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Abstract 8 

Modern engineering systems are becoming increasingly complex. Assessing their risk by 9 

simulation is intimately related to the efficient generation of rare failure events.  Subset 10 

Simulation is an advanced Monte Carlo method for risk assessment and it has been 11 

applied in different disciplines. Pivotal to its success is the efficient generation of 12 

conditional failure samples, which is generally non-trivial. Conventionally an 13 

independent-component Markov Chain Monte Carlo (MCMC) algorithm is used, which 14 

is applicable to high dimensional problems (i.e., a large number of random variables) 15 

without suffering from ‘curse of dimension’. Experience suggests that the algorithm may 16 

perform even better for high dimensional problems. Motivated by this, for any given 17 

problem we construct an equivalent problem where each random variable is represented 18 

by an arbitrary (hence possibly infinite) number of ‘hidden’ variables. We study 19 

analytically the limiting behavior of the algorithm as the number of hidden variables 20 

increases indefinitely. This leads to a new algorithm that is more generic and offers 21 

greater flexibility and control. It coincides with an algorithm recently suggested by 22 

independent researchers, where a joint Gaussian distribution is imposed between the 23 

current sample and the candidate. The present work provides theoretical reasoning and 24 

insights into the algorithm. 25 

 26 

Keywords: Curse of dimension, Rare Event, Markov Chain Monte Carlo, Monte Carlo, 27 

Subset Simulation  28 

1. Introduction  29 

Modern engineering systems are designed with increasing complexity and expectation of 30 

reliable performance. Rare failure events with high consequences are becoming more 31 
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relevant to risk assessment and management. Unfortunately they are usually not well-32 

understood and can even be out of imagination based on typical experience [1][2][3]. 33 

Studying failure scenarios allows one to gain insights into their cause and consequence, 34 

providing information for effective mitigation, contingency planning and improving 35 

system resilience. The probability and the consequence of failure events are two basic 36 

ingredients for trading off cost and benefit in the design of engineering systems. 37 

Assessing risk quantitatively requires proper modelling of the ‘input’ uncertain 38 

parameters by random variables as well as the logical/physical mechanism that predicts 39 

the ‘output’ quantities of interest. While no mathematical model is perfect, useful 40 

information can be gained if it is calibrated and interpreted properly, allowing one to 41 

make risk-informed decisions.  42 

 43 

Let ],...,[ 1 nXX=X  be the set of uncertain parameters in the problem, which are 44 

modeled by random variables. Without loss of generality n
iiX 1}{ =  are assumed to be 45 

standard Gaussian (zero mean and unit variance) and i.i.d. (independent and identically 46 

distributed). Dependent non-Gaussian random variables can be constructed from 47 

Gaussian ones by proper transformation [4]. One important problem in risk assessment 48 

is the determination of the failure probability )(FP  for a specified failure event F , 49 

which can be formulated as an n-dimensional integral or an expectation: 50 

)]([)()()( FIEdFIFP ∈=∈= ∫ Xxxx φ        (1) 51 

where )(⋅I  is the indicator function, equal to 1 if its argument is true and zero otherwise; 52 

)
2
1exp()2()(

1

22/ ∑
=

− −=
n

i
i

n xpφ x    T
nxx ],...,[ 1=x     (2) 53 

is the n-dimensional standard Gaussian PDF.  54 

 55 

Monte Carlo methods [5][6][7] provide a robust means for risk assessment of complex 56 

systems. Problems of practical significance currently pose three main challenges: small 57 

probability, ‘high dimension’ (i.e., a large number of input random variables) and high 58 

complexity (e.g., nonlinearity) in the input-output relationship [8][9]. Small probability 59 

renders Monte Carlo method in its direct form computationally expensive or prohibitive. 60 

High dimension renders geometric intuitions in low dimensional space inapplicable or 61 

misleading [10][11]. High complexity means that the input-output relationship is only 62 

implicitly known as a ‘black-box’.  63 
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 64 

1.1. Subset Simulation 65 
Advanced Monte Carlo methods generally aim at reducing the variance of estimators 66 

beyond direct Monte Carlo method but in doing so they lose application robustness. 67 

Subset Simulation is a method that is found to play a balance between efficiency and 68 

robustness [12][13][14][15]. It has been applied to different disciplines and used for 69 

developing algorithms for related problems such as sensitivity [16][17][18] and design 70 

optimization problems [19][20][21][22][23][24]. There are variants that take advantage 71 

of prior knowledge of the problem, e.g., casual dynamical systems [25], transition from 72 

linear to nonlinear failure [26], meta-model [27]; or leverage on other computational 73 

tools, e.g., delayed rejection [28], Kriging [29] and neural networks [30].  74 

 75 

Subset Simulation is based on the idea that a small failure probability can be expressed 76 

as the product of larger conditional probabilities of intermediate failure events, thereby 77 

potentially converting a rare event simulation problem into a sequence of more frequent 78 

ones. A general failure event is represented as }{ bYF >= , where Y  is a suitably 79 

defined ‘driving response’ characterizing failure. In the actual implementation, Subset 80 

Simulation produces estimates for the values of b  that correspond to fixed failure 81 

probabilities, from large to small values. The estimates make use of samples that 82 

populate gradually from the frequent to rare failure regions, corresponding to increasing 83 

threshold values that are adaptively generated. 84 

 85 

A typical Subset Simulation run starts with ‘simulation level’ 0, where N  samples of X  86 

are generated according to the parameter PDF )(xφ , i.e., direct Monte Carlo. The values 87 

of the response Y  are then calculated and sorted. The 10 +Np  largest value is taken as 88 

the threshold level 1b  for simulation level 1, where 0p  is the ‘level probability’ chosen by 89 

the user (conventional choice is 0.1). The top Np0  samples of X  are used as seeds for 90 

generating additional samples conditional on 1bY > , to make up a population of N  91 

conditional samples at level 1. The 10 +Np  largest value of Y  among these samples is 92 

taken as the threshold level 2b  for simulation level 2. Samples for level 2 are generated 93 

and the procedure is repeated for higher threshold levels until the level of interest is 94 

covered.  95 

 96 
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1.2. Generation of conditional samples  97 
The efficient generation of conditional failure samples, i.e., samples that are conditional 98 

on intermediate failure events, is pivotal to Subset Simulation. This is conventionally 99 

performed using an independent-component Markov Chain Monte Carlo (MCMC) 100 

algorithm [12][31][7], which is applicable for high dimensional problems and makes the 101 

algorithm robust to applications. For each iX , let );(* ⋅⋅ip  be the proposal PDF assumed 102 

to be symmetric, i.e., Metropolis random walk. Suppose we are given a sample 103 

],...,[ )1()1(
1

)1(
nXX=X  distributed as the target conditional distribution, i.e., 104 

)()()()|( 1 xx φφ FxIFPF ∈= −         (3) 105 

According to the algorithm the next sample ],...,[ )2()2(
1

)2(
nXX=X  that is also 106 

distributed as )|( Fxφ  is generated as follow:  107 

 108 

Algorithm I (independent-component MCMC) 109 

Step I. Generate n
iiX 1}{ =′=′X  110 

For ni ,...,1=  111 

1. Generate iξ  from the proposal PDF );( )1(*
ii Xp ⋅  and iU  uniformly on [0,1]. 112 

 2. Calculate )(/)( )1(
iii Xr φξφ= . 113 

     Set iiX ξ=′  if ii rU ≤ . Otherwise set )1(
ii XX =′ .   114 

End i  115 

 116 

Step II (Check failure) 117 

Set ')2( XX =  if F∈′X  (accept). Otherwise set )1()2( XX =  (reject).   118 

 119 

In the above, )2/exp()2()( 22/1 xx −= −pφ  denotes the one-dimensional standard 120 

