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Abstract

Autonomous flight of pocket drones is challenging due to the severe
limitations on on-board energy, sensing, and processing power. However,
tiny drones have great potential as their small size allows maneuvering
through narrow spaces while their small weight provides significant safety
advantages. This paper presents a computationally efficient algorithm for
determining optical flow, which can be run on an STM32F4 micropro-
cessor (168 MHz) of a 4 gram stereo-camera. The optical flow algorithm
is based on edge histograms. We propose a matching scheme to deter-
mine local optical flow. Moreover, the method allows for sub-pixel flow
determination based on time horizon adaptation. We demonstrate veloc-
ity measurements in flight and use it within a velocity control-loop on a
pocket drone.

1 Introduction

Pocket drones are Micro Air Vehicles (MAVs) small enough to fit in one’s pocket
and therefore small enough to maneuver in narrow spaces (Fig. 1). The pocket
drones’ light weight and limited velocity make them inherently safe for humans.
Their agility makes them ideal for search-and-rescue exploration in disaster
areas (e.g. in partially collapsed buildings) or other indoor observation tasks.
However, autonomous flight of pocket drones is challenging due to the severe
limitations in on-board energy, sensing, and processing capabilities.

To deal with these limitations it is important to find efficient algorithms to
enable low-level control on these aircraft. Examples of low-level control tasks are
stabilization, velocity control and obstacle avoidance. To achieve these tasks, a
pocket drone should be able to determine its own velocity, even in GPS-deprived
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Figure 1: Pocket drone with velocity estimation using a downward looking
stereo vision system. A novel efficient optical flow algorithm runs on-board
an STM32F4 processor running at only 168 MHz and with only 192 kB of
memory. The so-determining optical flow and height, with the stereo-camera,
provide the velocity estimates necessary for the pocket drone’s low level control
are obtained.

environments. This can be done by measuring the optical flow detected with a
bottom mounted camera [1]. Flying insects like honeybees use optical flow as
well for these low-level tasks [2]. They serve as inspiration as they have limited
processing capacity but can still achieve these tasks with ease.

Determining optical flow from sequences of images can be done in a dense
manner with, e.g., Horn-Schunck [3], or with more recent methods like Farnebäck
[4]. In robotics, computational efficiency is important and hence sparse optical
flow is often determined with the help of a feature detector such as Shi-Tomasi
[5] or FAST [6], followed by Lucas-Kanade feature tracking [7]. Still, such a
setup does not fit the processing limitations of a pocket drone’s hardware, even
if one is using small images.

Optical flow based stabilization and velocity control is done with larger
MAVs with a diameter of 50 cm and up [8][9]. As these aircraft can carry
small commercial computers, they can calculate optical flow with more compu-
tationally heavy algorithms. A MAV’s size is highly correlated on what it can
carry and a pocket drone, which fits in the palm of your hand, cannot transport
these types resources and therefore has to rely on off-board computing.

A few researchers have achieved optical flow based control fully on-board a
tiny MAV. Dunkley et al. have flown a 25 gram helicopter with visual-inertial
SLAM for stabilization, for which they use an external laptop to calculate its
position by visual odometry [10]. Briod et al. produced on-board processing
results, however they use multiple optical flow sensors which can only detect
one direction of movement [11]. If more sensing capabilities are needed, the use

2



of single-purpose sensors is not ideal. A combination of computer vision and a
camera will result in a single, versatile, sensor, able to detect multiple variables
and therefore saves weight on a tiny MAV. By limiting the weight it needs to
carry, will increase its flight time significantly.

Closest to our work is the study by Moore et al., in which multiple opti-
cal flow cameras are used for obstacle avoidance [12]. Their vision algorithms
heavily compress the images, apply a Sobel filter and do Sum of Absolute Dif-
ference (SAD) block matching on a low-power 32-bit Atmel micro controller
(AT32UC3B1256).

