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Abstract

The importance of wild bird populations as a reservoir of zoonotic pathogens is well established. Salmonellosis is a
frequently diagnosed infectious cause of mortality of garden birds in England and Wales, predominantly caused by
Salmonella enterica subspecies enterica serovar Typhimurium definitive phage types 40, 56(v) and 160. In Britain, these
phage types are considered highly host-adapted with a high degree of genetic similarity amongst isolates, and in some
instances are clonal. Pulsed field gel electrophoresis, however, demonstrated minimal variation amongst matched DT40 and
DT56(v) isolates derived from passerine and human incidents of salmonellosis across England in 2000–2007. Also, during the
period 1993–2012, similar temporal and spatial trends of infection with these S. Typhimurium phage types occurred in both
the British garden bird and human populations; 1.6% of all S. Typhimurium (0.2% of all Salmonella) isolates from humans in
England and Wales over the period 2000–2010. These findings support the hypothesis that garden birds act as the primary
reservoir of infection for these zoonotic bacteria. Most passerine salmonellosis outbreaks identified occurred at and around
feeding stations, which are likely sites of public exposure to sick or dead garden birds and their faeces. We, therefore, advise
the public to practise routine personal hygiene measures when feeding wild birds and especially when handling sick wild
birds.

Citation: Lawson B, de Pinna E, Horton RA, Macgregor SK, John SK, et al. (2014) Epidemiological Evidence That Garden Birds Are a Source of Human Salmonellosis
in England and Wales. PLoS ONE 9(2): e88968. doi:10.1371/journal.pone.0088968

Editor: Axel Cloeckaert, Institut National de la Recherche Agronomique, France

Received September 12, 2013; Accepted January 13, 2014; Published February 26, 2014

Copyright: � 2014 Crown Copyright. This is an open-access article distributed under the terms of the free Open Government Licence, which permits
unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. See: http://www.nationalarchives.gov.uk/
doc/open-government-licence/open-government-licence.htm

Funding: The Garden Bird Health initiative received financial support from the Universities Federation for Animal Welfare (http://www.ufaw.org.uk), the RSPB
(http://www.rspb.org.uk), Defra (http://www.defra.gov.uk), CJ Wildbird Foods (http://www.birdfood.co.uk), Gardman Ltd. (http://www.gardman.co.uk) , Cranswick
Pet Products (http://www.cranswickpetproducts.co.uk), the Birdcare Standards Association (http://www.birdcare.org.uk) and the BVA Animal Welfare Foundation
(http://www.bva-awf.org.uk). The work at AHVLA (http://www.defra.gov.uk/ahvla-en/) was funded by the UK Government, Department of Environment, Food and
Rural Affairs (project grants ED1600, AHVLA Diseases of Wildlife Scheme (AHVLA DoWS) and FZ2000). The work carried out by PHE was done as part of the routine
Salmonella reference service of the Gastrointestinal Bacteria Reference Unit. JW is funded through the Norwich Medical School, University of East Anglia. AAC is
supported by a Royal Society Wolfson Research Merit Award. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: I have read the journal’s policy and have the following conflicts: We received financial support from some commercial sources (‘‘CJ
Wildbird Foods (?http://www.birdfood.co.uk), Gardman Ltd. (?http://www.gardman.co.uk), Cranswick Pet Products (?http://www.cranswickpetproducts.co.uk)’’.
This funding does not alter our adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: becki.lawson@ioz.ac.uk

Introduction

Salmonella enterica subspecies enterica serovar Typhimurium (S.

Typhimurium) [1] is the bacterium responsible for passerine

salmonellosis and this disease has been documented internationally

as a cause of wild bird mortality since the 1950s, principally at

garden bird feeding stations [2–4]. In humans, salmonellosis is

caused by infection with any one of over 2500 S. enterica serovars,

as classified by the Kauffmann-White scheme [5], and can result in

serious disease with infant, geriatric and immunocompromised

individuals being particularly vulnerable [6]. In Britain, S.

Typhimurium is one of the commonest Salmonella serovars isolated

from humans and from common garden birds such as greenfinches

Chloris chloris and house sparrows Passer domesticus. These species are

most frequently affected by salmonellosis, although other gregar-

ious and granivorous species (e.g. bullfinch Pyrrhula pyrrhula,

chaffinch Fringilla coelebs, goldfinch Carduelis carduelis and siskin

Carduelis spinus) are also susceptible [7,8]. The role of wild birds as

reservoirs of zoonotic pathogens is an important research topic [9]

as the likelihood of human contact with wild birds and their faeces

is increasing with the large-scale provisioning of supplementary

food for birds in private gardens [10] that has increased markedly

over the last two decades.

