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Abstract 
 

While oxidative stress has been repeatedly implicated in the pathogenesis of acute 
pancreatitis (AP), recent clinical evidence has found little benefit of general antioxidant 
therapy. The actions, however, of newer mitochondria-targeted antioxidants such as 
MitoQ, have yet to be determined in AP. A recently undertaken in vivo study by our group 
has highlighted mixed effects of MitoQ treatment in caerulein-induced AP (CER-AP) and no 
protection against bile acid-induced AP (TLCS-AP).  

 
Therefore, the in vitro effects of MitoQ against toxin-induced pathophysiological 

effects of bile acid taurolithocholic acid-3-sulphate (TLCS) and caerulein analogue CCK 
hyperstimulation were determined. Furthermore, the effects of MitoQ on pancreatic acinar 
cell physiology and cell death were evaluated and compared to non-antioxidant analogue 
DecylTPP (dTPP). Additional investigations assessed the potential protective capabilities of 
MitoQ against non-oxidative ethanol metabolite palmitoleic acid ethyl ester (POAEE)-, 
ethanol- and H2O2-induced effects. These experiments were carried out alongside a more 
detailed assessment of H2O2-induced effects in isolated pancreatic acinar cells.  

 
 

Key Findings 
 

 MitoQ and non-antioxidant analogue dTPP caused predominantly adverse effects 
on pancreatic acinar cell responses, in a concentration-dependent manner. These 
effects are likely due to the targeting component of both TPP+ derivatives. 

 In vitro, MitoQ did not protect against bile acid TLCS- and CCK hyperstimulation-
induced effects on mitochondrial membrane potential (ΔΨm), NAD(P)H levels, 
cytosolic Ca2+ concentration ([Ca2+]c), cellular apoptosis or necrosis. 

 CCK and TLCS treatment in vitro, led to differing levels and mode of cell death. CCK 
induced substantial apoptosis and necrosis, the latter in a biphasic pattern. In 
contrast, the predominant mode of cell death with TLCS treatment was necrosis. 
These results mirror in vivo results in AP models demonstrating a more severe AP 
pathophysiology with TLCS-induced AP than CCK/caerulein-induced AP.  

 MitoQ had no effects on POAEE- and ethanol-induced cellular necrosis. In contrast, 
MitoQ provided a mild inhibition of apoptosis in a concentration-dependent 
manner, consistent with a proposed role of reactive oxygen species (ROS) to 
promote apoptosis in these cells. 

 H2O2 induced concentration-dependent effects on levels of ROS, NAD(P)H/FAD+, 
[Ca2+]c, ΔΨm, cellular apoptosis and necrosis. Low micromolar concentrations 
favoured apoptosis and high millimolar concentrations necrosis. 

 MitoQ effectively inhibited H2O2-induced ROS increases. However, MitoQ 
exacerbated H2O2-induced effects on NAD(P)H/FAD+ levels and provided no 
protection against high micromolar and millimolar H2O2-induced cell death. 
 

These results enhance our understanding of the ROS balance in pancreatic acinar cells. 
The findings of this study emphasize the unsuitability of the use of targeted antioxidant 
therapy in the treatment of AP.  

 

The novel effects of H2O2 on mitochondrial metabolism, observed at low 
micromolar concentrations, highlight our incomplete understanding of the role of ROS in 
cellular function and warrant further investigation.  
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Abbreviations 

 

ACh    Acetyl Choline  

ADH    Alcohol dehydrogenase 

ALDH   Aldehyde dehydrogenase  

ADP    Adenosine diphosphate 

cADPr    Cyclic ADP ribose 

Akt   Protein kinase B 

ALI   Acute lung injury 

ANT   Adenine nucleotide translocase 

AP    Acute pancreatitis 

AP-1   Activator protein 1 

ARDS   Acute respiratory distress syndrome 

AR42J    Pancreatic tumoural cell line 

ASK1   Apoptosis signal regulating kinase 1 

ATP    Adenosine triphosphate  

BAE   Bovine aortic endothelial 

BAPTA    (1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid)  

BAX   bcl-2-like protein 4 

3-BCP   3-benzyl-6-chloro-2-pyrone 

BKA   Bongkrekic acid 

Ca2+   Ca2+ (generic) 

[Ca2+]c    Cytosolic Ca2+ concentration  

[Ca2+]m    Mitochondrial Ca2+ concentration  

CAT   Catalase 

CD38   Cluster of differentiation 38 

CEL   Carboxylester lipase 

CEM   Human leukemic cell line 

CER-AP   Caerulein-stimulated acute pancreatitis model 

CypD   Cyclophilin D 

CYP2E1    Cytochrome p450 2E1  

CCCP    Carbonyl cyanide m-chlorophenlyhydrazone  

CCK    Cholecystokinin  



Abbreviations  
 

5 | P a g e  
 

CM-H2DCFDA   5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate 

CsA   Cyclosporin A 

DAG   diacylglycerol  

DBTC   dibutyltin-dichloride 

DCFDA   Dichlorofluorescin diacetate 

DEB025   D-MeAla3-EtVal4-cyclosporine (Alisporivir)  

ddH2O    Double distilled water 

DHE   Dihydroethidium 

DHR   Dihydrorhodamine-123 

dTPP    Decyltriphenylphosphonium bromide 

dUb    Decylubiquinone 

ΔΨ𝑚    Mitochondrial membrane potential 

DMN   2,4-dimethoxy-2-methylnaphthalene 

DMSO    Dimethyl sulphoxide 

DPI   Diphenylene iodonium 

EGF   Epidermal growth factor 

EGR1   Early growth response protein 1 

EGTA    Ethylene glycol tetraacetic acid  

ER    Endoplasmic reticulum  

ERCP   Endoscopic retrograde cholangiopancreatography 

ERK    Extracellular-signal-regulated kinase 

ESR   Electron spin resonance 

ETC    Electron transport chain  

EtOH    Ethanol  

F1Fo-ATP synthase ATP synthase/complex V 

FADH2/FAD+  Flavin adenine dinucleotide (reduced/oxidised) 

FA   Fatty acid 

FAEE    Fatty acid ethyl ester 

FCCP   Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone  

F/Fo    Fluorescence intensity normalised to the initial intensity 

GI    Gastrointestinal 

GPCR   G-protein-coupled receptor 

GPBAR1   G-protein-coupled bile acid receptor 1  

GPx    Glutathione peroxidase  

cGMP    cyclic guanosine-3’,5’ –monophosphate 
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GSH    Glutathione  

GSSG    Glutathione disulphide  

HEK 293T cells  Human Embryonic Kidney 293 cells 

HEPES    4-(2-hydroxyethyl)-1-piperazineethaqnesulphonic acid 

H2O2   Hydrogen peroxide 

ICAM   Intercellular Adhesion Molecule 1 

ICRAC   Ca2+-release-activated Ca2+ current 

IκBα   IkappaBalpha 

IL-1β   Interleukin-1 beta 

IL-6   Interleukin-6 

IMM    Inner mitochondrial membrane 

IP3    Inositol 1,4,5 trisphosphate 

IP3R    Inositol 1,4,5 trisphosphate receptor 

IRS-1   Insulin receptor substrate 1 

JNK   c-Jun N-terminal kinase  

α-KGDH   α-ketoglutarate dehydrogenase 

KO   Knockout 

M40401  SOD mimetic 

MAO   Monoamine oxidases 

MAPK    Mitogen-activated protein kinases 

MCU    Mitochondrial Ca2+
 uniporter 

MDA    Malondialdehyde 

MICU1   Mitochondrial Ca2+ uptake 1 

ΔΨm   Mitochondrial membrane potential 

MitoQ    Mitoquinone  

MnSOD   Manganese superoxide dismutase 

MPTP    Mitochondrial permeability transition pore 

MPO   Myeloperoxidase 

NAADP    Nicotinic acid adenine dinucleotide phosphate 

NADH/NAD+  Nicotinamide adenine dinucleotide (reduced/oxidised) 
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NAC    N-acetylcysteine 

NADPH    Nicotinamide adenine dinucleotide phosphate 

NCLX    Na+/Ca2+ exchanger 

ND-07   2-acetoxy-5-(2-4-(trifluoromethyl)-phenethylamino)-benzoic acid 

NF-κB    Nuclear factor kappa B 

NLRP3   NACHT, LRR and PYD domains-containing protein 3 

NO•   Nitric oxide 

NOX    NADPH oxidase 

NQO1    NAD(P)H quinone oxidoreductase 1 

O2
•-   Superoxide anion 

OH•   Hydroxyl radical 

ONOO-   Peroxynitrite 

Orai1   Ca2+ release-activated Ca2+ channel protein 1 

PA   Palmitic acid 

PAC   Pancreatic acinar cell 

PD   Parkinson’s disease 

PDAC   Pancreatic ductal adenocarcinoma 

PDH   Pyruvate dehydrogenase 

PEG   Polyethylene glycol 

PI    Propidium iodide 

PKC   Protein kinase C 

PKD   Protein kinase D  

Pi   Inorganic phosphate  

PI3K   Phosphoinositide 3-kinase 

PIP2   Phosphatidylinositol 4,5-bisphosphate 

PLC   Phospholipase C 

PM    Plasma membrane 

 

PMA   Phorbol myristate acetate  

PMCA    Plasma membrane Ca2+-ATPase 
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PMN   Polymorphonuclear leukocyte 

POA    Palmitoleic acid 

POAEE    Palmitoleic acid ethyl ester 

PP2A    Protein phosphatase 2A 

Ppif-/-   Peptidylprolyl isomerase F (Knockout of cyclophilin D) 

Prx1   Peroxiredoxin detoxification enzyme 

PSTI   Pancreatic secretory trypsin inhibitor 

PTP1B   Protein-tyrosine phosphatase 1B 

RNS    Reactive nitrogen species 

ROS    Reactive oxygen species 

[ROS]i    Intracellular reactive oxygen species 

[ROS]m    Mitochondrial reactive oxygen species 

RyR    Ryanodine receptor 

SAPK    Stress-activated protein kinases 

SDH   Succinate dehydrogenase 

SERCA    Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 

SkQ1   Plastoquinonyl-decyl-triphenylphosphonium 

SIRS   Systemic inflammatory response syndrome 

SOCE    Store-operated Ca2+-entry 

SOD    Superoxide dismutase 

STAT3   Signal Transducer and Activator of Transcription 3 

STIM1    Stromal interaction molecule 1 

TBARS   Thiobarbituric acid reactive substances 

TCA    Tricarboxylic acid 

TFB2M   Transcription Factor B 2 (mitochondrial) 

TLCS    Taurolithocholic acid -3-sulphate 

TLCS-AP  TLCS-stimulated acute pancreatitis model 

TMRM    Tetramethyl rhodamine methyl ester 

TNF-α   Tumor necrosis factor alpha 

TPC   two-pore channel 
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TPP+    (2-Hydroxyethyl)triphenylphosphonium bromide  

TRO40303  3,5-Seco-4-nor-cholestan-5-one oxime-3-ol 

VDAC    Voltage-dependent anion channel 

VIP    Vasoactive intestinal peptide 

WT   Wild-type 

XOD   Xanthine oxidase 

XOH   Xanthine dehydrogenase 

Zn/Cu SOD  Zinc/Copper superoxide dismutase 
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The Exocrine Pancreas: Physiological Function 

The pancreas is a long, narrow gland located on the left side of the 

abdominal cavity. It lies posterior and inferior to the stomach, and has a head, tail 

and body. The widest region of the organ is the head of the pancreas, which 

connects to the duodenum. Extending laterally, the pancreas narrows slightly to 

form the body of the pancreas and tapers near the spleen to form the tail region. 

The organ is dual functioning of both digestive and endocrine systems. Functioning 

as an endocrine gland, the pancreas produces the hormones insulin and glucagon 

responsible for glucose homeostasis.  

 

Ninety-nine percent of the pancreas mass, functions as the exocrine gland 

and is responsible for the production and secretion of digestive enzymes trypsin, 

amylase, lipase, chymotrypsin, carboxypeptidase and elastase, including 

bicarbonate from ductal cells. The exocrine pancreas is arranged into acini, clusters 

of acinar cells surrounding a duct, which converge until the large pancreatic duct. 

Digestive enzymes secreted into the pancreatic duct are delivered to the duodenum 

for the digestion of fats, carbohydrates and proteins. The precursor trypsinogen is 

activated in the duodenum by enteropeptidase to produce trypsin, which then 

activates further trypsinogen, chymotrypsinogen, procarboxypeptidase and 

proelastase. The pancreas is controlled by the autonomic nervous system, both 

sympathetic and parasympathetic. The exocrine pancreatic secretion is regulated 

primarily by neurotransmitter acetylcholine (ACh), produced by parasympathetic 
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fibres of the vagus nerve, and circulating gastrointestinal hormone cholecystokinin 

(CCK). ACh predominantly stimulates pancreatic enzyme secretion with minimal 

effects on fluid and bicarbonate secretion. CCK on the other hand causes both 

substantial enzyme and electrolyte secretion. Gastrointestinal (GI) hormone 

secretin stimulates secretion of bicarbonate from pancreatic and biliary ducts and 

duodenal Brunner’s glands while also acting to potentiate the action of CCK on 

pancreatic acinar cells (PACs) (Pandol 2010). Vasoactive intestinal polypeptide (VIP) 

is a structurally similar hormone to secretin, although stimulates a weaker 

pancreatic response (Rhoades et al. 2009). Secretion of enzymes from the PAC is 

induced through stimulation of Ca2+ release from intracellular stores. 

 

 

Pancreatic Acinar Cell 

PACs are a polarised cell type, the main constituent and workhorse of the 

exocrine pancreas. They form berry like clusters called acini and surround a small 

duct (Petersen 1992; Petersen et al. 1999). Close to the ductal lumen, dense core 

secretary granules containing zymogen are found on the apical side of the cell. 

These are clearly visible in light microscopy and are secreted via fusion to the apical 

membrane (Jamieson et al. 1971; Case 1978). The mitochondria are predominantly 

distributed in the perigranular, perinuclear and subplasmalemmal regions, with the 

highest density in the Ca2+ perigranular region (Jamieson et al. 1971; Tinel et al. 

1999; Park et al. 2001; Johnson et al. 2003). There is a dense endoplasmic reticulum 
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(ER) network extended through the basolateral and perinuclear region (Petersen et 

al. 1999; Gerasimenko et al. 2002). The nucleus is located at the basal region of the 

cell, close to the golgi apparatus, a 5 stack structure at the edge of the granular 

region (Dolman et al. 2005). PACs retro-differentiate into more-duct like cells whilst 

still retaining the capability for acinar-specific antigen expression (De Lisle et al. 

1990). Therefore, primary isolated PACs are most commonly used for experimental 

investigations in vitro. 

 

 

Ca2+ Signalling 

The majority of Ca2+ in the human body is located in the calcified matrix of 

bone. The remaining 0.9% acts as an integral and diverse signalling messenger, 

pivotal to processes such as muscle contractility, stimulating exocytosis of secretory 

vesicles and gene transcription (Petersen 1992; Berridge et al. 2003; Clapham 

2007). Physiological stimulation of PACs causes Ca2+ changes of an oscillatory 

manner. An effect enabled due to low cytosolic concentrations of Ca2+ and high 

buffering capacity of Ca2+-binding proteins and other chelating cytosolic 

components. Diverse signalling is possible, through varying the frequency, 

amplitude and distribution of these Ca2+
 oscillations, enabling the transmission of 

physiologically relevant information (Berridge et al. 2000). The binding of agonists 

such as ACh, CCK and secretin/VIP, stimulate enzyme secretion via the activation of 

specific plasma membrane (PM) receptors (Palade 1975). ACh through the 
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activation of muscarinic receptors on the basolateral membrane and CCK through 

the activation of guanine nucleotide-binding protein G protein-coupled receptors 

(GPCR’s) type A and B (Rosenzweig et al. 1983; Ashby et al. 2003; Murphy et al. 

2008). Bile acid taurolithocholic acid 3-sulphate (TLCS) induces effects on cytosolic 

Ca2+ release also through the activation of a GPCR, which will be discussed in more 

detail later in this chapter (Perides et al. 2010). TLCS has been established as the 

most potent releaser of Ca2+ among bile acids tested on PACs to date (Voronina et 

al. 2002). 

 

Acetylcholine and CCK receptors are both seven transmembrane domain 

receptors coupled to G proteins. Receptor activation leads to phospholipase C (PLC) 

cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) and mobilisation of 

secondary intracellular messengers inositol 1,4,5 trisphosphate (IP3) and diacyl-

glycerol (DAG) (Berridge 1981). DAG elicits cellular responses through the activation 

of protein kinase C (PKC) and protein kinase D (PKD). PKC can also 

phosphorylate and activate PKD. IP3 directly interacts with the IP3 receptor (IP3R) 

(Streb et al. 1983) located on the ER intracellular Ca2+ store membrane, stimulating 

release of Ca2+ and initiation of intracellular Ca2+ signalling. The IP3R is further 

stimulated by this Ca2+ release and Ca2+ sensitive ryanodine receptors (RyR) are 

activated in a positive feedback loop, leading to propagation of a global Ca2+ rise 

(Adkins et al. 1999; Straub et al. 2000). CCK receptor activation also stimulates 

adenosine diphosphate (ADP)-ribosyl cyclase activity leading to the synthesis of Ca2+ 

mobilising secondary messenger’s cyclic ADP ribose (cADPr) and nicotinate-adenine 

dinucleotide phosphate (NAADP).  The molecular mechanism for CCK-stimulated 
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NAADP formation is not completely understood, although evidence suggests a role 

for the enzyme cluster of differentiation 38 (CD38) (Fukushi et al. 2001). On the 

other hand, ACh stimulation of PACs does not result in detectable accumulation of 

NAADP (Yamasaki et al. 2005). Ca2+ oscillations are maintained by prolonged cADPr 

elevation which specifically acts upon RyRs to sensitise them to Ca2+-induced 

channel opening (Galione et al. 1991). NAADP acts upon RyRs, IP3Rs (Cancela et al. 

2000; Gerasimenko et al. 2003) and the two-pore channel (TPC) family of proteins 

primarily expressed in acidic lysosomal/endosomal compartments (Yamasaki et al. 

2004). NAADP plays an important role in the initiation of a Ca2+ response, with the 

rapid production of NAADP preceding the Ca2+ signal onset (Cancela et al. 1999; 

Cancela 2001; Patel et al. 2001). Bile acid TLCS simulates Ca2+ release through both 

IP3Rs and RyRs;  RyRs through the activation of NAADP but not cADPr pathway 

(Gerasimenko et al. 2006).  

 

PACs are non-excitable and rather than induce Ca2+
 signals by depolarising 

the plasma membrane as in excitable cells, Ca2+
 signals are generated by Ca2+ 

release from intracellular stores as described above (Streb et al. 1984). The main 

Ca2+ pool responsible for Ca2+ release, whether a global rise or oscillatory in nature 

is the ER (Streb et al. 1984; Yule et al. 1988). Hyperstimulation with agonists 

CCK/ACh and toxic insult with bile acids and non-oxidative fatty acid metabolites, 

induce a sustained global elevation of cytosolic Ca2+ (Kim et al. 2002; Voronina et al. 

2002; Criddle et al. 2004; Criddle et al. 2006). The maintenance of cytosolic Ca2+ 

concentration ([Ca2+]c) rises, is dependent on Ca2+ entry into the cell. The influx of 

Ca2+ through store-operated Ca2+ entry (SOCE), is induced by a lowered ER luminal 
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Ca2+ concentration (Putney 1986). The Ca2+ sensor, stromal interaction molecule 1 

(STIM1) (Liou et al. 2005; Roos et al. 2005; Zhang et al. 2006) is an integral ER 

membrane protein. STIM1 senses ER Ca2+ depletion, through the disassociation of 

Ca2+ from the ER hand, leading to the translocation and aggregation of STIM1 at ER 

sites close to the PM (Lur et al. 2009). STIM1 then physically gates the plasma 

membrane pore-forming Orai1, which mediates Ca2+ influx, leading to Ca2+-release-

activated Ca2+ current (ICRAC) (Feske et al. 2006; Prakriya et al. 2006; Gwack et al. 

2007; Hong et al. 2011). As Ca2+ influx is critical to the maintenance of Ca2+ 

oscillations and sustained Ca2+ rises (Huang et al. 2006), the absence of a functional 

Na+/Ca2+ exchanger renders PACs crucially reliant upon adenosine triphosphate 

(ATP) levels for Ca2+ homeostasis (Muallem et al. 1988).  

 

In PACs, cytosolic Ca2+ clearance occurs via plasma membrane ATP 

dependent Ca2+-ATPase pumps, the plasma membrane Ca2+-ATPase (PMCA) and 

sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). The majority of PMCAs are 

located in the apical region of the cell (Lee et al. 1997) correlating with the level of 

Ca2+ extrusion in this region (Belan et al. 1996; Belan et al. 1997). Disruption to 

normal Ca2+ signalling occurs early in murine models of AP (Ward et al. 1996) and is 

responsible for premature enzyme activation and necrosis (Duchen 1999; Raraty et 

al. 2000; Gukovskaya et al. 2002).  
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Figure 1.1 

   

Figure 1.1 Mitochondrial Ca2+ transport and reactive oxygen species (ROS) production. 

Ca2+ import occurs via the MCU/MICU1. The calcium exchangers are responsible for Ca2+ 

export and the MPTP facilitates free diffusion of solutes less than 1.5kDa when open. Ca2+ 

influx activates the TCA cycle leading to increased production of nicotinamide adenine 

dinucleotide (NADH) that fuels the ETC through an initial donation of electrons to complex 

I. Protons pumped into the intermembrane space generate the mitochondrial membrane 

potential (ΔΨm) used by complex V to generate ATP. ROS superoxide is produced at 

complex I of the ETC into the mitochondrial matrix and complex III into both matrix and 

intermembrane space. O2
•- is dismutated to H2O2 by superoxide dismutases (SOD) 

manganese SOD (MnSOD) in the matrix and zinc/copper (Zn/Cu) SOD in the cytosol. H2O2 is 

then converted to H2O by matrix glutathione peroxidase (GPx) and cytosolic catalase. ETC 

electron flow is illustrated with dark blue arrows and arrows in pale blue the electron flow 

involved in ROS production. Common ETC complex inhibitors are shown in pink. Adapted 

from Viola et al. (2010) ©. 
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 Ca2+ and Mitochondrial Physiology 

In PACs, as mentioned, mitochondrial distribution is perigranular, perinuclear 

and subplasmalemmal with the greatest density found in the perigranular region. 

Mitochondria are a critical component of all cells and are frequently described as 

the powerhouse, generating ATP through oxidative phosphorylation and 

approximately 90% of the total ROS generation in healthy cells (Herst et al. 2004). 

The process of ATP synthesis by F1Fo-ATP synthase (ATP synthase/complex V) 

involves oxidation of metabolites in the tricarboxylic acid (TCA) cycle. Nicotinamide 

adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) are produced 

and supply electrons to the electron transport chain (ETC) at complexes I and II 

(Brand et al. 1987).  Ubiquinone connects complexes I and II to complex III through 

accepting NADH and FADH2-derived electrons. Complexes I, III and IV function as 

proton pumps, transferring protons across the inner membrane. The accompanying 

drop in redox potential generates the mitochondrial membrane potential (ΔΨm) of 

around 150–180 mV, which is critical to mitochondrial ATP generation. 

Mitochondrial ROS are predominantly generated at ETC complexes I, involving 

NADH dehydrogenase, and III (cytochrome b) (Boveris et al. 1976; Fleury et al. 2002; 

Ueda et al. 2002). ROS production is a fine balancing act of aerobic metabolism, 

reducing O2 to H2O, maximising ATP synthesis and maintaining the levels of ROS 

required for cell signalling, which will be discussed in more detail later in this 

chapter (Inoue et al. 1999; Brookes et al. 2002). Elevated levels of ROS, damage 

cellular components such as proteins, lipids and DNA through irreversible oxidative 

modifications (Letko et al. 1991; Kadlubar et al. 1998; Palmieri et al. 2007). The 
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distinct mitochondrial genome (mtDNA) is much more sensitive to ROS-induced 

damage than nuclear DNA, leading to ΔΨm depolarisation, increased ROS 

production, activation of signal transduction pathways and programmed cell death 

(Yakes et al. 1997; Halangk et al. 1998; Heerdt et al. 1998; Weber et al. 1998; 

Kamata et al. 2005; Dios 2010). The mitochondria also play an important role in 

regulating cell death via the release of cytochrome c and opening of the 

mitochondrial permeability transition pore (MPTP) (Liu et al. 1996; Loeffler et al. 

2000; Criddle et al. 2007). 

 

In the perigranular region, the mitochondria form a belt, which regulates Ca2+ 

wave propagation. This is described as a “buffer barrier” or “firewall” in isolated 

PACs. When the [Ca2+]c  is elevated in close proximity to the mitochondria, the 

mitochondria uptake Ca2+ during ER refilling, which acts to buffer signals from 

entering the nucleus in the basolateral region (Tinel et al. 1999; Park et al. 2001). 

The nucleus is therefore protected from undesirable effects of unwanted Ca2+ 

signals, and has been proposed to retain the capacity to confine nuclear Ca2+ signals 

(Petersen 2012). Ca2+ uptake by the mitochondria has been demonstrated to up-

regulate the activity of Krebs cycle dehydrogenases, leading to an increase in levels 

of NAD(P)H, fuelling ETC ATP production (Hajnóczky et al. 1995; Voronina et al. 

2002). The main pool of NAD(P)H in the cell is mitochondrial, with minor sources 

provided by cytosolic glycolytic enzymes. Mitochondria not only shape and define 

cytosolic Ca2+ elevations to modulate metabolism and respond to cellular ATP 

demands, but functionally adapt in response to cellular signals, a phenomena 
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dependent on the region of mitochondrial distribution (Park et al. 2001; Soubannier 

et al. 2009). This buffering capability of the mitochondria is reliant on a high Ca2+ 

loading capacity.  

 

The mitochondria accumulate Ca2+ in response to both physiological Ca2+ 

signals (Rizzuto et al. 2000; Johnson et al. 2002) and global Ca2+ waves (Hajnóczky et 

al. 1995). Ca2+ import into the mitochondria occurs primarily due to the 

mitochondrial Ca2+
 uniporter (MCU) which relies on the ΔΨm to drive transport. The 

MCU is a high capacity, low affinity sensitive channel located in the inner 

mitochondrial membrane (Kirichok et al. 2004), which enables rapid Ca2+ uptake 

into the mitochondria. This is important for the regulation of mitochondrial 

respiration, through the activation of Ca2+-sensitive dehydrogenases of the TCA 

cycle, such as pyruvate dehydrogenase (PDH), as mentioned earlier. Influx of Ca2+ 

into the mitochondria is also essential for MPTP opening (Pan et al. 2013). 

Mitochondrial Ca2+ uptake 1 (MICU1) is a key regulator of the MCU and senses 

mitochondrial matrix Ca2+ levels via its EF-hand domains. (Perocchi et al. 2010). In 

an open state, outer membrane voltage-dependent anion channels (VDAC) are 

responsible for ATP/ADP exchange and is the predominant route for ATP efflux from 

the mitochondria (Schmid et al. 1998; Gincel et al. 2001). 

 

Efflux and clearance of Ca2+ from the mitochondria occurs via the 

mitochondrial Na+/Ca2+ exchanger (NCLX) (Palty et al. 2010; Nita et al. 2015). In 
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response to pathological Ca2+ overload the MPTP opens, permeabilising the 

mitochondrial membrane and providing rapid extrusion of Ca2+ and other 

mitochondrial contents of less than 1.5kDa. The MPTP is a non-specific pore in the 

mitochondrial membrane playing a major role in mitochondrial permeabilisation 

leading to equilibration of H+ across the inner membrane, dissipation of ΔΨm and 

cessation of ATP production (Leist et al. 1997; Giacomello et al. 2007; Kroemer et al. 

2007; Baines 2009; Baumgartner et al. 2009). This MPTP permeabilisation also leads 

to depletion of ATP, which is a central trigger for necrosis in PACs (Nakagawa et al. 

2005; Mukherjee et al. 2015).  ATP is essential for activation of apoptotic caspases, 

therefore, ATP depletion due to MPTP opening prevents apoptosis and leads to a 

necrotic mode of cell death.  