This paper introduces a novel optical flow algorithm, computationally effi-
cient enough to be run on-board a pocket drone. It is inspired by the optical
flow method of Lee et al. [13], where image gradients are summed for each
image column and row to obtain a horizontal and vertical edge histogram. The
histograms are matched over time to estimate a global divergence and trans-
lational flow. In [13] the algorithm is executed off-board with a set of images,
however it shows great potential. In this paper, we extend the method to calcu-
late local optical flow as well. This can be fitted to a linear model to determine
both translational flow and divergence. The later will be unused in the rest of
this paper as we are focused on horizontal stabilization and velocity control.
However, it will become useful for autonomous obstacle avoidance and landing
tasks. Moreover, we introduce an adaptive time horizon rule to detect sub-pixel
flow in case of slow movements. Equipped with a downward facing stereo cam-
era, the pocket drone can determine its own speed and do basic stabilization
and velocity control.

The remainder of this paper is structured as follows. In Section 2, the
algorithm is explained with off-board results. Section 3 will contain velocity
control results of two MAVs, an AR.Drone 2.0 and a pocket drone, with both
using the same 4 gr stereo-camera containing the optical flow algorithm on-
board. Section 3 will conclude these results and give remarks for future research
possibilities.

2 Optical Flow with Edge Feature Histograms

This section explains the algorithm for the optical flow detection using edge-
feature histograms. The gradient of the image is compressed into these his-
tograms for the horizontal and vertical direction. This reduces the 2D image
search problem to 1D signal matching, increasing its computational efficiency.
Therefore, this algorithm is efficient enough to be run on-board a 4 gram stereo-
camera module, which can used by an MAV to determine its own velocity.

2.1 Edge Features Histograms

The generated edge feature histograms are created by first calculating the gra-
dient of the image on the vertical and horizontal axis using a Sobel filter
(Fig. 2(a)). From these gradient intensity images, the histogram can be com-
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Figure 2: (a) The vision loop with for creating the edge feature histograms and
(b) the matching of the two histograms (previous frame (green) and current
frame (red)) with SAD. This results in a pixel displacement (blue) which can
be fitted to a linear model (dashed black line) for a global estimation.

puted for each of the image’s dimensions by summing up the intensities. The
result is an edge feature histogram of the image gradients in the horizontal and
vertical directions.

From two sequential frames, these edge histograms can be calculated and
matched locally with the Sum of Absolute Differences (SAD). In Fig. 2(b), this
is done for a window size of 18 pixels and a maximum search distance of 10
pixels in both ways. The displacement can be fitted to a linear model with
least-square line fitting. This model has two parameters: a constant term for
translational flow and a slope for divergence. Translational flow stands for the
translational motion between the sequential images, which is measured if the
camera is moved sideways. The slope/divergence is detected when a camera
moves to and from a scene. In case of the displacement shown in Fig. 2(b) both
types of flows are observed, however only translation flow will be considered in
the remainder of this paper.
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2.2 Time Horizon Adaptation for Sub-Pixel Flow

The previous section explained the matching of the edge feature histograms
which gives translational flow. Due to a image sensor’s resolution, existing
variations within pixel boundaries can not be measured, so only integer flows
can be considered. However, this will cause complication if the camera is moving
slowly or is well above the ground. If these types of movements result in sub-
pixel flow, this cannot be observed with the current state of the edge flow
algorithm. This sub-pixel flow is important for to ensure velocity control on an
MAV.

To ensure the detection of sub-pixel flow, another factor is added to the
algorithm. Instead of the immediate previous frame, the current frame is also
compared with a certain time horizon n before that. The longer the time hori-
zon, the more resolution the sub-pixel flow detection will have. However, for
higher velocities it will become necessary to compare the current edge histogram
to the closest time horizon as possible. Therefore, this time horizon comparison
must be adaptive.

Which time horizon to use for the edge histogram matching, is determined
by the translational flow calculated in the previous time step pt−1:

n = min

(
1

|pt−1|
, N

)
(1)

where n is the number of the previous stored edge histogram that the current
frame is compared to. The second term, N , stands for the maximum number of
edge histograms allowed to be stored in the memory. It needs to be limited due
to the strict memory requirements and in our experiments is set to 10. Once
the current histogram and time horizon histogram are compared, the resulting
flow must be divided by n to obtain the flow per frame.