Sub-typing of Salmonella has for years depended on phage typing

and typical bird phage types can be found in humans. Salmonella

Typhimurium definitive phage type (DT) 40, DT56 variant(v) and
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DT160 account for the majority of isolates from garden birds in

Great Britain [8,11–14]. Garden bird S. Typhimurium phage

types are thought to have a narrow host range and may be highly

host-adapted [15] and clonal in some instances [16]. A pilot study

to characterise 32 passerine S. Typhimurium isolates from the

north of England 2005–2006 found, on the basis of phage typing

and pulsed-field gel electrophoresis (PFGE), that they were closely

related and were fully sensitive to the panel of antimicrobials tested

[17]. A study of 124 S. Typhimurium isolates derived from

passerines from across England and Wales, 1997–2007, of which

S. Typhimurium DT40 and DT56(v) accounted for 97% (120/

124) of the isolates, found that PFGE groupings closely correlated

with phage type with remarkably few exceptions, and that a high

degree of genetic similarity (.90%) was observed within and

between the two most common PFGE groupings [18]. Whilst S.

Typhimurium isolates associated with wild birds (comprising

DT40 and DT56(v) from passerines, DT41 and DT195 from gulls

[Laridae spp.], DT2 and DT99 from feral pigeons [Columbia livia])

have been isolated from a range of livestock species, they

accounted for less than 0.5% of Salmonella spp. recovered from

cattle, sheep, pigs, chickens or turkeys in Great Britain, 1995–

2003, and only 3% from extensively-reared birds (e.g. game, ducks

and geese) [19]. Free-living wild animals (n = 5494), comprising 16

mammal species and 30 bird species (including 77 raptors, 62

waterfowl, 25 songbirds with no Fringillidae species and 19

corvids) were screened for Salmonella spp. carriage in Cornwall over

the period 1974 to 1988; S. Typhimurium was isolated only from

the badger Meles meles (0.7% infected, 34/4881 individuals) and no

garden bird phage types (DT40, DT56(v) or DT160) were found

[20]. Salmonellosis due to S. Typhimurium DT40 or DT56(v) has

been described in domestic cats, but these are thought to have

become infected through predation of passerine prey [21,22].

Collectively, these findings support the hypothesis that wild

passerine birds are the primary reservoir of these S. Typhimurium

phage types.

Garden bird phage types of S. Typhimurium have zoonotic

potential with infection via the faeco-oral route. Where epidemic

mortality due to salmonellosis has occurred in garden birds, for

example in Sweden [23] and New Zealand [16], humans also have

become infected, with resulting enteric disease. Identical genotypes

of S. Typhimurium in sympatric populations of wild birds and

humans were demonstrated in Germany over a two-year period;

direct or indirect pathogen transmission from wild birds to humans

was proposed [24]. Similarly, house sparrow access to kitchen

facilities with sporadic faecal contamination of food was postulated

to be the origin of two outbreaks of gastroenteritis (due to S.

Typhimurium DT40 and DT160) in hospital patients in Britain

reported in the 1970s [12].

No national longitudinal studies to evaluate the zoonotic risk of

garden bird-associated Salmonella spp. have been conducted to date

and the extent to which wild birds act as a source of human

infection is unknown. In this study, we used PFGE to investigate

whether the most common S. Typhimurium phage types reported

in garden birds in Britain in recent years (DT40 and DT56(v))

were the same strains isolated from humans. Additionally, spatio-

temporal trends of S. Typhimurium DT40, DT56(v) and DT160

infection in garden birds and human beings in England and Wales

from 1993 to 2012 were explored.

Materials and Methods

Ethics statement
No live animals were used for this research; however, the

Garden Bird Health initiative (Project WLE/0460) was reviewed

and approved by the Zoological Society of London’s Ethics

Committee.

Data on human incidents of infection were obtained from

databases held by the Gastrointestinal Bacteria Reference Unit,

Public Health England. All data were anonymized before use in

this study in accordance with the Data Protection Act (UK) 1998

[25]. No humans were directly involved in this study. Anonymized

data from this study is available to researchers on request.

Garden bird mortality incidents with S. Typhimurium
DT40, DT56(v) and DT160

From 1993 to 2005 and 2009 to 2012, opportunistic reports of

garden bird mortality incidents in England and Wales were

solicited from members of the public through a passive surveil-

lance network, including the British Trust for Ornithology (BTO),

the Royal Society for the Protection of Birds (RSPB), the

Universities Federation for Animal Welfare and the Institute of

Zoology (IoZ, [8]). From 2005–2008, a research project, entitled

the Garden Bird Health initiative (GBHi), utilised a combination of

opportunistic reports of garden bird mortality through a passive

surveillance network, as above, in combination with complemen-

tary, but independent, systematic surveillance [26]. A network of

veterinary investigation centres participated in the GBHi, co-

ordinated by the IoZ, including the University of Liverpool and

the Wildlife Veterinary Investigation Centre. Hereafter, for the

purposes of this study, post-mortem examinations (PME) under-

taken at the IoZ and GBHi participating laboratories will be

referred to as the IoZ dataset.

Carcasses submitted for PME were examined following a

standardised protocol as described in [8]. Details of the species,

date found and geographical location (to the nearest 1 km using

Ordnance Survey National Grid Reference) were recorded.

Systematic external and internal examinations of body systems

were performed and any gross lesions described.

