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External validation of binary clinical risk-prediction models is vital. We provide 30	

strategies for accomplishing this. 31	

 32	
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INTRODUCTION 34	

Clinical risk-prediction models (CRPMs, also known as prognostic models or 35	

risk score models) serve an important role in healthcare,1 particularly for binary 36	

adverse events (in-hospital, 30-day, or operative mortality) after cardiac, thoracic, 37	

and vascular surgery. These models may be applied to 3 different objectives: 1) to 38	

assess patient risk, which surgeons and patients can then factor in to healthcare 39	

decisions; 2) to stratify risk, both for clinical decision-making and inclusion criteria in 40	

a controlled randomized trial,2 and 3) to assess and compare healthcare outcomes 41	

among providers (benchmarking). The comparison of observed with expected 42	

outcomes, accounting for statistical uncertainty, can identify underperforming 43	

healthcare providers for quality improvement interventions.3 44	

The wide-ranging importance of CRPMs in the cardiovascular specialty 45	

means that stakeholders must have confidence in them. A poorly performing model 46	

can lead to suboptimal decision-making, misinformed patients, false reassurance of 47	

a healthcare provider’s performance, or false stigmatization of the provider. 48	

Confidence is established by validating the model.4  49	

Model validation can be internal, temporal, or external. Internal model 50	

validation is one element of CRPM development, usually published alongside the 51	

model to confirm the model performs well for the training data. External validation, 52	

which evaluates the generalizability (or transportability) of the model to other groups 53	

of patients, is fundamental to demonstrating a model is appropriate for adoption in 54	

clinical practice.4 In cardiovascular and thoracic surgery, the majority of CRPMs 55	

encountered will predict binary outcomes, which were created using multivariable 56	

regression techniques, in particular logistic regression. Therefore, we focus our 57	

discussion to this area. However, the general principles and need for external 58	
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validation apply to other outcome types and models, e.g. time-to-event data,5,6 as 59	

well as to non-regression techniques, e.g. machine learning approaches.7 60	

 61	

MODEL PERFORMANCE CONCEPTS 62	

Performance of CRPMs is typically based on assessing two important 63	

features: calibration and discrimination.6 64	

Calibration is the accuracy of the model for predicting events relative to 65	

observed events in groups of patients. For example, if the mean predicted event 66	

occurrence is 5% in a patient group, but the observed event occurrence is 10%, then 67	

we conclude the model is not well calibrated because it underpredicts. 68	

Discrimination is the ability of a model to distinguish between patients who 69	

experienced the event and those who did not. Discrimination is measured using the 70	

area under the receiver-operating-characteristic curve (AUROC), also referred to as 71	

the concordance (c-)statistic or c-index.5 This value has a meaningful interpretation. 72	

If we randomly select 2 patients, 1 who experienced the event and 1 who did not, 73	

then the AUROC is equivalent to the probability that the risk score attributed to the 74	

former is greater than that attributed to the latter. An AUROC of 1 indicates perfect 75	

classification; a value of 0.5 is equivalent to tossing a fair coin. 76	

Other aspects of performance assessment include clinical usefulness, 77	

impact,8 and overall performance measures such as the Brier score9 and 78	

concordance index, particularly for time-related events. 79	

 80	

DESIGNING AND REPORTING AN EXTERNAL VALIDATION 81	

When designing a validation study, thought must be given to several key 82	

elements. 83	
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Selection of patients. The selection of patients used to externally validate a 84	

CRPM might differ from those used to develop the model. These differences might 85	

be temporal or geographical, or related to clinical setting, inclusion or exclusion 86	

criteria, definitions, diagnostic techniques, or inherent baseline case-mix differences 87	

between the two populations. It is important to highlight any differences that might 88	

affect model transportability between the validation and original study sample, 89	

particularly with validation of general all-surgery models (e.g. the EuroSCORE) 90	

within procedural10 or operative subgroups.11 91	

Risk factor data. It goes without saying that calculating a risk score requires 92	

access to all variables that comprise the risk score. One potential issue is conflict in 93	

variable definitions. For example, a registry that only collects binary data on whether 94	

pulmonary artery (PA) systolic pressure is >60 mmHg (a risk factor in the logistic 95	

EuroSCORE model) would not be able to compute the EuroSCORE II risk score, 96	

which includes model coefficients for PA systolic pressures of 31 – 55 mmHg and 97	