2.3 Velocity Estimation on Set of Images

The previous sections explained the calculation of the translational flow, for
convenience now dubbed as EdgeFlow. As seen in Fig. 3, the velocity estimation
Vest can be calculated with the height of the drone and the angle from the center
axis of the camera:

Vest = h ∗ tan(pt ∗ FOV/w)/∆t (2)

where pt is the flow vector, h is the height of the drone relative to the ground,
and w stands for the pixels size of the image (in x or y direction). FOV stands
for the field-of-view of the image sensor. A MAV can monitor its height by
means of a sonar, barometer or GPS. In our case we do it differently, as we
match the left and right edge histogram from the stereo-camera with global
SAD matching. This implies that only one sensor is used for both velocity and
height estimation.
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Figure 3: Velocity estimation by measuring optical flow with one camera and
height with both cameras of the stereo-camera.

For off-board velocity estimation, a dataset of stereo-camera images is pro-
duced and synchronized with ground truth velocity data. The ground truth is
measured by a motion tracking system with reflective markers (OptiTrack, 24
infrared-cameras). This dataset excites both the horizontal and vertical flow
directions, which is equivalent to the x- and y-axis of the image plane, and
contains areas of varying amounts of textures (Fig. 4). As an indication of
the texture-richness of the surface, the number of features, as detected by the
Shi-Tomasi corner detection, is plotted in Fig. 5(a).

For estimating the velocity, the scripts run in Matlab R2014b on a Dell
Latitude E7450 with an Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz processor.
In Fig. 5(b), the results of a single pyramid-layer implementation of the Lucas-
Kanade algorithm with Shi-Tomasi corner detection can be seen (from [7]).
The mean of the detected horizontal velocity vectors is shown per time frame
and plotted against the measured velocity by the OptiTrack system, as well as
the velocity measured by EdgeFlow. For Lucas-Kanade, the altitude data of
the OptiTrack is used. For EdgeFlow, the height is determined by the stereo
images alone by histogram matching.

In Fig. 5(c), comparison values are shown of the EdgeFlow and Lucas-
Kanade algorithm of the entire data set. The mean squared error (MSE) is
lower for EdgeFlow than for Lucas-Kanade, where a lower value stands for a
higher similarity between the compared velocity estimation and the OptiTrack
data. The normalized maximum cross-correlation magnitude (NMXM) is used
as a quality measure as well. Here a higher value, between a range of 0 and
1, stands for a better shape correlation with the ground truth. The plot of
Fig. 5(b) and the values in Fig. 5(c) shows a better tracking of the velocity
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Figure 4: Several screen shots of the set of images used for off-line estimation
of the velocity. Here the diversity in amount of texture can be seen.

by EdgeFlow when compared. We think that the main reason for this is that
it utilizes information present in lines, which are ignored in the corner detec-
tion stage of Lucas-Kanade. In terms of computational speed, the EdgeFlow
algorithm has an average processing of 0.0234 sec for both velocity and height
estimation, over 5 times faster than Lucas-Kanade. Although this algorithm
is run off-board on a laptop computer, it is an indication of the computational
efficiency of the algorithm. This is valuable as EdgeFlow needs to run embedded
on the 4 gr stereo-board, which is done in the upcoming sections of this paper.

3 Velocity Estimation and Control

The last subsection showed results with a data set of stereo images and Opti-
Track data. In this section, the velocity estimated by EdgeFlow is run on-board
the stereo-camera. Two platforms, an AR.Drone 2.0 and a pocket drone, will
utilize the downward facing camera for velocity estimation and control. Fig. 7(a)
gives a screen-shot of the video of the experiments1, where it can be seen that
the pocket drone is flying over a feature-rich mat.

