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Frequency-dependent peak-delay times and coda quality factors have been used jointly to separate 
seismic absorption from scattering quantitatively in Earth media at regional and continental scale; to 
this end, we measure and map these two quantities at Mount St. Helens volcano. The results show 
that we can locate and characterize volcanic and geological structures using their unique contribution 
to seismic attenuation. At 3 Hz a single high-scattering and high-absorption anomaly outlines the 
debris flows that followed the 1980 explosive eruption, as deduced by comparison with remote sensing 
imagery. The flows overlay a NNW–SSE interface, separating rocks of significant varying properties 
down to 2–4 km, and coinciding with the St. Helens Seismic Zone. High-scattering and high-absorption 
anomalies corresponding to known locations of magma emplacement follow this signature under the 
volcano, showing the important interconnections between its feeding systems and the regional tectonic 
boundaries. With frequency increasing from 6 to 18 Hz the NNW–SSE tectonic/feeding trends rotate 
around an axis centered on the volcano in the direction of the regional-scale magmatic arc (SW–NE). 
While the aseismic high-scattering region WSW of the volcano shows no evidence of high absorption, 
the regions of highest-scattering and absorption are consistently located at all frequencies under either 
the eastern or the south-eastern flank of the volcanic edifice. From the comparison with the available 
geological and geophysical information we infer that these anomalies mark both the location and the 
trend of the main feeding systems at depths greater than 4 km.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Seismic attenuation measurements provide complementary in-
formation to velocity tomography on the state of volcanic media, 
thereby increasing our insight into their complex structure and 
composition. Knowing the mechanism with which seismic waves 
lose their energy in space, time, and frequency in the volcanic 
crust (either scattering or absorption) is crucial to improve seismic 
images of feeding paths and tectonic structures. The lateral varia-
tions in seismic attenuation induced by these two mechanisms can 
be quantified by (1) the peak-delay time of shear waves, defined 
as the lapse-time corresponding to the maximum of the seismo-
gram envelope and (2) the coda quality factor Q c , which quan-
tifies the decay rate of the coda envelope with increasing lapse-
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time (Takahashi et al., 2007; Sato et al., 2012; Calvet et al., 2013;
Prudencio et al., 2015).

Researchers were able to illuminate tectonic structures by map-
ping these two quantities, as done e.g. by Calvet et al. (2013) in the 
Pyrenean mountain range. Takahashi et al. (2007) have shown that 
peak-delay times increase as a consequence of strong forward scat-
tering when seismic waves cross quaternary volcanoes embedded 
in the Japanese crust. Also in Japan, Carcolé and Sato (2010) have 
obtained high-resolution maps of seismic scattering and absorption 
by using the Multiple Lapse Time Window Analysis method (Fehler 
et al., 1992; Del Pezzo and Bianco, 2010). Their results demonstrate 
that the spatial variations of intrinsic absorption and Q c at suffi-
cient lapse-times from the origin time of the earthquake are highly 
correlated. At both regional and continental scale systematically 
higher peak-delay times and lower Q c measurements therefore 
mark the most highly heterogeneous and absorbing structures.

We measure peak-delay times and Q c to map frequency-
dependent lateral variations of S wave scattering and absorption 
in the highly-heterogeneous crust under Mount St. Helens volcano 
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Fig. 1. Seismic and geographical data. (a) A map-view plot of the permanent network stations (gray triangles and letters with white contours), recording seismicity (black 
circles) between 2000 and 2003 at Mount St. Helens (MSH) on topography contoured at 1 km intervals. The color map shows the tomographically defined 2D P wave 
scattering (ε) spatial variations. The inset (upper right corner of the map) shows the location of MSH in southern Washington. We represent the St. Helens Seismic Zone 
(SHZ) as a thick black line on the map. Two vertical sections running south–north (b) and west–east (c) and including topography show the projected seismicity.
(hereafter MSH). We follow an approach similar to that of Calvet et 
al. (2013) to separate seismic scattering from seismic absorption. 
The only modification is that we measure S wave peak-delay times 
with respect to the P wave arrival. Our main assumptions are that 
(1) absorption strongly affects late lapse-time Q c measurements 
and (2) peak-delay times and Q c sensitivities are distributed uni-
formly along the 3D seismic ray (Calvet et al., 2013). The results 
of statistical analyses and the knowledge provided by geophysics, 
geology, and remote sensing in this well known area (see, e.g., De 
Siena et al. (2014) for a complete review) will shed light on the 
effects that different Earth media produce on coda intensities. The 
outcomes will both improve our understanding of how heteroge-
neous structures influence coda waves and give us a novel way to 
depict volcanic media at different scales, from shallow debris flows 
and geological units to deep feeding and tectonic systems.

