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Natural solution in the refined Gribov-Zwanziger theory
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Abstract. We analyse the one loop effective action of the Gribov-Zwanziger Lagrangian and
use the local composite operator formalism to include the most general Becchi-Rouet-Stora-
Tyutin (BRST) dimension two mass operator for the localizing ghost fields. We show that the
energetically favourable colour channel corresponds to what is known as the R direction.



In recent years there has been interest in understanding the infrared behaviour of the gluon
and Faddeev-Popov ghost propagators in Quantum Chromodynamics (QCD). This is motivated
in the main by their relation to confinement. Gluons, which are the quanta mediating the strong
nuclear force, are not observed in nature unlike the other vector bosons in the full standard
model. In this respect the gluon propagator does not have the canonical behaviour associated
with an observed fundamental particle which is the presence of a simple pole at the mass shell
value. While its high energy asymptotic properties are similar to those of say a photon, in the
low energy regime a pole at zero momentum does not apparently emerge. Evidence for this is
provided by several approaches. These are lattice gauge theory, Schwinger-Dyson methods and
the Hamiltonian approach (in the Coulomb gauge), [1]. The majority activity in recent years
has primarily centred on the Landau gauge. Though in this gauge, which we concentrate on
here, there are several scenarios. In one case at zero momentum the gluon propagator freezes to
a non-zero finite value without any singular behaviour. A selection of articles demonstrating this
are, for example, [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. However, in analysing non-abelian gauge theories
at low energies one has to be aware of global considerations. In the case of Landau gauge fixed
QCD the main problem one has to be aware of is the Gribov problem, [12]. Stated briefly it
is not possible to fix the gauge globally as there are different gauge copies satisfying the same
gauge fixing condition which have to be factored out of the path integral to ensure that there
is no double counting. Although there are additional subtle issues as to whether accounting for
such Gribov copies produces a unique gauge configuration, Gribov demonstrated, [12], that their
presence affected the properties of the gluon and Faddeev-Popov propagators at low momenta.
The former is suppressed and freezes to a zero value while the latter enhances with a double
pole structure in p? where p is the momentum. Clearly this is not the behaviour found in
recent years from lattice and some Schwinger-Dyson solutions, [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. On
terminology the original Gribov scenario of [12] is referred to as the scaling solution and the
non-zero freezing is termed the decoupling solution, [11]. Indeed recently various lattice analyses
have shed some light as to why the latter emerges in the data as opposed to the scaling case,
[13, 14]. However, Schwinger-Dyson solutions do find the scaling solution too. Moreover, the
Coulomb gauge Hamiltonian approach strongly supports the Gribov confinement picture and
connects the dual Meissner effect with the Gribov-Zwanziger confinement analysis, [1, 15, 16, 17].

After Gribov’s definitive analysis of the gauge fixing problem in the Landau gauge, [12], the
non-local resultant Lagrangian was localized in a series of articles, [18, 19, 20, 21, 22, 23, 24, 25,
26]. This produced a local renormalizable Lagrangian which meant that one could carry out loop
computations. For instance, the two loop gap equation satisfied by the Gribov mass v, which
derives from the path integral cutoff, was determined in [12, 25, 27]. Also the zero momentum
freezing of the gluon propagator and the Faddeev-Popov ghost enhancement were confirmed at
one and two loops respectively. However, the localization process of [18, 19, 20, 21, 22, 23, 24, 25,
26] which Zwanziger constructed required two sets of extra localizing spin-1 ghost fields. One set
is bosonic and the other is Grassmann. These play a passive role at high energy but affect the low
momentum behaviour of the propagators. Indeed they have interesting dynamics in themselves.
For instance, it was shown in [28] that the adjoint projection of the bosonic localizing ghost had
an enhanced behaviour in its longitudinal part. However, like the original Gribov formulation,
this pure Gribov-Zwanziger Lagrangian does not produce the decoupling properties observed in
current data. To model this the Gribov-Zwanziger Lagrangian was refined in [29] to include a
mass operator for the localizing ghost fields. Such a mass term alters the infrared properties
of their propagators as well as that of the gluon. In particular the gluon has a non-zero value
at zero momentum. The analysis was based on the local composite operator (LCO) formalism,
[30, 31, 32], and constructed the effective potential satisfied by the mass operator. It was then
shown that the potential had a minimum at a non-zero value indicating that the condensation