>55 mmHg. This is primarily an issue for retrospective validation studies, as clinical 98	

registries can be updated to capture contemporary risk-score data. 99	

Missing data. One cannot calculate a risk score without access to data for 100	

variables that comprise the CRPM. If a model contains a risk factor such as 101	

preoperative serum creatinine, but these data are sparsely available in the dataset, 102	

then in many cases the risk score cannot be calculated. Case-complete analyses—103	

those that delete subjects with missing data for required variables—might lead to 104	

bias if those subjects are not representative of the whole population.12 In certain 105	

cases, reasonable estimates and assumptions can be made based on clinical 106	

expertise or additional information in the dataset. For example, a number of variables 107	

in Society of Thoracic Surgeons (STS) risk models have coefficients set to 0 for 108	
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some variables in some models; if one is validating such a model, missing data for 109	

such a variable is of no consequence. Alternatively, statistical imputation or subset 110	

analysis techniques might be applied to compensate.13,14 If a validation study 111	

specifically excludes certain groups of patients (for example, emergency surgery, 112	

reoperations, or endocarditis), imputation of 0 is an accurate and appropriate 113	

substitution, but the validation is only partial. In any case, it is always necessary to 114	

summarize the frequency of missing data and present methods for managing it and 115	

its assumptions. 116	

Sample size. Considerations regarding sample size should not be limited to 117	

randomized control trials. Single-center validation studies will often have a limited 118	

pool of subjects, especially for subgroup analyses, and increasing the sample size 119	

will require widening the study period, which could come at a price (see comment on 120	

calibration drift below). When designing a study, sample size (number of subjects) 121	

alone is not enough; one must also consider effective sample size (number of 122	

events). Relatively little attention has been given to this matter, but some studies 123	

have recommended a minimum of 100 events and 100 non-events for validation 124	

studies, and in certain applications, larger effective sizes will be required to obtain 125	

adequate power.15,16 126	

Outcome definitions. Many well-known CRPMs in cardiac surgery predict 127	

early or operative mortality, including the logistic EuroSCORE17 and STS Cardiac 128	

Surgery Risk Models.18–20 Operative mortality is generally accepted to mean death 129	

within 30 days (or later if the patient has not been discharged within 30 days).21 130	

However, other definitions of mortality exist, such as in-hospital mortality.22 Two 131	

large databases reported operative mortality to be 4.63% and 3.57%, compared with 132	

in-hospital mortality of 4.02% and 2.94%, respectively.23,24 In both cases, in-hospital 133	
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mortality was approximately 0.6% lower. In-hospital mortality is generally easier to 134	

robustly measure, whereas 30-day mortality requires post-discharge follow-up for 135	

most patients.25 Therefore, it is common to see models validated against in-hospital 136	

mortality. In this example, we would expect the model to over-predict mortality 137	

relative to the observed data. It is reasonable to assess the model performance for 138	

this similar endpoint; however, this subtlety should be borne in mind when designing 139	

a study, particularly if the objective of the study is to compare models that have 140	

different outcome definitions. Similar considerations apply to cases where the 141	

definition of a major postoperative complication used for model development differs 142	

from that in the validation dataset. 143	

Large study windows. One simple way to increase sample size in a 144	

validation study is to widen the study window. However, validation of a CRPM over a 145	

substantially wide period can introduce a number of complexities. One potential 146	

issue is calibration drift.26,27 Multiple studies demonstrated that the ratio of observed 147	

mortality to mean logistic EuroSCORE was decreasing with time. Changing risk 148	

profiles, other variables influencing mortality, and changes in the association of risk 149	

factors with outcome can all contribute to this phenomenon. This prompted the 150	

introduction of the EuroSCORE II model23 and the series of contemporary STS 151	

models.18–20 Researchers should be aware of this, particularly when validating 152	

cardiac surgery CRPMs. 153	

TRIPOD statement. In recent years, reporting of biomedical research has 154	

been improved with guidelines such as the CONSORT statement28 for randomized 155	

trials and the PRISMA statement29 for systematic reviews and meta-analyses. 156	

Prompted by evidence of poor quality reporting in the CRPM literature, the recent 157	

TRIPOD statement describes reporting guidelines for studies developing, validating, 158	
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or updating a prediction model.30 We strongly encourage researchers to follow these 159	

guidelines and make use of the checklist for validating models. Examples of good 160	

practice and additional details have been previously published.31 161	

 162	

METHODS FOR ASSESSING CALIBRATION 163	

Hosmer-Lemeshow test. The Hosmer-Lemeshow test is a frequently 164	

reported statistical test for assessing calibration in CRPMs. However, it has a 165	

number of drawbacks.31–35 First, it is not easily interpreted; that is, it does not provide 166	

a measure of the magnitude of any miscalibration. Second, for slight deviations in 167	

calibration, the test is sensitive to sample size. Third, the classical version of the test 168	

is dependent on arbitrary groupings of patients. In some cases, the Hosmer-169	

Lemeshow test remains a useful adjunct statistic, but should only be included as part 170	

of a more comprehensive assessment. Typically, the Hosmer-Lemeshow test refers 171	

to a test based on 10 groups composed by deciles of risk. However, authors should 172	

be aware that there are variations on the test with regard to groupings (quantiles vs. 173	

fixed cut-points), number of groups (g), degrees of freedom of the chi-squared 174	

statistic (g-2 for internal vs. g for external validation), and software 175	

implementations.35,36 While g is typically selected to be 10, one must ensure the cell 176	

counts are sufficient to justify the distributional approximation. Including a table of 177	

observed and expected events by binning group provides a useful summary, and 178	

allows for inspection of each term for fit, as recommended by Hosmer and 179	

Lemeshow (p. 188).36 180	

Calibration plot. If a standard Hosmer-Lemeshow test is performed, then a 181	

simple graph—the calibration plot—is a straightforward next step (Figure).4 Within 182	

each of the g groups, observed events are plotted against expected events. If the 183	
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model is well calibrated, then these points should be close to the 45° line. The 184	

calibration plot can be augmented by overlaying a non-parametric smoothing curve 185	