 

The MPTP is a multi-protein complex, which is thought to form within the 

inner mitochondrial membrane (IMM) at the interface between adjacent F0 sectors 

of F0F1-ATP synthase complex dimers (Strauss et al. 2008; Bernardi 2013; Giorgio et 

al. 2013). Matrix cyclophilin D (CypD), a peptidylprolyl isomerase F (Ppif) gene 

product, regulates MPTP opening and is not a structural pore component. CypD 

binds to the F0F1-ATP synthase lateral stalk, an action requiring inorganic 

phosphate (Pi) (Bernardi 2013; Giorgio et al. 2013). MPTP formation and opening is 

prevented in cells without CypD (Ppif-/-) and by applying CypD inhibitor cyclosporin 

A (CsA) (He et al. 2002; Baines et al. 2005; Basso et al. 2005). Cells from CypD 

knockout (KO) mice are protected against Ca2+ overload- and ROS-induced ΔΨm 

depolarisation and necrosis, although the mechanisms are still under investigation 
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(Baines et al. 2005; Shalbueva et al. 2013). MPTP opening has been predominantly 

associated with the induction of necrosis, and apoptosis not considered a defining 

feature of MPTP-induced effects. However, the MPTP could be a gatekeeper for 

both modes of cell death and more recently, there is evidence that MPTP opening 

also may also play a role in programmed necrosis (necroptosis) (Nakagawa et al. 

2005; Kinnally et al. 2011; Karch et al. 2015). Evidence suggests that transient MPTP 

opening may enable apoptosis through maintenance of ATP production (Crompton 

1999; Kroemer et al. 2000). Our group has demonstrated that menadione- and 

TLCS-induced increases in ROS levels can lead to apoptosis (Criddle et al. 2006; 

Booth et al. 2011). Elevated levels of ROS led to Ca2+-dependent opening of the 

MPTP, an action which was inhibited by non-targeted thiol-containing antioxidant 

N-acetylcysteine (NAC) (Gerasimenko et al. 2002; Baumgartner et al. 2009). In 

summary, MPTP opening is dependent on elevated levels of mitochondrial Ca2+ 

which can be further promoted by increases in ROS (Petronilli et al. 1994; Kroemer 

et al. 2007; Rasola et al. 2011).   

 

Opening of the MPTP has also been demonstrated in an ethanol (EtOH)-

induced AP model. An action that was effectively ameliorated using a knockout of 

cyclophilin D (Schild et al. 1999; Gukovskaya et al. 2002; Shalbueva et al. 2013). 

MPTP inhibition has now been assessed using known inhibitors CsA and bongkrekic 

acid alongside cyclophilin D knockout in multiple AP models - hyperstimulation, bile 

acid, alcoholic and choline-deficient ethionine-supplemented. Results demonstrated 

a dramatic improvement to all pathological responses authenticating the MPTP as a 
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drug target for AP (Mukherjee et al. 2015). Treatment with mitochondria-targeted 

antioxidant Mitoquinone (MitoQ), reduced levels of mitochondrial ROS leading to 

diminished frequency of cytosolic Ca2+ waves and inhibition of MPTP opening in 

mouse hearts (Davidson et al. 2012). These results mirrored those results seen with 

NAC and Ca2+ chelator BAPTA-AM in human leukemic cell line (CEM) (Lu et al. 2007). 

Inhibition of MPTP opening could provide a potential therapeutic target, however, 

little is known yet of the physiological effects of ROS, including H2O2, on Ppif-/- PACs 

resistant to MPTP opening. As the mitochondria play a critical regulatory role in 

both physiological and pathophysiological cell function, dysfunction is central to the 

development and progression of diseases such as acute pancreatitis and requires 

further investigation.  

 

 

Reactive Oxygen Species (ROS): Production 

The majority of all primary cellular ROS is produced in the mitochondria 

(Boveris et al. 1973). Reduction of O2 in the mitochondria during normal oxidative 

phosphorylation produces partly reduced intermediates termed reactive oxygen 

species (ROS) including superoxide anion (O2
•-), hydroxyl radical OH• and the non-

radical hydrogen peroxide (H2O2) a small, uncharged, diffusible molecule. The 

principal oxidant produced by mitochondria is O2
•-. O2

•- is formed largely at ETC 

complex I and released into the mitochondrial matrix, and the complex III coenzyme 

Q10 Q cycle, which releases superoxide into both the matrix and intermembrane 
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space (Turrens 2003; O'Malley et al. 2006; Davidson 2010).  O2
•- is dismutated to 

H2O2 by superoxide dismutase (SOD) manganese SOD (MnSOD) which then exits the 

mitochondria, or Zinc/Copper SOD (Zn/Cu SOD) in the intermembrane space.  

MnSOD(-/-) are more susceptible to oxidative stress in comparison to the wild type 

(WT) mice and die soon after birth due to extensive damage to the mitochondrial 

DNA (Li et al. 1995). On the other hand, mice which are deficient in Cu/ZnSOD 

develop normally but exhibit elevated cell death (Reaume et al. 1996). H2O2 can 

undergo an iron catalysed Fenton reaction to produce OH•- leading to a lipid 

peroxidation chain reaction and DNA damage (Sutton et al. 1984; Braughler et al. 

1986; Winterbourn 1987). H2O2 is widely known to induce detectable increases in 

cellular ROS in various cell types (Rigoulet et al. 2011; Mankad et al. 2012; Osera et 

al. 2015).  

 

ROS can also be produced by α-ketoglutarate dehydrogenase (α-KGDH) of 

the TCA cycle and monoamine oxidases (MAOs) found in the mitochondrial outer 

membrane (Starkov et al. 2004; Tretter et al. 2004; Andreyev et al. 2005). ROS 

produced by xanthine oxidase (XOD) has been proven to contribute to both local 

effects and systemic organ failure in AP in caerulein-stimulated PACs, in vivo and in 

situ (Nonaka et al. 1989; Nonaka et al. 1990; Cassone et al. 1991; Suzuki et al. 1993; 

Folch et al. 1998; Telek et al. 2001). Transmembrane multiunit enzyme nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase (NOX), uses NAD(P)H as an 

electron donor to catalyse O2
•-

 production (Chan 2009). This increases the 

production of secondary ROS such as H2O2 which again in turn can stimulate NOX 

(Babior 1995; Lambeth et al. 2000; Cheng et al. 2001; Yu et al. 2005). NOX is 
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strongly expressed in inflammatory cells and more recently, there is growing 

evidence for a role in the pathogenesis of acute pancreatitis. Expression of cytosolic 

and membrane bound key NOX subunits and NOX1 have been found to be 

constitutively expressed in pancreatic acinar AR42J cells. There is also evidence of 

NOX expression in human pancreatic islets (Rebelato et al. 2012). However, there is 

no evidence for NOX isoforms so far in primary acinar cells (Gukovskaya et al. 2002). 

 

 

H2O2 

It has been shown that in PACs, H2O2 has effects on both cellular Ca2+ 

signalling and mitochondrial membrane potential. Oxidative stress induced by 1mM 

H2O2 can lead to a release of Ca2+ from cytosolic stores and Ca2+ overload. These 

stores include the ER and also the mitochondria, demonstrated by prior depletion 

of the ER Ca2+ store (Pariente et al. 2001). It was concluded that these effects were 

likely mediated by Ca2+-ATPase sulfhydryl group oxidation by H2O2. Concentrations 

of <100µM can alternatively induce Ca2+ oscillations (Granados et al. 2006) and lead 

to a faster propagation of CCK-induced Ca2+ waves (Granados et al. 2007). Ca2+ 

released into the cytosol is subsequently up-taken by the mitochondria, leading to 

increases in FAD+
 levels and ΔΨm depolarisation (Gonzalez et al. 2005). The 

application of H2O2 concentrations of >50µM caused a concentration-dependent 

inhibition of plasma membrane Ca2+-ATPase (PMCA) activity and ATP depletion via 

independent actions. Insulin has been demonstrated to protect against these 

effects by switching metabolism to glycolysis and fuelling the PMCA, even when the 
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mitochondria were impaired (Bruce et al. 2007; Baggaley et al. 2008; Mankad et al. 

2012). These results showed that H2O2-induced oxidative stress at concentrations 

greater than 50µM can play a role in modulating Ca2+ overload, a major driver of 

necrosis, via PMCA inhibition (Bruce et al. 2007; Baggaley et al. 2008). H2O2 can also 

inhibit CCK-induced amylase release (Rosado et al. 2002) suggesting a regulatory 

role in PACs. In several cell types H2O2 has been demonstrated to have 

submillimolar and millimolar concentration-dependent effects on NAD(P)H, FAD+, 

ROS levels and a variety of signalling pathways, which will be discussed in more 

detail later in this chapter (Chinopoulos et al. 1999; Tretter et al. 2000; Nulton-

Persson et al. 2001; Gonzalez et al. 2005; Gerich et al. 2009).  

 

Not only ROS but also reactive nitrogen species (RNS) such as nitric oxide 

(NO•) have physiological roles in the cell, such as signal transduction (Finkel 1998; 

Finkel et al. 2000; Droge 2002) and modulation of mitochondrial function (Cleeter et 

al. 1994; Brookes et al. 2002; Brookes et al. 2002). NO• is produced in the cell by 

nitric oxide synthase, catalysing the oxidation of L-arginine to citrulline and NO•, 

requiring cofactors NADPH and O2. The primary pancreatic source of NO• are 

neurons and vascular endothelium, playing a role in the control of pancreatic blood 

flow (Konturek et al. 1993; Kirchgessner et al. 1994). The mitochondrial respiratory 

chain is also capable of producing NO• (Giulivi et al. 1998; Castello et al. 2006) and 

the combination of NO• with O2
•- forms the strong oxidant peroxynitrite (ONOO-) 

(Moncada et al. 1991; Radi et al. 1991; Packer et al. 1996). Excessive accumulation 

of ROS and/or reactive nitrogen species and the unregulated oxidation of cellular 
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components such as DNA, proteins and lipids are collectively known as oxidative 

stress.  

The potential dangers of ROS received great attention in a plethora of 

diseases and there is substantial evidence of ROS-induced acinar cell damage during 

the early development of acute pancreatitis (Sanfey et al. 1984; Tsai et al. 1998; 

Schulz et al. 1999). However, conflicting evidence has shown that antioxidant 

treatment is only partially effective in models of AP, reducing oedema but not 

acinar cell damage (Steer et al. 1991; Sato 1995; Esrefoglu 2012; Armstrong et al. 

2013). The ability of ROS to induce alterations to Ca2+ homeostasis, particularly 

causing sustained increases in [Ca2+]c is considered an important contributing factor, 

not only in the pathogenesis of pancreatitis but also in chronic pancreatitis, 

diabetes and cardiac function and warrants further investigation (Niederau et al. 

1991; Schoenberg et al. 1994; Ward et al. 1995; Weber et al. 1998; Ho et al. 1999; 

Viola et al. 2010).  

 

 

Oxidative stress 

A role for ROS was proposed in the development of AP, due to an elevated 

oxidative status/reduced antioxidant capacity observed in the clinic and in 

experimental animal models (Hackert et al. 2011). For example, increased 

superoxide, hydrogen peroxide and lipid peroxide levels and diminished antioxidant 

status were present in the blood of AP patients in comparison to healthy controls 

(Tsai et al. 1998). Oxidative stress occurs early in the progression of acute 
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pancreatitis and the disease severity is dependent on the imbalance between 

oxidant levels and endogenous antioxidant defences (Tsai et al. 1998). Clinically, 

ROS cannot be detected directly due to their short half-lives. Therefore, it is 

generally acceptable to measure stable metabolites as indicators of oxidative stress. 

These include by-products of lipid peroxidation, malondialdehyde (MDA) and 

thiobarbituric acid reactive substances (TBARS). Parameters of the oxidant-

antioxidant balance can be determined by including measurements of reduced 

glutathione (GSH) with the oxidative stress markers listed above or in conjunction 

with oxidized glutathione (GSSG) (Schulz et al. 1999; Dziurkowska-Marek et al. 2004; 

Pérez et al. 2015). 

  

Oxidative stress, can be detected not only by measuring accumulation of 

ROS-mediated lipid peroxidation products (Nonaka et al. 1989; Guyan et al. 1990) 

but also through fluorescence (Urunuela et al. 2002), and protein modification 

(Reinheckel et al. 1998). Further methods include detection of antioxidant depletion 

(Rau et al. 2001; Rahman et al. 2004) and cerium perhydroxide (Telek et al. 2001). 

Programmed cell death can be induced by H2O2, through oxidative activation of 

p53, kinases, caspases, apoptosis signal regulating kinase 1 (ASK1), p38 mitogen-

activated protein kinase (p38 MAPK) and c-Jun N-terminal kinases (JNKs) (Ueda et 

al. 2002; Gough et al. 2011). In contrast, severe oxidative stress predominantly 

leads to induction of necrosis, due to the extent of cellular damage to proteins, 

nucleic acids and lipid membranes. Damage to membranes such as the 

mitochondrial membrane by lipid peroxidation, would lead to ATP depletion, 

cellular rupture and dispersal of intracellular contents (Higuchi 2004). The extent of 
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apoptosis and necrosis has been suggested to have a pivotal role in the 

development of acute pancreatitis (Herrera et al. 2001; Martindale et al. 2002; 

Bhatia 2004; Fulda et al. 2010; Weber et al. 2013). The balance between the two 

modes of cell death, in response to low and high oxidant treatment has not been 

investigated yet in PACs.  

 

 

ROS Signalling 

Oxygen radicals such as H2O2 have been traditionally viewed from the 

perspective of the damage they may impart. For example, in AP due to ROS-induced 

effects including Ca2+ overload and up-regulation of pro-inflammatory cytokines 

leading to a more severe pathophysiological response (Folch et al. 2000; Baggaley et 

al. 2008; Dios 2010; Yu et al. 2014). However, as introduced earlier, mitochondrial 

ROS can also act as signal-transducing molecules and can play an important 

regulatory role in both the pancreas and AP (Escobar et al. 2012; Pérez et al. 2015).  

 

Many clinical attempts to regulate oxidative stress have encountered a 

reduction in biomarkers with little or no therapeutic benefit. Therefore, further 

assessment is required of the cellular effects and signalling pathways managed by 

ROS, such as H2O2, alongside the role of ROS in AP cell death and the inflammatory 

response. This thesis has investigated the cellular effects of ROS H2O2, and 

protective capabilities of mitochondria-targeted antioxidant MitoQ in PACs. ROS, in 
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particular H2O2, can bring about reversible protein oxidation at low concentrations 

and undergo concentration changes in response to physiological stimuli (Weber et 

al. 1998; Nulton-Persson et al. 2001; Granados et al. 2004; Rigoulet et al. 2011). 

These responses satisfy certain prerequisites of signalling molecules (Trimm et al. 

1986; Suzuki et al. 1997; Denu et al. 1998; Finkel et al. 2000; Pelletier et al. 2012; 

Pérez et al. 2015). The rapid and reversible oxidation of proteins is crucial to ROS 

mediated modulation of cell signalling and ROS compartmentalisation can enable 

regulation of specifically targeted cellular effects  (Pietraforte et al. 2014).  
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Figure 1.2 
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Figure 1.2 The two heads of mitochondrial ROS production. ROS produced during 

mitochondrial respiration is crucial to cell survival and protective mechanisms such as 

proliferation and apoptosis. Elevated ROS production and/or an imbalance in ROS 

levels/antioxidant capabilities of the cell lead to lipid peroxidation, DNA strand damage 

and necrosis. 
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In this study, we focus on reactive oxygen species H2O2,  which is considered 

an important secondary messenger in the AP inflammatory response (Escobar et al. 

2012). Hydrogen peroxide applied exogenously is commonly the oxidant of choice in 

redox studies because of its continuous production in the mitochondria and lack of 

charge, enabling it to diffuse relatively easily across cellular membranes (Chance et 

al. 1979). The specific mechanisms for H2O2 participation in cell signalling are still 

under investigation. Accumulated research into specific signalling pathways and 

oxidation targets are outlined below. H2O2 are thought to mediate cell-signalling 

pathways through reversible oxidation of redox-sensitive cysteine residues 

(sulfhydryl groups) on target proteins, such as protein tyrosine phosphatases (PTPs) 

(Finkel 2011; Klomsiri et al. 2011). However, with excessive levels of ROS, these 

modifications are irreversible and lead to cell death. There is evidence that H2O2 

compartmentalisation can maintain specific oxidation effects through localised 

inactivation of a peroxiredoxin detoxification enzyme Prx1. Therefore restricting low 

concentrations of H2O2 to the specific cellular sub-domains of a signalling site 

(Toledano et al. 2010; Woo et al. 2010).  

 

In PACs, millimolar H2O2 concentrations lead to Ca2+ release from the ER and 

mitochondria and  overload in an IP3 independent mode (Pariente et al. 2001). This 

effect was believed to occur through irreversible oxidisation of Ca2+-ATPase 

sulfhydryl groups of agonist-sensitive stores (Granados et al. 2006; Baggaley et al. 

2008). Alternately, at concentrations of <100µM, H2O2 has been shown to stimulate 

cytosolic Ca2+ oscillations, and inhibit CCK-induced amylase secretion (Granados et 
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al. 2006). In tumourigenic pancreatic cell line AR42J, H2O2 caused partial 

depolarisation of the ΔΨm, and 10µM but not 1µM induced apoptosis through 

cytochrome c release and caspase 3 activation (Morgado et al. 2008). These results 

provide insight into the dose dependent cellular effects of H2O2 which have yet to 

be fully investigated in primary PACs (Nulton-Persson et al. 2001). H2O2 has further 

demonstrated the capacity to mimic insulin signalling in the pancreas via sulfhydryl 

oxidation (Czech et al. 1974) and play a role in mammalian cell proliferation (Burdon 

et al. 1989).  

 

ROS can mediate neutrophil infiltration of the pancreas through activation of 

oxidant-sensitive nuclear transcription factor, nuclear factor kappa B (NF-κB), and 

up-regulation of lung P-selectin (Folch et al. 2000; Blanchard Ii et al. 2001). 

Furthermore ROS can initiate pro-inflammatory cytokine transcription and induction 

of apoptosis, dependent on the level of oxidant (Kim 2008). Although NOX isoforms 

have not been found in PACs, a variety of studies have investigated NOX enzyme 

derived H2O2, which has furthered our knowledge of the physiological roles for 

endogenous H2O2 (Burdon et al. 1989). NOX derived H2O2, mediates signal 

transduction pathways via activation of proteins such as MAPKs, tyrosine kinases 

and Ras proteins (Wu et al. 2010).  In PACs, CCK and TLCS have both been shown to 

induce the production of ROS (Granados et al. 2004; Booth et al. 2011), such as 

H2O2, which can lead to the activation of  MAPKs, extracellular-signal-regulated 

kinases (ERK), JNK/ stress-activated protein kinases (SAPK) and p38 MAPKs in a PKC-

independent manner (Dabrowski et al. 1996; Dabrowski et al. 2000; Graf et al. 
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2002). MAPK signalling is involved in diverse processes from cell survival to cell 

death (Son et al. 2011). The modulation of MAPK activation by ROS occurs through 

reversible oxidation of cysteine residues leading to the inhibition of MAPK 

phosphatases (Pérez et al. 2015). The activation of pro-inflammatory cytokines such 

as interleukin-1 beta (IL-1β), interleukin 6 (IL-6) and tumour necrosis factor alpha 

(TNF-α) in the pancreas are responsible for the aggravation of both local and 

systemic manifestations of AP (Tracey et al. 1992; Viedma et al. 1992; Sameshima et 

al. 1993; Kim 2008). IL-6 can been used as a severity indicator as it elevates 

leukocyte adherence and plays an important role in multiple organ failure (Schirmer 

et al. 1989; Tracey et al. 1992; Heath et al. 1993; Kishimoto et al. 1994; McKay et al. 

1996). Additionally, ROS signalling in the inflammatory cascade may play a role in 

the regulation of histone deacetylases for example via redox-sensitive 

serine/threonine protein phosphatase PP2A (Yang et al. 2006; Escobar et al. 2012; 

Pérez et al. 2015). Histone deacetylases have been shown to regulate trypsin 

activation, inflammation, and tissue damage in AP (Hartman et al. 2015).  

 

It is also important to briefly mention reactive nitrogen species NO•, which 

acts a messenger molecule in signalling pathways via cyclic guanosine-3’,5’ –

monophosphate (cGMP),  nitrosylation of regulatory thiols (Blaise et al. 2005) and 

Ca2+ influx in PACs (Gukovskaya et al. 1994). Several protective effects of NO•
 have 

been demonstrated. These include inhibition of ultrastructural degenerative 

alterations generated by caerulein-induced AP (Andrzejewska et al. 1999), and 

decreased neutrophil accumulation in the pancreas (Inagaki et al. 1997). In contrast, 
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high intracellular NO• can irreversibly bind to NADH and succinate, leading to 

inhibition of mitochondrial respiration (Brown 1995). In combination with O2
•-, NO• 

forms the powerful oxidant ONOO-, involved in lipid peroxidation, DNA strand 

damage and necrosis (Xia et al. 1997; Szabo 2003). Hydrogen peroxide and nitric 

oxide are now not only recognised for the damaging effects at high concentrations, 

but also as an important part of redox sensitive signalling pathways leading to the 

activation and inhibition of oxidant sensitive components (Suzuki et al. 1997; Finkel 

1998; Goldkorn et al. 1998; Maechler et al. 1999; Gabbita et al. 2000; Fleury et al. 

2002; Moncada et al. 2002; Ueda et al. 2002; Rigoulet et al. 2011). 

 

 

ROS and Ca2+ 

There is substantial evidence for a close “push-pull” relationship between 

ROS and Ca2+ signalling, both Ca2+-induced ROS increases and ROS-induced changes 

in Ca2+ levels. High levels of ROS as mentioned earlier, can induce Ca2+ overload, and 

in turn elevated cytosolic levels of Ca2+ can lead to increased ROS production 

(Gonzalez et al. 2002; Granados et al. 2004; Gonzalez et al. 2005). While Ca2+ plays a 

critical physiological role in ATP synthesis and mitochondrial function it can also 

stimulate pathological ROS generation, cytochrome c release due to disassociation 

with cardiolipin, and apoptosis (Brookes et al. 2004).  

Ca2+ stimulation of mitochondrial ROS production occurs through activation 

of the TCA cycle and oxidative phosphorylation, enhancing respiratory chain 
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electron flow. There is a strong correlation between mitochondrion metabolic rate 

and levels of ROS production. High Ca2+ concentrations lead to MPTP opening, 

which can be sensitised by oxidation of MPTP components (Chernyak et al. 1996; 

Szalai et al. 1999; Criddle et al. 2007). Menadione-induced ROS increases can cause 

elevated [Ca2+]c leading to partial ΔΨm, MPTP opening, cytochrome c release and 

apoptosis. These actions can be inhibited with Ca2+ chelator BAPTA-AM. Thus, it was 

concluded that elevated Ca2+ concentrations coupled with increased ROS 

production can lead to oxidant stress-induced apoptosis through MPTP opening 

(Gerasimenko et al. 2002; Gerasimenko et al. 2002; Criddle et al. 2006; 

Baumgartner et al. 2007; Criddle et al. 2007). MitoQ inhibited these actions in intact 

mouse hearts (Davidson et al. 2012).  

 

ROS, including H2O2, affects Ca2+ homeostasis via oxidation of ROS sensitive 

cysteine residues on IP3R and RyR, and also Orai1, as demonstrated in T-cells  

(Favero et al. 1995; Eu et al. 2000; Sun et al. 2001; Meissner 2002; Meissner 2010). 

ROS-induced activation of IP3R and RyR receptors enhances ER Ca2+ release and can 

prevent inhibition of IP3R by calmodulin. SERCA Ca2+-ATPase oxidation occurred at 

cysteine residue Cys674 and led to enhanced pump activity in cardiac, skeletal and 

vascular smooth muscle. Continued oxidant exposure led to irreversible SERCA 

inhibition and therefore Ca2+ overload (Grover et al. 1988; Suzuki et al. 1992; Adachi 

et al. 2004). As introduced earlier, in PACs high concentrations of ROS H2O2 led to 

the irreversible inhibition of Ca2+-ATPase PMCA, likely through oxidation of critical 

thiol groups. PMCA inhibition prevents Ca2+ removal from the cytosol and leads to 
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Ca2+ overload and necrosis. On the other hand low micromolar concentrations of 

oxidant H2O2 simulated Ca2+ oscillations (Granados et al. 2006; Baggaley et al. 2008). 

These results demonstrate a modulating role of mitochondrial ROS on Ca2+ pools.  

 

The involvement of ROS in AP is complex and poorly defined. Despite the 

strong evidence demonstrating oxidative stress in AP, there has been an apparent 

translational gap, with results from randomised clinical trials for antioxidant therapy 

so far discouraging (Uden et al. 1990; Du et al. 2003; Katsinelos et al. 2005; 

Bjelakovic et al. 2007; Siriwardena et al. 2007; Besselink et al. 2008; Sateesh et al. 

2009; Bansal et al. 2011). 

 

ROS: Cellular Defences 

A network of antioxidant strategies have been developed by the cell to 

manage cellular levels of ROS and minimise the irreversible oxidation of cellular 

molecules, proteins, lipids and DNA. Management of ROS levels is also critical to 

maintain the narrow concentration ranges of H2O2 and NO• required for 

involvement in cell signalling pathways (Pelletier et al. 2012). Enzymes SOD 

(metaloenzyme family) and glutathione peroxidase (GPx), and reductants NADH, 

ubiquinol and reduced glutathione, operate to limit harmful effects of elevated 

ROS. In the mitochondrial matrix, GPx scavenges H2O2 and is regulated by selenium. 

In the cytosol, catalase (CAT) converts H2O2 into H2O and O2
•-. O2

•- is generally an 

unreactive and stable radical at neutral pH, until conversion into ROS such as ONOO-
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and H2O2, which can then be further converted to the more reactive radical OH•-. 

O2
•- can undergo a slow spontaneous dismutation to H2O2, although SOD is 

responsible for the enzymatic conversion of O2
•- to H2O2. In caerulein-induced 

pancreatitis for example, SOD levels are diminished (Dabrowski et al. 1988; Nonaka 

et al. 1990; Esrefoglu et al. 2006), demonstrating an imbalance in cellular oxidant-

antioxidant status. The majority of O2
•- is released into the mitochondrial matrix 

and eliminated by manganese SOD (MnSOD). O2
•- can reduce transition metals such 

as Fe2+ and generate NO• from H2O2, and ONOO- through interaction with OH•-.  

 

 Mitochondrial glutathione, ascorbate (Vitamin C) and lipophilic antioxidant 

vitamin E levels are elevated in comparison to the cytosol. Ascorbate in its active 

form, Glut1, and glutathione are actively transported into the mitochondria to 

manage levels of mitochondrial ROS (Kc et al. 2005; Zechmann et al. 2008; James et 

al. 2009; Marí et al. 2009). Glutathione (GSH) is a key pancreatic cytoprotectant 

(Neuschwander-Tetri et al. 1997) with a high metabolic rate of turnover only lower 

than that found in the liver and kidneys (Neuschwander-Tetri et al. 1997). GSH is 

synthesised from precursor n-acetyl cysteine (NAC) and oxidised to glutathione 

disulphide (GSSG) (Winterbourn 2008). GSH consists of glutamate, cysteine and 

glycine, the central thiol group accounting for the reducing capabilities. NAD(P)H 

produced within the TCA cycle is responsible for providing electron donation for the 

turnover between reduced and oxidised forms. Glutathione, however has a low 

reactivity with H2O2 and requires GSH peroxidise to reduce H2O2 to H2O. NAD(P)H 

quinone oxidoreductase 1 (NQO1), a FAD containing flavoprotein, is ubiquitously 

expressed in all tissues and expression is up-regulated in AP (Hammons et al. 1995; 
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Dinkova-Kostova et al. 2000; Lyn-Cook et al. 2006). NQO1 uses NAD(P)H as a 

reducing cofactor to maintain reduced coenzyme Q10, directly scavenges 

superoxide and acts to stabilise p53 (Beyer et al. 1996; Siegel et al. 1997; Asher et 

al. 2002; Siegel et al. 2004). NQO1 inhibition dramatically increased menadione-

induced ROS in PACs (Criddle et al. 2006). This evidence demonstrates that in 

general the pancreas is well equipped to deal with mild oxidative stress. 

