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Abstract 

Fluctuations of a Greenlandic tidewater glacier from the Little Ice Age to present: 

reconstruction and modelling of Kangiata Nunaata Sermia, SW Greenland. 

 

James M. Lea 

________________________________________________________________________ 

 

 

Significant uncertainty surrounds the influence of atmospheric and oceanic forcing on the 

fluctuations of tidewater glacier outlets of the Greenland ice sheet (GrIS), with the majority 

of studies focussing on dynamics over the last two decades. Although numerical model 

based projections exist anticipating the future dynamics of major GrIS outlets, these have 

been made using temporally limited model calibration periods (<5 years) compared to the 

centennial timescales that they seek to predict over. The ability of these numerical models 

to simulate the centennial timescale dynamics of GrIS tidewater glaciers has therefore not 

been explicitly tested. 

 This thesis seeks to calibrate a well-established one-dimensional tidewater glacier 

numerical model against post-Little Ice Age maximum (LIAmax) observations of a major 

tidewater glacier outlet of GrIS. The study site chosen is Kangiata Nunaata Sermia (KNS); 

the largest tidewater outlet in SW Greenland south of Jakobshavn Isbræ. This glacier is 

known to have undergone retreat of >20 km since its LIAmax, though the timing of this 

retreat and response to climate forcing is currently poorly constrained.  

 Utilising a range of source material, it is demonstrated that KNS is likely to have 

achieved its LIAmax by 1761, experiencing either one, or two multi-kilometre retreats by 

1859, and retreats of a similar scale between 1921-1968, and 1997-2012. Terminus 

fluctuations of KNS were in phase with climate anomalies, where data were available for 

comparison (1871-2012). To allow accurate comparison to numerical model output, the 

accuracy of different methods of quantifying glacier terminus change was also evaluated. 

Two new methods were devised so observations could be matched with greater accuracy 

than existing methods allowed. Glacier sensitivity to climate forcing was evaluated using 

the numerical model. The results demonstrated that multi-annual to decadal behaviour of 

KNS could be simulated, with atmospheric forcing likely to be the most significant driver 

of fluctuations.  
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Chapter 1 
 

Introduction 

________________________________________________________________________ 

 

 

This thesis will seek to investigate the controls on the stability of a large tidewater glacier 

outlet of the Greenland Ice Sheet (GrIS) over centennial timescales. The study is motivated 

by the uncertainty surrounding the multi-decadal to centennial timescale controls on 

tidewater glacier behaviour in Greenland, and the potential for future changes in oceanic 

and/or atmospheric forcing to increase mass loss from GrIS. 

 

1.1 Tidewater glaciers and the importance of Greenland 

 

Tidewater glaciers allow potentially significant volumes of ice to be rapidly lost from ice 

masses via their termini calving into a fjord/ocean. Although tidewater glaciers can be 

found in glaciated regions across the globe, the majority are found in Greenland and 

Antarctica where calving from marine margins accounts for ~50% and 99% of all ice sheet 

ablation respectively (Van den Broeke et al., 2009). A characteristic of these glaciers is 

that they often accelerate significantly towards their termini, due to the reduction in basal 

drag arising from the density contrast between glacier ice and sea water. This also means 

that their termini often experience significantly greater amounts of longitudinal strain 

compared to those of land terminating margins. Tidewater glaciers therefore tend to be 

densely crevassed, which in itself has significant implications for glacier flow, mass loss 

via calving, and their overall stability (Benn et al., 2007a).  

The stability of tidewater glaciers are strongly controlled by changes in fjord 

topography (Meier and Post, 1987; Warren, 1992; Gudmundsson et al., 2012; Jamieson et 

al., 2012; Carr et al., 2013a). These topographic controls also mean that once a terminus 

destabilises, dynamic feedbacks can decouple glacier dynamics from climatic controls, 

producing a strongly non-linear relationship with climate. Depending on a particular 

setting, these non-linearities can drive rapid (<<10 year) multi-kilometre terminus retreats. 

High retreat rates can then be sustained alongside increases in both flow velocity and ice 

mass loss until a new stable configuration is achieved (e.g. Schoof, 2007; Joughin et al., 

2008; Durand et al., 2009; Colgan et al., 2012; Pattyn et al., 2012; Favier et al., 2014). This 

allows tidewater glaciers to maintain large ice fluxes under stable terminus conditions (up 
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to several tens of cubic kilometres per year), though periods of unstable terminus retreat 

can increase this significantly.  

Despite their importance to global ice mass balance, the processes that control the 

dynamics of tidewater glaciers remain poorly understood (in physical, spatial and temporal 

terms). This shortfall in understanding is especially significant when set against the context 

of a warming climate, with future change at the polar regions set to be amongst the greatest 

globally (Stocker et al., 2013). The GrIS currently holds the equivalent of ~7 m of sea level 

rise (Bamber et al., 2013), making the understanding and prediction of how its tidewater 

glaciers will respond to future warming crucial to estimating sea level change over the next 

century (Meier et al., 2007; Straneo et al., 2013). This currently represents a significant 

uncertainty for those involved in the planning of policies and infrastructure associated with 

adaptation to, and mitigation of future global sea level change (Church et al., 2013). 

The GrIS also occupies a crucial geographic position within the global ocean-

atmosphere climate system, situated adjacent to areas of saline North Atlantic dense water 

(NADW) formation such as the Greenland, Irminger Labrador Seas (Bamber et al., 2012; 

Weijer et al., 2012; Straneo et al., 2013). Constraining potential changes in freshwater 

fluxes from GrIS therefore may prove crucial to establishing how/if GrIS tidewater glaciers 

will impact oceanic and atmospheric heat transport at local and global scales (Bamber et 

al., 2012; Weijer et al., 2012). Given the importance of NADW formation for global ocean 

circulation (e.g. Stommel, 1961; Rahmstorf et al., 1995), the volume and timing of GrIS 

tidewater glacier calving into the North Atlantic could therefore potentially impact global 

climate. 

A freshening of these waters has already been observed (Bamber et al., 2012), with 

GrIS tidewater glaciers known to have undergone widespread retreat over the last 20 years 

(e.g. Moon and Jougin, 2008; Bevan et al., 2012). This retreat has occurred alongside a 

sustained period of both oceanic and atmospheric warming (Holland et al., 2008; Box et 

al., 2009; Murray et al., 2010; Rignot et al., 2012), though given their synchronicity, 

attempts to disentangle their relative effects on GrIS tidewater glacier stability have been 

problematic (Joughin et al., 2012; Straneo et al., 2013).  

Researching these problems is also hampered by logistical, practical and data 

related issues that are commonly associated with working in the polar regions, and on ice 

sheets. The investigation of tidewater glaciers is often especially difficult due to the 

frequently hazardous, inaccessible and logistically difficult nature of the environments of 

interest. Such problems that are often encountered include (but are not limited to), (1) often 
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extensive crevassing making access to areas of fast ice flow difficult, if not impossible, 

even via helicopter, (2) presence of a dense mélange of calved ice and fjord ice making 

glacier termini inaccessible by boats without an icebreaking capability, (3) the 

unpredictability and magnitude of calving events precluding direct access to (and often the 

measurement of) terminal areas, (4) large calving events generating tsunamis, making 

boat-based/low lying onshore fieldwork hazardous. 

 A variety of innovative solutions have been developed in an effort to combat these 

problems (e.g. Figure 1.1), however tidewater glaciers in general remain data poor 

environments. Despite these difficulties, a substantial volume of research has been 

undertaken into the dynamics of Greenlandic tidewater glaciers over the last two decades 

(see Carr et al., 2013b, for a review). Many of the field based glaciological datasets 

available are often limited to this period, supplemented by the ~25 years of good coverage 

provided by the satellite record (e.g. Bevan et al., 2012). The majority of records of 

tidewater glacier change are therefore inherently short compared to multi-decadal changes 

in modes of climate that are known to naturally affect Greenland, such as the North 

Atlantic Oscillation (Hanna and Cappelen, 2003; Hanna et al., 2008). The ability to 

contextualise terminus response to recent warmth against dynamics during previous warm 

periods is therefore impossible without extending records beyond the satellite era. 

Compared to the intensive investigation of the satellite record, there has so far been little 

study of this, with relatively few existing studies utilising historical observations (e.g. 

Csatho et al., 2008; Bjørk et al., 2012), proxy records (e.g. Andresen et al., 2012; Lloyd et 

 

Figure 1.1 Deploying a transmitting GPS in a heavily crevassed area of the tidewater glacier Narssap 

Sermia, SW Greenland. The transmitting GPS allows glacier velocity to be relayed via remote satellite 

link for areas that are likely to become inaccessible after deployment of the instrument. (Photo: D. van 

As) 
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al., 2011), or a synthesis of qualitative historical sources and direct observations (e.g. 

Weidick; 1959; Weidick et al., 2012).  

The response of Greenlandic glaciers to changes in climate forcing over multi-

decadal to centennial timescales is therefore, at present, largely uncharacterised. Similarly, 

previous studies aimed at modelling the future evolution of major tidewater glaciers and 

ice sheets have tended to make use of only short transient calibration periods (if used at 

all), compared to the multi-decadal to centennial timescales that they seek to predict over 

(e.g. Gladstone et al,. 2012; Nick et al., 2013). The validity of the models over these longer 

timescales has therefore not been explicitly tested. Evaluating the performance of these 

models against multi-decadal to centennial records of observations would therefore help to 

substantially increase confidence in their predictive ability, and also constrain parameter 

space uncertainty. Using longer model calibration periods should then also allow any 

shortfalls or limitations in the model (or model input) to be identified with greater ease, 

and help to highlight scenarios where it is (or is not) suitable to apply the model. 

 

1.2 Research Objectives 

 

The dynamics of GrIS tidewater glaciers can have potentially far reaching impacts on both 

global sea level and climate. Evaluating their impact requires determining the controls on 

their dynamics, and whether current numerical models are capable of accurately simulating 

their response to warming over multi-decadal to centennial timescales. Therefore, the aim 

of this thesis is to generate a quantified centennial timescale record of change occurring at 

a major tidewater outlet of the GrIS, and evaluate whether an established tidewater glacier 

numerical model (Nick et al., 2010; 2013) is capable of capturing observed behaviour.  

Reconstruction of glacier dynamics will be achieved through a synthesis of remote 

sensing and field based geomorphological mapping, analysis of historical texts, maps, 

photographs, and satellite imagery. This will then be compared against available climate 

data to investigate the relative importance of atmospheric versus oceanic climate forcing. 

Results from numerical modelling analyses will be used to determine the ability of the 

model to replicate observed behaviour over multi-decadal to centennial timescales, and the 

modelled sensitivity of the glacier to atmospheric and oceanic forcing.  

 It is hoped that this will help to establish the validity of applying the Nick et al. 

(2010; 2013) tidewater glacier model in a predictive capacity over multi-decadal to 

centennial timescales. In doing so, this will determine the ability of the model to generate 



5 
 

 
 

reliable estimates of sea level contributions/ice volume fluxes from tidewater glaciers. By 

undertaking a centennial timescale reconstruction of a Greenlandic tidewater glacier we 

aim to provide a longer term perspective on the behaviour of a major outlet glacier of the 

GrIS. This will also seek to demonstrate how qualitative historical data can be usefully 

applied to gain quantitative estimates of glacier extent where no geomorphological, or 

visual media data are available.  

Evaluation of the different methods used to track tidewater terminus change is also 

undertaken with the aim of determining which is most accurate across the widest range of 

scenarios. New methods are developed with the dual purpose of both improving 

methodological accuracy, and allowing direct comparison of observations with the output 

of flowline numerical models. The results are also intended to provide a basis for a series 

of recommendations for others to follow when generating quantitative records of tidewater 

glacier terminus change. 

 In summary, this thesis will seek to address uncertainties surrounding tidewater 

glacier dynamics relating to (1) how changes in atmospheric and oceanic forcing impact 

calving and terminus stability, (2) the formulation/parameterisation of calving processes 

and climate forcing for inclusion in numerical models, and (3) the ability of models to 

replicate observed tidewater glacier behaviour over the multi-decadal to centennial 

timescales. 

 

1.3 Thesis structure 

 

This thesis contains 7 chapters, each presented so they can be read as individual pieces of 

work. The reasoning for this is primarily because the majority of the research presented 

(Chapters 4-6) has either been published in, or submitted to, peer-review journals.  

Following this chapter, Chapter 2 is intended to provide a summary of previous 

research that is relevant to the subsequently presented work, while Chapter 3 will describe 

the field site and the methods applied as part of the thesis. At the time of writing, Chapters 

4 and 5 were both published in 2014 as individual papers in the Journal of Glaciology, 

Volume 60, (220), while Chapter 6 has been submitted to The Cryosphere Discussions and 

is awaiting peer-review. Offprints of the published article versions of Chapters 4 and 5 are 

included as appendices. Finally, Chapter 7 aims to summarise the main conclusions of the  
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thesis, and how it has contributed to our understanding of the dynamics of Greenlandic 

tidewater glaciers over centennial timescales, and how they can be modelled. 
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Chapter 2 
 

Background 

________________________________________________________________________ 

 

 

Although tidewater glaciers share many processes with land terminating margins that 

influence their flow, their marine based termini mean they exhibit significantly different 

dynamics (Carr et al., 2013b). This chapter aims to provide a summary of the physical 

controls on the flow of tidewater termini, in addition to previous work on how climate 

forcing affects their dynamics.  

 

 2.1 Physical controls on tidewater glacier flow 

 

The marine termini of tidewater glaciers result in several modifications to the force balance 

compared to land terminating margins. These significantly affect flow behaviour. As with 

land terminating glaciers, the driving stress, τd, exerted by a tidewater glacier between two 

points on a longitudinal flow profile can be expressed as 

 

            

         (2.1)  

where ρi = the density of glacier ice, g = the gravitational acceleration constant, H = ice 

thickness and α = the ice surface slope. The driving stress is balanced by resistive stresses, 

including the basal drag, τb, lateral drag, τw, and longitudinal drag, τl, such that 

 

            

         (2.2)  

For the overwhelming majority of land terminating glaciers basal drag will provide the 

majority of resistance to glacier flow, given that gravity acts in the vertical (zz) plane, 

meaning that the pressure exerted by a given ice thickness can be expressed as 

 

         

          (2.3)  

where     = the normal stress acting in the vertical plane. Also, the lateral margins of a 

glacier will often occupy a smaller area than the bed, meaning that the latter can normally 
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support a greater fraction of the driving stress. However, at a marine terminating margin 

the base of the glacier will be below sea level, meaning that normal stress will be reduced 

according to 

 

          
  

  
   

         (2.4)  

where ρp = density of the proglacial water body (hereafter: fjord water), and D = depth of 

the fjord at the terminus. Since the density contrast between glacier ice and the fjord water 

will reduce the pressure the glacier exerts on its bed, this also reduces the basal drag. 

Therefore if the force balance (Equation 2.2) is to be maintained and the driving stress has 

a fixed value, the residual driving stress must be taken up by lateral and/or longitudinal 

drag.  

In reality, lateral and longitudinal drag can only partially accommodate the 

reduction in basal drag that occurs near to the terminus of a tidewater glacier. Instead, the 

glacier dynamically adjusts to reduce the driving stress. This is achieved through flow 

acceleration towards the terminus, resulting in high longitudinal strain rates, ice thinning, 

and a reduction in surface slope (Equation 2.2). As a consequence, as basal drag 

approaches zero and the terminus gets nearer to floatation, lateral and longitudinal drag 

will begin to balance a greater proportion of the remaining driving stress. 

 The importance of basal and lateral drag means that subglacial topography and 

fjord width exert a significant control on the overall resistance to flow of a tidewater 

glacier. The longitudinal drag term in the force balance also impacts flow behaviour over 

length scales of 4-10 times ice thickness (Cuffey and Paterson, 2010), though regions of 

low basal and lateral drag can increase this (Gudmundsson, 2003). This effect allows some 

marine terminating margins to possess large floating tongues several tens of kilometres in 

length, with that of Petermann Glacier supported almost entirely by longitudinal drag 

(Nick et al., 2012). However, since the majority of Greenlandic tidewater glaciers (all but 

seven) do not possess significant floating ice tongues (Moon and Joughin, 2008), this 

implies that the driving stress of the majority of grounded termini are likely to be 

supported predominantly by differing proportions of basal and/or lateral drag. 

 Given the effect of subglacial and lateral topography on the force balance of a 

tidewater glacier, they will also impact flow velocities along its flow axis. This can be 

demonstrated if the depth and width averaged velocity of a glacier,  ̅, at a given point is 

expressed as 
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 ̅  
 

  
 

           (2.5)  

where Q = volume of ice flux per unit time, and W = glacier width, meaning that a given 

ice flux will need to flow at greater speeds through a narrower/thinner section of a glacier. 

This can also be related to the calculation of the longitudinal strain rate,   ̅   , meaning 

that for a steady state (where ice thickness does not change with time) velocity will be 

affected by changes in ice thickness and width along a glacier profile, such that 

 

  ̅

  
 

 ̇

 
 

 ̅

 
 
  

  
 

  ̅

  
 

   (2.6)  

where x = distance along a flowline,  ̇ = the specific mass balance,  ̅ = depth averaged 

velocity perpendicular to a flowline, y = distance perpendicular from a flowline, and the 

transverse strain rate,   ̅   , can be estimated according to 

 

  ̅

  
 

 ̅

 
 
  

  
 

(2.7)  

 (Cuffey and Paterson, 2010: their Equations 3.93 and 3.94, p. 346). Accelerations in 

glacier velocity due to topography can therefore be related to reducing ice thickness as the 

glacier flows over a bedrock obstacle (Equation 2.6, second term), and/or decreasing the 

transverse strain rate via a narrowing of the fjord topography (Equation 2.7). Conversely, 

glacier decelerations can be associated with increasing ice thickness and width, as a glacier 

enters a deeper area of the fjord or a topographic widening. 

 Changes in fjord topography can also potentially have implications for whether a 

tidewater glacier can remain grounded at its terminus. For example, a terminus advancing 

into deeper water may not be sufficiently thick to remain grounded (Equation 2.4), while 

fjord widening can cause flow divergence (Equation 2.7), leading to ice thinning. Such 

thinning could then lead to the terminus achieving floatation. This behaviour has major 

implications for the calving behaviour of tidewater termini. 
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2.2 Calving 

 

Calving from tidewater termini occurs once the tensile stresses near the margin are large 

enough to produce a crack, or a network of cracks, that fully isolate a block of ice from the 

rest of the glacier. The processes associated with calving are therefore inextricably linked 

to those of crevassing. In Greenland calving events can occur at scales ranging from blocks 

of ice <1 m
3
 to the calving of full ice thickness icebergs with areas of >250 km

2
. Although 

events of the latter magnitude only tend to occur due to calving of the Petermann Glacier 

ice tongue (Johannesen et al., 2011), full ice thickness events that include significant 

fractions of the calving front (>1 km wide, and extending several hundred metres 

upstream) occur at multiple tidewater outlets in Greenland (e.g. Figure 2.1). However, 

smaller to intermediate events are far more common (Amundsen et al., 2008; Joughin et 

al., 2008b). 

 The processes governing calving behaviour are multivariate and complex, meaning 

that it is not currently possible to predict the timing and magnitude of individual events 

(Van der Veen, 2002; O’Neel et al., 2003). Benn et al. (2007a) suggested a hierarchy of 

processes that control calving; namely, (1) changes in the strain rates associated with 

velocity gradients along and across ice flow; (2) large stress gradients occurring at ice 

cliffs; (3) undercutting of the calving face by melting at/below the waterline; and (4) 

buoyancy arising due to the density contrast between ice and fjord water. 

 
Figure 2.1 Examples of two large full ice thickness calving events from Jakobshavn Isbrae, W 

Greenland.  Lateral extents and freeboard heights are labelled.The first (a,b) observed on 11
th

 June, 2006, 

and the second (c-f) on 5
th

 June, 2007. Figure from Amundsen et al., 2008. 
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2.2.1 Strain rates affecting crevassing and calving 

The acceleration of tidewater glaciers towards their termini can result in significant 

gradients in velocity developing both parallel and perpendicular to the primary flow axis 

(Section 2.1). These velocity gradients can be sufficient to cause the ice to fracture (i.e. 

form crevasses) according to three different modes (Figure 2.2). These fractures can then 

form the basis for pre-existing weaknesses/networks of cracks that can lead to calving.  

For tidewater glaciers, the simplifying assumption is often made that crevassing 

occurs entirely by mode 1 failure. This is because in the majority of cases, crevasses are 

broadly orientated perpendicular to the primary ice flow direction. This allows convenient 

and easy estimation of crevasse depth, d, from the longitudinal strain rate,   ̇ , according to  

 

  
 

   
(
  ̇ 
 

)

 
 

 

(2.8)  

where A = multiplier in Glen’s flow law, and n = rate factor in Glen’s flow law (1955). The 

depth of the crevasse is therefore expressed by the point at which the extensional stress 

across the crevasse is balanced by the compressive stress exerted by the weight of the ice 

itself. This is one of the few empirically validated relations relevant to crevassing 

(Mottram and Benn, 2009), thus providing a good physical basis for its application within 

modelling studies (e.g. Nick et al., 2009; 2010; Otero et al., 2010; Cook et al., 2012). 

 The presence of ponded water within crevasses has also been suggested to 

significantly affect crevasse depth. Building upon Equation 2.8, this effect can be 

incorporated within the Nye (1957) formulation according to 

  

 
Figure 2.2 Schematic diagram demonstrating the three different modes of crevasse fracturing, namely; 

Mode 1 – tensile stresses pulling the block apart; Mode 2 – shear stresses acting in parallel but opposing 

directions; Mode 3 – response to shear in the vertical plane. Figure: Benn et al., 2007a. 
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    (2.9)  

Where ρw = density of glacier meltwater, and dw = depth of water in the crevasse, with the 

depth of water in the crevasse allowing it to penetrate deeper (Figure 2.3; Benn et al, 

2007a,b). The presence of ponded water provides a mechanism for climate driven changes 

in surface melt to potentially influence calving behaviour (e.g. Nick et al., 2013; Cook et 

al, 2012; 2013). 

 Crevassing processes that occur upstream of the terminus (driven by downstream 

acceleration of a tidewater glacier, and topographic variability of its channel; Section 2.1), 

can also have significant implications for calving. As these crevasses are advected towards 

the glacier terminus, increases in longitudinal and transverse strain rates can lead to the 

reactivation of these pre-existing weaknesses within the ice (Benn et al., 2007a). It has also 

been noted that such pre-existing damage can act to soften glacier ice, thus affecting its 

rheology and susceptibility to further damage (Pralong et al., 2003). Ice dynamics 

upstream therefore have the potential to directly impact calving behaviour (e.g. Pralong 

and Funk, 2005; Borstad et al., 2012; Krug et al., 2014). 

 The acceleration of tidewater glaciers towards their termini, and fjord geometry can 

therefore impact calving behaviour through (1) increasing strain rates at the terminus 

through flow acceleration and the topographic configuration of the fjord at the calving 

margin, and (2) preconditioning ice for calving through the advection of crevassed ice from 

upstream. 

 
Figure 2.3 Ponded meltwater water in crevasses observed from a helicopter ~6 km from the terminus of 

Kangiata Nunaata Sermia, SW Greenland, August 2011. 
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2.2.2 Stress gradients at vertical calving faces 

The majority of Greenlandic tidewater glaciers have vertical calving faces, meaning that 

their termini are supported by the back pressure provided by the proglacial water body 

(Figure 2.4). However, the backpressure acting on the calving face is insufficient to 

completely balance the outward pressure exerted by the glacier. This imbalance is greatest 

at the waterline (Figure 2.4). The velocity gradients produced at the terminus therefore 

encourages deeper propagation of crevasses compared to areas upstream of the calving 

front. The high strain rates generated by a vertical calving face therefore predispose the 

terminal areas of tidewater glaciers to extensive mode 1 crevassing, that in turn help to 

contribute to higher calving rates (Section 2.2.1).  

 

2.2.3 Terminus undercutting 

Calving face geometry is modified by conditions within the proglacial water body (Warren 

et al., 2001; Vieli et al., 2002; Motyka et al., 2003; Enderlin and Howat, 2013; Rignot et 

al., 2012). The effect of this is to redistribute stresses at the calving face that affect its 

relative stability and susceptibility to calving. Greenlandic tidewater glaciers are primarily 

subject to undercutting below the water line (e.g. Enderlin and Howat, 2013; Rignot et al., 

2012), rather than at it (e.g. Vieli et al., 2002), leading to considerable difficulty in gaining 

observations of the morphology and magnitude of the undercut (Straneo et al., 2013). 

 However, modelling by O’Leary and Christoffersen (2013) demonstrated how 

different undercut geometries impact where stresses are concentrated, and hence where 

 
Figure 2.4 Schematic diagram of the stress imbalance at a vertical calving face, showing the pressure 

exerted by the ice cliff (grey arrows), compared to the backpressure exerted by the water column (blue 

arrows. The schematic plot on the right (red line) shows the relative pattern and direction of the imbalance 

between the two. Figure redrawn from Benn and Evans (2010). 
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calving is most likely to occur (Figure 2.5). Larger undercuts and sub-aerial fractions of 

glacier fronts were found to increase the concentration of stress around their respective 

foci. This has the logical implication that larger undercuts and higher freeboard heights 

increase the likelihood of calving. Processes that may affect the rate and distribution of 

undercutting at tidewater termini are discussed below in Section 2.3.3. 

 

2.2.4 Buoyancy 

The density contrast between glacier ice and fjord water means that the submarine part of a 

tidewater glacier is naturally buoyant (Equation 2.4). While this has implications for the 

force balance and how tidewater glaciers flow (Section 2.1), it can also impact calving 

behaviour. For example, once a sub-aerial calving event occurs, the overburden pressure 

exerted by the calved ice on the ice below has been removed. Therefore, the buoyancy of 

any remaining part of the ice front will increase, given that the height above buoyancy of a 

given ice thickness, Hab, can be expressed as 

 

      
  

  
  

(2.10)  

An increase in buoyancy will lead to an increase in tensile stress at the terminus. 

Coupled with increasing strain rates towards the terminus due to flow acceleration 

(Sections 2.1 and 2.2.1), this process increases the likelihood of basal crevasses forming. 

This also enhances the probability of calving occurring. Similar to surface crevasses, basal 

crevasse heights are a function of longitudinal strain rates, but also the buoyancy of the ice 

itself. The heights of basal crevasses, db, can therefore be estimated according to  

 
Figure 2.5 Distribution of stress relative to the hydrostatic pressure for different given tidewater glacier 

terminus geometries. Areas of higher stress are more likely to experience fracture, and hence result in 

calving. Figure: O’Leary and Christoffersen (2013). 
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(2.11)  

The effect of basal crevasse growth following a sub-aerial calving event will either be to 

cause near-instantaneous calving of any remaining sub-aqueous portion of the glacier front 

(Motyka et al., 2003; Åstrom et al., 2013), or redistribute the stress upglacier. The growth 

of basal crevasses and their potential linkage with surface crevasses can also help drive 

full-thickness calving behaviour (e.g. Bassis and Jacobs, 2013). 

Buoyancy effects arising from tidal forcing will also inevitably impact every 

tidewater glacier to some extent, due their marine terminating margins. Although the 

effects of tides on Antarctic ice shelf and ice stream margins have been extensively 

observed (e.g. Vaughan, 1995; Bindschalder et al., 2003; Gudmundsson, 2006), their effect 

on the flow of tidewater glaciers in Greenland (e.g. Dietrich et al., 2007; Podrasky et al., 

2012; Walter et al., 2012), and elsewhere (e.g. O’Neel et al., 2003) is comparatively 

unclear.  

 Although Walter et al. (2012) observed fluctuations in velocity in phase with tides 

at Store Glacier, W Greenland, each tidewater glacier will be subject to different tidal 

forcing due to their individual topographic setting. For example, for an idealised laterally 

unconfined tidewater glacier where the terminus is just below floatation at mean sea level, 

low tides will increase basal drag upstream from the terminus, and also increase the height 

of the sub-aerial ice cliff. Conversely, during high tides, longitudinal strain rates will 

increase due to a decrease in basal drag, enhancing crevasse depths (Equations 2.8 and 

2.11), while change in freeboard height will be minimal since the terminus is at/near 

floatation at mean sea level. 

 While the increase in drag and reduction in velocities at low tide would in theory 

reduce strain rates and crevasse depths, this may be offset by the increase in longitudinal 

strain rate resulting from the increase in freeboard height (c.f. O’Leary and Christoffersen, 

2013). A generalised calving response to low tide conditions is therefore unclear without 

further work being conducted. By comparison, high tides are likely to produce flow 

accelerations at the terminus and enhanced calving rates compared to mean sea level 

conditions. The relative sensitivity of a particular glacier to tidal forcing will therefore 

depend on (1) the magnitude of the tidal range, (2) how close the terminus is to floatation, 

and (3) the glacier surface slope and ice thickness upstream of the terminus. 
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2.3. Climatic factors affecting glacier flow and calving 

 

From the discussion above, it is evident that both atmospheric and oceanic forcing can 

directly affect the processes that control tidewater glacier flow and calving. However, their 

relative importance in driving the recently observed changes of Greenlandic tidewater 

outlets (e.g. Moon and Joughin, 2008; Moon et al., 2012), and the timescales over which 

they may significantly affect dynamics are still relatively poorly understood (Joughin et al., 

2012; Straneo et al., 2013). Below represents a brief summary of current understanding. 