The liver, intestine and/or crop/oesophagus, in addition to any

gross lesions found, were routinely sampled and examined for the

presence of pathogenic bacteria using a standardised protocol

including Salmonella-selective enrichment media [8]. Bacterial

isolates were identified using colony morphology and Gram’s

staining coupled with biochemical properties, which were deter-

mined using the analytical profile index (API) 20 Enterobacteri-

aceae biochemical test strip method (API-BioMerieux, Marcy

l’Etoile, France). Slide agglutination tests were performed for the

identification of suspected Salmonella spp. isolates using poly-O

antisera (Pro-lab diagnostics, Neston, UK). Salmonella isolates

were placed onto microbank beads (Pro-lab diagnostics) and stored

at both 225uC and 270uC. All archived isolates were grown in

pure culture from a single colony. Batches of isolates were

submitted to the Animal Health and Veterinary Laboratories

Agency (AHVLA) (1993–1998) and to the Salmonella Reference

Service (SRS) (1999–2012) of Public Health England (formerly the

Health Protection Agency) (PHE) for biotyping (serotype and

phage type) according to standardised international protocols [27].

Antibiotic sensitivity testing was performed on a subset of the

garden bird S. Typhimurium isolates at the SRS according to a

standardised protocol [28].

A diagnosis of salmonellosis was made from birds where a

Salmonella sp. was isolated from: 1. one or more gross lesions

(oesophageal ulcers, focal abscesses or granulomata in soft tissues),

or 2. from cases with hepatomegaly or splenomegaly, in the

absence of any other obvious cause of death - each of these gross

abnormalities are characteristic of salmonellosis [26]. A salmonel-

losis incident was classified as one or more dead birds found at a

particular site within a 30-day period. Garden bird mortality

Garden Birds Are a Source of Human Salmonellosis
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incidents where a Salmonella sp. was isolated from a bird, with no

gross abnormalities, were also collated.

Additionally, dead wild birds were submitted to AHVLA

laboratories across England and Wales from 1993 to 2012. From

1998 to 2012, the submissions were part of the national network of

the AHVLA Diseases of Wildlife Scheme (DoWS). Post mortem

and microbiological examinations and phage typing were

performed with minor modifications to the above protocols. The

AHVLA database of S. Typhimurium DT40, DT56(v) and DT160

isolates from garden birds was reviewed to determine the number

of mortality incidents for each phage type by year and county

across the study period. IoZ and AHVLA datasets were combined

for the analyses in order to provide the most comprehensive

coverage possible. Both the IoZ and AHVLA datasets were the

outcome of national schemes, with approximately equal surveil-

lance effort across national government office regions (GORs).

Duplicate incident reports from the period 1993–1998, when

biotyping of IoZ isolates was performed by AHVLA, were

removed from the dataset.

Incidents of human infection with S. Typhimurium DT40,
DT56(v) and DT160

Salmonella isolates from clinically ill patients were submitted by

hospitals and other medical referral facilities to the SRS for

serotyping and phage typing [27]. Human incidents of infection

with S. Typhimurium DT40, DT56(v) or DT160 from 1993 to

2012 were reviewed. Isolates from people with a recent history of

international travel and S. Typhimurium DT56(v) isolates with a

multi-drug resistant profile characteristic of those frequently

isolated in sub-Saharan Africa were excluded from the study

[29,30]. No information on the clinical signs at presentation was

available although enteric infection was assumed to be the major

presenting complaint. The sample from which the bacterium was

cultured (i.e. blood, stool, other) from each patient was noted.

Available patient histories and the pattern of PHE submissions

were reviewed to determine whether each incident was considered

a sporadic infection or part of a larger disease outbreak. Based on

the available information, repeat samples from individuals and

subsequent cases of family members, presumed to be infected

through close contact rather than common exposure, were

excluded from the study. Affected individuals were categorised

by age as infant (0–5 years), child (.5–16 years), adult (.16–65

years) and geriatric (.65 years). The home town for each human

incident was not available; instead the location of the referring

medical facility, summarised by GOR, was used as an approxi-

mation to examine the incident distribution.

Pulsed field gel electrophoresis comparison of garden
bird and human-derived S. Typhimurium DT40 and
DT56(v) isolates

Twenty-five S. Typhimurium human-derived isolates of both

DT40 and DT56(v) were selected from the PHE archive; 2–5

isolates of each phage type were selected for each year, 2000–

2007, from separate sites with a wide geographical distribution

across England. Garden bird-derived S. Typhimurium isolates

were selected from the available IoZ and AHVLA archives over

the same time period (12 DT40 and 38 DT56(v)); where possible

isolates were chosen in the same GOR as the human-derived

isolates for that year, however human and garden bird-derived

isolates were not knowingly available from the same or closely-

located sites. No garden bird-derived S. Typhimurium DT160

isolates were available for PFGE.

Preparation of bacterial cell suspensions, agarose plugs and

PFGE were performed according to the PulseNet USA Salmonella

method [31]. All PFGE in this study was performed in the same

AHVLA laboratory with the same equipment enabling robust,

direct comparison between isolates. In summary, DNA from

Salmonella isolates was digested for 2 hours at 37uC using 50 U

XbaI endonuclease per sample (Promega, Southampton, UK).