2. Materials and methods

2.1. Data and P wave seismic heterogeneity

We use 451 high-quality vertical velocity waveforms produced 
by 64 earthquakes with magnitudes between 1.5 and 2.7 located 
around MSH (Fig. 1a–c). The waveforms are recorded at 13 sta-
tions of the Pacific Northwest Seismic Network between 2000 
and 2003, before the explosive eruption of the volcano in 2004 
(Fig. 1a). Hypocentral distances of lengths spanning between 5 
and 60 km are measured along the seismic rays, traced using a 
Thurber-modified ray-bending approach in the velocity model of 
Waite and Moran (2009). After the deconvolution from the instru-
ment response the seismograms are filtered in 4 frequency bands 
(2–4 Hz, 4–8 Hz, 8–16 Hz, 16–32 Hz). We compute the root mean 
square (rms) of the velocity waveforms and smooth the time series 
with a moving time-window whose duration is twice the central 
period of each frequency band. Finally, we calculate the seismic 
envelopes/intensities as the sum of the rms and of its Hilbert 
transform.

Using the velocity model of Waite and Moran (2009) we also 
obtain a 2D map of the rms of the P wave velocity fluctuations 
(Fig. 2a, ε), a direct measurement of P wave heterogeneity, follow-
ing the approach described by De Siena et al. (2011). An exponen-
tial autocorrelation functions (ACF) is calculated using the P wave 
velocity tomograms (Waite and Moran, 2009) as measurements of 
the velocity wave field from the surface to depths of 10 km, in the 
regions of maximum resolution. To remove the depth dependence 
we fit the 21 vertical high-resolution (0.5 km depth slices) velocity 
measurements obtained at each point of the 2D map (Fig. 1a) by a 
Nth order average polynomial V (z) = a∗

0 + a∗
1z + a∗

2z2 + . . . + a∗
N zN . 

Assuming identical variances for the depth-dependent measure-
ments we obtain the degree N = 4 of the polynomial and its coef-
ficients a∗ by using the Schwartz information criterion. The mean 
squared velocity fluctuations (ε2) are estimated by measuring the 
maximum of the ACF obtained after detrending for this polynomial 
(De Siena et al., 2011). We will only discuss the points of the ve-
locity model where we obtain random velocity fluctuations with a 
Lilliefors (Kolmogorov–Smirnov) normality test at a 5% significance 
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Fig. 2. P wave heterogeneity. (a) The color map shows the tomographically defined 
2D P wave scattering (ε) spatial variations overlaid by the map of Fig. 1a. (b) The ε
data density follows a generalized extreme value distribution (gev) of second type, 
with shape parameter κ = 0.18 ± 0.1. (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)

level (De Siena et al., 2011), which correspond to the 76% of our 
starting measurements.

A generalized extreme value distribution of second type with 
positive shape parameter (i.e., a Fréchét distribution) fits the ε
data (Fig. 2b). The Fréchét distribution is the limit distribution of 
maxima of a sequence of non-gaussian independent and identi-
cally distributed random variables, like the velocity fluctuations. 
It provides a location parameter (or, more simply, a spatially aver-
aged rms) of 0.0088, with a scale parameter (standard deviation) of 
0.025. The small positive shape parameter (0.18 ± 0.1) shows that 
only few observations largely differ from the location parameter. 
A correlation function is also defined by a correlation length, which 
may be measured as the length at which the ACF reaches half 
of its maximum (e.g. De Siena et al., 2011). At Campi Flegrei, De 
Siena et al. (2013) show that typical variations of the correlation 
length produce small variations in broadening of the coda wave 
field. Since this quantity is also affected by larger uncertainties we 
consider ε as the best parameter to map P wave heterogeneity at 
MSH (Fig. 2a). The map shows a north-trending high-ε anomaly 
starting under the northeastern part of the volcanic edifice and a 
second high-ε anomaly located south–south-west of the MSH vol-
canic edifice.

2.2. Peak-delay time mapping

Various definitions of peak-delay time (tr ) have been used in 
literature to quantify the strength of scattering due to random het-
erogeneities along the seismic ray-path. Its most general definition 
Fig. 3. Seismic time measurements. An example velocity waveform and envelope 
with corresponding time-related quantities as defined in the study.

is the time-lag between the S wave onset and the maximum of 
the S wave amplitude (Takahashi et al., 2007; Tripathi et al., 2010;
Calvet et al., 2013). As S waves are difficult (if not impossible) to 
pick on MSH recordings, we define tr as the time between the P
wave arrival (tp) and the maximum of the envelope (Fig. 3).

In Fig. 4a, we plot log10(tr) as a function of log10(tp) (gray cir-
cles) for a selected number of peak-delay times measured on the 
waveforms in our dataset. Using a Markov approximation of the 
parabolic equation, Saito et al. (2002) have demonstrated that in 
heterogeneous media the logarithm of tr linearly increases with 
the logarithm of tp at all frequencies. However, our measurements 
are taken in a highly-heterogeneous volcanic region; this linear 
dependence therefore imperfectly matches the true physical peak-
delay model due to regional variations of (1) P and S wave rela-
tive velocities and (2) the strength of the S wave heterogeneities, 
which produce high and localized S wave scattering (Wegler, 2003;
De Siena et al., 2013).