of the operator would produce a mass term for the localizing ghosts thereby modelling the
non-zero frozen gluon propagator behaviour, [29]. However, the analysis of [29] did not use the
most general possible localizing ghost mass operator. In [33] the most general dimension two
BRST invariant operator was considered based on all the possible colour tensors. One feature
was that the frozen gluon propagator behaviour did not have a unique solution from the LCO
mechanism. Indeed it was shown in [33] that other colour structures not considered in [29]
could reproduce lattice data. Therefore to reconcile whether there is a preferred colour tensor
structure we will extend here the analysis of [29] to the general case of [33] and complete the
programme begun in [33]. The aim is to see if there is indeed a unique minimum solution to the
corresponding LCO effective potential for the general operator. If there is a unique minimum we
can therefore regard this as the energetically favourable operator condensation colour direction.
Moreover, once determined the properties of the corresponding propagators at low momentum
can therefore provide potential tests on future data to ascertain whether this is the underlying
Lagrangian structure.

To set the background to the problem we recall Gribov’s observation, [12], that the QCD
action has to be modified to account for the effect of copies deriving from the global gauge fixing
ambiguity. The subsequent non-local Gribov Lagrangian which depends on the Gribov mass is,
12, 25),
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where AZ is the gluon, Ny is the adjoint representation dimension with 1 < a < Ny, d is the
spacetime dimension and
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is the QCD Lagrangian for Ny massless quarks P with 1 <4 < Ny and 1 < I < Np where Np
is the fundamental representation dimension and ¢® is the Faddeev-Popov ghost. The presence

of v results from imposing the no pole condition, [12], which equates to defining the Gribov
horizon in configuration space. From (1) this is, [12, 25],
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Given that the gluon propagator depends on < this condition constrains -y to satisfy a gap
equation. In other words, [12, 20, 25|, only when the gap equation is imposed is one in the
gauge theory. To circumvent the inability to perform computations with a Lagrangian with a
non-local term, in a series of articles, [18, 19, 20, 21, 22, 23, 24, 25, 26|, Zwanziger localized the
horizon term of (1) with the introduction of localizing ghost fields. In the current formulation of
this these fields are fﬁb, %, wﬁb and wgb where the first two are bosonic and the other two are
Grassmann. The latter play the same role to the bosonic localizing ghosts as the Faddeev-Popov
ghosts do for the gauge field. The full localized Lagrangian is, [25],
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Its properties are well established, [25, 26, 27]. For the purposes of this article the key ones are

that the Faddeev-Popov ghosts as well as wﬂb enhance in the infrared when the gap equation
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(4)



for ~ is satisfied. Hence the Kugo-Ojima confinement criterion, [34], is fulfilled. Indeed more
recently an analysis of this condition for other gauges such as Coulomb and the maximal abelian
gauge has been provided in [35]. There the Kugo-Ojima confinement condition was generalized
to these additional gauges and criteria were given to differentiate between the Higgs or Coulomb
phases of BRST symmetric gauge theories and the colour confining phase. Indeed this represents
progress towards having a wniversal criterion for colour confinement. In addition there is an
infrared enhancement for the bosonic localizing ghosts in (4). More specifically it has been
shown in [28] that the adjoint projection of the longitudinal part of the fl‘jb propagator enhances
in the infrared. It was argued that this feature reflected the Goldstone boson associated with
the spontaneous breaking of a BRST related symmetry of the Lagrangian in the presence of a
constraint. The final property of (1) which is relevant is that the gluon propagator is suppressed
in the infrared. The last property can be seen in the propagators of (4) which are
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where P, (p) = Nuw — pupy/p*. The gluon suppression has been checked at one loop, [36], which
is due in the main to the fact that (4) is renormalizable, [25, 37, 38], allowing one to perform
loop computations.