 

2.3.1 Glacier hydrology 

Understanding of Greenlandic glacier hydrology and its effect on flow dynamics has 

significantly benefitted from the study of land terminating margins. Their comparatively 

simplified flow regime, accessibility afforded by sub-aerial margins, and less crevassed 

terminal regions have allowed major advances in understanding to be made over the last 

decade (e.g. Das et al., 2008; Shepherd et al., 2009; Bartholomew et al., 2010; Hoffman et 

al., 2011; Sundal et al, 2011; Chandler et al., 2013; Cowton et al., 2013; Sole et al., 2013; 

Tedstone et al., 2013; Doyle et al., 2014). However, the effect of glacier hydrology and 

meltwater input on flow of the terminal regions of tidewater glaciers is currently less well 

understood. 

 The impact of glacier hydrology on the dynamics of tidewater termini is likely to be 

dependent on the rate and timing of meltwater input, and its distribution across the glacier 

bed. This will determine the volume of meltwater required to decouple the ice and glacier 

bed, and hence reduce basal drag (Iken and Bindschalder, 1986; Iverson et al., 1999; 

Schoof, 2005). At GrIS land terminating margins, the volume and distribution of meltwater 

supplied to the bed are known to have strong seasonal components, with the subglacial 

drainage system evolving from a distributed (inefficient) to channelized (efficient) network 

through the melt season (Cowton et al., 2013). The transition of the hydrological system 

from an distributed to channelized network from the glacier margin upstream results in ice 

velocity decreasing, as subglacial water pressure across the majority of the bed decreases 

(Chandler et al., 2013). 

There is some evidence for this also being the case for tidewater glaciers, with 

Podrasky et al. (2012) observing that between 20-50 km from the terminus Jakobshavn 

Isbræ, a more intense melt year resulted in behaviour similar to that of a land terminating 
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margin. Similarly, GPS measurements by Ahlstrøm et al. (2013) for eight different 

Greenlandic tidewater margins showed evidence for short early-summer accelerations 

followed by a rapid deceleration. Sole et al., (2011) were also able to demonstrate that such 

an acceleration/deceleration event at Kangiata Nunaata Sermia (KNS) was accompanied by 

the rapid discharge of a large turbid plume into its fjord. This occurrence of high proglacial 

discharge alongside an acceleration of flow velocity has often been associated with the 

reorganisation of the subglacial drainage system at land terminating margins (e.g. Nienow 

et al., 1998; Cowton et al., 2013). 

 Although these changes in subglacial hydrology can have significant impacts on the 

seasonal dynamics, their net effect on annual glacier velocity at land terminating margins 

has been demonstrated to be minimal (Sole et al., 2013). This has been shown through 

observations of summer flow accelerations being offset by lower winter velocities (Sole et 

al., 2013), meaning that the recent 2012 extreme melt year in Greenland actually had 

minimal net effect on the annual flow velocity of a land-terminating margin (Tedstone et 

al., 2013). However, it is less clear whether this is also the case for the annual velocities of 

marine terminating glaciers. The observations of Sole et al. (2011) at KNS showing a ~1% 

net effect of summer motion on annual velocity were taken >35 km from its terminus, and 

upstream of where topographically focussed glacier flow initiates (Joughin et al., 2010a). 

Consequently, it is not known whether such an observation would be applicable closer to 

the terminus. Furthermore, the potential effect of fjord mélange inhibiting winter ice flow 

(see Section 2.3.3) further complicates the possibility of determining the effect of annual 

meltwater input on annual velocities. 

 It has also been suggested that meltwater input along lateral shear margins (at both 

ice-ice and ice-rock interfaces) could also reduce lateral drag, in turn affecting glacier flow 

(Pfeffer, 2007; Howat et al., 2010; McFadden et al., 2011; Nick et al., 2012). However, to 

the knowledge of the author the occurrence and significance of this is at present 

hypothetical, and has not been demonstrated empirically.  

 

2.3.2 Atmospheric effects on crevassing and calving 

The ponding of meltwater in crevasses has previously been suggested to allow them to 

penetrate deeper than under longitudinal strain alone, with implications for enhancing 

calving rates at tidewater margins (Equation 2.9; Benn et al., 2007a; 2007b; Nick et al, 

2009). Higher volumes of surface melt produced by higher air temperatures will therefore 

result in deeper meltwater ponds at the base of crevasses, and/or allow them to fill more 



18 
 

 
 

rapidly. Higher rates of surface melt are therefore likely to encourage deeper, and spatially 

more extensive top-down hydrofracturing across the terminus region of a tidewater glacier.  

The effects of such changes have been incorporated into numerical models via a 

crevasse water depth calving criterion (Benn et al., 2007a; Nick et al., 2009; 2010; Otero et 

al., 2010; Cook et al., 2012). Results from one of these models applied to Columbia 

Glacier, Alaska has demonstrated that changes in crevasse water depths on the order of a 

few meters were sufficient to drive significant changes in calving and glacier dynamic 

behaviour (Cook et al., 2012). Further work on Greenlandic outlet glaciers have also 

shown that temperature driven changes in crevasse water depth have the potential to 

significantly affect their dynamics over the next century (Nick et al., 2013). 

 However, these models currently fail to account for the cumulative damage 

experienced by the ice as it is advected towards the terminus (e.g. Borstad et al., 2012). 

While enhanced crevassing in the presence of meltwater is predicted by Equation 2.9, ice 

affected by this must first reach the terminus before it can impact calving behaviour. 

Therefore, depending on the flow velocity of the glacier, ice may have been subject to 

crevasse damage resulting from several melt seasons before it ultimately calves. The 

potential importance of previous melt seasons on calving behaviour is also complicated by 

the annealing of ice and closure of crevasses once pressure from ponded meltwater is 

removed. Removal of meltwater could occur via drainage to the bed via hydrofracture 

through the full ice thickness, or refreezing within the crevasse.  

Some of the physical aspects of cumulative damage mechanics have been 

successfully incorporated into a calving criterion by Krug et al. (2014), and have been 

successfully validated against observations from Helheim Glacier, E Greenland. Similar to 

the crevasse water depth calving criterion (Benn et al., 2007a), longitudinal strain rates are 

observed to exert a first order control on calving behaviour for the model setup. As such, 

this provides physical consistency within the hierarchy of calving processes described by 

Benn et al. (2007b). However, significant work remains to be undertaken in determining 

the relative sensitivities of tuning parameters and how they can be realistically related to 

changes in climate forcing. 

 Pre-existing crevasses have also been suggested as conduits through which 

meltwater can warm ice, and hence affect its rheology (Phillips et al., 2010). This has been 

termed as cryohydrologic warming, and provides a potential mechanism for runoff to 

affect the thermal structure of ice sheets at depth on timescales of years to decades. This 

could potentially lead to higher rates of ice deformation through the warming and softening 
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of the ice. However, for the effect to be extensive would require significant volumes of 

meltwater entering a densely packed network of englacial conduits, with the meltwater 

requiring sufficient englacial residence time to conduct its thermal energy. The terminal 

regions of tidewater glaciers provide the ideal environment for cryohydrologic warming to 

be significant, given the presence of often extensively crevassed and damaged ice at the 

margin of the ice sheet where surface melting is also likely to be most intense. 

 An implication of this is that according to Equations 2.9 and 2.11, where ice is 

warmer (and hence softer), crevasses will not penetrate as far for a given longitudinal 

strain rate. Therefore, multiple warm, high surface melt years may help to suppress 

crevasse extents through modification of the thermal properties of the ice.  

 Peaks in subglacial water pressure driven by meltwater supplied to the bed also 

provide the potential for transient enhancement of basal crevasse heights near tidewater 

glacier termini. For example, at surging glacier margins, full depth basal crevassing in ice 

of ~200 m is possible once subglacial water pressures exceed 80-90% of floatation (Rea 

and Evans, 2011). In principle, such conditions could occur at tidewater glacier margins 

throughout the year, due to either (1) seasonal reorganisation of the subglacial drainage 

system (e.g. Sole et al., 2011), (2) diurnal fluctuations in surface melt (e.g. Meierbachtol et 

al., 2013), or (3) sudden drainage of supraglacial or ice marginal lakes (e.g. Hoffmann et 

al., 2011). Although subglacial water pressures that generate these high basal crevasses 

will not necessarily be sustained, glacier flow will advect the crevassed ice towards the 

glacier terminus. This in turn may form the basis for full-depth calving events.  

 

2.3.3 Ocean-atmosphere effects on calving 

The following will briefly summarise current understanding of the controls on fjord 

circulation and how this impacts on melt rates at Greenlandic tidewater termini. 

Furthermore, while the presence/absence of a floating ice tongue is known to have a 

significant effect on the rate and pattern of submarine melting (Figure 2.6; e.g. Rignot and 

Steffen, 2008; Le Brocq et al., 2013), the overwhelming majority of Greenlandic glaciers 

are known to have near-vertical calving faces (Moon and Joughin, 2008). The discussion is 

therefore limited to processes that are likely to be applicable to vertical tidewater margins 

in Greenland. 

The morphology of calving fronts are subject to potentially significant modification 

by fjord conditions both at and below the waterline (e.g. Vieli et al., 2001; Motyka et al., 

2003). This can have significant implications for the distribution of stress at the terminus, 



20 
 

 
 

and consequently for calving dynamics (Section 2.2.3; O’Leary and Christoffersen, 2013). 

The rate of calving face melting is primarily controlled by a combination of two factors; 

(1) fjord water temperature [dictated by fjord hydrography (Mortensen et al, 2011; 2013) 

and synoptic scale oceanography (Rignot et al., 2012)], and (2) the rate and volume of 

subglacial discharge at the terminus (Jenkins, 2011; Xu et al., 2012; 2013). Fjord 

circulation (e.g. Motyka et al., 2003; Rignot et al., 2010; Mortensen et al., 2011; 2013) will 

also significantly affect how energy is transferred from the fjord water to the calving face, 

directly impacting the shape of terminus undercut (Xu et al., 2012; 2013; O’Leary and 

Christoffersen, 2013). 

 Rates of terminus undercut are likely to directly impact the rate of calving (O’Leary 

and Christoffersen, 2013). Based on modelling studies, melt rates at tidewater termini 

exhibit a linear dependence on fjord temperature, and approximately a cube root 

dependence on subglacial discharge (Jenkins et al., 2011; Xu et al., 2012; 2013). The latter 

implies an approximate doubling of the melt rate for an order of magnitude increase in the 

rate of discharge. The non-linear relationship between discharge and melt rate is primarily 

a result of the density contrast between the freshwater runoff, and comparatively saline 

fjord water. This means that once subglacial runoff emerges at the base of the glacier it 

will become buoyant within the water column. This will rise along the face of the terminus 

as a spatially confined plume (relative to the width of the calving front), entraining ambient 

fjord water as it does so (Figure 2.6). This helps to establish a density driven convective 

mode of circulation where ambient fjord water is drawn into the plume, and the less dense 

mixed fjord/glacial runoff flows away from the terminus at/near the surface (Motyka et al., 

2003; Rignot et al., 2010).  

 
Figure 2.6 Schematic diagram of ambient ocean water being entrained by a buoyant, fresh meltwater 

plume, occurring at a tidewater glacier and and ice shelf (Figure: adapted from Jenkins, 2011). 
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As the plume is spatially confined, the highest melt rates across the width of a 

tidewater glacier terminus will be focussed around subglacial runoff portals (Xu et al., 

2013). To the knowledge of the author, the effect of this spatial concentration of melt on 

the distribution of stress across the width of a terminus, and therefore its impact on calving, 

is yet to be assessed. 

 The submarine melt rate at a tidewater terminus occurring due to runoff will be a 

function of (1) the volume of subglacial runoff produced within a glacier catchment, (2) 

the level of development of the subglacial drainage system (i.e. the efficiency with which it 

can evacuate meltwater subglacially into the fjord), and (3) the occurrence of supraglacial 

or ice dammed lake drainage events that cause peaks in subglacial discharge. Submarine 

melt rates are therefore a function of atmosphere-ice-ocean interactions that vary 

significantly over sub-seasonal timescales. 

 The linear dependence of submarine melt with fjord water temperature will be 

affected by in-fjord circulation and the relative influence of ocean waters within a 

particular fjord (e.g. Murray et al., 2010; Straneo et al., 2011; Cauché et al., 2013). In-fjord 

circulation can cause a significant degree of temperature variability in both vertical and 

horizontal planes (e.g. Mortensen et al., 2011; 2013; Xu et al., 2013), while the 

connectivity of fjords to deep ocean waters can add a further layer of complexity to fjord 

hydrography (e.g. Rignot et al., 2010; Straneo et al., 2010; 2012). For example, changes in 

regional ocean circulation off the coast of Greenland (Figure 2.7), including the warming 

of currents on both its south-east and west coasts, have previously been suggested to play a 

 
Figure 2.7 Diagram showing the distribution of ocean currents around Greenland, with Atlantic sources 

coloured red to yellow, and Arctic freshwater sources as blue. Rates of dynamic ice sheet thinning 

occurring in Greenland are superimposed. Figure: Straneo and Heimbach, 2013. 
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significant role in driving terminus retreat (e.g. Holland et al., 2008; Rignot et al., 2010; 

Straneo et al., 2010; 2012; Christoffersen et al., 2011; Motyka et al., 2011).  

The currents that are suggested to have driven GrIS tidewater glacier retreat are 

composed of warm, dense, saline waters that flow at depth, and are commonly referred to 

as Atlantic Waters. The density of these waters means that where shallow fjord sills exist, 

they can form topographic barriers that relatively insulate the fjords (and the tidewater 

glaciers therein) from the effects of oceanographic warming (e.g. Mortensen et al., 2011; 

2013; Straneo et al., 2012). However, due to a fjord’s connection to the open ocean, 

oceanographic conditions will always have some impact on fjord hydrography. 

 Where dense Atlantic Waters flow into fjords they will enter at depth, generally 

capped by cooler, less dense Polar/Arctic Waters. This can lead to potentially strongly 

stratified water columns (Straneo et al., 2011). Coupled with effects of winds, tides, and 

local temperature and density gradients within the water column, this can generate highly 

complex circulation patterns compared to the simple convection driven model described 

above (Figure 2.6; Motyka et al., 2003; Straneo et al., 2010; 2011). The level of fjord 

stratification will therefore also be significant when attempting to model or estimate 

submarine melt rates (Jenkins, 2011; Straneo et al., 2011). 

 Modelling work by Sole et al. (2012) at Kangerdlugssuaq Fjord has suggested that 

enhanced subglacial runoff can also result in greater volumes of Atlantic Waters being 

advected at depth towards the terminus. The modelled increase in heat energy resulting 

from a doubling of runoff was found to be sufficient to increase summer submarine melt 

rates by 48%. This demonstrates that high runoff rates can also enhance the relative impact 

of warmer ocean waters on melt rates where they occur within glaciated fjords. 

 The impact of the oceans on submarine melt rates at tidewater termini is therefore 

contingent on (1) the presence/absence of sills that allow ocean waters to enter the fjord, 

(2) different modes of fjord circulation that modify the water column of the fjord, and 

hence the distribution of energy available for generating submarine melt, and (3) the 

volume and rate of subglacial discharge entering the fjord, advecting greater volumes of 

waters at depth towards the terminus. 

 A final physical constraint on the calving behaviour of tidewater termini is the 

occurrence of mélange (i.e. a dense proglacial pack of icebergs and sea ice). As air 

temperatures fall below zero during winter the mélange freezes and becomes a rigid mass, 

inhibiting calving by providing backstress to the terminus at the waterline (Figure 2.4; 

Amundsen et al., 2010). The backpressure provided by the mélange (suggested to be on the 
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order of 30-60 kPa; Walter et al., 2012) is thought to inhibit calving and ice flow through 

preventing the overturning of large icebergs that would otherwise calve from the terminus 

(Amundsen et al., 2010). This has the effect of allowing the terminus to advance during the 

winter, while also suppressing terminus flow velocities (e.g. Amundsen et al., 2010; Walter 

et al., 2012). Mélange breakup often precedes air temperatures rising above zero, with 

ambient fjord water temperature, mélange thickness, glacier thickness and fjord width all 

suggested to influence its timing (Schild and Hamilton, 2013). 

 

2.4 Evaluating the effects of climate forcing 

 

Atmospheric and oceanic forcing can potentially exert significant controls on tidewater 

glacier behaviour. However, the above discussion demonstrates that their effect on many 

processes affecting dynamics remain empirically poorly constrained. A simple, frequently 

used approach to evaluating their potential impact is to compare observations of glacier 

dynamics to first order indicators of each type of forcing (e.g. Seale et al., 2011; Bevan et 

al., 2012; Carr et al., 2013a). For a glacier of interest, it is therefore crucial to establish (1) 

the pattern of air temperature variability, and (2) a knowledge of how the oceans are likely 

to impact fjord water temperature near the terminus.  

Once suitable records of atmospheric and oceanic change are generated, these can 

also be used to drive numerical models. Within these models climate forcing variables can 

be related to the processes described above via parameterisations (e.g. Nick et al., 2013). 

Although successful model runs (i.e. those that simulate behaviour within an acceptable 

margin of error) are unlikely to be unique solutions, these can be used to establish (1) 

whether the model setup and parameterisations are capable of simulating observed 

behaviour for the given forcings, and (2) the relative sensitivity of the modelled glacier to 

each type of climate forcing. However, to provide confidence in the model validation 

procedure, observations must also be accurately comparable to model output. If this is not 

achieved, the errors introduced could potentially skew validation, and/or lead to the 

erroneous rejection of successful model simulations. Model success, and the effective 

interpretation of results, will therefore be contingent on (1) the suitability of climate 

forcing input, (2) the appropriateness of model parameterisations, (3) the accuracy with 

which observations are compared to model output, and (4) choice of validation procedure. 
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Chapter 3 
 

Field site and methods 

________________________________________________________________________ 

 

 

This thesis aims to elucidate the relative importance of atmospheric and oceanic drivers on 

the behaviour of a large Greenlandic tidewater glacier since its Little Ice Age maximum 

(LIAmax), and the ability of a well-established numerical model to replicate this. This is 

achieved through reconstructing glacier behaviour using a combination of field, remote 

sensing and documentary data, in addition to numerical modelling.  

Given the uncertainty of the relative effects of atmospheric and oceanic forcing on 

tidewater glacier stability (Joughin et al., 2012; Straneo et al., 2013), these climate forcings 

need to be well constrained for the study site. The potential to generate a detailed multi-

decadal to centennial record of glacier behaviour is also of critical importance. 

Consequently, this chapter describes the field site, the reasons for its selection, in addition 

to an overview of the methods and data utilised during the course of the research. This is 

not intended to be a wholly exhaustive account, with any extra relevant detail being 

provided where necessary in subsequent chapters. 

 

3.1 Field site 

 

The field site selected for study is Kangiata Nunaata Sermia (KNS), SW Greenland 

(~64.3° N; Figure 3.1). It is the largest outlet glacier in west Greenland south of 

Jakobshavn Isbræ, currently flowing at ~6 km a
-1

 at its terminus (Joughin et al., 2010a), 

attaining calving rates of ~6 km
3
 a

-1
 and surface runoff rates ranging from 2-7 km

3
 a

-1
 (Van 

As et al., 2014). This mass loss is discharged into the Kangersuneq branch of Nuup 

Kangerlua/Godthåbsfjord, choking the fjord with calved ice for much of the year and 

significantly impacting fjord temperature, salinity and circulation (Mortensen et al., 2011; 

2013). The ice dammed lake Isvand is also located ~5 km upstream of the present terminus 

position on the western margin of KNS. Prior to 2004, this lake drained down a valley into 

Ameralik, though subsequent to this has undergone periodic subglacial drainage into 

Kangersuneq (Weidick and Citterio, 2011). 

Given the size of its potential annual mass loss, KNS exerts a significant control on 

the overall mass balance of the south-western sector of the Greenland Ice Sheet (GrIS). It 
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is also known to have retreated significantly (>20 km in total) in more than one phase since 

its LIAmax, though its precise response to climate forcing over this period has not been 

explicitly investigated (Weidick, 1959; Weidick et al., 2012). The magnitude of terminus 

retreat observed since the LIAmax therefore demonstrates the sensitivity of KNS to climate 

and/or topographically driven terminus change over multi-decadal to centennial timescales. 

This also makes KNS an ideal test site for evaluating the ability of numerical models to 

replicate observed glacier dynamics and determine the drivers of these changes.  

Several factors also make KNS a suitable location to attempt centennial timescale 

reconstructions. Firstly, as it retreated from its LIAmax, KNS has left a largely unstudied 

geomorphological record (Weidick et al., 2012), providing information regarding where 

the glacier experienced relative stability, and its dynamics during retreat. Secondly, it is 

positioned ~80 km inland from the first post-Medieval European settlement of Nuuk 

(colonial Danish: Godthåb), while the Nuup Kangerlua/Godthåbsfjord fjord system is also 

the location of the abandoned Norse Western Settlement (Vestyrbygd). These factors mean 

that historical records of the area are more likely to exist following Danish re-colonisation 

in 1723, while the Norse ruins have continued to attract archaeologists and explorers to the 

 

Figure 3.1 Annotated Landsat false colour satellite image (acquired 18/9/2000) showing the location of 

KNS within Godthåbsfjord, and its location in Greenland (inset). Names of glaciers have been 

abbreviated as follows: NS – Narssap Sermia; QS – Qamanarssap Sermia; AS – Akullersuup Sermia; 

KNS – Kangiata Nunaata Sermia; KS – Kangaasarsuup Sermia; IS – Isortuarssup Sermia. 
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region since their rediscovery (Egede, 1741). This has generated a wealth of disparate 

historical source material (some being previously unstudied/unidentified from a 

glaciological perspective), including written accounts, maps and photographs that span 

more than two centuries. These observations have significant potential to ascribe precise 

chronologies to extents reconstructed from geomorphology, and its dynamics during 

periods where landform evidence is not preserved. 

 

3.1.1 Contemporary dynamics 

While the contemporary dynamics of KNS have been studied to some extent (e.g. Sole et 

al., 2011; Ahlstrøm et al., 2013; Van As et al., 2014), both it, and the south-western sector 

as a whole have not been subject to the intensity of research experienced at other major 

Greenlandic outlet glaciers, such as Jakobshavn Isbrae (e.g. Joughin et al., 2004; 2008a; 

2014; Csatho et al., 2008; Amundsen et al., 2010; Vieli and Nick, 2011; Podrasky et al., 

2012) or Helheim Glacier (e.g. Howat et al., 2005; 2008; Joughin et al., 2008b; Nick et al., 

2009; 2013; Murray et al., 2010; Andresen et al., 2012; Cook et al., 2013). 

 The response of KNS to changes in subglacial hydrology has been observed over 

sections >35 km upstream of the terminus, and has been described previously in Section 

2.3.1 (Sole et al., 2011). While velocity data exist closer to the terminus (~20 km; 

Ahlstrøm et al., 2013), these have not yet been explicitly analysed from a glacial 

hydrological perspective. However, they display behaviour broadly in agreement with the 

findings of Sole et al. (2011), in that a short early summer acceleration is followed by an 

abrupt deceleration coupled with subsequent short-lived accelerations during the summer. 

This would imply that the reorganisation of the subglacial drainage system has a 

significant effect on the flow dynamics of the main trunk of the glacier as well as further 

upstream (Sole et al., 2011). The overall effect of this on annual motion close to the 

terminus is however, yet to be established. 

 During winter, a rigid mélange has been observed to form in the fjord, allowing the 

terminus to advance by several hundred metres. As this breaks up during the following 

spring, the terminus returns to approximately its pre-winter terminus configuration (Sole et 

al., 2011). However, more recent time lapse imagery during the winter of 2010/2011 

(unpublished) has demonstrated that mélange does not always form at the same time 

during the winter (Figure 3.2). In this instance, three subglacial outburst floods occurred on 

3/12/2010, 24/12/2010, and 1/1/2011 breaking up and clearing mélange from the terminus  
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Figure 3.2 Effect of the drainage of the ice dammed lake Isvand on the dynamics of KNS. Time lapse 

camera images of the terminus of KNS capturing one of the three outburst floods during December 

2010/January 2011, showing (A) mélange present in the fjord before the flood, and (B) the mélange 

having been cleared by the discharge of a turbid plume. Landsat True Colour composite images acquired 

at (C) the end of the 2010 melt season and (D) near the beginning of the 2011 melt season showing a 

significant reduction in the extent of Isvand during the winter. (E) The position of each of the GPS 

stations used to record (D) the velocity of KNS (Figures E and F: Ahlstrøm et al., 2013). The speed-up 

event caused by the drainage of Isvand is highlighted in blue. 
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area of the fjord. These outburst flood events prevented early mélange formation (i.e. 

November/December/January). 

 When the timings of these events are compared to the GPS measurements of 

Ahlstrøm et al., (2013), a notable peak in velocity in the lower GPS stations (KNS-1, and 

KNS-2) is apparent centred on the days around 1/1/2011 (Figures 3.2e, f). This is not 

evident in the upstream KNS-3 GPS station. This demonstrates that the dynamic event 

observed was confined to the downstream section of the glacier. 

 The probable cause of this is a mid-winter drainage event of the ice dammed lake 

Isvand, increasing subglacial water pressure, reducing drag and enhancing ice flow. This is 

suggested as a mechanism for the observed acceleration as (1) Landsat imagery from the 

end of the 2010 melt season and start of 2011 melt season shows Isvand to have lost a 

significant volume of water (Figures 3.2c, d), and (2) the acceleration coincident with the 

outburst floods are only observed by the two GPS stations that are closest to Isvand (Figure 

3.2e, f). The occurrence of lake drainage during winter is however puzzling, since the 

reduced subglacial discharge during winter should lead to the re-pressurising of the 

hydrological system. Potential drainage routes from Isvand to the terminus should 

therefore be closing, reducing the likelihood of drainage. Although beyond the confines of 

this thesis, this drainage of Isvand deserves to be the subject of further study, as it could 

provide a potentially unique insight into the evolution of the subglacial hydrology near a 

tidewater margin during winter. 

 Thus far, there has been limited study of KNS’ terminus fluctuations over the last 

20 years. For time slices where terminus change has been assessed, this has been as part of 

larger, regional studies of tidewater glacier dynamics (e.g. Rignot and Kanagaratnam, 

2006; Moon and Joughin, 2008; Moon et al., 2012). In these studies terminus retreat from 

1997 onwards is identified, though this is on the scale of several hundred metres, rather 

than the multi-kilometre retreats that have occurred at other large outlet glaciers (e.g. 

Moon and Joughin, 2008). 

 The surface mass balance (SMB) of KNS is exceptionally well constrained by high-

resolution modelling conducted on each of the GrIS outlets in the Nuuk area for the period 

1960-2012 (Van As et al., 2014). This utilised regional climate model data resampled to 

resolutions capable of resolving the comparatively narrow glacier outlets, with results 

validated against river discharge observations. These show that over the last two decades 

surface runoff rates from KNS have approximately doubled (Van As et al., 2014). 
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3.1.2 Post-Little Ice Age dynamics 

The post-LIAmax dynamics of KNS have received comparatively more attention than the 

majority of Greenlandic tidewater glaciers, though again this has been as part of wider 

regional studies (e.g. Weidick, 1959; Weidick et al., 2012). Previous work has shown that 

KNS retreated ~20 km from its LIAmax, including 10-13 km before 1860 (Weidick et al., 

2012). However, the timing, extent and manner of retreat remain poorly constrained. 

Similarly, direct knowledge of terminus positions available from photographs during the 

20
th

 century have not been explicitly compared to climate data. Therefore very little is 

known about what has driven the extensive changes at KNS since its LIAmax. 

A full discussion of previous work on the post-LIAmax dynamics of KNS is not 

provided here, since this thesis will seek to add new sources of information, remap, 

reanalyse and, where necessary, reinterpret the data used to generate previous 

reconstructions (Weidick, 1959; Weidick et al., 2012). In doing so we will seek to 

explicitly quantify glacier change at KNS using Geographic Information Systems (GIS) 

analyses. This will allow a higher degree of accuracy to be attained compared to previous 

reconstructions where it was not possible to undertake such analyses (see Sections 3.1.2 

and 3.1.3, Chapter 4). The results from these analyses will also be directly compared 

against available climate data. This will be undertaken in both Chapters 5 and 6.  

 

3.1.3 Oceanography 

The hydrography of Kangersuneq is exceptionally well constrained compared to other 

Greenlandic fjords, both at a large spatial scale (Mortensen et al., 2011), and over seasonal 

timescales (Mortensen et al., 2013). Although the presence of mélange adjacent to KNS 

means that data are limited close to the terminus, this is a common shortfall in studies of 

terminal regions of tidewater glaciers (Joughin et al., 2012; Straneo et al., 2013). 

 At the large scale, Mortensen et al. (2011) identify four different modes of fjord 

circulation in Godthåbsfjord, namely (1) estuarine circulation (Figure 3.3a), (2) subglacial 

circulation (Figure 3.3b), (3) dense coastal inflow (Figure 3.3c), and (4) intermediate 

baroclinic circulation (Figure 3.3d). The intermediate baroclinic circulation is crucial to 

determining the temperature of intermediate depth fjord waters that are most likely to reach 

interact with the terminus of KNS. The strength of this mode of circulation increases 

during warmer years, meaning that air temperatures and sea surface temperatures at the 

fjord entrance are likely to impact the temperature of fjord water at depth, which in turn 

affect the terminus. Although occasional inflows of ocean shelf waters do occur, these are 
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mainly confined to the outer sections of the ~100 km long fjord system and are separated 

from the terminus of KNS by a shallow sill in the fjord interior (Figure 3.3c). This means 

that KNS is largely isolated from changes in ocean shelf temperatures (Mortensen et al., 

2011; Straneo et al., 2012). 