 

  

Acute Pancreatitis 

Acute pancreatitis (AP) is a severe inflammatory condition of the exocrine 

pancreas caused primarily by gallstones and excess alcohol (Frossard et al. 2008; 

Banks et al. 2013; Yadav et al. 2013). There is a progressively increasing incidence, 

currently at ~30/100,000 per year in the United Kingdom (Roberts et al. 2013). Most 

patients have a mild and self-limiting clinical course irrespective of triggers (Tenner 

et al. 2013). Roughly 15-20% of cases involve potentially lethal complications such 

as persistent organ failure and infected pancreatic necrosis (Petrov et al. 2012), 

resulting in a heavy socio-economic burden (Peery et al. 2012). Despite increased 

understanding of the complex pathophysiology of this disease in the last two 

decades and a large number of clinical trials, a specific therapy for AP is lacking 

(Tenner et al. 2013).  

The initial site of damage in AP is considered the pancreatic acinar cell, 

which exhibits many pathological features. These include premature activation of 

digestive enzyme precursors, inhibition of apical secretion, disordered autophagy 
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and lysosomal degradation, mitochondrial dysfunction and release of inflammatory 

cytokines (Lerch et al. 2013). Diverse experimental AP precipitants include bile 

acids, cholecystokinin hyperstimulation and non-oxidative ethanol metabolites. 

These induce Ca2+ overload, increased ROS production, mitochondrial dysfunction 

and loss of ATP that results in acinar cell necrosis (Booth et al. 2011). The extent of 

which determines outcome in a clinical setting. Genetic alterations can impair PAC 

function, such as mutations in the pancreatic secretory trypsin inhibitor gene (PSTI). 

In animal models, PSTI deletion led to PAC death and impaired regeneration, 

predisposing patients to pancreatitis (Witt et al. 2000; Nathan et al. 2005; 

Ohmuraya et al. 2005). Deletion of cathepsin B gene can reduce the severity of 

experimentally introduced pancreatitis, through preventing intrapancreatic 

activation of trypsinogen. However, deletion of the cathepsin gene does not alter 

the extent of inflammation (Halangk et al. 2000). AP can be initiated in patients with 

gain-of-function mutations which lead to the genetic activation of the NF-κB 

pathway and elevated Ras signalling (Chen et al. 2002; Ji et al. 2009; Ji et al. 2009), 

both play a role in the pathogenesis of AP (Yu et al. 2015). NF-κB acts as an 

inflammatory mediator, up-regulating pro-inflammatory cytokine expression and 

leading to the recruitment of neutrophils, macrophages, monocytes, and 

lymphocytes, to the pancreas (Gukovsky et al. 2013). Ras signalling also plays a role 

in the development of local and systemic inflammation, and the activation in PACs is 

also believed to be linked to the development of pancreatic ductal adenocarcinoma 

(PDAC) (Ji et al. 2009; Logsdon et al. 2009; Yu et al. 2015). Early growth response 

protein 1 (EGR1) and several other novel genes have also been suggested to play a 

role in AP development and severity (Ji et al. 2003).  
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Extensive cellular necrosis is a key contributor to the severity of acute 

pancreatitis. In contrast, apoptosis is considered protective, in part by diverting cells 

from necrosis (Bhatia 2004; Criddle et al. 2006; Booth et al. 2011). Necrosis is 

associated with cell rupture and an inflammatory response in acute pancreatitis. 

Whereas apoptosis or programmed cell death, requires gene expression and results 

in cell shrinkage and nuclear fragmentation. Apoptosis leads to very little or no 

inflammation in AP (Wyllie et al. 1980; Cohen et al. 1984; Gerschenson et al. 1992; 

Kaiser et al. 1995; Bhatia et al. 1998; Bhatia 2004; Bhatia 2004).  

 

Primary oxidant production elicits lipid peroxidation, oedema and diminishes 

endogenous antioxidant levels. Oxidant-sensitive transcription factor NF-κB can be 

activated by elevated levels of ROS and translocate into the nucleus, leading to pro-

inflammatory chemokine and cytokine transcription (Kim 2008; Morgan et al. 2011). 

This results in a localised and systemic inflammatory response syndrome (SIRS). The 

features of AP progression include activation and infiltration of inflammatory cells 

into the pancreas, which provoke further ROS production and injury (Pandol et al. 

2007). During the early stages of clinical acute pancreatitis, access to the organ and 

tissue of patients is very limited. Therefore, experimental models of pancreatitis are 

predominantly used to research mechanistic issues. Although many animal species 

have been employed in AP models, the mouse remains popular. It provides access 

to a variety of genetic manipulations, and has a relatively low maintenance cost 

(Dawra et al. 2007; Pandol et al. 2007). Non-invasive models include hormone-
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induced, alcohol-induced, immune-mediated, diet-induced, gene knockout and L-

arginine. Invasive models include closed duodenal loop, antegrade pancreatic duct 

perfusion, intraductal bile acid exposure, hyperstimulation, vascular-induced, 

ischaemia/reperfusion and duct ligation. The in vivo and in vitro effects of CCK and 

analogue caerulein, bile acid TLCS and ethanol/fatty acid ethyl ester (FAEE) 

palmitoleic acid ethyl ester (POAEE) will be outlined in this chapter. 

 

 

CCK and Caerulein 

Enzyme secretion in the pancreas is regulated by circulating gut hormone 

CCK and neurotransmitters ACh from cholinergic nerves, and VIP from pancreatic 

nerves. ACh and CCK both stimulate fluid and enzyme secretion. As early as the 19th 

century, it was recognised that the exocrine pancreas can be damaged by excessive 

neuronal stimulation (Mouret 1895). CCK and analogue caerulein stimulate 

increases in cytosolic Ca2+ and can induce AP in experimental models (Watanabe et 

al. 1984; Niederau et al. 1985; Sjödin et al. 1990). CCK naturally occurs in several 

molecular forms and the full-length form (CCK-58) has been demonstrated to be the 

principal circulating type of CCK in humans (Eberlein et al. 1987). CCK-8 has been 

most extensively studied and has essentially identical actions to CCK-58 (Gonzalez 

et al. 1997) including [Ca2+]c elevations, mitochondrial dysfunction, digestive 

enzyme secretion and cellular damage (Saillan-Barreau et al. 1998; Criddle et al. 

2009). Therefore, CCK-8 is the form applied in this work.  
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The mode of CCK action is biphasic. Low concentrations of the picomolar 

range are associated with physiological responses and activate high affinity 

receptors. Low-affinity receptors are activated by high concentrations of CCK and 

are associated with hyperstimulation and Ca2+ overload (Rosenzweig et al. 1983; 

Jensen R T 1994; Saillan-Barreau et al. 1998). For example, hyperstimulation with 

CCK in isolated PACs, can induce a large initial rise (or peak) in cytosolic Ca2+ 

followed by a prolonged plateau and depolarisation of the mitochondrial 

membrane (Raraty et al. 2000; Gukovskaya et al. 2002). Large sustained [Ca2+]c rises 

induced by CCK-8 hyperstimulation cause acinar cell necrosis via premature 

intracellular digestive enzyme activation (Raraty et al. 2000). Supraphysiological 

concentrations of CCK-8 (>0.1nM) in rat PACs induced ΔΨm depolarisation, while 

activating cell death signalling pathways, including caspase activation and MPTP-

dependent cytochrome c release (Smith et al. 2012). While in comparison, at 

physiological doses, CCK stimulation induced cytosolic Ca2+ oscillations and 

increased NAD(P)H levels via an increase in mitochondrial Ca2+-sensitive 

dehydrogenase activity (Hajnóczky et al. 1995; Robb-Gaspers et al. 1998; Rizzuto et 

al. 2000; Voronina et al. 2002).  

 

CCK acts via two known GPCRs, type A and type B. Type A is expressed in 

murine PACs with some species differences between the CCK-A receptor of rats and 

mice (Saillan-Barreau et al. 1998). CCK-A activation leads to MAPK activation in 

pancreatic AR42J acinar cells (Ji et al. 2000; Logsdon 2000). A study performed using 



Chapter 1: Introduction 
 

49 | P a g e  
 

a transgenic mouse strain expressing the human CCK-B/gastrin receptor in the 

exocrine pancreas, demonstrated that the CCK-B/gastrin receptor mediates 

exocytosis in acinar cells and can couple to phospholipase C (Saillan-Barreau et al. 

1998). Ca2+ oscillations induced by physiological picomolar concentrations of CCK 

are mediated by NAADP and cADPr (Petersen et al. 2006). On the other hand, CCK 

hyperstimulation leads to the activation of PLC, generation of IP3 and changes 

associated with pancreatitis.  

 

In response to CCK in vitro and caerulein in vivo, JNKs and MAPKs are rapidly 

activated (Dabrowski et al. 1996). CCK stimulated intracellular Ca2+
 rises and PKC 

activation in turn induces NF-κB activation and elevated mob-1 chemokine 

expression, a downstream target of the Ras signalling pathway (Han et al. 1999; Han 

et al. 2000). CCK-8 and analogue caerulein induced similar dose-related increases of 

intracellular Ca2+ concentrations ([Ca2+]i) and amylase secretion through Ca2+-

mediated ROS generation (Sjödin et al. 1990; González et al. 2006). The 

plasmakinetics of caerulein and CCK-9 are also similar (Mossner et al. 1991). The 

CCK-8 elicited amylase secretion can be impaired by ethanol in mouse PACs 

(González et al. 2006) in a Ca2+ Ca2+-dependent influx mechanism (González et al. 

2006; Fernandez-Sanchez et al. 2009). 

CCK analogue caerulein, is derived from the Australian tree frog Litoria 

caerulea. Caerulein-induced pancreatitis (CER-AP) in rodents is a non-invasive 

model of acute pancreatitis. It is well characterised and widely used to induce a 

mild, self-limited and reversible disease, in comparison to retrograde infusion of bile 



Chapter 1: Introduction 
 

50 | P a g e  
 

acid TLCS.  Caerulein benefits from a longer half-life in the body than CCK and 

improved stability against biological degradation. Therefore, caerulein is 

predominantly used in experimental models (Mossner et al. 1991). It is 

characterised by pancreatic oedema, premature zymogen activation and systemic 

inflammatory response (Lerch et al. 1994; Halangk et al. 2000; Lerch et al. 2002).  

CER-AP is one of the most commonly applied animal models of AP used by over 100 

research groups and has contributed greatly to our understanding of AP. However, 

CER-AP has few clinical parallels (Lerch et al. 1994; Lerch et al. 2013). CER-AP, 

however, remains a convenient and reliable experimental model to induce a milder 

level of damage to the pancreas. The model has been utilised in many studies and 

groups to investigate oxidative stress in AP despite of the restricted 

pathophysiological relevance to the clinical situation. Caerulein generated ROS were 

proposed to play a role in the development of CER-AP, through activation of NF-κB. 

ROS scavengers may inhibit NF-κB activation and alleviate the inflammatory 

response in PACs (Yu et al. 2000). In CER-AP, treatment with free radical scavengers 

SOD and catalase inhibited lipid peroxidation, zymogen degranulation, ultra-

structural and biochemical injury and tissue necrosis (Guice et al. 1986; Schoenberg 

et al. 1991). Caerulein pancreatitis can induce early SAPK activation, acinar 

glutathione depletion, diminished ATP and premature activation of digestive 

enzymes due to impaired cytoskeleton integrity (Luthen et al. 1995; Grady et al. 

1996). 
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A study in the choline deficient ethionine-supplemented diet-induced model 

of acute haemorrhagic pancreatic necrosis and the supramaximal caerulein 

stimulation model of acute interstitial oedematous pancreatitis compared the 

effects of agents designed to reduce oxidative stress (Steer et al. 1991). In both 

models, only a decrease in the degree of pancreatic oedema was observed. 

Whereas, other markers of AP were unaffected, suggesting that ROS did not exert a 

pivotal role in the development of acinar cell damage.  

 

 

Taurolithocholic acid 3-sulphate (TLCS) 

The underlying cause of 60-75% of acute pancreatitis cases are gallstones or 

alcohol abuse. The gallbladder and pancreas share a draining duct, of which the exit 

(sphincter of Oddi) to the duodenum can become blocked by passing gallstones. 

This results in reflux of bile into the pancreatic duct leading to increased ductal 

pressure and direct effects on the pancreas. Bile acids induce a severe AP pathology 

characterised by tissue necrosis, leukocyte infiltration, oedema, and haemorrhage 

(Yagci et al. 2004). In vivo, experimental biliary acute pancreatitis can be induced by 

infusion of retrograde ductal taurocholate. Introduction of bile acids directly into 

the common bile duct is a more clinically representative surgical model of 

experimental AP, enabling the study gallstone obstruction associated AP, which 

accounts for 30-50% of AP cases. One of the most frequently used bile acids is 

sodium taurocholate. Infusion in rats has been used extensively to investigate AP 
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associated with multiple organ dysfunction, including lung injury, a major cause of 

early death in patients (Lichtenstein et al. 2000). The bile acid concentration utilised 

requires careful choice as excessive levels will produce extensive acinar cell damage 

that may be too rapid to provide a reliable representation of the disease (Su et al. 

2006). 

 

In isolated mouse PACs, bile acids such as natural bile acid TLCS, activate G-

protein coupled bile acid receptor 1 (Gpbar 1) expressed at the apical pole of PACs, 

leading to Ca2+ release from intracellular stores and subsequent  [Ca2+]c  elevation 

(Perides et al. 2010). Bile acids elicit Ca2+ overload via phosphoinositide 3-kinase 

(PI3K) activation (Fischer et al. 2007) and inhibition of the SERCA pump. This 

prevented Ca2+ clearance from the cytosol (Kim et al. 2002) and induced Ca2+
 

release from the ER via PLC activation (Lau et al. 2005). Bile acid provoked release of 

Ca2+ from the ER and apical acidic stores is dependent on both RyR's (and RyR 

activator cADPr) and IP3R's (Gerasimenko et al. 2006; Lewarchik et al. 2014). A 

mode for TLCS-induced injury is via Ca2+-dependent activation of serine/threonine 

phosphatase calcineurin. Activated calcineurin mediates intra-acinar protease 

activation through NF-κB nuclear translocation (Muili et al. 2013) and premature 

trypsinogen activation in the pancreatic acinar cell (Ma et al. 2013). Pancreatic 

acinar cell trypsinogen activation is involved in the early stages of pancreatic injury 

but not inflammation in experimental AP. Endogenously activated trypsinogen can 

induce acute but not chronic pancreatitis in transgenic mice (Dawra et al. 2011; 

Gaiser et al. 2011; Logsdon et al. 2013). Bile acid-induced toxic cytosolic Ca2+ rises 
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can be inhibited by depletion of ATP (Voronina et al. 2002; Barrow et al. 2008) and 

are mirrored by a rise in mitochondrial Ca2+
 (Booth et al. 2011).  

 

In PACs TLCS (500µM) has been shown to induce increased [ROS]M and 

[ROS]I via sustained cytosolic and mitochondrial Ca2+ elevations and a 

predominantly necrotic mode of cell death (Booth et al. 2011). In contrast, the 

lower concentration of 200µM had no detectable effects on ROS levels in DCFDA 

loaded cells (Booth et al. 2011). Bile acid treatment caused mitochondrial 

dysfunction and membrane depolarisation (Voronina et al. 2004).  While mild 

cellular increases in ROS generally induce apoptosis, large, prolonged increases in 

cytosolic and mitochondrial Ca2+ combined with ATP depletion induced necrosis 

(Kim et al. 2002; Booth et al. 2011). The use of antioxidants could prevent ROS-

induced apoptosis and the removal of this proposed protective mechanism may 

account for failure in clinical trials (Bhatia 2004; Bjelakovic et al. 2007; Siriwardena 

et al. 2007; Armstrong et al. 2013). Inhibition of NQO1, which is a protective cellular 

detoxifying mechanism, by 2,4-dimethoxy-2-methylnaphthalene (DMN) can 

potentiate menadione-induced ROS increases and promote apoptosis (Criddle et al. 

2006; Booth et al. 2011). Levels of NQO1 are elevated in AP as well as pancreatic 

adenocarcinoma (Hammons et al. 1995; Ross 1997; Dinkova-Kostova et al. 2000; 

Lyn-Cook et al. 2006). The lower concentration TLCS treatment (200µM) induced 

detectable ROS increases upon inhibition of NQO1. This effect was unaffected by 

NADPH oxidase inhibitor, diphenyliodonium chloride. Furthermore, TLCS-induced 

ROS increases were completely abolished in cells pre-treated with BAPTA and 0Ca2+ 
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in the extracellular media. Following pancreatic ductal taurocholate administration 

in rats, elevated markers of oxidative stress have been demonstrated (Telek et al. 

1999; Rau et al. 2000; Yasar et al. 2002). The study of Rau and colleagues (Rau et al. 

2000) however, indicated that whilst ROS may be mediators of tissue damage, their 

extracellular generation alone did not induce typical biochemical and morphological 

changes indicative of AP. This evidence could demonstrate a multi-faceted action of 

TLCS-AP. In contrast, while antioxidant NAC has demonstrated the ability to inhibit 

apoptosis regulated by NF-κB, NAC can also reduce tissue necrosis, leukocyte 

infiltration, oedema, and haemorrhage in a rat taurocholate AP model (Yagci et al. 

2004; Pandol et al. 2007). 

 

 

Ethanol and non-oxidative metabolite FAEE 

 

A link between alcohol consumption and the pancreas has been reported 

since 1788 (Crawley 1788). In the USA, alcoholic pancreatitis is one of the 

predominant alcohol-related hospital diagnoses. Not all heavy drinkers develop AP, 

and while the reasons for this are not clear, the development is accelerated in those 

patients with a high fat diet and who are smokers (Dufour et al. 2003; Yang et al. 

2008; Pandol et al. 2010). Elevated oxidative stress levels are found in alcoholic 

pancreatitis patients (Szuster-Ciesielska et al. 2001; Kamyar Shahedi 2013). PACs 

degrade alcohol via both oxidative and non-oxidative ethanol metabolism (Haber et 

al. 1998; Gukovskaya et al. 2002; Haber et al. 2004). The oxidative pathway 
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primarily involves oxidisation of alcohol to acetaldehyde by alcohol dehydrogenase 

(ADH) in the acini cytosol. Oxidative metabolism induces increased levels of ROS via 

cytochrome P450 2E1 (CYP2E1) production of H2O2, and acetaldehyde-induced 

depletion of glutathione (Apte et al. 2010; Ji 2012). Elevated CYP2E1 expression in 

the pancreas is induced in rats fed with alcohol. Long term ethanol consumption 

therefore sensitises the pancreas to developing acute pancreatitis by altering gene 

expression in rats (Kubisch et al. 2006).  

 

Non-oxidative alcohol metabolism following ethanol ingestion, produces 

diverse fatty acid ethyl esters (FAEEs) via FAEE synthase, which can be detected in 

patient serum levels (Doyle et al. 1994). Ethanol in combination with saturated fatty 

acid palmitic acid (PA) is converted by palmitoleic acid ethyl ester (POAEE) synthase 

and acyl-coenzyme A: ethanol O-transferase to POAEE, which induces Ca2+ overload 

in PACs (Criddle et al. 2004; Samad et al. 2014). POAEE has been demonstrated to 

accumulate in the pancreas of alcoholic pancreatitis patients (Kaphalia et al. 2001). 

The metabolism of POAEE to palmitoleic acid (POA) by FAEE hydrolase is 

responsible for further toxic effects such as mitochondrial depolarization, ATP 

depletion, Ca2+ overload and necrosis (Criddle et al. 2004; Criddle et al. 2006). 

Inhibition of carboxylesterase prevented POAEE-induced necrosis in PACs (Criddle 

et al. 2006). In comparison to the liver the activity of FAEE synthase in the pancreas 

is larger and ADH activity lower (Gukovskaya et al. 2002). Inhibition of oxidative 

alcohol metabolism exacerbated FAEE levels and led to organ toxicity and 

inflammation (Werner et al. 2002). The combination of ethanol and unsaturated 
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fats, is thought to result in acinar cell injury from digestive enzyme activation and 

necrosis (Werner et al. 1997; Gukovskaya et al. 2002; Criddle et al. 2004; Criddle et 

al. 2006). Observations in vivo have indicated that the toxic effects of 

ethanol/palmitoleic acid (POA) are associated with the inhibition of oxidative 

alcohol metabolism and are proposed to be due to production of FAEEs via 

carboxylester lipase (CEL) (Huang et al. 2014).  

 

The short term effects of ethanol on intracellular Ca2+ appear small (Criddle 

et al. 2004). However, through the non-oxidative ethanol metabolism pathway, 

FAEEs can induce pancreatic oedema, pancreatic trypsinogen activation, and 

vacuolization of acinar cells, (Werner et al. 2002; Lamarche et al. 2004). suggesting a 

central role for FAEEs in the development of alcoholic pancreatitis (Werner et al. 

2002). It has also been suggested that toxic levels of EtOH may exacerbate PAC CCK-

induced effects (Del Castillo-Vaquero et al. 2010). The use of ethanol in combination 

with POAEE has clinical parallels as intoxicated human blood FAEE concentrations 

have been reported up to 50µM and mirrored by the concentration of EtOH 

(Laposata et al. 1986; Werner et al. 1997; Soderberg et al. 2003). In summary, 

ethanol and POAEE studies indicate that alcohol-induced toxic effects are 

predominantly FAEE driven, which is of great clinical relevance in an organ with 

predominantly non-oxidative ethanol metabolism.  

 

The effects of acute alcohol administration have been widely investigated in 

animals. However, a reliable model of AP has yet to be induced by ethanol alone 
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and to date, there is a lack of suitable models for alcoholic pancreatitis (Schneider 

et al. 2002; Wan et al. 2012; Huang et al. 2014). The mechanisms and pathogenesis 

of alcohol-induced pancreatitis are not yet fully understood, and therefore, a 

specific therapy is lacking. Ethanol administration has historically been combined 

with other factors such as CCK, secretin or pancreatic ductal obstruction to induce 

AP (Siech et al. 1991; Ponnappa et al. 1997; Siech et al. 1997; Pandol et al. 1999). 

Several studies have evaluated oxidative stress in alcohol AP models. For example, 

ethanol increased oxidative stress levels in the pancreas of animals injected with a 

dibutyltin-dichloride/ethanol combination (DBTC/EtOH) or ethanol alone. However, 

only animals treated with DBTC/EtOH rapidly exhibited morphological damage 

leading to full-blown AP (Weber et al. 1995). Furthermore, alcohol injection directly 

into the biliary duct of rats caused increased circulatory TBARS alongside decreased 

levels of GSH and elevated levels of nitric oxide associated with AP (Schneider et al. 

2002; Andican et al. 2005). However, results should be treated with caution since 

direct fluid injection into the biliary duct may lead to pancreatic damage per se 

(Schneider et al. 2002). Using a different approach, a combination of ethanol with 

mild stimulation of the pancreas (CCK and secretin) and short-term ductal 

obstruction, induced AP within 24h and was associated with oxidative stress (Wittel 

et al. 2003).  

 

Although these studies have used alcoholic induction of AP, the underlying 

pathophysiological mechanisms remain unclear and relevance to the clinic 

debatable, especially considering the relatively small proportion of alcoholics that 

develop AP. This highlights additional predisposing factors, such as a high fat diet 
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and smoking (Apte et al. 2010; Criddle 2015). Our group has made significant 

progress in the field, developing a promising novel model of alcoholic acute 

pancreatitis. This model is based on intraperitoneal injections of an ethanol POA 

combination (FAEE-AP). Biochemical markers were elevated and led to acute 

exocrine pancreatic damage and systemic inflammation. The FAEE-AP model 

demonstrated induction of extensive pancreatic necrosis, neutrophil infiltration and 

oedema. Importantly, the in vitro and in vivo pathological changes were mirrored, 

reliable and reproducible (Huang et al. 2014). This study showed that inhibition of 

oxidative ethanol metabolism and promotion of the non-oxidative pathway induced 

mitochondrial dysfunction in a Ca2+ dependent manner. Localisation of non-

oxidative ethanol metabolites to the mitochondria led to release of fatty acids via 

hydrolysis. FAEE formation was prevented through inhibition of FAEE synthase 

carboxylester lipase (CEL) leading to alleviated effects of ethanol and FAEE in vitro 

and in vivo. 

 

 

 

Antioxidant therapy 

Reactive oxygen species received substantial attention over the decades for 

the potentially detrimental cellular effects they may impart. ROS have previously 

been viewed as purely unfortunate by-products of mitochondrial respiration. To 

further support this opinion, accumulating clinical data demonstrated elevated 

oxidant status and reduced antioxidant capacity such as Vitamin A and E and 



Chapter 1: Introduction 
 

59 | P a g e  
 

carotenoid depletion (Curran et al. 2000). These effects were mirrored in 

experimental animal models and correlated to the severity of acute pancreatitis, 

however, the specific roles and ROS targets in AP are poorly understood (Schulz et 

al. 1999; Rau et al. 2000; Hackert et al. 2011). Evidence now points to the role of 

ROS particularly H2O2 and reactive nitrogen species nitric oxide as key signal 

transduction molecules essential for cellular processes such as growth, cytokine 

activation and protective mechanisms such as induction of apoptosis. It is 

understood that the cell delicately manages low levels of ROS to maintain signalling 

capacity without the potential damaging effects. In the development of oxidative 

stress-related diseases such as AP, increased ROS production and depleted 

endogenous antioxidant availability leads to an imbalance of these two components 

and oxidative stress. Elevated levels of ROS have been demonstrated to mediate 

pancreatic acinar cell necrosis and the release of inflammatory mediators in both 

pancreas and lungs. The following inflammatory response, includes recruitment of 

immune cells and development of pancreatic oedema. ROS increases associated 

with the disease progression have been demonstrated in vitro induced by caerulein 

hyperstimulation and bile acid and elevated markers of oxidative stress in vivo 

experimental models (Dabrowski et al. 1988; Sato 1995; Granados et al. 2004; 

Esrefoglu et al. 2006; Booth et al. 2011).  

 

While increased ROS production has been demonstrated in response to a 

variety of stimuli and AP precipitants in the pancreatic acinar cell, the mechanisms 

are poorly characterised. Antioxidant therapy was introduced to reduce the levels 
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of oxidative stress observed in the clinical setting and cellular ROS increases in 

response to known experimental AP inducers. Many clinical attempts to regulate 

oxidative stress have encountered a reduction in biomarkers but with little or no 

therapeutic benefit (Halliwell 2000; Ueda et al. 2006; Bjelakovic et al. 2007; Iannitti 

et al. 2009). A meta-analysis indicated that antioxidant therapies such as β-

carotene, vitamin A and vitamin E do not improve the outcome of a number of 

diseases and may actually be detrimental, causing an increase in mortality 

(Bjelakovic et al. 2007). Antioxidant therapy with intravenous selenium, NAC and 

ascorbic acid plus β-carotene and α-tocopherol resulted in restoring antioxidant 

levels and reduced oxidative stress biomarkers in severe AP. However, antioxidant 

therapy provided no improvement to the extent of organ dysfunction or patient 

outcome and elevated mortality (Virlos et al. 2003; Siriwardena et al. 2007).  

 

 

Antioxidant therapy: Experimental AP findings 

There have been a number of studies demonstrating pathological 

improvements in both experimental AP models and in the clinic. A large number of 

studies have evaluated the effects of antioxidant as a pre-treatment, which 

diminishes the clinical relevance. The majority of AP patients present after the 

initial pancreatic events, when the level of injury is progressing into the systemic 

phase. However, these studies can still contribute to our understanding of oxidative 

stress and antioxidant therapy in AP and it is important to outline key studies. One 
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such study of caerulein-induced AP in rats, applied lycopene pre-treatment, an 

antioxidant and anti-inflammatory carotenoid present in tomatoes. Lycopene 

inhibited decreases of GSH levels and increases of MDA while concurrently 

protecting against elevations of TNF-α , IL-1β, myeloperoxidase (MPO), amylase, 

lipase and histopathological damage (Ozkan et al. 2012). This reduction of oxidative 

damage may be linked to inhibition of neutrophil infiltration and subsequent lipid 

peroxidation, an aspect of AP in which antioxidant treatments might potentially 

minimise pancreatic damage. On the other hand, in another caerulein rat AP model, 

natural antioxidant resveratrol, encountered in red wine, ameliorated changes in 

biochemical AP markers and histological damage to the pancreas, but failed to 

improve the pancreatic antioxidant status (Szabolcs et al. 2006).  