But relative lateral variations of seismic velocities cannot ex-
plain peak-delay time fluctuations of the order of those measured 
at different tp . The theoretical difference between the S wave travel 
time (ts) and tp in a homogeneous medium is given by:

log10[ts − tp] = log10[(
V p

V s
− 1)tp] = log10[(

V p

V s
− 1)] + log10[tp]

= C + log10[tp]. (1)

Feasible variations of the velocity ratio V p
V s

(between 1.6 and 1.8) 
only change the first term on the right-hand side (C ) between 
−0.22 and −0.1, producing slight shifts in the corresponding lin-
ear increase. The crossed dark-gray lines in Fig. 4a show Eq. (1) for 
V p
V s

= 1.7 (C = −0.15), which correctly underlies the logarithmic 
trend of tr . Our selection criterion is to discard data correspond-
ing to V p

V s
lower than 1.65, as these could not be reliably related to 

S wave scattering.
The black, thin, continuous lines and the coefficients (Ar and 

Br ) in each panel of Fig. 4a show the theoretical log–log increase of 
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Fig. 4. Peak delay fit and Q c statistics. (a) Logarithmic plots of the peak-delay times 
(tr , gray dots) versus the P wave travel-times (tp ) in four frequency bands. Each 
panel shows the coefficients Ar( f ) and Br( f ) obtained by the power law fit (black 
continuous lines) with their uncertainties given by the covariance matrix as well as 
the coefficient of determination relative to the fits (R2). The x-dashed line shows 
the theoretical S wave arrival corresponding to a V p

V s
= 1.7. (b) The histograms of 

the inverse coda quality factor measurements (Q −1
c ) in the four frequency bands. 

We show the 90% confidence intervals of the average Q c in each panel.

peak-delays (log10(t
T
r ( f ))) with respect to log10(tp) (ordinate axis) 

at different frequencies (different panels). This is the result of the 
power law fit (Saito et al., 2002):

log10(t
T
r ( f )) = Ar( f ) + Br( f )log10(tp). (2)

The variations with respect to these trends (�log10(tr)), given by:

�log10(tr( f )) = log10(tr( f )) − log10(t
T
r ( f )), (3)

are interpreted as the relative strength of accumulated S wave scat-
tering along each ray path. tr fluctuations are therefore induced by 
strong near-source/near-receiver scattering (Chung et al., 2009): a small 
δlog10(tr) implies either the absence of strong medium heterogeneities 
or strong absorption along the ray path, whereas a large δlog10(tr) indi-
cates that the ray path crosses a strong heterogeneity (Takahashi et al., 
2007; Tripathi et al., 2010; Calvet et al., 2013).

The coefficients Ar and Br are affected by high uncertainties, 
comparable with the values of δlog10(tr) and indicative of high 
scattering, particularly at a short distance from the source (Fig. 4a) 
as seen in other volcanic cones (Wegler, 2003). The correction 
of the travel-time dependence with a linear fit is therefore im-
precise, as indicated by the dispersion of log10(tr) measurements 
and the corresponding low coefficient of determination relative to 
the fits (R2), obtained from the residual variance from a fitted 
model (Fig. 4a). These shortcomings forbid to give valence to abso-
lute �log10(tr) values and will be considered in our interpretation. 
Nevertheless, the increasing quality of the linear fit with frequency 
is analogous to what is observed at regional scale (Calvet et al., 
2013). Since changes in the velocity ratios cannot explain such 
high peak-delay variations we safely assume that tr is a measure-
ment of localized S wave heterogeneity.

We measure peak-delays along each 3D ray and assign its value 
to each 2 km side block crossed by the ray. Then we obtain the 
values in each 2D rectangle by averaging the measurements with 
the same lateral location obtained at different depths. In the fi-
nal maps (Fig. 5a) the measurements are interpolated at each 2D 
node crossed by at least two rays with those of the eight near-
est neighbors. The processes of depth-averaging and interpolation 
reduce the absolute variations of the peak-delay measurements.

2.3. Inverse coda quality factor mapping

We use the decay of the energy envelope with lapse-time t
from the origin time of the earthquake to measure the coda quality 
factor Q c :

E(t, f ) = S( f )t−1.5 exp−(
2π f t

Q c( f )
). (4)

The power spectral energy density E(t, f ) at frequency f is depen-
dent on both a frequency-dependent source/site term (S( f )) and a 
frequency-dependent Q −1

c ( f ). In each frequency band, Q −1
c ( f ) is 

obtained from the least-square linear fit of E(t, f )t1.5 as a function 
of t . We describe the Q −1

c ( f ) dependency on lapse-time by using 
the starting time (tW ) and the length (LW ) of the window used to 
measure it (Fig. 3), in analogy with Calvet et al. (2013). We choose 
these two parameters in order to obtain a quantity that is as de-
pendent on absorption as possible, reducing the effect of scattering 
anisotropy.

Calvet and Margerin (2013) in fact prove that the anisotropy 
of scattering tunes Q c measurements at short lapse-times and 
high frequencies, while the temporal decay in the late coda of 
crustal seismograms is mostly sensitive to absorption. In media 
of higher heterogeneity coda waves at short lapse-times may be 
affected by other coherent-like effects induced for example by to-
pography (Wegler, 2003; Gao and Zhang, 2013; De Siena et al., 
2014). However, even if the impact of anisotropy on Q c is gen-
erally complex, in volcanic media the quasi-isotropic scattering 
approximation fits seismic intensity observations at late lapse-
times well (Yamamoto and Sato, 2010; Sato et al., 2012). In a 
volcano either multiple-scattering or diffusion act on the seis-
mic wave fields, therefore we may reasonably expect Q c to be 
mainly influenced by absorption at late lapse-times (Wegler, 2003;
Sato et al., 2012).

