N1(T ) is more than the drop in N2(T ) so that N1(T ) +N2(T ) sees a rise in the

end. Thus, it leads to a higher ruin probability. On the contrary, when λ1 < λ2,

i.e., E[τ ] > E[τ̃ ], as ξ goes up, ruin probabilities would experience a monotone

decay. This reasoning is visually reflected in Figure 5.4-5.5 shown above and it

could also be noticed that the distribution of claims does not affect such mono-

tonicity.
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Therefore, these results suggest that when λ1 < λ2, the larger choice of the

fixed window ξ, the smaller the ruin probability will be, and vice versa. On

the contrary, when λ1 > λ2, the larger choice of the fixed window ξ, the larger

the ruin probability will be, and vice versa. In fact λ1 < λ2 was mentioned in

the introduction (Figure 2.1) to be an assumption for a Bonus system. Such

observation suggests that if the insurer opts to investigate claims histories less

frequently, i.e., choosing a larger ξ, the ruin probability tends to be smaller. This

potentially implies a smaller ruin probability if no premium discount is offered to

policyholders. It seems that to minimise an insurer’s probability of ruin probably

relies more on premium incomes. The use of Bonus systems may not help in

decreasing such probabilities. The case of λ1 > λ2 could be referred to as a Malus

system which is unusual in the real world which leads to an opposite conclusion

to the other case. This again addresses the significance of premium income to an

insurer. In a system with purely maluses, the ruin probability could be reduced

if the insurer reviews the policyholders’ behaviours more frequently indicating

more premium incomes.

5.2.4 Importance sampling and change of measure

One cause of the drawback of using the crude Monte Carlo simulation is that ruin

probability tends to zero very quickly, when the initial capital u is large. This

has been explained by the Cramér theorem that asymptotically ruin probability

has an exponentially decay with respect to u. The other reason of not simply

adopting a crude Monte Carlo simulation is that we are anyway trying to simulate

an infinite time ruin probability under a finite time horizon. In order to overcome

this effect, the importance sampling technique has been brought in. The key idea

behind is to find an equivalent probability measure under which the process has

a probability of ruin equal to 1.

Let us start from something trivial. For the moment, we only consider the

”ruin probability” when the time between regenerative epochs is ignored. In other

words, we now look at our process from a macro perspective and it is renewed
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at each regenerative time epoch, so we omit the situations where ruin happens

within these intervals. We refer to it as the ”macro” process which coincides with

a classical risk process and its corresponding ruin probability as the ”macro” ruin

probability in the sequel. We can then define the macro ruin time as

T ∗(u) = inf {Ti ≥ 0 : U(Ti) < 0, i = 1, . . . | U(0) = u}. (5.28)

Consequently, the macro ruin probability denoted by ψ∗(u) = P(T ∗(u) <∞ |
U(0) = u) should be smaller or equal than the ruin probability associated with

our actual risk process ψ(u). But for illustration purposes, it is worth covering

the nature of change of measure under the framework of this macro process first

before we dig into more complex scenarios.

Theorem 5.16. If we do the change of measure as shown below,

Q(Y ∈ dy) =
P(Y ∈ dy)eκY

E[eκY ]
;

Q(τ≤ξ ∈ dx) =
P(τ ∈ dx)e−κx∫ ξ
0

e−κxP(τ ∈ dx)
, x ∈ (0, ξ];

Q(τ>ξ ∈ dx) =
P(τ ∈ dx)e−κx∫∞
ξ

e−κxP(τ ∈ dx)
, x ∈ (ξ,∞),

with τ̃≤ξ and τ̃>ξ defined in a similar way, then we could establish the same

relation for m.g.f as in the classical case,

ϕQ(θ) = ϕ(θ + κ)/ϕ(κ) = ϕ(θ + κ), (5.29)

where we assume there exists a κ s.t. ϕ(κ) = 1.

Proof. Rewrite equation (5.22),

ϕ(θ + κ) = E[e(θ+κ)Y ]E[e−(θ+κ)τ̃ , τ̃ > ξ] + E[e(θ+κ)Y ]E[e−(θ+κ)τ̃ , τ̃ ≤ ξ]

·E[e(θ+κ)Y ]E[e−(θ+κ)τ , τ > ξ]

·
∞∑
k=1

(
(1− p)E[e(θ+κ)Y ]E[e−(θ+κ)τ , τ ≤ ξ]

)k−1
(5.30)
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First, we notice that

E[e(θ+κ)Y ] =

∫
e(θ+κ)Y P(Y ∈ dy) = E[eκY ]

∫
eθYQ(Y ∈ dy) = E[eκY ]EQ[eθY ].

(5.31)

So similarly, for τ≤ξ, τ>ξ,

E[e−(θ+κ)τ , τ > ξ] = E[e−κτ , τ > ξ]EQ[e−θτ
>ξ

], (5.32)

E[e−(θ+κ)τ , τ ≤ ξ] = E[e−κτ , τ ≤ ξ]EQ[e−θτ
≤ξ

]. (5.33)

Also, τ̃≤ξ, τ̃>ξ have the same form. Then equation (5.30) could be modified to

ϕ(θ + κ) = E[eκY ]E[e−κτ̃ , τ̃ > ξ] ·
[
EQ[eθY ]EQ[e−θτ̃

>ξ

]
]

+ E[eκY ]E[e−κτ̃ , τ̃ ≤ ξ] ·
[
EQ[eθY ]EQ[e−θτ̃

≤ξ
]
]

· E[eκY ]E[e−κτ , τ > ξ] ·
[
EQ[eθY ]EQ[e−θτ

>ξ

]
]

·
∞∑
k=1

(
E[eκY ]E[e−κτ , τ ≤ ξ]

)k−1 ·
[
EQ[eθY ]EQ[e−θτ

≤ξ
]
]k−1

.

Now let,

p̃κ = E[eκY ]E[e−κτ̃ , τ̃ > ξ], q̃κ = 1− p̃κ,

pκ = (E[eκY ])2E[e−κτ̃ , τ̃ ≤ ξ]E[e−κτ , τ > ξ], qκ = 1− pκ,

Thus,

ϕ(θ + κ) = p̃κ ·
[
EQ[eθY ]EQ[e−θτ̃

>ξ

]
]

+ pκq̃κ

[
(EQ[eθY ])2EQ[e−θτ̃

≤ξ
]EQ[e−θτ

>ξ

]
]

·
∞∑
k=1

(1− pκ)k−1 ·
[
EQ[eθY ]EQ[e−θτ

≤ξ
]
]k−1

= ϕQ(θ).

To analyse (5.29) further, ϕQ(θ) can be considered as if the function ϕ(θ)

shifted to the left by κ. We know that the net profit condition for the macro
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process requires E[X1] < 0, i.e., ϕ′(0) < 0. Additionally, (5.19) should have a

positive root κ if the tail of the claim cost distribution is Exponentially bounded.

That is to say, ϕ′(0) > 0 would result in a positive drift of the macro claim surplus

process and then cause a macro ruin to happen for sure. ϕ(θ+κ) makes this true.