3.1 Hardware and Software Specifics

The AR.Drone 2.02 is a commercial drone with a weight of 380 grams and about
0.5 meter (with propellers considered) in diameter. The pocket drone3 is 10 cm
in diameter and has a total weight of 40 grams (including battery). It contains

1YouTube playlist:
https://www.youtube.com/playlist?list=PL KSX9GOn2P9TPb5nmFg-yH-UKC9eXbEE

2http://wiki.paparazziuav.org/wiki/AR Drone 2
3http://wiki.paparazziuav.org/wiki/Lisa/S/Tutorial/Nano Quadcopter
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(b) Smoothed velocity estimates of EdgeFlow and Lucas-Kanade.

Lucas-Kanade EdgeFlow
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MSE 0.0696 0.0576 0.0476 0.0320
NMXM 0.3030 0.3041 0.6716 0.6604

Comp. Time 0.1337 s 0.0234 s

(c) Comparison values for EdgeFlow and Lucas-Kanade.

Figure 5: Off-line results of the optical flow measurements: (a) the measure of
feature-richness of the image data-set by Shi-Tomasi corner detection and (b) a
comparison of Lucas-Kanade and EdgeFlow with horizontal velocity estimation.
In (c), the MSE and NMXM values are shown for the entire data set of 440
images, compared to the OptiTrack’s measured velocities.
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Figure 6: 4 gram stereo-camera with a STM32F4 microprocessor with only 168
MHz speed and 192 kB of memory. The two cameras are located 6 cm apart
from each other.
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Figure 7: (a) A screen-shot of the video of the flight and (b) the control scheme
of the velocity control.

a Lisa S autopilot [14], which is mounted on a LadyBird quadcopter frame. The
drone’s movement is tracked by a motion tracking system, OptiTrack, which
tracks passive reflective markers with its 24 infrared cameras. The registered
motion will be used as ground truth to the experiments.

The stereo-camera, introduced in [15], is attached to the bottom of both
drones, facing downward to the ground plane (Fig. 6). It has two small cameras
with two 1/6 inch image sensors, which are 6 cm apart. They have a horizontal
FOV of 57.4o and vertical FOV of 44.5o. The processor type is a STM32F4
with a speed of 168 MHz and 192 kB of memory. The processed stereo-camera
images are grayscale and have 128× 96 pixels. The maximum frame rate of the
stereo-camera is 29 Hz, which is brought down to 25 Hz by the computation of
EdgeFlow, with its average processing time of 0.0126 seconds. This is together
with the height estimation using the same principle, all implemented on-board
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Figure 8: The velocity estimate of the AR.Drone 2.0 and stereo-board assembly
during a velocity control task with ground-truth as measured by OptiTrack.
MSE and NMXM values are calculated for the entire flight.

the stereo-camera.
The auto-pilot framework used for both MAV is Paparazzi4. The AR.Drone

2.0’s Wi-Fi and the pocket drone’s Bluetooth module is used for communica-
tion with the Paparazzi ground, station to receive telemetry and send flight
commands. Fig. 7(b) shows the standard control scheme for the velocity con-
trol as implemented in paparazzi, which will receive a desired velocity references
from the ground station for the guidance controller. This layer will send angle
set-points to the attitude controller. The MAV’s height should be kept constant
by the altitude controller and measurements from the sonar (AR.drone) and
barometer (pocket drone). Note that for these experiments, the height mea-
sured by the stereo-camera is only used for determining the velocity on-board
and not for the control of the MAV’s altitude.

4http://wiki.paparazziuav.org/
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Figure 9: Velocity estimates calculated by the pocket drone and stereo-board
assembly, during an OptiTrack guided flight. MSE and NMXM values are cal-
culated for the entire flight.

3.2 On-Board Velocity Control of a AR.Drone 2.0

In this section, an AR.Drone 2.0 is used for velocity control with EdgeFlow,
using the stereo-board instead of its standard bottom camera. Its difference
with the desired velocity serves as the error signal for the guidance controller.
During the flight, several velocity references were sent to the AR.Drone, making
it fly into specific direction. In Fig. 8, the stereo-camera’s estimated velocity is
plotted against its velocity measured by the OptiTrack for both horizontal and
vertical direction of the image plane. This is equivalent to respectively sideways
and forward direction in the AR.Drone’s body fixed coordinate system.