Gaussian PDF. The correlation among the conditional samples is an important factor 121 

influencing the efficiency of Subset Simulation. It is high (hence low efficiency) if X′  is 122 

rejected too often in either Step I (MCMC mechanism) or Step II (not lying in the failure 123 

region); or when n
ii 1}{ =ξ  is of close proximity to X  (governed by the proposal PDF).  124 

 125 
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1.3. Objectives and key findings 126 
Theoretical arguments and numerical experience reveal that as the number of variables 127 

increases the rejection of the candidate X′  tends to be governing by Step II; the 128 

efficiency of Subset Simulation is insensitive to the type of proposal PDF and may even 129 

be higher [12][15]. Motivated by this, for any given problem (generally finite 130 

dimensional) we consider an equivalent problem with an arbitrary number of random 131 

variables and investigate the limiting behavior of the algorithm as the number increases 132 

indefinitely. Specifically, each Gaussian variable iX  can be represented by an arbitrary 133 

(hence possibly infinite) number of ‘hidden’ Gaussian variables. As the key result of this 134 

work, we show that applying Algorithm I to the equivalent problem results in the 135 

following ‘limiting algorithm’ as the number of hidden variables is infinite: 136 

 137 

Algorithm II (Limiting algorithm) 138 

Step I. Generate n
iiX 1}{ =′=′X  139 

Generate ],...,[ 1 nXX ′′=′X  as a Gaussian vector with independent components, with 140 

mean vector ],...,[ )1()1(
1 nnn XaXa  and variances ],...,[ 22

1 nss . 141 

 142 

Step II (Check failure) 143 

Set ')2( XX =  if F∈′X  (accept). Otherwise set )1()2( XX =  (reject).   144 

 145 

Algorithm II differs from Algorithm I only in Step I. Here, 10 ≤≤ is  is the standard 146 

deviation of the candidate iX ′  from the current sample and 21 ii sa −= . It is related to 147 

the proposal PDF but which is no longer relevant because the algorithm is now 148 

controlled directly through n
iia 1}{ =  or equivalently n

iis 1}{ = . This algorithm is remarkably 149 

simple and MCMC rejection no longer appears explicitly. As the algorithm does not 150 

depend on any details of the hidden variables, the infinite-dimensional equivalent 151 

problem is only involved at a conceptual level to arrive at the limiting result. 152 

 153 

The limiting algorithm shows that it is possible to generate the candidate in Step I 154 

simply as a Gaussian vector whose statistics depend on the current sample. In fact the 155 

same algorithm has been recently proposed by independent researchers [32] who 156 
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ingeniously imposed this condition and verified this possibility. The present work 157 

provides a theoretical reasoning leading to the algorithm via a completely different route. 158 

 159 

This paper is organized as follow. We first describe in Section 2 the equivalent problem 160 

with hidden variables that links the original problem and the conceptual infinite-161 

dimensional problem. For ease of reading, the limiting behavior of the candidate and 162 

hence the MCMC algorithm is summarized in Section 3. Examples are then given in 163 

Section 4 to illustrate the results. The remaining sections provide the derivations for the 164 

limiting behavior and the results in Section 3.  165 

 166 

2. Equivalent problem with hidden variables 167 

Consider the reliability problem in the last section, where the number of random 168 

variables n  need not be large. The original finite-dimensional problem can be 169 

represented by an equivalent problem with an arbitrary (hence possibly infinite) 170 

number of random variables as follow. First, each standard Gaussian iX  can be 171 

represented by n′  i.i.d. standard Gaussian variables n
jijZ ′
=1}{ : 172 

∑
′

=′
=

n

j
iji Z

n
X

1

1           (4) 173 

This follows directly from the fact that 1) any linear combination of Gaussian variables 174 

is also Gaussian; and 2) the RHS of (4) has zero mean and unit variance. The total 175 

number of random variables in the problem is now nn′ . Clearly, 1≥′n  but is otherwise 176 

arbitrary. The representation in (4) is not unique but it is the one studied in this work. 177 

The set of random variables in the equivalent problem is 178 

},...,1;,...,1:{ njniZij ′===Z          (5) 179 

instead of n
iiX 1}{ ==X . These two sets of variables are related by a linear 180 

transformation, LZX = , whose form is not important and is omitted here. The response 181 

in the original problem depends on X  and not directly on Z . For this reason Z  is called 182 

the set of ‘hidden variables’. 183 

   184 
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2.1. MCMC algorithm applied to equivalent problem  185 
Consider now applying the independent-component MCMC algorithm (Algorithm I) to 186 

the equivalent problem. Let },...,1;,...,1:{ njniZij ′===Z  be the current conditional 187 

sample and n
iiX 1}{ === LZX . For each i , the one-dimensional proposal PDF for ijZ  is 188 

assumed to be symmetric and the same for different j . Without loss of generality it is 189 

denoted through the one-argument function )(* zpi , which is symmetric about 0. That is, 190 

if the i-th component of the current sample is iz , then the candidate iξ  is distributed as 191 

)(*
iii zp −ξ . In the above context, the MCMC algorithm for generating the next 192 

conditional sample given the current conditional sample Z  reads as follow: 193 

 194 

Algorithm I applied to equivalent problem with hidden variables 195 

Step I. Generate },...,1;,...,1:{ njniZij ′==′=′Z  196 

For ni ,...,1=  197 

 For nj ′= ,...,1  198 

 1. Generate ijξ  from the proposal PDF )(*
ijiji Zp −ξ  and ijU  uniformly on [0,1]. 199 

 2. Calculate )(/)( ijijij Zr φξφ= . 200 

     Set ijijZ ξ=′  if ijij rU ≤ . Otherwise set ijij ZZ =′ .   201 

 End j  202 

 Set ∑
′

=
′

′
=′

n

j
iji Z

n
X

1

1  203 

End i  204 

T
nXX ],...,[ 1 ′′=′X  205 

 206 

Step II (Check failure) 207 

Set the next sample equal to Z′  if F∈′X  (accept). Otherwise set the next sample equal 208 

to Z  (reject).   209 

 210 

In the above algorithm we have deliberately avoided the symbol for the next sample (in 211 

Step II) to simplify notations. Although MCMC in Step I is performed in the Z -space, it 212 

is the value of X  that directly determines failure in Step II. For given X , we shall 213 
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study the limiting distribution of X′  in Step I when ∞→′n . That is, we shall determine 214 

the following conditional PDF in the limit: 215 

),...,|,...,()|( 11,...,1|,...,1| nnnXXnXX xxxxpp ′′=′ ′′′ xxXX      (6) 216 

where ],...,[ 1 nxx ′′=′x  and ],...,[ 1 nxx=x . Given ],...,[ 1 nXX=X , },...,1:{ niXi =′  are 217 

generated independent of each other because n
jijZ ′
=′ 1}{  for different i  are generated 218 

independently in the inner loop. This means that 219 

∏
=

′′ ′=′
n

i
iiiXiX xxpp

1
|| )|()|( xxXX         (7) 220 

It is therefore sufficient to study the one-dimensional conditional PDF )|(| iiiXiX xxp ′′ . 221 

  222 

3. Limiting distribution of candidate 223 

For ease of reading we summarize in this section the analysis results for the conditional 224 

PDF of ],...,[ 1 nXX ′′=′X  (associated with the candidate Z′ ) given ],...,[ 1 nXX=X  225 