Macro-restriction digested fragments were separated on a 1%

agarose gel (SeaKem Gold, LONZA, UK) at 6 volts per centimetre

for 17.5 hours at 14uC on a CHEF DRIII system (Bio-Rad

Laboratories). Pulse times were ramped from 2.2–63.8 seconds and

a reorientation angle of 120u was applied. Salmonella serovar

Braenderup H9812 was used as a control for normalisation. Gels

were stained for 20 minutes in 1 litre of ethidium bromide solution

(0.8 mg/ml) and then destained for 2 hours in deionised water

(6620 minutes with fresh water). Images were captured as tif files

using an Alpha Imager 2200 (Alpha Innotech Corporation, USA)

and UV light. BioNumerics version 3.0 (Applied Maths BVBA,

Kortrijk, Belgium) software was used for image analysis. A

percentage similarity between PFGE banding patterns was com-

puted according to the Dice similarity coefficient method with a 1%

tolerance window, and a dendrogram was constructed using the

unweighted pair group method with averages.

Data analyses
Comparisons were made between the frequencies of human

incidents for each of the S. Typhimurium phage types by age

group using the Pearson chi-square test. The Spearman rank

correlation for non-parametric data was used to assess the

association between the number of garden bird and human

incidents for each S. Typhimurium phage type by year, 1993–

2012, and the association between the spatial distribution of

garden bird and human incidents for each S. Typhimurium phage

type by GOR. The number of human incidents was stratified by

the regional human population size (based on the 2001 national

census, [32]) in order to correct, as far as possible, for variation in

the human population density across the GORs. The absolute

number of garden bird incidents was used in this analysis; since it

was not possible to compile a meaningful relative abundance score

for the multiple wild bird species affected by salmonellosis in the

study. Both the greenfinch and house sparrow have widespread

populations across England and Wales [33].

Statistical analyses were performed using R 2.15.2 [34] and

statistical significance was given at P#0.05. Spatial data were

presented using ArcView 3.0 geographical information system

(GIS) software (Environmental Systems Research Institute GIS

and Mapping Software, California, U.S.A.).

Results

Garden bird incidents
During the period 1993–2012 inclusive, garden bird mortality

incidents from which one of the three major garden bird-

associated S. Typhimurium phage types (DT40, DT56(v) or

DT160) were isolated were confirmed at 438 sites (218 incidents in

the IoZ dataset and 220 in the AHVLA dataset). These comprised

32% DT40 (82 incidents in IoZ dataset and 59 in AHVLA

dataset), 65% DT56(v) (129 incidents in IoZ dataset and 156 in

AHVLA dataset) and 3% DT160 (7 incidents in IoZ dataset and 5

in AHVLA dataset). For the IoZ dataset, the majority of incidents

were due to salmonellosis where the disease was considered the

likely cause of death (98%, 213/218). For the remaining five

incidents, the birds may have been carriers of Salmonella sp., or in

an early stage of clinical disease, or have died of clinical disease

Garden Birds Are a Source of Human Salmonellosis
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with no gross abnormalities. The state of carcass preservation

precluded histopathological examination of birds from many of

these incidents to differentiate clinical disease and bacterial

carriage. Post-mortem examination data were not available for

review from the AHVLA incidents; however, as with the IoZ

dataset, the vast majority of garden bird mortality incidents

associated with these phage types was considered due to

salmonellosis (P. Duff, unpublished observations).

Greenfinch and house sparrow were the species most frequently

examined from the incidents in the IoZ dataset, comprising 60%

(154/258) and 19% (49/258) respectively, with the remaining 21%

from a further nine species (siskin n = 23, goldfinch n = 12,

chaffinch n = 8, bullfinch n = 7, and brambling [Fringilla monti-

fringilla], collared dove [Streptopelia decaocto], reed bunting [Emberiza

schoeniclus], tree sparrow [Passer montanus] and wood pigeon

[Columba palumbus] all n = 1). The two columbiforms were

submitted from sites with concurrent confirmed passerine salmo-

nellosis and neither bird had gross abnormalities consistent with

salmonellosis. Similarly, garden bird incidents in the AHVLA

dataset involved ‘‘finches’’ in 79% (173/220) of incidents and

‘‘sparrows’’ in 19% (42/220); species identification beyond bird

group was not available for all cases but greenfinch was the most

frequently identified species (45%; 99/220 incidents).

For the bird carcasses in the IoZ dataset, 95% (218/230) of the

incidents from which S. Typhimurium isolates were subtyped

belonged to the three study phage types. The remaining incidents

consisted of six additional phage types that were isolated from

single birds or mortality incidents (DT37, DT81, DT87v, DT120,

U313, PT277), two incidents with S. Typhimurium DT1 and four

incidents where the isolates were classified as ‘‘reacts does not

conform’’. Equivalent figures were unavailable from the AHVLA

dataset, but the same three phage types similarly accounted for the

vast majority of passerine-derived S. Typhimurium isolates (P.

Duff, unpublished observations).

Antibiogram data were available from 90 passerine-derived S.

Typhimurium DT40 and 151 DT56(v) isolates examined at the

PHE from 2002–2011; all were fully sensitive to the panel of

antimicrobials tested (amikacin, ampicillin, cephalexin, cephra-

dine, cefotaxime, ceftriaxone, cefuroxime, chloramphenicol, cip-

rofloxacin, furaxolidone, gentamycin, kanamycin, nalidixic acid,

neomycin, spectinomycin, tetracycline and trimethoprim).