Hence, for any stopping time T ∗(u), we can write for a macro ruin probability as

ψ∗(u) = E[1T ∗(u)<∞] = EQ[e−κS(T ∗(u))+T ∗(u) lnϕ(κ)1T ∗(u)<∞],

with EQ[1T ∗(u)<∞] = 1. For a strict and detailed proof please refer to Asmussen

and Albrecher [2010] (Chapter IV. Theorem 4.3). However, intuitively, since we

have (5.29) to hold, it is equivalent to say

PQ(X1 ∈ dx) =
P(X1 ∈ dx)eκx∫
P(X1 ∈ dx)eκxdx

. (5.34)

Then the likelihood ratio could be obtained as,

Ln =
n∏
i=1

dP
dQ

(Xi)

=
n∏
i=1

(
E[eκXi ]

)n
eκXi

= en lnϕ(κ)−κ
∑n
i=1Xi , (5.35)

for a fixed integer n ≥ 0. Obviously, {Ln, n ≥ 0} is a Wald martingale, i.e.,

E[eκSn−n lnϕ(κ)] = 1, where Sn = S(Tn). We could thus consider the macro process

as a discrete classic risk model. Define a new stopping time N∗(u) = inf{n ≥
0; Sn > u} such that {N∗(u) <∞} is equivalent to {T ∗(u) <∞}. It is then true

that for a stopping time N∗(u) and G ⊆ {N∗(u) <∞},

P{G} = EQ

[
1

LN∗(u)

; G

]
,

according to Asmussen and Albrecher [2010] Chapter III. Theorem 1.3. Further-

more, since we have EQ[G] = 1, i.e., N∗(u) < ∞, the optional stopping theorem

could be applied thus achieving the desired result.

100



5. RISK ANALYSIS OF A BM SYSTEM IN CONTINUOUS RISK
MODELS

This means that we could simulate macro ruin probabilities under the new

measure under which such ruin happens for sure. In general, the change of mea-

sure suggests that

Y (κ) ∼ Exp(β − κ);

τ̃>ξ ∼ Exp(λ2 + κ) on (ξ,∞);

τ>ξ ∼ Exp(λ1 + κ) on (ξ,∞);

τ≤ξ ∼ Exp(λ1 + κ) on (0, ξ];

τ̃≤ξ ∼ Exp(λ2 + κ) on (0, ξ].

Equivalently, the underlying process is given as

I{Z>p̃κ}(Y0 − τ̃>ξ0 ) + I{Z≤p̃κ}

(
N−1∑
i=1

(Yi − τ̃≤ξi ) +
(
YN − τ̃>ξN

)
+
(
Y0 − τ̃≤ξ0

))
,

(5.36)

where N ∼ Geo(pκ) and Z ∼ U(0, 1).

To sum up, this subsection used the importance sampling approach avoiding

the common drawback from a crude Monte Carlo simulation and suggesting a

way to simulate infinite-time macro ruin probabilities according to (5.2.4).

5.2.5 Embedded Markov additive process

In spite of the nice result we can get for ruin probabilities in the last subsection,

it is not solving the underlying problem we proposed. Therefore, we study the

nature of our process in more depth. Again, for simplicity, we assume everything

to be exponential distributed with τ ∼ Exp(λ1), τ̃ ∼ Exp(λ2) and Y ∼ Exp(β),

respectively.

Recall our process described by (5.14). Note that ruin happens only at the

moments of claim arrivals σk =
∑k

i=1 τi and σ0 = 0. From time σk to σk+1, the

distribution of the increment S(σk+1) − S(σk) is only dependent on the relation
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between τk and ξ. Hence, we could transfer the original model into a new one by

adding a Markov state process {Jn}n≥0 defined on E = {1, 2}. i ∈ E represents

the occupying state of {Jk} at time σk. For instance, state 1 describes a status

where the current inter-arrival time is less or equal than ξ while state 2 refers to

the opposite situation. For convenience, we construct τ0 based on the choice of

J0: J0 = 1 implies τ0 < ξ and τ0 ≥ ξ otherwise. As we mentioned in Section 2

before, the two state Markov chain {Jn} has a transition probability matrix as

follows with the ijth element being pij, i, j ∈ E.

P =

[
q p

q̃ p̃

]
,

where p = P(τ > ξ), q = 1−p = P(τ ≤ ξ) and p̃ = P(τ̃ > ξ), q̃ = 1−p̃ = P(τ̃ ≤ ξ).

We also define a new process {Sn}n≥0 whose increment ∆Sn+1 = Sn+1 − Sn is

governed by {Jn}. More specifically, two scenarios could be analysed to explain

this process. Given n = 0, 1, . . ., scenario 1 is when Jn = 1, i.e., τn ≤ ξ and

τn+1
d
= τ . Then comparing τ with ξ, there is a chance q of obtaining Jn+1 = 1

given τ ≤ ξ, and p having Jn+1 = 2 given τ > ξ, with the corresponding in-

crement being ∆Sn+1
d
= Y − τ≤ξ and ∆Sn+1

d
= Y − τ>ξ, respectively. On the

contrary, scenario 2 represents the situation where the current state is Jn = 2,

i.e., τn > ξ and τn+1
d
= τ̃ . Thus, all the variables above are presented in the same

way only with a tilde sign added on τ , p and q.

{Sn, Jn} is a discrete time bivariate Markov process or referred to as a Markov

additive process (MAP). In fact, Z(σn) := (S(σn), Jn) (n = 0, 1, 2, . . .) coincides

with {Sn, Jn}, starting at Z(0) = (0, J0), where J0 is the initial state taking value

1 or 2. The moment of ruin is the first passage time of Sn given a process Zn

over level u > 0, defined by

T (i)(u) = inf{n ∈ N : Sn > u|Z(0) = (0, i), for i = 1, 2}.

Note that σT (2)(u) = T (u) such that the event {T (2)(u) < ∞} is equivalent to
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{T (u) <∞}. That implies

ψ(u) = P(T (2)(u) <∞).

Moving into details, this MAP is specified by a kernel matrix with the ijth

entry given by a measure Fij(dx) = Pi(J1 = j, ∆S1 ∈ dx). Here Pi and Ei denotes

the probability measure conditional on the set {J0 = i} and its corresponding

expectation, respectively. Then for θ > 0, a m.g.f on the measure Fij(dx) is

F̂ij[θ] = Ei[eθ∆S1 ; J1 = j]. These elements consist of a matrix F̂[θ] and in our case

F̂[θ] =

[
E(eθY e−θτ ; τ ≤ ξ) E(eθY e−θτ ; τ > ξ)

E(eθY e−θτ̃ ; τ̃ ≤ ξ) E(eθY e−θτ̃ ; τ̃ > ξ)

]
.

Additionally, define F̂n,ij[θ] = Ei[eθ(Sn−S0); Jn = j], then the following equation

can be proved to hold Asmussen and Albrecher [2010] (Chapter III. 4).

F̂n[θ] = (F̂[θ])n.

Rather than considering a continuous time MAP, we propose similar results

for a discrete time one. Initially,

Lemma 5.17.

EJn [eθ(Sn+1−Sn)v
(θ)
Jn+1

] = λ(θ)v
(θ)
Jn
, (5.37)

where λ(θ) is the eigenvalue of F̂[θ] and v = (v1, v2)T is the corresponding right

eigenvector.

Proof.