(associated with the current sample Z ) in the algorithm in Section 2.1. By symmetry of 226 

the roles of iX  in Step I, it is clear that the result is identical for every ni ,...,1= . It can 227 

be shown that as ∞→′n , conditional on ii xX = , iX ′  has a Gaussian distribution with 228 

mean iax  and variance 2
is . That is, 229 

])(
2
1exp[

2
1)|( 2

2| iii
ii

iiiXiX xax
ss

xxp −′−=′′ p
   ∞→′n   (8) 230 

where 231 

iia κ21−=            (9) 232 

22 44 iiis κκ −=           ( 10 ) 233 

∫
∞

−Φ=
0

*2 )()
2

( dwwpww iiκ          ( 11 ) 234 

depends only on the proposal PDF *
ip ; )(⋅Φ  is the standard Gaussian CDF (cumulative 235 

distribution function). It can be shown that 236 

10 ≤≤ iκ   11 ≤≤− ia   10 ≤≤ is   122 =+ ii sa   ( 12 ) 237 

Remarkably, the limiting form of the conditional PDF that governs the transition of iX  238 

does not depend on any detail about the hidden variables n
jijZ ′
=1}{ . In addition, it 239 
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satisfies the detailed balance condition with the standard Gaussian PDF )(⋅φ  as its 240 

stationary PDF: 241 

)()|()()|( || iiiiXiXiiiiXiX xxxpxxxp ′′=′ ′′ φφ        ( 13 ) 242 

This implies that in the actual simulation one can directly generate the samples of X  243 

without the hidden variables. The latter serve only as a conceptual vehicle to arrive at 244 

the limiting result.  245 

 246 

3.1. Justification for Algorithm II 247 
Equation (13) can be used to show directly that the limiting algorithm presented in 248 

Section 1 indeed satisfies detailed balance in the presence of the conditioning from 249 

failure by exactly the same argument in [12]. That is, for all )1(x  and )2(x , 250 

)|()|()|()|( )2()2()1(
|

)1()1()2(
| )1()2()1()2( FpFp xxxxxx XXXX φφ =     ( 14 ) 251 

where )(/)()()|( FPFIF ∈= xxx φφ  denotes the standard Gaussian PDF conditional on 252 

failure. Essentially, Step II ensures that all samples along the Markov chain lie in the 253 

failure region and so it suffices to check detailed balance for only those states within the 254 

failure region, i.e., for all F∈)2()1( ,xx , 255 

)()|()()|( )2()2()1(
|

)1()1()2(
| )1()2()1()2( xxxxxx XXXX φφ pp =      ( 15 ) 256 

where )|( F⋅φ  has been replaced by )(⋅φ  because in this case both )( )1( FI ∈x  and 257 

)( )2( FI ∈x  are equal to 1. Thus, considering only the states in the failure region, 258 

detailed balance does not involve the conditioning from failure. Equation (15) holds 259 

trivially for )2()1( xx =  and so it remains to consider )2()1( xx ≠ . In this case )2(X  must 260 

be equal to X′  generated in Step I. The transition PDF )|()1()2( | ⋅⋅XXp  is then equal to 261 

the conditional PDF )|(| ⋅⋅′ XXp  in (7). The latter satisfies detailed balance because its 262 

component counterpart in (13) does: 263 

)()|()()|()()|()()|( |
1

|
1

|| xxxxxx XXXX ′′=′′=′=′ ′
=

′
=

′′ ∏∏ φφφφ pxxxpxxxpp
n

i
iiiiXiX

n

i
iiiiXiX  ( 16 ) 264 

 265 
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3.2. Intrinsic parameter 266 
The parameter κ  (omitting index i  for simplicity) in (11) determines the limiting 267 

algorithm and is an intrinsic characteristic of the proposal PDF. Figure 1 shows the 268 

variation of κ  and the associated parameters a  and s  (omitting index i ) with the 269 

standard deviation 0s  of the proposal PDF. The results for two commonly used proposal 270 

PDF, Gaussian and uniform, are shown. Note that a uniform proposal PDF on 271 

],[ wXwX +−  around the current sample X  has a standard deviation of 3/0 ws = . 272 

For both types of PDF there is a lower limit for a  (near 0.6) and an upper limit for s  273 

(near 0.8). These limits arise from the distribution type and not from the inequalities in 274 

(12). Choosing directly the parameters a  and s  ( 122 =+ sa ) rather than the proposal 275 

PDF potentially offers more flexibility in tuning the algorithm. 276 

 277 

 278 
Figure 1. Variation of κ , a  and s  with standard deviation 0s  of proposal PDF 279 

 280 

3.3. Generalized concept 281 
The equality 122 =+ sa  that imposes constraint on the mean and variance of the 282 

candidate X ′  is highly non-trivial to reason from first principle based on the 283 

independent-component MCMC algorithm. Not only does the derivation in the last 284 

section show the transition PDF )|(| ⋅⋅′ XXp  satisfies detailed balance, it also reveals a 285 

new perspective for generating correlated but identically distributed standard Gaussian 286 

samples without explicitly using MCMC. Specifically, starting with a standard Gaussian 287 

sample X , one may ask, is it possible to generate another standard Gaussian sample 288 

X ′  that is correlated to X  by simply generating it as a Gaussian random variable 289 

whose mean and variance can possibly depend on X ? The derivation shows that the 290 
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answer is positive. Remarkably, the mean is just a fraction a  of X  and the variance is a 291 

constant independent of X , and they must satisfy the constraint 122 =+ sa . 292 

 293 

4. Illustrative examples 294 

In this section we present three examples to illustrate numerically the behavior of the 295 

independent-component MCMC algorithm for the equivalent problem with hidden variables, 296 

i.e., Algorithm I in Section 2.1. In the first two examples the number of random variables in 297 

the original problem is small, one in the first and seven in the second. In the third example 298 

there is one variable with multiplicative effect on the response, in addition to a large number 299 

of variables each having an infinitesimal effect. We shall demonstrate numerically that as the 300 

number of hidden variables increases Algorithm I behaviors asymptotically as Algorithm II 301 

(the limiting algorithm). Note that in reality one should implement Algorithm II rather than 302 

Algorithm I with a large number of hidden variables. The latter is performed here only for 303 

illustration.  304 

 305 

In the implementation of Subset Simulation, it is assumed that 1.00 =p  (level probability) 306 

and 1000=N  (number of samples per level). Three simulation levels (0,1,2) are performed, 307 

corresponding to target probabilities of 0.1, 0.01 and 0.001. The proposal PDF for all 308 

standard Gaussian variables and for all simulation levels is chosen as uniform distribution 309 

centered at the current sample with a maximum step length of 1=w . This corresponds to a 310 

standard deviation of ≈= 3/0 ws 0.58 associated with the proposal PDF and a standard 311 

deviation of ≈s 0.47 (see Figure 1) of the candidate from the current sample.  312 

 313 

4.1. Standard Gaussian response 314 

Consider the failure probability defined as )( bYP >  where XY =  and X  is standard 315 

Gaussian. Clearly the number of random variables in the original problem is 1=n . In the 316 

equivalent problem, X  is represented by nZX n
j j ′= ∑ ′
= /1 , where n

jjZ ′
=1}{  are i.i.d. 317 

standard Gaussian hidden variables and n′  is their number.  318 

 319 

Figure 2 shows selected statistics Algorithm I, estimated with 1000 independent runs. In 320 