Human incidents
A total of 518 incidents of S. Typhimurium DT40 (n = 177),

DT56(v) (n = 237) and DT160 (n = 104) phage types, were

confirmed in humans from 1993–2012. Isolates were recovered

from faecal samples with the single exception of a DT56(v) isolate

recovered from blood culture from an adult in 2003. All incidents

were considered sporadic infections and not part of larger disease

outbreaks. Nearly half (47%) of reported human cases of infection

with S. Typhimurium garden bird-associated phage types (DT40,

DT56(v) and DT160 combined) came from infants (242/518),

with the remainder being 13% children (66/518), 27% adults

(142/518), 9% geriatric (47/518); in 4% of cases age was unknown

(21/518). There was no significant difference in the demographic

breakdown of human cases amongst the three S. Typhimurium

phage types (x2 = 10.11, df = 6, P.0.05).

Pulsed-field gel electrophoresis comparison of garden
bird and human-derived S. Typhimurium DT40 and
DT56(v) isolates

One hundred S. Typhimurium isolates collected from 2000–

2007 inclusive were analysed using PFGE; these comprised 50

human-derived isolates (25 DT40 and 25 DT56(v)) and 50 garden

bird-derived isolates (12 DT40 and 38 DT56(v)). Twelve unique

banding profiles with an overall percentage similarity of 76.5%

were classified as separate PFGE groups (Figure 1). Although each

PFGE group consisted of a single phage type, there was no good

association between the clustering of PFGE group and phage type.

Eighty-eight percent (88/100) of isolates were in two of the PFGE

groups (1 and 5) (Table 1). PFGE group 1 was comprised of 78%

(29/37) of the S. Typhimurium DT40 isolates: 20/25 human and

9/12 bird-derived isolates, and clustered with groups 2 and 3

(Figure 1). PFGE group 5 was comprised of 94% (59/63) of the S.

Typhimurium DT56(v) isolates: 24/25 human and 35/38 garden

bird-derived isolates, and clustered with groups 4 and 6. The

profiles of PFGE groups 1 and 5 had a percentage similarity of

91%. These six groups (1–6) contained 97% (97/100) of all the

isolates studied from both humans and birds, and had a

percentage similarity .90%. Therefore it seems likely that the

Salmonella isolates we analysed from both humans and birds are

closely related.

Temporal trends of garden bird and human isolates
Whilst garden bird incidents were confirmed in each year of the

20-year study with the exception of 2009, the frequency of S.

Typhimurium phage types isolated from both birds and humans

changed over the period (Figure 2). S. Typhimurium DT160 was

only isolated from birds during the first five-year period of the

study (1993–1997) and the majority of human isolates of this DT

(72%, 75/104 incidents) were also from this period. S. Typhimur-

ium DT40 was isolated throughout the study period until 2007. S.

Typhimurium DT56(v) was found sporadically until 2000 and

2001, when the frequency of incidents increased considerably and

it became the modal phage type from 2003–2012.

Annual trends were also observed in the human infection data

for each of these S. Typhimurium phage types (Figure 2b). DT40

isolates were found throughout the study period, DT160 isolates

were observed chiefly between 1993 and 1996 reducing to low

numbers in later years (with a single anomalous peak in 2004) and

DT56(v) incidents were identified with increasing frequency from

2000, becoming the modal phage type from 2003–2010 and in

2012. There was a significant positive association between the

annual number of garden bird and human incidents across all

phage types (r18 = 0.74, P,0.001) and for the individual phage

types (Figure 3).

Geographical distribution of garden bird and human
isolates

The spatial distribution of S. Typhimurium DT40, DT56(v) and

DT160 human incidents was compared with that of the garden

bird incidents using the GORs (Figure 4 and Figure 5). There was

a significant positive association between the number of garden

bird and human incidents (stratified by the human population

census count), for each phage type; DT40 (r8 = 0.87, P = 0.001),

DT56v (r8 = 0.73, P = 0.01) and DT160 (r8 = 0.70, P = 0.01).

Garden bird incidents due to phage type DT160 were clustered

within South East England and London GORs; although human

incidents occurred across England and Wales, the modal GOR

regions were the same (Fig. 4).

The majority of garden bird incidents due to phage type DT40

occurred in South West England GOR, with the second most

frequently affected GOR being the West Midlands. Incidents were

reported in low numbers from across western and central England

and Wales. In contrast, only six (4%; 6/141 incidents) garden bird

DT40 incidents occurred in the four contiguous GORs along the

eastern coast of England (North East, Yorkshire and Humber, East

Garden Birds Are a Source of Human Salmonellosis
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Midlands, East Anglia). Similarly, South West England was the

modal GOR for human incidents which were reported from across

Britain but with few from eastern England.

The spatial distribution of garden bird incidents due to phage

type DT56(v) was similar to that of DT40; the South West, West

Midlands and Wales were the three most frequently affected

GORs, in rank order, whilst only 15% (44/285) of DT56(v)

incidents were in the four contiguous GORs along the eastern

coast of England (listed above). The GORs from which human

incidents with DT56(v) occurred most frequently were the same as

for wild birds (South West, West Midlands and Wales), with the

lowest number of human incidents in East Anglia, London and the

East Midlands.