In summarizing these general features of the Gribov construction which persist in loop cal-
culations, it is evident that they are not observed on the lattice, [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].
Instead the numerical data indicates that the gluon propagator freezes to a non-zero value and
the Faddeev-Popov ghost is not enhanced in the infrared. This decoupling behaviour has been
observed in one set of Schwinger-Dyson solutions, [11]. However, in [29] a BRST invariant mass
operator for the localizing ghosts was introduced and its effect on the structure of the theory in
the infrared was analysed. Briefly a frozen gluon propagator and non-enhanced Faddeev-Popov
ghost propagator emerged in the quantum analysis which mimics the lattice observations. It
was subsequently pointed out in [33] that the particular choice of BRST invariant mass operator
of [29] was not unique to modelling the decoupling solution. Indeed it was not the most general
possible BRST dimension two operator from a group theoretic point of view. While one could
in principle add a mass operator for the localizing ghosts to (4) such a term would have no
origin in the original Gribov Lagrangian, (1). Therefore, a mass term for the extra fields can be
established via a non-zero vacuum expectation value for the mass operator. In other words if
one computed the effective potential for the mass operator and found that it was a minimum at
a non-zero value which was energetically more favourable than the massless localizing ghost case
then the mass operator would condense. Thus the non-zero vacuum expectation value would
produce the necessary masses to model a frozen gluon propagator and non-enhanced Faddeev-
Popov ghost propagator. In [29] such an analysis was performed for the operator considered
there. However, as noted in [33] by restricting the seed operator to a specific colour direction in
colour space it was not clear whether the vacuum solution which emerged was the energetically
most favourable one. Therefore, we provide the analysis for the most general BRST dimension
two localizing ghost operator and aim to establish the direction in colour space which is the
energetically favourable.

The most general BRST dimension two operator was introduced in [33] and in the same



(non-orthogonal) basis is
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where the colour directions are each associated with a mass parameter, u%. We will use the label
7 to indicate the various possible colour channels defined by the colour tensor. For reference in
[29] channel Q was the main focus. In (6) f%° are the structure function of the colour group
and, [39],
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which is totally symmetric in its colour indices. The field content of the operator is, [33],
1
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which is BRST invariant. Its anomalous dimension satisfies a Slavnov-Taylor identity and is
simply related to the Faddeev-Popov ghost anomalous dimension, [29, 33].

To proceed to the effective potential that the operator satisfies we outline the local composite
operator method, [30, 31, 32|, in general terms. If we have an operator O then it is coupled to
a source J and the generating functional, W[J], is constructed

e Wl = /beoexp[ - S+ /dde‘Jo@o + %Cng] (9)

where ® represents the fields of the action S and the subscript o corresponds to a bare quantity.
After renormalization one has, [30, 31, 32],

e Wl = / Dcpexp[ - S + Zo / dzJO + %(<+5c) JQ] . (10)

The quantity ¢ is known as the LCO parameter and is a non-perturbative function of the
coupling constant. It is defined to ensure that the renormalization group equation satisfied
by W|[J] is homogeneous, [30, 31, 32]. As it has similar properties to a coupling constant it
undergoes renormalization but we use the same notation for the counterterm, 6¢, as [30, 31, 32].
The method to determine the explicit divergences contributing to d¢ was developed from the
ideas of [30] in [40]. If one denotes the renormalization group function associated with the
renormalization of ¢ by §(g) in the notation of [30] then ((g) is defined by the solution of
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where y0(g) is the anomalous dimension of the operator whose effective potential we are in-
terested in. Once ((g) is defined to the loop order required one evaluates W[J| or applies a
Hubbard-Stratonovich transformation to translate the source in the exponential within the path
integral definition to a linear dependence, [30]. This allows one to construct the effective poten-
tial using the standard procedures. Here the structure of W[.J] will be sufficient for our purposes
as its dependence on u% will determine the energetically favourable colour direction.