Figure 2(a), the dashed line shows the acceptance probability in Step I. The solid line shows 321 
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the (conditional) acceptance probability in Step II given that the candidate is accepted in Step 322 

I. The product of these two probabilities gives the (unconditional) acceptance probability of 323 

the candidate as the next conditional failure sample. These probabilities are estimated from 324 

transitions between successive samples at each simulation level in each run and then 325 

averaged over the 1000 runs. The results for simulation levels 0, 1 and 2 are denoted by ‘x’, 326 

‘o’ and diamond. For simulation level 0 (‘x’) the acceptance probability in Step I is trivially 1 327 

because no MCMC is involved. For simulation levels 1 (‘o’) and 2 (diamond), the acceptance 328 

probability in Step I (dashed line) quickly rises to 1 as the number of hidden variables n′  329 

increases. This increase is geometric in nature because to reject the n′ -dimensional candidate 330 

in Step I it is required to reject the candidates in all the n′  components. The acceptance 331 

probability in Step II (solid line) is insensitive to n′ , although a slight increase is observed.        332 

 333 

 334 
Figure 2. Variation of (a) acceptance probability, (b) correlation factor and (c) c.o.v. of 335 

failure probability estimate with number of hidden variables n′  for Algorithm I. ‘x’, ‘o’, 336 
diamond – simulation level 0, 1, 2. Square – Algorithm II. In (a), dashed line – 337 

probability of candidate accepted in Step I; solid line – probability of candidate 338 
accepted in Step II given that it is accepted in Step I 339 

 340 

Figure 2(b) shows the correlation factor iγ  at different simulation levels ( 2,1,0=i ). Recall 341 

that [12] ∑ −
= −= 1
1 )()/1(2 sN

k isi kNk ργ  where 0/1 pNs =  is the number of samples per chain 342 

and )(kiρ  is the correlation coefficient of the indicator functions of failure at k  steps apart. 343 

The correlation coefficients and hence the correlation factor are estimated using the samples 344 

in the simulation. The correlation factor is presented as it directly affects efficiency. For 345 

example, if the samples at different levels are uncorrelated, the coefficient of variation 346 

(c.o.v.=standard deviation/mean) of the failure probability estimate at level i  is 347 
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approximately equal to 2/1
0 00 ]/)1)(1([∑ = −+= i

j ji Nppγα . In Figure 2(b), the correlation 348 

factor is trivially zero at simulation level 0 (‘x’, Direct Monte Carlo). At other levels it shows 349 

a moderate decrease with n′ , even though the acceptance probability in Step II (solid line, 350 

Figure 2(a)) is relatively constant. This suggests that increasing n′  may reduce the spatial 351 

correlation between the current sample and the candidate when it is accepted.  352 

 353 

Figure 2(c) shows the c.o.v. of the failure probability estimates at the three simulation levels. 354 

Recall that a Subset Simulation run produces estimates of threshold levels corresponding to 355 

fixed target failure probabilities, rather than estimates of failure probabilities at fixed 356 

threshold levels. To obtain the c.o.v. at fixed threshold levels, as shown in Figure 2(c), the 357 

‘reference’ (close to exact) threshold levels corresponding to fixed probabilities are obtained 358 

by averaging those from the 100 simulation runs. They are then interpolated to yield the 359 

reference threshold levels at failure probabilities 0.1, 0.01 and 0.001. The failure probability 360 

estimates of each simulation run at these threshold levels are obtained by interpolating the 361 

results in the run. For each threshold level calculating the sample c.o.v. of the failure 362 

probability estimates among the 100 runs yields the values shown in Figure 2(c). It is seen 363 

that the c.o.v. generally decreases with n′ , although the extent is small. 364 

 365 

The results obtained by Algorithm II are shown on the right end of Figure 2(a) to (c). They 366 

coincide visually with the results of Algorithm I for 100=′n . This is expected because 367 

Algorithm II is theoretically equivalent to Algorithm I for ∞→′n . Comparing Algorithm II 368 

with Algorithm I with no additional hidden variables ( 1=′n ), for simulation level 3 369 

(probability 0.001), the ratio of c.o.v. is 0.26/0.32 = 81%, i.e., a ratio of (0.81)2=66% in the 370 

required number of samples to achieve the same accuracy.   371 

 372 

4.2. Moment resisting frame 373 

Consider a moment resisting frame with uncertainty in moment capacities 51,...,θθ  at the 374 

joints and in the loads 6θ  and 7θ , as shown in Figure 3 [33]. These non-Gaussian random 375 

variables are represented by mapping standard Gaussian random variables 71,..., XX  to 376 

uniform variates on [0,1] and then to the target distribution via the inverse of their CDF. In 377 

the equivalent problem, iX  is further represented by n′  hidden variables n
jijZ ′
=1}{  as 378 
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nZX n
j iji ′= ∑ ′
= /1 . The number of random variables is thus n′7 . Failure is defined as 379 

collapse in any one of the three modes shown in Figure 3. This can be written as }1{ >Y  380 

where },,max{ 321 gggY =  and ig s are the (dimensionless) load to capacity ratios, which 381 

can be obtained by limit equilibrium as 382 

5431

76
1 22

55
θθθθ

θθ
+++

+
=g  

5421

6
2 2

5
θθθθ

θ
+++

=g  
432

7
3 2

5
θθθ

θ
++

=g   ( 17 ) 383 

 384 

 385 
Figure 3 Moment resisting frame problem 386 

  387 

Figure 4 shows the statistics of Algorithm I estimated using 1000 independent runs, 388 

analogous to Figure 2. In Figure 4(a) the acceptance probability in Step I is saturated at 1 389 

when 1=′n  because in this case there are already seven variables in the problem. Different 390 

from Figure 2(a), there is a slight decrease (rather than increase) in the acceptance probability 391 

in Step II (solid lines) with n′ . This reveals the problem-dependent effect of the number of 392 

hidden variables on the success rate of candidate lying in the failure region. Similar to Figure 393 

2(b), the correlation factor in Figure 4(b) shows a decreasing trend with n′ , suggesting a 394 

positive effect on reducing the spatial correlation between the candidate and the current 395 

sample.  396 

 397 

Similar to Figure 2(c), the c.o.v. of failure probability estimate in Figure 4(c) shows a small 398 

decrease with n′ . The results for Algorithm II (square) coincide with those for 100=′n . 399 

Comparing Algorithm II with Algorithm I with no additional hidden variables ( 1=′n ), for 400 

simulation level 3 the ratio of c.o.v. is 0.27/0.325 = 83%, i.e., a ratio of (0.83)2 = 69% in the 401 

required number of samples to achieve the same accuracy. This is similar to the last example.   402 

 403 

Failure Mode 1 Failure Mode 2 Failure Mode 3
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θ1

θ1,…, θ5: Lognormal, mean 60kN, c.o.v. 10%
θ6: Gumbel, mean 20kN, c.o.v. 30%
θ7: Gumbel, mean 25kN, c.o.v. 30%
All variates independent 
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 404 
Figure 4. Variation of (a) acceptance probability, (b) correlation factor and (c) c.o.v. of 405 
failure probability estimate with number of hidden variables n′  for Algorithm I. Same 406 

legend as Figure 2 407 
 408 

4.3. First passage problem with uncertain excitation intensity 409 
Consider a single-degree-of-freedom structure starting from rest and subjected to white noise 410 

excitation. The displacement )(ty  satisfies the following governing equation: 411 