Discussion

Pulsed-field gel electrophoresis demonstrated a high degree of

genetic similarity within and between S. Typhimurium DT40 and

DT56(v) isolates derived from passerines and humans in this study.

This finding strengthens previous studies [18,35] which indicate

that passerine-associated S. Typhimurium strains are host-adapted

and that wild bird populations are the likely reservoir of these

bacteria. In this study, the majority of garden bird and human-

derived strains of matched phage type shared an identical PFGE

banding profile; 94% (47/50) of the garden bird and 88% (44/50)

of the human-derived isolates belonged to the two modal PFGE

groups.

With this longitudinal study, we demonstrate a positive

association between both the temporal and spatial patterns of

reported garden bird and human incidents with matched S.

Typhimurium phage types over a 20-year period. Taken together,

the results of subtyping by phage typing and PFGE, and the

similar temporal and spatial trends, provide evidence to support

the hypothesis that wild birds are the primary source of human

infection with these S. Typhimurium phage types in Britain.

Direct comparison of the number of garden bird incidents

diagnosed between years is problematic in this study because of the

opportunistic nature of the surveillance and the inconsistent (and

unknown) observer effort between years. Nevertheless this study

extends significantly previous research [8,18], highlighting the

dynamism of passerine salmonellosis, both in terms of the number

of incidents by year and the succession of predominant phage

Figure 1. Pulsed-field gel electrophoresis on human and passerine-derived Salmonella Typhimurium DT40 and DT56(v) isolates.
Dendrogram showing the percent similarity between representative patterns from Salmonella Typhimurium DT40 and DT56(v) isolates digested with
XbaI restriction enzyme. PFGE band profiles are shown against kb scale. Phage type (DT40 and DT56v) and PFGE groupings (1–12) data are given
along with the number of study isolates in each group. PFGE profiles of contemporary S. Typhimurium DT104 isolates from a human and a pig are
included for comparison.
doi:10.1371/journal.pone.0088968.g001

Table 1. Pulsed-field gel electrophoresis group and host origin of Salmonella Typhimurium isolates.

Species No. of isolates in PFGE group

1 2 3 4 5 6 7 8 9 10 11 12

Human 20 0 0 1 24 0 2 1 0 1 1 0

Bird 9 2 1 0 35 1 0 0 1 0 0 1

Bullfinch 0 0 1 0 1 0 0 0 0 0 0 0

Chaffinch 0 0 0 0 1 0 0 0 0 0 0 0

Goldfinch 0 0 0 0 1 0 0 0 0 0 0 0

Greenfinch 6 1 0 0 17 1 0 0 1 0 0 0

House sparrow 3 0 0 0 12 0 0 0 0 0 0 0

Siskin 0 1 0 0 3 0 0 0 0 0 0 1

Phage type 40 40 40 56v 56v 56v 40 40 56v 40 40 56v

doi:10.1371/journal.pone.0088968.t001
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types. Published longitudinal monitoring of cattle populations in

England and Germany also revealed changes in the relative

frequency of isolation of S. Typhimurium phage types over time

[15]. The mechanism for phage type succession in captive and

wild animal populations and the risks for human populations is

therefore an important issue which requires further investigation.

For wild birds in Britain the spatial distribution of passerine

salmonellosis incidents with DT40 and DT56(v) was previously

described [8,18]. The relative abundances of house sparrow and

greenfinch populations (the two species most commonly diagnosed

with salmonellosis) across Britain, however, do not mirror the

spatial DT patterns. Other proposed factors to explain the DT

spatial patterns observed include habitat, climate, agricultural

practices and wild bird movements [8].

A limitation of this study is the crude geographical resolution

available for the human incidents. Since patient confidentiality

limited data access, the referring hospital was the best available

proxy for location. Variation in distance from home to the

investigating medical facility, and contraction of infection when

Figure 2. Number of garden bird and human incidents caused by S. Typhimurium phage types. (a) Number of garden bird incidents with
S. Typhimurium DT40 (red), DT56(v) (blue) and DT160 (green), (b) Number of human incidents with S. Typhimurium DT40, DT56(v) and DT160
infection by year; 1993–2012.
doi:10.1371/journal.pone.0088968.g002

Figure 3. Number of garden bird incidents versus human
incidents with S. Typhimurium infection by year, 1993–2012.
Correlations for the individual phage types: DT56v r18 = 0.80, P,0.001;
DT160 r18 = 0.59, P = 0.003 and DT40 r18 = 0.39, P = 0.046.
doi:10.1371/journal.pone.0088968.g003
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away from home with subsequent medical investigation following

the patient’s return, are potential sources of error. This

necessitated exploration of the spatial data by broad region;

nevertheless, the garden bird and human data spatial trends were

remarkably similar.

Human beings might become infected with garden bird S.

Typhimurium phage types via direct or indirect routes of

exposure. Handling of sick and dead garden birds has been

identified as a risk factor for human infection with Salmonella

[36,37]. Handling clinically healthy birds excreting Salmonella spp.