One main difference from the earlier application of the LCO formalism to %AZA““ is that
the operator (6) can be regarded as a sum of different operators which are colour projections
of (8). In this respect one should have a vector of sources, Jz, so that the operator source seed
term in the initial application of the LCO formalism in (9) is
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From this we have performed the summation of one loop leg graphs for the SU(N.) colour group
and found
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where Z, and Z, are the respective renormalization constants for v and g and
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is the combination of sources which emerges from the formulation. The second term of (13)
has no one loop divergences, [29]. We recall that to proceed to the effective potential one
introduces a field o(x) which is the field which couples linearly to the source, [30, 31, 32], and in
effect corresponds to the original composite operator. Consequently the effective potential for
o emerges from the constant field value of the effective action for the operator given by

Tlo] = W[J] — / &'z J(2)o(z) (15)
after a Legendre transformation, [30, 31, 32]. Hence, the one loop effective potential is
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where a2 = 1 |M? + — 4C 4v*]| and p is the scale introduced to ensure that g is dimen-
_l’_

sionless in d- dlmensmns. In the present context the effective potential depends on the unique
combination of masses given by

V(M?) =

Ca
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(17)
where M? represents the constant field value of the corresponding o field. The potential has
an absolute minimum at this value of M? as it is this specific combination which minimizes the
potential. Any deviation away from this combination will increase it. However, considering the
overall situation this means that not only does the original operator @*°? condense, it does so
in a particular colour direction. To see what this is one computes the different combinations of
p2 which emerge when the colour tensor

2 2
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is multiplied by each constituent tensor in turn. It is straightforward to see that, for SU(N;),
Jrabed pabe gede — ) M2, Thus at one loop from the LCO effective potential the general operator
condensation is in the R colour direction since

<0abcd> o fabefcde . (19)

This preferred colour direction was suggested in [33] based on the structure of the propagators
(5). Integrating over the localizing ghost propagators in the combination defining the BRST



invariant dimension two operator, the only non-zero contribution comes from the massive prop-
agator term in the {gb propagator. Note that this only applies above two dimensions as there are
potential infrared divergences in strictly two dimensions. Indeed the zero momentum behaviour
of the gluon in two dimensions is different from that in three and four dimensions. Lattice
data, [41, 42], shows the gluon propagator is suppressed and vanishes at zero momentum unlike
the non-zero freezing above two dimensions. In this respect the scaling solution appears to be
preferred over the decoupling one. Aside from this caveat it is worth stressing that our result,
(19), is derived in an explicit one loop analysis and the observation of [33] should be regarded as
a trivial consistency check. Concerning three dimensions it is also the case that the R channel
is the energetically favourable one. This can be seen from the summation of the graphs leading
to WJ] since the emergence of the combination (17) for the mass dependence is due to the
underlying group theory. Integration over the loop momentum does not affect this. Instead it
would lead to different values of the integral in (13) when the loop integration is performed.
If one accepts that the natural solution is the R colour direction then the next stage is the
observation that the operator @%°? condenses in this direction thereby giving non-zero masses
to the localizing ghost fields. That one loop analysis was given in [33]. The localizing ghost
propagator corrections have properties which distinguish them from the Q solution and could
be tested on the lattice.

To conclude we have extended the analysis of [29] to consider the most general dimension
two BRST invariant localizing ghost operator in the Gribov-Zwanziger Lagrangian of [33]. The
computation indicates that at least to one loop the energetically favoured colour condensation
channel is the R one. To proceed one would have to continue to the next loop order. This
would be a huge task given the multiscale nature of the two loop massive vacuum bubble graphs
which would arise. However, in the interim one hope would be that the infrared structure of
the localizing ghost propagators could be analysed by other techniques. While the lattice could
provide numerical data the definition of an object on the lattice corresponding to say §Zb is not
straightforward. So a Schwinger-Dyson approach may offer the best avenue for an independent
analysis.
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