 Fjord circulation in Godthåbsfjord also experiences significant seasonal variation 

(Mortensen et al., 2013). The largest seasonal contrast occurs adjacent to the tidewater 

glacier outlets, such as KNS, where changes in subglacial runoff (e.g. Van As et al., 2014) 

determine the relative strength of density driven convective circulation occurring at their 

termini (Figure 3.3b). This will have implications for the volume of submarine melt 

occurring at KNS in summer compared to winter (Section 2.3.3; e.g. Sciascia et al., 2013).  

Using conductivity, temperature and depth (CTD) measurements within the inner 

regions of Godthåbsfjord, near to KNS, Mortensen et al. (2013) have developed a 

conceptual framework for how fjord circulation changes from summer to winter (Figure 

 
Figure 3.3 Schematic diagrams of the different modes of circulation observed in Godthåbsfjord, 

including (A) estuarine circulation where surface fresh water (Fw) inputs from glacial and terrestrial 

runoff encourage outward flow of surface freshwater, and a subsurface compensation current, (B) 

subglacial convective circulation (described in Section 2.3.3), where buoyant subglacial runoff rises to 

the surface flowing outward, with a compensation current drawing water towards the glacier from 

intermediate depth fjord water, (C) dense offshore inflows to the deepest parts of the fjord, displacing 

overlying waters, and (D) intermediate baroclinic circulation where vigorous tidal mixing in the outer 

fjord region encourages surface waters to be advected downwards, significantly warming and freshening 

intermediate depth waters. This generates a horizontal contrast in density between fjord interior and 

exterior waters, driving an in-fjord current at the surface and an out-fjord current beneath it. Figure: 

Mortensen et al., 2011. 
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3.4). This shows a stratified water column to exist during the winter and a well-developed 

convective circulation during the summer. Although intermediate depth waters are 

advected towards KNS in both summer and winter, transport will be significantly stronger 

in summer where circulation is driven by greater volumes of subglacial runoff.  

 Significant submarine melt associated with the summer mode of circulation is only 

likely to begin once the subglacial hydrological system becomes efficient (e.g. Sole et al., 

2011). Once this is established, large volumes of subglacial runoff will be able to be 

rapidly discharged into the fjord. Atmospheric conditions driving runoff will therefore 

determine when summer submarine melting begins, how long it lasts, and the volumes of 

intermediate fjord waters that will be advected towards the terminus as a compensation 

current. Due to intermediate baroclinic circulation, the temperatures of these intermediate 

waters are in turn likely to have been significantly modified by fjord surface water 

temperatures and/or SSTs near the fjord entrance (Mortensen et al., 2011).  

 
Figure 3.4 Seasonal changes in the circulation regime of Godthåbsfjord close to KNS, showing (A) 

winter mode where the water column is stratified with minimal freshwater input, and (B) summer mode, 

where subglacial discharge (SgFW) generates a distinct outward flowing layer of water and temperature 

profile (θ). This sets up a compensation current towards the bottom of the fjord, drawing in sill region 

water (SrW) sourced from intermediate depth fjord waters. Figure: Mortensen et al., 2013 
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3.2 Data and methods 

 

3.2.1 Climate data 

Both air and ocean temperatures have the potential to be significant drivers of tidewater 

glacier change, as outlined above. The following outlines the data sources used to 

determine the relative levels of atmospheric and oceanic forcing affecting KNS. 

The closest long record of air temperature to KNS is located ~80 km away at the 

Nuuk meteorological station. This has the longest record of air temperatures in Greenland, 

with observations available from 1783, though this is only fragmentary until 1866, after 

which a continuous monthly average record is available up to the present (Vinther et al., 

2006; Cappelen et al., 2012). This record has been subject to rigorous quality control, 

having been tested for the occurrence of inhomogeneities over the full length of its record 

(Vinther et al., 2006). It is crucial to undertake such analysis before long observation 

records such as these are used, since inconsistencies can arise due to changes in 

instrumentation, station location, operator, and urbanisation. There is therefore an 

extremely high degree of confidence that this record accurately reflects air temperature 

change occurring at Nuuk. 

Despite the presence of a strong continentality effect, the pattern of temperature 

variability observed at Nuuk is assumed to be comparable to that experienced at KNS 

(Taurisano et al., 2004). This is assumed given the strong correlation between temperatures 

observed at Nuuk and Qamanarssup Sermia (QS; Figure 3.1). This has in turn been 

established on the basis of comparison of the Nuuk record to 10 years of temperature 

observations at QS (Braithwaite and Olesen, 1993), and 60 years of observations at 

Qoornoq (Taurisano et al., 2004).  

Recent glaciological studies have primarily interpreted deep ocean temperatures to 

be representative of oceanographic forcing affecting fjord water temperatures (e.g. Murray 

et al., Rignot et al., 2010; Straneo et al., 2012; Nick et al., 2013). However, given the 

shallow sill at the entrance to Godthåbsfjord, it is unlikely that deep ocean temperature will 

have a significant impact on the fjord conditions (Straneo et al., 2012), with little empirical 

evidence existing to suggest otherwise (Section 3.1.3; Mortensen et al., 2011; 2013). The 

occurrence of intermediate baroclinic circulation at the entrance to, and within the fjord, 

mean that sea surface temperatures (SST) and air temperature influenced fjord waters are 

more likely to affect the temperature of intermediate depth waters within Godthåbsfjord. 
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For this reason, records of SST are used to represent the oceanographic forcing that KNS is 

likely to be subject to. This is useful as longer observational records exist for SST 

compared to deep ocean temperatures (e.g. Woodruff et al., 1987), with modelling and 

interpolation of disparately spaced historical observations allowing SST to be estimated 

globally at 1° x 1° resolution back to 1871 (Rayner et al., 2003). 

Average SSTs for the region immediately offshore from Nuuk (61° to 65° N 51° to 

56° W) were extracted from the HadISST1 dataset (Rayner et al., 2003) for the period 

1871-2012. A relatively wide 4° x 5° area was used to allow the general pattern of change 

of SST in the Labrador Sea to be captured. The area covered is consistent with the scale 

over which SST anomaly data were pre-processed prior to 1949 (4° x 4° grid; Rayner et 

al., 2003), therefore we seek to avoid attempting to resolve SST changes at a higher spatial 

resolution than the data are originally based on. The analyses of Hanna and Cappelen 

(2003) also provide a high degree of confidence in the HadISST1 dataset for an area 

nearby to that which has been extracted. In this instance, they validated a HadISST1 

derived record from southern Greenland against independent observations of SST for the 

period 1876-1975 (Smed, 1978; Buch and Hansen, 1988). The HadISST1 data will 

therefore reflect the pattern of SST change occurring outside of Godthåbsfjord. 

 

3.2.2 Glacier reconstruction 

A wide array of source material was explored while undertaking the glacial reconstruction 

of KNS since its LIAmax. In order to generate a quantitative reconstruction of terminus 

positions (and their associated uncertainties), only sources that allow absolute and relative 

estimates of glacier position/geometry are included. Sources that mention the existence of 

KNS or provide unclear and/or ambiguous information as to its position/geometry are not 

used or referred to in the main study. Where sources have been previously been presented 

as providing absolute or relative information of glacier extent, where a reassessment of the 

source demonstrates that this is not the case, we do however demonstrate why (e.g. 

Thorhallesen, 1776; Chapter 5). 

 The greatest source of ambiguity amongst the records used potentially arises from 

written sources that relate glacier extent. Although their utility has sometimes been viewed 

as limited in glacier reconstructions, potential exists to gain significant insight into the 

behaviour of KNS from these sources before the first accurate maps and photographs of 

KNS become available in the late 19
th

 century. For this location, the magnitude of terminus 
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change observed since the LIAmax is advantageous, as any description of the terminus is 

likely to be undertaken in reference to distinct surrounding topographic features.  

To obtain an effective assessment of glacier extent, it should be possible to identify 

both the approximate location that an observation is made from, and the position of the 

glacier relative to this. This is achieved by comparing observer descriptions to the known 

geography, place names, and Norse ruin locations, which all provide fixed points of 

reference. This should allow each written description to be placed within a clearly defined 

spatial context. 

 Effective interrogation of written records also necessitates an awareness of the 

changing of place names in Greenland since recolonisation in 1723, and periods of 

exploration undertaken prior to this. For example, Godthåbsfjord is the Danish name for 

the water body also known as Nuup Kangerlua in Greenlandic, while the fjord branch that 

KNS is located in, Kangersuneq, is also locally known as Isfjorden. At present, all are used 

interchangeably. The British explorer John Davis also originally named Godthåbsfjord as 

Gilbert Sound in 1585, before William Baffin renamed it as Ball’s River during his voyage 

of 1612. Subsequently, writers and explorers have also spelled this as Baal’s Rivier and 

Bael’s Rivier, leading to further potential confusion (e.g. Cranz, 1820; Giesecke, 1910).  

Orthographic changes to the Greenlandic language in the 1850s, and again in the 

1970s also mean that each place name will have up to three different spellings. However, 

these mostly represent superficial changes, with the formal spelling of KNS changing from 

Kangiata Nunâta Sermia to Kangiata Nunaata Sermia in the 1970s. It is also worth noting 

that some Danish colonial place names differ entirely from those of the Greenlandic (e.g. 

Godthåb/Nuuk, and Sandnæs/Kilaarsarfik).  

The earliest maps to show KNS also name the glacier as Sermasoak (modern 

orthography: Sermersuaq) or Isblinken (Møller, 1840), which literally translate as ‘The 

Great Glacier’ and ‘The Ice Mountain’ respectively. However, these names are also 

interchangeable for the ice sheet at a larger scale so care needs to be taken before taking 

these names at face value. Although interpretation of place names in written accounts is 

fraught with difficulties, through careful interrogation they can still provide useful 

geographic and contextual information. 

Once an account has been verified, and an observer position has been 

reconstructed, digital elevation models (DEMs) of the region (see Section 3.1.3) can be 

used to constrain the observer’s field of view. Viewshed analysis is used to delimit the 

most plausible extreme extents from an individual observation position. This provides 
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empirical basis for any error margins that are defined. Where photographs are available, 

even if the terminus is obscured by foreground topography, this approach allows a 

quantitative assessment of the glacier extent for a given observer position. 

Maps are also used to reconstruct the extent of KNS. Although the earliest maps of 

Godthåbsfjord do not even show KNS (e.g. Figure 3.5a), there was an incremental increase 

in the quality of subsequent maps through the 19
th

 century (e.g. Figure 3.5b). Interpretation 

of the extent of KNS from maps is undertaken with care, since some cartographers were 

liable to copy details from previous maps where they had little new information. Therefore 

terminus positions provided by maps were only trusted where details such as coastlines and 

lakes close to KNS had been refined to better represent reality. This was assessed through 

comparison to modern maps and satellite imagery. The addition of such detail near to KNS 

 

 
Figure 3.5 Improvement of detail in the maps of Godthåbsfjord, (A) Hans Egede’s (1723) map of 

Godthåbsfjord made just after recolonisation, and (B) 1885 map of Godthåbsfjord (Jensen, 1885). 

 

A 

B 
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would demonstrate that the cartographer had visited the region and therefore noted any 

change in glacier extent. In addition to this, it was decided to take a conservative approach 

to the interpretation of glacier extent from maps, with each terminus position also 

possessing an error bar. The magnitude of this error bar was determined by mapping 

terminus position within a range relative to known topographic features such as valleys or 

fjord headlands that are included on the map. 

Where available, terrestrial photographs of the terminus were also used to delineate 

terminus position. Vertical aerial photographs were georeferenced using ArcMap v10.1, 

with at least 6 topographic tie points used to rectify each image, using a 2
nd

 order 

polynomial transformation (Bjørk et al., 2012). Termini were delineated from photographs 

using topographic reference points to constrain their position from both sides of the fjord. 

Satellite imagery from the USGS Landsat archive were also imported into ArcMap for 

terminus delineation, where cloud-free images of the terminus region of KNS were 

available.  

Where georeferenced images existed, termini were delimited viewed at a 

magnification where each pixel was visually resolvable. Landsat imagery were acquired 

from band 1 Landsat 4-5 Thematic Mapper sensor (1987-1997 in this study) with a pixel 

size of 30 m, and from band 8 (panchromatic) Landsat 7 Enhanced Thematic Mapper Plus 

(ETM+) sensor (1999-2012 in this study) with a 15 m pixel size. The failure of the scan 

line corrector (SLC) on the Landsat 7 ETM+ sensor has led to a ~22% loss of data on each 

B 

SLC on – 18/9/2000                                      SLC off – 9/8/2003 

     
Figure 3.6 Examples of subsets from false colour Landsat ETM+ imagery showing the data loss 

associated with the failure of the SLC functionality. 
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scene acquired, distributed as narrow bands towards the edge of the data (e.g. Figure 3.6). 

Where this occurs, and there is data loss across part of the terminus, a straight line is used 

to join up the parts of the image where the terminus can be observed. Landsat scenes where 

the SLC ‘no data’ stripes obscure large sections of the terminus are discarded and not used 

in analysis. 

 

3.2.3 Digital Elevation Model 

The DEM used for analyses within this thesis is a mosaic of ASTER GDEM v.2 (30 m grid 

resolution; Tachikawa et al., 2011) and a 1985 aero-photogrammetrical DEM for the 

region nearby to KNS derived from data collected by the Danish Geodata Agency (25 m 

grid resolution; K. Kjær, pers. comm.) with associated ground control (GR96; Figure 3.7). 

The vertical errors for each DEM are expected to be ~±12.9 m and ±6 m respectively. For 

consistency, as part of the mosaicking process, the DEMs were regridded to a horizontal 

resolution of 30 m, with the aero-photogrammetrical DEM value being preferred where 

there is overlap. This was done due to the higher grid resolution and vertical accuracy of 

the latter. 

 The ASTER GDEM v.2 is generated by the stacking and averaging of all valid 

ASTER DEM data available for a given area. The DEM data are in turn obtained from 

stereo pairs of ASTER imagery, which do not require explicit ground control because of 

 

Figure 3.7 3D rendering of the DEM used in this study (3x vertical exaggeration) with a Landsat false 

colour scene acquired on 18/9/2000 overlaid. Labelled glaciers are: NS – Narssap Sermia, QS – 

Qamanarssap Sermia, AS – Akullerssup Sermia, KNS – Kangiata Nunaata Sermia, KS – Kangaasarsuup 

Sermia. 
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the ASTER satellite’s highly accurate on-board location and look angle instrumentation 

(Fujisada et al., 2012). 

 The aero-photogrammetrical DEM was derived after scanning a 1985 stereo-pair of 

photographs at a resolution of 15 μm
2
, which corresponds to a ground resolution of ~2 m

2
 

for each individual image. The derivation of the DEM necessitates some loss of resolution, 

while a grid sample distance of 25 m
2
 was used as it is known to perform well in extracting 

elevations from areas of low image contrast, such as snow and ice (N. Korsgaard, pers. 

comm.). 

 

3.2.4 Geomorphology 

The extent of ice scour, the linear crests of moraines, and areas of fluted moraines were 

mapped from a composite of high-resolution (2 m
2
) GeoEye satellite images freely 

available on Google Earth, and ground truthed during fieldwork conducted in August 2011.

 Where distinct (near-) continuous longitudinal profiles of glacier geometry could be 

obtained from moraines and ice scour limits, their elevations were extracted from the DEM 

(Section 3.1.2) at 30 m intervals. This spacing was chose to remain consistent with the 

horizontal resolution of the DEM. The elevation data extracted from these ice limits were 

then related to their respective positions on a flowline running down the centre of the fjord 

(Section 3.2.3), by adapting the newly devised Extrapolated Centreline Method of tracking 

terminus change (explained in full detail in Chapter 4). 

 

3.3 Numerical model 

 

The numerical model used in this study is a shallow shelf approximation (SSA) based one-

dimensional (1D) flowband model, specifically designed to simulate the dynamics of 

tidewater glaciers (Nick et al., 2010). The model is well-established, and has been applied 

extensively to large marine margins in Greenland and Antarctica in both contemporary and 

palaeo- contexts (Nick et al., 2010; 2012; Vieli and Nick, 2011; Jamieson et al., 2012; 

2013). Part of these applications has been to generate projections of sea level contribution 

for the four largest Greenlandic outlet glaciers over the next 100 to 200 years (Nick et al., 

2013). However, the model itself remains untested against observations over those 

timescales, while a lack of multi-decadal to centennial records of observations also means 

that the calibration period used was necessarily short (5 years). The following briefly 

describes the model and its boundary conditions. 
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3.3.1 Force balance 

The SSA approximation to the Full Stokes equations is based on the premise that the 

thickness of the modelled glacier is significantly less than its length (i.e. a low aspect 

ratio), while vertical shear is not directly incorporated (MacAyeal, 1989). As such, the 

modelled glacier has uniform velocity with depth. This manner of approximation is most 

suited to ice masses with a high slip ratio (i.e. where flow from basal sliding significantly 

exceeds flow occurring via internal deformation). A 1D application of the SSA is therefore 

suitable for scenarios where fast flow along a single flow axis dominates, such as 

commonly occurs for tidewater glaciers, ice streams and ice shelves. 

 The force balance in the model can be described according to  
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where ρi = density of ice, ρp = density of the proglacial water body, g = gravitational 

acceleration, x = the along-flow distance, H = ice thickness, D = depth of ice below the 

surface of the proglacial water body, As = bed roughness parameter, A = temperature 

dependent rate factor, W = glacier width, v = effective viscosity (dependent on the strain 

rate), m = friction exponent. Equation 3.1 is a re-written form of Equation 2.2, describing 

driving stress (left hand side), being balanced by the longitudinal, basal and lateral drag 

terms (first, second and third terms on the right hand side respectively). 

 The sliding law is therefore based on an effective pressure dependency 

(Bindschalder, 1983; Van der Veen and Whillans, 1996), thus allowing the model to 

replicate the velocity profiles typically observed along the flow axes of tidewater glaciers 

(e.g. Moon et al., 2012). While parameters have previously been used for varying basal and 

lateral drag according to runoff (μ and λ respectively; Nick et al., 2013), these are not 

varied in this study (i.e. both are given values of 1) as there is as yet no empirical basis for 

their impact on tidewater glacier dynamics over timescales >1 year (Sections 2.3.1 and 

3.1.1). Furthermore, where they have been allowed to vary for centennial timescale model 

runs, their effect on dynamics at timescales >1 year has been found to be negligible (Nick 

et al., 2013). 

 

3.3.2 Incorporating climate forcing 
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The model utilises a crevasse water depth based calving criterion (Equation 2.9). This is 

combined with the calculation of basal crevasse heights (Equation 2.11), so calving will 

occur once surface and basal crevasses penetrate the full ice thickness. Calving is therefore 

a function of both the longitudinal strain rate and the surface crevasse water depth, thus 

providing a direct link between climate forcing and calving rates via surface runoff (Nick 

et al., 2009; 2010; 2012; 2013; Cook et al., 2012; 2013). The manner of how runoff is 

scaled to crevasse water depth differs from that described in Nick et al. (2013), and is 

described in Chapter 6. 

 Submarine melt is incorporated into the model as a negative mass balance term 

across each grid cell from the grounding line downstream to the terminus (Nick et al., 

2013). Due to the depth-integrated nature of the numerical model, it is not possible to 

directly simulate the different submarine undercut melt geometries described by O’Leary 

and Christoffersen (2013). Similarly, the calculation of submarine melt as a function of 

runoff is not possible without coupling the ice flow model to a melt/runoff model (e.g. 

Jenkins, 2011; Xu et al., 2012; 2013).  

For simplicity, and given the linear dependence of submarine melt rates on fjord 

temperature (Section 2.3.3), the magnitude of the former is directly scaled to SST. This 

allows the impact of oceanographic change on terminus stability to be evaluated. The way 

in which oceanographic change is scaled to submarine melt also differs from that described 

by (Nick et al., 2013). The new parameterisation, and reasons for implementing it, are fully 

explained in Chapter 6. 

 Surface mass balance (SMB) is also directly incorporated across the modelled 

catchment, with each depth- and width-integrated grid cell having a potentially unique 

value. The manner of how SMB is varied within the model and the inputs used are 

described in full in Chapters 5 and 6. The sensitivity of dynamics to changes in SMB is 

also evaluated. 

 

3.3.3 Catchment boundary, flowline and width definition 

Accurate definition of model boundary conditions is crucial to the potential success of a 

numerical model run. However, significant uncertainties remain for many fjords in 

Greenland regarding bathymetry and subglacial topography (Straneo et al., 2013). For each 

boundary condition described below we have endeavoured to minimise uncertainty, with 

any estimates being derived on a physical basis where possible. 
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 The catchment boundaries of KNS are a product of subglacial and surface 

topography. However, given the absence of detailed direct observations of subglacial 

topography around KNS (Bamber et al., 2001; 2013), this study uses distributed 

interferometric synthetic aperture radar (InSAR) data that record the ice flow velocity 

(Joughin et al., 2010a) to determine catchment extent (Van As et al., 2014). This is based 

on the premise that the velocity structure of the ice sheet obtained from InSAR can (all 

things held equal) be used to determine the direction of ice flow. The catchment 

boundaries used in this study are the same as those derived by Van As et al. (2014) for 

KNS (Figure 3.8a). These were obtained by applying the ArcGIS ‘Particle Track’ tool to 

the 2005/2006 InSAR ice flow velocity data (Joughin et al., 2010). Beyond the glacier 

terminus, the fjord width at sea level was used to define the catchment boundary. 

 The model flowline was defined to follow the axis of fastest glacier flow according 

to the same velocity data. This was achieved by inverting the velocity data, and using the 

ArcGIS ‘Hydrological Tools’ package to determine the most hydrologically efficient flow 

path for a particle from the ice divide to the glacier terminus. Beyond the current glacier 

extent, the model flowline was determined by following the positions in the centre of the 

fjord that maximise the Euclidean (i.e. straight line) distance between the north and south 

fjord coastlines (Figure 3.8b). This was joined to the InSAR derived glacier catchment 

flowline to create a flowline from the ice divide to beyond the LIAmax position (Figure 

 

Figure 3.8 Diagrams showing (A) catchment extent and flowline of KNS, and (B) view of the fjord  

region of KNS (Landsat image acquired 18/9/2000), with flowline, catchment extent, and fjord widths 

labelled. 

A B 
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3.8). Points positioned 250 m apart were plotted onto the flowline, representing a 250 m 

along flow grid cell size for the model. 

  The fjord width for each of these grid cells is calculated by summing the Euclidean 

distance from each grid point to the respective northern and southern catchment boundaries 

(Figure 3.8b). This method of fjord width measurement was used rather than the width 

perpendicular to the flowline due to the fjord (and model flowline) not following a straight 

track (Figure 3.8b). Therefore where the perpendicular distance is used and a fjord changes 

orientation, this can result in significant over-estimation of width (Figure 3.9a), compared 

to the Euclidean distance measure (Figure 3.9b). 

 

3.3.4 Fjord bathymetry and subglacial topography 

Basal topography represents a crucial control on glacier flow and terminus stability 

(Sections 2.1 and 2.2), and has also been demonstrated to exert a control on the stability of 

modelled flowline glaciers (Enderlin et al., 2013). Its accurate definition within the model 

is therefore pivotal to its potential success. However, the bathymetry of fjords where major 

outlet glaciers discharge is often only sparsely known due to the presence of perennial 

mélange, preventing bathymetry surveys from being easily undertaken (Straneo et al., 

2013). Similarly, remote sensing of the subglacial topography of tidewater glacier margins 

via radar is often hampered by the scattering effects of crevasses and englacial water 

(Gogineni et al., 2001). 

 KNS is unfortunately no exception to this. Where point depth measurements are 

known within the fjord (Figure 3.10; Weidick et al., 2012; Nørgaard-Pedersen, pers. 

comm.), values are translated to the nearest flowline position. Depth values for flowline 

 

Figure 3.9 Schematic diagram showing the potential effect of a change in fjord orientation on how fjord 

width is defined for (A) width defined as perpendicular to the flowline, and (B) width defined as the 

Euclidean distance from the flowline to the edge of the fjord.  
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positions in between are derived using linear interpolation. Model sensitivity to uncertainty 

in fjord bathymetry is evaluated as part of Chapter 5. 

 The subglacial topography of KNS also represents a significant unknown, with 

little data existing for the lower 40 km of the glacier despite attempts at detailed surveys by 

OIB/CReSIS in the summers of 2009 and 2011. However, it has been possible to derive a 

physically based estimate of subglacial topography based on the methodology of 

Morlighem et al. (2011). In this instance, distributed surface velocity and surface mass 

balance data are used to determine ice thickness using a mass conservation approach, with 

existing flightline data used for both parameter tuning and validation (Figure 3.11). 

Upstream of 40 km, values from a subglacial DEM gridded to 5 km are used (Bamber et 

al., 2001). 

 

 

 

 

 

 

 

 

 

Figure 3.10 Map of the fjord of KNS showing the flowline (red line) and points where bathymetry 

measurements are available. 
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Figure 3.11 Mass continuity approach to subglacial topography reconstruction showing (A) original 

Bamber et al. (2001) bed topography, (B) the mass continuity bed reconstruction for comparison, with 

areas below sea level bounded by solid white lines, (C) estimated error for the reconstruction produced, 

and (D) estimated ice thickness based on the bed topography reconstruction. Data provided by M. 

Morlighem(U. California, Irvine). 

 

A B 

C D 
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Evaluation of new and existing methods of tracking glacier terminus change 
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Preamble: Effective model validation requires that model output can be accurately 

compared to observations of glacier terminus change. This is crucial since inaccurate 

and/or biased observations will have the potential to skew model validation. There are 

currently a multitude of different methods that have been used to track glacier change (e.g. 

Moon and Joughin, 2008; Howat and Eddy, 2011; Bevan et al., 2012; Bjørk et al., 2012). A 

systematic analysis of their relative strengths and weaknesses, potential for systematic bias 

in certain scenarios, and an evaluation of how this affects the accuracy of each method was 

therefore required. 

To determine which method is most suitable for generating quantitative values of 

glacier terminus change, each is subject to a range of idealised and real world scenarios. 

Two new methods were devised to improve accuracy, and allow comparison to a fixed 

frame of reference such as a fjord centreline/model flowline. The rationale for this was to 

allow observations of terminus position to be compared directly to model output, thus 

improving the accuracy of model validation. Results from analyses of idealised and real 

scenarios are also used to generate a series of recommendations for the relative 

applicability of individual methods to particular settings/scenarios. 
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4.1 Abstract 

 

Several different methodologies have previously been employed in the tracking of glacier 

terminus change, though a systematic comparison of these has not been undertaken. The 

frequent application of single methods to multiple glaciers over large geographical areas, 

such as Greenland, raises the question of whether individual methodologies are robust. In 

this study we evaluate three existing methodologies that have been widely used to track 

terminus change (the centreline, bow and box methods) against a full range of idealised 

glaciological scenarios, and six examples of real glaciers. We also evaluate two new 

methodologies that aim to reduce measurement error compared to the existing 

methodologies. The first is a modification to the box method that can account for termini 

retreating through fjords that change orientation (termed the curvilinear box method), 

while the second determines the average terminus position relative to the glacier centreline 

using an inverse distance weighting extrapolation (termed the extrapolated centreline 

method).  No single method tested achieved complete accuracy for all scenarios, though 

the extrapolated centreline method was able to successfully account for variable fjord 

orientation, width and terminus geometry with the least error. 

 

4.2 Introduction 

 

Quantifying glacier terminus change in a consistent and accurate way is crucial for the 

accurate monitoring of glacier and ice sheet dynamics over timescales ranging from days 

to centuries. Multiple methodologies have previously been applied to this problem, each 

with their own advantages and shortcomings. However, different methods can provide 

conflicting results when analysing the same glacier termini. As studies are increasingly 

applying single methods over large geographical areas, trying to quantify terminus change 

without a knowledge of methodology limitations could result in the unnecessary 

introduction of errors. This is particularly relevant to studies of Greenland, where retreat of 

tidewater glacier termini has been both significant and widespread (Box and Decker, 2011; 

Howat and Eddy, 2011; Jiskoot et al., 2012; Mernild et al., 2012; Moon and Joughin, 

2008), especially over decadal to centennial timescales (Bevan et al., 2012; Bjørk et al., 

2012). However, the methods discussed below are also of considerable relevance for 

monitoring tidewater and land terminating terminus change in the other glaciated regions 
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of the world (e.g. Braun et al., 2011; Cook et al., 2005; Davies et al., 2012; Lopez et al., 

2010; VanLooy and Forster, 2008). 