)()()(2)( 2 tWtytyty =++ ωζω         ( 18 ) 412 

where pω 2= rad/sec is the natural frequency, =ζ 2% is the damping ratio and )(tW  is 413 

white noise with power spectral density (PSD, one-sided) S  ( Hz/N2 ). The PSD S  is 414 

exponentially distributed with mean Hz/0.001N2
0 =S . The excitation is generated in 415 

discrete time by jZtStjW 12/)( ∆=∆  ( ,...2,1=j ), where =∆t 0.05 sec is the time 416 

interval and ,...2,11 }{ =jjZ  are i.i.d. standard Gaussian. Failure is defined as the 417 

exceedance of |)(| ty  over threshold b  at any time instant between 0 to 10 sec, i.e., 418 

}|)(|{max ,...,1 btyF jtnj >= =  where =tn 10/0.05 = 200.  419 

 420 

The random variables in the original problem comprise the exponentially distributed PSD S  421 

and i.i.d. standard Gaussian tn
jjZ 11 }{ =  that represent the excitation. Note that S  is only a 422 

single variable but it has a multiplicative effect on the response. On the other hand, 423 

tn
jjZ 11 }{ =  appear in large number but each has an additive and infinitesimal effect on 424 

the response. In the equivalent problem we represent S  by i.i.d. standard Gaussian 425 
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hidden variables n
jjZ ′
=12 }{  as )/(ln 1 20 nZSS n

j j ′Φ−= ∑ ′
= , which can be verified using 426 

inversion principle to give an exponentially distributed variate with mean 0S . The 427 

random variables in the equivalent problem therefore comprise tn
jjZ 11 }{ =  and n

jjZ ′
=12 }{ , 428 

and their total number is nnt ′+  ( =tn 200).  429 

 430 

Figure 5 shows the statistics of Algorithm I estimated using 1000 independent runs, 431 

analogous to Figure 2. In Figure 5(a) the acceptance probability in Step I is saturated at 1 432 

when 1=′n  because in this case there are already 201 variables in the problem. The 433 

acceptance probability in Step II (solid line) is insensitive to n′ . The same is also true for the 434 

correlation factor in Figure 5(b) and the c.o.v. of failure probability estimate in Figure 5(c). 435 

To within statistical error the results for Algorithm II (square) are similar to those for 436 

100=′n . The efficiency of Algorithm II is practically the same as Algorithm I with no 437 

additional hidden variables ( 1=′n ).   438 

 439 

 440 
Figure 5. Variation of (a) acceptance probability, (b) correlation factor and (c) c.o.v. of 441 
failure probability estimate with number of hidden variables n′  for Algorithm I. Same 442 

legend as Figure 2 443 
 444 

5. Derivation of limiting behavior 445 

In this section we derive the limiting expression ( ∞→′n ) for the conditional PDF 446 

)|(| iiiXiX xxp ′′  in (8) according to the algorithm in Section 2.1. Clearly, this PDF 447 

depends on the proposal PDF *
ip  but the functional form will be identical for different i . 448 
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It does not depend on the failure event because iX  is given. It is therefore sufficient to 449 

study )|(| iiiXiX xxp ′′  for a generic i . To simplify notation, we shall omit the index i  in 450 

the derivation. That is, the PDF shall be denoted by )|(| xxp XX ′′ , the proposal PDF 451 

shall be denoted by *p ; and iX  shall be denoted by  452 

∑
′

=′
=

n

j
jZ

n
X

1

1           ( 19 ) 453 

where n
jjZ ′
=1}{  are hidden variables. Similarly, iX ′  shall be denoted by  454 

∑
′

=
′

′
=′

n

j
jZ

n
X

1

1           ( 20 ) 455 

Here, n
jjZ ′
=′ 1}{  are the candidates of hidden variables generated according to the 456 

following, adapted from the inner loop of the algorithm in Section 2.1 (omitting index i ): 457 

 458 

For nj ′= ,...,1  459 

1. Generate jξ  from the proposal PDF )(*
jj Zp −ξ  and jU  uniformly on [0,1]. 460 

2. Calculate )(/)( jjj Zr φξφ= . 461 

         Set jjZ ξ=′  if jj rU ≤ . Otherwise set jj ZZ =′ .   462 

End j  463 

 464 

We shall first study the PDF of n
jjZ ′
=1}{  conditional on xX = . We then obtain the 465 

conditional PDF of X ′  by analyzing the transition from jZ  to jZ ′  ( nj ′= ,...,1 ). The 466 

latter is analytically intractable for each j  but their overall effect on X ′  is manageable 467 

in the limit as ∞→′n . 468 

  469 

5.1. Conditional distribution of hidden variables 470 

Unconditionally, n
jjZ ′
=1}{  are i.i.d. standard Gaussian. The condition xX =  imposes a 471 

linear constraint xnZn
j j =′∑ ′
= /1  on the standard Gaussian vector T

nZZ ],...,[ 1=Z . 472 

This constraint can be written as 473 
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xT =Zb     1b
nn

T
′

=
′

=
1]1,...,1[1     ( 21 ) 474 

where T]1,...,1[=1  is an n′ -by-1 vector of ones. Let n
j

n
j R ′

=
′∈ 1}{a  be an orthonormal 475 

basis with ba =1 . By rotational symmetry of standard Gaussian vectors, if there is no 476 

constraint we can write ∑ ′
== n

k kk1 aZ ξ  where T
n ],...,[ 1 ′= ξξξ  is an i.i.d. standard 477 

Gaussian vector. Note that 11 1 ξξ ==∑ ′
=

n
k k

T
k

T aaZb  since 111 =aaT  and 01 =k
T aa  for 478 

nk ′= ,...,2 . This means that (21) only imposes a constraint on 1ξ , being x=1ξ , while 479 

},...,{ 2 n′ξξ  remain unconstrained. The vector Z  under (21) can therefore be represented 480 

as the sum of bx  and a standard Gaussian vector in the orthogonal complement of b . 481 

The latter can be obtained by taking out the projection along b  from ξ , i.e., bξbξ )( T− . 482 

As a result,  483 

ξ1bξbξbZ +
′

−
′

=−+= ∑
′

=
)1(])([

1

n

k
k

T
nn

xx ξ       ( 22 ) 484 

after substituting n′= /1b . Reading the j -th component of Z , 485 

∑
′

=′
−+

′
=

n

k
kjj nn

xZ
1

1 ξξ          ( 23 ) 486 

Using this representation, it can be established that n
jjZ ′
=1}{  are jointly Gaussian with 487 

nxxXZE j ′== /]|[ , nxXZ j ′−== /11]|var[  and conditional covariance488 

nxXZZ kj ′−== /1]|,cov[  ( kj ≠ ). Consequently,  489 

)]()(
2
1exp[||)2()( 12/12/

| 1zC1zCzZ n
x

n
xp Tn

xX ′
−

′
−−= −−′−

= p    ( 24 ) 490 

where Tn 11IC 1−′−=  is the covariance matrix and nR∈I  denotes the identity matrix. 491 

Correspondingly, 492 

])(
2
1exp[

)/11(2
1)( 2

| n
xz

n
zp jjxXjZ ′

−−
′−

== p
      ( 25 ) 493 

])2(
2
1)(

2
1)(

2
1exp[)21()2(

),(

2222/11

|

n
xzz

nn
xz

n
xz

n

zzp

kjkj

kjxXZZ kj

′
−+

′
−

′
−−

′
−−

′
−= −−

=

p
  ( 26 ) 494 
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Using a Taylor series with respect to the small parameter n′= /1ε , it can be shown 495 

that, as ∞→′n ,  496 

]}2)1([
2
11){(~)( 22

| +−
′

+
′

+= zx
n

z
n
xzzp xXjZ φ       ( 27 ) 497 

]}2)[(
2

1)(1){()(~

),(

2
2

|

−+
′
−

++
′

+

=

kjkjkj

kjxXkZjZ

zz
n

xzz
n
xzz

zzp

φφ
     ( 28 ) 498 

where ‘~’ reads ‘asymptotic to’, denoting mathematically that the ratio of the LHS to the 499 