EJn [eθ(Sn+1−Sn)v
(θ)
Jn+1

] = eTJnF̂1[θ]v = eTJnλ(θ)v = λ(θ)v
(θ)
Jn
,

where eJn is a standard basis vector.

Therefore,
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Lemma 5.18. The following sequence{
eθSn−n lnλ(θ)v

(θ)
Jn

}
n∈N

(5.38)

is a martingale.

Proof. Let Mn = eθSn−n lnλ(θ)v
(θ)
Jn
. Then,

E[Mn+1|Fn] = E[eθSn+1−(n+1) lnλ(θ)v
(θ)
Jn+1
|Fn]

= E[eθ(Sn+1−Sn)v
(θ)
Jn+1
|Fn]eθSn−(n+1) lnλ(θ)

= EJn [eθ(Sn+1−Sn)v
(θ)
Jn+1

]eθSn−(n+1) lnλ(θ)

= λ(θ)v
(θ)
Jn

eθSn−(n+1) lnλ(θ)

= Mn

Next, if we implement the exponential change of measure as in Theorem 5.16,

there would be a similar result to what has been described in the last section.

Firstly, in addition to Lemma 5.18, it is also true that

Ln = eθSn−n lnλ(θ)v
(θ)
Jn

v
(θ)
J0

, n ∈ N (5.39)

is a martingale due to the Markov property. Then,

Lemma 5.19. Define a new conditional probability measure Q(θ)
i (dx) = Q(θ)(dx|J0 =

i) and the Randon-Nikodym derivative is

Ln =
Q(θ)
i (dx)

Pi(dx)
| Fn,

where Ln is defined by (5.39) given some θ > 0. Then under the new measure,

the MAP {Z(θ)
n }n∈N is specified by

F̂(θ)[γ] = e− lnλ(θ)
(
v

(θ)
diag

)−1

F̂[θ + γ]v
(θ)
diag (5.40)

104



5. RISK ANALYSIS OF A BM SYSTEM IN CONTINUOUS RISK
MODELS

Proof. Initially, F
(θ)
ij (dx) can be written as

F
(θ)
ij (dx) = Q(θ)

i (S1 ∈ dx, J1 = j) = EQ(θ)

[1{S1∈dx,J1=j}|J0 = i] = Ei[L11{S1∈dx,J1=j}]

= eθx−lnλ(θ)
v

(θ)
j

v
(θ)
i

Fij(dx).

This shows that the new measure is exponentially proportional to the old one,

which ensures that F
(θ)
ij is absolutely continuous with respect to Fij. Further

transferring it into the matrix form yields the desired result.

Corollary 5.20. Under the new measure Q(θ), the MAP {Z(θ)
n }n∈N consists of a

Markov state process {J (θ)
n }n∈N which has a transition probability matrix

P(θ) =

[
qθ pθ

q̃θ p̃θ

]
, (5.41)

where

p̃θ =
βλ2

(β − θ)(λ2 + θ)
e−(λ2+θ)ξ , q̃θ = 1− p̃θ;

qθ =
βλ1

(β − θ)(λ1 + θ)
(1− e−(λ1+θ)ξ) , pθ = 1− qθ,

and an additive component {S(θ)
n }n∈N with random variables Y, τ>ξ, τ<ξ, τ̃>ξ, τ̃<ξ

under the new measure Q(θ) given by Theorem 5.16 in terms of θ rather than κ.

In fact, when θ = κ, Q(θ) coincides with Q defined by Theorem 5.16. Recall

T ∗(u) from (5.28) and ψ(u) ≥ ψ∗(u). Since σT (2)(u) ≤ T ∗(u), then Q(T ∗(u) <

∞) = 1 implies Q(κ)(T (2)(u) <∞) = 1. In addition,

Lemma 5.21. The ruin probability for the underlying process (5.14) is

ψ(u) = v
(κ)
2 e−κuE(κ)

2

e−κε(T (2)(u))

v
(κ)
J
T (2)(u)

 , (5.42)

where ε(T (2)(u)) = S
(κ)

T (2)(u))
−u denotes the overshoot at the time of ruin T (2)(u)).

In addition, it has been discovered that
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Remark 5.22. F̂[κ] has an eigenvalue equal to 1 and

v(κ) =

[
βλ1

(β−κ)(λ1+κ)
− qκ

pκ

]

is the corresponding right eigenvector.

Proof. Let λ denote the eigenvalue of F̂[κ]. Thus, we can write,

(E[eκY ]E[e−κτ , τ ≤ ξ]−λ)(E[eκY ]E[e−κτ̃ τ̃ > ξ]−λ) = (E[eκY ])2E[e−κτ , τ > ξ]E[e−κτ̃ , τ̃ ≤ ξ].

Recall (5.18), clearly λ = 1 is a solution to the above equation. That directly

leads to F̂v = v and one can obtain

v1

v2

=
E[e−κτ , τ > ξ]

1− E[e−κτ , τ ≤ ξ]
.

Plugging in the parameters completes the proof.

Example 5.23. Here is an example. Assume Y , τ and τ̃ have exponential dis-

tribution with parameters β = 3, λ1 = 1 and λ2 = 2, respectively. The smallest

positive real root of Equation (5.18) is calculated for κ = 1.1439 and its corre-

sponding right eigenvector is v(k) = [0.5790, 0.8153]′. Then the ruin function is

plotted as in Figure 5.7. Without surprise, it shows an exponential decay, which

again confirms Theorem 5.13.

5.2.6 Method using renewal equations

This subsection shows several intermediate results toward solving the ruin proba-

bility under the simplest case - everything being Exponentially distributed. Trials

include differentiation and the adoption of Laplace Transform which naturally

leads to the use of Dickson-Hipp operator Li and Garrido [2004] in this case. Un-

fortunately, neither of the methods solved for ruin probabilities analytically. The

former approach stops with a system of second order (Negative) Delay-differential

Equations which is to be solved. The latter one establishes the relations between

ruin probabilities for two states which is not yet enough. However, I would still
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Figure 5.7: Example of ruin function generated by an MAP

like to leave these calculations in the thesis for future references.

Assume that τ and τ̃ are exponentially distributed with density functions

f1(t) = λ1e−λ1t and f2(t) = λ2e−λ2t respectively. Then the renewal integral

equations can be written as,

ψ1(u) =

∫ ξ

0

f1(t)g1(u+ t)dt+

∫ ∞
ξ

f1(t)g2(u+ t)dt; (5.43)

ψ2(u) =

∫ ξ

0

f2(t)g1(u+ t)dt+

∫ ∞
ξ

f2(t)g2(u+ t)dt. (5.44)

where ψ1(u), ψ2(u) correspond to the ruin probabilities with the first inter-arrival

time being τ and τ̃ respectively, and

gi(u) =

∫ u

0

ψi(u− y)b(y)dy +

∫ ∞
u

b(y)dy, i = 1, 2

with b(y) being the density function of the claim sizes.