 

Beneficial effects of other natural antioxidants derived from plants, such as 

the flavonoid quercetin and α-/β-amyrin, have also recently been shown in the 

murine caerulein AP model (Carvalho et al. 2010; Melo et al. 2011), although both 

compounds were again administered as a pre-treatment rather than therapy. 

Prophylactic effects with other agents shown in the caerulein AP model include 

chondroitin-4-sulphate (Cuzzocrea et al. 2004; Campo et al. 2008), a novel agent 

ND-07 (Lee et al. 2012) and M40401, a SOD mimetic (Cuzzocrea et al. 2004). 

Interestingly, one study addressed the issue of prophylaxis versus treatment in the 

assessment of antioxidant efficacy in AP. The effects of NAC in the mouse caerulein 

AP model were compared when administered before and after the first caerulein 

injection (Demols et al. 2000). Only the prophylactic treatment was successful in 
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limiting the severity of experimental AP. Administration of probiotics can effectively 

reduce oxidative stress in a modified version of the caerulein model, in which AP 

was induced by intraductal glycodeoxycholate infusion and intravenous caerulein 

administration (Lutgendorff et al. 2008). These stimulated the biosynthesis of GSH 

while reducing pancreatic damage and inflammation. In comparison, a clinical study 

from the same group demonstrated that early administration of probiotics to 

severe AP patients more than doubled the relative risk of mortality (Besselink et al. 

2008). These data clearly highlight that major gaps exist between experimental 

models and the clinic and that caution should be exercised in the extrapolation of 

preclinical findings to patient care.  

 

More success has been observed in other experimental AP models, such as 

in taurocholate-induced experimental AP. ROS scavenger SOD prevented 

glutathione depletion and reduced the severity of pancreatic injury (Rau et al. 

2000). Combined NAC, selenium and ascorbic acid treatment 12 hours post 

induction of L-arginine-induced experimental AP resulted in amelioration in 

pancreatic and remote organ injury (Hardman et al. 2005). The involvement of 

oxidative stress was initially evaluated in an acute necrotising AP rat model, induced 

by retrograde intraductal infusion of 3% sodium taurocholate (Rau et al. 2000). The 

study compared an oxidative stress treated group (XOD and hypoxanthine) with a 

ROS scavenger treated group (SOD/CAT) and showed a significant decrease in 

conjugated dienes (lipoperoxidation product), amelioration of acinar cell damage, 

and decreased number of inflammatory cells in the scavenger group. However, the 
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application of SOD/CAT had no discernible effect on MDA, GSH, amylase or lipase 

levels or on formation of oedema. The authors concluded that whilst ROS may be 

important mediators of tissue damage, extracellular generation alone did not 

induce typical biochemical and morphological changes indicative of AP, and 

suggested that factors other than ROS must be involved for triggering AP in vivo. An 

alternative approach of ductal obstruction was used to investigate oxidative stress 

in AP (Urunuela et al. 2002). This study showed increased levels of amylase, highest 

6-12 h post ligation, MDA levels which peaked at 6 h and a decrease in GSH levels 

which troughed at 6 h post ligation. Dihydrorhodamine-123 (DHR) fluorescence was 

also used to measure oxidative stress in isolated acinar cells and results showed a 

progressive increase in ROS. The authors suggested that acinar cell ROS acted as 

signalling messengers to exacerbate disease, activating intracellular proteases, 

stellate cells and recruitment of immune cells to the pancreas (Urunuela et al. 

2002). More recently, a study assessed oxidative stress 48 h post biliopancreatic 

ductal taurocholate administration to rats, and showed elevated MDA levels in 

pancreas and erythrocytes, with SOD activity significantly depressed (Yasar et al. 

2002). An elevation of oxygen free radicals in taurocholate-induced AP in rats was 

shown using direct in vivo capture of cerium perhydroxide precipitates with 

confocal laser scanning microscopy (Telek et al. 1999; Telek et al. 2001), which 

colocalised with NF-κB activation, P-selectin and intercellular adhesion molecule 1 

(ICAM) up-regulation (Telek et al. 2001).  
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In agreement with a role for oxidative stress in bile acid-induced AP, 

antioxidant pre-treatment with NAC, that has prevented oxidant-induced ROS 

increases in PACs (Criddle et al. 2006), reduced tissue necrosis, leukocyte 

infiltration, oedema and haemorrhage in taurocholate-induced AP in rats (Yagci et 

al. 2004). However, this occurred without concurrent induction of AP. Intravenous 

administration of a naturally occurring antioxidant, resveratrol, protected against 

oxidative stress in taurocholate-induced AP, reducing cellular oxidative damage and 

lipid peroxidation concurrent with lower serum amylase, reduced pancreatic lesions 

and neutrophil infiltration (Li et al. 2006).  

 

Antioxidant therapy: Clinical experience 

The investigation of antioxidant monotherapy in clinical AP has been 

undertaken in relatively few studies. Selenium supplementation in AP patients was 

associated with lower serum levels of MDA, but no change in SOD. However, this 

was a small limited study with only 16 patients (Wollschlager et al. 1997). A non-

randomised series showed that introduction of selenium into a treatment protocol 

was associated with a reduction in mortality from AP; however, there were no 

severe AP patients included in this study (Kuklinski et al. 1992; Kuklinski et al. 1995). 

Subsequently, the therapeutic efficacy of high-dose (10 g/day) vitamin C was 

investigated in AP patients (Du et al. 2003). Compared with the normal group, 

vitamins C and E, β-carotene, whole blood GSH levels and erythrocyte SOD activity 

were significantly decreased and lipid peroxidation increased in AP patients, 
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especially so in severe cases. The results from this study appeared promising, with a 

significantly quicker recovery from clinical symptoms demonstrated in the high-

dose group. Another study evaluated the efficacy of high-dose allopurinol, a XOD 

inhibitor that blocks generation of ROS, for prevention of post-ERCP AP (Katsinelos 

et al. 2005) in a prospective, double-blinded, placebo controlled trial. The frequency 

of AP was significantly lower in the allopurinol compared with the placebo group 

and mean duration of hospitalisation was significantly shorter, suggesting efficacy 

for post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis.  

 

An early, small, double-blinded trial in 20 patients indicated promise of 

antioxidant therapy in AP, using a combination of selenium, vitamins C and E, β-

carotene and methionine. However, no severe AP patients were included (Uden et 

al. 1990). In contrast, subsequent studies have generally provided no supportive 

evidence for the use of antioxidant treatment in AP. For example, although a 

prospective randomised study AP patients demonstrated decreased oxidative stress 

in response to antioxidant treatment but no significant reductions of hospital stay 

or complication rates were detected (Sateesh et al. 2009). Similarly, an investigation 

in patients with predicted severe AP evaluating combined antioxidant therapy 

(intravenous NAC, selenium and ascorbic acid; nasogastric β-carotene and α-

tocopherol), demonstrated that although vitamin C and selenium levels were 

significantly increased towards normal following treatment, in-hospital mortality 

was not reduced (Virlos et al. 2003).  
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More convincing evidence for a lack of efficacy of antioxidant treatment in 

AP has been provided by a randomised, double-blind placebo controlled trial of 

combined therapy (intravenous NAC, selenium and vitamin C) in predicted severe 

AP patients over a 3-year period (Siriwardena et al. 2007). This study showed that 

serum levels of antioxidants (ascorbic acid, selenium and GSH/GSSG ratio) rose 

whilst markers of oxidative stress fell during treatment. Importantly, no statistical 

difference in organ dysfunction, the primary end-point, or for any secondary end-

point of organ dysfunction or patient outcome was detected; clearly indicating that 

the use of intravenous NAC, selenium and vitamin C combined therapy was 

ineffective in severe AP. Moreover, this study highlighted a trend towards a more 

deleterious outcome in patients given antioxidant therapy, which may reflect an 

ability of antioxidants to increase acinar cell necrosis (Booth et al. 2011; Booth et al. 

2011). In agreement, a more recent study recruited 39 patients with severe AP, of 

which 19 were randomly assigned to antioxidant treatment (vitamin A, E and C), 

with 20 controls. There was no significant difference in organ dysfunction and 

length of hospital stay associated with treatment, although markers of oxidative 

stress (MDA, SOD and reduced GSH) were also not significantly different between 

the two groups at Day 7 (Bansal et al. 2011). Some antioxidant therapy was 

successful in the clinic; however, there is insufficient clinical data supporting the 

beneficial use of antioxidants alone or in combination therapy (Schulz et al. 1999; 

Banks et al. 2010; Armstrong et al. 2013; Murphy 2014). Since therapy of AP cannot 

be used prophylactically in the clinical setting, all therapeutic approaches are 

limited with regard to an inhibition of certain pathophysiological steps.  
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Antioxidant therapy: Targeted antioxidants 

Although there was a lack of success of general antioxidant therapy, a role of 

ROS was still evident in the development of AP amongst many other oxidative 

stress-related diseases such as hypertension, atherosclerosis, diabetes and kidney 

disease. Therefore, antioxidants targeted to the mitochondria, the main source of 

cellular ROS, were developed for proposed improved efficiency, as most small 

molecule antioxidants are only taken up by the mitochondria in small amounts and 

are distributed around the body. Antioxidant targeting was accomplished through 

linking an antioxidant compound to a lipophilic cation triphenylphosphonium (TPP+). 

(2-Hydroxyethyl)triphenylphosphonium bromide (TPP+ henceforth) is the simplest 

derivative used in this study (Figure 1.3). TPP+ is used as a control for more complex 

derivatives MitoQ and dTPP, alongside non-targeted ubiquinone Decylubiquinone 

(dUb) in order to rule out or confirm any biological effects of the TPP+ moiety. 

Uptake utilises the mitochondrial membrane potential (ΔΨm) for accumulation 100-

500 fold inside the mitochondria in comparison to the cytosol, an action inhibited 

by carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) uncoupler-

induced ΔΨm dissipation (Murphy et al. 2000; Kelso et al. 2001; Jauslin et al. 2003; 

James et al. 2005; Ross et al. 2005). Uptake into the cell is driven by the plasma 

membrane potential. These mitochondria targeted antioxidants include MitoQ 

(conjugated to the same ubiquinone as found in Coenzyme Q10) (Kelso et al. 2001), 

MitoE (conjugated to Vitamin E), MitoSOD (conjugated to superoxide dismutase) 

and MitoTEMPO, which has both superoxide and alkyl radical scavenging properties 

and more recently the development of TPP-conjugated caffeic acid (Teixeira et al. 
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2015). All TPP+ derivatives can pass easily through phospholipid bilayers without the 

requirement for a specific uptake mechanism, as they are relatively lipid-soluble, 

despite their net positive charge (Ross et al. 2005; Murphy et al. 2007; Smith et al. 

2008).  
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Figure 1.3 
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Figure 1.3 Structures of the antioxidant and TPP+ compounds used in this thesis. MitoQ and 

dUb are shown in the oxidised forms. The simplest TPP+ derivative used is one hydroxyl group 

attached to TPP+ and has low hydrophobicity and a slower mitochondrial accumulation rate in 

comparison to the longer more hydrophobic TPP+ molecules. 
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Figure 1.4 

 

  Figure 1.4 Uptake and accumulation of MitoQ and lipophilic cations. Driven by the 

plasma membrane potential (ΔΨp) MitoQ and lipophilic cations pass through the plasma 

membrane and accumulate in the cytosol 5-10 fold. Further accumulation of 100-500 

fold inside the mitochondria in comparison to the cytosol, is driven by the mitochondrial 

membrane potential (ΔΨm).  Once there, MitoQ is reduced to the active ubiquinol 

antioxidant by complex II of the electron transport chain. Adapted from Smith et al. 

(2003)© and Murphy et al. (2007). 
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Mitoquinone (MitoQ) is the best-characterised mitochondria-targeted 

antioxidant, designed to deliver a quinone antioxidant moiety to the mitochondria 

via a 10-carbon alkyl chain linked to the TPP lipophilic cation (Smith et al. 2010). The 

majority of MitoQ in the mitochondria is found adsorbed to the matrix surface of 

the inner membrane, sitting deeper into the phospholipid bilayer than the TPP+ 

cation alone and (1-Decyl)triphenylphosphonium bromide (dTPP) (Ross et al. 2005). 

Once located in the mitochondria, MitoQ is continuously recycled by complex II of 

the electron transport chain to the active antioxidant quinol form. The rate of 

recycling is at a similar rate to non-targeted form dUb, but both compounds may 

still interact with superoxide in the quinone form (Kelso et al. 2001; Asin-Cayuela et 

al. 2004; James et al. 2005; James et al. 2007; Maroz et al. 2009).  

 

Initial toxicity studies in mice showed MitoQ to be non-toxic at 750 

nmol/mouse and toxic at 1,000 nmol/mouse with intravenous administration. 

Concentrations of up to 500µM were well tolerated by mice in drinking water over 

4-6 months accumulating to ∼113 pmol MitoQ/g in the heart, ∼20 pmol MitoQ/g in 

the liver, and ∼2 pmol/g in the brain (Smith et al. 2003; James et al. 2004). In young 

C57BL/6 mice fed MitoQ for 24-28 weeks there were decreases in the respiratory 

quotient, liver triglyceride content, plasma triacylglyceride content and white 

adipocyte size. Overall, there were small overall improvements in balance and 

motor coordination. There were no substantial differences in any further 

parameters measured such as O2 consumption and bone mineral density. MitoQ 

therapy has shown success in animal models, initially showing to be protective 

against cardiac ischemia-reperfusion injury (Adlam et al. 2005). In humans, the oral 
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dosing of MitoQ resulting in a plasma peak concentration (33 ng/ml after ~1 h) is 80 

mg (1 mg/kg) (Smith et al. 2010). 

 

Successful studies have shown that MitoQ protects against many oxidative 

stress-induced conditions. These studies include in isolated mitochondria, cell lines 

and animal disease models such as sepsis (Lowes et al. 2008), cardiac ischemia-

reperfusion injury (Adlam et al. 2005), alcoholic fatty liver disease (Chacko et al. 

2011) and toxin-induced Parkinsonism (Ghosh et al. 2010). Further in vivo work has 

demonstrated neuroprotective effects in amyotrophic lateral sclerosis,  ameliorated 

age-related arterial endothelial dysfunction in mice and suppressed NACHT, LRR and 

PYD domains-containing protein 3 (NLRP3) inflammasome-mediated inflammatory 

cytokines which ameliorated experimental mouse colitis (Dashdorj et al. 2013; 

Gioscia-Ryan et al. 2014; Miquel et al. 2014). MitoQ is an effective antioxidant 

against lipid peroxidation, peroxynitrite and superoxide and inhibiting CCK (10pM) 

induced ROS increases in PACs (Camello-Almaraz et al. 2006; James et al. 2007). 

However, in a TLCS-induced AP model MitoQ treatment was not protective and 

elevated lung myeloperoxidase and interleukin-6 in CER-AP (Huang et al. 2015).  

 

The overall positive results in animal models led to the progression of MitoQ 

to the clinic and this drug has undergone a double blind, placebo-controlled study in 

Parkinson’s disease. However, there was no improvement to the disease 

progression. This was proposed to be due to insufficient brain penetration (Snow et 

al. 2010). There were minimal effects of MitoQ on viral load in a phase II clinical trial 

http://www.scopus.com.ezproxy.liv.ac.uk/record/display.url?eid=2-s2.0-84897006654&origin=resultslist&sort=plf-f&src=s&sid=0B6055EA62D39C7E563C13FCC4166049.mw4ft95QGjz1tIFG9A1uw%3a420&sot=aut&sdt=a&sl=39&s=AU-ID%28%22Murphy%2c+Michael+P.%22+55573711400%29&relpos=19&relpos=19&citeCnt=4&searchTerm=AU-ID%28%5C%26quot%3BMurphy%2C+Michael+P.%5C%26quot%3B+55573711400%29
http://www.scopus.com.ezproxy.liv.ac.uk/record/display.url?eid=2-s2.0-84902303333&origin=resultslist&sort=plf-f&src=s&sid=0B6055EA62D39C7E563C13FCC4166049.mw4ft95QGjz1tIFG9A1uw%3a420&sot=aut&sdt=a&sl=39&s=AU-ID%28%22Murphy%2c+Michael+P.%22+55573711400%29&relpos=9&relpos=9&citeCnt=4&searchTerm=AU-ID%28%5C%26quot%3BMurphy%2C+Michael+P.%5C%26quot%3B+55573711400%29
http://www.scopus.com.ezproxy.liv.ac.uk/record/display.url?eid=2-s2.0-84902303333&origin=resultslist&sort=plf-f&src=s&sid=0B6055EA62D39C7E563C13FCC4166049.mw4ft95QGjz1tIFG9A1uw%3a420&sot=aut&sdt=a&sl=39&s=AU-ID%28%22Murphy%2c+Michael+P.%22+55573711400%29&relpos=9&relpos=9&citeCnt=4&searchTerm=AU-ID%28%5C%26quot%3BMurphy%2C+Michael+P.%5C%26quot%3B+55573711400%29
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in hepatitis C patients, although there was an overall improvement to liver damage 

(Smith et al. 2010).  

 

The mechanisms not only appear complex and lacking in definition but there 

is also evidence demonstrating adverse side effects of MitoQ (Leo et al. 2008; Fink 

et al. 2012; Reily et al. 2013; Huang et al. 2015; Trnka et al. 2015). All quinols can 

potentially produce superoxide, effects that were not measureable in vivo (James et 

al. 2004; Smith et al. 2010). MitoQ and other ubiquinol-targeted antioxidants have 

demonstrated the ability to act as a prooxidant in vitro, effects not mirrored by the 

non-targeted component (Echtay et al. 2002; James et al. 2004; James et al. 2005; 

O'Malley et al. 2006; Doughan et al. 2007). The efficient redox cycling (production 

of superoxide from molecular oxygen) capabilities of MitoQ have been compared to 

that of menadione, resulting in comparatively more superoxide production. In 

comparison, the non-targeted ubiquinone had little effect on ROS production 

(Doughan et al. 2007). Enhanced superoxide production via MitoQ redox cycling at 

ETC complex I, led to elevated levels of H2O2 through dismutation by MnSOD. This 

may alter H2O2 signal transduction (Lee et al. 2011). In contrast to the endogenous 

co-enzyme Q, MitoQ interacts weakly with complexes I and III (James et al. 2007). 

There is evidence that MitoQ can also be redox cycled at complex I of the ETC 

leading to increased superoxide production (Doughan et al. 2007; Reily et al. 2013). 

MitoQ can inhibit a number of H2O2 induced signalling pathways and lipid 

peroxidation in several cell types (Hwang et al. 2001; Echtay et al. 2002; Saretzki et 

al. 2003; Schäfer et al. 2003; Chen et al. 2004; Dhanasekaran et al. 2004; Ross et al. 

2005). However, MitoQ does not react with H2O2 directly (Kelso et al. 2001; Asin-
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Cayuela et al. 2004; James et al. 2005). Non-targeted antioxidants NAC and natural 

antioxidant cinnamtannin B-1 can also inhibit H2O2 or menadione-induced cell death 

(Karczewski et al. 2000; Niwa et al. 2003; Gonzalez et al. 2012). MitoQ has shown a 

number of limited protective capabilities against H2O2-induced effects such as 

mtDNA damage in HDFn cells (Oyewole et al. 2014). In pancreatic acini, the 

protective capabilities of MitoQ against H2O2 effects have yet to be assessed. 

 

The likely reason for MitoQ as a poor substrate for complexes I and III, is the 

bulkiness of the TPP+ moiety and interaction of the cation with phospholipid 

bilayers (Ross et al. 2005; James et al. 2007). MitoQ can not only increase forward 

transport derived superoxide production, as mentioned earlier, but also enhance 

ETC complex I expression (Lee et al. 2011). In contrast, MitoQ can block ROS 

produced from reverse electron transport, effects proposed to be occurring at one 

or more complex I Q binding sites and inhibitory effects on ETC complexes (Fink et 

al. 2009; Plecitá-Hlavatá et al. 2009; Lee et al. 2011; Fink et al. 2012). These 

combined antioxidant and prooxidant abilities have been shown to lead to 

decreased bioavailability of mitochondrial nitric oxide, which may have effects on 

nitric oxide signalling (James et al. 2005). The targeted component TPP+ of the TPP 

derivatives, such as MitoQ, MitoTEMPOL and MitoE  can both act as a mild 

uncoupler and inhibitor of the ETC (James et al. 2005; Plecitá-Hlavatá et al. 2009; 

Fink et al. 2012; Reily et al. 2013; Huang et al. 2015; Trnka et al. 2015). The TPP+ 

moiety has been shown to have inhibitory effects on the HeLa cell mitochondrial 
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Na+/Ca2+ exchanger resulting in accumulation of Ca2+ within the mitochondria 

following IP3 receptor mediated Ca2+ release into the cytosol (Leo et al. 2008). 

 

 

Aims and Objectives 

 

Oxidative stress has been implicated in the pathogenesis of acute 

pancreatitis (AP), although recent clinical evidence has found no benefit of 

antioxidant therapy. However, the actions of newer mitochondria-targeted 

antioxidants in AP remain undetermined. Recent studies by our group using 

caerulein hyperstimulation and bile experimental models of AP showed MitoQ to 

have mixed effects in CER-AP providing no protection in TLCS-induced AP. The aim 

of this work was to evaluate the in vitro actions of MitoQ and analogues on 

mitochondrial function, ROS production, Ca2+ concentrations and cell death while 

furthering our understanding of the role of ROS such as H2O2 in PACs. 
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Removal and Preparation of the Pancreas 

6 to 8 week old male CD-1 and CypD knockout mice (Ppif-/- and C57BL/6) 

mice (Charles River Laboratories, Inc.) were killed by cervical dislocation, in 

accordance with Animal (Scientific Procedures) Act 1986. The animal was lain on its 

right side and 100% EtOH was used to wet the fur, and sterilise. A large incision was 

made through the skin and an incision was then made through the abdominal wall 

to gain access to the peritoneal cavity. Using forceps, the spleen was carefully lifted 

up and out of the abdominal and the pancreas cut away from the spleen with 

dissection scissors before being gently removed from the vicinity of the duodenum. 

The pancreas was then placed in a dish with ~8ml of NaHEPES buffered 

physiological saline, containing (mM): NaCl 140, KCl 4.7, MgCl2 1.13, HEPES 10, and 

glucose 10, CaCl2 1. The final pH of the solution was adjusted to pH 7.35 using 

NaOH. The extracted pancreas was gently washed in this solution in order to 

remove any excess blood and fluids and to provide the opportunity to discard any 

attached omentum, fur or spleen. The wash was then repeated and the pancreas 

transferred to a third dish, with care taken to drain off as much of the 

accompanying solution as possible. 
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Figure 2.1 
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Pancreatic Acinar Cell Isolation 

The isolated pancreas was injected with 1 ml of standard collagenase 

solution at 37°C, ~220 units/ml in standard physiological saline (Worthington 

Biochemical Corporation Lakewood, NJ, USA) at multiple points with the aim to 

distribute the collagenase throughout. The pancreas and collagenase was 

transferred to a 1.5ml Eppendorf and incubated at 37°C in an agitating water bath 

for 15-20 minutes depending on collagenase batch variations. The pancreas was 

then transferred to a 15ml polycarbonate tube (Sarstedt, Leicester, UK) and ~5ml 

physiological saline added to dilute the collagenase and stop further substantial 

digestion. The pancreas was vigorously sucked in and out of a 1ml pipette tip cut 

diagonally to increase the diameter. The turbid supernatant formed was transferred 

into a fresh identical 15ml tube. This process was repeated a further three times, 

until a turbid supernatant was no longer obtained, using pipette tips cut with a 

progressively smaller tip diameter. The collected supernatant was centrifuged at 

1000RPM for 1 minute. The pellet was resuspended in NaHEPES and filtered 

through a 70µM cell strainer (BD Biosciences) before repeating the centrifuge step. 

The pellet was then resuspended in a final solution NaHEPES to the cell density 

required. 
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Figure 2.2 
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Loading Fluorescence Indicators 

When a fluorescence indicator was required for confocal microscopy 

experiments, the dye was loaded for 30 minutes at room temperature in an 

agitating water bath. The cell suspension was then washed with 5-6ml of Na HEPES, 

centrifuged (as previously described) and resuspended in 1-2ml NaHEPES tailored to 

experimental requirements and cell density. When multiple pre-treatment groups 

were used, the cells were gently mixed to ensure homogeneity before being 

aliquoted into separate 1.5ml Eppendorf centrifuge tubes allocated per treatment 

group. The pre-treatment of pancreatic acinar cells would be performed for 30 

minutes at room temperature prior to the experiment and washed again with 

NaHEPES to remove any compound not within the cells. 

 

Experimental Procedures 

All confocal experiments on isolated pancreatic acinar cells were performed 

at room temperature (23-25°C) and the cells were used no more than 4 hours after 

cell isolation was completed if not otherwise stated.  
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Materials and Reagents 

Reagents, if not otherwise mentioned were all from Sigma-Aldrich. 

Mitoquinone (MitoQ) and its non-antioxidant moiety control, (1-

Decyl)triphenylphosphonium bromide (dTPP) were synthesised in the Department 

of Chemistry, University of Octago, New Zealand. In the case of pre-treatment 

experiments with MitoQ, dTPP and for certain experiments Decylubiquinone (dUb) 

and (2-Hydroxyethyl)triphenylphosphonium bromide (referred to as TPP+
 

henceforth), each compound was added from a 10µM stock diluted in NaHEPES.  

 

Data Analysis 

Data are presented as mean ± SEM. The mean for individual experiments 

was obtained from at least three repetitive experiments. Statistical analysis was 

performed using  software packages Origin 9 and Excel for Windows, and paired t-

test applied unless otherwise stated. 
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Confocal Microscopy 

Microscope work was performed using either a Zeiss LSM510 confocal 

microscope (Carl Zeiss; Jena, Germany) or an Olympus IX71 imaging system 

(Olympus Corporation, Shinjuku, Tokyo, Japan).  

 

Olympus IX71 Imaging System 

The Olympus imaging system used a 10x/0.4 UPlanSApo dry objective and 

1.5 aperture and was applied for imaging of both chloromethyl 2',7'-

dichlorodihydrofluorescein diacetate (CM-H2DCFDA) and Fura-2-AM (Fura-2 

hereafter) fluorescence. To obtain maximum signal and minimal background for 

CM-H2DCFDA imaging excitation was set at 450nm with a 15% band width. For the 

ratiometric dye Fura-2 excitation was set to 340/380 and emission 510nm.  

 

Zeiss LSM510 

Excitation lines and emission collection parameters were optimised to 

obtain minimum noise and maximal signal in accordance to the Excitation/Emission 

spectrum of the dyes or autofluorescence. The pinhole was adjusted to the 

requirements of the specific experimental set to allow for maximum light collection 

for each of the following parameters.  NAD(P)H and FAD+ (autofluorescence) and 

dyes Fluo-4, AM (Fluo-4 hereafter), Tetramethylrhodamine methyl ester (TMRM), 



Chapter 2: Materials and Methods 
 

84 | P a g e  
 

CM-H2DCFDA, Mag-Fluo-4, AM (Mag-Fluo-4) and Rhod-2, AM (Rhod-2) were all 

purchased from Life Technologies (Carlsbad, CA, United States of America). Cells 

were visualised using a C-Apochromat 63x numerical aperture 1.2 water immersion 

objective, collecting fluorescence values every 3-10 seconds depending on 

experimental requirements. Fluo-4 measurements required a more rapid cycle time 

of ~4 seconds to enable effective monitoring of the more rapid changes in cytosolic 

Ca2+, whereas detection of membrane depolarisation with TMRM ~5-6 second 

intervals were adequate. Autofluorescence measurements were more delicate and 

to avoid any laser-induced photo bleaching, a longer scanning interval of 6-7 

seconds was used: this ensured stability of the measured trace. To avoid photo-

activation of CM-H2DCFDA, ~10 seconds cycle time was used. Whole cell imaging of 

NAD(P)H and FAD+ autofluorescence, Fluo-4 and CM-H2DCFDA required the pinhole 

at a maximum 18.21 Airy units  (optical slice of 141µM) for optimum light intensity. 