RHS is equal to 1 in the limit. These asymptotic expressions shall be used for deriving 500 

the limiting behavior of X ′  in the next subsection. 501 

 502 

5.2. Conditional distribution of X ′  503 
According to the algorithm,  504 

∑
′

=
′

′
=′

n

j
jZ

n
X

1

1           ( 29 ) 505 

where jZ ′  is the candidate for jZ . It can be represented as 506 

jjjj WIZZ +=′           ( 30 ) 507 

where jW  is the random increment from jZ  and is distributed as the proposal PDF *p ;  508 

))(/)(( jjjjj ZWZUII φφ +<=  is the indicator function of acceptance; and jU  is 509 

uniformly distributed on ]1,0[ . The indicator function depends on jZ , jW  and jU , 510 

which are mutually independent. Given xX = , the conditional PDF of jZ  is given by 511 

(25). Correspondingly, 512 

∑
′

=′
+=

n

j
jjWI

n
xX

1

1'        ( xX = )  ( 31 ) 513 

 514 

5.2.1. Expectation 515 
Taking conditional expectation on (31), 516 

∑
′

=
=

′
+==

n

j
jj xXWIE

n
xxXXE

1
]|[1]|'[        ( 32 ) 517 
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Asymptotic expressions ( ∞→′n ) for expectations involving the products of jI  and jW  518 

are analyzed in Section 8. It is shown in Section 8.1 that nxxXWIE jj ′−= /2~]|[ κ  519 

where ∫
∞

−Φ=
0

*2 )2/()( dwwwpwκ  as in (11). Substituting into (32), 520 

axxxXXE =−= )21(~]|'[ κ         ( 33 ) 521 

where κ21−=a  as in (9). It is shown in Section 10 that 10 ≤≤ κ , which implies 522 

11 ≤≤− a .  523 

 524 

5.2.2. Variance 525 
Taking conditional variance on (31), 526 

∑∑
′

=

′

=
=

′
==

n

j

n

k
kkjj xXWIWI

n
xXX

1 1
]|,cov[1]|'var[       ( 34 ) 527 

where ]|,cov[ xXWIWI kkjj =  denotes the conditional covariance between jjWI  and 528 

kkWI . Note that 529 

n
xxXWIWIE

xXWIExXWIExXWIWIE

xXWIWI

kkjj

kkjjkkjj

kkjj

′
−=

==−==

=

2
24]|[~

]|[]|[]|[

]|,cov[

κ

     ( 35 ) 530 

since nxxXWIE jj ′−= /2~]|[ κ  . Substituting (35) into (34) gives 531 

22

1 1
4]|[1~]|'var[ xxXWIWIE

n
xXX

n

j

n

k
kkjj κ−=

′
= ∑∑

′

=

′

=
     ( 36 ) 532 

The double sum can be evaluated by separating the terms for kj =  and kj ≠ : 533 

∑∑∑∑
′

≠

′

=

′

=

′

=
=

′
+=

′
==

′

n

kj
kkjj

n

j
jj

n

j

n

k
kkjj xXWIWIE

n
xXWIE

n
xXWIWIE

n
]|[1]|[1]|[1

1

2

1 1
 ( 37 ) 534 

Since },...,1:{ njWI jj ′=  are identically distributed and have the same correlation 535 

among each other,  536 

]|[]|[ 2
11

2 xXWIExXWIE jj ===     nj ′= ,...,1    ( 38 ) 537 

]|[]|[ 2211 xXWIWIExXWIWIE kkjj ===    kj ≠     ( 39 ) 538 

Substituting into (37), 539 
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]|[]|[~

]|[)(1]|[1

]|[1

2211
2

11

2211
22

11

1 1

xXWIWIEnxXWIE

xXWIWIEnn
n

xXWIEn
n

xXWIWIE
n

n

j

n

k
kkjj

=′+=

=′−′
′

+=′
′

=

=
′ ∑∑

′

=

′

=

     ( 40 ) 540 

It is shown in Sections 8.2 and 8.3 that κ4~]|[ 2
11 xXWIE =  and 541 

nxxXWIWIE ′−= /)1(4~]|[ 22
2211 κ . Substituting into (40) and then the resulting 542 

expression into (36) gives 543 

244~]|'var[ κκ −= xXX          ( 41 ) 544 

Surprisingly, the variance of 'X  does not depend on X . Since 10 ≤≤ κ , the expression 545 

on the RHS of (41) is always positive.  546 

 547 

5.2.3. Central Limit Theorem 548 

Recall from (31) that, given xX = , we can write nWIxX n
j jj ′+=′ ∑ ′
= /1 . Note that 549 

n
jjjWI ′
=1}{  is a sequence of identically distributed but correlated random variables. As 550 

∞→′n , X ′  is asymptotically Gaussian if the proposal PDF has finite variance, i.e., 551 

∞<][ 2
jWE . This can be shown using the Central Limit Theorem for correlated random 552 

variables [34], which requires ∞<= ]||[| xXWIE jj  and ∞<= ]|var[ xXWI jj  553 

( nj ′= ,...,1 ) for every n′ ; and ∞<=′ ]|var[ xXX  as ∞→′n . The first two conditions can 554 

be established using Cauchy-Schwartz inequality: 555 

∞<≤==≤= 2/122/122/12 ][]|[]|[]||[| jjjjj WExXWExXIExXWIE    ( 42 ) 556 

∞<==≤=≤= ][]|[]|[]|var[ 2222
jjjjjj WExXWExXWIExXWI    ( 43 ) 557 

where we have used the fact that 10 ≤≤ jI  and jW  does not depend on X . The last 558 

condition on the asymptotic variance of X ′  follows directly from (41) that 559 

∞<−==′ 244]|var[ κκxXX  as ∞→′n .  560 

 561 
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5.2.4. Detailed balance 562 
Since each jZ ′  is generated according to MCMC, the one-dimensional PDF )|(| ⋅⋅′ jZjZp  563 

satisfies detailed balance with a stationary PDF )(⋅φ : 564 

)()|()()|( || jjjjZjZjjjjZjZ zzzpzzzp ′′=′ ′′ φφ       ( 44 ) 565 

As a result the joint conditional PDF )|(| zzZZ ′′p  also satisfies detailed balance with a 566 

stationary joint PDF )(⋅φ : 567 

)()|()()|( || zzzzzz ZZZZ ′′=′ ′′ φφ pp         ( 45 ) 568 

The above argument stems directly from the original independent-component algorithm. 569 

 570 

The transition PDF from X  to X ′  also satisfies detailed balance with the stationary 571 

PDF )(⋅φ :  572 

)()|()()|( || xxxpxxxp XXXX ′′=′ ′′ φφ        ( 46 ) 573 

This can be shown as follow. From the foregoing results, given xX = , X ′  is 574 

asymptotically Gaussian with mean xax )21( κ−=  and variance 22 44 κκ −=s . That is, 575 