Figure 4. Distribution of S. Typhimurium DT40, DT56(v) and DT160 incidents, 1993–2012 in garden birds and humans. (a) Garden
bird data expressed as total number of incidents by region (b) Human data expressed as number of incidents per 100,000 people by region,
according to 2001 census data.
doi:10.1371/journal.pone.0088968.g004
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also has the potential to result in infection, with licensed bird

ringers and other ornithologists being a demographic group at risk

of exposure [38]. Whilst little information is available on the rates

of subclinical carriage of these S. Typhimurium strains in

apparently healthy garden birds in Britain, available data from

migratory and resident passerine populations in Europe [39–41]

indicate that the risk of exposure to Salmonella associated with

handling healthy passerines is likely to be low. For example, only

2% (40/1990) of apparently healthy passerines caught by bird

ringers at feeding stations in Norway, during the winters 1998–

2000, had Salmonella spp. isolated from cloacal swabs [41]. Carrier

species are chiefly those which most frequently succumb to clinical

salmonellosis [41].

Human infection could also result through indirect routes of

exposure, such as cleaning contaminated bird feeders in the

kitchen in close proximity to human food preparation areas or

contact with bridge species (livestock, wildlife, companion

animals). Sporadic infection of livestock and companion animals

with garden bird-associated S. Typhimurium phage types has been

demonstrated in Britain [42]. The domestic cat, for example,

could act as a bridge species following infection through predation

or scavenging of infected birds [4,23]. Healthy domestic cats,

however, are likely to present a low risk of Salmonella excretion;

rectal swabs from 278 healthy domestic cats (with a range of

outdoor access dependent on the owner) were screened in Belgium

and Salmonella sp. (Salmonella Enteriditis phage type 21) was isolated

from a single cat [43].

Indirect transmission of infection to people also might occur via

contact with environmental sources (e.g. garden soil) contaminated

with wild bird faeces. Gardening and outdoor recreation activities

might increase the risk of exposure. Infants and children may be

exposed during outdoor play, particularly from contaminated soil

in the vicinity of garden bird feeding stations. In a Norwegian

study, Salmonella spp. was isolated from waste food and soil from

two sites with a history of garden bird salmonellosis incidents,

indicating environmental persistence of the bacterium at infected

sites [41]. Numerous factors influence Salmonella spp. persistence in

the environment, including temperature, moisture, soil type and

UV exposure. Experimental studies have provided evidence for

long-term environmental persistence; for example Salmonella was

found to persist for 96 days at 8uC in garden soil [44], 180 days in

manure-contaminated soil during simulated summer-winter expo-

sure [45], and 280 days in urban garden soil [46].

Unfortunately, detailed clinical histories were not available for

the patients in this study; consequently risk factor analyses which

might further inform routes of transmission could not be

performed. An outbreak of S. Typhimurium DT160 infection in

human beings that occurred when this strain of the bacterium first

emerged as a cause of garden bird mortality in New Zealand was

investigated and the authors’ determined that contact with dead

wild birds, contact with people with gastrointestinal disease and

consumption of fast food were significantly associated with the risk

of infection [37].

In a prospective case control study of human infections with S.

Typhimurium O:4,12 in Norway, patients were questioned about

the two-week period preceding the onset of their clinical signs [36].

Detailed questionnaires explored multiple potential risk factors

and concluded that drinking untreated water, direct contact with

wild birds or their droppings and ingestion of snow, sand or soil

were related to an increased risk of infection. Of the ten

respondents who reported a history of direct contact with wild

birds or their droppings, six had cleaned a bird feeder or removed

bird faeces and four had touched a dead bird or nursed a sick bird.

No increase in risk was observed for people who fed garden birds,

or for other family members who shared a household where bird

feeding was practiced. Also, there was no increased risk for people

in contact with other wild, captive or domestic animals [36].

Infants were the modal age group confirmed with human

infection for each of the garden bird-associated S. Typhimurium

phage types in the current study (242/518; 47% overall), which

mirrors the general trend reported by the PHE for all S.

Typhimurium phage types. The average annual number of cases

of Salmonella infections in humans (including all Salmonella spp. and

serovars), 2000–2010, reported by PHE for England and Wales

was greatest for babies (,1 year old; 96.7 (35% of all Salmonella)

per 100,000 individuals) and then infants (1–4 years old; 58.5

(21%) per 100,000 individuals) and lower in the adult age groups

(15–44 years old, 24.0 (9%) per 100,000 individuals; 45–64 years

old, 21.8 (8%) per 100,000 individuals; 65–74 years old, 17.0 (6%)

per 100,000 individuals; .75 years old, 12.4 (4%) per 100,000

individuals) [47]. Similar trends have been described in the

demography of human infection with garden bird-associated S.

Typhimurium strains from other studies [21,36,37]. In Norway,

43% of the 153 sporadic human cases of infection with S.

Typhimurium O:4,12 (over the period 1966–1996, excluding cases

during an outbreak in 1987), a strain-associated with wild

passerines, were less than five years old [36]. Similarly, the

Scottish Salmonella Reference Unit found that, between 2001 and

2007, 38% of 47 S. Typhimurium DT40 isolates and 52% of 29

DT56(v) isolates in human beings were from children ,5 years old

[21]. In New Zealand, the median age of patients with S.