(e.g. loess) through the observed and predicted data37 or a calibration curve.38 186	

Contrary to the Hosmer-Lemeshow test and basic calibration plot, these additional 187	

fits are not dependent on arbitrary groupings. 188	

Calibration curves. Cox’s calibration regression fits a logistic regression 189	

between the observed event and the log-odds transformed predicted values.39 A 190	

perfectly calibrated CRPM (deriving from a logistic regression model) yields an 191	

intercept = 0 and a slope = 1. These fitted regression models can be superimposed 192	

onto a calibration plot, giving an alternative graphical description of the 193	

miscalibration. As well as quantifying the degree of miscalibration, one can also 194	

simultaneously test whether the estimated parameters reject the null hypothesis of 195	

calibration. There are other related null hypotheses that can be tested for assessing 196	

calibration also (p. 274).6 197	

Other tests. The Hosmer-Lemeshow is ubiquitous in biomedical CRPM 198	

literature. However, researchers can take advantage of a wide variety of statistical 199	

tests to assess model validation, such as the aforementioned calibration curve 200	

test(s), the Spiegelhalter Z-test,40 and methods proposed by Stallard.41 Most can be 201	

calculated using routine software packages.6,38 There is no omnibus test of 202	

calibration; each approach has different merits and limitations. Therefore, it is 203	

important that researchers employ a broad repertoire of methods to address the 204	

study questions. 205	

 206	

MODEL UPDATING 207	
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A natural extension to the validation of a CRPM is the concept of updating an 208	

existing model. This might involve exploring whether a new biomarker improves a 209	

model (e.g. using net reclassification improvement measures42), recalibrating a 210	

model,43 and, more recently, assessing whether multiple models can be combined to 211	

provide a more accurate prediction (e.g. meta-models and model averaging).44 This 212	

expanding research area is especially important in an era of personalized 213	

medicine.45 214	

 215	

CONCLUSIONS 216	

External validation of CRPMs is necessary to demonstrate their predictive 217	

accuracy. Available models have likely been validated internally; however, using 218	

them in different settings, locations, and populations can result in relatively poor 219	

performance. CRPMs that have been overfitted during development will also often 220	

fail to generalise to the external validation sample. Calibration and discrimination 221	

must be measured in order to establish validity. There are multiple statistical 222	

approaches available to interrogate the calibration, with it being widely accepted that 223	

the ubiquitous Hosmer-Lemeshow test has limited utility. Execution of a rigorous 224	

CRPM validation study rests in proper study design, application of suitable statistical 225	

methods, and transparent reporting. 226	

  227	
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FIGURE LEGEND 363	

Figure. A calibration plot for simulated data (n = 500). The green triangles denote 364	

the mean predicted and observed event probabilities for patients grouped into tenths 365	

using deciles. The grey dashed line denotes perfect calibration. A smoothing curve 366	

(blue dashed line) and the calibration curve (red solid line) are also overlaid. The 367	

distribution of calculated predicted probabilities is overlaid along the horizontal axis. 368	

A subset of various statistics useful for validating the model are also shown. This 369	

figure was generated using standard statistical software: the rms package for R (R 370	

Core Team, R Foundation for Statistical Computing, Vienna, Austria; version 3.1.2). 371	

Further details are given in Harrell (2001)38 and Harrell (2015).46 Code to reproduce 372	

this plot is given in the Appendix. 373	
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APPENDIX 375	

R code to produce figure 376	

# If ‘rms’ package not install, run command 377	

# install.packages(“rms”) 378	

library(rms) 379	

## Simulate fake data: 380	

##   y = binary outcome 381	

##   x1, x2, x3 = covariates in the risk model 382	

##   n = sample size 383	

set.seed(1) 384	

n <- 1000 # 500 development + 500 validation 385	

x1 <- runif(n) # covariate 1 386	

x2 <- runif(n) # covariate 2 387	

x3 <- runif(n) # covariate 3 388	

logit <- -5 + 0.5*x1 + 2*x2 + 3.5*x3 389	

P <- 1 / (1 + exp(-logit)) 390	

y <- ifelse(runif(n) <= P, 1, 0) # outcomes 391	

d <- data.frame(x1, x2, x3, y) # combined dataset 392	

 393	

## Fit a risk prediction model to first half of the data 394	

f <- lrm(y ~ x1 + x2 + x3, subset = 1:500) 395	

 396	

## Use model to get predictions for second half of data 397	

pred.logit <- predict(f, d[501:1000, ]) 398	

phat <- 1 / (1 + exp(-pred.logit)) 399	

 400	

## Validate prediction 401	

val.prob(phat, y[501:1000], g = 10, riskdist = “predicted”) 402	