])(
2
1exp[

2
1)|( 2

2| axx
ss

xxp XX −′−=′′ p
    ∞→′n   ( 47 ) 576 

Starting from the LHS of (46) and using (47), 577 

]})([
2
1exp{

2
1                           

)
2
1exp(

2
1])(

2
1exp[

2
1)()|(

2
2

2

22
2|

x
s

axx
s

xaxx
ss

xxxp XX

+
−′

−=

−×−′−=′′

p

pp
φ

    ( 48 ) 578 

Completing the square on x , the term in the exponent can be written as 579 

22

2
2

222

22
2

2

2
)()(

sa
x

sa
xax

s
sax

s
axx

+

′
+

+

′
−

+
=+

−′       ( 49 ) 580 

Substituting into (48) gives 581 

)
2
1exp(

2
1])(

2
exp[

2
1)()|( 22

2
2

222

22
|

sa
x

sa
xax

s
sa

s
xxxp XX

+

′
−×

+

′
−

+
−=′′ pp

φ   ( 50 ) 582 

This is equal to )()|(| xxxp XX ′′′ φ , i.e., the RHS of (46), if and only if 122 =+ sa . This 583 

condition is always satisfied because 144)21( 2222 =−+−=+ κκκsa . 584 

 585 
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6. Conclusions 586 

By setting up an equivalent problem with arbitrary number of hidden variables for any 587 

given problem, we have investigated the limiting behavior of the independent-588 

component MCMC algorithm (Algorithm I) for generating failure samples, which is 589 

conventionally used in Subset Simulation for risk assessment of rare events in complex 590 

systems. The results are remarkably simple and they lead to a simple limiting algorithm 591 

(Algorithm II) for generating failure samples. The choice of the proposal distribution is 592 

no longer relevant and the algorithm is directly controlled through the standard 593 

deviation of the candidate from the current sample. The limiting algorithm coincides 594 

with a method [31] recently proposed by independent researchers, where a joint 595 

Gaussian distribution was ingeniously imposed. The present paper provides theoretical 596 

reasoning and insights into the method.  597 

 598 

The numerical examples demonstrate the effect of the number of hidden variables in the 599 

equivalent problem and the convergence of results to the limiting algorithm. For the 600 

examples presented there is only a small reduction in the c.o.v. of the failure probability 601 

estimate brought by the limiting algorithm. The significance of the algorithm lies in its 602 

simplicity and the general discovery that the candidate can in fact be generated as a 603 

Gaussian vector whose statistics depend on the current sample. This offers new 604 

perspectives and possibilities for increasing efficiency by tuning the statistics a priori or 605 

adaptively based on accumulated samples. Development along this line can be found in 606 

[31].  607 

 608 

7. Acknowledgements 609 

The work described in this paper is partially supported by University of Liverpool Grant 610 

EGG10034 and a grant from the Research Grants Council of the Hong Kong Special 611 

Administrative Region, China (Project No. CityU8/CRF/13G). 612 

 613 

References 614 

[1] Zio E. Reliability engineering: Old problems and new challenges. Reliability 615 

Engineering & System Safety 2009;94:125–41. 616 



24 
 

[2] Berger J, Buckle I, Greene M. The 2010 Canterbury and 2011 Christchurch New 617 
Zealand Earthquakes and the 2011 Tohoku Japan Earthquake : Emerging Research 618 

Needs and Opportunities, Earthquake Engineering Research Institute, CA, 2012. 619 

[3] Aven T, Krohn BS. A new perspective on how to understand, assess and manage risk 620 

and the unforeseen. Reliability Engineering and System Safety 2014;121:1–10. 621 

[4] Devroye L. Non-uniform random variate generation, Springer Verlag, New York. 1985.  622 

[5] Rubinstein RY. Systems, Models, Simulation, and the Monte Carlo Methods. 623 

Simulation and the Monte Carlo Method, NY, 1981. 624 

[6] Jun S. Liu. Monte Carlo Strategies in Scientific Computing, Springer, NY, 2001. 625 

[7] Robert CP, Casella G. Monte Carlo Statistical Methods, Springer, NY, 2004. 626 

[8] Schuëller GI, Pradlwarter HJ, Koutsourelakis PS. A critical appraisal of reliability 627 

estimation procedures for high dimensions. Probabilistic Engineering Mechanics 628 

2004;19:463–74.  629 

[9] Schuëller GI, Pradlwarter HJ. Benchmark study on reliability estimation in higher 630 

dimensions of structural systems – An overview. Structural Safety 2007;29:167–82. 631 

[10] Au SK, Beck JL. Important sampling in high dimensions. Structural Safety 632 

2003;25:139–63. 633 

[11] Katafygiotis LS, Zuev KM. Geometric insight into the challenges of solving high-634 

dimensional reliability problems. Probabilistic Engineering Mechanics 2008;23:208–635 

18. 636 

[12] Au SK, Beck JL. Estimation of small failure probabilities in high dimensions by 637 

subset simulation. Probabilistic Engineering Mechanics 2001;16:263–77. 638 

[13] Au SK, Beck JL. Subset Simulation and its Application to Seismic Risk Based on 639 

Dynamic Analysis. Journal of Engineering Mechanics 2003;129:901–17. 640 

[14] Au SK, Cao ZJ, Wang Y. Implementing advanced Monte Carlo simulation under 641 

spreadsheet environment. Structural Safety 2010;32:281–92. 642 

[15] Au SK, Wang Y. Engineering Risk Assessment with Subset Simulation, John 643 

Wiley & Sons, Singapore, 2014. 644 

[16] Au SK. Reliability-based design sensitivity by efficient simulation. Computers 645 

and Structures, vol. 83, 2005, p. 1048–61. 646 

[17] Ching J, Hsieh Y-H. Local estimation of failure probability function and its 647 

confidence interval with maximum entropy principle. Probabilistic Engineering 648 

Mechanics 2007;22:39–49. 649 

[18] Song S, Lu Z, Qiao H. Subset simulation for structural reliability sensitivity 650 

analysis. Reliability Engineering & System Safety 2009;94:658–65. 651 



25 
 

[19] Jensen HA. Structural optimization of linear dynamical systems under stochastic 652 

excitation: a moving reliability database approach. Computer Methods in Applied 653 

Mechanics and Engineering 2005;194:1757–78. 654 

[20] Ching J, Hsieh Y-H. Approximate reliability-based optimization using a three-655 

step approach based on subset simulation. Journal of Engineering Mechanics 656 

2007;133:481–93. 657 

[21] Li H-S, Au S-K. Design optimization using Subset Simulation algorithm. 658 

Structural Safety 2010;32:384–92. 659 

[22] Taflanidis AA, Beck JL. Stochastic subset optimization for reliability 660 

optimization and sensitivity analysis in system design. Computers & Structures 661 

2009;87:318–31. 662 

[23] Dubourg V, Sudret B, Bourinet J-M. Reliability-based design optimization using 663 

kriging surrogates and subset simulation. Structural and Multidisciplinary 664 

Optimization 2011;44:673–90. 665 

[24] Wang Q, Lu Z, Zhou C. New topology optimization method for wing leading-edge 666 

ribs. Journal of Aircraft 2011;48:1741–8. 667 

[25] Ching J, Beck JL, Au SK. Hybrid subset simulation method for reliability 668 

estimation of dynamical systems subject to stochastic excitation. Probabilistic 669 

Engineering Mechanics 2005;20:199–214. 670 

[26] Katafygiotis L, Cheung SH. A two-stage subset simulation-based approach for 671 

calculating the reliability of inelastic structural systems subjected to Gaussian 672 

random excitations. Computer Methods in Applied Mechanics and Engineering 673 

2005;194:1581–95. 674 

[27] Au SK. Augmenting approximate solutions for consistent reliability analysis. 675 