Differentiation
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Lemma 5.24. [IDE] Assume ψi(u), i = 1, 2 is first order differentiable, then

λ1ψ1(u)− d

du
ψ1(u) = λ1g1(u) + f1(ξ)(g2(u+ ξ)− g1(u+ ξ)); (5.45)

λ2ψ2(u)− d

du
ψ2(u) = λ2g1(u) + f2(ξ)(g2(u+ ξ)− g1(u+ ξ)). (5.46)

Proof. Taking the derivative on both sides of (5.43) yields

dψ1(u)

du
=

∫ ξ

0

f1(t)
dg1(u+ t)

du
dt+

∫ ∞
ξ

f1(t)
dg2(u+ t)

du
dt

=

∫ ξ

0

f1(t)dg1(u+ t) +

∫ ∞
ξ

f1(t)dg2(u+ t)

= f1(t)g1(u+ t)
∣∣ξ
0

+ f1(t)g2(u+ t)
∣∣∞
ξ

+λ1

∫ ξ

0

f1(t)g1(u+ t)dt+ λ1

∫ ∞
ξ

f1(t)g2(u+ t)dt

= f1(ξ)(g1(u+ ξ)− g2(u+ ξ))− λ1g1(u) + λ1ψ1(u).

Rearranging the equation gives the proposed result as stated in the lemma. Sim-

ilarly, we obtain the equation with respect to ψ2(u).

We can further obtain a system of second-order (negative) delay-differential

equations (NDDE). Normally, the definition of a delay-differential equation (DDE)

can be found in Erneux [2008]. The ones we obtained have negative shifts, so

they are simply referred to as NDDEs.

Lemma 5.25. [NDDE] Assume ψi(u), i = 1, 2 is second order differentiable, then

(λ1 − β)ψ′1(u)− ψ′′1(u) = βf1(ξ)[ψ2(u+ ξ)− ψ1(u+ ξ)]; (5.47)

(λ2 − β)ψ′2(u)− ψ′′2(u) = βf2(ξ)[ψ2(u+ ξ)− ψ1(u+ ξ)]

−λ2β(ψ2(u)− ψ1(u)). (5.48)

Proof. We differentiate on both sides of (5.45) and (5.46).

λ1ψ
′
1(u)− ψ′′1(u) = λ1g

′
1(u) + f1(ξ)

(
d

du
g2(u+ ξ)− d

du
g1(u+ ξ)

)
;(5.49)

λ2ψ
′
2(u)− ψ′′2(u) = λ2g

′
1(u) + f2(ξ)

(
d

du
g2(u+ ξ)− d

du
g1(u+ ξ)

)
.(5.50)
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First notice that we have, for i = 1, 2,

dgi(u)

du
= ψi(u)b(0) +

∫ u

0

ψi(y)
db(u− y)

du
dy − b(u) (5.51)

= ψi(u)b(0)− βgi(u). (5.52)

And similarly,

dgi(u+ ξ)

du
= ψi(u+ ξ)b(0) +

∫ u+ξ

0

ψi(y)
db(u+ ξ − y)

du
dy − b(u+ ξ)

= ψi(u+ ξ)b(0)− βgi(u+ ξ).

Hence,

dg2(u+ ξ)

du
− dg1(u+ ξ)

du
= β[ψ2(u+ ξ)− ψ1(u+ ξ)]− β[g2(u+ ξ)− g1(u+ ξ)]. (5.53)

Plugging (5.52) and (5.53) into (5.49) and (5.50) gives the assertion.

Laplace Transform

On the other hand, a linear combination of (5.45) and (5.46) simply gives,

f2(ξ)

[
λ1ψ1(u)− d

du
ψ1(u)

]
− f1(ξ)

[
λ2ψ2(u)− d

du
ψ2(u)

]
(5.54)

= λ1f2(ξ)g1(u)− λ2f1(ξ)g1(u). (5.55)

By taking the Laplace Transform on both sides we obtain,[
ρ(λ1 − s)− (ρλ1 − λ2)b̂(s)

]
ψ̂1(s)− (λ2 − s)ψ̂2(s)

= (ρλ1 − λ2)
1− b̂(s)

s
− ρψ1(0) + ψ2(0).

This leads to

ψ̂2(s) =
ρ(λ1 − s)− (ρλ1 − λ2)b̂(s)

λ2 − s
·ψ̂1(s)+

ρψ1(0)− ψ2(0)

λ2 − s
−(ρλ1 − λ2)(1− b̂(s))

s(λ2 − s)
.
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As a result,

ψ̂2(s) =

(
ρ+ w1 ·

−λ2

s− λ2

− w2 ·
β

s+ β

)
ψ̂1(s) + w3 ·

−λ2

s− λ2

− w4 ·
β

s+ β
,(5.56)

where

w1 =
ρ(λ1 − λ2) + (1− ρ)β

β + λ2

;

w2 =
ρλ1 − λ2

β + λ2

;

w3 =
(β + λ2)(ρψ1(0)− ψ2(0))− ρλ1 + λ2

λ2(β + λ2)
;

w4 =
ρλ1 − λ2

β(β + λ2)
.

Besides, the Dickson-Hipp operator appeared in Li and Garrido [2004] is de-

fined as follows and will be used in the sequel.

Definition 5.26. For any integrable function f : [0,∞) 7→ R and a real constant

s > 0, the Dickson-Hipp operator Ts is defined by

Tsf(x) = esx
∫ ∞
x

e−syf(y)dy.

It has a number of useful properties as follows

Lemma 5.27. For any integrable functions f, g : [0,∞) 7→ R and real contants

s, t > 0, we have

1.

TsTtf =
Tsf(x)− Ttf(x)

t− s
.

2. Denote ∗ as the convolution operator,

Ts(f ∗ g) = Tsg(0) · Tsf + (Tsg) ∗ f,

3. Denote I as the identity operator and D the differential operator,

(sI−D)Tsf = f.
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Proof. Proof can be seen in Feng [2008].

Using these properties, we could show for i = 1, 2:

Lemma 5.28. 1.

Tsgi(ξ) = b̂(s) · Tsψi(ξ) + Tsb ∗ ψi(ξ) +
B̄(ξ)− Tsb(ξ)

s
.

2.

Ts(Dψi)(ξ) = sTsψi(ξ)− ψi(ξ).

Proof. The proof is similar to the properties of Laplace transform.

Remark 5.29. The Dickson-Hipp operator on gi(u+ ξ), i = 1, 2 is equivalent to

Tsgi(2ξ), i = 1, 2.

Proof. Let hi(u) = gi(u+ ξ), u ≥ 0, i = 1, 2, then we can write

Tsh(ξ) = esξ
∫ ∞
ξ

e−syhi(y)dy = esξ
∫ ∞
ξ

e−sygi(y + ξ)dy.

Let z = y + ξ, then y = z − ξ and z ∈ [2ξ,∞), the above equation evolves to

Tsh(ξ) = e2sξ

∫ ∞
2ξ

e−szgi(z)dz = Tsgi(2ξ), (5.57)

for i = 1, 2.

Lemma 5.30. The relation between Tsψ1(ξ) and Tsψ2(ξ) is illustrated by

Tsψ2(ξ) =
1

f1(ξ)(λ2 − s)

{
[f2(ξ)(λ1 − s− λ1b̂(s)) + f1(ξ)λ2b̂(s)]Tsψ1(ξ)

+[λ2f1(ξ)− λ1f2(ξ)]

(
Tsb ∗ ψ1(ξ) +

B̄(ξ)− Tsb(ξ)

s

)
+ f2(ξ)ψ1(ξ)− f1(ξ)ψ2(ξ)]

}
.