In the majority of cases the inconsistencies and inaccuracies between methods will 

be small. However, where changes in glacier orientation, width or unusual margin 

geometries occur, significant errors can occur. Under certain circumstances these may 

render some methods unsuitable for tracking terminus change. Therefore understanding 

which method is likely to yield the most accurate results in a given scenario is crucial when 

deciding which methodology to employ. This decision should be based on the aims of the 

study, level of detail required, and a comprehensive awareness of the advantages and 

limitations of each methodology. This will allow glacier terminus position to be tracked 

with greater confidence, and data of greater relevance to the study to be collected. The 

issues highlighted here are primarily relevant to tidewater calving margins, where terminus 

geometry can be highly dynamic, and terminus positions can change by several kilometres 

within a single year. Calving glacier margins account for ~50% of mass loss from 

Greenland (van den Broeke et al., 2009) and almost all Antarctic mass loss (Rignot et al., 

2011), making the accurate tracking of calving margins crucial to improving our 

understanding of the drivers and controls on dynamics and terminus stability (Murray et 

al., 2010; Christoffersen et al., 2012; Rignot et al., 2011; 2012). 

Existing methodologies that are commonly used to track fluctuations of tidewater 

calving margins are applied to a range of idealised and real glacier scenarios to evaluate 

their ability to accurately track terminus retreats of varying complexity. We also present 

and evaluate two new methods of tracking terminus change including (1) a modification of 

the ‘box’ method (Moon and Joughin, 2008; Howat and Eddy, 2011) that aims to increase 

its range of applicability and accuracy, and (2) a method that accounts for the position of 

the full terminus length relative to the glacier centreline. All of the methods are simple to 

apply using standard tools available in ArcGIS v10.1 (ESRI). 

 

4.3 Methods of tracking terminus change 

 

Multiple methods have previously been employed to track changes in calving margin 

position. The aim of these has been to reduce terminus position to a one-dimensional 

value representing the distance the glacier has advanced/retreated along its flow axis. The 

methods that will be analysed in this study are summarised below. 
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- Centreline method – measures the distance between the centre of successive 

terminus observations along the glacier flow axis (Figure 4.1a; Bevan et al., 2012; 

Mernild et al., 2012; Walsh et al., 2012). Definition of the glacier centreline will 

depend on the aims of a particular study. For example, the centreline can be defined 

either through manual estimation, as the topographic centreline, or the fastest flow 

axis of the glacier, while automated methods for determining glacier length have 

also been employed (e.g. Le Bris and Paul, 2013). In this study, all methods that 

require a centreline use the topographic centreline, defined as the line representing 

the mid-point between the lateral ice/fjord margins for the observation where the 

ice is at its greatest extent. This can be easily and quickly determined by 

delineating the glacier margins and tracing the line following the maximum 

Euclidean distance between these down to the glacier terminus. Results of analyses 

 

Figure 4.1 Different methods used to ascertain glacier terminus position relative to a fixed 

point/baseline. (a) Centreline method showing a straight line retreat of the terminus centrepoint by z, (b) 

bow method, showing reference point and the position on the terminus where measurements are taken 

from (position of reference point relative to the ice front is for illustrative purposes, since it would 

normally be at least 6 ice widths from the terminus), (c) rectilinear box method, (d) curvilinear box 

method tracking the glacier centreline, (e) extrapolated centreline method, with inset showing a 

generalised case of how positions on the glacier centreline, xn, are related to individual points on the 

terminus, tk, with the linear distances between them shown by d(xn). The inset shows tk calculated using 

xn values taken from a centreline distance range equivalent to the distance between x1 and x3. 
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undertaken will be relevant to centreline dependent methods irrespective of the 

centreline definition used.  

- Bow method – determines terminus position relative to a fixed reference point 

positioned six or more glacier widths upstream from the farthest retreated terminus 

(Bjørk et al., 2012). At distances ≥6 glacier widths upstream Bjørk et al. (2012) 

found that terminus change results for a subset of glaciers were convergent. 

Measurement points are spaced at predetermined distances along the user-

delineated terminus, with the average linear distance between these and the 

reference point giving the overall terminus position (Figure 4.1b). Glacier change 

can be calculated by simply differencing the relative position values for different 

termini. 

- Rectilinear box method – quantifies the change in area between terminus 

observations of a fixed width rectilinear box drawn over the glacier trunk. This is 

then converted to a one-dimensional value representing width-averaged terminus 

change by dividing the area by the width of the box (Figure 4.1c; Howat and Eddy, 

2011). This is a variation on the method of Moon and Joughin (2008), who tracked 

terminus change using boxes that were allowed to have straight, non-parallel sides. 

The effect of non-parallel sides on results would ideally need correcting for, 

requiring extra calculations to account for the changing box width for each 

observation. Further complexities also arise due to the multiple different ways in 

which box width could be defined, each potentially providing different results for 

the same termini. For these reasons, and the desire for methodological simplicity, 

clarity and accuracy, we evaluate only the fixed-width rectilinear box method 

(hereafter rectilinear box method), since the definition of box width is 

unambiguous. 

- Curvilinear box method – as above, however instead of the fixed width box being 

rectilinear it is curvilinear. This provides a notable advantage over the rectilinear 

box method in that it allows changes in fjord orientation to be accounted for (Figure 

4.1d). This is achieved by generating a box of fixed width tracking the glacier 

centreline. 

- Extrapolated centreline method – utilises inverse distance weighting (IDW; 

Shepard, 1968) to extrapolate positions from the glacier centreline across the 

complete width of the fjord, allowing the relative position of a terminus to be 

quantified. The method also allows terminus change to be tracked irrespective of 
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changing fjord width or orientation. Terminus position is determined by averaging 

the position of points spaced at regular intervals along a user delineated terminus. 

The position of each of these points on the terminus, tk, is an IDW extrapolation 

calculated from centreline points representing distances of xn along the centreline 

(Figure 4.1e). The calculation of tk first requires determining the weighting value, 

w, to be allocated for each value of xn, such that 

      
 

      
 

 (4.1) 

where d(xn) = the linear distance between xn and tk, and p = the power parameter, 

which is generally taken to be 2 (Shepard, 1968). Each value of w(xn) is then 

normalised so that values of xn can be extrapolated laterally without tending 

towards zero with increasing distance from the centreline. This allows each value 

of tk to have an equal weighting in the calculation of the overall terminus position, 

such that 

          
     

∑      
 
   

 

(4.2) 

 Before this can be used to calculate tk according to, 
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where m = the number of centreline positions (i.e. xn values) used in the calculation. 

The overall terminus position, T, can then be calculated, such that for q 

observations of t 
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(4.4) 

The value of T represents the average distance of the entire terminus from the 

beginning of the centreline (Figure 4.1e). However, the method in this form without 

modification is vulnerable to having its results skewed where the centreline is long, 

and numerous values of xn occur distal to tk. To account for this, a search radius for 

tk is defined which limits the number of xn values used in its calculation to a subset. 

This consists of the xn values with the lowest associated d(xn) values within a 
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defined search radius. The value of m is therefore dependent on the number of xn 

values that fall within the search radius. The minimum search radius that should be 

used for calculation of tk is determined as part of the experiments conducted below.  

  This method can be easily applied in ArcMap v10.1 using the IDW tool to 

create a raster surface representing the extrapolated centreline, from which T can be 

calculated for each terminus by extracting their mean z values.  

 

4.4 Glacier configurations tested 

 

Experiments were designed to test the accuracy of each method when subject to different 

terminus geometries and changes in fjord orientation. By using idealised scenarios rather 

than comparisons to previously published data, analytical difficulties due to irregular 

terminus/fjord geometries, differences in user delineation of glacier termini and image 

resolution are avoided. This allows errors that result solely from the methodologies to be 

analysed. Finally each method is applied to tracking examples of actual glacier termini, 

with differences in the results analysed with reference to the idealised scenarios. 

 

4.4.1 Idealised glacier scenarios 

Figure 4.2 displays the seven idealised glacier retreat scenarios tested. Each scenario was 

constructed so a terminus undergoes a width-averaged retreat of R. For simplicity, R is 

taken to be equal to a single glacier width, W. All results are referred to in terms of glacier 

retreat, though the inverse of the results from these tests will be relevant for equivalent 

glacier advances. The experiment scenarios constructed are: 

a) Retreat of a linear terminus by R to form a new parallel terminus in a straight fjord 

(Figure 4.2a) 

b) Width averaged retreat of a linear terminus by R to form a new symmetric terminus 

with a calving bay of 0.25R in a straight fjord (Figure 4.2b) 

c) Width averaged retreat of a linear terminus by R to form a new asymmetric 

terminus, with the asymmetry hinged on the centreline (at 0.5W), and a calving bay 

of 0.25R in a straight fjord (Figure 4.2c) 

d) Width averaged retreat of a linear terminus by R to form a new asymmetric 

terminus, with the asymmetry offset from the centreline by 0.25W, and a calving 

bay of 0.5R in a straight fjord (Figure 4.2d)  
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e) Width averaged retreat of a linear terminus by R to form a new parallel terminus in 

a fjord that has changed orientation. The retreated terminus is offset to the right by 

0.5W (Figure 4.2e) 

f) As e, but the retreated terminus is positioned perpendicular to the fjord wall (Figure 

4.2f). 

g) As e, but the retreated terminus has a calving bay of 0.25R symmetric along the 

glacier centreline (Figure 4.2g) 

 

In reality, the challenge of tracking glacier terminus change reflects a combination of some 

or all of the above scenarios. 

 

4.4.2 Real glacier examples 

To allow an inter-comparison of results from the different methods, six Greenlandic 

tidewater glaciers exhibiting a range of retreat behaviour were selected for analysis (Figure 

4.3). Together they exemplify a number of potentially problematic scenarios that can arise 

when tracking change of real termini. The glaciers selected were Narssap Sermia (NS; 

64.64° N 49.97° W), Jakobshavn Isbræ (JI; 68.17° N 49.85° W), Petermann Glacier (PG; 

80.78° N 60.61° W), Helheim Glacier (HG; 68.61° N 32.93° W), Qalerallit Sermia West 1 

(QSW1), and Qalerallit Sermia West 2 (QSW2; 61.04° N 46.72° W). Some of the issues  

 

Figure 4.2 Experiments showing the idealised scenarios, where R is an identical width averaged retreat 

for each experiment. The letters of each experiment conform to those indicated in the text. The grey 

dashed line indicates a width averaged retreat of R parallel to the original terminus. Where the rectilinear 

box method is applied to experiments e-g, the box is orientated so that the upstream edge of the box is 

both parallel to, and centred on the black dashed line indicated. Unless specified in the text, the 

curvilinear box used for experiments e-g is of width W and tracks the fjord width. 
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associated with the retreat of these glaciers include; the termini of NS changing orientation 

within the fjord, and demonstrating asymmetry and increasing complexity across the time 

series analysed; the width of JI changing significantly during its retreat, while embayments 

with relatively stagnant ice also exist; the terminus of PG is an ice shelf meaning that 

periodically large calving events of tabular icebergs occur, and identification of the 

terminus itself can be problematic; HG is a fast flowing glacier retreating through a straight 

fjord that experiences significant changes in terminus geometry; and QSW retreats from 

being a single glacier to form two separate termini that are analysed separately (named 

here as QSW1 and QSW2).  

For each glacier, five terminus positions acquired between 1992 and 2012 were 

delineated from Landsat panchromatic band images, and terminus change quantified using 

each method. For JI and HG images were preselected for the period after the mélange in 

their fjord has broken up to allow easier definition of their termini. Termini were 

delineated at a level of image magnification that allowed individual pixels to be visually 

resolved. This allowed a consistent level of detail to be maintained when delineating 

individual termini from different glaciers. 

NS was subject to extra experiments (see below) to demonstrate how the bow and 

box methods deal with issues pertaining to terminus asymmetry, width and fjord 

orientation when applied to real glaciers. Its terminus retreated significantly between 2009 

and 2012 having previously maintained an approximately stable terminus position since 

the end of the Little Ice Age (Figure 4.4; Weidick et al.; 2012). To allow the relative 

effects of a change in fjord orientation to be fully evaluated, a straight terminus of semi-

arbitrary orientation was also positioned upstream of the 2012 terminus (Terminus A; 

Figure 4.4).  

 

4.5 Experiments 

 

Terminus change was calculated for all the scenarios outlined, according to the 

methodologies described above. To allow full interrogation of the methods, additional 

method-specific experiments were also undertaken for the bow, box and extrapolated 

centreline methods as described below: 

 

Bow method experiment – the distance between the reference and measurement points 

used for the bow method is known to exert control on the accuracy and consistency of its 
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results (Bjørk et al., 2012). However, the effect of the reference point positions relative to 

fjord and terminus orientations has not been established. Consequently, the range of 

effects that could result from changes in fjord orientation upstream of the termini were 

evaluated by quantifying terminus change for experiments a-g using 19 different reference 

points positioned 6W behind the terminus distributed evenly along a 180° arc at 10° 

intervals. This experiment was also conducted over the same range of reference points for 

NS to demonstrate how reference point position can affect results for real termini (Figure 

4.4).  Although the majority of fjord orientations will change by significantly <90° from 

their original terminus orientation, testing a large range of reference point positions allows 

the effects of a comprehensive range of potential changes in fjord orientation to be 

evaluated. The points on the termini used in the calculation of overall position were 

spaced equidistantly along each terminus at 0.01W intervals for scenarios a-g and 10 m 

intervals for NS. 

 

Box method experiment – one of the primary advantages of the box methods are that they 

are capable of accounting for the natural asymmetry of glacier termini (Moon and 

 

Figure 4.4 Location map of Narssap Sermia showing the reference points used in the bow method 

indicated by the red crosses, and their associated offsets from a semi-arbitrary 0° position centred on 

Terminus A. Each reference point is positioned at least 6W from Terminus A. The background Landsat 

image shown was acquired on 15/9/1987. 
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Joughin, 2008). However, since it is necessary to use boxes of fixed width for the method, 

it is inevitable that parts of the fjord terminus margins will fall either outside or inside the 

predefined box. To test the relative importance of this, boxes of 0.25-2W width (with 

0.25W increments) were applied to scenarios a-g, while boxes of 1-7 km width (with 1 km 

increments) were applied to NS. This was done for both the rectilinear and curvilinear box 

methods. Where the terminus end of the box was wider than the delineated glacier 

terminus, the box was closed by extending the terminus edges with straight lines 

perpendicular to the upstream edge of the box for the rectilinear box method, and with 

lines perpendicular to the centreline of the box for the curvilinear box method.  

The aim of this experiment is to test the sensitivity of both box methods to the 

proportion of the glacier terminus that is included in the calculation of terminus change. 

 

Extrapolated centreline experiment – to allow the method to be evaluated in a non-

dimensionalised manner for experiments a-g, the search radius that defines the number of 

xn values used in the calculation of each tk value needs to be defined in a clear and 

consistent way. This experiment aims to determine over what scales of search radii the 

calculated terminus positions begin to converge, so that the value of the search radius can 

be standardised. Different search radii are tested, from a minimum using individual xn 

values in the calculation of tk, to ranges of xn values from taken over a centreline distance 

of 3W. These are then applied to the scenarios e-g where termini retreat a distance of R 

through a fjord that has changed orientation and exhibit different terminus geometries. 

Terminus position was calculated from points positioned on the terminus at 0.01W 

intervals, while points representing values of xn on the centreline were also separated by 

0.01W. 

 

4.6 Results 

 

4.6.1 Centreline Method 

While simple and quick to implement, the centreline method does not account for the full 

complexity of terminus geometries, and hence cannot provide an accurate value of width-

averaged retreat. This is highlighted in experiments b, c, d and g where the method 

overestimates terminus retreat (Table 4.1). Terminus geometry therefore exerts a strong 

control on the accuracy and applicability of the centreline method.  
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4.6.2 Bow Method 

The bow method accurately calculates width-averaged retreat for experiments a and b, 

though underestimates terminus retreat in the remaining scenarios (Table 4.1). When 

compared to Figure 4.5a the underestimates for experiments e-g are caused by the position 

of the reference point relative to the change in fjord orientation. In these cases, the correct 

retreat value is obtained for reference points offset ~40° from the original (Figure 4.5a). A 

line from this reference point would be orientated perpendicular to the termini of 

experiments e-g. The error produced by the method can be significant depending on the 

position of the reference point used to measure terminus retreat, with the -80° and -90° 

offsets of experiments e-g even showing the terminus to have advanced (Figure 4.5a). 

The bow method also underestimates retreat for experiment c, and more 

significantly for experiment d, where the retreated terminus has a more pronounced 

asymmetry (Table 4.1). The results curves are also laterally offset to towards the relative 

Experiment Centreline Bow 

Rectilinear 

Box 

Curvilinear 

Box 

Extrapolated 

Centreline 

      

a 1 1 1 1 1 

b 1.13 1 1 1 1 

c 1.06 0.99 1 1 0.99 

d 1.06 0.95 1 1 0.95 

e 1 0.82 0.87 1 0.98 

f 1 0.81 1.05 1 0.93 

g 1.13 0.81 0.99 1 0.93 

      
 

Table 4.1 Summary of results from each method after application to each of the idealised scenarios 

shown in Figure 2. Results for rectilinear and curvilinear box methods are for box widths of W only. All 

results are given in terms of R. 

 

 

 

Figure 4.5 Results of experiments testing sensitivity of: (A) the bow method to changes in the position of 

the reference point from which measurements are taken; (B) the sensitivity of the rectilinear box method 

and (C) the curvilinear box method to different box widths. The results are from each method applied to 

the experiments shown in Figure 4.2. 
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position of terminus asymmetry, compared to the results of experiments a-b (Figure 4.5a). 

This offset is greater for the more asymmetric experiment d, indicating that terminus 

asymmetry also exerts a control on the relative accuracy of the technique. However, the 

effects of terminus asymmetry are markedly less significant than that of the relative 

positioning of the reference point. 

 

4.6.3 Rectilinear and Curvilinear Box Methods 

Where box width equals terminus width, the curvilinear box method successfully measures 

width-averaged retreat across all scenarios, while the rectilinear box method demonstrates 

a dependence on fjord orientation (experiment e) and terminus geometry (experiment f; 

Table 4.1). The results from the curvilinear box method for experiments f and g replicated 

the results from experiments a and b for the rectilinear method. This demonstrates that the 

curvilinear method accurately accounts for changing fjord orientation, provided that the 

box width is identical to that of the terminus (Figure 4.5c; Table 4.1). 

Where the boxes were less than the full glacier width, terminus geometry dictated 

the accuracy of both the rectilinear and curvilinear box methods (Figures 4.5b, 4.5c). For 

box widths greater than the idealised terminus widths, the curvilinear box method 

consistently underestimated retreat, with the scale of this underestimation increasing with 

box width (Figure 4.5c). The overall magnitude of underestimation by the curvilinear box 

method is dependent on terminus geometry, with only linear termini (experiments a, e and 

f) being unaffected. By comparison, terminus geometry and changing fjord orientation can 

result in the rectilinear box method producing both under- and over-estimates where the 

box is wider than the glacier terminus being measured. 

 

4.6.4 Extrapolated Centreline Method 

The initial extrapolated centreline method experiment shows that changing the ranges of xn 

values used to calculate values of tk has minimal effect, with a ±2.5% range of results 

observed (Figure 4.6). As the search radius increases towards W the method becomes more 

accurate across all experiment scenarios, with search radii >W producing generally 

concordant results (Figure 4.6). Consequently, for subsequent analyses, values of tk were 

calculated using the nearest xn values taken from a stretch of the centreline of W length. 

This was also used for the application of the extrapolated centreline method to NS (where 

W ≈ 5 km). 
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The results of the extrapolated centreline method demonstrate that it succeeds in 

accurately calculating terminus retreat where termini are symmetrical, however 

underestimates retreat where termini are asymmetric (Table 4.1). Comparing the results of 

experiment c to experiment d, the error increases with asymmetry, though the magnitude of 

this is still ≤5% (Table 4.1). This demonstrates that the method is capable of accounting for 

changes in fjord orientation, though is prone to small errors where complex terminus 

geometries occur. 

 

4.6.5 Narssap Sermia experiments 

As observed with scenarios a-g, results given by the bow method for NS are also 

dependent on the positioning of the reference point relative to the termini (Figures 4.4 and 

4.7a). For all box sizes tested, the general pattern of retreat calculated by both box methods 

is comparable (Figures 4.7b, 4.7c). Where the box widths are less than the terminus width 

of NS (~5 km), the two box methods generate different values since the boxes have 

different orientations. Therefore even though the boxes may have identical widths, the two 

methods will be tracking change between different sections of the termini. Nevertheless, 

both the curvilinear and rectilinear box methods produce very similar results for the retreat 

of NS from 2009-2012 (Figures 4.7b, 4.7c). However, where the fjord changes orientation 

for 2012-Terminus A, the rectilinear box method disagrees with that of the curvilinear box 

method, exceeding it by 339 m (Figure 4.3a).  

 

Figure 4.6 Results testing sensitivity of the extrapolated centreline method to the different range of xn 

values used in the calculation of tk and how that affects overall calculated terminus position. 
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For the bow method no single reference point from the 180° arc displays 

comparable results to the box or centreline methods for the entire record from 2009-

Terminus A (Figure 4.7). However, a similar pattern and magnitude of change can be 

extracted from the bow method by using the results of all of the reference points in the 

180° arc and taking the single largest retreat value for each year to create a record of 

terminus change (Figure 4.7).  

 Different box widths display no systematic behaviour of over or under-estimation 

between the different NS terminus observations (Figures 4.7b, 4.7c). This is likely a result 

of differing terminus geometries between observations. A change of fjord orientation can 

be ruled out as a causal factor of this since for the period between 2009-2012, retreat 

occurs in a relatively straight section of the fjord (Figure 4.3a). Where the boxes are less 

than the full terminus width (i.e. <5 km), the magnitude of terminus change values is 

reduced. Boxes that overlap the fjord edges (i.e. >5 km) tend to display the extreme upper 

and lower values for terminus change (Figures 4.7b, 4.7c). 

 

4.6.6 Real glacier method intercomparison 

Figure 4.3 shows the results of different methods applied to the termini of six Greenlandic 

tidewater glaciers. Significant variability in the results exists, with no method displaying a 

consistent bias for under or over-estimation compared to others. In most cases each method 

produces the same general pattern of terminus change, though the absolute numbers can 

vary considerably, with examples of discrepancies up to 1.94 km at HG (2003-2005), and 

4.76 km at PG (2009-2012; Figures 4.3c and 4.3d). In some cases the methods identify 

differing patterns of retreat, an example being the bow and extrapolated centreline method 

results contrasting with those of the other three methods at QSW1 after its terminus 

becomes diffluent from QSW2 (Figure 4.3e). The bow method also estimates significantly 

 

Figure 4.7 Comparison of results tracking the change of Narssap Sermia, showing the sensitivity of: (a) 

the bow method to changes in the position of the reference point from which measurements are taken; the 

sensitivity of (b) the rectilinear box method and (c) the curvilinear box method to different box widths. 
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less retreat compared to the others at NS (a difference of up to 1.67 km), after the termini 

change orientation by 2011 (Figure 4.3a). Prior to this, terminus observations are 

positioned directly behind the bow method reference point, with these results being more 

concordant with other methods compared to subsequent observations. A further notable 

discrepancy occurs at JI, where the centreline method estimates an advance (84 m between 

2005-2012) with other methods estimating a retreat of between 1.58 km to 3.12 km. 

 

4.7 Discussion 

 

Overall, the analyses above allow a distinction to be made between three broad styles 

of measuring glacier terminus change along a flow axis, namely; one-dimensional terminus 

change (e.g. centreline method), length averaged change (e.g. bow and extrapolated 

centreline methods), and area/width averaged change (e.g. rectilinear and curvilinear box 

methods). When deciding which to apply the choice should primarily be based on an 

explicit justification of which method is capable of providing the most relevant data to 

fulfil the aims of a study. Factors that need to be considered with respect to this include (1) 

whether using a method that quantifies length averaged change or area/width averaged 

change is relevant to the aims of the study, (2) the level of detail required (3) the 

importance of accounting for changes in terminus width, (4) any changes in fjord 

orientation, (5) whether terminus geometries display significant asymmetry or complexity, 

and (6) whether a specific definition of the centreline or flow axis could significantly affect 

results. Table 4.2 provides a summary of scenarios where each method is, and is not 

reliable in providing accurate results. Given the importance of terminus setting variability, 

the decision as to which method to use should only be made after all termini have been 

delineated. This will allow comprehensive evaluation of whether certain methods may be 

comparatively more susceptible to error for particular terminus settings.  

An example scenario would be if areas of stagnant/slow flowing ice are not relevant to 

a study. In such situations including terminus margins, where the occurrence of stagnant 

ice is most common, may not be necessary and lead to the inclusion of irrelevant 

information in the data collected. The curvilinear box method may be best suited to such 

scenarios, given its ability to account for changing orientation along a flow axis. However, 

if significant width changes occur the extrapolated centreline method could also be 

usefully applied. This would be relevant if the part of the terminus that is of interest (e.g. 

ice flowing above a certain velocity) is not of a fixed width.  
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Evaluation of methods 

The centreline method has been shown to be the least broadly applicable method over 

a range of scenarios (Table 4.2). Results from scenarios a-g demonstrate that it is incapable 

of determining width-averaged terminus change, and commonly displays little absolute 

agreement with any other method (Table 4.1; Figure 4.3). Conversely, the method is 

possibly the quickest and easiest to implement, and mostly successfully identifies the 

general pattern of terminus change on the real world glacier examples (Figure 4.3). 

However, considerable caution should be exercised in the application of this method since 

it is prone to significant error in both absolute and relative terms. It is vulnerable to 

substantial under and over estimation of terminus change depending on terminus geometry, 

recording an advance at JI of 84 m between 2005-2012 when the terminus has clearly 

retreated substantially (Figure 4.3b). The ability of the method to account for changes in 

fjord orientation provides an advantage over the rectilinear box and bow methods which 

are both constrained by fixed frames of reference. The centreline method should therefore 

be considered useful as a method for gaining cursory insight into the large scale changes 

occurring at a glacier terminus, though due to its inability to reflect width-averaged change 

its application to detailed studies of tidewater terminus dynamics should be avoided. It is 

more suited to tracking changes at land terminating margins where terminus response is 

likely to be more symmetric (e.g. Lopez et al, 2010; Leclerq and Oerlemans, 2012). 

 The sensitivity of the bow method to terminus shape, fjord orientation and 

reference point positioning is demonstrated by the results of both idealised (Table 4.1; 

    Capable of accounting for…   Dependent on 

Method 

   

Fjord 

orientation 

Fjord 

width 

Terminus 

geometry 

 

centreline? 

 

      

  

Centreline 

 

Y 

   

Y 

Bow 

  

Y Y* 

  Rectilinear box 

   

Y 

  Curvilinear box 

 

Y 

 

Y 

 

Y 

Extrap. Cen. 

 

Y Y Y* 

 

Y 

              
 

Table 4.2 Summary of situations that each method is capable of accurately accounting for (Y = Yes), and 

whether results may be dependent on how a centreline is defined. Asterisks highlight that the bow and 

extrapolated centreline methods do have some dependence on terminus geometry though as explained in 

the text this is in most cases negligible. 
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Figure 4.5a) and real glacier analyses (Figures 4.3 and 4.7a). While the general pattern of 

retreat can be extracted from an arc of reference points, as exemplified by results from NS 

(Figure 4.7a), this adds complexity to the method requiring extra calculation and user 

input, compromising the simplicity of the method. Furthermore, since the bow method 

calculates terminus position using straight line distances from the reference point, this 

means the method is unable to accurately track terminus change directly along the glacier 

flow axis when fjord orientation changes. In these situations the method will underestimate 

the along-glacier distance between the reference point and positions on the terminus. This 

is likely to be even more significant for smaller non-ice-sheet glaciers where changes in 

fjord/valley orientation compared to their overall size can be considerable.  

Although scenarios c and d show that effects of terminus asymmetry on the 

accuracy of the bow method are small, the impact of the relative positioning of the 

reference point on the end results are significant. The bow method should only be applied 

on straight glaciers, where the termini to be measured are near-linear and approximately 

parallel, otherwise the positioning of the reference point may significantly affect results. 

This is demonstrated by results from NS where termini change orientation and are highly 

asymmetric (Figure 4.3a). 

 Both the rectilinear and curvilinear box methods performed well in tracking the 

terminus change of glaciers of uniform width, though results from the idealised and real 

scenarios indicate that the latter has wider applicability (Table 4.1; Figures 4.3, 4.5b, 4.5c). 

When tracking NS terminus change using different box widths, the larger spread of values 

given by the curvilinear box method compared to the rectilinear method can be accounted 

for by the two methods measuring different sections of the termini (Figures 4.4, 4.7b, 

4.7c). This is because the centre of the rectilinear box will differ from the curvilinear box, 

as the latter tracks the glacier centreline while the former is indirectly defined by the user 

when the rectilinear box is drawn. This demonstrates how terminus geometry can 

significantly affect box method results where the entire width of the glacier is not used to 

calculate terminus change (Figures 4.5b, 4.5c). This was a significant problem for NS, JI, 

HG, QSW1 and QSW2 where box widths (limited in size to the narrowest terminus 

observation) were in some cases unable to cover significant fractions of the delineated 

termini. This is best exemplified at QSW1 where the pattern of terminus retreat differed 

significantly from the bow and extrapolated centreline methods that account for full glacier 

widths (Figure 4.3e).  
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Conversely, where termini are of roughly uniform width, the curvilinear box 

method is fully capable of tracking fjord orientation changes and accounting for complex 

terminus geometries (Tables 1 and 2; Figure 4.3c).  Due to its inability to track changes in 

fjord orientation, the rectilinear box method should only be applied where glaciers retreat 

through a straight fjord.  