The settings used for NAD(P)H were optimised to a fluorescence intensity >1100, 

maintaining as consistent levels of gain as possible between experiments. This 

enabled the selective avoidance of cells, which were not in optimum health, as they 

would typically exhibit initial fluorescence values of below 1000. This method was 

essential for providing reliable, reproducible results of maximum sensitivity. A 

similar approach was applied to FAD+
 measurements, however, as FAD+ fluorescent 

values increase with treatment, the opposite strategy was applied and cells with 

lower intensity values were typically used. When working with CM-H2DCFDA it was 

critical to the experiments to select cells with lower fluorescence intensity (but not 

too low as this can indicate poor loading of the dye). This enables effective 

monitoring of fluorescence increases particularly for longer experiments to avoid 

https://www.google.co.uk/search?espv=2&biw=1194&bih=640&q=carlsbad&stick=H4sIAAAAAAAAAGOovnz8BQMDAw8HsxKHfq6-QZFJed4FJsXCnv_iOXcEfSam-m6-IjPTghEACkyFfSkAAAA


Chapter 2: Materials and Methods 
 

85 | P a g e  
 

saturation. For imaging of mitochondria with dyes TMRM and Rhod-2 the pinhole 

was set to an intermediary 2.5 Airy units (optical slice of 20µM). Care was taken to 

select cells with optimum loading and no indications of damage or onset of 

depolarisation (TMRM measurements). 

 

Perfusion Systems 

To maintain a constant presence of a solubilised compound cells were 

perfused using a gravity fed perfusion system with a six (Olympus Imaging System) 

or eight-way manifold (Zeiss 510) (Warner Instruments Inc.) with 15ml syringes to 

hold the solutions. Thin-walled silicone tubing (AlteSil High Strength Tubing, 0.5mm 

Bore, 0.25mm Wall; Altec Products Ltd., Bude, UK) was used for its flexibility and it 

is easier to clean away any salt deposit blockages with manual massage of the tube. 

A vacuum suction system was used to remove the perfused solutions and maintain 

a continuous flow. Tubing and flow was checked prior to each experiment to ensure 

absence of any blockage or bubbles. Each tube and tubing was washed with 70% 

ethanol and ddH2O prior to and post experimental session to sterilised the system 

and to prevent build-up of any dust, debris or salt deposits. The glass slides used for 

the Zeiss 510 system were not coated and the cells loaded into the chamber 

perfused with NaHEPES within 1 minute. This helped to eliminate cells prior to the 

experiment, which may be easily disturbed during experimentation by the perfusion 

flow and cause loss of data. The Olympus imaging system had a slightly more rapid 
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perfusion rate therefore, poly-l-lysine coated slides (0.3% in ddH2O) were used to 

promote adhesion. A schematic is shown in figure 2.3 
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Figure 2.3 

 

 

   

 

 

 

 

 

 

Schematic representation of the gravity perfusion 

systems used. (A) A side view of the system showing 4 

of 8 15ml syringes suspended to generate the 

perfusion flow, the location of solution input and exit 

via suction. (B) A cross-sectional view of the chamber 

providing a more detailed view. 
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Figure 2.3 
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Imaging with and without Fluorescent Indicators 

CM-H2DCFDA 

  Experiments employed various different dyes. Cellular oxidative stress was 

assessed using CM-H2DCFDA, (Life technologies). This chloromethyl derivative of 

H2DCFDA provides improved retention. It passively diffuses into the cell, where its 

acetate groups are cleaved by intracellular esterases and its thiol-reactive 

chloromethyl group reacts with intracellular glutathione and other thiols. This 

allows for facilitation of longer experiments as the subsequent oxidation yields a 

fluorescent adduct which is trapped inside the cell. CM-H2DCFDA is prepared at a 

concentration of 10mM in high-grade di-methyl sulfoxide and frozen in aliquots at   

-20˚C. This is added to 1ml of cell suspension to obtain a final concentration of 

10µM. DMSO concentrations were kept below 0.1% at all times CM-H2DCFDA was 

loaded in Corning® 15 ml centrifuge tubes (wrapped in aluminium foil to prevent 

light exposure) at room temperature with gentle agitation for 30 minutes. The cells 

were then washed in NaHEPES and re-suspended in 1-2ml, depending on 

experimental requirements. This methodology was maintained for other 

fluorescent indicators bar the final working concentration and these changes or any 

others are noted. The cells were excited with a 488nm argon laser line and emission 

collected between 505-550nm. Laser intensity was kept low (0.8-1%) and both 

detector gain and the scanning interval were also kept minimal for all experiments 

to minimise photoactivation of the indicator.    
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TMRM 

Mitochondrial membrane potential was determined using the fluorescent 

dye TMRM. TMRM is a cell-permeant cation, which selectively and readily 

accumulates in the mitochondrial matrix. Pancreatic acinar cells were loaded with 

37nM TMRM for 30 minutes at room temperature and processed as previously 

described. This was reduced down from 40nM to prevent over loading and 

dequenching. TMRM-loaded cells were excited with 543nm helium-neon laser and 

emitted fluorescence was captured between 560-650nm.  Laser power used  

was 4-5%. 

 

NAD(P)H autofluorescence 

NAD(P)H autofluorescence was also visualised via excitation with both 

351nm and 364nm coherent laser lines of the UV laser module and emission 

collected between 390-450nm. The 351nm laser line was used at a laser power of 

1% and the 364nm at 2%. The pinhole was set at maximum, the amplifier offset 

adjusted slightly per experiment and amplifier gain set at an intermediary value. It 

was found that using both 351nm and 364nm laser lines provided exemplary 

NAD(P)H autofluorescence and the settings were optimised to provide minimal 

noise and enable visualisation of individual mitochondrial structures. The starting 

fluorescent values were maintained towards the higher range to enable detection 

of any small decreases if present. 
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FAD+ autofluorescence 

For determinations of FAD+ auto-fluorescence no dye was employed. The 

oxidized form FAD+ is auto-fluorescent and no dye loading of the cells is required. 

FAD+ autofluorescence was visualised via excitation with a 458nm argon laser and 

emission collected between 505-560nm. The laser power was used at 20% with the 

pinhole set at maximum, the amplifier offset adjusted slightly per experiment and 

amplifier gain set at the maximum value. The settings were optimised to provide 

minimal noise and the starting fluorescent values were maintained towards the 

lower range to enable detection of small increases if present. Imaging both NAD(P)H 

and FAD+
 simultaneously provides a measure of cellular metabolism using the ratio 

of oxidation-reduction (redox) NAD(P)H/FAD+ (Chance et al. 1979; Ostrander et al. 

2010). This method provides a valuable tool to assess relative changes in the redox 

state without the application of exogenous stains or dyes. Fluorescence 

measurements were normalised and the NAD(P)H values divided by  

the FAD+ values.  

 

Fluo-4, AM 

Cytosolic Ca2+ was imaged with the single wave, cell permeable 

acetoxymethyl ester (AM) form of Ca2+ indicator Fluo-4 (Life technologies), which is 

an analogue of Fluo-3. Fluo-4 has an increased fluorescence excitation to Fluo-3 and 

consequent increased fluorescent signal levels via the substitution of two chlorine 
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by two fluorine’s. The AM-ester group results in an uncharged molecule that can 

permeate cell membranes. Once inside the cell, the acetoxymethyl group is 

removed by cellular esterases generating a charged form, which exhibits a slower 

leak rate from the cell in comparison to the parent compound. The affinity of Fluo-4 

for Ca2+ is 345 nM, which is within the ideal range of [Ca2+]c concentrations (50nM-

5uM) encountered in the cytosolic compartment (Ward et al. 1995). Fluo-4 was 

loaded to obtain a final concentration of 5µM with excitation being with a 488nM 

laser line and emission collected between 505-530nM.  

Fura-2, AM 

Cytosolic Ca2+ was also imaged with ratiometric dye Fura-2. Pancreatic 

acinar cells were loaded with 5µM fura-2-AM (Life Technologies) as previously 

described and imaged using the Olympus Imaging system. Excitation was set at 

340nm/380nm and collected at 510nm. 

 

Rhod-2, AM 

The Ca2+ sensitive rhodamine-derived indicator Rhod-2 (Invitrogen; Paisley, 

UK) was used to image mitochondrial Ca2+. As with Fluo-4 and Fura-2, Rhod-2 was 

loaded in the cell permeable AM form, however in comparison, intracellular 

cleavage of the AM group yields a positive charge, promoting sequestration into the 

mitochondria via membrane potential-driven uptake. Rhod-2 was prepared and 

stored as with Fluo-4 and loaded at a final concentration of 5µM for 30 minutes at 
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room temperature as previously described for Fluo-4. A 543nM laser line was used 

for excitation and emission collected between 560-650nM. The low resting state 

fluorescence exhibited by Rhod-2 required careful imaging to avoid saturated 

readings as upon stimulation this fluorescence can increase >100. 

 

Mag-Fluo-4, AM 

Mag-Fluo-4, AM is an analogue of fluo-4 with a Kd for Mg2+ of 4.7 mM and a 

Kd for Ca2+ of 22 µM. This made it useful as a low-affinity Ca2+ indicator for 

measuring Ca2+ within the endoplasmic reticulum compartment. Care was taken to 

avoid the nucleus using a specific region of interest to take the fluorescence 

readings from during confocal experiments. 
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Plate Reader Cell Death Experiments 

Basic Principles – Measurement of Apoptosis 

CellEvent® Caspase-3/7 Green reagent is a four amino acid peptide (DEVD) 

conjugated to a nucleic acid-binding dye. The DEVD peptide sequence is a cleavage 

site for caspase-3/7 and the conjugated dye is non-fluorescent until the DEVD 

peptide is cleaved from the peptide and the free dye can bind DNA. A green 

fluorescence is generated at an emission wavelength of 530nm with the intensity 

being proportional to the level of activated caspase-3/7. 

 

 

Figure 2.4 

 

 



Chapter 2: Materials and Methods 
 

95 | P a g e  
 

Basic Principles – Measurement of Necrosis 

Propidium iodide (PI) dye is an ideal indicator of necrotic 

cells as it is a membrane impermeant and therefore excluded from viable cells. It 

binds to DNA (and RNA) by intercalating between base pairs with little or no 

sequence preference. Once the dye is bound it exhibits enhanced fluorescence of 

20- to 30-fold.  With an excitation maximum at 535 nm and emission maximum at 

617 nm PI can be easily used in combination with CellEvent® Caspase-3/7 Green 

reagent to compare levels of apoptosis and necrosis. 

 

Figure 2.5 

   

 



Chapter 2: Materials and Methods 
 

96 | P a g e  
 

Reagents 

Cholecystokinin (CCK)     10nM 

Taurolithocholic acid-3-sulfate (TLCS)   500µM 

Hydrogen peroxide      1µM, 5µM, 10µM, 500µM and 
1mM 

Palmitoleic acid ethyl ester (POAEE)    100µM 

Ethanol       85mM and 850mM 

Polyethylene glycol (PEG)     280mM 

MitoQ/dTPP/dUb/TPP+    0.1µM, 0.2µM, 0.5µM, 1µM 

 

Methods 

For detection of necrosis and apoptosis, POLARstar OMEGA fluorescence 

microplate reader (BMG labtech) was employed for time-course experiments at 

370C. Flat bottomed 96-well microplates (Greiner Bio-One Ltd) were used to seed 

cells and measurements set to scan 1 cycle/100 seconds for a minimum of 450 

cycles. Propidium Iodide (PI) was used to detect necrosis and was loaded at a final 

concentration of 10µg/ml. An additional wash step was included prior to adding PI 

to minimise any free nuclei present. Excitation was set at 520nm and emission 

collection at >590nm.  For apoptosis measurements CellEvent® Caspase-3/7 Green 

Ready Probes® Reagent was added to the acinar cell suspension at 2 drops/ml 

(approximately 40 µl/ml). Excitation/Emission used was 485/530nm. The gain was 

set to an intensity of 900 in all experiments. Cells were prepared as described 

previously and filtered with a 70µm cell strainer, which helped to remove any 
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clumps of necrotic cells. The final preparation of cells was added after manual 

agitation to ensure homogeneity to each well of the 96-well microplate. 

MitoQ/dTPP/dUb/TPP+ were added at this step for those groups receiving pre-

treatment. The plate was then inserted into the microplate reader to establish a cell 

death baseline. Upon establishment of a baseline, the microplate was removed and 

the reagents, as detailed above, were added to the corresponding treatment 

groups. The plate was carefully sealed with a permeable membrane (Breathe-

Easy® sealing membrane, Diversified Biotech, Dedham, United States) and 

reinserted for the remainder of the experiment. Cell free blanks were used (buffer 

and dye) and these values deducted from the fluorescent values generated. 

Normalisation was performed after subtraction of the background to the 

baseline/beginning of the experiment or to specific time points if required. 
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Effects of MitoQ on Cellular ROS Levels 

Pancreatic acinar cells were either continuously perfused with MitoQ and 

simultaneously monitored or pre-treated with MitoQ for 30 minutes. Experimental 

treatment was then commenced and compared to both the non-antioxidant 

analogue dTPP, which has similar hydrophobicity to MitoQ, and NaHEPES control 

(physiological saline).  

 

Isolated cell suspensions were initially loaded for 30 minutes with 10µM 

general oxidative stress indicator CM-H2DCFDA, washed and loaded onto the 

microscope stage to measure basal levels of reactive oxygen species (ROS). 1µM 

MitoQ and dTPP were continuously perfused over the cells. Basal [ROS]I levels were 

not affected by either compound in comparison to the NaHEPES control (Figure 

3.1). 10µM MitoQ and dTPP treatment also did not show significant changes (Figure 

3.2). 

 

To assess the protective capabilities of MitoQ in comparison to the control 

compound (dTPP), a high concentration of exogenous oxidant H2O2 (1mM) was 

applied. The 1mM H2O2 treatment caused a steady rise of ROS in pancreatic acinar 

cells (positive control group) as reflected by increased intensity of CM-H2DCFDA 

fluorescence. Cells pre-treated with 1µM MitoQ, exhibited reduced ROS levels 

compared with the positive control group and cells pre-treated with 1µM dTPP 

(Figure 3.3). Both MitoQ and dTPP pre-treatment at 10µM reduced 1mM H2O2 

induced ROS increases (Figure 3.4). 
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Figure 3.1 

 
Figure 3.1. Basal levels of reactive oxygen species (ROS) are not affected by 1µM MitoQ and dTPP 
treatment. Basal ROS levels from CM-H

2
DCFDA loaded cells were measured for 3 minutes prior to 

perfusion with (A) NaHEPES (Control), (B) MitoQ (1µM) or (C) dTPP (1µM).  No significant changes 
were observed. Traces are averages of >65 cells from at least 3 animals. Data have been normalised 
to the initial fluorescence reading t=0 expressed as F/F

0
. All data shown are mean ±SEM.
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Figure 3.2 

 

Figure 3.2. Basal levels of ROS are not affected by 10µM MitoQ and dTPP treatment. Basal ROS 
levels from CM-H

2
DCFDA loaded cells were measured for 3 minutes prior to perfusion with (A) 

NaHEPES, (B) MitoQ (10µM) or (C) dTPP (10µM).  No significant changes were observed. Traces are 
averages of >46 cells from at least 3 animals. Data have been normalised to the initial fluorescence 
reading t=0 expressed as F/F

0
. All data shown are mean ±SEM. The slight increase seen with 10µM 

dTPP treatment did not reach significance of p<0.05 (paired ttest, one way ANOVA).
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Figure 3.3 

Figure 3.3. MitoQ inhibited 1mM H
2
O

2
-induced ROS increases. Pancreatic acinar cells pre-treated 

with (A) NaHEPES (Control), (B) MitoQ (1µM) or (C) dTPP (1µM) prior to treatment for 25 minutes 
with 1mM H

2
O

2
. (D) Data are expressed as percent increase of the mean fluorescence intensity 

during treatment with 1mM H
2
O

2
. Images show typical CM-H

2
DCFDA fluorescence (scale bar 10µm). 

The data are averages of >87 cells from at least 3 animals and have been normalised to the initial 
fluorescence reading t=0 expressed as F/F

0
. All data shown are mean ±SEM. * p<0.05 vs untreated 

control. 
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Figure 3.4 

 
Figure 3.4. 1mM  H

2
O

2
-induced ROS increases are diminished by 10µM MitoQ and 10µM dTPP (A) 

NaHEPES (Control), (B) MitoQ (10µM) and dTPP (10µM) (C) Data are expressed as a percent increase 
of the mean fluorescence intensity during treatment. The data are averages of >80 cells from at least 
3 animals and have been normalised to the initial fluorescence reading t=0 expressed as F/F

0
 . All 

data shown are mean ±SEM. *** p<0.001 and **** p<0.0001 vs untreated control. 
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Concentration-Dependent Effects of MitoQ on 

Mitochondrial Membrane Potential 

 

Pancreatic acinar cells were loaded with TMRM (30 minutes), a dye that 

relies on the mitochondrial membrane charge gradient to accumulate in the 

mitochondria. As the membrane becomes depolarised and this charge gradient 

diminished, the TMRM dye is lost from the mitochondria resulting in a decrease in 

fluorescence (Ehrenberg et al. 1988; Scaduto Jr et al. 1999; Lemasters et al. 2007). 

TMRM thus provides a key tool for observing depolarisation, partial or complete in 

pancreatic acini.  

 

A baseline of TMRM fluorescence was established prior to a 10 minute 

treatment with MitoQ and dTPP (1µM). Further experiments included a 30 minutes 

perfusion of cells with MitoQ (1µM) (Figure 3.5). Protonophore carbonyl cyanide m-

chlorophenylhydrazone (CCCP) was then applied at 10µM. CCCP uncoupled the 

proton gradient established during normal electron transport chain activity from 

ATP production, dissipating the mitochondrial membrane potential (Hirose et al. 

1974; Burkhardt et al. 1989; Park et al. 1997). Neither compounds induced 

depolarisation of the mitochondria in comparison to cells perfused with NaHEPES 

physiological saline. Applying MitoQ and dTPP at 10µM (Figure 3.6) induced partial 

depolarisation detectable by differences in TMRM fluorescence between the 

control and MitoQ/dTPP treated cells. 
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Figure 3.5 

 

 
 

 

Figure 3.5. MitoQ and DecylTPP had no effect on ΔΨm. (A) NaHEPES (Control) and MitoQ (1µM) 30 
minute treatment, (B) NaHEPES, MitoQ (1µM) and dTPP (1µM) 10 minute treatment. No significant 
changes in ΔΨm are seen with either 1µM MitoQ or 1µM dTPP. Traces are averages of >17 cells from 
at least 3 animals. Data has been normalised to the initial fluorescence reading t=0 expressed as 
F/F

0
. All data shown are mean ±SEM. 
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Figure 3.6 

 

Figure 3.6. 10µM MitoQ  and 10µM dTPP caused partial ΔΨm depolarisation. ΔΨm was measured 
for 10 minutes. (A) Time point images for each treatment group (scale bar 10µm), (B) NaHEPES 
(Control), MitoQ (10µM) and dTPP (10µM). (C)  Percentage of fluorescence intensity decrease of 
each treatment group from the baseline compared to the control. Traces are averages of >16 cells 
from at least 3 animals. Data has been normalised to the initial fluorescence reading t=0 expressed 
as F/F

0
. All data shown are mean ±SEM. * p<0.05 vs untreated control. 
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MitoQ-Induced Changes to the Bioenergetics and 

Redox Status of Pancreatic Acinar Cells 

 

Measuring NAD(P)H autofluorescence enabled the indication of changes in 

the bioenergetics and redox status of pancreatic acinar cells, via increases or 

decreases in NAD(P)H autofluorescence. This enabled sensitive measurements in 

cells not loaded with dye based indicators. The isolated cells were treated on the 

microscope stage continuously for 10 minutes with MitoQ/dTPP (1µM) prior to the 

addition of CCCP (10µM). 1µM MitoQ (74% of cells) and 1µM dTPP, (71% of cells) 

induced a transient increase in levels of NAD(P)H. This was followed by a decrease 

in NAD(P)H autofluorescence in comparison the NaHEPES control responses (Figure 

3.7). Measuring NAD(P)H levels over a longer time point of 30 minutes showed 

progressive decreases with 1µM MitoQ treatment (Figure 3.8). Imaging both 

NAD(P)H and FAD+
 simultaneously provides a measure of cellular metabolism using 

the ratio of oxidation-reduction (redox) NAD(P)H/FAD+ (Chance et al. 1979; 

Ostrander et al. 2010). NAD(P)H and FAD+ autofluorescence were simultaneously 

measured during continuous perfusion with MitoQ or dTPP (1µM) for 30 minutes 

(Figure 3.9). MitoQ induced mirrored decreases in NAD(P)H and increases in FAD+ 

whereas dTPP did not (in comparison to the control). 
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Figure 3.7 

 

Figure 3.7. MitoQ and dTPP caused transient increases in NADH(P)H levels.  NAD(P)H 
autofluorescence was measured for a 3 minute baseline and 10 minute perfusion with either 
NaHEPES (Control), MitoQ (1µM) or dTPP (1µM). Traces are averages of >18 cells from at least 3 
animals. Data have been normalised to the initial fluorescence reading t=0 expressed as F/F

0
 . All 

data shown are mean ±SEM. (A) All treatments, (B) Percent increase in NAD(P)H autofluorescence 
intensity from the baseline to the maximum fluorescence value of the peak. (C) Percent decrease in 
NAD(P)H autofluorescence. *** p<0.001. 
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Figure 3.8 

 
Figure 3.8. MitoQ caused progressive decreases in  NADH(P)H levels. NAD(P)H autofluorescence 
was measured as described previously and pancreatic acinar cells treated with 1µM MitoQ/NaHEPES 
control for 30 minutes. Traces are averages of >17 cells from at least 3 animals. Data have been 
normalised to the initial fluorescence reading t=0 expressed as F/F

0
 . All data shown are mean ±SEM. 

(A)  Representative images of typical NAD(P)H and TMRM fluorescence at t=0 s (scale bar 10µM). (B) 
Control and 1µM MitoQ treatment, C) Data presented as a percent decrease in fluorescence 
intensity during the treatment. *** p<0.001. 
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Figure 3.9 

 

Figure 3.9. MitoQ-induced changes to the redox ratio. NAD(P)H and FAD
+
 autofluorescence were 

measured simultaneously in acinar cells. Traces are averages of >19 cells from at least 3 animals. 
Data have been normalised to the initial fluorescence reading t=0 expressed as F/F

0
 . All data shown 

are mean ±SEM. (A) NAD(P)H and FAD
+
 autofluorescence during treatment with dTPP (1µM), (B) 

NAD(P)H and FAD
+
 autofluorescence during treatment with MitoQ (1µM), (C) 1µM MitoQ treatment 

induced a significant change in the redox ratio NAD(P)H/FAD
+
. The bar chart is presented as a 

percentage change from the baseline until the end of treatment with NAD(P)H/FAD
+
. *** p<0.001 

NaHEPES control vs 1µM MitoQ. 
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The Effects of MitoQ on Ca2+ Levels in Pancreatic 

Acinar Cells 

 

Pancreatic acinar cell suspensions were loaded with Ca2+ indicator Fluo-4 (30 

minutes) and treated with 1µM MitoQ (Figure 3.10). High affinity ratiometric Ca2+ 

dye Fura-2 was used (Figure 3.11), which is particularly useful in detecting cytosolic 

Ca2+ changes around the basal level. Both MitoQ and dTPP (1µM) induced a 

transient increase in [Ca2+]c. This effect was observed in 52.5% of cells treated with 

MitoQ (1µM) and 26.5% of cells treated with dTPP (1µM). A continuous increase in 

Ca2+ was observed in 34.9% of dTPP (1µM) treated cells. The small transient 

increase had no effect on the CCK hyperstimulation [Ca2+]c response.  

 

Mitochondrial Ca2+ measurements were measured using Rhod-2 in response 

to MitoQ/dTPP (1µM) treatment applied (Figure 3.12). No changes were detected. 

Mitochondrial Ca2+ concentration changes in response to 10nM CCK were also 

unaffected by MitoQ/dTPP treatment. MagFluo4 was originally designed for 

detection and measurement of magnesium (Mg2+) dynamics (Paredes et al. 2008) 

However, as intracellular Mg2+ concentrations remain relatively constant, at around 

1mM, MagFluo4 can be effectively applied as a low affinity Ca2+ indicator (Kd for 

Ca2+ of 22 µM) to measure ER levels of Ca2+. Preliminary observations showed that 

MitoQ/dTPP (1µM) had negligible effects on ER Ca2+ release in response to 10nM 

CCK (Figure 3.13).  
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Figure 3.10 

 

Figure 3.10. MitoQ-induced transient increase in cytosolic Ca
2+

 measured by Fluo-4. Cytosolic Ca
2+

 
was measured with Fluo-4. (A) NaHEPES (Control)  and MitoQ (1µM) treatment (B) Focussed view of 
MitoQ- (1µM) induced transient cytosolic Ca

2+
 increase (C) MitoQ- and CCK-induced cytosolic Ca

2+
 

increases. Traces are averages of >22 cells from at least 3 animals. Data have been normalised to the 
initial fluorescence reading t=0 expressed as F/F

0
 . All data shown are mean ±SEM.  52% of cells 

demonstrated this phenomena in the presence of 1µM MitoQ. *** p<0.001  and **** p<0.0001.



Chapter 3: The Effects of Mitoquinone on Murine Pancreatic Acinar Cells 
 

113 | P a g e  
 

Figure 3.11 

 
 
Figure 3.11. The effects of MitoQ and dTPP on cytosolic Ca

2+
 levels measured by Fura-2. (A) MitoQ 

(1µM) and NaHEPES (Control)  and (B) dTPP (1µM) and NaHEPES (Control) (C) MitoQ- (1µM) and (D) 
dTPP- (1µM) induced transient cytosolic Ca

2+
 increase . The percentage peak increase with both 

MitoQ (1µM) and dTPP (1µM) treatment was significantly different (p<0.0001) to the control treated 
traces (from mirrored points). The progressive increase in cytosolic Ca

2+
 with dTPP treatment also 

reached significance (p<0.0001). Traces are averages of >165 cells from at least 3 animals. Data have 
been normalised to the initial ratio (R0). All data shown are mean ±SEM.  



Chapter 3: The Effects of Mitoquinone on Murine Pancreatic Acinar Cells 
 

114 | P a g e  
 

Figure 3.12 

 

Figure 3.12. Lack of effect by MitoQ and dTPP on mitochondrial levels of Ca
2+

. Mitochondrial Ca
2+

 
was measured using Rhod-2. Pancreatic acinar cells were treated for 10 minutes with either 
NaHEPES (control), MitoQ (1µM) or dTPP (1µM) prior to treatment with CCK (10nM)  for a period of 
5 minutes. (A) NaHEPES (Control), (B) MitoQ (1µM) in comparison to the control treated cells and (B) 
dTPP (1µM) vs control cells. Data shown are mean ±SEM. No significant changes are observed. 
Traces are averages of >17 cells and 3 animals. Data have been normalised to the initial fluorescence 
reading t=0 expressed as F/F

0
. 
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Figure 3.13 

 

Figure 3.13. MitoQ and dTPP did not alter CCK-induced ER Ca
2+

 responses. ER Ca
2+

 was measured 

using MagFluo4, treated for 30 minutes with either NaHEPES (control), MitoQ (1µM) or dTPP (1µM) 

prior to loading onto the microscope stage for imaging.  A 3 minute baseline was established prior to 

treatment with CCK (10nM)  for a period of 4 minutes.  (A) NaHEPES (Control), MitoQ (1µM) and 

dTPP (1µM). Data shown are mean ±SEM. (B) Example individual traces for each treatment group. 