Proof. That is done by applying the Dickson-Hipp transform Ts · (ξ) on both

sides of (5.45) and (5.46).
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(λ1 − s− λ1b̂(s))Tsψ1(ξ) + ψ1(ξ)− λ1Tsb ∗ ψ1(ξ)− λ1
B̄(ξ)− Tsb(ξ)

s
= f1(ξ)[Tsg2(2ξ)− Tsg1(2ξ)];

(λ2 − s)Tsψ2(ξ) + ψ2(ξ)− λ2b̂(s)Tsψ1(ξ) + λ2Tsb ∗ ψ1(ξ)− λ2
B̄(ξ)− Tsb(ξ)

s
= f2(ξ)[Tsg2(2ξ)− Tsg1(2ξ)].

Similar to equation (5.55), we have now

f2(ξ)
[
λ1Tsψ1(ξ)− sTsψ1(ξ) + ψ1(ξ)

]
− f1(ξ)

[
λ2Tsψ2(ξ)− sTsψ2(ξ) + ψ2(ξ)

]
= λ1f2(ξ)

[
b̂(s) · Tsψ1(ξ) + Tsb ∗ ψ1(ξ) +

B̄(ξ)− Tsb(ξ)

s

]
−λ2f1(ξ)

[
b̂(s) · Tsψ2(ξ) + Tsb ∗ ψ2(ξ) +

B̄(ξ)− Tsb(ξ)

s

]
.

Rearranging the above identity presents us the results as stated in the lemma.

Now, we expand Lgi(u+ ξ)(s).

Lemma 5.31.

Lgi(u+ ξ)(s) = Tsgi(ξ) = b̂(s) · Tsψi(ξ) + Tsb ∗ ψi(ξ) +
B̄(ξ)− Tsb(ξ)

s
. (5.58)
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Proof.

Lgi(u+ ξ)(s) =

∫ ∞
0

e−su
∫ u+ξ

0

ψi(y)b(u+ ξ − y)dydu+

∫ ∞
0

e−su
∫ ∞
u+ξ

b(y)dydu

=

∫ ∞
0

e−su
∫ u+ξ

ξ

ψi(y)b(u+ ξ − y)dydu

+

∫ ∞
0

e−su
∫ ξ

0

ψi(y)b(u+ ξ − y)dydu+
B̄(ξ)− Tsb(ξ)

s

=

∫ ∞
ξ

∫ ∞
y−ξ

e−suψi(y)b(u+ ξ − y)dudy + Tsb ∗ ψi(ξ) +
B̄(ξ)− Tsb(ξ)

s

=

∫ ∞
ξ

e−sy+sξψi(y)dy ·
∫ ∞
y−ξ

e−s(u+ξ−y)b(u+ ξ − y)du

+Tsb ∗ ψi(ξ) +
B̄(ξ)− Tsb(ξ)

s

= b̂(s) · Tsψi(ξ) + Tsb ∗ ψi(ξ) +
B̄(ξ)− Tsb(ξ)

s
.

Other remarks

Remark 5.32. If we write

ψ1(u) ∼ K1e
−κu; (5.59)

ψ2(u) ∼ K2e
−κu, (5.60)

then the following relation is shown to hold for the two constant components (K1

and K2) in the ruin functions.

K1

K2

=
βf1(ξ)e−κξ

βf1(ξ)e−κξ − κ(λ1 − β)− κ2
;

λ2β − βf2(ξ)e−κξ

λ2β − (λ2 − β)κ− κ2 − βf2(ξ)e−κξ
=

βf1(ξ)e−κξ − (λ1 − β)κ− κ2

βf1(ξ)e−κξ
,(5.61)

where κ is the solution to (5.22).

Proof. As shown in Theorem 5.13, asymptotically we have (5.59) and (5.60).

Plugging these back into (5.47) and (5.48) will lead to the proposed result. Via

some further calculations, we could find that (5.61) coincides with (5.22).
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This subsection shows how the integral equation method could be imple-

mented on our model. Calculations suggest that a relation of ψ1(u) and ψ2(u) can

be expressed in terms of Laplace transform and a system of second order NDDE

was obtained. Although Dickson-Hipp operator turns on the light towards deal-

ing with modified Laplace transforms, solutions are not yet explicit. One way of

proceeding with this is to seek for some numerical methods solving the NDDEs.

Figuring out the boundary conditions though remains the main challenge.

5.3 Discussions

In a BM system, premiums are adjusted according to claim histories on the pur-

pose of providing a fair share of risks. We follow the idea in this work and first

extend it to a broader concept where risks are distinguished not only among poli-

cyholders, but also among themselves. There are known risks for which historical

data is available and expectations can be made based on past observations. On the

other hand, in modern era, while we are enjoying the benefits brought by the ever

improving technology, we might also encounter some hidden or unknown risks,

which might possibly create significant losses to insurance companies. Therefore,

it is worthwhile accounting for such ’unforeseeable’ risks. When incorporating

these risks together with the classical (referred ’historical’ here) ones in a risk

model, the number of claims can be described as a Poisson with a random pa-

rameter Λ, continuous random variable, that can be defective at {0} or not.

Considering the ruin probabilities for the ’unforeseeable’ stream alone (2.5)

and then a combination of both the ’unforeseeable’ and the ’historical’ streams

(5.6), we derive relationships between the probability of ruin in the classical case

(1.3), versus the case where the premiums are adjusted to the history of claims

(5.1). Unlike the case for the ’historical’ stream only Dubey [1977], we found that

the ruin probability for a risk model distinguishing the ’historical’ stream and the

’unforeseeable’ stream is different from that in a classical case. The differences

are amenable and thus this theory should encourage insurance companies to use

adjusted premium rates in an attempt to reward their good customers and at the

same time to protect the insurer itself, as in a classical BM system. The separa-
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tion of risks would allow an insurance company not only to fairly distribute the

premiums among its customers, but to also correctly incorporate their exposure

to ’historical’ risks versus the ’unforeseeable’ ones, brought on for instance by the

progress in technology.

From another perspective, we found that a simple Bonus system could be

reflected by a dependence structure embedded in a risk model. For the simplest

case, we made inter-arrival times switch between two random variables by com-

paring them with a fixed window ξ. Such interchange was equivalently converted

from the change of premium rates based on recent claims as shown by Figure

2.1 emulating a basic no claim discount (NCD) system where there are only two

classes - either a base or discounted level. Theoretically speaking, it also works

for a merely Malus system. Yet in practice, such system does not exist as it prob-

ably sounds more tempting if an insurance company offers awards rather than a

penalty.

Several different approaches have been undertaken to study the ruin proba-

bility under the framework of a regenerative process. It is not surprising under

the Cramér assumption, the ruin function still has an exponential tail. By Monte

Carlo simulations, it has been discovered that the underlying probability has

opposite monotonicity with respect to ξ when two random variables for the inter-

claim times swap parameters. It has also been found that the use of BM systems

may not reduce ruin probabilities when we made a comparison between our re-

sults and the classical ones. Furthermore, we explained how we could construct a

discrete Markov additive process from the model under concern when everything

is exponentially distributed. By a change of measure via exponential families,

ruin probabilities were possible to be simulated through a more convenient form

(5.42). Last but not least, calculations using integral equations have also been

carried out and a system of a second order NDDEs could be achieved, yet it

remains difficult to seek for analytical solutions.