It is worth noting that a further variation on the box method could potentially 

account for changes in glacier width and orientation. This would be achieved through 

dividing the terminus area into multiple adjoining boxes that are (1) orientated parallel 

with one another (2) of equal ‘b-axis’ length (i.e. short axis approximately parallel with 

flow axis), and (3) of variable ‘a-axis’ length (i.e. long axis approximately perpendicular to 

flow axis), allowing changes in fjord width and orientation to be tracked. The accuracy of 

the method would also improve as the ‘b-axis’ length is decreased, and the fjord geometry 

is more accurately captured by the boxes. Application of this method is complex compared 

to the other methods discussed and hence beyond the confines of this study, however if it 

could be automated then it would prove a highly accurate method of tracking area/width 

averaged terminus change. 

The extrapolated centreline method performs well where termini are regular, and 

successfully tracks most asymmetric and complex termini with minimal error (Table 4.1; 

Figure 4.3). It was anticipated that significant issues with terminus asymmetry and/or 

complexity may arise when tracking the termini of glaciers such as PG, where the margins 

are often comparatively fractured. This means that a significant fraction of the total length 

of their termini can be located near their margins (Figure 4.3c). The effect of this would be 

to disproportionately weight the terminus position towards the terminus position of the ice 

margins. However, results for PG proved comparable to other methods (Figure 4.3c). 

Nevertheless, this is an issue that should be considered before applying the method to 

termini with significantly fractured margins. Elsewhere the effect of terminus asymmetry 

will be less significant, with the idealised retreats showing an error of <5% (Table 4.1; 

Figure 4.6). In most cases, this will lie within the operator delineation error.  

Notable advantages of the extrapolated centreline method include its ability to 

account for the entire terminus length irrespective of changes in glacier width, in addition 

to changes in fjord orientation. This proved to be especially useful where advance/retreat 

occurs through a glacier or fjord confluence such as at QSW, or where the terminus area of 

interest may change between observations. 
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Finally, the absolute uncertainty surrounding the delineation of each individual 

terminus position is worth brief consideration. If a given terminus observation is delineated 

multiple times, and the range of values determined, the absolute error will be different for 

each method for similar reasons to those outlined above. Nevertheless, where imagery such 

as Landsat or MODIS is used, the absolute error values in the delineation of individual 

termini are likely to be negligible compared to the absolute differences given by different 

terminus change methods (Figure 4.3).  

  

4.8 Conclusions 

 

When selecting a method to track glacier terminus change it is important to consider the 

aims of the study, and the limitations of each method with regards to changes in glacier 

width, fjord orientation and terminus geometry. Each method was tested using idealised 

scenarios designed to highlight potential shortcomings, and hence under which situations 

each method can be confidently applied. The methods were also applied to real glacier 

scenarios to highlight where methods can show disagreement, in addition to some of the 

practical issues that affect terminus tracking. From the results presented, the curvilinear 

box method accurately measures width averaged retreat, though is unable to fully account 

for changes in glacier width without incorporating some error. The extrapolated centreline 

method also performed well in a wide range of scenarios, successfully tracking changes in 

fjord orientation, width and terminus geometries with minimal associated error. Although 

potential caveats apply for its application to calving margins similar to PG, results 

generated were comparable to those of the curvilinear box method for the termini analysed. 

These two methodologies represent improvements on existing methods as they 

fully account for changes in fjord orientation. However, since the extrapolated centreline 

method is the only method that can directly account for changing fjord orientation, width 

and terminus geometry, it represents the most accurate method over the widest range of 

scenarios. The simplicity of the method also means that results can be generated easily and 

rapidly in only a few steps within GIS software packages such as ArcMap for any set of 

delineated glacier termini. This simplicity and range of applicability is important if 

attempts are made to track terminus changes across multiple glaciers at regional to 

continental scale using a single method. 

Different methods can still be applied with confidence depending on the level of 

detail required for a study, the topic of interest, and if individual glacier terminus settings 
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have been carefully evaluated. However, it is likely that such studies should be looking at 

either coarse scale changes or be limited in the number of termini they seek to analyse. 

While results produced may be acceptable, using the extrapolated centreline method will 

provide a high level of accuracy, is applicable to the majority of settings, and minimises 

the risk of introducing potentially significant methodological error into results. 
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Chapter 5 
 

Terminus driven retreat of a major SW Greenland tidewater glacier during the early 

nineteenth century: insights from glacier reconstructions and numerical modelling 
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Preamble: This paper presents a reconstruction of the behaviour of KNS and its modelled 

sensitivity to climate for the period before climate records are available. The reconstruction 

is achieved using previously unstudied source material, and a reanalysis of previously 

identified sources. GIS based analyses are also utilised in a novel manner to gain 

quantitative estimates of glacier position from qualitative source material. Glacier positions 

and longitudinal profiles derived from geomorphology are also reconstructed using 

methods described in Chapter 4, allowing a one-to-one comparison of 

observations/reconstructions with model data. These analyses result in some significant 

differences in reconstructed glacier extent compared to previous studies (e.g. Weidick et 

al., 2012), and the first estimate of when KNS was at its Little Ice Age maximum. Glacier 

sensitivity to changes in climate forcing is also evaluated through extensive sensitivity tests 

relating to changes in SMB, crevasse water depth and submarine melt rates. Results from 

model runs are used to provide information regarding the timescale response of KNS to 

changes in forcing, and therefore the likely drivers of observed behaviour. 

 

5.1 Abstract 

 

Tidewater glaciers in Greenland experienced widespread retreat during the last century. 

Information on their behaviour prior to this is often poorly constrained due to a lack of 

observations, while determining the drivers prior to instrumental records is also 

problematic. Here we present a record of the dynamics of Kangiata Nunaata Sermia 

(KNS), SW Greenland, from its Little Ice Age maximum (LIAmax) to 1859 – the period 

before continuous air temperature observations began at Nuuk in 1866. Using glacial 

geomorphology, historical accounts, photographs, and GIS analyses, we provide evidence 

KNS was at its LIAmax by 1761, had retreated by ~5 km by 1808, and a further 7 km by 

1859. This predates retreat at Jakobshavn Isbræ by 43-113 years, demonstrating the 

asynchroneity of tidewater glacier terminus response following the LIA. We also use a 

one-dimensional flow-band model to determine the relative sensitivity of KNS to 

atmospheric and oceanic climate forcing. Results demonstrate that terminus forcing rather 

than surface mass balance drove the retreat. Modelled glacier sensitivity to submarine melt 

rates is also insufficient to explain the retreat observed. However, moderate increases in 



69 
 

 
 

crevasse water depth, driving an increase in calving, are capable of causing terminus 

retreat of the observed magnitude and timing. 

 

5.2 Introduction 

 

Tidewater glaciers (TWGs) exert a major control on the short and long term mass balance 

of the Greenland Ice Sheet (Van den Broeke et al., 2009; Alley et al., 2010; Bevan et al., 

2012). The availability of satellite data have allowed their dynamics to be documented in 

detail over the last two decades (Moon and Joughin, 2008; Box and Decker, 2010; Moon et 

al., 2012). Prior to this, TWG dynamics are poorly constrained by observations, placing 

limitations on the knowledge of their response to climate change. Multi-decadal records of 

terminus fluctuations are available for some TWGs back to the 1930s, and limited direct 

observations exist before this (Bjørk et al., 2012). Therefore, limited potential exists to 

extend TWG records to their Little Ice Age maxima (LIAmax) due to the sparse and often 

indirect nature of observations (Weidick, 1959; 1968; Briner et al., 2010; Larsen et al., 

2011). Characterisation of TWG behaviour during the 18
th

 and 19
th

 centuries is therefore 

problematic. However, where this is possible it provides insights into centennial timescale 

TWG behaviour, and important context for contemporary observations and potential TWG 

response to future climate forcing.  

 Predicting the response of the Greenland Ice Sheet (GrIS) to climate change is 

dependent on understanding how TWG processes and behaviour are affected by climatic 

forcings (Van den Broeke et al., 2009; Rignot et al., 2011). Although TWG stability is 

thought to be controlled by a combination of atmospheric and oceanic forcings occurring at 

the terminus, the precise processes and their relative importance are still poorly understood 

(Holland et al., 2008; Nick et al., 2009; Murray et al., 2010; Straneo et al., 2010; 2012; 

Rignot et al., 2010; 2012). Modelling of GrIS is limited further by the short observation 

periods of dynamics available for calibration and validation, model computational 

requirements and resolution, and availability of detailed bed topography (Vieli and Nick, 

2011). These can be mitigated by employing spatially reduced models to evaluate glacier 

catchment-scale responses to different forcings (Thomas, 2004; Nick et al., 2009; 2010; 

2012; 2013; Colgan et al., 2012; Joughin et al., 2010a). Application of these models where 

TWG records can be extended to their LIAmax allows the potential drivers of post-

LIAmax GrIS retreat to be investigated.  
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The earliest post-LIAmax TWG retreats in Greenland are known to have occurred 

prior to the first continuous air temperature record at Nuuk in 1866 (Vinther et al., 2006; 

Weidick, 1959; 1968; Weidick et al., 2012). This can preclude direct comparison of post-

LIAmax TWG response to climate; including the first observed retreat of Jakobshavn 

Isbrae between 1851 and 1875 (Weidick and Bennike, 2007; Csatho et al., 2008). 

Application of catchment-scale models where climate data are lacking allow the drivers of 

individual TWG change to be investigated through model sensitivity experiments. These 

facilitate comparisons of modelled behaviour to observations, and can be used to identify 

the range of forcings and likely mechanism(s) required to explain the observed retreat. 

This study investigates the post-LIAmax dynamics of Kangiata Nunaata Sermia 

(KNS), SW Greenland, prior to the instrumental air temperature record. We aim to 

improve the record of the post-LIAmax fluctuations of KNS using previously unstudied 

geomorphology, newly uncovered historical sources, geospatial analyses, and previously 

published lines of evidence (Weidick, 1959; Weidick et al., 2012). Secondly, we evaluate 

whether the post-LIAmax retreat is best explained by changes in surface mass balance 

(SMB) or forcing perturbations occurring at the terminus. This is achieved using a one-

dimensional flow band numerical model (Nick et al., 2010). 

 

5.3 Field site 

 

KNS is located ~100 km from Nuuk at the head of the Kangersuneq branch of 

Godthåbsfjord, SW Greenland (Figure 5.1). The terminus retreated significantly during the 

19
th

 century, though uncertainty exists regarding the timing and scale of this retreat 

(Weidick, 1959; Weidick et al., 2012). The glacier catchment is ~31400 km
2
, and has a 

contemporary calving flux in excess of 6 km
3 

a
-1

, making it the largest outlet glacier in 

western Greenland located south of Jakobshavn Isbrae (Van As et al., 2014). At its 

LIAmax KNS was advanced over 22 km further down-fjord from its current terminus 

position, occupying a topographic depression on the west side of the fjord, and forming a 

large ice dammed lake (IDL) in the forefield of Qamanarssup Sermia (QS; Weidick et al., 

2012). 

Subsurface West Greenland Current (WGC) waters periodically enter 

Godthåbsfjord over a shallow (80 m) sill at the entrance to the fjord, establishing a link 

between the ocean and the terminus (Mortensen et al., 2011; 2013). Fjord circulation 

allows surface heated waters to mix downward to subsurface fjord waters, which can also 
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interact with the terminus (Mortensen et al., 2011). No direct measurements of submarine 

melt (SM) exist for KNS, although estimates of SM at vertical calving fronts of other West 

Greenland TWGs range from 0.7±0.2 m d
-1

 to 3.9±0.8 m d
-1

 (Rignot et al., 2012). Within 

this range, SM for KNS is probably at the lower end due to the sill at the fjord entrance 

limiting the ability of warm WGC waters to reach the terminus (Straneo et al., 2012).  

 

5.4 Methods for reconstructing and dating glacier terminus positions 

 

The LIAmax extent of KNS is clearly defined by a series of moraines and ice scour limits 

(Weidick and Citterio, 2011; Weidick et al., 2012). These limits and the geomorphology 

inside were mapped in detail using high-resolution (2 m
2
) GeoEye satellite imagery, and 

ground truthed during fieldwork conducted in 2011. Reconstructions of glacier geometry 

were obtained by extracting elevations of mapped moraine limits from a an aero-

photogrammetrical derived digital elevation model (DEM) of the KNS terminus area, 

 

Figure 5.1 Hillshaded digital elevation model (photogrammetric DEM and ASTER GDEM mosaic), 

showing the post-LIAmax geomorphology, and the possible terminus positions/ranges relative to the 

2012 terminus position. The 2012 terminus position was mapped from a Landsat image acquired on 

18/9/2012. Minimum extent for 1859 position is taken from 1946 terminus position, observed prior to 

disintegration of the confluence by 1948 (Weidick and Citterio, 2011). Inset is a panchromatic Landsat 

image of the Godthåbsfjord region acquired on 19/9/1992. 
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based on a 1985 aerial survey conducted by the Danish Geodata Agency with associated 

ground control (GR96) and error of ±6 m. Where coverage from this DEM was 

unavailable, ASTER GDEM data (http://asterweb.jpl.nasa.gov/gdem.asp) gridded to 30 m
2
 

resolution were used (Figure 5.1). Moraine elevations were extracted relative to the 

glacier/fjord centreline (also used as the model flowline) using the Extrapolated Centreline 

Method presented in Chapter 4. This allowed moraine elevation profiles to be directly and 

accurately compared to the modelled glacier elevation profiles (e.g. Figures 5.2 and 5.9). 

  The date and location of terminus positions were reconstructed using an array of 

historical sources, which will be discussed in detail below. The physical plausibility of 

each account was tested where possible, to establish the level of confidence that could be 

placed in each observation. In some cases, GIS tools could be applied to constrain terminus 

locations with greater absolute precision than allowed by qualitative analysis alone. 

 

Historical accounts 

The earliest terminus position of KNS that can be determined is from the observations of 

David Cranz in 1761 (published in English in 1820). He describes observing an unnamed 

glacier in Baal’s Rivier (a previous name for Godthåbsfjord and Kangersuneq) that 

“ascends in steps for the space of four leagues [~22 km]”, while “[A] low hill […] closed 

the vista”, and “large tracts of ice […] branched off north and south to an unknown 

distance into the country” (Cranz, 1820, p.34). Cranz’s viewpoint has been reconstructed to 

 

Figure 5.2 LIA and 1920 Stade trimline elevations acquired from the DEM described in the text. 

Locations of significant changes in topography and the confluence of KNS with AS are labelled. LIAmax 

geometry is estimated by averaging the western and eastern trimline elevations over 1 km ranges. 
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be from the valley separating Kangersuneq and Amitsuarssuk fjord branches (Figure 5.3). 

This is based on his description of his approach to the observation point, describing hiking 

along a valley through which flowed a “rivulet, swelling at intervals into pools” and Norse 

ruins located adjacent to “a great lake of freshwater” (Cranz, 1820, p.33). The valley 

identified is the only one in the region that fits Cranz’s description (Figure 5.3a). KNS is 

also the only observable TWG from this viewpoint, with Nunatarssuk likely to be the low 

hill mentioned, located 20 km from LIAmax (Figure 5.3b). 

 The next reference to KNS is from Egil Thorhallesen who, guided by locals, visited 

an ice dammed lake (IDL) between 1765-1775 previously identified as Isvand (Figure 5.3; 

Weidick, 1959; Weidick et al., 2012). The account does not relate a direct observation of 

the terminus, though is of potential relevance since the ice margin position at Isvand was 

dynamically linked to the terminus retreat of KNS during the 20
th

 century (Weidick and 

Citterio, 2011). The wording of Thorhallesen’s account is ambiguous in that it reports that 

“the glacier has laid itself in recent time” over Isvand (Thorhallesen, 1776, p.37). This 

makes it unclear whether he is referring to a recent advance or retreat of the ice margin 

from its observed position. 

 The diaries of Karl Ludwig Giesecke record a visit made to the terminus area of 

KNS in August 1808 (published in German in 1910). He describes the ice having nearly 

 

Figure 5.3 Approximate reconstructed location position of Cranz from which he observed KNS in 1761. 

(A) False colour Landsat image (acquired 15/9/1987) showing location information referred to in the 

text. (B) Photograph taken from helicopter in August 2011 showing view down Kangersuneq looking 

towards the south-east, approximating the view of Cranz. 
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overridden the Norse ruins indicated on Figure 5.1 at its maximum extent, though the 

retreated terminus is still nearby. He makes a comparative assessment of the glacier 

geometry as being “grösser, steiler, und gefährlicher als der nordöstliche [larger, steeper 

and more dangerous than that to the north-east [Qamanarssup Sermia]; trans. by N. 

Weitz]” (Giesecke, 1910; p.151), and  describes an IDL occupying the QS forefield which 

“über die Felsenwand hinab am Eisblink ins Meer stürzt [next to the glacier flows over a 

rock wall into the ocean; trans. by N. Weitz]” (Giesecke, 1910; p.151).  

 

Maps and photographic evidence 

The first map of Godthåbsfjord from which it is possible to obtain a reliable estimate of the 

terminus position of KNS was drawn by Samuel Kleischmidt (1859). This shows KNS and 

AS to be confluent, with the terminus adjoining Akullerssuaq (Figure 5.1). An earlier map 

by Heinrich Rink (1856) shows KNS to be in a similarly retreated position, though the 

absence of the valley separating Nunatarssuaq and Akullerssuaq does not allow relative 

terminus position in the fjord to be identified with confidence. A photograph taken by Rink 

during the 1850s (in Weidick et al., 2012) shows AS and KNS to be confluent (as 

evidenced by the presence of a medial moraine), though the terminus itself is partially 

obscured by foreground topography (Figure 5.4b). This prevents the identification of the 

exact position of the terminus from this image. 

 

Figure 5.4 Viewshed analysis of image acquired during the 1850’s. (A) Hillshaded DEM showing the 

area visible to an observer standing at the location indicated, and (B) the image of KNS taken in the 

1850’s by Rink (from Weidick et al., 2012). 
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5.5 Results 

 

5.5.1 Post-LIAmax geomorphology  

Figure 5.1 shows the post-LIAmax geomorphology of KNS. All subsequent mentions of 

glacier terminus positions are given relative to the 2012 terminus, indicated by the fjord 

centreline (Figure 5.1). The maximum moraine/ice scour extent extends to 22.6 km, and 

covers an area 220 km
2
 greater than present. Multiple sets of moraines exist on both flanks 

of the fjord within the LIAmax. These include: 

 An upper set of well-developed continuous lateral moraines/ice scour on both sides 

of the fjord delimiting the LIAmax. On the eastern fjord flank the moraine spans 

the forefield area of the land terminating glacier Qamanarssup Sermia (QS), while 

the moraine on the western flank extends inland into the topographic depression 

opposite Akullerssuaq (Figure 5.1). 

 Several other less pronounced moraines lie proximal and sub-parallel to well-

developed upper moraines in the QS forefield on the eastern flank, and also within 

the topographic depression opposite Akullerssuaq on the western flank. Fluted 

moraines occupy areas within the LIAmax extent of the QS forefield and between 

the LIAmax and 1920 Stade moraines on the western flank. These are broadly 

orientated according to the slope of local topography (Figure 5.1).  

 A lower set of moraines/ice scour extends to ~10 km along both sides of the fjord. 

On the eastern flank this wraps around Akullerssuaq, and on the less steep western 

flank several inset sub-parallel moraines are present. The outer limit of these has 

previously been related to the culmination of the 1920 Stade (Weidick and Citterio, 

2011).  

Trimline elevations show that glacier surface elevation from ~20 km to the LIAmax extent 

did not exceed 100 m above sea level (asl), with an average surface gradient of 1.6° 

(Figure 5.2). The glacier surface significantly steepens upstream between 20 km and 18 km 

to 4.2°, before surface elevation appears to decrease where the QS forefield adjoins 

Kangersuneq between 14 km and 18 km (Figure 5.2). The ice surface steepens to 3.6° as 

the fjord narrows between 12 km and 14 km, before levelling out between 10 km and 12 

km opposite Akullerssuaq as the ice extends into the topographic depression (Figures 5.1 

and 5.2). The ice surface rises by ~200 m elevation between 2 km and 10 km (1.4° surface 

slope), with the gradient doubling to 2.8° between 1 km and 2 km, reaching an elevation of 
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~600 m asl. This final elevation step change occurs immediately upstream of the 

confluence with AS (Figure 5.2).  

  

5.5.2 Reconstructing timing of terminus fluctuations: LIAmax-1859 

The account of Cranz describing KNS extending from Nunatarssuk for ~20 km 

corresponds almost exactly with the LIAmax extent of the glacier (Figures 5.2 and 5.3). 

His description of the glacier profile as “ascending in steps” (1820, p.34) also fits with the 

reconstructed LIAmax geometry of KNS, with at least three changes in surface gradient 

identified (Figure 5.2).  It is proposed that Cranz observed KNS at, or very near to its 

LIAmax extent in 1761.  

 Giesecke’s description of an IDL draining directly over land into the fjord provides 

excellent constraint on the terminus position in 1808. For this drainage to occur, the eastern 

margin of KNS must be sufficiently retreated from LIAmax to allow the IDL to drain into 

the fjord over land, rather than subglacially or as an ice marginal channel. To establish the 

terminus configurations where it is physically possible to maintain an IDL in the QS 

forefield which also drains into the fjord over land, an analysis of possible lake drainage 

pathways was conducted using the ArcHydro add-on to ArcMap v.10 software. Using the 

DEM shown in Figure 5.1, dams were inserted along the LIAmax moraines spanning the 

QS forefield allowing the IDL and its drainage paths to be reconstructed. Four possible 

land drainage paths could maintain the IDL, located within a terminus range of ±550 m 

(Figure 5.1). However, since the majority of this range is within a section of the fjord that 

begins to widen, from a glaciological perspective the narrower section of the fjord 

represents a more likely location for the terminus (Mercer, 1961). The 1808 terminus 

location on the western flank is less certain, though a likely range of terminus 

configurations is indicated in Figure 5.1. 

The smaller, less continuous inset moraines sub-parallel to the LIAmax suggest 

glacier thinning from the LIAmax. The steep fjord valley side topography that extends 

between 17-22 km provides low preservation potential for moraines meaning that the style 

of retreat from 1761-1808 cannot be reconstructed with confidence. 

 Map evidence places the terminus of KNS as adjoining Akullerssuaq in 1859 

(Kleinschmidt, 1859). Viewshed analysis applied to the photograph taken by Rink in the 

1850s allows the maximum possible extent of the terminus to be reconstructed (Figure 

5.4). From this, the headland that partially obscures the terminus in this photograph 
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corresponds to the 1920 Stade moraine limit. The terminus was therefore located inside 

this limit by 1859 (Figure 5.1). 

 In the topographic depression opposite Akullerssuaq (Figure 5.1), the 

geomorphology preserves no evidence for stabilisation of the lateral ice margin between 

the LIAmax/LIAmax-proximal and 1920 Stade lateral moraines. This is despite the 

shallow slope of this area providing excellent potential to preserve moraines. The presence 

of fluted moraines in this area suggests that reworking has not been significant, making the 

destruction of lateral moraines highly unlikely. The ice margin is therefore interpreted to 

have thinned rapidly, in a single phase, bringing it inside the 1920 Stade moraine extent. 

 In summary, KNS had achieved its LIAmax by 1761, and subsequently retreated 

rapidly in either one or two phases. In the single phase scenario, Giesecke observed the 

terminus partway through the retreat in 1808. Lack of evidence for stabilisation of the 

lateral ice margin indicates retreat to its 1859 position would have occurred rapidly (i.e. in 

years rather than decades). The two phase scenario would have KNS retreating and 

temporarily stabilising at or near to its 1808 extent between 1761-1808, forming the inset 

lateral moraines adjacent to those of the LIAmax, before retreating rapidly to its 1859 

position sometime between 1808-1859. 

 

5.6 Model experiments 

 

The aim of the model experiments is to determine the likely drivers of the reconstructed 

terminus retreat. Three sets of experiments were run, aiming to test (1) the sensitivity and 

response timescales of KNS to a range of step changes in SMB, (2) sensitivity to direct 

forcing of the terminus, including incremental increases in crevasse water depth (CWD), 

and submarine melt rates (SM), and (3) the response timescales following step changes in 

terminus forcing. Parameter sensitivity was tested over significant ranges of values to 

allow full characterisation and evaluation of model behaviour. For each model run, the 

glacier was tuned to approximate the reconstructed LIAmax geometry (e.g. Figures 5.2 and 

5.9), using the process described in the supplementary materials (Section 5.10). 

 

5.6.1 Model description and input 

KNS is modelled using a one-dimensional depth-integrated flow-band model (Nick et al., 

2010), utilising a crevasse-depth calving criterion, where calving occurs once the 

combined basal and surface crevasses penetrate the full ice thickness (Benn et al., 2007; 
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Nick et al., 2010). The crevasse water depth (CWD) variable within this criterion has 

previously been used to drive models, linking it to air temperature or runoff data (Cook et 

al., 2012; 2013; Nick et al., 2013), while submarine melting (SM) can be applied as 

negative mass balance downstream of the grounding line (Nick et al., 2013). Experiments 

are run using a moving grid, with an along flow grid size of ~250 m. The model has 

previously been applied successfully to several different TWGs in Greenland (Nick et al., 

2009; 2012; 2013; Vieli and Nick, 2011). A description of the force balance equations and 

calving criterion are provided in Section 5.10, and the parameter values used are presented 

in Table 5.1. 

 Basal topography for the lower 40 km of the catchment is derived using a mass 

continuity approach following the methodology of Morlighem et al. (2011), utilising 

CReSIS flightlines for validation (Gogineni et al., 2001). For the upper catchment, bed 

topography is obtained from Bamber et al. (2001). Point measurements of fjord bathymetry 

were used for bed topography in Kangersuneq, where KNS terminates (Figure 5.2; 

Weidick et al., 2012). Model sensitivity to bed topography uncertainty is evaluated by 

experiments outlined in Section 5.10. SMB ablation values are taken from the average 

1958-2007 Regional Atmospheric Climate Model (RACMO) output for the catchment of 

KNS (Ettema et al., 2009). The overall SMB results in contemporary balance calving flux 

of ~8.2 km
3
 a

-1
; well in excess of the direct contemporary estimates of ~6 km

3
 a

-1
 (Van As 

et al., 2014). SMB values in the accumulation zone are therefore reduced, so as to maintain 

the contemporary ice sheet elevation over centennial timescale model runs.  

This represents a conservative approach to the definition of accumulation SMB 

values during the LIA, since values have been suggested to be ~10-40% lower over the 

catchment of KNS during this period (Box et al., 2012). The definition of catchment 

boundaries in the ice sheet interior, that can affect calving fluxes in the long term, is also 

Parameter/Constant Value 

  

Ice density – ρi 900 kg m
-3

 

Meltwater density – ρw 1000 kg m
-3

 

Proglacial water body density – ρp 1028 kg m
-3

 

Gravitational acceleration - g 9.8 m s
-2

 

Friction exponent - m 3 

Friction parameters – μ and λ 1 

Glen’s flow law exponent - n 

Glen’s flow law coefficient - A 

3 

4.5 x 10
-17

 Pa
-3

 a
-1 

Grid size ~250 m 

Time step 0.005 a 

  
Table 5.1 List of parameters and constants used for running the model. 
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known to represent a potentially significant uncertainty when defining the accumulation 

zone of an ice sheet glacier (Van As et al., 2012; 2014). However, high resolution SMB 

modelling of the Nuuk region for 1960-present also indicates that the majority of inter-

annual variability in the net balance of KNS’ catchment is derived from changes in 

ablation, where the catchment is likely to be comparatively well defined (Van As et al., 

2014). Therefore the majority of SMB driven mass change over the period of interest is 

likely to have been driven by variability in the ablation zone rather than by changes in 

accumulation. 

 Ice contributed by Akullerssup Sermia (AS), the glacier adjacent to KNS, is 

accounted for in the model as extra SMB across their 5 km confluence (between 3 km and 

8 km). The flux is distributed along this confluence proportional to the contemporary 

across-terminus velocity profile of AS (Joughin et al., 2010b). An approximation of the 

present-day flux of AS is derived by taking a physically based estimate of the flux of KNS 

of ~6 km
3
 a

-1
 (Van As et al., 2014), and scaling this value using the widths and terminus 

velocities of both glaciers. This provides a contemporary AS flux estimate of ~1 km
3
 a

-1
. In 

the model the volume of ice contributed by AS per time step is therefore taken to be a sixth 

of the modelled flux of KNS immediately upstream of their confluence. 

Modelled terminus positions were compared directly to mapped terminus positions 

using the Curvilinear Box Method (CBM) of tracking terminus change (Chapter 4). This 

allows direct comparison of mapped results to model results since both the CBM and 

model track terminus position in relation to the fjord centreline.  

 

5.6.2 Sensitivity to SMB 

All SMB experiments were run keeping terminus forcing (CWD and SM) constant. These 

experiments test terminus sensitivity to step changes in ablation zone SMB, up to 200% of 

the 1958-2007 RACMO average values. Sensitivity to step changes in accumulation were 

not investigated, due to the likelihood of accumulation having increased over the glacier 

catchment following the LIA (Box et al., 2012). Separate model runs were conducted for 

10% increments of initial SMB ablation values ranging between 110% to 200%. 