Probabilistic Engineering Mechanics 2007;22:77–87. 676 

[28] Zuev KM, Katafygiotis LS. Modified Metropolis–Hastings algorithm with delayed 677 

rejection. Probabilistic Engineering Mechanics 2011;26:405–12. 678 

[29] Echard B, Gayton N, Lemaire M. AK-MCS: an active learning reliability method 679 

combining Kriging and Monte Carlo simulation. Structural Safety 2011;33:145–54. 680 

[30] Papadopoulos V, Giovanis DG, Lagaros ND, Papadrakakis M. Accelerated subset 681 

simulation with neural networks for reliability analysis. Computer Methods in 682 

Applied Mechanics and Engineering 2012;223:70–80. 683 

[31] Metropolis N, Rosenbluth AW, Rosenbluth MN et al. Equations of state calculations 684 

by fast computing machines. Journal of Chemical Physics 1953; 21:1087–91. 685 



26 
 

[32] Papaioannou I, Betz W, Zwirglmaier K, Straub D, MCMC algorithms for Subset 686 

Simulation, Probabilistic Engineering Mechanics 2015; 44:89-103. 687 

[33] Schueller GI, Bucher CG, Bourgund, U, Quypornprasert W, On efficient computational 688 

schemes to calculate structural failure probabilities. Probabilistic Engineering Mechanics 689 

1989; 4(1):10–18. 690 

[34] DasGupta A. Asymptotic theory of statistics and probability. Springer, NY, 2008. 691 

[35] Brookes M, The Matrix Reference Manual, 692 

/http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.htmlS, 2005 [online]. 693 

8. Appendix. Expectations involving jI  694 

In this appendix we derive the asymptotic expressions for ]|[ 11 xXWIE = , 695 

]|[ 2
11 xXWIE =  and ]|[ 2211 xXWIWIE = . These expressions are used in Section 4. Since 696 

n
jjjWI ′
=1}{  are i.i.d., the results can be used for ]|[ xXWIE jj = , ]|[ 2 xXWIE jj =  and 697 

]|[ xXWIWIE kkjj =  ( kj ≠ ). 698 

 699 

8.1. Expression for ]|[ 11 xXWIE =  700 

Recall that ))(/)(( 11111 ZWZUII φφ +<= , where 111 ,, ZWU  are mutually independent; 701 

1U  is uniform on [0,1]; and 1W  is distributed as *p . The condition }{ xX =  does not 702 

affect the distribution of 1U  or 1W  but 1Z . From (27): 703 

)1)((~)(|1 z
n
xzzp xXZ ′

+= φ       ∞→′n   ( 51 ) 704 

Using this expression, 705 
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be an indicator function variable where U , W  and V  are mutually independent; U  is 709 

uniform on ]1,0[ ; W  is distributed as *p ; and V  is a standard Gaussian. Then (52) can 710 

be written as 711 

][][~]|[ 11 JWVE
n
xJWExXWIE
′

+=        ( 54 ) 712 

The expectations on the RHS no longer depend on x  or n′  and their determination is 713 

purely an integration problem. They are investigated in Section 9. It is shown that 714 

0][ =JWE  and κ2][ −=JWVE  where ∫
∞

−Φ=
0

*2 )2/()( dwwwpwκ  as in (11). 715 

Substituting into (54) gives 716 

n
xxXWIE
′

−=
κ2~]|[ 11       ∞→′n   ( 55 ) 717 

 718 

8.2. Expression for ]|[ 2
11 xXWIE =  719 

Using the same technique in Section 8.1,  720 

][][~]|[ 222
11 VJWE

n
xJWExXWIE
′

+=        ( 56 ) 721 

where U , V  and W  are defined as before. It is shown in Section 9 that 722 

04][ 2 ≠= κJWE  and so it is the leading order term, giving  723 

κ4~]|[ 2
11 xXWIE =      ∞→′n     ( 57 ) 724 

 725 

8.3. Expression for ]|[ 2211 xXWIWIE =  726 

The expectation of ]|[ 2211 xXWIWIE =  involves the joint PDF of 1Z  and 2Z . Using (28), 727 
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Using this expression, 729 
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where 731 
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φ +
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212121 ,,,,, WWVVUU  are mutually independent; 21,UU  are uniformly distributed on ]1,0[ ; 733 

21,VV  are standard Gaussian; 21,WW  are distributed as the proposal PDF *p .  734 

 735 

For the first term in (59), 736 

0][][][ 22112211 == WJEWJEWJWJE        ( 61 ) 737 

since 0][][ 2211 == WJEWJE  from Section 9. The second term is also zero because 738 

00][][][][ 1112211112211 =×== VWJEWJEVWJEVWJWJE      ( 62 ) 739 

0][0][][][ 2222221122211 =×== VWJEVWJEWJEVWJWJE      ( 63 ) 740 

For the third term in (59), note that 741 
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The following shows that only the third term in (64) is non-zero: 743 
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2
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22
111222111212211 4][][][][ κ=== VWJEVWJEVWJEVVWJWJE     ( 67 ) 746 

after using κ2][ 111 −=VWJE  derived in Section 9. For the last term in (64), 747 

0][ 2211 =WJWJE  as shown earlier in (61). Thus, 22
212211 4]}2)[({ κ=−+VVWJWJE . 748 

Substituting into (59) gives 749 

n
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 751 

9. Appendix. Expectations involving J   752 

In this appendix we derive the expressions for ][JWE , ][JWVE  and ][ 2JWE  where  753 
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is an indicator function variable; U , W  and V  are mutually independent; U  is uniform 755 

on ]1,0[ , W  is distributed as *p  and V  is a standard Gaussian. The technique is 756 

outlined as follow. First, we integrate out U  to obtain, for any qp, , 757 
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To evaluate the double integral the domain of ),( wv  is separated into 1D  and 2D : 759 
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Correspondingly,  761 
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Note that ]2/)2(exp[)(/)( vwwvwv +−=+ φφ  and so  763 

}0)2(:),{( 2
1 >+∈= vwwRwvD   }0)2(:),{( 2

2 ≤+∈= vwwRwvD   ( 73 ) 764 

These domains are shown in Figure 6. With the help of this figure the integrals over 1D  765 

and 2D  are determined in individual cases. 766 

 767 

 768 
Figure 6. Integration domain 1D  and 2D  769 

 770 

For ][JWE , the integral over 1D  is given by 771 
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Similarly, the integral over 2D  is given by 773 
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Combining the integral over 1D  and 2D  we conclude that  775 
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 777 

For ][JWVE , following similar steps gives 778 
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Combining (77) and (78) gives, 781 
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where ∫
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For ][ 2JWE , following similar steps gives 785 
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Substituting (80) and (81) into (61) gives 788 

κ4][ 2 =JWE            ( 82 ) 789 

 790 

10. Appendix. Lower and upper bound for κ   791 

This appendix shows that ∫
∞

−Φ=
0

*2 )2/()( dwwwpwκ  defined in (11) is bounded 792 

between 0 and 1. Let ∫ ∞−
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w
dzzpwP )()( **  be the CDF corresponding to *p . Clearly, 793 

0≥κ . To show 1≤κ , integrating by parts gives 794 
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The two integrals on the RHS are non-negative. Overestimating the first with 1)(* ≤wP  796 

and underestimating the second with 2/1)(* ≥wP  (since 0>w  and )(* wp  is symmetric 797 

about 0), 798 
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Integrating by parts, the second integral becomes 800 
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Substituting into (84) gives 802 
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