To conclude, this chapter looked at BM systems from a risk assessment ori-

entation under a continuous time horizon. Some results were obtained by com-

115



5. RISK ANALYSIS OF A BM SYSTEM IN CONTINUOUS RISK
MODELS

paring with a classical risk model while others, although not in explicit form,

were simulated and could be presented in a nice form under a simple example.

Future extensions are possible when a more complicated structure of risks are

constructed, e.g., introducing a third or even more risk divisions. In the other

model, it would be interesting to dig into more depth on solving the ’advanced’

system of ODEs. Reconstructing the model by incorporating more classes would

be rather realistic and also theoretically appealing.
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Chapter 6

Concluding Remarks

This thesis has dedicated work into the modelling of BM systems as well as anal-

yses of risks such systems are exposed to. The ever-growing popularity of BM

systems in reality is probably due to its feature of customising risk distributions.

It provides mutual benefits to insurers and policyholders. While the former gains

more accurate estimation of risks thus being able to offer more competitive poli-

cies, the latter has access to discounts in payment with careful driving. The use

of this system though has created the so-called bonus hunger issue. Although it

would not give rise to direct losses to an insurer, it bares the potential of incurring

higher damages in the future.

Section 3.2 undertook Bayesian approach to reflect the use of a personalised

history to estimate expected individual claims. By adopting a Weibull distri-

bution for the claim severities, an alleviation on bonus hunger concerns could

be identified. The proposed model suggests a very active strategy to encourage

drivers to report each additional small claims. In this way, insurance companies

are likely to keep track on the real cookies of an individual thus being able to take

preventive steps in controlling the risks. Furthermore, a hybrid model (Weibull,

Pareto) was employed in modelling the severity component. Results suggest that

a mild strategy is encouraged for people filing many large claims when the ag-

gregate expenses are fixed, whereas it is more harsh when people report many

small claims. Rather than conclusion drawn from the previous model, this hy-

brid model proposes a pricing strategy that is strict towards drivers constantly
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reporting many small claims and mild towards people with frequent large claims

as such frequency actually indicates cheaper per-claim cost.

In practice, such a model might be argued for its complexity and inefficiency

due to very competitive environment in car insurance markets. However, insur-

ance companies are free to make their own choices to create a discrete scale of the

premium levels. With exact premium values calculated based on claim histories,

it would be flexible and simple to conduct this further step. On the other hand,

it remains to be the insurer’s decision on whether to penalise policyholders with

many small claims. It completely depends on the risk preferences of an insurer.

For insurers who are more risk adverse, the hybrid model would fit better for

their choice. In addition, these insurers are advised to keep the premiums con-

stant after the drop point if they opt to use the first model we proposed.

From another perspective, the rest of the thesis looked into measuring the

associated risks with a BM system. We first start from a discrete model pre-

sented in Chapter 4. Motivated by improving a reinsurance company’s market

competitiveness, we suggest the use of a simple BM system for their portfo-

lio. Then the collective risks can be assessed via ruin probabilities. Through

identifying a Markov chain related to our particular example, we were able to

establish ruin functions via recursive relations. Attaining them in transformed

forms and analysing boundary conditions, we could not find a nicer way rather

than tedious calculations to compute analytical solutions even for a simple and

everything-discrete model. However, this work has provided us with an in depth

understanding of the renewal feature of the system laying a good foundation for

later work.

In addition, a lot of work has been done carrying out the on risk analysis

under a continuous framework. Therefore, Chapter 5 is divided into two parts

with each one based on a paper Li et al. [2015]; Constantinescu et al. [2015b].

The first paper has recently been published at Insurance: Mathematics and Eco-

nomics and the second one is under progress to submit. The first one involves

the idea mentioned in Chapter 3 and adopted a premium adjustment according
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to a Bayesian estimator. This work relies mostly on connecting the underlying

risk model with a classical one. Thus, properly modifying the results would lead

to a desired answer. The other novelty of this work is the suggestion of divid-

ing risks into two streams so that those associated with modern technologies are

taken into account. Insurers are advised to launch such ’innovative’ policies un-

der the guidance of ruin probabilities proposed here. On the other hand, Section

5.2 incorporates a dependence structure in the risk model in order to imitate

the dynamics of a no claim discount system (Bonus system). Asymptotic results

show that ruin function retains the exponential tail. Besides, simulations imply

a strong connection of ruin probabilities with the chosen fixed window. Further

using a Markovian structure and change of measure, we obtained a nicer form

to be implemented through a more sophisticated simulation. In the end, integral

equations have been presented which lead to a system of second order NDDEs as

well as a relation in terms of Laplace transforms.

To wrap up, this work has provided insights into BM systems and risk the-

ory. Aiming at connecting these two, results were obtained under several model

settings, both discrete and continuous. However, the author still feels the need

for developing a more general framework. One interesting direction is to consider

deductibles in a BM system. Some work has already been done using MLE for

other models Paulsen and Stubø [2011]. It possibly needs refinement when a

Bayesian estimation is used. Another intriguing path could be through Afonso

et al. [2009] which resembles a BM feature in the best way so far. Extensions

are possible if we seek for the Markovian environment hidden behind or we could

consider a dependence only on the number of claims.
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Derivation of Weibull Distribution

Lemma .1. As in Albrecher et al. [2011], if an Exponential distribution has a

Lévy random parameter, then the mixing distribution is given by

F (x) = 1− exp(−c
√
x),

which represents a Weibull distribuion with shape parameter 1/2.

Proof. Some techniques were used to calculate the distribution function of

the mixing distribution.

F (x) =

∫ ∞
0

(1− e−θx) c

2
√
πθ3

exp

(
− c

2

4θ

)
dθ.

By the change of variables, let

δ =
c

2
√
θ
, θ =

c2

2σ2
,

with θ ∈ (0,∞), ν will decrease from ∞ to 0. Then dδ = −1
2

c

2
√
θ3
dθ and −2dδ =
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c
2
θ−

3
2dθ. The integral is then modified to the following form.

F (x) =

∫ ∞
0

(
1− e−

c2

4δ2
x

)
2√
π
e−δ

2

dδ

= 1− 2√
π

∫ ∞
0

exp

{
−
(
c2

4δ2
x+ δ2

)}
dδ. (1)

The equating of
∫∞

0
2√
π
e−δ

2
dδ = 1 comes from the well-known fact that

∫∞
0
e−δ

2
dδ =

√
π

2
. Before continuing the above equation, we let,

c2x

4
= a ≥ 0,

and use the letter I to denote the integral in equation (16), then it becomes,

I =
2√
π

∫ ∞
0

e−( a
δ2

+δ2)dδ.

On the other hand, if we look at the integral,

I0 =

∫ ∞
0

e
−
(
δ−
√
a
δ

)2
d

(
δ −
√
a

δ

)
=

∫ ∞
0

e
−
(
δ−
√
a
δ

)2
dδ +

∫ ∞
0

e
−
(
δ−
√
a
δ

)2√a
δ2
dδ.