Sensitivity was evaluated by comparing the model time required for the terminus to retreat, 

to the known time needed, indicated by the glacier reconstruction. 

 

5.6.3 Sensitivity to forcing at the terminus 
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Glacier sensitivity to terminus forcing is investigated through application of both 

incremental and step changes in forcing. The sensitivity of LIAmax KNS to incremental 

changes in both CWD and SM were evaluated separately to characterise how, or if, they 

responded differently to small, steady increases in these two forcings. Two sets of model 

runs with incremental forcing were conducted. The first increased CWD by 1 m every 5
th

 

year of the model run while SM was held constant, testing terminus sensitivity to CWD for 

fixed values of SM. The second increased SM from initial pre-defined values (between 0 

km
3
 a

-1
 and 1.5 km

3
 a

-1
, at 0.1 km

3
 a

-1
 intervals) by 0.025 km

3
 a

-1
 every 5

th
 year, while 

CWD was held constant. By doing this we evaluate terminus sensitivity to small successive 

increases in SM from given initial SM scenarios at the LIAmax, and constant CWD values.  

Glacier sensitivity to different magnitudes of step change in CWD was evaluated 

by applying these for different constant SM values in each model run. SM values used 

were determined from the results of the incremental forcing experiments, using only values 

where modelled retreat behaviour was comparable to the pattern of retreat observed. 

Experiments were also conducted where different magnitudes of step change in SM are 

applied. Similar to the SMB experiments, sensitivity was evaluated by comparing the 

model time required for the terminus to retreat following the step change, to the known 

timescale of glacier retreat. 

 

5.7 Model results 

 

The modelled evolution of the terminus position is shown with respect to time (Figures 5.5, 

5.7 and 5.8) and forcing applied (Figure 5.6). The locations of modelled stable terminus 

positions driven by SM and CWD forcings are replicated between experiments (Figure 

5.6). The majority of model runs also simulate some degree of stabilisation at a 

topographic narrowing in the fjord at ~12.5 km from the 2012 terminus position, where 

there is no observational or geomorphological evidence of terminus stabilisation (Figure 

5.6). This potential pinning point is thought to be real, rather than an artefact of bed 

topography uncertainty (see Section 5.10). Each modelled stable terminus position 

possesses different relative resilience to increasing levels of forcing before retreating to the 

next stable location. Of the pinning points identified, the 12.5 km position is generally the 

least resilient to changes in forcing. 

 

5.7.1 SMB forcing 
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The modelled glacier displays very little sensitivity to changes in ice thickness 

driven by changes in ablation (Figure 5.5). Even an extreme SMB forcing (ablation = 

200% of 1958-2007 RACMO average) produces a retreat <1 km from the LIAmax over 

300 model years. It is therefore unlikely that SMB driven changes in ice thickness caused 

the retreat from LIAmax to the 1808 position. 

 

5.7.2 Incremental terminus forcing 

Model results of incremental forcing demonstrate that CWD and SM can 

potentially initiate rapid terminus retreat over small parameter spaces (Figure 5.6). 

However, the sensitivity of the modelled glacier to the absolute values of SM or CWD is 

dependent on the initial conditions of the model run. Model runs with higher SM rates 

enhance the sensitivity of the modelled glacier to changes in CWD, with the 12.5 km 

pinning point becoming less well represented as SM increases (Figure 5.6b). Although this 

pinning point is barely apparent where SM >0.8 km
3
 a

-1
 (demonstrating behaviour in 

agreement with the glacier reconstruction presented), these represent SM rates at the upper 

 

Figure 5.6 Results showing (A) observed terminus retreat, (B) modelled retreat holding SM constant and 

increasing CWD by 1 m every 5
th

 modelled year, and (C) modelled retreat holding CWD constant, after 

spinning up to an initial SM at LIAmax, and increasing SM by 0.025 km
3
 a

-1
 every 5

th
 modelled year. 

Narrow dashed curves on panels B and C indicate position of the grounding line. 

 

 

 

Figure 5.5 Results showing (A) observed terminus retreat, (B) modelled retreat showing impact of 

multiplying ablation rates by a prescribed scale factor. Model was spun up to be vulnerable to retreat near 

to its LIA maximum, with CWD = 175 m and no SM applied. 
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end, or greater than anything previously observed in Greenland (Rignot et al., 2012; 

Enderlin and Howat, 2013). These runs also generate instabilities within the model, with 

the grounding line demonstrating significant oscillatory behaviour (>1 km) over timescales 

of <1 year (Figure 5.6b). 

Only one model run, spun up to the LIAmax with SM = 0 km
3
 a

-1
, retreated 

significantly in response to increasing SM (Figure 5.6c). Remaining model runs formed 

floating ice tongues, as high SM rates drove grounding line retreat, while there was 

sufficient lateral drag for the terminus to remain stable. If increasing SM did drive retreat 

from LIAmax to the 1920 Stade position, it would have required SM to have dramatically 

increased, from 0 km
3
 a

-1
 to ~0.6 km

3
 a

-1
. However, this run also includes the terminus 

stabilising at the 12.5 km pinning point, not represented in the glacier reconstruction. Once 

SM >0.78 km
3
 a

-1
 the model run begins to display comparable grounding line variability to 

that observed in other runs where initial SM rates were >0 km
3
 a

-1
 (Figure 5.6c).  

 

5.7.3 Step changes in terminus forcing 

Following results from incremental increases in SM (Figure 5.6c), step changes in SM of 

different magnitudes were applied only where the model was spun up with an initial SM 

rate of 0 km
3
 a

-1 
at the LIAmax (Figure 5.7). The results from these runs demonstrate that 

an increase in SM to 0.3 km
3
 a

-1
 could cause a retreat to the 1859 terminus position, though 

it would take >200 years to do so. To drive a retreat from the LIAmax to the 1859 position 

within the timeframe observed (<98 years), requires a step change increase of at least 0.5 

km
3
 a

-1
. However, given the lack of geomorphological evidence for a stable margin at 12.5 

 

Figure 5.7 Model results showing (A) observed terminus retreat, (B) terminus position following a step 

change in SM following a 50 year spin up period where SM = 0 km
3
 a

-1
, following the results of the 

incremental sensitivity tests. CWD is held constant throughout (175 m). Dashed lines indicate position of 

the grounding line. Application of the step change in each case occurs at 0 years (bold dashed line). 
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km, an increase of >0.6 km
3
 a

-1
 would probably be required, based on the modelled time 

needed for the terminus to retreat through the 12.5 km pinning point (Figure 5.7). 

Step changes in CWD of 10% (Figure 5.8a) and 20% (Figure 5.8b) were also 

applied for constant SM ranging from 0.1 to 1 km
3
 a

-1
. As with results from incremental 

changes in CWD (Figure 5.6b), these show that terminus sensitivity to changes in CWD 

increases with higher values of SM (Figure 5.8). However, results also demonstrate that 

moderate step changes in CWD are capable of producing a retreat to the 1859 position for 

moderate values of SM. For example, where SM >0.3 km
3
 a

-1
, a 20% increase in CWD can 

drive a retreat from LIAmax to the 1859 position in 31 years. 

 

5.8 Implications of model results 

 

Model results demonstrate that the LIAmax to 1859 retreat of KNS is unlikely to have 

been driven by changes in SM or SMB. Where changes in SM can produce a retreat pattern 

comparable to that observed (Figures 5.6c and 5.7), the SM rates required to achieve this 

are at the upper end, or greater than anything previously observed in Greenland (Rignot et 

al., 2012; Enderlin and Howat, 2013). The step changes in SM required to reproduce 

observed retreat that skip the 12.5 km pinning point are also of such a scale (increasing 

from 0 to ~0.8 km
3 

a
-1

), that they would be equivalent to the SM regime at KNS changing 

from experiencing one of the lowest, to one of the highest SM rates currently observed in 

Greenland. For this to occur would necessitate a dramatic change in fjord hydrography. 

Such a change is thought to be not only unlikely, but also unrealistic, given observations of 

the contemporary fjord hydrography (Mortensen et al., 2011; 2013), and the likelihood of 

KNS experiencing low SM rates compared to the rest of Greenland (Straneo et al., 2012). 

 

Figure 5.8 Model results showing (A) observed terminus retreat, (B) terminus position following a 10% 

step change in CWD after a 50 year spin up period, and (C) terminus position following a 20% step 

change in CWD after a 50 year spin up period. Narrow dashed curves on panels B and C indicate 

position of the grounding line. Application of the step change in each case occurs at 0 years (bold dashed 

line). 
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 In comparison, results from experiments with step changes in forcing demonstrate 

that moderate changes in CWD are capable of replicating the observed pattern of retreat, 

within a realistic time frame (Figure 5.8). Crucially, these are observed where the model is 

run with comparatively low SM rates (>0.3 km
3
 a

-1
). These values of SM fall well within 

the range of SM rates that have been observed for vertical calving fronts elsewhere in 

Greenland (equivalent to between 0.15±0.05 km
3
 a

-1
 and 0.8±0.15 km

3
 a

-1
 for KNS; see 

Section 5.10). 

The changes in CWD required to drive this retreat are also consistent with 

variability from high resolution SMB modelling of KNS for the period 1960-2011 (Van As 

et al., 2014). For this period significant inter-annual variability in runoff is shown to exist, 

with values of 3.12±2.40 Gt a
-1

 (2σ, representing inter-annual variability of ±77%). Longer 

term averages of modelled runoff values also display significant variability. For example, 

modelled runoff for the period 1991-2010 (3.47 Gt a
-1

) is 31% higher than the period 1971-

1990 (2.65 Gt a
-1

; Van As et al., 2014). The magnitude of this increase in runoff could 

feasibly be scaled to changes in CWD even greater than the maximum 20% step change 

investigated here (Figure 5.8).  Given the existence of this scale of multi-decadal 

variability, it is therefore realistic to suggest that runoff driven changes to CWD was 

potentially the primary driver of KNS’ retreat from its LIAmax to 1859 position. 

 It has also been established that the 12.5 km pinning point identified in multiple 

model runs is likely to be real, and not the result of uncertainty in fjord topography (see 

Section 5.10). The lack of evidence for terminus stabilisation at this location from either 

observations or geomorphology therefore suggests that the terminus of KNS was able to 

bypass this pinning point in response to the magnitude of forcing it experienced as it 

retreated. Unfortunately, at present there is a significant lack of summer temperature 

observations, or proxy data with sufficiently high temporal resolution/accuracy for the 

period relating to this study. Therefore it is not possible to attribute the observed terminus 

retreat to any specific known climate change in Greenland. 

 

5.9 Conclusions 

 

KNS is shown to have retreated by at least 12 km in one or two phases from its LIAmax to 

1859. Utilising historical sources we place KNS at its LIAmax in 1761, retreating ~5 km 

from this position by 1808. This is earlier than any other known post-LIAmax glacier 

retreat in Greenland. Map and early photographic evidence provide a range of possible 
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terminus positions for 1859 within the 1920 Stade moraine limit. Geomorphology indicates 

rapid retreat of at least 7 km to the 1859 terminus from following a retreat from LIAmax to 

the 1808 terminus position (two phase retreat scenario). However, it is possible KNS 

retreated in a single phase to the 1859 position, and the terminus was observed in 1808 

during this retreat. This provides evidence for at least one, and potentially two significant 

post-LIAmax retreats of a major Greenlandic TWG occurring in the early 19
th

, and 

potentially late 18
th

 centuries. The timing of this predates the post-LIAmax retreat of 

Jakobshavn Isbræ by at least 43 years, though possibly up to 113 years (Csatho et al., 

2008). This highlights the asynchroneity of TWG terminus responses from their LIAmax, 

and the similarity to asynchronous behaviour of 21
st
 century TWG dynamics (McFadden et 

al., 2011; Moon et al., 2012). This contrasting behaviour also demonstrates the risk of 

using dated maximum terminus positions from individual TWGs as indicators of a regional 

LIA maximum. 

Modelling results suggest that terminus stability was largely insensitive to SMB 

driven ice thickness changes, while SM is likely to have had a minor or modulating effect 

on the overall terminus retreat over centennial timescales. By contrast, the modelled glacier 

is very sensitive to changes in CWD, that are capable of driving a retreat of KNS from its 

LIAmax to 1859 configuration. The changes in CWD required to drive the retreat are also 

within the range of multi-decadal variability of more recent surface runoff values derived 

from high resolution SMB modelling (Van As et al., 2014). This highlights runoff driven 

changes to CWD as a likely potential driver of terminus retreat from LIAmax to 1859. 

Given the need to establish the centennial timescale controls on TWG variability 

(and hence ice sheet response, and likely sea level change), high resolution, high quality, 

quantitative proxy records of climate forcing are needed to allow adequate evaluation of 

centennial records of glacier fluctuations, such as the one presented. These include 

reconstructions of local summer air temperature variability (e.g. D’Andrea et al., 2011), 

runoff (e.g. Kamenos et al., 2012), and fjord hydrography (e.g. Lloyd et al., 2011). The 

latter is potentially of significant importance for glaciers such as KNS that drain into fjords 

with a shallow fjord mouth sill (Mortensen et al., 2011; 2013; Straneo et al., 2012). Such 

proxy records, alongside instrumental records, and longer term reconstructions of glacier 

behaviour to their Little Ice Age maxima (and where possible beyond), would therefore 

allow significant improvements to our understanding of, and context for potential TWG 

response over the next 100-200 years. 
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5.10 Supplementary materials 

 

5.10.1 Model description 

The model used in this study is designed to simulate the behaviour of tidewater outlet 

glaciers, and is explained in full detail in Nick et al. (2010). It employs a simple, physically 

based, non-linear effective pressure sliding law, where the depth integrated driving stress is 

balanced by longitudinal stress gradients, basal and lateral drag (Van der Veen and 

Whillans, 1996; Fowler, 2010). These are represented by the first, second and third terms 

respectively on the right hand side of Equation 5.1, with the driving stress represented by 

the left hand term: 
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  (5.1) 

where ρi = density of ice, ρp = density of the proglacial water body, g = gravitational 

acceleration, x = the along-flow distance, H = ice thickness, D = depth of ice below the 

surface of the proglacial water body, As = bed roughness parameter, A = temperature 

dependent rate factor [4.5 x 10
-17

 Pa
-3

 a
-1

, corresponding to ice at -5°C (Cuffey and 

Paterson, 2010)], W = glacier width, v = effective viscosity (dependent on the strain rate), 

m = friction exponent. This sliding law allows the modelled glacier to replicate the velocity 

profiles that are often observed approaching marine termini, and thus provide a good 

representation of realistic sliding (Nick et al., 2010; 2013; Vieli and Nick, 2011; Jamieson 

et al., 2012). Constant and parameter values used in the model are outlined in Table 5.1. 

Variations in basal and lateral friction due to meltwater supply can also potentially 

be modelled using the friction parameters μ and λ (Nick et al., 2010; 2012; 2013). 

However, both are given a constant value of 1 in all model runs shown, since this has 

primarily been suggested to be most significant over sub-annual, rather than multi-annual 

to decadal timescales (Howat et al., 2010; Nick et al., 2010; 2012; 2013; Vieli and Nick, 

2011).  

The model employs a full-depth calving criterion, calculating the penetration depth 

of both surface and basal crevasses within a field of closely spaced crevasses (Nye, 1957; 

Benn et al., 2007). Calving occurs when the surface and basal crevasses combined 

penetrate the full ice thickness (Nick et al., 2010). Where water ponds in crevasses there is 

the potential for it to force deeper penetration compared to a dry crevasse, according to 
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Where ds = depth of surface crevasse,  ̇ xx = longitudinal stretching rate, n = Glen’s flow 

law exponent, and dw = crevasse water depth. For a given flow regime, greater values of dw 

can therefore instigate higher calving rates that in turn drive retreat. 

 Basal crevasse heights are also included in calculations of cumulative crevasse 

penetration, according to 
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where Hab = height above buoyancy of a given ice thickness, calculated as 

 

      
  

  
  

     (5.4) 

This full-depth calving criterion is employed given that instances of full-depth calving 

behaviour were observed at KNS during fieldwork conducted in August, 2011. 

 SM is applied uniformly across the entire width of the grounding line. Volumetric 

rates of SM (e.g. km
3
 a

-1
) are also prescribed within the model rather than linear melt rates 

per time step (e.g. m d
-1

). This is because application of the latter to a 1-dimensional model 

would result in SM volume being partially dependent on the glacier width. Volumetric 

rates provide internal consistency between model runs for each time step and location in 

the modelled fjord. Constant SM values ranged from 0 km
3
 a

-1
 to 1.5 km

3
 a

-1
 (0.1 km

3
 a

-1
 

intervals). The latter is equivalent to SM rates of 0 to ~5.25 m d
-1

 with increments of ~0.36 

m d
-1

. This covers the range of values up to 150% of those that have so far been observed 

for termini in western Greenland (Rignot et al., 2012; Enderlin and Howat, 2013). 

 To allow direct comparison, previously published daily linear SM rate values (m d
-

1
) were multiplied by 365.25 to scale them up to units of m a

-1
, before being converted to 

volumetric values. The conversion to volumetric melt rates was achieved by multiplying 

the annual linear SM values by KNS’ contemporary glacier width (~5 km) and fjord depth 

at the terminus (~225 m). As an approximation, these SM volume values were then halved, 

to reflect that the majority of SM occurs during summer only, driven by subglacial runoff 

(Sciascia et al., 2013). These equate to volumetric SM range estimates for KNS of between 



88 
 

 
 

0.15±0.05 km
3
 a

-1
 and 0.8±0.15 km

3
 a

-1
 (Rignot et al., 2012; Enderlin and Howat, 2013). 

Within this range, the SM value for KNS has been suggested to be low compared to other 

Greenlandic glaciers, since fjord bathymetry is thought to limit the influence of ocean 

waters on fjord water temperature (Mortensen et al., 2011; 2013; Straneo et al., 2012).  

 

5.10.2 Model tuning 

A variety of basal sliding scenarios are explored during tuning by varying the basal 

roughness parameter As. For simplicity, the catchment is split into two different zones 

where As is set to two different values. These comprise of a rougher upstream and 

smoother downstream zone. Five different transition positions between these two zones are 

modelled to establish how this may affect model behaviour (especially potential effects on 

modelled elevation profiles). The boundary positions investigated between these zones 

were positioned from 5 km to 55 km from the 2012 terminus position at 10 km intervals. 

On InSAR velocity maps the latter position marks the approximate location of where rapid 

ice flow begins (Joughin et al., 2010), providing an intuitive upstream limit to the 

transition between the higher and lower basal roughness values. 30 different basal sliding 

scenarios were evaluated, with the feasibility of each evaluated through comparison to 

glacier elevation profiles reconstructed from the geomorphology (e.g. Figure 5.9). 

 By applying uniform basal roughness values we aim to avoid circular reasoning 

that would arise by tuning basal roughness values to predispose KNS to stabilising/retreat 

at sections where pinning points/retreats have occurred. This allows robust interrogation of 

model results, making as few assumptions as possible regarding basal roughness. The 

sensitivity of each modelled glacier to retreat under specific basal roughness scenarios was 

 

Figure 5.9 Surface elevation profile evolution of the modelled glacier superimposed on the reconstructed 

elevation profiles for LIAmax (red), 1920 Stade (orange) and 1985 (yellow). Each modelled profile 

shown represents 1 m increments in CWD every 5
th

 model year. 
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tested by increasing dw incrementally. For each scenario the post spin-up value of dw was 

increased by 1 m every 5 model years until the terminus retreated beyond the 2012 

terminus position, or dw exceeded 250 m. The latter condition is applied since sections of 

the fjord are <250 m in depth, meaning that in these regions the terminus is fully grounded, 

and its position would be defined almost solely as a function of dw. Where this occurs and 

the fjord continues to shallow this could potentially force the creation of unrealistic 

freeboard heights at modelled termini. 

Figure 5.9 is an example output of the sensitivity tests, showing the profile 

evolution of the basal roughness configuration used in this study. 

 

5.10.3 Bed sensitivity 

Previously published work has established that model results of tidewater glaciers can be 

sensitive to uncertainties in fjord bathymetry (Enderlin et al., 2013). To evaluate whether 

the uncertainty in fjord bathymetry significantly affects modelled terminus behaviour, 

sensitivity tests were conducted. This involved randomly varying bed elevation where fjord 

topography is unknown over blocks of 3 grid cells (~750 m), across a vertical range of ±50 

m, before then being smoothed over the same distance to avoid step changes in 

topography. Three sets of experiments were run, (1) varying the bed downstream of the 

1920 Stade maximum, holding the downstream section of the fjord constant, (2) varying 

the bed upstream of the 1920 Stade maximum, holding the upstream section of the fjord 

constant, and (3) varying the bed downstream of the 2012 terminus position. This evaluates 

the impact of bed uncertainty, and potentially the section of the fjord where this is 

important. Each experiment was run for 50 different bed configurations.  

 Results demonstrate that unknown sections of fjord topography do not have a 

 

Figure 5.10 Example of terminus sensitivity to random changes in unknown sections of fjord bathymetry 

along the entire length of the fjord. Results are shown for the retreat pattern of the modelled glacier in 

response to 1 m increments of CWD every 5
th

 model year, for 50 different bed configurations. 
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significant effect on the large scale retreat behaviour of KNS (e.g. Figure 5.10). Pinning 

points identified by the model are therefore suggested to be real, rather than artefacts of 

fjord topography uncertainty. 
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Chapter 6 
 

Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric 

forcing: observations and modelling of Kangiata Nunaata Sermia, 1859-present. 
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Preamble: This paper follows on from Chapter 5, reconstructing glacier behaviour of KNS 

for the period where continuous climate forcing data are available. This completes the 

reconstruction of the dynamics of KNS from its Little Ice Age maximum to 2012. In this 

paper, the terminus tracking methods outlined in Chapter 4 are used to compare the 

directly observed terminus positions of KNS to atmospheric and oceanic forcing data. This 

allows the response of KNS to changes in climate to be evaluated directly. New climate 

forcing parameterisations within the numerical model, building on those of Nick et al. 

(2013), are also used to generate an ensemble of model runs that are capable of replicating 

observed glacier behaviour from a suite of 1500 Monte Carlo simulations. The relative 

sensitivity of successful runs to atmospheric and oceanic forcing is evaluated by studying 

the parameter values that scale climate variability to model forcing. These help to identify 

which climate factors are most likely to drive the behaviour observed at KNS over 

centennial timescales. 

 

6.1 Abstract 

 

Many tidewater glaciers in Greenland are known to have undergone significant retreat 

during the last century following their Little Ice Age maxima. Where it is possible to 

reconstruct glacier change over this period, they provide excellent records for comparison 

to climate records, and calibration/validation for numerical models. These records 

therefore allow tests of numerical models that seek to simulate tidewater glacier behaviour 

over multi-decadal to centennial timescales. Here we present a detailed record of behaviour 

from Kangiata Nunaata Sermia (KNS), SW Greenland, between 1859-2012 and compare it 

against available oceanographic and atmospheric temperature variability between 1871-

2012. We also use these records to evaluate the ability of a well-established one-

dimensional flow-band model to replicate behaviour for the observation period. The record 

of terminus change demonstrates that KNS has advanced/retreated in phase with 

atmosphere and ocean climate anomalies averaged over multi-annual to decadal 

timescales. Results from an ensemble of model runs demonstrate that observed dynamics 

can be replicated, with changes in atmospheric forcing not needing to be offset by changes 

in oceanic forcing sensitivity. Furthermore, successful runs always require a significant 

atmospheric forcing component, while an oceanic forcing component is not always needed. 

Although the importance of oceanic forcing cannot be discounted, these results 
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demonstrate that changes in atmospheric forcing are likely to be a primary driver of the 

terminus fluctuations of KNS from 1859-2012. 

 

6.2 Introduction 

 

Calving from tidewater glaciers (TWGs) accounts for up to 50% of the mass loss from the 

Greenland Ice Sheet (Van den Broeke et al., 2009). Thus determining controls on tidewater 

glacier dynamics over decadal to centennial timescales is crucial to understanding their 

contribution to sea level in a warming climate (Alley et al., 2010; Vieli and Nick, 2011). 

The ability to achieve this in Greenland has been restricted in part by the relative lack of 

TWG terminus observations prior to the satellite age, and evidence of terminus locations 

being spread across a disparate array of sources. However, the synthesis of these sources 

has previously allowed multi-decadal to centennial records of TWG glacier behaviour to be 

reconstructed (e.g. Csatho et al., 2008; Bjørk et al., 2012; Weidick et al., 2012). 

 The generation of such records provide potentially excellent calibration and 

validation records for numerical modelling efforts (Vieli and Nick, 2011). That is to say 

that numerical models that are capable of replicating observed terminus behaviour over 

decadal to centennial timescales will be better placed to predict the future behaviour of a 

TWG over similar timescales. Despite this, there remain few examples of modelling efforts 

that have attempted to calibrate their results against multi-decadal observational records 

(e.g. Colgan et al., 2012). The ability of most numerical models to replicate dynamics over 

such timescales using realistic inputs therefore remains largely untested. 

 By undertaking calibration/validation exercises, the sensitivity of terminus position 

to different climatically forced processes can also be evaluated (e.g. Nick et al., 2013; 

Cook et al., 2013; Chapter 5). This is achieved by comparing the sensitivity of a modelled 

glacier to climate forcing against observed behaviour (Nick et al., 2013). With a 

knowledge of realistic ranges of forcing, this allows evaluation of the relative importance 

of each in contributing to the observed TWG behaviour. 

 Changes in oceanic forcing are significant drivers of TWG retreat in Greenland 

(Murray et al., 2010; Straneo et al., 2010; Rignot et al., 2012), but their relative importance 

between glaciers appears to be dependent on geographical location, glacier geometry (Nick 

et al., 2013), and potentially fjord connectivity with the open ocean (Straneo et al., 2012). 

Model based studies have also helped to demonstrate the sensitivity of some major outlet 

glaciers to air temperature changes (via enhanced runoff increasing crevasse water depth; 

Nick et al., 2013; Cook et al., 2013).  
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Where multi-decadal to centennial timescale climate data exist alongside records of 

terminus position, these provide the potential for robust evaluation of both numerical 

models and the importance of different drivers of TWG terminus change. In this study we 

present a detailed record of terminus fluctuations at Kangiata Nunaata Sermia (KNS), SW 

Greenland from 1859-present. We then use this to evaluate the ability of a well-established 

numerical ice-flow model, driven by climate data, to replicate the pattern and timing of 

change at KNS during this period. Results of this are used to evaluate the sensitivity of 

KNS to climate forcing data over centennial timescales. 

 

6.3 Field site and climate data 

 

KNS is the largest TWG on the west coast of Greenland, south of Jakobshavn Isbræ 

(Figure 6.1; Van As et al., 2014). It is known to have undergone significant retreat since its 

 

Figure 6.1 Diagrams showing the site location (inset), terminus positions and geomorphology plotted on 

a hillshaded mosaic of a stereophotogrammetrically derived digital elevation model (DEM) from images 

acquired in 1985, and ASTER GDEM (Hvidegaard et al., 2012). (A) termini and geomorphology for 

1859-2012, with ASM limits delineated in yellow, and (B) a detailed view of termini for the period 1948-

2012. 
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Little Ice Age maximum (Weidick et al., 2012), retreating a total of 22.6 km, with at least 

12 km of this retreat occurring prior to 1859 when climate forcing data are unavailable 

(Chapter 5). It is situated ~80 km inland from Nuuk at the head of Godthåbsfjord, and 

currently has a calving flux of ~6 km
3
 a

-1
 (Van As et al., 2014).  

A continuous record of mean monthly air temperature is available at Nuuk from 

1866-present (Vinther et al., 2006; Cappelen et al., 2012). Temperatures at Nuuk are 

known to be strongly correlated to those near to KNS throughout the year (Taurisano et al., 

2004), meaning that the Nuuk record can be used as an indicator of the atmospheric forcing 

at KNS.  

As with all TWGs around Greenland, there are no long observational records of 

fjord water temperatures adjacent to KNS, though detailed hydrographic studies of the 

fjord have been undertaken recently (Mortensen et al., 2011; 2013). A shallow ~80 m sill 

at the entrance to the fjord at Nuuk has been suggested to limit the connectivity of the fjord 

to warm ocean waters at depth. In fjords where shallow sills do not exist, the incursion of 

these warm ocean waters are thought to have significantly affected the stability of TWGs 

(Rignot et al, 2012; Straneo et al., 2012). The presence of the shallow sill in Godthåbsfjord 

also results in significant tidal mixing at the fjord entrance, allowing sea surface waters to 

be incorporated at depth which are then advected into the fjord (Mortensen et al., 2011). 

These intermediate level mixed waters have been proposed to significantly influence the 

energy available for submarine melting at the termini of the TWGs in Godthåbsfjord 

(Mortensen et al., 2013). 