We observe smaller dependence of Q c on window length if 
we measure it using time-windows larger than LW = 10 s. The 
maximum available lapse-time to obtain stable Q c measurements 
is tW = 25 s due to the decrease in signal-to-noise ratio. Q c is 
therefore measured from each envelope decrease over a window 
of length LW = 10 s starting at tW = 25 s (Fig. 3). The values of 
Q −1

c ( f ) measured in this time window are accepted and mapped 
when the signal-to-noise ratio is greater than 4 and the correlation 
coefficient of the linear regression is greater than 0.5. We obtain on 
average 360 measurements at each frequency.

We define the most probable values of Q −1
c ( f ) as lying be-

tween the 10th and 90th percentiles of their statistical distribu-
tion (Fig. 4b). The strong skewness of the Q −1

c ( f ) measurements 
is typical of lognormal positive random variables, but the differ-
ent shape factors and skewness at different frequencies (shown 
on each panel) are clearly related to important variations in the 
medium properties. There are basically three possible explanations 
for the differences in statistical distribution at different frequen-
cies, all related to coda composition/sensitivities:
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Fig. 5. Peak-delay and Q c mapping. The contour map of Mount St. Helens is imposed on the frequency-dependent results of the 2D peak-delay time mapping (a) and 2D 
Q m/Q c mapping (b), where the square sizes are 2 ×2 km. (a) The color scale shows the variations of the logarithm of the peak-delay times corrected for their tp dependency 
at different frequencies. (b) The color scale shows the variations of the inverse coda quality factor (Q −1

c ) divided by the mean of the measurements for a 10-second long 
window starting at a lapse-time of 25 s (Q −1

m ). Average-depth map (c) and (d) hit-count are relative to the plots shown in panels (a) and (b) depending on ray geometry. We 
only show the squares crossed by a minimum of 2 rays. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
1. the increased resolution and corresponding specific depth 
sampling of the measurements with increasing frequencies,

2. the difference in coda-intensity composition, with surface 
waves components decreasing with increasing frequency with 
respect to S body-wave components (Jing et al., 2014; Galluzzo 
et al., 2015),

3. following Jing et al. (2014), that absorption dominates over 
scattering at higher frequencies only (12–18 Hz).

We finally map the relative variations of the Q −1
c ( f ) measure-

ments with respect to their average Q −1
m ( f ) (Q m/Q c , Fig. 3b), 

where Q m/Q c > 1 (red colors) indicates high absorption. The map-
ping approach is the same applied to peak-delays. In addition, we 
provide an estimate of sensitivity and reliability of all the 2D maps 
showing the ray-dependent average depth (Fig. 5c) and hit count 
(Fig. 5d), respectively. The comparison between the depth-map and 
Fig. 5a, b is just indicative, as different frequencies correspond to 
different lateral and in-depth sensitivities for both parameters.

Theoretical and computational coda-generation models as well 
as array analysis measurements indicate that volcanic coda waves 
are composed of a complex mixture of surface and body waves. 
This mixture changes with frequency, affecting the depth sensitiv-
ity of coda-related observations (Wegler, 2003; Jing et al., 2014;
Galluzzo et al., 2015; Prudencio et al., 2015). At Mount St. Helens 
the topography of the volcanic edifice and the high-contrast ma-
terials in the feeding system and surroundings may cause quick 
direct-wave decoherence and low-frequency rise of surface/guided 
waves in the coda (Neuberg and Pointer, 2000; Wegler, 2003;
De Siena et al., 2014). We will take into account these effects in 
the interpretation of the results, which is dependent on the ef-
fective lateral- and depth-sensitivity of coda waves at different 
frequencies (Jing et al., 2014; Galluzzo et al., 2015; Prudencio et 
al., 2015).

2.4. Statistical analyses and parameter space separation

Our study relies on the assumption that tr and Q c are estima-
tors of different attenuation mechanisms. To test this assumption 
we perform both a principal component and a correlation analy-
sis to estimate the relative dependence between the two quanti-
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Table 1
The matrix shows the Pearson correlation values between δlog10(tr), Q m/Q c , and ε measurements at different frequencies. Statistically significant correlations are shown in 
italics.

δlog10(tr), 3 Hz 6 Hz 12 Hz 18 Hz Q m/Q c , 3 Hz 6 Hz 12 Hz 18 Hz ε

δlog10(tr), 3 Hz 1
6 Hz 0.776 1
12 Hz 0.773 0.866 1
18 Hz 0.741 0.842 0.958 1
Q m/Q c , 3 Hz 0.161 0.015 0.078 −0.019 1
6 Hz −0.120 −0.230 −0.214 −0.290 0.341 1
12 Hz 0.135 −0.033 −0.013 −0.065 0.229 0.451 1
18 Hz 0.162 0.049 0.048 −0.006 0.084 0.136 0.696 1
ε 0.079 0.015 0.036 0.056 −0.005 −0.040 0.033 0.068 1
Fig. 6. Results of principal component analyses. (a) Principal component analysis 
scores (+) in the principal component space at 3 Hz, where the first component 
explains 66% of the total variability. (b) The eigenvalues of the correlation matrix 
obtained by considering the 9 measurements obtained in each block jointly versus 
the component number show the reduction in data variability.