No significant changes  are observed. Traces are averages of 13 cells (control), 7 cells (MitoQ), 8 cells 

(dTPP) from 1 animal. Data have been normalised to the initial fluorescence reading t=0 expressed as 

F/F
0
. 
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The Effect of MitoQ and dTPP on Pancreatic 

Acinar Cell Apoptosis and Necrosis 

 

The balance between necrosis and apoptosis in acute pancreatitis may prove 

critical to prognosis of the disease. To determine pancreatic acinar cell fate with 

MitoQ, dTPP and TPP+ treatment, cell suspensions were loaded with CellEvent® 

Caspase-3/7 Green reagent as an indicator for apoptosis (Figure 3.14) or Propidium 

Iodide (PI) as an indicator for cellular necrosis (Figure 3.15). Treatment with 0.2µM, 

0.5µM and 1µM MitoQ, dTPP and additional control TPP+ were applied and 

measurements recorded over a 13 hour period. MitoQ, dTPP and TPP+ induced 

concentration-dependent increases in both cellular apoptosis and necrosis.  
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Figure 3.14 

Figure 3.14. MitoQ-, dTPP- and TPP
+
-induced cellular apoptosis. CellEvent® Caspase-3/7 Green 

reagent loaded cells were treated with 0.2, 0.5 or 1µM MitoQ/dTPP/TPP
+
. Results are normalised to 

the initial fluorescence reading t=0 expressed as F/F
0
.
 
(A) 1µM MitoQ, dTPP and TPP

+
, (B) MitoQ (0.2, 

0.5, 1µM), (C) dTPP (0.2, 0.5, 1µM) and (D) TPP
+
 (0.2, 0.5, 1µM). Traces are averages of >6 animals 

and 12 technical replica’s.. All data shown are mean ±SEM. * p< 0.05, ** p<0.01. 
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Figure 3.15 

Figure 3.15. MitoQ-, dTPP- and TPP
+
-induced cellular necrosis. Propidium Iodide loaded cells were 

treated with 0.2, 0.5 or 1µM MitoQ/dTPP/TPP
+
. Results are presented been normalised to the initial 

fluorescence reading t=0 expressed as F/F
0
. (A) 1µM MitoQ, dTPP and TPP

+
, (B) MitoQ (0.2, 0.5, 

1µM), (C) dTPP (0.2, 0.5, 1µM) and (D) TPP
+
 (0.2, 0.5, 1µM). Traces are averages of >6 animals and 12 

technical replica’s. All data shown are mean ±SEM. * p< 0.05, ** p<0.01, **** p< 0.0001. 
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Discussion  

In this section, the effects of mitochondria-targeted antioxidant MitoQ and 

non-antioxidant moiety controls dTPP and TPP+ have been evaluated in pancreatic 

acinar cells. These investigations were to complement in vivo studies performed in a 

hyperstimulatory and bile acid model of AP, which highlighted mixed effects of 

MitoQ and dTPP. These investigations aimed to shed light as to why previous clinical 

evaluations of MitoQ in Parkinson’s Disease and Hepatitis C patients also lacked 

success (Gane et al. 2010; Snow et al. 2010). 

 

Cellular ROS 

An imbalance of reactive oxygen species (ROS) production and antioxidant 

status leads to oxidative stress and has been associated with tissue injury and 

disease processes, including the pathogenesis of AP (Dziurkowska-Marek et al. 

2004; Leung et al. 2009; Booth et al. 2011; Hackert et al. 2011). The generation of 

ROS in pancreatic acinar cells has been shown to inhibit the ATPase pump PMCA, 

suggesting a role for oxidative stress in modulating Ca2+ overload, a major driver of 

necrosis (Bruce et al. 2007; Baggaley et al. 2008). Many preclinical and clinical 

investigations have demonstrated increased free radical activities, levels of 

superoxide anions, hydrogen peroxide, and hydroxyl free radicals in affected tissues 

(Guyan et al. 1990; Szuster-Ciesielska et al. 2001). Elevated levels of lipid peroxides 

in blood, plasma and tissue have been shown alongside diminished antioxidant 
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defences. Depletion of antioxidants such as glutathione (Rahman et al. 2004), 

Vitamins A and E and Carotenoid (Curran et al. 2000) have been associated with AP 

(De Waele et al. 1992; Scott et al. 1993). Yet restoring antioxidant levels in the 

clinical setting has provided conflicting results (Virlos et al. 2003; Siriwardena et al. 

2007; Armstrong et al. 2013).  

 

Many clinical attempts to regulate oxidative stress have encountered a 

reduction in biomarkers of oxidative stress with little or no therapeutic benefit. A 

meta-analysis indicated that antioxidant therapies such as β-carotene, vitamin A 

and vitamin E do not improve the outcome of a number of diseases and may 

actually be detrimental, causing an increase in mortality (Bjelakovic et al. 2007). 

Although there has been a lack of success of antioxidants in the clinic, there is still 

evidence for a pivotal role of ROS in the development of AP, amongst many other 

oxidative stress-related diseases such as hypertension, atherosclerosis, diabetes 

and kidney disease. Therefore, targeted antioxidants were developed, including 

MitoQ, MitoE and MitoSOD (Smith et al. 2008).  

 

Most small molecule antioxidants are only up-taken into the mitochondria in 

small amounts and are distributed around the body. MitoQ is targeted to the 

mitochondria by conjugation to a TPP moiety and can be actively recycled by ETC 

complex II to the active antioxidant form within the mitochondria (James et al. 

2005; Smith et al. 2008). MitoQ is an effective antioxidant against lipid peroxidation, 

peroxynitrite and superoxide. In pancreatic acinar cells, MitoQ can effectively inhibit 

ROS increases and Ca2+ oscillations induced by CCK (10pM) in pancreatic acinar cells 
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(Camello-Almaraz et al. 2006). On the other hand, MitoQ and other ubiquinol based 

antioxidants have demonstrated the ability to act also as a prooxidant, enhancing 

superoxide production via redox cycling and therefore H2O2 through dismutation 

(Boveris et al. 1976; James et al. 2004; Doughan et al. 2007; Plecitá-Hlavatá et al. 

2009). MitoQ can also inhibit the ETC in a manner dependent on the targeting 

component TPP+ and acyl chain (Trnka et al. 2015). MitoQ (1-10µM) demonstrated 

no detectable prooxidant potential in CM-H2DCFDA loaded pancreatic acinar cells. 

CM-H2DCFDA is a general oxidative stress indicator predominantly effective at 

detecting hydrogen peroxide, hydroxyl radicals, nitrogen dioxide and carbonate 

radicals (Wojtala et al. 2014). Levels of oxidant production induced by MitoQ in 

pancreatic acinar cells may be too diminutive to detect using this technique. It is 

possible that applying a more specific probe (optimised with spectral analysis) such 

as DHE (Dihydroethidium) or MitoSOX (DHE plus TPP+) or electron spin resonance 

(ESR) spectroscopy in future work may have the potential to highlight more specific 

increases in superoxide production seen in other cell types (Bindokas et al. 1996; Li 

et al. 2003; Rivera et al. 2005). To establish if any superoxide production by MitoQ 

was adequate to cause mitochondrial damage, the activity of TCA dehydrogenases 

such as aconitase could be assessed. 

 

MitoQ has demonstrated the ability to block numerous redox signalling 

pathways induced by extracellular H2O2, but the mechanisms are not defined 

(Echtay et al. 2002; Saretzki et al. 2003; Schäfer et al. 2003; Chen et al. 2004; 

Dhanasekaran et al. 2004; Ross et al. 2005). MitoQ does not react with alkyl 

peroxides or H2O2 directly, although successfully inhibits lipid peroxidation (Kelso et 
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al. 2001; Asin-Cayuela et al. 2004; James et al. 2005). This would indicate that the 

effectiveness of MitoQ is predominately downstream of H2O2, acting on 

OH•- formed from iron catalysed Fenton reaction and to inhibit the peroxidation 

chain reaction rather than directly upon H2O2 (Sutton et al. 1984; Braughler et al. 

1986; Winterbourn 1987). 

 

The capabilities of MitoQ to inhibit high levels of extracellular H2O2- (1mM) 

induced ROS increases were assessed, administering MitoQ as a pre-treatment. 

There are a variety of parameters, such as the energised state of the mitochondria 

(Kelso et al. 2001), which affect the rate of MitoQ accumulation into the 

mitochondria. Pre-treatment with MitoQ may improve the effectiveness  and 

comparing pre-treatment to treatment provided a key observational tool and 

comparison to clinical failures encountered with non-targeted antioxidants (Demols 

et al. 2000). MitoQ (1µM) proved to be an effective antioxidant in pancreatic acinar 

cells, providing protection against 1mM H2O2-induced ROS increases compared to 

the non-antioxidant moiety dTPP control. Reports have shown that excessive 

accumulation of lipophilic cations in the mitochondria are toxic due to disruption to 

ATP synthesis (Smith et al. 2003) membrane integrity and respiration (Murphy 

2008). To assess the cellular effects of excessive accumulation in pancreatic acinar 

cells on ROS levels, a ten-fold concentration of each compound (10µM) was applied 

to isolated pancreatic acinar cells prior to H2O2 treatment (1mM). MitoQ and dTPP 

(10µM) both reduced 1mM H2O2-induced ROS increases, indicating that this 

reduction is not dependent on the antioxidant moiety but the TPP+ component 

and/or acyl chain. 
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Mitochondrial Membrane Potential 

Upon comparative observation of 1µM and 10µM MitoQ/dTPP effects on 

1mM H2O2-induced ROS increases, it was imperative to assess the effects of both 

TPP+ based derivatives on the acinar cell mitochondrial proton gradient, essential 

for ATP synthesis. Both compounds are dependent on the positively charged TPP+ 

cation for their accumulation. A 10-fold increase in cation concentration within the 

mitochondria is believed to occur for every 61.5 mV increase in membrane potential 

(Rottenberg 1979). It has been shown that the TPP+ moiety of MitoQ and dTPP can 

cause mild uncoupling of the mitochondria in cultured mesangial cells and 

transgenic Caenorhabditis elegans  (Reily et al. 2013; Ng et al. 2014) and disruption 

to respiration and ATP synthesis (Murphy 2008). MitoQ has also been demonstrated 

to have concentration-dependent effects on induction of proton leak in bovine 

aortic endothelial (BAE) cells, indicatory of respiratory uncoupling (Fink et al. 2012). 

In PACs significant mitochondrial depolarisation with 1µM MitoQ was not seen in 

the period at which it blocked Ca2+ oscillations (2–5 min) (Camello-Almaraz et al. 

2006). Therefore, we evaluated the potential effects in pancreatic acinar cells over a 

longer treatment and/or with excessive accumulation at 10µM. MitoQ/dTPP (1µM) 

treatment did not induce depolarisation of the mitochondria in TMRM loaded cells 

over 10 minutes, in concurrence with Camello-Almaraz et al. (2006), nor MitoQ 

(1µM) over a 30 minute period. MitoQ and dTPP (10µM) treatment highlighted the 

published uncoupling properties of the cation TPP+ (Reily et al. 2013), at higher 

concentrations, demonstrated by partial depolarisation of the mitochondria.  
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Mitochondrial Bioenergetics and Redox Status  

Increases and decreases of NAD(P)H levels enabled assessment of changes 

to acinar cell bioenergetics and redox status induced by MitoQ and dTPP (1µM). 

Changes in NAD(P)H levels are evident in response to a variety of AP precipitants 

detailed below. The predominant mode of regulating mitochondrial metabolism is 

dependent on Ca2+ (Duchen 2000; Rizzuto et al. 2000). The mitochondria are 

equipped with the ability to decode Ca2+ signals and facilitate Ca2+-induced 

upregulation of NADH production and ATP synthesis, in response to an increase in 

energy requirements (McCormack et al. 1990; Hajnóczky et al. 1995; Robb-Gaspers 

et al. 1998; Jouaville et al. 1999). An increase in cytosolic Ca2+ leads to Ca2+ uptake 

via the MCU driven by the large ΔΨm (Rizzuto et al. 2000; Kirichok et al. 2004; 

Patron et al. 2013). Increased mitochondrial Ca2+ levels can elevate proton motive 

force through stimulation of the ETC, and critically, increase the activity of 

mitochondrial dehydrogenases. These include pyruvate dehydrogenase, 

oxoglutarate dehydrogenase, glycerol phosphate dehydrogenase and isocitrate 

dehydrogenase, and lead to increased NADH and FADH2 production. Increased 

levels of reduced NADH and FADH2 fuel the ETC to produce more ATP and match 

ATP production to cellular requirement. Ca2+ activation of NAD-isocitrate 

dehydrogenase occurs through a Ca2+-induced reduction of Km to substrate threo-

Ds-isocitrate and in a manner sensitive to the ATP/ADP ratio and Ca2+ concentration 

(Denton et al. 1978; Rutter et al. 1988; Rutter et al. 1989). NADH is the most 

predominant supplier of reducing equivalents to the ETC, and NADH, not oxidised 

NAD+, fluoresces under UV light, enabling confocal imaging and a valuable indicator 
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of mitochondrial respiration (Hajnóczky et al. 1995; Mojet M.H. 2000; Voronina et 

al. 2002). This technique has been used in pancreatic acinar cells to demonstrate 

the relationship between elevated [Ca2+]c and [Ca2+]m, leading to an upregulation of 

NADH levels (Voronina et al. 2002; Bruce et al. 2004). Ca2+ transients in pancreatic 

acinar cells are of varying amplitude and these are reflected in highly variable NADH 

responses. The comparison of mitochondrial, nuclear and whole cell NADH 

responses indicated that mitochondrial changes in NADH levels determine whole-

cell NADH responses. Influx of Ca2+ into the mitochondria, results in changes to the 

mitochondrial potential, which can be compensated by increased H+ extrusion due 

to ETC stimulation (Raraty et al. 2000). After the initial increase in levels of NADH, a 

small decrease can be observed due to prolonged upregulation of the ETC during 

longer lasting Ca2+ transients (Robb-Gaspers et al. 1998; Voronina et al. 2002).  

 

Further studies investigating NADH responses include pancreatic acinar cell 

treatment with fatty acid POA and fatty acid ethyl ester POAEE, which caused a 

progressive decrease in NAD(P)H, accompanied by depletion of ATP due to impaired 

respiration and uncoupling of oxidative phosphorylation (Criddle et al. 2006). The 

depletion of ATP led to combined SERCA and PMCA pump failure. The alcohol 

metabolites caused depletion of the ER Ca2+ store in a similar time course to 

NAD(P)H depletion. The metabolites also elicited maximal loss of ΔΨm, an effect 

abolished in cells loaded with Ca2+ chelator BAPTA. The effects on NADH were 

accentuated with fatty acid POA in comparison to ethyl ester POAEE responses, in 

line with the dependency of the FAEEs on their FA release. The NADH/NAD+ ratio 
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has been highlighted to be important in the regulation of TCA cycle α-KGDH 

production of H2O2 (Tretter et al. 2000; Tretter et al. 2004; Doughan et al. 2007). 

Redox cycling menadione, uses NAD(P)H as an electron donor to induce a 

progressive generation of ROS alongside a decrease of NAD(P)H (Criddle et al. 

2006). Under physiological conditions XOD is found as a dehydrogenase (XOH) and 

transfers hydrogen from xanthine to NAD, generating NADH. Alcohol consumption 

promotes the pro-oxidant enzyme xanthine oxidase (XO) form, leading to 

generation of superoxide and H2O2. XOD is a primary ROS source in the pancreas, 

which causes injury (Closa et al. 1994; Folch et al. 1998). Acetaldehyde is also a XOD 

substrate which results in the production of ROS also contributing to injury 

(Fridovich 1989). Initially, alcohol is converted by alcohol dehydrogenase (ADH) and 

to acetate by aldehyde dehydrogenase (ALDH), each reaction which produces a 

molecule of NADH, enhancing mitochondrial respiratory chain activity (Wilson et al. 

2003). 

 

The presence of a transient increase in NAD(P)H levels followed by a 

progressive decrease with both compounds, indicated dual effects of the targeting 

component, not the antioxidant component. The transient increase could be an 

inhibition of the ETC leading to a decreased cycling of NADH to NAD+ by complex I 

of the ETC. The transient effect is likely to be only observed during the accumulation 

of MitoQ/dTPP into the mitochondria until an equilibration is reached. 

Alternatively, the increase could be a transient elevation of NADH by the TCA 
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through a Ca2+-dependent mechanism due to non-specific effects of MitoQ and 

dTPP.  

 

ETC inhibition is supported by work done in mesangial cells, showing an 

inhibitory effect of all TPP+
 derivatives on basal respiration and mild uncoupling of 

the mitochondrial membrane (Reily et al. 2013). More recently in C2C12 myoblasts 

and rat skeletal muscle homogenate, results demonstrated inhibition of all four 

respiratory chain complexes in particular complexes I and III alongside proton leak 

and loss of mitochondrial membrane potential (Trnka et al. 2015). In bovine aortic 

endothelial (BAE) cells MitoQ induced concentration-dependent mild increases in 

cellular respiration, reduced ATP turnover, respiratory uncoupling and elevated 

basal rate of acidification which suggested enhanced glycolysis (Fink et al. 2012). 

These findings and those in mesangial cells by (Reily et al. 2013) were supported by 

preliminary results obtained with the Seahorse XF24 Extracellular Flux Analyser 

(results not shown), however they need further investigation.  

 

Up-regulation of NADH production (Voronina et al. 2002) has been 

demonstrated in several cell types, including pancreatic acinar cells, to be due to an 

increases in [Ca2+]c. This resulted in a mitochondrial Ca2+ rise followed by an 

increase in the activity of mitochondrial dehydrogenases and other ATP production 

mechanisms (McCormack et al. 1990; Hajnóczky et al. 1995; Robb-Gaspers et al. 

1998; Jouaville et al. 1999; Glancy et al. 2012). MitoQ and dTPP induced a small rise 
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in cytosolic Ca2+ levels; however, this was not reflected by an increase in 

mitochondrial Ca2+. This may also be due to a lack of sensitivity of the probe 

applied, Rhod-2, to very small changes. ETC Complex I inhibitory effects provide the 

most likely explanation based on the accumulated evidence. However, further work 

would need to be performed to assess mitochondrial Ca2+ concentration changes 

with a more sensitive technique such as patch clamp or specific probe detailed 

later. The transient increase in NAD(P)H could be compared to established ETC 

complex inhibitors such as complex I inhibitor rotenone. Rotenone inhibition of 

complex I has also been reported to induce apoptosis, which is in line with our cell 

death results with MitoQ/dTPP/TPP+ (Li et al. 2003). 

 

The transient increase in NAD(P)H levels induced by MitoQ and dTPP (1µM) 

was followed by a decrease, in comparison the NaHEPES control responses. The 

progressive decrease in levels of NAD(P)H with both MitoQ and dTPP treatment 

indicated a loss of cellular energy metabolism. This is in line with MitoQ-induced 

depletion of ATP levels in articular cartilage (Martin et al. 2012). Experiments could 

investigate the effects of MitoQ/dTPP on ATP levels indirectly using fluorescent 

indicator magnesium green. The decrease of NAD(P)H may be due to the mild 

uncoupling effect of the targeting component or non-specific effects of the TPP+ 

group on cellular bioenergetics (Ross et al. 2005; Fink et al. 2012). Measuring 

NAD(P)H levels over a longer time period demonstrated that the decreases seen 

with 1µM MitoQ were progressive. Previous results have shown some similar 

effects of MitoQ and dTPP (1µM) treatments such as on NAD(P)H levels and ΔΨm. 
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However in vivo there were apparent differences (Huang et al. 2015). These findings 

were mirrored by in vitro work showing MitoQ-induced progressive increases in 

levels of FAD+ autofluorescence, which were mirrored to the progressive NAD(P)H 

decrease. On the other hand treatment with 1µM dTPP did not cause changes to 

FAD+ fluorescence from the control. This would suggest that this effect is 

contributed to the antioxidant moiety of MitoQ, which is reduced predominantly by 

ETC complex II. It is possible that the recycling of MitoQ back into the quinone form 

by complex II, leads to enhanced FADH2 consumption, reflected in a progressive 

elevation of oxidised FAD+ levels. 

 

Ca2+ Signalling 

In the exocrine pancreas, the mitochondria play a critical role in limiting and 

managing the apical to the basolateral propagation of [Ca2+]c waves and plasma 

membrane Ca2+ influx (Tinel et al. 1999). The inhibitory effects of MitoQ on the ETC, 

which have been demonstrated in other cell types, could lead to disruption of this 

delicate management of Ca2+ homeostasis (Leo et al. 2008; Reily et al. 2013). MitoQ 

can significantly increase mitochondria Ca2+ concentration in HeLa cells and inhibit 

Ca2+ oscillations and ROS increases stimulated by CCK (10pM) in pancreatic acinar 

cells (Camello-Almaraz et al. 2006; Leo et al. 2008). The study in HeLa cells 

demonstrated that MitoQ and MitoE (Vitamin E conjugated to TPP+) increased 

mitochondria Ca2+ levels due to the TPP+ component inhibitory effects on the Na+ 

(or H+)/Ca2+ exchanger. This led to increased intra-mitochondrial Ca2+ levels which 
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were greater with the targeting component TPP+
 than MitoQ (Reily et al. 2013), 

therefore impairing mitochondrial management of Ca2+ signals. The efflux of 

mitochondrial Ca2+ in pancreatic acinar cells occurs via the Na+/Ca2+ exchanger NCLX 

(Palty et al. 2010; Nita et al. 2015).  

 

The effects of MitoQ and dTPP on both basal and CCK induced cytosolic Ca2+ 

changes were evaluated. Assessment of 1µM MitoQ and 1µM dTPP on basal 

cytosolic Ca2+ had not been previously carried out in pancreatic acinar cells. Results 

with both Ca2+ indicator Fluo-4 and high affinity ratiometric Ca2+ dye Fura-2, showed 

a small transient increase in cytosolic Ca2+ with 1µM MitoQ treatment. This effect 

was also observed with dTPP (1µM) treatment. The frequency of this effect differed 

between the two compounds and was observed in 52.5% of cells treated with 

MitoQ (1µM) compared to 26.5% in dTPP (1µM) treated cells. This may indicate 

non-specific effects of both the TPP+ component and the antioxidant moiety of 

MitoQ. Non-specific effects of dTPP on basal cytosolic Ca2+ were also observed with 

a prolonged increase in Ca2+ in 34.9% of dTPP (1µM) treated cells. To assess the 

origin of the small transient increase in [Ca2+]c observed during MitoQ/dTPP 

treatment, experiments could apply Ca2+-free NaHEPES in the extracellular media, 

which would establish or rule out a possible extracellular Ca2+ source. Pre-

incubating cells with Ca2+ chelator 1, 2-bis(2-aminophenoxy)ethane-N,N,N′,N′-

tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) would establish if the 

transient increase in NAD(P)H is Ca2+-dependent. 
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Animals infused with high doses of CCK, exhibit pancreatic oedema and 

acinar cell injury, which closely mimics AP in humans. While MitoQ can inhibit 

physiological CCK-induced Ca2+ responses (Camello-Almaraz et al. 2006; Davidson et 

al. 2012), there were no alterations to the cytosolic Ca2+ increases induced by 

hyperstimulatory CCK levels in Fluo-4 or Fura-2 loaded cells. The effects of MitoQ 

and dTPP were evaluated on mitochondrial or endoplasmic reticulum induced CCK 

hyperstimulation responses. Fluorescent indicators Rhod-2 AM and Mag-Fluo-4 

were employed. Rhod-2 AM, due to its positive charged nature in the AM form is 

principally trapped in the mitochondria and enabling the assessment of 

mitochondrial Ca2+ changes (Duchen 1999; Park et al. 2001). The ER is the main Ca2+ 

storage organelle and mitochondrial Ca2+ supplier. Ca2+ levels can be monitored in 

Mag-Fluo-4 loaded cells (Park et al. 2000; Park et al. 2001; Petersen et al. 2001; 

Myoung et al. 2002). No effect on CCK-induced changes to mitochondrial or ER Ca2+ 

was observed. Future experiments could assess the treatment effects of MitoQ and 

dTPP on ER Ca2+. Rhod-2 may not provide adequate sensitivity for measuring small 

fluctuations in mitochondrial Ca2+ therefore patch clamp technique could measure 

any increases. Alternatively construction of a target Ca2+ sensor such as GCaMPs 

TOM-GCaMP6 to monitor specific mitochondrial Ca2+ signalling could be applied 

(Zhou et al. 1998; Kirichok et al. 2004; Williams et al. 2013). 
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Apoptosis and Necrosis 

The balance between necrosis and apoptosis in acute pancreatitis can be 

critical to the disease outcome (Kloppel et al. 1993; Criddle et al. 2007). Induction of 

apoptosis via a regulated cascade of signalling events results in a more efficient 

removal of dead cell debris from a tissue. However, the promotion of inflammation 

with necrosis makes this clearance problematic (Melino et al. 2005). MitoQ and 

dTPP have demonstrated induction of both apoptosis and necrosis at the 1µM 

concentration (Huang et al. 2015). Further experiments incorporating TPP+ showed 

that apoptosis and necrosis were induced by all the TPP+ derivatives (MitoQ, dTPP 

and TPP+) in a concentration-dependent manner (0.2µM-1µM). The induction of 

apoptosis with MitoQ and dTPP are in accordance with a study demonstrating the 

increased levels of endothelial cell apoptosis with MitoQ (1-5µM) treatment 

(Doughan et al. 2007). It has also been reported that MitoQ can also induce an 

alternative mechanism of cell death, autophagy, in breast cancer cell lines (MDA-

MB-231) which can promote cell survival in response to stress (Mehrpour et al. 

2010). Autophagy is a mechanism, which is impaired in acute pancreatitis 

(Gukovskaya et al. 2012; Gukovsky et al. 2012). however, the collective in vitro and 

in vivo results with MitoQ treatment do not support a protective role in this cell 

type or in AP.  
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Conclusions 

The findings of this section demonstrate the adverse effects of MitoQ and 

TPP+ derivatives on pancreatic acinar cells. These results are in line with adverse 

effects encountered in alternative cell types (Reily et al. 2013; Trnka et al. 2015). 

The results obtained in pancreatic acinar cells do not support the use of MitoQ in 

alleviating the severity of AP. 
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Having assessed the effects of MitoQ on basal and H2O2-induced ROS 

elevations, intracellular Ca2+, ΔΨm, NAD(P)H/FAD+ and cell death;  the in vitro 

effects of MitoQ in response to AP precipitants CCK, TLCS and FAEEs were 

evaluated.  

 

Bile Acid-Induced Toxic Effects:  

Lack of Protection with MitoQ Pre-treatment 

 

[ROS]I was measured in PACs loaded with 10µM of the chloromethyl 

derivative CM-H2DCFDA and treated with 500µM TLCS, 1mM and 10mM H2O2. Both 

TLCS and H2O2 caused progressive increases in levels of ROS, measured by increases 

in CM-H2DCFDA fluorescence (Figure 4.1). 30 minutes pre-treatment with MitoQ 

(1µM) has previously demonstrated successful reduction of H2O2 induced ROS 

increases, however MitoQ did not inhibit TLCS-induced ROS increases in comparison 

to the NaHEPES and dTPP (1µM) controls (Figure 4.2).  

 

Mitochondrial membrane potential was measured in TMRM loaded cells and 

basal fluorescence was measured for a 3 minutes time interval prior to the addition 

of 500µM TLCS (or NaHEPES for the control) for 10 minutes. 10µM CCCP was 

applied for 5 minutes to uncouple the mitochondrial membrane completely and 

therefore disperse the TMRM dye. TLCS caused progressive membrane 

depolarisation (Figure 4.3A). NAD(P)H levels were also monitored during treatment 
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with TLCS and induced a transient increase in NAD(P)H followed by a progressive 

decline (Figure 4.3B).  

 

Pancreatic acinar cell suspensions were pre-treated as previously described 

with MitoQ (1µM), dTPP (1µM) or alternatively maintained in NaHEPES for 30 

minutes. Basal fluorescence was measured for a 3 minutes time interval prior to the 

addition of 500µM TLCS (or NaHEPES for the control) for 10 minutes. MitoQ (1µM) 

did not protect against the TLCS-induced partial membrane depolarisation (Figure 

4.4).  

 

As an indicator of cellular apoptosis, CellEvent® Caspase-3/7 Green reagent 

was loaded into isolated PACs and treated with either NaHEPES or 500µM TLCS. 