Due to the impact of surface waters near the fjord entrance on the energy balance of 

the fjord (Mortensen et al., 2011; 2013), and the potentially restricted influence of warm 

coastal currents at depth (Straneo et al., 2012), we suggest that sea surface temperatures 

(SSTs) provide a good indicator of the relative oceanographic forcing affecting KNS. Such 

data have also been used to good effect elsewhere as an indicator of oceanographic forcing 

where observations at depth are unavailable (e.g. McFadden et al., 2011; Bevan et al., 

2012). The HadISST1 1° x 1° dataset provides SST estimates for the period 1871-present 

(Rayner et al., 2003), with annual averages for the area immediately offshore from Nuuk 

(62° to 64° N 51° to 53° W) used as an indicator of oceanographic conditions affecting 

Godthåbsfjord. Although the data used will in part be based on interpolation (especially in 

the earlier part of the record), the data have been validated for west Greenland against 

independent records back to 1875 (Hanna et al., 2009). This therefore provides confidence 

in the results obtained from the HadISST1 dataset. 
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6.4 Glacier reconstruction data 

 

By 1859 KNS is known to have retreated between 12-15 km from its Little Ice Age (LIA) 

maximum extent (Chapter 5). The post-LIAmax glacial geomorphology of KNS has been 

mapped, while previous analysis of a photograph taken in the 1850s, and a map published 

in 1859 places the terminus position somewhere inside the limit of a significant glacier 

readvance/stillstand (Chapter 5). We refer to this as the Akullersuaq Stade (after the 

headland that its maximum extent adjoins), previously named as the ‘1920 Stade’ (Weidick 

et al., 2012). This is done due to the uncertainty of whether KNS was at its maximum in 

1920. 

 Where the full terminus cannot be observed in photographs, terminus position is 

determined indirectly using GIS based analyses described below, in conjunction with 

evidence from maps (e.g. Chapter 5). Subsequent to 1921, intermittent direct observations 

of the terminus are available enabling mapping of terminus positions from a combination 

of ground-based, oblique-aerial, vertical-aerial, and satellite imagery (list of sources in 

Table 6.1).  

Landsat panchromatic band imagery was used to map terminus position for 1987-

2012. Cloud-free Landsat scenes were selected for analysis, acquired as late in the melt 

season as possible/just after its end. The start of November was used as the latest date from 

which images could be selected, since beyond this, mélange in the fjord has been observed 

to freeze, causing the terminus to advance (Mortensen et al., 2011; Sole et al., 2011). The 

majority of images were acquired during September or October, though for 1993 and 2003 

cloud-free images were only available for dates in August (30/8/1993 and 9/8/2003 

respectively). No suitable images were available for the years 1988-1991 and 1998, 

meaning that annual resolution rates of terminus change were acquired for 1992-1997 and 

1999-2012 (Table 6.1). 

Where more than 1 year separated terminus observations, annually averaged rates 

of change were calculated. This provides a continuous record of the trends in behaviour, 

and inter-annual variability of KNS for the period spanning 1859-2012. This behaviour 

could then be directly compared to atmospheric and oceanic climate data. 

Each terminus position was determined using an adaptation of the box method 

(Moon and Joughin, 2008; Howat and Eddy, 2011), called the Curvilinear Box Method 

(CBM; see Chapter 4, for details). This has a marked advantage over the centreline 
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tracking or standard box methods as it is capable of accounting for changes in terminus 

geometry, while also accurately tracking changes in fjord orientation. Furthermore, the box 

used to calculate terminus change is always centred on the glacier/fjord centreline, which is 

also the flowline used for the numerical model. Consequently, terminus positions and 

observed distances of change derived using the CBM can be compared directly to model 

output. 

 

6.5 The numerical model 

 

The numerical model used is specifically designed to simulate the dynamics of TWGs 

along a flowband (Nick et al., 2010). It has been successful in replicating the dynamics of 

Acquisition date Observation type Source 

1850s Terrestrial photo' H. Rink (in Weidick et al, 2012) 

1859 Map Kleinschmidt (1859) 

1860 Map Poulsen (1860) 

1866 Map Rink (1866) 

1866 Map Falbe (1866) 

1885 Map Jensen (1885) 

1880s? Sketch (after photo') Nansen (1890) 

1903 Terrestrial photo' J. Møller in Bruun (1917) 

1921 Terrestrial photo' A. Nissen in Weidick et al (2012) 

1932 Terrestrial photo' A. Roussell in Roussell (1941) 

27/08/1936 Oblique photo' Weidick et al (2012) 

10/08/1946 Oblique photo' Weidick et al (2012) 

20/08/1948 Oblique photo' Weidick et al (2012) 

21/06/1965 Terrestrial photo' Weidick et al (2012) 

16/08/1968 Aerial photo' USGS 

15/09/1979 Terrestrial photo' Weidick et al (2012) 

15/09/1987 Satellite Landsat 

19/09/1992 Satellite Landsat 

30/08/1993 Satellite Landsat 

18/09/1994 Satellite Landsat 

14/10/1995 Satellite Landsat 

14/09/1996 Satellite Landsat 

01/09/1997 Satellite Landsat 

15/09/1999 Satellite Landsat 

18/09/2000 Satellite Landsat 

22/10/2001 Satellite Landsat 

23/09/2002 Satellite Landsat 

09/08/2003 Satellite Landsat 

12/09/2004 Satellite Landsat 

24/09/2005 Satellite Landsat 

18/09/2006 Satellite Landsat 

27/09/2007 Satellite Landsat 

23/09/2008 Satellite Landsat 

19/09/2009 Satellite Landsat 

13/09/2010 Satellite Landsat 

16/09/2011 Satellite Landsat 

18/09/2012 Satellite Landsat 

Table 6.1 List of terminus observations and acquisition dates. 
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marine terminating outlets in both Greenland (e.g. Vieli and Nick, 2011; Nick et al., 2012; 

Chapter 5) and Antarctica (Jamieson et al., 2012; 2014), and also been used to make 

centennial timescale projections of the future contribution of Greenland’s major TWG 

outlets to global sea level (Nick et al., 2013).  The model accounts for basal, lateral and 

longitudinal drag, and includes a robust treatment of grounding line dynamics (Pattyn et 

al., 2012). Bed topography data for the majority of the catchment are provided by Bamber 

et al., (2001), though the lower 40 km is generated using a mass continuity based bed 

reconstruction (Morlighem et al., 2011), validated by OIB/CReSIS flightlines (Gogineni et 

al., 2001). Where available, fjord bathymetry data are also used where KNS has retreated 

following its LIAmax (Weidick et al., 2012). Sensitivity analyses conducted in Chapter 5 

(Figure 5.10) for this bed configuration demonstrated that the model exhibits broadly 

comparable patterns of retreat behaviour where bed topography is varied within an 

uncertainty of ±50 m. 

A constant height versus SMB relation is used to calculate SMB for the ablation 

zone of KNS (Equation 6.1). This is derived from the average RACMO SMB model output 

for 1958-2007 (Ettema et al., 2009).  

 

b(x) = 0.0018 × h(x) – 2.693      

(6.1) 

Where b(x) = SMB for position x on the model flowline, and h(x) = glacier 

elevation for position x on the flowline. Due to the tendency for over-estimation of 

accumulation in RACMO in this region (Van As et al., 2014), positive SMB values in the 

upstream section of the modelled glacier are prescribed to allow the glacier to maintain its 

contemporary elevation profile. Irrespective of this, SMB variability has previously been 

demonstrated to be of minimal importance to results of modelled TWG dynamics over the 

timescales that are being investigated (Chapter 5). The model is initialised using a glacier 

geometry approximating that of the Akullersuaq Stade maximum (ASM), derived from 

geomorphological mapping of associated trimlines (Figure 6.1). Constants and parameter 

values used are summarised in Table 6.2, while the initial tuning procedure followed for 

this configuration is the same as that used in Chapter 5. Surface runoff (Van As et al., 

2014)/air temperature (JJA average) and SST (annual average) data are used to drive 

changes in crevasse water depth (dw) and submarine melting (M) respectively. Seasonal 

variability in basal and lateral sliding is not included due to its negligible importance over 
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multidecadal timescales (Nick et al., 2013). Parameters which control the model sensitivity 

to climate forcing are derived using Monte Carlo methods described below. 

 

6.5.1 Relating dw to air temperature 

Changes in the value of dw have previously been related to runoff variability (e.g. Nick et 

al., 2010; Cook et al., 2012; 2013), and have been successfully used as a climate linked 

forcing directly affecting terminus change (Nick et al., 2013). However, the only 

previously used scaling of surface runoff to dw requires a baseline dw value to be 

prescribed, which it cannot fall below (Nick et al., 2013, their equation S3). We present a 

new, unrestricted parameterisation that relates seasonal changes in monthly surface runoff 

to dw, and allows dw to freely evolve due to changes in annual runoff (Equation 6.2). 

 

                             
     

  
  

    (6.2) 

Where dwNew = new crevasse water depth for a particular month, dwPrev = crevasse water 

depth from the previous month, α1 = coefficient relating crevasse water depth sensitivity to 

changes in runoff, Ryear = total runoff for a given year (Gt yr
-1

), βmonth = fraction of annual 

runoff occurring in a particular month, Rbase = a baseline annual runoff total (Gt yr
-1

), 

equivalent to the annual volume of water that is either refrozen within the glacier or drains 

from the crevasse to the bed. This assumes that the rate of refreezing/drainage of water 

from crevasses is constant from year to year. Where annual runoff exceeds Rbase, the 

average annual dw will therefore increase, and where runoff falls below Rbase, the average 

annual dw will decrease. Dividing annual runoff into each month’s contribution also allows 

the direct incorporation of dw’s seasonal variability. The value of dw will therefore reach its 

Parameter/Constant Value 

  

Ice density – ρi 900 kg m
-3

 

Meltwater density – ρw 1000 kg m
-3

 

Proglacial water body density – ρp 1028 kg m
-3

 

Gravitational acceleration - g 9.8 m s
-2

 

Friction exponent - m 3 

Friction parameters – μ and λ 1 

Glen’s flow law exponent - n 

Glen’s flow law coefficient - A 

3 

4.5 x 10
-17

 Pa
-3

 a
-1 

Grid size ~250 m 

Time step 0.005 a 

  
Table 6.2 List of parameters and constants used for running the model 
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annual minimum prior to the onset of the melt season, and peak in August. The coefficient 

α1 allows the sensitivity of dw to changes in runoff to be adjusted, and is used as a tuning 

parameter. 

 

6.5.2 Definition of βmonth 

The fraction of annual runoff occurring in each month, βmonth, is derived from analysis of 

each month’s average runoff from the catchments of both KNS and Akullersuup Sermia 

(AS) over the period 1960-2012, as given by high resolution surface mass balance (SMB) 

modelling of the region (Van As et al., 2014). The runoff values for KNS and AS are 

summed since the glaciers were confluent for much of the time since their LIAmax, 

including a significant portion of the period of interest of this study (see below; Wedick et 

al., 2012). Monthly runoff estimates were generated using both Modèle Atmosphérique 

Régional (MARv3.2; Fettweis et al., 2011), and the Regional Atmospheric Climate Model 

(RACMO2; Van Angelen et al., 2013). The variability in the monthly fraction of annual 

runoff is shown for both models in Figure 6.2, with each producing similar patterns and 

magnitudes of monthly variability. We took the median result from the monthly averages 

of the two models. This pattern of monthly variability was kept constant from year to year 

for each model run. 

 While the model can be forced directly with annual modelled runoff values for the 

period 1960-2012 (Van As et al., 2014), no such values are available for the century 

before. Runoff values prior to 1960 are therefore estimated using the relation that exists 

between average June, July, August (JJA) air temperatures (AJJA) from Nuuk for 1960-

2012 (Cappelen et al., 2012) and the modelled runoff values (r = 0.75). A regression 

 

Figure 6.2 Fraction of annual runoff occurring for each month as given by MAR and RACMO2 SMB 

models for KNS and AS between 1960-2012 (Van As et al., 2014). Error bars are given to 2 standard 

deviations. 

 

 



101 
 

 
 

equation is generated from this (Equation 6.3), allowing runoff estimates (Gt a
-1

) for the 

period 1866-1959 to be made from the Nuuk air temperature (°C) record (Vinther et al., 

2006; Cappelen et al., 2012). 

 

Ryear = 0.91×AJJA -1.53      

(6.3) 

 Combined with the 1960-2012 modelled values, this produces a continuous record of 

estimated annual runoff for 1871-2012. Average monthly variability in runoff is 

superimposed on this record using the βmonth term. 

 

6.5.3 Confluence with Akullersuup Sermia 

While KNS and AS are confluent in model simulations, variability in dw at the terminus 

will be driven by total runoff values from both catchments. The confluence area of the two 

glaciers is defined on the model flowline as being 5 km, lying between 3 km and 8 km 

from the 2012 terminus position. However, as KNS retreats through its confluence with AS 

this will remove the runoff contribution from AS to the terminus, meaning that dw needs to 

be scaled to reflect this. Modelled annual runoff totals for each catchment show that KNS 

and AS respond directly in phase with one another (r = 0.99), with KNS accounting for 

70.3% (MARv3.2) or 74.6% (RACMO2) of total runoff (Van As et al., 2014). To allow for 

this reduction in runoff as KNS retreats through the confluence, the value of dw is 

multiplied by a scale factor, γ, that will have a fixed value for each model run of between, 

α2 (a confluence scaling factor) and 1, such that 

 

               

       (6.4) 

Because AS and KNS will at times be partially confluent, the value of γ is also scaled 

linearly with respect to the relative position of the terminus through the confluence, such 

that when they are fully confluent γ = 1, and when fully diffluent γ = α2. Values are varied 

linearly between α2 and 1 for terminus positions within the confluence according to 

 

           (
     

     
) 

      (6.5) 

Where xconf = distance of the terminus through the confluence, and Xconf = the total flowline 

distance over which the confluence occurs. Due to uncertainty regarding the precise 
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scaling of runoff to dw as KNS retreats through its confluence with AS, and other 

confluence effects, α2 is used as a tuning parameter within the model. 

 The extra ice flux contribution from AS when confluent with KNS is estimated to 

be approximately one sixth of that of KNS, based on the contemporary across glacier 

velocity profiles (Joughin et al., 2010), and terminus widths of AS and KNS. This extra 

flux is added to the modelled glacier as positive SMB at the confluence of KNS and AS, 

distributed along the flowline proportionate to the contemporary AS across glacier velocity 

profile (Chapter 5).  

 

6.5.4 Relating submarine melt rate to sea surface temperature 

Submarine melt rate (M) has previously been linearly related to deep ocean temperature 

(DOT) variability using a scaling coefficient (Nick et al., 2013; their equation S2). Using 

this parameterisation, the highest rates of M (expressed in this study in km
3
 a

-1
) would also 

be associated with the highest inter-annual variability of M. This study therefore takes a 

slightly different approach in that (1) M is scaled to sea surface temperature (SST) rather 

than DOT, for reasons relating to fjord hydrography explained above, and (2) we introduce 

a constant (minimum) baseline M rate, Mbase, which is added to the linear relation to SST. 

We therefore calculate M (km
3
 a

-1
) according to 

 

                

      (6.6) 

Where α3 = submarine melt rate scaling coefficient, and Tyear = annual average SST. This 

allows different minimum background M rates to be tested for different model runs, with 

different sensitivities of M to changes in SST superimposed upon this. 

 

6.5.5 Model experiments and evaluation 

Tuning parameters α1, α2, α3 and Mbase were varied randomly within prescribed limits for a 

total of 1500 Monte Carlo style model runs. The limits for each of the tuning parameters 

were: (1) α1, between 0 and 1.5, (2) α2, between 0.3 to 0.8, (3) Mbase, between 0 to 0.7 km
3
 

a
-1

, and (4) α3, between 0 to 0.3. These ranges of α1 and α2 were chosen to reflect a wide 

range of potential forcing scenarios, while the values of Mbase and α3 were chosen so total 

M could potentially range from 0 km
3
 a

-1
 to values that exceed M rates that have been 

observed for other TWGs in western Greenland (Rignot et al., 2010; Enderlin and Howat, 

2013). This allowed the feasibility of different potential drivers of the observed terminus 
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change to be comprehensively assessed. Runs were conducted for the period 1871-2012, 

given that this is the period that both atmospheric and oceanic climate records are available 

for. The model was initialised at approximately the ASM profile and terminus position, as 

defined by the geomorphology, and given the duration of the spin up period to stabilise for 

the given forcing scenario. During spin up, dw was allowed to freely evolve by up to ±3 m 

a
-1

 to allow the terminus to stabilise at the ASM, with Rbase and Tyear held constant. These 

were defined as the 1871-1920 runoff average (3.107 Gt yr
-1

) and SST average (2.605 
o
C) 

respectively. These values were used for spin up as it is known the ASM was attained at 

some point within this window.  

 Model results were evaluated against their ability to replicate observed terminus 

dynamics, where absolute terminus positions are known (i.e. 1921 to 2012). The period 

from 1871-1920 therefore effectively becomes a transient spin up period, where the model 

is driven using real climate data though terminus position is only known within a range. 

The ability of each model run to replicate observed dynamics was determined using a 

weighted regression (R
2
) calculation, with the weighting of each terminus observation 

calculated according to 

 

   
         

        
 

for n = 1, 2,…, k   

(7) 

Where w = weighting in regression calculation, n = terminus observation, k = total number 

of terminus observations, and D = date of terminus observation. Each terminus observation 

is therefore temporally weighted according to the median length of time elapsed between 

the terminus observations that occur before and after observation n. This ensures that the 

evaluation of model performance is not biased towards the last ~20 years where there is a 

comparatively high density of observations. Model runs were counted as successful where 

(1) the difference between the modelled and observed 1921 position was <500 m, (2) the 

weighted R
2
 > 0.85, and (3) the gradient of the resulting line of regression was > 0.85. 

 

6.6 Glacier reconstruction results 

 

The geomorphology shows distinct upper and lower sets of lateral moraines on both sides 

of the fjord, with fluted moraines occupying the intervening space (Figure 6.1a). The upper 

set are associated with the LIA maximum (Chapter 5), while the lower set were formed 
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during the Akullersuaq Stade. Fridtjof Nansen’s (1890) account of the first traverse of 

Greenland in 1888, includes a drawing from a photograph showing AS and KNS to be 

confluent, though the terminus position itself is not visible. Although the original image 

could not be traced or an exact date of acquisition determined, it is likely to have been 

taken some time near to the publication date of 1890.  

Maps from 1859, 1860, 1866 and 1885 all show the terminus of KNS to be 

adjoining Akullersuaq and fully confluent with AS (Kleinschmidt, 1859; Poulsen, 1860; 

Brede, 1866; Rink, 1866; Jensen, 1885). While it is possible that some details on the maps 

were copied following Kleischmidt (1859), the addition of detail such as lakes on plateaus 

near to KNS by Jensen (1885) provides confidence that this map faithfully records the 

contemporary terminus position. There is nothing to suggest that KNS became diffluent 

from AS at any time from 1859-1885. However, due to a lack of map detail and the 

Nansen (1890) drawing not including the terminus, these sources cannot be used to provide 

absolute terminus positions. 

The earliest images of KNS are from the 1850s and 1903. Both are taken from 

approximately the same position, with the terminus partially obscured by foreground 

topography (Weidick et al., 2012). The presence of medial moraines in each image 

demonstrates that KNS was confluent with AS. Chapter 5 quantified the terminus position 

uncertainty for the 1850s photograph using viewshed analysis. Similar analysis has been 

undertaken for the 1903 image, showing that the uncertainty in terminus position is the 

same as for the 1850s image (Figure 6.3). The maximum terminus extents for both images 

are therefore located behind a headland corresponding to the ASM on the eastern side of 

the fjord (Figures 6.1a, 6.3).  

It is not currently possible to say when the ASM was attained from any 

observational evidence, only that it occurred sometime between 1859-1920. The climate 

anomalies for the period (compared to 1961-1990 baselines) show that air temperature 

(AT) and SST anomalies were, on average, antiphased for the period 1871-1903 (Figures 

6.4c, 6.4d), though AT and SST anomalies are in phase (negative/near-baseline) for 1903-

1920. Conditions are therefore more likely to have been conducive for glacier advance 

during the latter period. 

Terminus position was mapped directly for the remaining images, providing a 

record of 29 terminus positions spanning the period 1921-2012 (Figures 6.1, 6.4). The first 

direct terminus observation (1921) shows a slight retreat from the ASM. Subsequent to 

this, KNS retreated a total of 9.7 km at a non-uniform rate up to 2012, interrupted by short 
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periods of readvance (Figures 6.4a, 6.4b). Averaged retreat rates of -116 m a
-1

 are observed 

between 1921-1946, before a rapid retreat of 3.9 km within the 2 year period from 1946-

1948 (Figures 6.1a, 6.4). Between 1948-1968 KNS retreated on average by -97 m a
-1

, 

before readvancing by +60 m a
-1

 up to 1979 (Figure 6.4b). A terrestrial photograph taken 

in 1965 with the majority of the terminus obscured shows the termini of KNS and AS to be 

fully diffluent. 

The 1921-1968 period of sustained retreat was accompanied by positive average 

AT and SST anomalies (Figures 6.4c, 6.4d). The highest AT anomalies occurred during the 

period 1928-1941, though the largest retreat (between 1946-1948) occurred during a 

comparatively less extreme period of positive AT and SST (Figure 6.4). 

From 1979 to 1987 KNS retreated by -658 m in total (-82 m a
-1

), before 

readvancing by +758 m from 1987-1992 (+152 m a
-1

). Using the near complete 20 year 

annual record of terminus fluctuations from 1992-2012, KNS advanced for 4 out of 5 years 

between 1992-1997, followed by retreat in 11 out of 13 years from 1999-2012 at an 

average rate of -103 m a
-1

. The latter included 8 annual retreats of >100 m, with the largest 

retreats occurring in 2004 (-438 m) and 2005 (-316 m). These periods of advance and 

retreat behaviour occurred during periods of in-phase negative and positive climate 

anomalies respectively.  

Where temporal density of observations was high, terminus behaviour that was 

antiphased with the prevailing climate anomalies was also observed. Examples of this 

include a retreat of -626 m observed in 1995 during negative climate anomalies, while two 

 

Figure 6.3 Reconstructed photographer position showing (A) the area that would be observable in the 

photograph shown in (B) that was acquired in 1903. 
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terminus advances occur in 2008 and 2009 despite markedly positive AT and SST 

anomalies (Figure 6.4). At annual resolution, the magnitude of terminus retreat/advance 

was also found to be unrelated to the magnitude of either climate anomaly for each 

particular year. 

 

6.7 Model results 

 

From a total of 1500 model runs conducted, 29 runs (1.9%) successfully replicated the 

observed dynamics of KNS according to the criteria outlined above (Figure 6.5a). 

Following the initiation of climate forcing in 1871 (Figures 6.5b, 6.5c), the results of each 

run are highly comparable up to 1884, with little modelled terminus change observed. 

Following this, for the period 1884 to ~1910, 6 of the 29 runs (21%) show evidence of 

 

Figure 6.4 (A) Terminus change relative to the 2012 terminus position. Uncertainty in terminus position 

for 1859-1903 highlighted in grey, with a range of potential advance rates for 1903-1920 indicated. 

These range from a minimum of no change (0 m a
-1

) to a maximum possible advance rate of 191 m a
-1

. 

(B) Annually averaged rates of terminus change between observations (black dots). Includes terminus 

advance rates described for 1903-1921 terminus change indicated on A. (C) Summer ATA (June, July, 

August) at annual resolution (white bars), and red line showing the averaged ATA between terminus 

observations (Cappelen et al, 2012; Vinther et al, 2006). (D) Annual SSTA for the area 61° to 65° N 51° 

to 56° W at annual resolution (white bars) and red line showing the averaged SSTA between terminus 

observations (Rayner et al, 2003). 
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multi-annual terminus retreats and equivalent readvances of >750 m with periodicities of 

2-4 years. A further 7 runs (24%) show evidence of at least one short lived (<5 year) 

oscillation in terminus position of >750 m between 1884 to 1920. None of these model 

runs significantly exceed the ASM position, and are thus in agreement with the 

geomorphological evidence presented, and the position of the 1921 terminus observation. 

 All model runs retreat to the observed 1936 position between modelled years 1929-

1936, via a single retreat event of ~1 km. Subsequent to this, modelled retreat to the 

observed 1946 position is gradual, before the model successfully replicates a large 

topographically controlled retreat from the 1946 position. There was varying success in 

modelling the exact timing of this retreat (observed between 1946-1948), with the model 

ensemble predicting it to occur anywhere between 1943-1962. The position where the 

modelled terminus restabilises following the retreat through the AS confluence is generally 

too far advanced by ~1 km compared to the position following the 1946-1948 retreat. All 

 

Figure 6.5 (A) Evolution of terminus position for model runs (coloured lines) determined to be 

successful according to the criteria outlined in the text, with observed terminus position also plotted (bold 

black line, with positions between observations linearly interpolated). (B) Combined KNS and AS runoff 

volume estimates for 1871-2012  that are used to drive the model (5 year moving average also plotted in 

red). (C) Absolute annual SST estimates used to drive the model from Rayner et al. (2003) for the area 

61° to 65° N and 51° to 56° W (5 year moving average also plotted in red). 
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model runs then go on to over-predict terminus extent for the 1968 observation by between 

0.35 to 1.59 km. 

 Though no model runs exactly match the precise inter-annual terminus fluctuations 

from 1968-2012, they do capture the general multi-annual to decadal pattern of retreat 

observed. This is characterised by general terminus stability within a range of ±500 m for 

the period 1968 to ~1999, before the terminus begins to retreat ~2 km towards the 2012 

position. All of the successful model runs identified predict KNS to be in a more retreated 

position in 2012 than observed by a range of 0.32 to 5.04 km. Where a significant 

difference between observed and modelled terminus positions has occurred by the end of 

the model run in 2012, the divergence begins in 2010 at the earliest. 

The distributions of tuning parameters for successful runs are shown in Figure 6, 

with the distribution of all histograms shown to be non-normal. Submarine melting related 

tuning parameters, α3, and Mbase, tended towards the mid to lower ends of the ranges tested 

(Figures 6.6c, 6.6d). Values of α3 peak between 0.075 to 0.1, though there is no clearly 

defined peak in the distribution of Mbase values. 

 In contrast, none of the dw related tuning parameters (α1 and α2) approach 0 

(Figures 6.6a, 6.6b), with the lowest values being 0.412 and 0.389 respectively. 

Construction of a correlation matrix comparing all tuning parameter values for all 

 

Figure 6.6 The distribution of the tuning parameters (a) α1 (bin width = 0.2), (b) α2 (bin width = 0.025), 

(c) α3 (bin width = 0.025), and (d) Mbase (bin width = 0.05 km
3
 a

-1
) for successful runs as defined by the 

criteria outlined in the text. Minimum and maximum x-axis values represent the full range of values 

tested within the 1500 model runs. 
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successful runs also demonstrates a significant inverse relationship between the value of 

α1, and the AS confluence parameter, α2 (r = -0.92). While other significant correlations are 

observed (Table 6.3), these are not of sufficient strength to allow confident conclusions to 

be drawn. 

 

6.8 Discussion 

 

6.8.1 Observed terminus behaviour 

From 1903 to 2012 AT and SST anomalies covaried, with the terminus generally 

undergoing retreat during periods of positive anomalies and advancing/stabilising when 

near/below baseline climate (Figure 6.4). Exceptions to this in-phase behaviour were only 

identified for the period 1992-2012, where a higher temporal density of terminus 

observations exists. However, by averaging annual observations over periods of sustained 

negative (1987-1997) and positive (1998-2012) climate anomalies, the terminus responds 

in phase with the climate anomalies. This demonstrates the risks of using short datasets (2-

5 years) to determine how a TWG is responding to climate forcing, highlighting the 

inherent noisiness, potential important of antecedence, and the non-linearity of TWG 

response to climate. 

 A notable caveat to this occurs where significant topographically controlled glacier 

retreats occur, such as the one occurring between 1946-1948. These events could 

potentially skew annually averaged terminus change rates when attempting to characterise 

terminus response to climate forcing. The relative importance of this will be entirely 

dependent on the magnitude of individual events, and most significant where there is 

potential for multi-kilometre topographically controlled retreat. For example, if the 1946-

1948 retreat event was not temporally well constrained, it could have significantly biased 

the terminus change rate values between 1936-1968 (Figure 6.4b).  

  α1 α2 α3 Mbase 

     

α1 - -0.92 0.29 -0.47 

α2 -0.92 - -0.46 0.29 

α3 0.29 -0.46 - -0.43 

Mbase -0.47 0.29 -0.43 - 

     
 

Table 6.3 Pearson correlation coefficient values for tuning parameters of successful model runs (n = 29). 

Correlation coefficients with p-values <0.05 are highlighted in bold. 
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Since TWGs exhibit varying degrees of non-linear response to climate forcing, the 

identification of where and when these rapid multi-kilometre retreat events occur is crucial 

for interpreting the causes of terminus fluctuations. Where comparatively smaller (i.e. 

<500 m) climatically anti-phased advance/retreat events occur, their effect on average 

terminus change rates can be mitigated by averaging change over timescales up to, or 

greater than a decade. For example, extending the 1992-1997 average (51 m a
-1

 retreat) to 

cover the period 1987-1997 (91 m a
-1

 advance) provides a more representative impression 

of multi-annual terminus behaviour, since 5 out of the 6 observations available show 

terminus advance. Interpreting absolute terminus change rate values should therefore be 

done with caution, and in most cases will be more representative of the average direction 

of terminus change rather than the absolute magnitude of annual change. 