Now let ε =
√
a
δ

, with δ increasing from 0 to infinity. ε is decreasing from infinity

to 0. And again we have dε = −
√
a
δ2
dδ. Hence, the latter term in the above

integral is altered. We have,

I0 = 2

∫ ∞
0

e
−
(
δ−
√
a
δ

)2
dδ. (2)

On the other hand, if we let,

g = δ −
√
a

δ
∈ (−∞, ∞),
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Then,
dg

dδ
= 1 +

√
a

δ2
> 0.

This indicates that g is monotonically increasing from minus infinity to infinity.

Thus, the integral I0 is alternatively written as,

I0 =

∫ ∞
0

e
−
(
δ−
√
a
δ

)2 (
1 +

√
a

δ2

)
dδ =

∫ ∞
−∞

e−g
2

dg =
√
π (3)

Combining the results (6) and (7), we know that

∫ ∞
0

e
−
(
δ−
√
a
δ

)2
dδ =

√
π

2
.

Recall that the integral we would like to solve is actually

I =
2√
π
e−2
√
a

∫ ∞
0

e
−
(
δ−
√
a
δ

)2
dδ = e−2

√
a = exp(−c

√
x),

Therefore, we have proved that the resulting distribution function is

F (x) = 1− exp(−c
√
x).

Proof of Proposition 3.1

Proof. The form we often see on various mathematical handbooks regarding the

modified Bessel function is presented below.

Bv(x) =

∫ ∞
0

e−xcoshtcosh(vt)dt,
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Expanding the cosh terms, we can write,

Bv(x) =

∫ ∞
0

exp
(
−x

2
(et + e−t)

) evt + e−vt

2
dt.

It can be transformed initially by changing of the variable. We let y = et with

t ∈ (0,∞), y ∈ (1,∞) and t = lny, dt = 1
y
dy. Substituting into the above

formula yields,

Bv(x) =
1

2

∫ ∞
1

exp

(
−x

2
(y +

1

y
)

)
yv−1dy +

1

2

∫ ∞
1

exp

(
−x

2
(y +

1

y
)

)
y−(v+1)dy.

Before continuing, we set z = 1
y
, y = 1

z
with y ∈ (1,∞), z ∈ (0, 1) and dy =

− 1
z2
dz. The second integral is then modified. Notice here the sign of the integral

will change due to the alteration of the domain of the variable. It follows that,

Bv(x) =
1

2

∫ ∞
1

exp

(
−x

2

(
y +

1

y

))
yv−1dy − 1

2

∫ 1

0

exp

(
−x

2

(
1

z
+ z

))
zv+1

(
− 1

z2

)
dz

=
1

2

∫ ∞
0

exp

(
−x

2

(
y +

1

y

))
yv−1dy.

This has completed the proof.

Data used in Chapter 3
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Groups(Range of Claims Severities in GBP) Number of Claims

0-250 52
250-500 43
500-1500 33
1500-2500 28
2500-3500 22
3500-4500 19
4500-6500 14
6500-9500 11
9500-13500 9
13500-17500 7
17500-25000 4
25000-35000 3
35000-45000 2
45000-65000 1
65000-95000 1
95000-135000 1

Table 1: Grouped Data for Claim Severities
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Appdx B

Proof of Lemma 5.5

Proof. It is true that under the condition {Λ(1) + Λ(2) = λ, Λ(1)

Λ(1)+Λ(2) = θ}, S(·) is

a compound Poisson process with parameter (λ,Hθ(y)), and for any n ∈ N and

tk, xk ≥ 0, we have,

P
(
τk > tk, Yk ≤ yk, k = 1, . . . , n

∣∣∣∣Λ(1) + Λ(2) = λ,
Λ(1)

Λ(1) + Λ(2)
= θ

)
=

n∏
k=1

e−λtkHθ(yk),

(4)

where τk denotes the inter-arrival time between the (k − 1)th and the kth claim.

Then,

P
(
Yk ≤ yk, k = 1, . . . , n

∣∣∣∣ Λ(1)

Λ(1) + Λ(2)
= θ

)
=

n∏
k=1

Hθ(yk);

P
(
τk > tk, k = 1, . . . , n

∣∣Λ(1) + Λ(2) = λ
)

=
n∏
k=1

e−λtk .

The conclusion of the first assertion is straight forward.

125



Proof of Lemma 5.6

Proof. If (Λ(1) + Λ(2)) and
(

Λ(1)

Λ(1)+Λ(2)

)
are conditionally independent under

{Λ(2) > 0}. Given any θ ∈ (0, 1), the conditional independence implies

P
(

(Λ(1) + Λ(2)) ∈ dλ

∣∣∣∣ Λ(1)

Λ(1) + Λ(2)
= θ

)
= P

(
(Λ(1) + Λ(2)) ∈ dλ

∣∣Λ(2) > 0
)
,

since
{

Λ(1)

Λ(1)+Λ(2) = 1
}

= {Λ(2) = 0} and
{

Λ(1)

Λ(1)+Λ(2) ∈ B
}

=
{

Λ(1)

Λ(1)+Λ(2) ∈ B
}
∩

{Λ(2) > 0}, ∀B ∈ B(0, 1). Therefore, it follows from identity (4) that ∀A ∈
B(R+),

P
(
τk > tk, Yk ≤ yk, k = 1, . . . , n,Λ(1) + Λ(2) ∈ A

∣∣∣∣ Λ(1)

Λ(1) + Λ(2)
= θ

)
=

∫
λ∈A

n∏
k=1

e−λtkHθ(yk)P
(

Λ(1) + Λ(2) ∈ dλ
∣∣∣∣ Λ(1)

Λ(1) + Λ(2)
= θ

)

=
n∏
k=1

Hθ(yk)

[∫
λ∈A

n∏
k=1

e−λtkP
(
Λ(1) + Λ(2) ∈ dλ

∣∣Λ(2) > 0
)]

=
n∏
k=1

Hθ(yk)× P(τk > tk, k = 1, . . . , n,Λ(1) + Λ(2) ∈ A|Λ(2) > 0).

The identity above implies that, for every θ ∈ (0, 1), under measure P
(
·
∣∣∣∣ Λ(1)

Λ(1) + Λ(2)
= θ

)
,

the claim sizes {Yk, k ≥ 1} are i.i.d with a common distribution functionHθ(·), the

counting process N(·) is a mixed Poisson process with intensity (Λ(1)+Λ(2))|Λ(2)>0.

More importantly, they are mutually independent so is the case conditioning on

{Λ(2) = 0} with N(·) as a mixed Poisson process with intensity Λ(1).
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Proof of Lemma 5.7

Proof. Basically, denoting γ1 = Λ(1), γ2 = Λ(2)|Λ(2)>0, we have

P
(

(γ1 + γ2) ∈ du, γ1

γ1 + γ2

∈ dv
)

= fγ1(uv)fγ2(u(1− v))u du dv

=
λα0λ

β
0

Γ(α)Γ(β)
(uv)α−1(u(1− v))β−1e−λ0uu du dv

=

(
λα+β

0

Γ(α + β)
uα+β−1e−λ0u du

)
·
(

1

B(α, β)
vα−1(1− v)β−1 dv

)
,

where fγ1(·), fγ2(·) are the density functions for γ1 and γ2 respectively, andB(α, β) =
Γ(α)Γ(β)
Γ(α+β)

. And the lemma is proved.