Typhimurium DT160 infection was 8 years (range 4 months – 90

years) [37].

Evidence suggests that infants and elderly people are more

susceptible than adults to illness following challenge with low

numbers of Salmonella sp. bacteria [48]. Infants are more likely

than adults to be immunologically naı̈ve to salmonella infection

[49] and they might be more likely to be presented for clinical

investigation of gastroenteritis than older patients. In addition,

infants and children are likely to have poorer levels of personal

hygiene which, coupled with play in outdoor environments, is

likely to increase their exposure to environmental Salmonella spp.

bacteria than older demographic groups.

Antimicrobial susceptibility studies of S. Typhimurium isolates

from garden birds in the north of England show minimal antibiotic

Figure 5. Number of garden bird incidents versus human
incidents (per 100,000 people) with S. Typhimurium infection,
1993–2012. (a) Garden bird data expressed as total number of
incidents by government office region (b) Human data expressed as
number of incidents per 100,000 people by government office region,
according to 2001 census data.
doi:10.1371/journal.pone.0088968.g005
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resistance, indicating that they do not represent an important

source of resistant infection to the human population [17]. Hughes

et al. [17] also determined that the 32 garden bird-derived isolates

they examined lacked the translocated effector protein (sopE) gene

which has been frequently associated with some epidemic strains

of S. Typhimurium in humans and livestock [50], indicating that

wild birds might not pose a high zoonotic risk. The human S.

Typhimurium infections in the current study were all considered

sporadic infections and no large outbreaks of disease were

recorded with these strains of the bacterium.

Whilst this study supports the hypothesis that garden birds act as

the primary reservoir of human infection with garden bird-

associated S. Typhimurium phage types in England and Wales,

these findings must be viewed in context. The PHE confirmed a

total of 147,495 human infections with all Salmonella spp., including

20,785 human infections with S. Typhimurium, from 2000–2010

across England and Wales [47]. In this study, we identified a total

of 337 human infections with garden bird-associated S. Typhi-

murium DT40, DT56(v) and DT160 isolates, 2000–2010, which

accounted for only 0.2% of all the Salmonella spp. infections

diagnosed and only 1.6% of the S. Typhimurium isolates obtained

during this 11-year period. The number of human incidents of

salmonellosis is likely to be under-reported, however, as people

with mild cases of gastroenteritis may not present to the medical

community for further investigation and, if they do, samples might

not be submitted for bacteriological analysis.

The importance of garden birds as a potential reservoir of S.

Typhimurium infection in Britain should be kept in perspective,

but members of the public who feed garden birds should be aware

that wild birds can carry zoonotic pathogens. Sensible routine

hygiene precautions, such as avoiding direct contact with bird

faeces and carcasses and washing hands after feeding birds, are

recommended to reduce the risk of exposure. Any public health

risk can be further mitigated by raising the public, veterinary and

medical communities’ awareness of salmonellosis as a cause of

garden bird disease, the risk of salmonellosis in domestic cats

subsequent to passerine predation, measures for control where

disease outbreaks occur and routine best practice for the feeding of

garden birds.

Further characterisation, using whole genome sequencing, of S.

Typhimurium strains associated with garden birds and matched

phage types from humans is required to better understand their

ancestry and accessory gene content and to further explore the

hypothesis that garden birds are the primary reservoir hosts of

these pathogens.
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A, Curtiss R III, Kaper JB, et al., eds. EcoSal—Escherichia coli and Salmonella:
cellular and molecular biology. Washington, DC: ASM Press. Available: http://

www.ecosal.org. Accessed 16 May 2013.

7. Taylor J (1968) Salmonella in wild animals. Symposium of the Zoological

Society of London 24: 51–73.

8. Lawson B, Howard T, Kirkwood JK, Macgregor SK, Perkins M, et al. (2010)

The epidemiology of salmonellosis in garden birds in England and Wales, 1993
to 2003. Ecohealth 7(3): 294–306.

9. Tsiodras S, Kelesidis T, Kelesidis I, Bauchinger U, Flagas ME (2008) Human

infections associated with wild birds. J Infect 56: 83–98.

10. Davies ZG, Fuller RA, Loram A, Irvine KN, Sims V, et al. (2009) A national

scale inventory of resources provision of biodiversity within domestic gardens.
Biol Cons 142: 761–771.

11. Macdonald JW, Cornelius LW (1969) Salmonellosis in wild birds. British Birds
62: 28–30.

12. Penfold JB, Amery HC, Peet PJ (1979) Gastroenteritis associated with wild birds

in a hospital kitchen. Brit Med J 2: 802.

13. Macdonald JW, Bell JC (1980) Salmonellosis in horses and wild birds. Vet Rec

107: 46–47.

14. Pennycott TW, Mather HA, Bennett G, Foster G (2010) Salmonellosis in garden

birds in Scotland, 1995 to 2008: geographic region, Salmonella enterica phage type
and bird species. Vet Rec 166: 419–421.

15. Rabsch W, Andrews HL, Kingsley RA, Prager R, Tschäpe H, et al. (2002)
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