The AR.Drone was is able to determine its velocity with EdgeFlow computed
on-board the stereo-camera, as the MSE and NMXM quality measures indicate
a close correlation with the ground truth. This results in the AR.Drone’s ability
to correctly respond to the speed references given to the guidance controller

.
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Figure 10: Velocity estimates calculated by the pocket drone and stereo-board
assembly, now using estimated velocity in the control. MSE and NMXM values
are calculated for the entire flight which lasted for 370 seconds, where several
external speed references were given for guidance.

3.3 On-board Velocity Estimation of a Pocket Drone

In the last subsection, we presented velocity control of an AR.Drone 2.0 to show
the potential of using the stereo-camera for efficient velocity control. However,
this needs to be shown on the pocket drone as well, which is smaller and hence
has faster dynamics. Here the pocket drone is flown based on OptiTrack position
measurement to present its on-board velocity estimation without using it in the
control loop. During this flight, the velocity estimate calculated by the stereo-
board is logged and plotted against its ground truth (Fig. 9).

The estimated velocity by the pocket drone is noisier than with the AR.Drone,
which can be due of multiple reasons, from which the first is that the stereo-
board is subjected to more vibrations on the pocket drone than the AR.Drone.
This is because the camera is much closer to the rotors of the MAV and mounted
directly on the frame. Another thing would be the control of the pocket drone,
since it responds much faster as the AR.Drone. Additional filtering and de-
rotation are essential to achieve the full on-board velocity control.

De-rotation is compensating for the camera rotations, where EdgeFlow will
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detect a flow not equivalent to translational velocity. Since the pocket drone
has faster dynamics than the AR.Drone, the stereo-camera is subjected to faster
rotations. De-rotation must be applied in order for the pocket drone to use
optical flow for controls. In the experiments of the next subsection, the stereo-
camera will receive rate measurement from the gyroscope. Hre it can estimate
the resulting pixel shift in between frames due to rotation. The starting position
of the histogram window search in the other image is offset with that pixel shift
(an addition to section 2 A).

3.4 On-board Velocity Control of a Pocket drone

Now the velocity estimate is used in the guidance control of the pocket drone
and the OptiTrack measurements is only used for validation. The pocket drone’s
flight, during a guidance control task with externally given speed references,
lasted for 370 seconds. Mostly horizontal (sideways) speed references where
given, however occasional horizontal speed references in the vertical direction
were necessary to keep the pocket drone flying over the designated testing area.
A portion of the velocity estimates during that same flight are displayed in
Fig. 10. From the MSE and NMXM quality values for the horizontal speed, it
can be determined that the EdgeFlow’s estimated velocity correlates well with
the ground truth. The pocket drone obeys the speed references given to the
guidance controller.

Noticeable in Fig. 10(b) is that the NMXM for vertical direction is lower
than for the horizontal. As most of the speed references send to the guidance
controller were for the horizontal direction, the correlation in shape is a lot more
eminent, hence resulting in a higher NMXM value. Overall, it can be concluded
that pocket drone can use the 4 gr stereo-board for its own velocity controlled
guidance.

4 Conclusion

In this paper we introduced a computationally efficient optical flow algorithm,
which can run on a 4 gram stereo-camera with limited processing capabilities.
The algorithm EdgeFlow uses a compressed representation of an image frame
to match it with a previous time step. The adaptive time horizon enabled it to
also detect sub-pixel flow, from which slower velocity could be estimated.

The stereo-camera is light enough to be carried by a 40 gram pocket drone.
Together with the height and the optical flow calculated on-board, it can esti-
mate its own velocity. The pocket drone uses that information within a guidance
control loop, which enables it to compensate for drift and respond to external
speed references. Our next focus is to use the same principle for a forward facing
camera.
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