ties. A principal component analysis (PCA) rotates data into eigen-
value space, with size-ordered orthogonal (independent) axes of 
data variability, whose orientation in the original data space is ex-
pressed in the contributions of the original variable axes to each 
new principal component axis. Since we only have two axes per 
frequency, we provide a preliminary study of the correlation of all 
measurements at single data points. We also consider possible cor-
relations at different frequencies. The results (Table 1) show (1) 
that both S wave measurements are positively correlated with their 
immediate lower-frequencies but only peak-delay time correlations 
are relevant at all frequencies (larger than 0.6), (2) the two mea-
surements are uncorrelated in each frequency band, and (3) ε and 
the peak-delay times are uncorrelated. This last observation hints 
at a strong difference in sampling/nature between P wave phases 
and either S or surface-scattered amplitudes.

The percent variabilities explained by the first principal compo-
nent at each frequency obtained by a standard PCA do not yield 
additional information. In Fig. 6a we show the scores at 3 Hz, 
where it is apparent that (1) we have no outliers that can be 
efficiently interpreted and (2) the PCA hardly provides any im-
provement on our results. On the other hand, by considering the 9 
measurements at each block jointly (4 frequencies for peak-delays 
and Q c each plus ε) we obtain more information on the rela-
tive contribution of each measurement to the general plot. Fig. 6b 
shows the eigenvalues of the correlation matrix in this case. The 
first two (three) components contribute most to data variability, 
explaining 62.5% (74.8%) of overall data variability. The main con-
tributing original variables split neatly along the expected classi-
fication: the first principal component (PC1) corresponds to the 
peak-delay times, while the second (PC2) is the opposite of the 
inverse coda quality factors. This relationship is evident by com-
paring the patterns in Fig. 5a, b at 3 Hz (large scale), which are 
generally anti-correlated. These results indicate strong variations 
in the nature, scale, and depth sampling of the Q −1

c ( f ) measure-
ments at different frequencies as well as that the two measure-
ments under study are complementary.

Our interpretation is performed after separating the mea-
surements depending on their quadrant in the parameter space 
(Fig. 7a). In Fig. 7b we show areas marked by green (low scat-
tering and absorption), orange (higher Q −1

c ( f )/absorption), cyan 
(higher �log10(tr)/scattering), and red (high scattering and ab-
sorption). To test the reliability of this approach we also apply 
a K-means cluster analysis with Euclidean distance and the elbow 
method (Fig. 8a) using the approach described by De Siena et al.
(2011). This technique provides a separate quantitative interpreta-
tion to our measurements, obtained by discussing for each panel 
in Fig. 8b the relative position of the clusters and by allocating 
it in space (Fig. 8c). The elbow method indicates that either two 
or three clusters can be chosen before the plateau in reduction 
(Fig. 8a, the reduction corresponding to three clusters is marked 
by the dotted gray line), dependent on the percentage of centroid 
reduction we want to achieve. By choosing three clusters the cen-
troids are distributed along the same pattern at all frequencies 
(Fig. 8b), strongly depending on the Q m/Q c variations with re-
spect to the mean. The cyan cluster marks regions of lower Q m/Q c
and generally higher δlog10(tr), whereas the orange cluster has op-
posite characteristics. The average measurements are characterized 
by the gray cluster. We have to define at least 4 clusters to reach 
a 90% reduction (marked by the crossed gray line in Fig. 8a). In 
addition, the analysis gives a certain prominence to the Q c mea-
surements over peak-delay times. Therefore, the cluster analysis 
assumes sharp divisions in our measurements, which are not com-
pletely justified by the reduction in point-to-centroid distance, but 
can still be used to check the most relevant results obtained by 
using a parameter space separation (Fig. 7b).

3. Results and discussion

At all frequencies the southwestern S wave high-scattering 
anomaly (Fig. 5a) matches almost perfectly with the area of 
maximum small-scale (average dimension 3 km) geological
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Fig. 7. Mapping after separation in parameter space. (a) The 2D measurements are separated with colors in the parameter space and (b) mark scattering and absorption 
characteristics of the area. We contour high magnetic anomalies (3 Hz, white dotted curves), areas of high surface, magnetic, and depth-dependent velocity heterogeneity 
(3 Hz black dashed line), low-velocity anomalies at a depth of 2.9 km (6 Hz, dashed white lines), and high-velocity anomalies between depths of 4 and 6 km (12 Hz and 18 
Hz, dotted black lines). (c) Simplified sketches of our interpretation in different frequency bands. The red dashed line at 3 Hz contours debris flows larger than 2 km as they 
appear from satellite imaging. Black-contoured red dots in panels a and c (18 Hz) mark the areas of highest positive variation for both quantities. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
(Evarts et al., 1987), magnetic (Finn and Williams, 1987), and in-
depth P wave velocity heterogeneity (Fig. 2a – see also Lees and 
Crosson (1989)). The same correlation between high P wave and 
S wave scattering does not characterize the second south–north 
trending high P wave heterogeneity anomaly in Fig. 2a, marking 
the northern flank of the volcanic edifice. We infer that these 
results are due to differences in the properties of the material 
comprising these two regions.