TLCS did not induce apoptosis in comparison to the NaHEPES control (Figure 4.5). 

Propidium Iodide (PI) was loaded into isolated PACs to monitor cellular necrosis. 

500µM TLCS caused rapid and substantial increases in cellular necrosis in 

comparison to the physiological saline control (NaHEPES) as indicated by the PI 

fluorescence readings obtained (Figure 4.6).   

 

Measurements of CellEvent® Caspase-3/7 Green reagent fluorescence 

obtained with TLCS treatment are elevated with 1µM MitoQ and dTPP pre-

treatment, however apoptosis was not induced beyond the level generated with 
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the control treated cells (Figure 4.7). MitoQ (1µM) provided no overall protection 

against TLCS induced necrosis, although a protective capacity was demonstrated at 

the 1 h time point not demonstrated by the dTPP control (Figure 4.8). The lack of 

overall protective capability of MitoQ against TLCS-induced necrosis, is consistent 

with the end point (30 minutes) experiments performed by Booth et al. (2011). 

Preliminary data showed that an increased pre-treatment concentration of MitoQ 

(5µM) abolished the protective effects seen with 1µM at 1 h treatment with 500µM 

TLCS (Figure 4.9). 
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Figure 4.1 

 

 

 
 
 
 
 
 
 
 
Figure 4.1. TLCS and H

2
O

2
-induced progressive increases in ROS levels. CM-H

2
DCFDA loaded cells 

were treated with (A) 500µM TLCS followed by 1mM H
2
O

2
 line and bar chart presentation of CM-

H
2
DCFDA fluorescence increase during treatment. (B) 10mM H

2
O

2
 line and bar chart presentation of 

CM-H
2
DCFDA fluorescence increase during treatment. A - Traces are averages of 26 cells and >5 

animals and B - 198 cells from 4 animals. Data have been normalised to the initial fluorescence 
reading t=0 expressed as F/F

0
. All data shown are mean ±SEM. 
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Figure 4.2 

 

Figure 4.2. 1µM MitoQ did not diminish TLCS-induced [ROS]
I 
increases measured by CM-H

2
DCFDA. 

Pancreatic acinar cells were pre-treated with either NaHEPES, 1µM MitoQ or 1µM dTPP prior to 
treatment with 500µM TLCS. (A) Example trace of 500µM-induced TLCS ROS increases, (B) TLCS-
induced ROS increases were not reduced with 1µM MitoQ pre-treatment, (C) dTPP pre-treated cells 
vs control. Traces are averages of >15 cells from >3 animals. Data have been normalised to the initial 
fluorescence reading t=0 expressed as F/F

0
. All data shown are mean ±SEM. 
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Figure 4.3 

 

 

 

 

 

 

 

Figure 4.3. The effect of TLCS on ΔΨm and NAD(P)H. TMRM loaded cells were treated with 500µM 
TLCS for a 10 minute period prior to treatment with uncoupler CCCP (10µM) (A) TLCS caused 
progressive membrane depolarisation and (B) transient increases in NAD(P)H followed by a 
progressive decrease. Traces are averages of at least 15 cells and >3 animals. Data has been 
normalised to the initial fluorescence reading t=0 expressed as F/F

0
. All data shown are mean ±SEM. 

* p<0.05. 
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Figure 4.4 

 
Figure 4.4. 1µM MitoQ does not protect against TLCS-induced loss of ΔΨm. TMRM loaded cells 
were pre-treated as previously described. (A) Control cells with and without 500µM TLCS treatment, 
(B) MitoQ (1µM) or (C) dTPP (1µM).  No significant improvement was seen with treating cells with 
1µM  MitoQ. Traces are averages of at least 15 cells and >3 animals. Data has been normalised to the 
initial fluorescence reading t=0 expressed as F/F

0
. All data shown are mean ±SEM.  
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Figure 4.5 

 
Figure 4.5. Lack of effect of TLCS on pancreatic acinar cell apoptosis.  CellEvent® Caspase-3/7 Green 
reagent loaded cells were treated with NaHEPES or 500µM. The data has been normalised to the 
initial fluorescence reading t=0 expressed as F/F

0
.
 
(A) Bar chart representative of time points (B) Line 

graph presentation of data. Traces are averages of >5 animals. All data shown are mean ±SEM. The 
increase in fluorescence with TLCS is not significantly different from the control. 
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Figure 4.6 

 
Figure 4.6. TLCS-induced necrosis of pancreatic acinar cells. Propidium Iodide (PI) loaded cells were 
treated with either NaHEPES or 500µM TLCS. A large increase in cellular necrosis was observed. Data 
has been normalised to the initial fluorescence reading t=0 expressed as F/F

0
.
 

(A) Bar chart 

representative of time points (B) Line graph presentation of data. Traces are averages of >5 animals. 
All data shown are mean ±SEM. ** p<0.01.  



Chapter 4: Protective Capabilities of Mitoquinone against Toxin-Induced    
                     Effects on Pancreatic Acinar Cells 

144 | P a g e  
 

Figure 4.7 

 
Figure 4.7. Effects of MitoQ and dTPP on TLCS-induced apoptosis. CellEvent® Caspase-3/7 Green 
reagent loaded cells were treated with 500µM TLCS. Data have been normalised to the initial 
fluorescence reading t=0 expressed as F/F

0
.
 
(A) Bar chart representative of time points (B) Line graph 

presentation of TLCS treated cells with and without 1µM MitoQ pre-treatment (C) Line graph 
presentation of TLCS treated cells with and without 1µM dTPP pre-treatment. Traces are averages of 
>5 animals. All data shown are mean ±SEM. * = p<0.05. 



Chapter 4: Protective Capabilities of Mitoquinone against Toxin-Induced    
                     Effects on Pancreatic Acinar Cells 

145 | P a g e  
 

Figure 4.8 

 
Figure 4.8. Effects of MitoQ and dTPP on TLCS-induced cellular necrosis. PI loaded cells were pre-
treated with 1µM MitoQ, 1µM  dTPP or NaHEPES (control) for 30 minutes prior to the addition of 
500µM TLCS. Data has been normalised to the initial fluorescence reading t=0 expressed as F/F

0
.
 
(A) 

Bar chart display of time points 1 h, 3 h and 5 h (B) Line graph presentation showing the effect of 
1µM MitoQ pre-treatment on TLCS induced cell necrosis (C) The effect of 1µM dTPP pre-treatment 
on TLCS induced cell necrosis. Traces are averages of >5 animals. All data shown are mean ±SEM. * = 
p<0.05 
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Figure 4.9 

 
Figure 4.9. Effects of 5µM MitoQ on TLCS-induced cell necrosis. Propidium Iodide (PI) loaded cells 
were pre-treated with 5µM MitoQ or 5µM  dTPP for 30 minutes prior to the addition of 500µM TLCS. 
Control cells were in the presence of NaHEPES alone. Data has been normalised to the initial 
fluorescence reading t=0 expressed as F/F

0
.
 
(A) Bar chart representative of time points 1 h, 3 h and 5 

h (B) Line graph presentation showing the effect of 5µM MitoQ pre-treatment on TLCS induced cell 
necrosis (C) The effect of 5µM dTPP pre-treatment on TLCS induced cell necrosis. Traces are 
averages of 2 animals and 6 technical replica’s. All data shown are mean ±SEM.  
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CCK Hyperstimulation-Induced Toxic Effects:  

Lack of Protection with MitoQ Pre-treatment 

 

Mitochondrial membrane potential was measured in cells loaded with the 

dye TMRM and pre-treated with MitoQ (1µM), dTPP (1µM), or physiological saline 

for 30 minutes. Fluorescence measurements in response to 10nM CCK treatment 

were obtained for 10 minutes. Results showed a progressive decline in TMRM 

fluorescence indicative of loss of membrane potential. The depolarisation seen with 

CCK hyperstimulation is partial, as with TLCS treatment and complete depolarisation 

induced by the uncoupling action of CCCP. MitoQ (1µM) did not protect against 

CCK-induced loss of membrane potential and dTPP (1µM) exacerbated the effects 

(Figure 4.10). CCK stimulation produced an increase in NAD(P)H levels measured by 

monitoring levels of NAD(P)H autofluorescence in isolated PACs. Pre-treatment with 

MitoQ and dTPP (1µM) abolished this affect and induced a decline in NAD(P)H levels 

(Figure 4.11).  

 

Typical physiological CCK (10pM) induced [Ca2+]c responses are of an 

oscillatory manner and hyperstimulatory CCK (10nM) responses a single large 

increase and following plateau (Figure 4.12). MitoQ, dTPP, dUb and TPP+ at 1µM did 

not affect CCK hyperstimulation responses (Figure 4.13).  CCK hyperstimulation 

(10nM) induced progressive and substantial increases in apoptosis, indicated by 

increases in CellEvent® Caspase-3/7 Green reagent fluorescence intensity and 

necrosis in PI loaded isolated PACs. These results were in comparison to a NaHEPES 
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control group (Figure 4.14 and 4.15). MitoQ demonstrated no protection against 

CCK-induced apoptosis or necrosis and exacerbated CCK-induced necrosis alongside 

dTPP at 1µM (Figures 4.16-4.19). CCK and TLCS induced differing levels of necrosis 

and apoptosis. CCK induced both apoptosis and necrosis of which the latter was a 

biphasic trend. Comparatively TLCS induced negligible apoptosis and predominantly 

necrosis (Figure 4.20). 
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Figure 4.10 

 
Figure 4.10. 1µM MitoQ did not protect against CCK-induced loss of ΔΨm. ΔΨm was measured in 
cells loaded with TMRM dye. Pancreatic acinar cell suspensions were pre-treated as previously 
described. (A) Control cells with and without 10nM CCK treatment, (B) MitoQ and dTPP (1µM) pre-
treatment effects and (C) percent depolarisation with each treatment. Traces are averages of at least 
15 cells and >3 animals. Data has been normalised to the initial fluorescence reading t=0 expressed 
as F/F

0
. All data shown are mean ±SEM. dTPP significantly exacerbated CCK induced partial 

membrane depolarisation ** p<0.01.  
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Figure 4.11 

 
 Figure 4.11. 1µM MitoQ and 1µM dTPP abolished CCK-induced NAD(P)H responses. Pancreatic 

acinar cell suspensions were pre-treated as previously described and NAD(P)H autofluorescence was 

measured for a 3 minute baseline before a 10 minute treatment with 10nM CCK. (A) Control cells 

with and without 10nM CCK treatment, (B) MitoQ and dTPP (1µM) pre-treatment vs control (C) 

MitoQ and dTPP pre-treatment effects at 300 s and 780 s. Traces are averages of at least 26 cells and 

>3 animals. Data has been normalised to the initial fluorescence reading t=0 expressed as F/F
0
. All 

data shown are mean ±SEM. * p<0.05, ** p<0.01, *** p<0.001. 
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Figure 4.12 

5  

Figure 4.12. CCK-induced [Ca
2+

]
c 

responses. Cytosolic Ca
2+

 was measured with Fluo-4. Basal 

measurements  (NaHEPES) were taken prior to treatment with physiological levels of CCK (10pM) or 

hyperstimulation concentrations (10nM). (A) 10pM CCK induced [Ca
2+

]
c 

oscillations (example trace) 

and (B) 10nM CCK induced large transient increase in [Ca
2+

]
c
. Traces are averages of >18 cells from at 

least 3 animals. Data has been normalised to the initial fluorescence reading t=0 expressed as F/F
0
. 

Data shown are mean ±SEM.  
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Figure 4.13 

 

 

 

Figure 4.13. 1µM MitoQ/dTPP/dUb/TPP+ did not affect CCK hyperstimulation-induced [Ca
2+

]
c
 

increases. Cytosolic Ca
2+

 was measured with Fluo-4. Pancreatic acinar cells were pre-treated with 

either 1µM MitoQ, 1µM dTPP, 1µM dUb, 1µM TPP
+ 

or NaHEPES (control). Basal measurements  
(NaHEPES) were taken for 3 minutes followed by a further 5 minutes perfusion with 10nM CCK . (A) 
The Effect of MitoQ (1µM) and dTPP (1µM) on CCK induced cytosolic Ca

2+
 responses (B) The Effect of 

dUb (1µM) and TPP
+
 (1µM) on CCK induced cytosolic Ca

2+
 responses Traces are averages of >18 cells 

from at least 3 animals. Data has been normalised to the initial fluorescence reading t=0 expressed 
as F/F

0
. All data shown are mean ±SEM. 
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Figure 4.14 

 
 

Figure 4.14. CCK-induced apoptosis.  CellEvent® Caspase-3/7 Green reagent loaded cells were 
treated with either NaHEPES or 10nM CCK. The data has been normalised to the initial fluorescence 

reading t=0 expressed as F/F
0
.
 
(A) Bar chart representative of time points (B) Line graph presentation 

of data. Traces are averages of >6 animals. All data shown are mean ±SEM. * p<0.05, **** p<0.0001.
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Figure 4.15 

 
 

Figure 4.15. CCK-induced necrosis. Propidium Iodide (PI) loaded cells were treated with NaHEPES or 
10nM CCK. The data has been normalised to the initial fluorescence reading t=0 expressed as F/F

0
.
 

(A) Bar chart representative of time points (B) Line graph presentation of data. Traces are averages 
of >6 animals. All data shown are mean ±SEM. ** p<0.01. 
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Figure 4.16 

 

Figure 4.16. MitoQ (0.2µM and 0.5µM) did not protect against CCK-induced apoptosis.  CellEvent® 
Caspase-3/7 Green reagent loaded cells were pre-treated for 30 minutes with either  (A) 0.2µM  and 

0.5µM MitoQ, (B) 0.2µM  and 0.5µM dTPP, (c) 0.2µM  and 0.5µM TPP
+
 before administration of 

10nM CCK to each CCK treatment group. The data has been normalised to the initial fluorescence 
reading t=0 expressed as F/F

0
.
 
The data is presented as bar chart  time points. Traces are averages of 

>6 animals. All data shown are mean ±SEM.  
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Figure 4.17 

 

 

 

 

 

 

 

 

 
Figure 4.17. 1µM MitoQ did not protect against CCK-induced apoptosis.  CellEvent® Caspase-3/7 
Green reagent loaded cells were pre-treated for 30 minutes with either 1µM MitoQ, 1µM dTPP, 1µM 

TPP
+
 before administration of 10nM CCK to each CCK treatment group. The data has been 

normalised to the initial fluorescence reading t=0 expressed as F/F
0
.
 
The data is presented as bar 

chart  time points. Traces are averages of >5 animals. All data shown are mean ±SEM. 1µM MitoQ 
exacerbated CCK induced cellular apoptosis at the 2 hour time point (*p<0.05). 
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Figure 4.18 

 
Figure 4.18. MitoQ (0.2 and 0.5µM) did not protect against CCK-induced necrosis.  PI loaded cells 

were pre-treated for 30 minutes with either  (A) 1µM MitoQ, (B) 1µM dTPP, (c) 1µM TPP
+
 before 

administration of 10nM CCK. The data has been normalised to the initial fluorescence reading t=0 
expressed as F/F

0
.
 
The data is presented as bar chart  time points. Traces are averages of >6 animals. 

All data shown are mean ±SEM. 0.2µM MitoQ exacerbated CCK induced necrosis at 2 h and 7 h time 

points and both 0.2µM dTPP and TPP
+
 at 7 h. * p<0.05, ** p<0.01, *** p<0.001. 
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Figure 4.19 

 

 

 

 

 

 

 

 

 
Figure 4.19. Lack of protection by MitoQ against CCK-induced necrosis.  PI loaded cells were pre-

treated for 30 minutes with either 1µM MitoQ, 1µM dTPP before administration of 10nM CCK to 

each CCK treatment group. The data has been normalised to the initial fluorescence reading t=0 

expressed as F/F
0
.
 
The data is presented as bar chart  time points and are averages of >12 animals. 

All data shown are mean ±SEM ** p<0.01. 
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Figure 4.20 

 

 

 

 
Figure 4.20. CCK and TLCS-induced apoptosis and necrosis. Comparison of levels of apoptosis and 
necrosis with (A) 10nM CCK and 500µM TLCS and (B) CCK versus TLCS apoptosis and necrosis. The 
data has been normalised to the initial fluorescence reading t=0 expressed as F/F

0
.
 
Traces are 

averages of >6 animals. All data shown are mean ±SEM. 
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Pancreatic Acinar Cell Apoptosis and Necrosis: 

The Effects of POAEE, Ethanol and MitoQ Pre-treatment 

 

For the following cellular apoptosis and necrosis plate reader experiments, 

POAEE was solubilised in 85mM or 850mM ethanol with 280mM polyethylene 

glycol (PEG). CellEvent® Caspase-3/7 Green reagent loaded cells were again used to 

indicate levels of cellular apoptosis and PI for necrosis in isolated PACs. 85mM and 

850mM EtOH demonstrated dose dependent effects on the induction of both 

apoptosis and necrosis (Figure 4.21 and 4.22). 100µM POAEE induced substantial 

apoptosis and necrosis in comparison to the NaHEPES control (Figure 4.23 and 4.24). 

Isolated PACs were pre-treated with MitoQ (0.2µM and 1µM) and treated with 

POAEE. MitoQ demonstrated concentration-dependent inhibition of POAEE-induced 

cellular apoptosis (Figure 4.25 and 4.26) and had no effect on levels of POAEE-

induced necrosis (Figure 4.27-28). In cells treated with 850mM Ethanol, MitoQ 

(0.2µM and 1µM) demonstrated concentration-dependent inhibition of EtOH-

induced apoptosis but not necrosis (Figure 4.29-31). 



Chapter 4: Protective Capabilities of Mitoquinone against Toxin-Induced    
                     Effects on Pancreatic Acinar Cells 

161 | P a g e  
 

Figure 4.21 

 
 
 Figure 4.21. The effects of ethanol on apoptosis. CellEvent® Caspase-3/7 Green reagent loaded cells 
were treated with 85mM ethanol or 850mM ethanol. The data has been normalised to the initial 
fluorescence reading t=0 expressed as F/F

0
.
 
(A) Bar chart representative of time points (B) Line graph 

presentation of data. Traces are averages of >9 animals. All data shown are mean ±SEM. * p<0.05, 
*** p<0.001. 
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Figure 4.22 

 
 
Figure 4.22. The effects of ethanol on necrosis. PI loaded cells were treated with 85mM ethanol or 
850mM ethanol. The data has been normalised to the initial fluorescence reading t=0 expressed as 
F/F

0
.
 
(A) Bar chart representative of time points (B) Line graph presentation of data. Traces are 

averages of >9 animals. All data shown are mean ±SEM. * p<0.05, ** p<0.01 and *** p<0.001. 



Chapter 4: Protective Capabilities of Mitoquinone against Toxin-Induced    
                     Effects on Pancreatic Acinar Cells 

163 | P a g e  
 

Figure 4.23 

  
 Figure 4.23. POAEE-induced apoptosis. Caspase-3/7 reagent loaded cells were treated with 100µM 
POAEE solubilised in 85mM ethanol. The data has been normalised to the initial fluorescence reading 
t=0 expressed as F/F

0
.
 
(A) Bar chart representative of time points, (B) Line graph presentation of 

100µM POAEE induced apoptosis with 85mM EtOH and EtOH alone. Traces are averages of >9 
animals. All data shown are mean ±SEM. * p<0.05. 
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Figure 4.24 

  
 
Figure 4.24. POAEE-induced necrosis. PI loaded cells were treated with 100µM POAEE solubilised in 
85mM ethanol. The data has been normalised to the initial fluorescence reading t=0 expressed as 
F/F

0
.
 
(A) Bar chart representative of time points, (B) Line graph presentation of 100µM POAEE 

induced apoptosis with 85mM EtOH and EtOH alone. Traces are averages of >9 animals. All data 
shown are mean ±SEM. **** p<0.0001.  
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Figure 4.25 

  
 Figure 4.25. MitoQ concentration-dependent inhibition of 100 µM POAEE/85mM ethanol-induced 
apoptosis. Caspase-3/7 reagent loaded cells were pre-treated for 30 minutes with either 0.2µM 
MitoQ or 0.2µM dTPP prior to treatment with 100µM POAEE/85mM ethanol. The data has been 
normalised to the initial fluorescence reading t=0 expressed as F/F

0
.
 
(A) Bar graph presentation of 

100µM POAEE/85mM EtOH with 1µM MitoQ and 1µM dTPP, (B) Line graph presentation of 100µM 
POAEE/85mM EtOH with 1µM MitoQ. Traces are averages of >9 animals. All data shown are mean 
±SEM. * p<0.05.  
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Figure 4.26 

  
 Figure 4.26. MitoQ (1µM) had no effect on 100 µM POAEE/85mM ethanol-induced apoptosis. 
Caspase-3/7 reagent loaded cells were pre-treated for 30 minutes with either 1µM MitoQ or 1µM 
dTPP prior to treatment with 100µM POAEE/85mM ethanol. The data has been normalised to the 
initial fluorescence reading t=0 expressed as F/F

0
.
 

(A) Bar graph presentation of 100µM 

POAEE/85mM EtOH with 1µM MitoQ and 1µM dTPP, (B) Line graph presentation of 100µM 
POAEE/85mM EtOH with 1µM MitoQ. Traces are averages of >9 animals. All data shown are mean 
±SEM.  
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Figure 4.27 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
  
Figure 4.27. MitoQ (0.2µM) did not protect against 100 µM POAEE/85mM ethanol-induced 
apoptosis. PI loaded cells were pre-treated for 30 minutes with 0.2µM or 1µM MitoQ prior to 
treatment with 100µM POAEE/85mM ethanol. The data has been normalised to the initial 
fluorescence reading t=0 expressed as F/F

0
.
 
(A) 0.2µM MitoQ bar graph presentation and (B) 0.2µM 

MitoQ line graph presentation. Traces are averages of >9 animals. All data shown  
are mean ±SEM.  

A 

B 

2 h 7 h 13 h

1.2

1.5

1.8

2.1

0.9

Control

85mM EtOH 

POAEE/85mM EtOH

POAEE/85mM EtOH + 0.2M MitoQ

POAEE/85mM EtOH + 0.2M dTPP

F
lu

o
re

s
c

e
n

c
e
 I
n

te
n

s
it

y
 (

F
/F

0
)

Time

2.75 h 5.5 h 8.25 h 11 h0 h 13.5 h
0.9

1.2

1.5

1.8

2.1 Control

POAEE/85mM EtOH

POAEE/85mM EtOH + 0.2M MitoQ

F
lu

o
re

s
c

e
n

c
e

 I
n

te
n

s
it

y
 (

F
/F

0
)

Time



Chapter 4: Protective Capabilities of Mitoquinone against Toxin-Induced    
                     Effects on Pancreatic Acinar Cells 

168 | P a g e  
 

Figure 4.28 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 Figure 4.28. MitoQ (1µM) did not protect against 100 µM POAEE/85mM ethanol-induced necrosis. 
PI loaded cells were pre-treated for 30 minutes with 1µM MitoQ prior to treatment with 100µM 
POAEE/85mM ethanol. The data has been normalised to the initial fluorescence reading t=0 
expressed as F/F

0
.
 
(A) bar chart and (B) line graph presentation. Traces are averages of >9 animals. 

All data shown are mean ±SEM.  
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Figure 4.29 

 
 

Figure 4.29. MitoQ concentration-dependent inhibition of EtOH-induced apoptosis. Caspase-3/7 
reagent loaded cells were pre-treated for 30 minutes with either 0.2µM MitoQ or 0.2µM dTPP prior 
to treatment with 850mM ethanol. The data has been normalised to the initial fluorescence reading 
t=0 expressed as F/F

0
.
 
(A) Bar graph presentation of 850mM EtOH with 1µM MitoQ and 1µM dTPP, 

(B) Line graph presentation of 850mM EtOH with 1µM MitoQ ad (C) 1µM dTPP. Traces are averages 
of >9 animals. All data shown are mean ±SEM. * p<0.05. 
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Figure 4.30 

 
 Figure 4.30. MitoQ (1µM) had no effect on EtOH-induced apoptosis. Caspase-3/7 reagent loaded 
cells were pre-treated for 30 minutes with either 1µM MitoQ or 1µM dTPP prior to treatment with 
850mM ethanol. The data has been normalised to the initial fluorescence reading t=0 expressed as 
F/F

0
.
 
(A) Bar graph presentation of 850mM EtOH with 1µM MitoQ and 1µM dTPP, (B) Line graph 

presentation of 850mM EtOH with 1µM MitoQ. Traces are averages of >9 animals. All data shown 
are mean ±SEM.  
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Figure 4.31 

 

 

 
 
Figure 4.31. MitoQ did not protect against 850mM ethanol-induced necrosis. PI loaded cells were 
pre-treated for 30 minutes with 0.2µM or 1µM MitoQ prior to treatment with 850mM ethanol. The 
data has been normalised to the initial fluorescence reading t=0 expressed as F/F

0
.
 
(A) 0.2µM MitoQ 

bar and line graph presentation (B) 1µM MitoQ bar and line graph presentation. Traces are averages 
of >9 animals. All data shown are mean ±SEM.  
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Discussion 

Our study has evaluated, in vitro, the protective capabilities of MitoQ against 

CCK- and TLCS-induced toxic effects to compliment work performed with in vivo 

models of experimental AP (Huang et al. 2015). Additionally, non-oxidative ethanol 

metabolite POAEE and ethanol were included. Previous preclinical evaluations of 

antioxidants in AP models have produced mixed results, with unsuccessful 

translation to the clinic thus far (Virlos et al. 2003; Bjelakovic et al. 2007; 

Siriwardena et al. 2007; Bansal et al. 2011). The effects of targeted antioxidants, 

such as MitoQ, have not been investigated in hyperstimulation, bile acid and non-

oxidative metabolite models of AP in vitro and in vivo. 

 

Bile Acid-Induced Toxic Effects 

Previously our group has shown that in isolated PACs, 200μM TLCS induced 

small Ca2+ elevations of an oscillatory nature in the perigranular mitochondrial 

region (Petersen and Tepikin, 2008) and 500μM TLCS induced sustained elevations 

of [Ca2+]C and [Ca2+]M alongside a decline in NAD(P)H and ATP levels (Voronina et al. 

2004; Voronina et al. 2010). MitoQ inhibited TLCS- (200µM) induced apoptosis in 

end point experiments (30 minutes), which could indicate a protective role for ROS 

in these cells (Booth et al. 2011). TLCS (200µM) did not elicit detectable ROS 

increases until a dose of 500µM in DCFDA loaded cells or with inhibition of NQO1. 

These ROS elevations were abolished in cells pre-treated with L-BAPTA and 0Ca2+ in 
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the extracellular media, which indicated Ca2+-dependent ROS increases. It is likely 

that there are ROS increases with 200µM TLCS, which are not detected by H2DCFDA 

due to a lack of sensitivity to mild oxidative stress. MitoQ demonstrated improved 

effectiveness against 200µM TLC-induced apoptosis, indicating a role of ROS in the 

TLCS-induced apoptosis. Application of 500µM TLCS in our experiments 

predominantly resulted in a necrotic mechanism of cell death in isolated PACs 

which supports the study by Booth et al. (2011). Antioxidant pre-treatment with 

MitoQ (1µM) did not protect against TLCS- (500µM) induced apoptosis over long 

time course experiments (13 hours). This contradicts data published by Booth et al. 

(2011) demonstrating concentration-dependent induction of apoptosis with TLCS 

(200 and 500µM) and the ability of MitoQ (1µM) to inhibit 200µM TLCS-induced 

effects in end point experiments (30 minutes). The confocal method employed by 

Booth et al. (2011) has a higher level of sensitivity, enabling single cell observations 

in contrast to a population, as analysed using the plate reader method. The lower 

concentration of 200µM TLCS applied by the authors induced proportionally less 

total cell death than with 500µM treatment (38% to 63.9%). While 500µM TLCS 

caused a near negligible increase in apoptosis in comparison to 200µM (2%), the 

percentage of cells which underwent necrosis increased by 23.9%. The improved 

sensitivity of the method in short time point experiments enabled the 

demonstration of early inhibition of apoptosis by MitoQ; an inhibition which the 

plate reader experiments demonstrate is not present in longer term experiments.  
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MitoQ (1µM) showed mild inhibition of TLCS induced necrosis at the 1 h 

time point, an effect which was abolished when pre-treating at higher 

concentrations of 5µM MitoQ. MitoQ (1µM) also did not protect against other TLCS-

induced effects such as induction of ROS production and membrane depolarisation. 