 Taking into account uncertainties due to topographic controls on terminus stability, 

observations of terminus change over a period of several years are more likely to allow a 

more accurate evaluation of a TWG’s response to climate forcings. However, for this 

study, deconvolving the relative importance of AT versus SST in driving terminus change 

is difficult using observations alone, given that both climate drivers vary in phase for 1903-

present. It could potentially be argued that AT is the primary driver of change, since the 33 

year period of positive anomaly SST from 1871-1903 had relatively little impact on the 

terminus stability of KNS. However, fjord geometry could also have been a significant 

factor stabilising the terminus during this time. Arguably this becomes less likely when it 

is considered that while SST was similar for the period 1921-1948, positive AT allowed 

KNS to retreat through the same section of fjord and through its confluence with AS within 

26 ± 1 years (Figure 6.4). However, given the lack of certainty in terminus position 

between 1871-1920, it is not possible to robustly verify these arguments. 

 

6.8.2 Implications of modelling 

The observed terminus behaviour of KNS from 1921-2012 was successfully replicated by 

29 of 1500 model runs using surface runoff and SST records as drivers of terminus change. 

This demonstrates that the parameterisations used to scale these climate records to dw and 

M respectively can successfully be used to simulate the observed pattern of behaviour of a 

tidewater glacier over centennial timescales. Where the observational record is of sufficient 

detail to resolve inter-annual terminus fluctuations (1992-2012), the model does not 

replicate these. This is to be expected given (1) the flowband nature of the model and 

associated depth and width integrations over each grid cell, meaning that fluctuations of 
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terminus configurations such as the creation of calving bays cannot be replicated (e.g. 

Figure 6.1b), (2) the uncertainty in fjord bathymetry and geometry potentially affecting 

relative terminus stability, and (3) the use of single terminus observations as notionally 

definitive indicators of annual terminus change, where the complex nature of calving and 

associated sub-annual terminus fluctuations make any direct one-to-one comparison of 

modelled results to annual resolution observations inappropriate. Valid comparison of 

model results to observations should therefore only be attempted over multi-annual 

timescales where terminus dynamics within calving bays, sub-annual calving events and 

fine scale uncertainties in fjord topography become comparatively less significant.  

For successful model runs, the interrelationships between the parameter values that 

determine dw and M sensitivity to the climate records also inform the relative importance of 

changes in atmospheric and oceanic forcing in driving terminus change. The lack of any 

significant relationship between α1 and α3 demonstrates that a change in model sensitivity 

to surface runoff is not offset by any change in model sensitivity to SST. Taken alone, this 

evidence indicates that either atmospheric forcing (via surface runoff) dominates oceanic 

forcing (via SST), or vice versa. However, the occurrence of runs where α3 does not 

significantly exceed 0 (i.e. where runs experience negligible M variability) demonstrate 

that the model can successfully reproduce observed behaviour with nearly no changes in 

oceanic forcing from year to year. Although some successful model runs did have 

significant inter-annual M variability (e.g. the maximum range of M values for an entire 

141 year model run was 0.76 km
3
 a

-1
), each model run always requires significant 

atmospheric forcing variability to allow it to replicate observations. The importance of 

oceanic forcing variability can therefore not be entirely discounted. 

The model demonstrates that knowledge of atmospheric forcing variability (via 

runoff), without needing to vary oceanic forcing, can be sufficient to reproduce realistic 

patterns of observed glacier behaviour at KNS over the last century. However, the precise 

physical mechanism by which air temperature could drive observed change requires further 

investigation. For example, though a combination of modelled and empirically estimated 

runoff values have been used to drive changes in dw to force the model, subglacial runoff 

variability is also known to drive rates of submarine melting at the terminus (Jenkins, 

2011; Xu et al., 2012; Sciascia et al., 2013). Therefore we do not rule out that the 

centennial behaviour observed could also be explained by calving driven by seasonal 

changes in submarine melt rates, that are in turn a function of subglacial runoff (e.g. 

Sciascia et al. 2013). 



112 
 

 
 

The relative insensitivity to changes in oceanic forcing is not necessarily surprising 

given the hydrographic setting of KNS – located at the end of a >100 km long fjord system 

that is thought to be largely insulated from changes in ocean conditions due to the presence 

of a shallow sill at its entrance (Mortensen et al., 2011; 2013). This has previously been 

used to suggest that recent changes in ocean conditions (e.g. Straneo and Heimbach, 2013) 

have not affected the dynamics of KNS significantly (Straneo et al., 2012). The results 

presented here are therefore compatible with this argument. 

The over-estimation of terminus retreat by 2012 of every successful run is thought 

to result from the poor knowledge of fjord width geometry beyond the contemporary 

glacier terminus. Upstream of the 2012 terminus, the lateral ice margins are used to define 

model glacier width, leading to a likely over-estimation of the prescribed fjord width. The 

divergence between the actual and prescribed fjord width is therefore likely to increase 

upglacier, increasing the likelihood of model error in this area. This explains why 

significant divergence from the observational record only occurs once the modelled 

terminus has retreated ~1.5 km beyond the 2012 terminus. Any attempt at modelling the 

future fluctuations of KNS will therefore require both improvements to subglacial 

topography estimates and comprehensive assessments of fjord width uncertainties as part 

of any predictions. 

  

6.9 Conclusions 

Utilising multiple lines of evidence, it has been possible to reconstruct terminus 

fluctuations of KNS from 1859-2012. This study therefore completes the record of 

terminus fluctuations of KNS from its LIAmax, in 1761, up to the present (Chapter 5), 

providing one of the longest, and most detailed records of observed TWG change in 

Greenland. Results from numerical modelling show that the fluctuations of KNS can be 

simulated through parameterisations that link surface runoff to a crevasse water depth 

based calving criterion. Changes in both/either crevasse water depth and/or runoff driven 

rates of submarine melt are therefore suggested as potential drivers of observed change. 

Although ocean driven changes in submarine melt rates are not always required for the 

model to replicate the observed length variations of KNS, results do not allow their 

importance to be discounted entirely. 

 Observations of KNS show it to respond in phase with AT and SST anomalies over 

multi-annual to decadal timescales from at least 1921-2012. However, where inter-annual 

comparisons to AT and SST are possible (1992-2012), climatically anti-phased terminus 



113 
 

 
 

fluctuations are observed. This highlights the inherent noisiness of terminus response over 

short timescales, the potential importance of antecedence, and the dangers of using 

similarly short calibration periods for predictive modelling efforts.  

Results from numerical modelling successfully capture the terminus dynamics of 

KNS over multi-annual to decadal timescales, though not precise inter-annual fluctuations. 

This is due to a combination of uncertainties in fjord topography, and the approximations 

inherent to the depth and width integrations associated with using a one-dimensional flow-

band model. 

 Nevertheless, this study demonstrates that simple flow-band numerical models of 

tidewater glaciers can be used to capture TWG dynamics over centennial timescales. This 

provides validation that these models can be useful tools for both palaeo- and 

contemporary/prognostic modelling efforts.  However, the primary challenge to their use 

as predictive tools remain the accurate definition of subglacial topography and fjord width, 

which exert dominant controls on modelled glacier stability. Any future efforts at 

prognostic modelling of TWGs should therefore seek to account for these uncertainties in 

addition to those associated with sensitivity to climate forcing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



114 
 

 
 

Chapter 7 
 

Conclusions 

________________________________________________________________________ 
 

The aim of this thesis is to investigate controls on the stability of a large tidewater glacier 

of the Greenland Ice Sheet (GrIS) over centennial timescales. This was motivated by the 

uncertainty that surrounds the multi-decadal to centennial timescale controls on tidewater 

glacier behaviour in Greenland, and the potential for future changes in oceanic and/or 

atmospheric forcing to increase mass loss from GrIS. 

 Previous work has established that the current widespread retreat of Greenlandic 

tidewater glaciers has been driven by instabilities arising at their termini (Nick et al., 

2009). There is controversy regarding the relative importance of atmospheric and oceanic 

changes that have driven extensive retreat observed over the last two decades (e.g. Straneo 

et al., 2013; Carr et al., 2013b). By reconstructing and modelling of the dynamics of 

Kangiata Nunaata Sermia (KNS) from its Little Ice Age maximum (LIAmax) to present, 

this thesis has investigated how KNS responded to changes in atmospheric and oceanic 

forcing over multi-decadal to centennial timescales. The ability of a well-established one-

dimensional flow-band numerical model (Nick et al., 2010; 2013) to simulate observed 

dynamics was also evaluated. In doing so, its utility as a tool to generate reliable estimates 

of the behaviour of tidewater glaciers over the next 100-200 years (e.g. Nick et al., 2013) 

was also tested. 

 To achieve this, a robust comparison of glacier observations to model results was 

required. Therefore the first systematic comparison of different methods used to track 

tidewater glacier terminus change was undertaken to determine their relative accuracies, 

and how/if the results of each can be related to positions along a model flowline (Chapter 

4). This necessitated two new methods of tracking terminus change to be devised. Both of 

these improve on the accuracy of existing methods, and allow direct comparison of 

observed terminus positions to a model flowline position. 

 The LIAmax of KNS was identified to have occurred by 1761, with either one or 

two multi-kilometre retreats occurring by 1859 (Chapter 5). Comparison of model results 

to pre-1859 observations showed that reconstructed behaviour could be simulated by 

modest changes in crevasse water depths within the model (Chapter 5). The increase in 

crevasse water depths required to drive this retreat was consistent with the magnitude of 

change in the average modelled surface runoff between the periods 1971-1990 and 1991-
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2012. Observed glacier change for this period could not be simulated by driving the model 

using realistic changes in oceanic forcing only. 

Where atmospheric and oceanic forcing data were available for the period 1871-

2012, the terminus of KNS was shown to respond in phase with both climate anomalies 

(Chapter 6). Using the same climate data to drive the model, these dynamics were also 

successfully simulated. Results showed that significant atmospheric forcing (linked to 

crevasse water depth via surface runoff) is needed for all model runs to simulate observed 

behaviour. Variability in oceanic forcing is not necessarily required. 

 This thesis therefore presents a detailed record of observed glacier dynamics at 

KNS from its LIAmax to present, which can be accurately related to results of numerical 

modelling. It also uses model results to determine that atmospheric rather than oceanic 

forcing is the likely driver of multi-decadal to centennial timescale variability of KNS. 

 

7.1 Quantification of terminus change and glacier reconstruction 

 

Results from Chapter 4 demonstrated that the newly devised curvilinear box method 

(CBM) and extrapolated centreline method (ECM) related terminus observations to model 

flowline positions with the minimum error. In contrast to existing methods, these were able 

to partially or completely account for changes in fjord orientation, width and terminus 

geometry. The new methods therefore represent improvements on existing ones for both 

the accurate quantification of terminus change in and of itself, and for allowing accurate 

comparison of observations to flowline model output. 

 The ECM also has significant utility as a tool for comparing geomorphology such 

as lateral moraines to flowline model output. This is demonstrated in Figure 5.9 where the 

lateral moraines of KNS from the LIAmax and Akullersuaq Stade could be directly 

compared to the modelled longitudinal glacier profile. This technique enhanced the level of 

confidence in the model tuning and validation procedures that form parts of Chapters 5 and 

6. An implication of this is that the ECM also has significant potential for other scenarios 

where lateral moraines or DEM evidence is used to constrain flowline glacier profile 

results. This would be suitable for both steady state (e.g. Rea and Evans, 2007; Benn and 

Hulton, 2010), or transient modelling setups (e.g. Chapters 5 and 6; Oerlemans et al., 2011; 

Anderson et al., 2014).  

 Analysis conducted in Chapters 5 and 6 was also successful in demonstrating that 

useful, quantitative evidence of terminus positions can be gained from interrogation of 
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qualitative sources. Using a combination of written accounts, geomorphology, GIS 

analyses from distal photographs and maps, it was possible to reconstruct glacier behaviour 

from 1761 to 1903 without the benefit of a single clear photograph of the terminus (the 

first being available from 1921). Although previous work has been undertaken using 

similar source material (e.g. Weidick, 1959; Weidick et al., 2012), GIS analyses such as 

those applied in Chapters 5 and 6 could be applied to other Greenlandic glaciers allowing 

explicit quantification of observation error bounds.  

Utilising such source material is likely to be of greatest use for the periods 

preceding the photographic record (generally available back to ~1930; e.g. Bjørk et al., 

2012). The potential of qualitative data to provide glacier configuration and chronological 

tie point information demonstrates its utility in augmenting proxy and geomorphological 

based reconstructions (e.g. Lloyd et al., 2011; Andresen et al., 2012). For example, 

generating accurate and precise age models for reconstructions is critical when attempting 

to evaluate behaviour against any independent proxy climate record (e.g. Kobashi et al., 

2010; D’Andrea et al., 2011; Kamenos et al., 2012). However, radiometric and other dating 

technique errors are frequently greater than the potential response timescales of tidewater 

glaciers to climate. Qualitative observations, made at a known time, can therefore be used 

within an existing age model to provide precise temporal constraint to a particular glacier 

configuration.  

Photographs of the terminus of KNS obtained by archaeologists working on nearby 

Norse ruins also provided a useful source of information (e.g. Bruun, 1917; Roussell, 

1941). The location of KNS near to a Norse farm ruin is therefore highly advantageous. 

However, given the proximity of many other glaciers to Norse farm ruins, most notably in 

the Eastern Settlement (Danish: Østerbygd) ~200 km south of Godthåbsfjord, similar 

previously unrecognised source material may also exist and be of significant use for 

reconstructions elsewhere. 

Where direct observations of KNS’ terminus are available (Chapter 6) there is a 

high level of confidence in the accuracy of the reconstruction presented. The terminus was 

shown to respond in phase with climate anomalies averaged over multi-annual timescales 

for the years 1987-2012 (where observation density is highest), suggesting that the ability 

to characterise terminus response to climate is not necessarily inhibited by a lack of 

observations at high (i.e. seasonal/1-2 year) temporal resolution. An exception to this will 

be relevant where rapid, multi-kilometre topographically driven retreats occur, such as that 

occurring at KNS between 1946-1948. Fortunately, this retreat of KNS is temporally well 
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constrained, though if this was not the case, dynamics would need to be reconstructed 

indirectly using assessments of relative changes in fjord topography and geomorphological 

evidence. Identification of such behaviour is crucial for establishing whether terminus 

change in certain sections of fjords are likely to be climatically or dynamically driven. This 

demonstrates how studying multiple sources of information can provide better constraint 

for glacier dynamic reconstructions, compared to those utilising only single sources (e.g. 

only images/geomorphology/qualitative sources). 

 

7.2 Evaluation of applying the Nick et al. model to KNS 

 

The overarching advantage of the 1D model used in this study is its proven ability to 

emulate the characteristic dynamics of marine terminating glaciers (e.g. Jamieson et al., 

2012; 2014; Nick et al., 2010; 2012; 2013; Vieli and Nick, 2011). This thesis has shown 

that given the correct climate forcing, parameterisations and parameter values, the model is 

also capable of replicating observed tidewater glacier behaviour over centennial timescales 

(Chapter 6). This was determined easily due to the model being computationally 

inexpensive to run. Consequently, this allowed hundreds of model simulations to be 

conducted, varying tuning parameters according to Monte Carlo methods. In doing so, an 

ensemble of model runs were produced where the model successfully matched 

observations, with the nature of the method ensuring that parameter selection was entirely 

unbiased. Subsequent analysis of the interrelationships between different parameter values 

could therefore be undertaken confidently, knowing that a broad range of climate forcing 

scenarios had been fully explored. 

 Nevertheless, the computational efficiency of the model necessitates the 

simplification of some boundary conditions and processes that affect glacier flow. These 

can potentially impact the results and the applicability of the model to certain scenarios, for 

example: 

 Fjord topography – the 1D nature of the model requires that ice flow is integrated 

over both ice depth and width (Section 3.2). This study has been able to simulate 

realistic behaviour by (1) defining fjord width as the sum of the shortest linear 

distances to the fjord shorelines, (2) defining bed topography in the fjord from 

available bathymetry measurements, and linearly interpolating values between 

them, (3) implicitly assuming a channel with a rectangular cross section. However, 

the current model set up neglects factors that may impact flow relating to the cross-
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sectional shape of the fjord (e.g. Nye, 1965). For KNS, this should have negligible 

impact on flow given that it is a wide glacier with a large width to ice thickness 

ratio (>5), meaning that its shape factors will generally approximate 1 – δ, where δ 

= a small number. However, for narrower/thicker glaciers, where the width to 

thickness ratio is smaller, fjord shape is likely to become a significant factor 

affecting glacier flow (Nye, 1965). For such situations, Adhikari and Marshall 

(2012) have determined a range of correction factors for flowline models that 

parameterise the lateral drag resulting from fjord shape. They state that these are 

relevant to models of any order of complexity, and therefore offer an alternative 

parameterisation for lateral drag that is likely to be relevant where the model is 

applied to narrower/thicker glaciers. 

Given previous analyses by Enderlin et al. (2013) using a similar flowline 

model, the level of uncertainty in bed topography (both contemporary subglacial, 

and fjord bathymetry) also had the potential to significantly impact model results. 

However, sensitivity tests undertaken as part of Section 5.10 demonstrated that 

each model run produced a similar pattern of results. An expanded version of 

Figure 5.10 showing the results of all sensitivity analyses (Figure 7.1) shows that 

all runs demonstrate comparable behaviour, with modelled calving fluxes generally 

converging on the empirically calculated ~6 km
3
 a

-1
 values determined by the 

author as a co-author on Van As et al. (2014). Where notable divergence in results 

between calving fluxes occur, notably between 2-6 km from the 2012 position, this 

is a result of (1) changes in modelled terminus position occurring at a higher rate 

than the model recorded output (every 0.5 year), and (2) this area being the region 

of the fjord with greatest bathymetric uncertainty (Figure 3.10). The divergence 

between these model runs also occur primarily over sub-annual timescales as the 

terminus retreats rapidly through the confluence region of KNS and AS. Therefore 

despite the apparent wide spread of calving flux values between 2-6 km, the 

divergence in calving fluxes between model runs is largely transient. This becomes 

apparent as results display greater agreement for positions between -1-2 km from 

the 2012 terminus. 

 Climate forcing – the 1D setup of the model also necessitates that any climate 

forcing applied to the model is integrated over the width and/or depth of each 

relevant grid cell. For example, SMB for each grid cell must be defined for an area 

equivalent to the grid size multiplied by the channel width, which at the ice divide 
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of KNS equates to a strip of the ice sheet with dimensions of ~0.25 km by 116.4 

km (area of ~29.1 km
2
). Representing SMB variability over such an extensive area 

was accounted for in the model by taking an average SMB value over the relevant 

region. Similarly, both crevasse water depth and submarine melt rates are 

integrated over glacier width. Effects such as the concentration of submarine melt 

around a subglacial drainage portal (Xu et al., 2013) or differing terminus undercut 

shapes (O’Leary and Christoffersen, 2013) cannot be directly simulated by the 

model in its current form. 

 

Many processes are also omitted altogether from the model setup used, including glacier 

hydrology, cumulative damage mechanics (CDM; e.g. Borstad et al., 2012), 

cryohydrologic warming (CW; e.g. Phillips et al., 2010), and mélange backstress (e.g. 

Amundsen et al., 2010). Although the model results presented in Chapters 5 and 6 are able 

to successfully replicate the dynamics of KNS, omitted processes may also affect glacier 

dynamics. Consequently, for the current model set up either (1) existing parameterisations 

 

Figure 7.1 Model sensitivity to changes in bed topography as described in Section 5.10 showing terminus 

position for a given crevasse water depth forcing, and modelled calving fluxes for (A, B) 50 different bed 

configurations varied randomly downstream of the Akullersuaq Stade maximum (ASM), (B, C) as for A 

and B but for varying the bed upstream of the ASM, (D, E) as for A and B but for varying all of the bed 

from the 2012 position to the LIAmax. 
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and tuning parameter values given by the Monte Carlo simulations are compensating for 

the absence of omitted processes, or (2) the inclusion of omitted processes in the future 

model runs will allow it to capture behaviour that is currently not represented in model 

output. 

For example, if they are significant, both CDM and CW are likely to impact 

flow/calving behaviour over multi-annual to decadal timescales (e.g. Phillips et al., 2010; 

Borstad et al., 2012). However, the current model setup is capable of capturing the 

behaviour of KNS over these timescales. It therefore follows that the effects of CDM and 

CW are either negligible or are indirectly accounted for within the crevasse water depth 

and submarine melt parameterisations that are already implemented. However, this is not 

to say that future work does not need to account for these processes. Explicit 

parameterisation may improve model performance and help to identify their relative 

importance with respect to glacier flow/calving behaviour. 

Conversely, both glacier hydrology and mélange are likely to have significant 

effects on glacier flow at sub-annual timescales (Amundsen et al., 2010; Walter et al., 

2012; Nick et al., 2013). Fluctuations over these timescales are not currently captured by 

model results (Chapter 6). However, it should be noted that the empirical effect of 

hydrology on the multi-annual behaviour of tidewater glaciers remains largely 

unconstrained (e.g. Sole et al., 2013), while the significance of mélange formation at KNS 

is also uncertain. Adequate simulation of such changes at KNS using the model would also 

require a calibration dataset including several years of sub-annual resolution velocity and 

terminus position data (e.g. Nick et al., 2013). At present, such detailed data are not 

available for KNS.  

Where limited velocity data do exist, subglacial drainage system evolution appears 

to impact seasonal flow velocities near the terminus (e.g. Figure 3.2; Ahlstrøm et al., 

2013). Consequently, simple linear relations between runoff and sliding rates are unlikely 

to accurately represent hydrologically driven dynamic behaviour. The inability to capture 

sub-annual dynamics arising from hydrology will then also likely impact how mélange 

forcing will affect modelled behaviour. Adequate simulation of sub-annual timescale 

dynamics at KNS will therefore require improvement to the hydrological parameterisation 

within the model setup. 

The approximations inherent to a 1D flowline model also mean that their ability to 

realistically simulate sub-annual or inter-annual timescale fluctuations is questionable. This 

is because (1) the integration of terminus behaviour over depth and width means that 
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calving bay dynamics that arise from lateral variability of bed topography cannot be 

captured by the model, and (2) terminus behaviour over sub-annual to inter-annual 

timescales often involves the terminus advancing and retreating through such calving bays 

(Figure 6.1b). Sub-annual/inter-annual calving bay dynamics are therefore only likely to be 

captured by vertically integrated 2D, or higher order 3D glacier models. The lack of fit 

between results of the Nick et al. model and inter-annual terminus variability observed 

from 1992-2012 is therefore not entirely surprising (Chapter 6). Conversely, the model is 

successful in replicating multi-annual to decadal resolution behaviour of KNS. This 

provides encouragement that 1D flowline models can capture the pattern and approximate 

timing of real tidewater glacier behaviour over these timescales.  

The success of the model also demonstrates that the relatively low spatial resolution 

of fjord bathymetry data available for KNS (mostly >1 km spacing; Figure 3.10) was 

sufficient to allow the model to capture realistic behaviour. When more detailed 

bathymetric data become available for the fjord, this will allow an evaluation to be made as 

to whether (1) linearly interpolated bathymetry data coincidentally match reality, or (2) if 

width variability exerts a relatively greater control on terminus dynamics. It will also allow 

the model itself to be interrogated in greater detail through a more comprehensive analysis 

of the effects of changing time steps, grid sizes, and sampling resolution of width and bed 

topography. 

 

7.3 Predicting the future of KNS 

 

The ability to predict the future evolution of KNS will be primarily constrained by the 

uncertainty surrounding subglacial topography and fjord width (Chapter 6). Any attempt at 

conducting forward modelling at KNS, similar to the approach taken by Nick et al. (2013) 

for other outlets, should therefore seek to account for these uncertainties. For KNS this 

could be achieved by identifying the range of uncertainties in bed topography and fjord 

width from the distributed bed reconstruction (Figure 3.11). These could then be varied 

between model runs according to a Monte Carlo style setup, forcing the model using the 

climate scaling parameter values identified by successful model runs in Chapter 6. 

 These forward model runs would therefore be calibrated against 140 years of 

observational data – currently an unprecedented length for any study aiming to model the 

future dynamics of a Greenlandic tidewater glacier. They would also account for both 

boundary condition uncertainty and a range of possible calibrations. Results generated by 
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the ensemble will therefore provide a median prediction for the future evolution of KNS 

within a robustly defined envelope of uncertainty. The separate treatment of calibration 

and boundary condition uncertainties would also allow the relative effect of each on 

prediction ranges to be evaluated. This would help to identify (1) how effective model 

calibration is in delivering consistent forward modelling results, and (2) how uncertainties 

in the definition of boundary conditions may limit the ability of the model to generate a 

coherent prediction of future tidewater glacier behaviour. 

 

7.4 Outlook 

 

Results from this thesis have demonstrated that the multi-decadal to centennial behaviour 

of KNS is likely to be driven by atmospheric rather than oceanic forcing. However, each 

Greenlandic tidewater glacier comes with its own unique climatic and topographic setting, 

meaning that any attempt to extrapolate findings from one glacier to another should only 

be done with extreme caution. For example, given that Godthåbsfjord is relatively 

insulated from changes in deep ocean currents (Mortensen et al., 2011; 2013), findings 

obtained from KNS are unlikely to be directly applicable to tidewater glaciers with a more 

open fjord connection to changing ocean currents (e.g. Straneo et al., 2012). Within the 

context of previous modelling studies of other major Greenlandic tidewater glaciers (e.g. 

Nick et al., 2013), results presented here help to demonstrate this complexity. 

 A greater understanding of how sensitivity to forcing varies between glaciers could 

therefore be gained by undertaking detailed studies of other tidewater glaciers over similar 

timescales. In order to ascertain a more complete picture of tidewater glacier behaviour in 

Greenland, this should include studies of glaciers that comprise a full range of catchment 

sizes and discharges, rather than a pure focus on the intensively studied large outlets (e.g. 

Jakobshavn Isbræ, Helheim Glacier, Petermann Glacier). This may also help to identify 

underlying characteristics of tidewater glacier response to climate with respect to velocity, 

discharge and/or setting, amongst other factors. This is of importance given the non-

linearity of tidewater glacier response to climate. Consequently, the 15 outlets that were 

identified to account for 77% of Greenland ice mass loss since 2000 (Enderlin et al., 2014) 

may not necessarily be the major contributors to future change. 

 As longer records of tidewater glacier change are generated, it will also become 

possible to identify the most dynamic outlets, similar to KNS, and hence which have been 

most susceptible to past changes in climate forcing. Investigation of these catchments and 
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their multi-decadal to centennial timescale dynamics will therefore help to establish the 

range of similarities and differences in the controls on their variability.  

Potential also exists for establishing whether a minimum calibration period is 

required to accurately capture observed behaviour of tidewater outlets. This would be 

achieved by undertaking model calibration using incremental calibration period lengths, 

before comparing resulting ensemble outputs to observed behaviour. Although longer 

records of change will always provide more robust calibration, determining whether a 

minimum calibration period exists would help to ascertain the absolute need to extend 

calibration records beyond the 20
th

 century. If a minimum calibration period exists, this 

could also be used to help rationalise effective use of computational resources through 

curtailing model calibration and spin up periods. 

 After demonstrating the applicability of the Nick et al. model over centennial 

timescales, the potential for millennial timescale simulations of ice stream/outlet glacier 

dynamics should also be explored in greater detail. The model’s computational simplicity 

allows for potentially hundreds to thousands of forcing scenarios to be tested, with a 

growing body of literature becoming available for Greenland that would provide suitable 

model calibration datasets (e.g. Kelley et al., 2013; Lane et al., 2013; Larsen et al., 2013; 

Roberts et al., 2013). Such simulations would allow identification of forcing scenarios that 

could potentially instigate rapid glacier response similar to that observed during the last 

deglaciation. It could also help establish how/if glacier sensitivity to particular forcing 

changes over centennial to millennial timescales. 

 For KNS it may be possible to simulate its dynamics through the entire Holocene. 

This would utilise a combination of the glacier reconstruction results of Larsen et al. 

(2013) and Chapters 5 and 6 for model calibration. In doing so, the potential dynamism of 

KNS could be estimated, in addition to its likely extent during the Norse settlement of the 

region from 985 AD leading up to abandonment in c.1350 AD. This would be of 

significant interest to archaeologists studying Norse Greenland, given the uncertainty 

surrounding living conditions in this region, and how inhabitants interacted with the 

changing climate and ice sheet expansion (e.g. Roussell, 1941; Barlow et al., 1997; 

Dugmore et al., 2012). 

 While the behaviour of KNS since the mid-18
th

 century is dominated by retreat, 

forcing the model over millennial timescales would also allow model performance during 

advance phases to be evaluated. Significant potential exists at KNS for generating 

millennial timescale reconstructions of both advance and retreat dynamics, utilising similar 
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methods to those of Briner et al. (2010). Such reconstructions would therefore provide 

additional model constraint, and allow model parameterisations to be tested across an even 

greater range of climate conditions and glacier geometries. 

 Finally, this thesis provides an example of how disparate data and methods can be 

integrated to interrogate a particular glaciological problem. Over the course of aiming to 

investigate the multi-decadal to centennial change at KNS, utilising an array of 

methodologies has helped to highlight issues and shortfalls that may arise between 

different areas of glaciological research. For example this approach has led to this thesis 

applying novel approaches to glacier reconstruction, addressing issues of how to accurately 

match up terminus observations accurately to model output, and contributed to the 

continued development and evaluation of a numerical model. Similarly integrative 

approaches to future studies in glaciology therefore have significant potential to develop 

novel methodologies that allow more effective uses of available data. 
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