Scattering and absorption maps (Figs. 5a, b) are seemingly anti-
correlated at low frequencies, with the Q −1

c maps showing major 
changes in pattern locations with increasing frequencies. We re-
mark in particular how at 6 Hz the contrast between high and low 
Q −1

c ( f ) follows the St. Helens Seismic Zone (SHZ), which appears 
as an interface separating tectonic units of different nature/scale 
(Lees and Crosson, 1989). With increasing frequency high peak de-
lays and low Q c patterns result increasingly correlated with each 
other, as reported by the results of the correlation analysis (Ta-
ble 1). In particular, cluster analysis confirms that the SHZ repre-
sents a clear geological and tectonic interface, separating rocks of 
different nature in the upper panels (Fig. 8c, 3 Hz and 6 Hz). Also, 
with increasing frequencies, this trend rotates, running approxi-
mately southwest to northeast across the entire region (Figs. 8c, 
12 Hz and 18 Hz).

3.1. Low frequencies: debris flows, geological units, and tectonic trends

Both high �log10(tr) and high Q m/Q c (red, Fig. 7a) are typi-
cal at continental scale and in experimental studies when seismic 
waves traverse media with a high concentration of melt phases 
and fluids (Johnston, 1981; Takahashi et al., 2007; Carcolé and Sato, 
2010; Del Pezzo and Bianco, 2010; Tripathi et al., 2010). In our 
setting high-scattering anomalies, if mirrored by high-absorption 
anomalies, are possibly caused by unconsolidated rocks, sediments, 
magma, and fluids. The continuous red patterns in Fig. 7b actually 
cross the cone at all frequencies, either related to surface geology 
or providing important information on the location of the main 
feeding systems. In addition, the relative positions of the anoma-
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Fig. 8. Results of the cluster analysis. 3-means cluster analysis applied to the 2D spatially-dependent measurements of Fig. 5a, b. (a) Percent reduction in point-to-centroid 
distance with respect to the number of clusters for the 4 frequency bands. The x-crossed line shows the 90% reduction. The dotted line shows the percent reduction for three 
clusters. The centroid of each cluster (black crossed circles) and the result of the cluster analysis are shown in the parameter space (b) and mark different regions on the 
contour map (c). On the 3 Hz plots we impose the contour of high magnetic anomalies (white dotted curves) and the area of highest surface, magnetic, and depth-dependent 
velocity heterogeneity (black dashed line) as reported by Lees and Crosson (1989). (For interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)
lies marked by the other colors provide important insight into the 
main tectonic trends and structures characterizing the area.

The only relevant high-scattering and high-absorption anomaly 
(red) at 3 Hz (Fig. 7b) follows a northwest-to-southeast trend, cov-
ering the northern and eastern flanks of the volcano. The northern 
part of the anomaly follows the largest section of the meltwater 
debris flows following the collapse of the northern flank of the 
volcano in 1980. The contour of the visible part of these partially 
buried flows between 1980 and 1983 (Major and Mark, 2006) are 
delineated in Figs. S1–S2 (see Supplementary Information) by us-
ing geographical information systems, satellite imagery, and digital 
elevation models of USGS data with the method described by Ernst 
et al. (2008). On the other hand, the eastern flank of the volcanic 
edifice is not intersected by any visible debris flow, the corre-
sponding red anomaly possibly being the expression of deeper 
high-scattering and high-absorption structures.

In Fig. 7c we report the resolvable features (minimum dimen-
sion = 2 km) of the visible debris flows in 1983: this spatial 
correlation suggests an unexpected sensitivity of our method to 
the shallowest layers of the crust (<=200 m). Low-frequency Q c

measurements sample shallower structures than those expected 
from the average ray-dependent depth sampling. At 3 Hz, this may 
be explained by the strong influence of surface waves on low-
frequency coda-waves (Jing et al., 2014; Galluzzo et al., 2015).

The cyan/green regions west of the SHZ depict a sharp north–
south contrast with the orange regions east of it (Fig. 7b–c, 3 Hz). 
Such a contrast consistently matches the difference in tectonic 
composition/lithology reported by Finn and Williams (1987) and 
Evarts et al. (1987) by using magnetic anomalies and surface ge-
ology, respectively. In particular, the orange region maps a large 
high magnetic/high velocity anomaly, impervious to fluid injection, 
comprising the Spirit Lake Pluton, and running east of MSH and 
Marble Mt. (Fig. 7b–c, 3 Hz, the contour is shown by white/orange 
dotted lines east of the SHZ).

The second significant (although smaller) high magnetic
anomaly (white-dotted line west of the SHZ, Fig. 7b–c, 3 Hz), 
which also corresponds to a Pluton (Fig. 7c, Spud Mount, see Finn 
and Williams (1987)), shows both low Q m/Q c and low peak-delay 
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times. This difference may only be explained by either a lateral in-
sensitivity of coda waves to structures (wavelengths) smaller than 
10 km or a greater lateral and in-depth sampling of tectonic units 
at low frequencies. While the first interpretation would not justify 
the precise contour obtained for the debris flows, the last hypoth-
esis is supported by rotation of the high scattering/high absorption 
contrast, which coincides at 6 Hz with the trace of the SHZ (Fig. 7c, 
dotted cyan and orange lines). The SHZ evidently separates two 
media with different scattering/absorption properties and fractur-
ing.