Proof of Theorem 5.8

Proof. If we let µF/c = η, µG/c = ρ, then for any fixed θ ∈ (0, 1) such that

θµF + (1− θ)µG < c,

µθHe,θ(y) =

∫ y

0

(1− θF (x)− (1− θ)G(x)) dx = θµFFe(y) + (1− θ)µGGe(y),

where Fe(y) = 1
µF

∫ y
0

(1− F (x)) dx, Ge(y) = 1
µG

∫ y
0

(1−G(x)) dx. Hence,

1− ψMθ (u) = (θ(1− η) + (1− θ)(1− ρ))
∑
n≥0

(
1

c

)n
(θµFFe(·) + (1− θ)µGGe(·))∗n (u)

= (θ(1− η) + (1− θ)(1− ρ))
∑
n≥0

∑
0≤l≤n

(
n

l

)
θl(1− θ)n−l

(
µlFµ

n−l
G

cn

)
F ∗le ∗G∗(n−l)e (u)

= (1− η)
∑

l≥0,m≥0

(
m+ l

l

)
ηlρmθl+1(1− θ)m

(
F ∗le ∗G∗me

)
(u)

+(1− ρ)
∑

l≥0,m≥0

(
m+ l

l

)
ηlρmθl(1− θ)m+1

(
F ∗le ∗G∗me

)
(u).
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Then an integration over Θ on {Θ 6= 1} using the probability density function of

Beta(α, β) on both sides will lead to the desired result as shown in the theorem.

Proof of Corollary 5.9

Proof. It can be seen that for l,m ≥ 0, we have

(
m+ l

l

)
B(l + 1 + α,m+ β)

B(α, β)

=
Γ(l + 1 + α)

Γ(l + 1) Γ(α)

Γ(m+ β)

Γ(m+ 1) Γ(β)

(m+ l)!Γ(α + β)

Γ(α + β +m+ l + 1)

= α
(α + l)(α + l − 1) · · · (α + 1)

l(l − 1) · · · 1
· (β +m− 1)(β +m− 2) · · · (β + 1)β

m(m− 1) · · · 1
·B(α + β,m+ l + 1)

= α(−1)l+m
(
−α− 1

l

)(
−β
m

)∫ 1

0

tm+l(1− t)α+β−1 dt,

by adopting the property of a negative binomial distribution function where it

allows for positive α, β. We further introduced notations from (5.11) through

which we could write,

∑
l≥0,m≥0

ηlρm
(
m+ l

l

)
B(l + 1 + α,m+ β)

B(α, β)
F ∗le ∗G∗me (u)

= α

∫ 1

0

(1− t)α+β−1

∫ u

0

Fα+1(t, u− y)Gβ(t, dy) dt.

Clearly, F γ(t, u) (Gγ(t, u)) increases on [0, 1) × R+ with respect to (t, u),

Fγ(t, 0) = 1, F γ(t,∞) = (1 − tη)−γ, and Gγ(t, 0) = 1, Gγ(t,∞) = (1 − tρ)−γ.

Actually, taking the Laplace transform of F γ(t0, ·) yields,

∫
[0,∞)

e−suF γ(t0, du) =
∑
l≥0

(
−γ
l

)
(−t0η)l(F̂e(s))

l =
(

1− t0ηF̂e(s)
)−γ

,
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which demonstrates that F γ(t, u) is proportional to a cumulative distribution

function of a γ-convolution of compound geometry distribution.

Similarly, we have

(
m+ l

l

)
B(l + α,m+ 1 + β)

B(α, β)
= β(−1)l+m

(
−α
l

)(
−β − 1

m

)∫ 1

0

tm+l(1−t)α+β−1 dt.

These directly lead to the equations shown in Corollary 5.9.

Proof of Corollary 5.10

Proof. In fact, F̂e(s) = ζ1
ζ1+s

, η = (ζ1c)
−1, for t0 ∈ (0, 1),

(
1− t0ηζ1

ζ1 + s

)−1

=

∫ ∞
0

e−sy
(
δ0(dy) + t0ηζ1e

−ζ1(1−t0η)y
)
dy,

then, for any γ ∈ N, we have

F γ(t0, dy) = δ0( dy) +

(
γ∑
l=1

(
γ

l

)
(t0ηζ1)l

yl−1

Γ(l)
e−ζ1(1−t0η)y

)
dy, (5)

where δ0 denotes the Dirac measure centered at 0. Similarly, we have Ĝe(s) =
ζ2
ζ2+s

, ρ = (ζ2c)
−1 and

∫
[0,∞)

e−syGγ(t0, dy) =
∑
l≥0

(
−γ
l

)
(−t0ρ)l(Ĝe(s))

l =
(

1− t0ρĜe(s)
)−γ

.

Hence, for any γ ∈ N,

Gγ(t0, dy) = δ0( dy) +

(
γ∑
l=1

(
γ

l

)
(t0ρζ2)l

ul−1

Γ(l)
e−ζ2(1−t0ρ)y

)
dy.
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Before continuing (5.12), first the following convolution is calculated,

∫ u

0

Fα+1(t, u− y)Gβ(t, y)dy

= 1 + e−ζ1u+ζ1tηu

β∑
j=1

(
β

j

)
(tρζ2)j

Γ(j)

α+1∑
i=1

(
α + 1

i

)
(tηζ1)i

Γ(i)
(6)∫ u

0

e−[(ζ1η−ζ2ρ)t−ζ1+ζ2]y(u− y)i−1yj−1dy (7)

= 1 + e−ζ1u+ζ1tηu

β∑
j=1

(
β

j

)
(tρζ2)j

α+1∑
i=1

(
α + 1

i

)
(tηζ1)i

ui+j−1

Γ(i+ j)
(8)

1F1(i, i+ j,−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u),

where 1 results from an integration of the product of two Dirac measures, 1 =∫ u
0
δ2

0(dy), and 1F1(·) is a hyper-geometric function with order 1,1 whose definition

is given as follows.

1F1(a; b; z) =
∞∑
k=0

(a)k
(b)k

zk

k!
,

where (c)k = c(c+ 1) . . . (c+ k− 1) with (c)0 = 1. In fact, it relates to a moment

generating function of a Beta distributed random variable X with parameters

i, j, i.e., X ∼ Beta(i, j).

MX(−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u) = 1F1(i, i+ j,−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u),

which could be seen from the nature of the integral in (6). Thus, (5.12) could be
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written as,

ψM(u)|Θ 6=1 = 1− α(1− η)

[
1

α + β
+ e−ζ1u

β∑
j=1

(
β

j

)
(ρζ2)j

α+1∑
i=1

(
α + 1

i

)
(ηζ1)i

ui+j−1

Γ(i+ j)

×
∫ 1

0

(1− t)α+β−1ti+jeζ1tηuMX(i,j)(−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u) dt

]
−β(1− ρ)

[
1

α + β
+ e−ζ1u

β+1∑
j=1

(
β + 1

j

)
(ρζ2)j

α∑
i=1

(
α

i

)
(ηζ1)i

ui+j−1

Γ(i+ j)

×
∫ 1

0

(1− t)α+β−1ti+jeζ1tηuMX(i,j)(−[(ζ1η − ζ2ρ)t− ζ1 + ζ2]u) dt

]
. (9)
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