In our interpretation, these results show the effect of two im-
portant tectonic structures. At depths greater than 10 km the high 
absorption east of the SHZ could be induced by large deep melt 
phases, possibly a direct image of the highly conducting Southern 
Washington Cascades Conductor hypothesized by electromagnetic 
studies (Egbert and Booker, 1993; Hill et al., 2009). Nevertheless, 
both high �log10(tr) and high Q m/Q c should mark the pres-
ence of melt and fluids (Johnston, 1981; Takahashi et al., 2007;
Carcolé and Sato, 2010; Del Pezzo and Bianco, 2010; Tripathi et 
al., 2010), while only different Q m/Q c characteristics separate the 
two regions (Fig. 7b, 3 Hz). We infer that the cyan and orange 
anomalies are more likely to depict the transition between the 
low-velocity and lower scattering Cascade Arc Crust (orange, north 
and east of the SHZ, Fig. 7c, 6 Hz) and the high-velocity Siletz Ter-
rane (cyan/green, south and west of the SHZ, see e.g. Parsons et al.
(2005)), whose top may strongly contribute to late coda intensities.

The area of highest S wave scattering is always located west 
southwest of the SHZ (cyan Figs. 7b–c, 3 Hz, also compare Fig. 5a). 
In Fig. 7b, at 3 Hz, we impose a black dashed line on this area, 
showing both the contour of the strongest in-depth velocity con-
trasts between the surface and 9 km (Lees and Crosson, 1989)
and the highest small-scale (average dimension 3 km) surface and 
magnetic heterogeneity (Evarts et al., 1987; Finn and Williams, 
1987). Two travel-time tomography studies show different velocity 
characteristics at depths greater than 6 km in this aseismic region, 
with either low (Lees, 1992) or high velocities (Waite and Moran, 
2009). While the strong in-depth and lateral contrasts and the high 
scattering provide important evidence of past volcanic activity, we 
infer no large upper crustal emplacement of either magma or hot 
fluids in the region before the eruption, due to its low absorption 
characteristics at all frequencies (Lees, 1992).

At 6 Hz, a high-scattering and high-absorption region crosses 
the volcanic edifice along the SHZ trend, from its northwestern 
to its southeastern flank (Fig. 7b, red). Coda waves may be par-
tially comprised of surface waves in this frequency range, with the 
maps influenced by unconsolidated superficial structures. Never-
theless, the red anomaly shows a trend depicted in the P wave 
travel-time tomography of Waite and Moran (2009) by low-velocity 
anomalies at a depth of 2.9 km (Fig. 7b–c, 6 Hz, white/red dashed 
contour lines). Also, the trend fades in its northern part with re-
spect to 3 Hz. Considering the uncertainties on depth sampling 
and coda composition affecting our data we may safely attribute 
the anomaly to the effect of magmatic/fluid paths located under 
the volcanic edifice between depths of 2 and 4 km (Lees, 1992;
Waite and Moran, 2009).

3.2. High frequencies: tectonic trends and feeding paths

We expect a strong influence of body waves on the high-
frequency coda intensities used to measure scattering and absorp-
tion (Galluzzo et al., 2015). Therefore, the analysis of the high-
frequency measurements should better depict structures at the 
average ray-dependent depths (between depths of 2 km and 8 km, 
Fig. 3c). In Fig. 7b, 12–18 Hz, we contour with a black dotted line 
the areas of highest P wave velocity between depths of 4 and 6 
km as shown by Lees and Crosson (1989). A large red anomaly 
marks the SHZ trend, the volcanic edifice, and reaches the south-
ern flank of the volcano at 12 Hz (Fig. 7b–c). The NNW–SSE trend 
shows persistent high-scattering and high-absorption characteris-
tics at different frequencies (Fig. 7b, 3–12 Hz). Considering wave 
field distortion produced by the collapsed cone on the observed 
quantities (Anderson et al., 2012; Gao and Zhang, 2013) this result 
mirrors the major role this zone of tectonic interaction has on the 
upward movement of melt phases and fluids at MSH.

In Fig. 7b, 12 Hz, the extension of the trend to the south-
ern edge of the volcanic edifice is in excellent spatial correlation 
with a negative aeromagnetic anomaly, which marks the trend 
of prominent mapped contacts crossing the MSH cone (Finn and 
Williams, 1987). Indeed, the regional structural high-scattering and 
high-absorption trend is possibly a fault spreading in its south-
western limit (Fig. 7c, 12 Hz), which would explain the more 
diffuse seismicity and less well defined seismic velocity anoma-
lies to the south of MSH, in agreement with the interpretation 
of previous studies (Evarts et al., 1987; Stanley et al., 1987;
Lees and Crosson, 1989; Moran et al., 1999). Also, between depths 
of 4 and 10 km, tertiary marine sediments may be preserved in the 
graben-like cracked volume west of the SHZ, increasing both scat-
tering and absorption (Moran et al., 1999; De Siena et al., 2014).

With increasing frequency, the maps show a dramatic change 
in the relative position of the orange, cyan, and green anomalies 
(Fig. 7b). With respect to 6 Hz, the high-frequency plots show 
a rotation of the scattering/absorption contrasts around an axis 
centered on the volcano from NNW–SSE in a SW–NE direction 
(Fig. 7b–c, compare 6 Hz–18 Hz). In particular, at 12 Hz the or-
ange region runs parallel to the NNW–SSE trend, at the end of the 
red trend. At 18 Hz the cyan anomaly splits the orange trend in 
two, while the red anomalies have their principal axes disposed 
along the SW–NE direction (red, Fig. 7b–c, 18 Hz).

The SW–NE direction coincides with the strike of the steeply 
dipping fault, inferred between depths of 5.5 and 10 km by 
Musumeci et al. (2002), and considered the cause of magma in-
jection from depths greater than 6 km. Total P wave attenuation 
measurements obtained using passive data recorded before the 
2004 eruption show a drastic decrease of attenuation below 5.5 km 
(Tusa et al., 2004). In the interpretation of Tusa et al. (2004) this 
is due to heated rocks in proximity of the conduit, which is lo-
cated only above this depth. The conduit has been recently imaged 
as a short vertical lineament between depths of 0 and 5 km un-
der the central crater using microseismicity located with a novel 
large-N geophone array (Hansen and Schmandt, 2015). Therefore, 
the scattering/absorption contrasts at 18 Hz, which comprise high-
scattering and high-absorption SW–NE anomalies, support our cur-
rent understanding of magma recharge into the feeding structures 
of the volcano below 5 km. In addition, the patterns hint at a 
crustal trend possibly related to the SW–NE greater-scale mag-
matic arc structure, recently placed at 9 km depth by Obrebski 
et al. (2015). These results all agree upon a strong interconnection 
between tectonic and feeding systems at MSH, with tectonic units 
driving and constraining the supply of magmatic and fluid phases 
to volcanic eruptions.

The smaller-scale red anomalies are the expression of either 
small-scale reflectors or errors in our measurements, as mir-
rored by the result of the elbow method at 18 Hz (Fig. 8a): we 
need a strong increase in the number of clusters to reduce the 
model-to-data variance in this frequency band. On the other hand, 
the 11 most relevant variations in the parameter space (Fig. 7a, 
18 Hz, black-contoured red dotted-line) appear as a singular SW–
NE trending anomaly located under the eastern and south-eastern 
flanks of the volcano (Fig. 7c, black-contoured red dotted-line). 
These regions (1) are those characterized by extreme velocity con-
trasts between depths of 2 and 14 km, (2) show high conductance 
(Hill et al., 2009) between depths of 0 and 10 km, (3) overlay deep 
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low-velocity anomalies, attributed to the presence of magma (Lees, 
1992), and (4) coincide with the location of a 10-to-14 km deep 
low-scattering anomaly, interpreted as a network of interconnected 
water-rich melt absorbing fractures (De Siena et al., 2014). From 
their S wave high-absorption and high-scattering characteristics 
at all frequencies we conclude that the eastern and southeastern 
flanks of MSH are the most feasible locations of feeding paths be-
low depths of 4 km, at least before its 2004 explosive eruption 
(Fig. 7c, 18 Hz).

4. Conclusions

The joint analysis of low-frequency 2D scattering- and absorp-
tion-dependent measurements depicts the interface between rocks 
of significantly varying properties respectively west and east of 
Mount St. Helens. It also provides an exact contour of the un-
consolidated high-scattering and high-absorption debris flows fol-
lowing the 1980 explosive eruption, hinting at a high sensitivity 
of low-frequency coda waves to the first few layers of the crust. 
Our results depict the NNW-to-SSE oriented SHZ as a boundary be-
tween different tectonic structures having a crucial role in driving 
and constraining feeding paths at MSH. The anomalies correspond-
ing to high-absorption and high-scattering materials cross the vol-
canic edifice from its north northwestern to its south southeastern 
flank with increasing frequency. In our interpretation they show 
the extension and trend of sediments (buried inside/near to the 
SHZ) and magma phases/fluids (under the volcano between depths 
of 2 and 4 km).

By the comparison of tomograms at different frequencies we 
conclude that low frequency (3–6 Hz) coda/scattered intensities 
sample both the shallowest crust, probably due to the influence 
of surface components, and deeper large-scale tectonic structures, 
where passive seismicity is embedded. The main characteristic of 
the high-frequency maps is the rotation of the tectonic/feeding 
trends around an axis centered on the volcano from NNW–SSE 
in the known direction of the regional-scale magmatic arc at 9 
km (SW–NE). The aseismic high-scattering region WSW of the vol-
cano, depicted in previous travel-time tomography studies as ei-
ther high- or low-velocity below 6 km depth, shows no evident 
high-absorption characteristics. Indeed, the highest-scattering and 
highest-absorption regions are instead consistently located under 
either the eastern and south-eastern flanks of the volcanic edi-
fice at all frequencies, where we infer the location of the main 
magma/hot fluids paths in the upper crust below 4 km.
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