The lack of protection provided in vitro is mirrored in our in vivo study with murine 

biliary experimental model of AP, TLCS-AP (Huang et al. 2015). Results obtained in 

vitro were again complex, with TLCS-AP not alleviated by treatment with the 

mitochondria-targeted antioxidant.  

 

Although no studies have directly measured oxidative stress in mouse TLCS-

AP, elevated markers have been demonstrated in the pancreas and erythrocytes 

following pancreatic ductal taurocholate administration in rats (Telek et al. 1999; 

Rau et al. 2000; Yasar et al. 2002). The study of Rau and colleagues (Rau et al. 2000) 

indicated that whilst ROS might be mediators of tissue damage, their extracellular 

generation alone did not induce typical biochemical and morphological changes 

indicative of AP. A lack of a protective effect of MitoQ in the current TLCS-AP model 

would support this view. In contrast, non-targeted antioxidant NAC, prevented 

TLCS- and menadione-induced ROS increases in PACs (Criddle et al. 2006; Booth et 

al. 2011). NAC pre-treatment also reduced tissue necrosis, leukocyte infiltration, 

oedema, and haemorrhage in taurocholate-induced AP (Yagci et al. 2004). MitoQ 

has demonstrated several adverse effects, such as inhibitory effects on the ETC and 

mitochondrial membrane uncoupling (James et al. 2005; Plecitá-Hlavatá et al. 2009; 

Fink et al. 2012; Reily et al. 2013). Further reported adverse effects include the 
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capacity to increase glucose oxidation and reduce fat oxidation at doses that did not 

alter membrane potential (Fink et al. 2009), as well as enhanced NF-B activation and 

up-regulation of ICAM-1 expression (Mukherjee et al. 2007). MitoQ also showed 

redox-cycling properties similar to menadione at the level of complex I and caused 

superoxide production (Doughan et al. 2007).  

 

Nevertheless, MitoQ has shown some effectiveness as an antioxidant in a 

number of studies, particularly against H2O2-induced ROS increases and apoptosis 

(Saretzki et al. 2003; Dhanasekaran et al. 2004; Ghosh et al. 2010; Chacko et al. 

2011; Ng et al. 2014). Although not detected by CM-H2DCFDA in our studies, MitoQ 

has demonstrated prooxidant capabilities in alternative cells types (O'Malley et al. 

2006; Plecitá-Hlavatá et al. 2009), counteracting the beneficial antioxidant effects. 

Evidence from our studies and published literature indicate that the beneficial 

antioxidant capacity of MitoQ  is effectively nullified by the adverse effects of the 

targeting component, such as mild uncoupling and ETC inhibition (James et al. 2005; 

Plecitá-Hlavatá et al. 2009; Fink et al. 2012; Reily et al. 2013; Trnka et al. 2015). The 

inhibitory mechanisms of MitoQ on the ETC as demonstrated in alternative cell 

types have yet to be investigated in PACs and could be assessed in comparison to 

known ETC complex inhibitors such as complex I inhibitor rotenone.  
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 CCK Hyperstimulation-Induced Toxic Effects 

A pivotal study demonstrated that the application of 1µM MitoQ during 

ongoing [Ca2+]i oscillations evoked by physiological concentrations of CCK, resulted 

in a clear inhibition. The inhibition of Ca2+ oscillations was demonstrated alongside a 

reduction of CCK-induced ROS increases (Camello-Almaraz et al. 2006). Non-

targeted antioxidants ubiquinone and SOD mimic MnTBAP also inhibited 10pM CCK-

induced [Ca2+]i oscillations, supporting a ROS-dependent Ca2+ mobilisation. 

Although MitoQ had the capacity to inhibit [Ca2+]i oscillations in the study by 

Camello-Almaraz et al. (2006), there was no effect on the maximal [Ca2+]i response 

to CCK hyperstimulation. In contrast, MitoQ pre-treated cells exhibited a complete 

inhibition of CCK-induced NAD(P)H increases, which has been previously attributed 

to increases in cytosolic and mitochondrial Ca2+ (Hajnoczky et al. 1995; Voronina et 

al. 2010). This removal of the NAD(P)H increases is also seen in cells with dTPP 

control treatment. Therefore it is likely that the targeting component of both 

compounds is interfering with CCK induced NAD(P)H responses in the mitochondria, 

independent of antioxidant decreases in ROS. The targeting component of MitoQ 

could be having non-specific effects on mitochondrial Ca2+ uptake and therefore 

abolishing NAD(P)H increases. Another theory would be that the mild uncoupling 

properties of the targeting component subsequently upregulate NAD(P)H 

consumption to fuel the ETC and maintain the ΔΨm. This could effectively nullify 

upregulation of NAD(P)H production by the TCA. 
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In HeLa cells the TPP+ moiety has demonstrated inhibitory effects on the 

mitochondrial Na+/Ca2+ exchanger, which resulted in accumulation of Ca2+ within 

the mitochondria following IP3 receptor mediated Ca2+ release into the cytosol (Leo 

et al. 2008). Our preliminary results with Rhod-2 do not support a mitochondrial 

accumulation of Ca2+, although this could be a lack of sensitivity of Rhod-2 to very 

small increases. The inhibition of NAD(P)H increases was not reflected in any 

detectable prevention of CCK-induced mitochondrial membrane depolarisation.  

 

CCK at physiological and hyperstimulatory concentrations has opposite 

effects to TLCS on ATP levels. CCK can induce accelerated mitochondrial ATP 

production and consumption, in comparison to ATP depletion induced by TLCS 

(Voronina et al. 2010). It was anticipated that MitoQ might inhibit CCK-induced 

apoptosis due to a demonstrated inhibition of CCK-induced ROS production, a 

known apoptosis inducer (Camello-Almaraz et al. 2006; Booth et al. 2011). 

However, MitoQ and dTPP (and TPP+ in certain experiments) had little effect on 

apoptosis and worsened CCK-induced necrosis. More specifically, at the 2 h time 

point MitoQ exacerbated CCK-induced apoptosis but not at the later time points 

presented (7 h and 13 h). MitoQ also no longer exacerbates CCK-induced necrosis at 

13 h in comparison to the CCK treated group. The large confidence interval at 13 h 

suggests a large population variance, which may give an imprecise effect size at this 

time point.  The presence of exacerbated necrosis with MitoQ, dTPP and TPP+ would 

indicate a TPP+
 derivative-induced mechanism via mild uncoupling, decrease in CCK 
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induced NAD(P)H and ATP production necessary for apoptosis (Nicotera et al. 1998; 

Gukovskaya et al. 2004; Criddle et al. 2007). 

 

 The complimentary in vivo work (Huang et al. 2015), supported our CCK and 

TLCS cell death observations. The milder pathology induced by caerulein in the CER-

AP model is reflected by a substantial induction of both apoptosis and necrosis in 

vitro. In contrast, TLCS-AP elicits a severe pathology and predominantly necrotic 

path of cell death in the absence of substantial apoptosis, as a protective 

mechanism. In vivo investigations indicated some protective actions of MitoQ 

evident in the CER-AP model, although effects were variable and shared by the non-

antioxidant moiety control dTPP. MitoQ partially protected against the severity of 

CER-AP as assessed by pancreatic histopathology, but without a significant 

reduction of pancreatic necrosis or apoptosis. No reduction of serum amylase or 

pancreatic trypsin was evident, whilst MitoQ concurrently elevated systemic injury 

markers such as lung MPO activity and serum IL-6. In addition, dTPP significantly 

improved overall and individual pancreatic histopathology scores, decreased 

pancreatic trypsin, and reduced pancreatic MPO activity. Currently the explanation 

for any beneficial effect of dTPP is unclear, but some deleterious effects of MitoQ 

may have resulted from the antioxidant activity. 
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POAEE and Ethanol Effects on Pancreatic Acinar 

Cell Death  

 

PACs provide the main source of ethanol metabolism in the pancreas via 

both the oxidative metabolic pathway, involving alcohol dehydrogenase (ADH), and 

non-oxidative pathways. Non-oxidative metabolism leads to the production of 

diverse FAEEs, such as POAEE, from the reaction of alcohol with fatty acids. FAEEs 

including POAEE can be detected in patient serum levels following ethanol ingestion 

(Bjelakovic et al. 2007) and are produced by FAEE synthases, diverse enzymes under 

characterisation, including carboxylester lipase (CEL) and triglyceride lipase (Wilson 

et al. 2003).  

 

FAEEs have been implicated in acute pancreatitis alongside mitochondrial 

dysfunction, Ca2+-dependent mitochondrial inhibition leading to loss of NAD(P)H, 

decreases in ATP and increased necrosis (Lange et al. 1983; Sztefko et al. 2001; 

Criddle et al. 2006; Voronina et al. 2010; Ng et al. 2014). Inhibition of FAEE synthase 

prevents these cytosolic Ca2+ increases and associated mitochondrial dysfunction 

(Huang et al. 2014). While non-oxidative metabolite POAEE-induced a decrease in 

ATP in PACs, ethanol (200mM) failed to generate measurable changes. TLCS and 

fatty acid POA also induced these changes whereas CCK did not, a major 

contributing factor to the more damaging effects of these compounds in vivo as well 

as in vitro. It is believed that the CCK-induced increase in ATP production is a 

protective mechanism against Ca2+-induced loss of energy (Voronina et al. 2004; 

Voronina et al. 2010). FAEEs have also been reported to elicit premature activation 
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of proteases and lipases resulting in digestion of cellular structures (Haber et al. 

1993) and activation of NF-κB, leading to the expression of a variety of inflammatory 

mediators (Gukovskaya et al. 2002). Oxidative metabolism of ethanol may also 

provide minor contributions to the development of AP via oxidative stress, as 

shown in rat pancreatic tissue (Altomare et al. 1996) 

 

Ethanol (1-50mM) is known to impair CCK induced ROS generation and 

amylase secretion (González et al. 2006; Fernandez-Sanchez et al. 2009)  inhibited 

by antioxidant cinnamtannin B-1 (Del Castillo-Vaquero et al. 2010). Treatment with 

850mM ethanol induced only very small transient elevations in cytosolic Ca2+ in 

comparison to ACh (10µM), whereas POAEE (100µM) elicited substantial Ca2+
 

increases (Criddle et al. 2004). In contrast, 850mM EtOH is substantially greater 

than the range of blood alcohol levels in intoxicated humans (< or = 100 mmol/L) 

which induces DNA alterations (Lamarche et al. 2004). The reason for these results 

is that the toxic effects of alcohol are predominantly caused by non-oxidative 

metabolites fatty acids and fatty acid ethyl esters. Previously, our group has shown 

that exogenous application of POAEE caused significant cell death and low level 

ethanol/POA (10mM/20µM) demonstrated elevated toxicity during inhibition of 

oxidative ethanol metabolism (Huang et al. 2014). The low level/POA results were 

mirrored in vivo with elevated disease biochemical markers and development of 

pancreatic necrosis, oedema and neutrophil infiltration. These changes are 

consistent with those observed post FAEE administration in rats (Werner et al. 1997) 

or intravenous ethanol under inhibition of oxidative metabolism of ethanol (Werner 

et al. 2001).  
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The short term effects of ethanol on intracellular Ca2+ appear small (Criddle 

et al. 2004). Within several hours of ethanol infusion in rats, trypsinogen activation, 

pancreatic oedema, and pancreatic acinar cell apical vacuolization appear (Werner 

et al. 2002). These changes are associated with the formation of FAEEs within the 

pancreas (Werner et al. 2002; Lamarche et al. 2004). The use of ethanol in 

combination with POAEE has clinical parallels with intoxicated human blood FAEE 

concentrations, reported up to 50µM mirrored by the concentration of ethanol 

(Laposata et al. 1986; Werner et al. 1997; Soderberg et al. 2003). Ethanol and POAEE 

studies indicate that alcohol-induced toxic effects are predominantly FAEE driven. 

This is of great clinical relevance in an organ with dominantly non-oxidative ethanol 

metabolism.  

 

Levels of cellular apoptosis and necrosis induced by high dose POAEE 

(100µM) solubilised in ethanol (85mM) were assessed. MitoQ pre-treatment was 

evaluated for any protective capabilities. Previous optimisation of our plate reader 

cell death experiments led to the addition of high molecular weight polyethylene 

glycol (PEG) alongside ethanol to ensure effective POAEE solubilisation over the long 

time point experiments. POAEE (100µM) induced a substantial increase in apoptosis 

and necrosis in comparison to both 85mM EtOH alone and NaHEPES. These results 

support observations that FAEEs elicit more damaging effects than ethanol alone 

(Werner et al. 1997; Ammann 2001; Werner et al. 2001; Huang et al. 2014).  
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MitoQ effectively inhibited POAEE-induced apoptosis at 0.2µM but not 1µM 

in conjunction with concentration-dependent inhibition of 850mM EtOH-induced 

apoptosis. MitoQ did not exhibit the same protection against POAEE-induced 

apoptosis solubilised in 850mM EtOH (results not shown). These results could 

suggest a considerably greater ROS generation with high dose POAEE/EtOH and 

subsequent overloaded antioxidant capacity. These results support work produced 

by Fernandez-Sanchez et al. (2009) with antioxidant cinnamtannin B-1 highlighting a 

reduction both in 50mM EtOH-induced ROS production, an action that reverted the 

effect of ethanol on 1nM CCK-8 induced Ca2+ mobilization.  

 

Conclusions 

In conclusion, MitoQ demonstrated a lack of protective effects against toxin 

effects and concentration-dependent inhibition of POAEE-induced apoptosis. 

Inhibition of apoptosis is unlikely to be protective in clinical applications, as further 

supported by our CCK and TLCS apoptosis/necrosis comparisons.  
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In this chapter the comparative cellular effects of submillimolar and 

millimolar H2O2 on PACs and the protective capabilities of MitoQ were evaluated. 

These results are also briefly compared to the toxin-induced effects of CCK, POAEE 

and ethanol on levels of ROS and cell death. 

 

 

The Cellular Effects of H2O2 on PACs 

 

  NAD(P)H and FAD+ autofluorescence were measured simultaneously during 

treatment with micromolar concentrations of H2O2 (10µM, 30µM and 300µM H2O2). 

Pancreatic acinar cell suspensions were treated for 5 minutes with each compound 

prior to uncoupler CCCP. Preliminary data demonstrated concentration-dependent 

progressive effects on NAD(P)H and FAD+ levels (Figure 5.1). Experiments 

investigating the effects of 1µM H2O2 demonstrated recovery of NAD(P)H levels in 

55% of cells (5/9) during treatment (data not shown). High millimolar H2O2 

treatment induced large irreversible changes to NAD(P)H and FAD+ levels. H2O2 

induced dose dependent effects on NAD(P)H/FAD+ levels (Figure 5.2). MitoQ (1µM) 

exacerbated submillimolar H2O2 concentration-dependent effects on the 

NAD(P)H/FAD+ with the main effects on levels of NAD(P)H. Although MitoQ induced 

a more rapid change to millimolar H2O2 effects, these were not significant beyond 3 

minutes treatment with H2O2 (Figure 5.3). MitoQ pre-treatment also abolished 

10mM H2O2-induced decline in NAD(P)H levels. dTPP exhibited non-specific effects 

different to those demonstrated with MitoQ treatment. These were a decrease in 
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FAD+ levels with 10µM and 30µM H2O2 and dTTP abolished the uncoupling effect of 

CCCP (Figure 5.4). 

 

Cell suspensions were loaded with the TMRM dye and treated with 

submillimolar 50µM and 500µM H2O2 for 10 minutes, per treatment, prior to the 

addition of CCCP. Both concentrations of H2O2 caused a progressive loss of ΔΨm 

exacerbated at the higher concentration of 500µM. A 4.1% decrease in TMRM 

fluorescence was induced with 50µM and a 12.4% decrease with 500µM compared 

to a final decrease with CCCP of 20.4% (Figure 5.5). Cytosolic Ca2+ was measured in 

cells loaded with Fluo-4 and the treated for 10 minutes with 50µM H2O2, 10 minutes 

with 500µM H2O2 and 5 minutes with uncoupler CCCP (10µM). Both 50µM and 

500µM H2O2 induced increases in cytosolic Ca2+ (Figure 5.6). 50µM H2O2 treatment 

predominantly induced a progressive increase in [Ca2+]c, although 7% percent of 

cells exhibited a singular Ca2+ spike. 500µM H2O2 induced a large progressive 

increase in [Ca2+]c. 50µM and 500µM H2O2 induced a concentration-dependent 

ΔΨm depolarisation mirrored to the [Ca2+]c elevation. NAD(P)H responses were 

more sensitive and the comparative decrease in NAD(P)H in response to H2O2 was 

more substantial in comparison to [Ca2+]c and ΔΨm changes (Figure 5.7). 
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Figure 5.1 

 

 
 

 

 

Figure 5.1. Concentration-dependent effects of H
2
O

2
 on the redox ratio. NAD(P)H and FAD

+
 

autofluorescence were measured simultaneously. (A) Treatment with  10µM, 30µM and 300µM 
H

2
O

2
. (B) Example traces of submillimolar H

2
O

2
 effects. Traces are averages of >34 cells from at least 

3 animals. Data have been normalised to the initial fluorescence reading t=0 expressed as F/F
0
. All 

data shown are mean ±SEM. 
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Figure 5.2 

 

Figure 5.2. Submillimolar and millimolar H
2
O

2
-induced changes on NAD(P)H and FAD

+

 
levels. 

NAD(P)H and FAD
+
 autofluorescence was measured simultaneously in acinar cells and treated for 10 

minutes with (A) 50µM and 500µM H
2
O

2
 or (B) 1mM and 10mM. Line graph presentation of results. 

NAD(P)H and FAD
+
 changes in fluorescence (F/F

0
). A - Traces are averages of at least 44 cells and 4 

animals. B – Control traces are averages of 34 cells and 2 mice and MitoQ pre-treated traces 
averages of 9 cells and 1 animal. Data has been normalised to the initial fluorescence reading t=0 
expressed as F/F

0
 . All data shown are mean ±SEM.  *** p<0.001, **** p<0.0001. 
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Figure 5.3 

 
 
 
Figure 5.3. MitoQ exacerbates the concentration-dependent effects of H

2
O

2
 on the redox ratio. 

NAD(P)H and FAD
+
 autofluorescence were measured simultaneously  after a 30 minute pre-

treatment with MitoQ (1µM) or NaHEPES. (A) Treatment with  10µM, 30µM and 300µM H
2
O

2
 (B) Bar 

chart presentation of NAD(P)H/FAD
+
 ratio decreases with each treatment with and without MitoQ 

pre-treatment, (C) Treatment with  1mM and 10mM H
2
O

2
. Traces are averages of >34 cells from at 

least 3 animals (A). Control traces are an average of 34 cells from 2 animals and MitoQ pre-treated 
traces averages of 9 cells and 1 animal (B). Data has been normalised to the initial fluorescence 
reading t=0 expressed as F/F

0
 . All data shown are mean ±SEM. * p<0.05, ** p<0.01. 
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Figure 5.4 

 
 
 
Figure 5.4. MitoQ and dTPP had differing effects on concentration-dependent H

2
O

2
 induced 

changes to NAD(P)H and FAD
+
. Pancreatic acinar cells were pre-treated with 1µM MitoQ, 1µM dTPP 

or NaHEPES (control). NAD(P)H and FAD
+
 autofluorescence were measured simultaneously (A) 

NAD(P)H with each treatment (B) FAD
+
 with MitoQ (1µM) pre-treatment, (C) FAD

+
 with dTPP (1µM) 

pre-treatment. Traces are averages of >34 cells from at least 3 animals. Data has been normalised to 
the initial fluorescence reading t=0 expressed as F/F

0
 . All data shown are mean ±SEM. 
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Figure 5.5 

 
Figure 5.5. Submillimolar H

2
O

2
-induced loss of ΔΨm. Pancreatic acinar cell suspensions were 

treated for 10 minutes with 50µM H
2
O

2
, 10 minutes with 500µM H

2
O

2
 and 5 minutes with uncoupler 

CCCP (10µM). (A) Line graph presentation of results. (B) Bar chart presentation showing the 
percentage decrease in TMRM fluorescence during each corresponding treatment. Traces are 
averages of at least 56 cells and >4 animals. Data has been normalised to the initial fluorescence 
reading t=0 expressed as F/F

0
 . All data shown are mean ±SEM and both treatments reach 

significance * p < 0.5, **** p < 0.0001. 
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Figure 5.6 

 
Figure 5.6. Concentration-dependent elevation of [Ca

2+
]

c
 induced by submillimolar H

2
O

2
. Cytosolic 

Ca
2+

 was measured in cells loaded with Fluo-4. Pancreatic acinar cell suspensions were treated for 10 
minutes with 50µM H

2
O

2
, 10 minutes with 500µM H

2
O

2
 and 5 minutes with uncoupler CCCP (10µM). 

(A) Line graph presentation of results. (B) Example traces with 50µM H
2
O

2
 treatment. (C) Bar chart 

presentation showing the percentage change in [Ca
2+

]
c 
during each treatment. Traces are averages of 

at least 31 cells and >4 animals. Data has been normalised to the initial fluorescence reading t=0 
expressed as F/F

0
 . All data shown are mean ±SEM. * = p < 0.05, *** = p < 0.001. 
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Figure 5.7 

 
Figure 5.7. Comparative concentration-dependent effects of submillimolar H

2
O

2
 on ΔΨm, [Ca

2+
]

c
 

and NAD(P)H. Measurements were taken as described in the previous two figures. (A) Example 
loading of Fluo-4, TMRM and NAD(P)H autofluorescence, (B) TMRM, Fluo-4, NAD(P)H results in 
response to 50µM and 500µM H

2
O

2
. Traces are averages of at least 31 cells and >4 animals. Data has 

been normalised to the initial fluorescence reading t=0 expressed as F/F
0
 . All data shown are mean 

±SEM.   
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The Cellular Effects of H2O2 on CypD KO Mouse 

PACs 

 

Ppif-/- PACs were isolated and loaded with TMRM to measure mitochondrial 

membrane potential.  1mM H2O2 was perfused via the gravity perfusion system for 

a 10 minutes period prior to addition of uncoupler CCCP. The ΔΨm depolarisation 

was progressive in both control C57BL/6 and Ppif-/- cells and no significant 

differences were seen in the percentage TMRM fluorescence change in Ppif-/- cells 

(Figure 5.8). NAD(P)H autofluorescence was measured in cells treated for 10 

minutes with 1mM H2O2 followed by 5 minutes with uncoupler CCCP (10µM). The 

effects of 1mM H2O2 were exacerbated in Ppif-/- cells (Figure 5.9). CM-H2DCFDA 

loaded cells treated for 10 minutes with 1mM H2O2 demonstrated elevated ROS 

increases in Ppif-/- cells compared to C57BL/6 control cells (Figure 5.10). 
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Figure 5.8 

 
Figure 5.8. Millimolar H

2
O

2
 effects on ΔΨm are unchanged in Ppif-/- cells. Mitochondrial membrane 

potential was measured in cells loaded with TMRM dye and treated with 1mM H
2
O

2
 and uncoupler 

CCCP (10µM). Traces are averages of at least 67 cells and >4 animals. Data has been normalised to 

the initial fluorescence reading t=0 expressed as F/F
0
 . All data shown are mean ±SEM. 
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Figure 5.9 

 
Figure 5.9. Millimolar H

2
O

2
 effects on NAD(P)H are exacerbated in Ppif-/- cells. NAD(P)H 

autofluorescence was measured in cells treated for 10 minutes with 1mM H
2
O

2
 followed by 5 

minutes with uncoupler CCCP (10µM). (A) Line graph presentation of results. (B) Black 6 control 
results, (C) Ppif-/- results. Traces are averages of at least 84 cells and >4 animals. Data has been 
normalised to the initial fluorescence reading t=0 expressed as F/F

0
 . All data shown are mean ±SEM. 

** p<0.01, **** p<0.0001. 
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Figure 5.10 

 
Figure 5.10. Millimolar H

2
O

2
-induced ROS increases are elevated in Ppif-/- cells . CM-H

2
DCFDA 

loaded cells treated for 10 minutes with 1mM H
2
O

2
. (A) Line graph presentation of results. (B) Bar 

chart results of ROS increases with each treatment. Traces are averages of at least 31 cells and 3 

animals. Data has been normalised to the initial fluorescence reading t=0 expressed as F/F
0
 . All data 

shown are mean ±SEM. ** p<0.01. 
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The Effects of H2O2 on Cellular ROS Levels 

 

Cells were loaded with CM-H2DCFDA for 30 minutes and treated with 1µM, 

5µM, 500µM H2O2. Fluorescence changes were concentration-dependent and 

500µM H2O2-induced increases in ROS levels were significantly different from the 

NaHEPES control at 40 minutes onwards. 1µM and 5µM H2O2-induced increases in 

ROS levels were significant after the 80 minute period (Figure 5.11).  

 

Cells were pre-treated with MitoQ (1µM) either for 10 minutes or 30 

minutes. MitoQ inhibited 1mM H2O2-induced ROS increases when pre-treated for 

30 minutes but not 10 minutes, an inhibition not seen with dTPP and TPP+
 (1µM) 

control compound treatment (Figure 5.12). Cells pre-treated with MitoQ (0.2, 0.5, 

1µM) for a 10 minute period did not inhibit 500µM H2O2-induced ROS increases 

(Figure 5.13A). A 30 minute pre-treatment with MitoQ (0.2, 0.5, 1µM) was 

concentration-dependent and only inhibited with 0.2µM and 1µM H2O2 not 0.1µM 

MitoQ pre-treatment (Figure 5.13B-D). 

 

After a 40 minute treatment with 10nM CCK, 100µM POAEE and 500µM 

H2O2 there were significant increases in ROS levels in comparison to the NaHEPES 

control. Later time points of 80 minutes and 120 minutes demonstrated ROS 

increases only significant with POAEE and 500µM H2O2 treatment only (Figure 5.14).  
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Figure 5.11 

 

 

 

 

 

 

 

 

 
 

Figure 5.11. Concentration-dependent submillimolar H
2
O

2
-induced ROS increases. CM-H

2
DCFDA 

loaded cells were treated with increasing concentrations of H
2
O

2 
 (1µM, 5µM, 500µM). Traces are 

averages of at least 3 animals. Data has been normalised to the initial fluorescence reading t=0 

expressed as F/F
0
 . All data shown are mean ±SEM. 
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Figure 5.12 

 
Figure 5.12. Pre-treatment dependent MitoQ inhibition of millimolar H

2
O

2
-induced ROS increases. 

CM-H
2
DCFDA loaded cells were pre-treated with 1µM MitoQ (and dTPP control) for either 10 

minutes or 30 minutes prior to the addition of 1mM H
2
O

2
. (A) 10 minutes pre-treatment with 1µM 

MitoQ (and dTPP control). (B) 30 minutes pre-treatment with 1µM MitoQ (and dTPP control). Traces 
are averages of at least 3 animals. Data has been normalised to the initial fluorescence reading t=0 
expressed as F/F

0
 . All data shown are mean ±SEM. * p<0.05. 
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Figure 5.13 

 
Figure 5.13. Pre-treatment and concentration-dependent MitoQ inhibition of submillimolar H

2
O

2
-

induced ROS increases. CM-H
2
DCFDA loaded cells were pre-treated with either 0.1µM, 0.2µM or 

1µM MitoQ for either 10minutes or 30 minutes prior to the addition of 500µM H
2
O

2
 (A) 10 minutes 

pre-treatment with 0.1µM, 0.2µM or 1µM MitoQ. (B) 30 minutes pre-treatment with 0.1µM MitoQ, 

dTPP or TPP
+
, (C) 30 minutes pre-treatment with 0.2µM MitoQ, dTPP or TPP

+
, (D) 30 minutes pre-

treatment with 1µM MitoQ, dTPP or TPP
+
. Traces are averages of at least 3 animals. Data has been 

normalised to the initial fluorescence reading t=0 expressed as F/F
0
 . All data shown are mean ±SEM. 

* p<0.05, ** p<0.01, *** p<0.001. 
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Figure 5.14 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.14. H
2
O

2
, POAEE and CCK induced ROS increases. 500µM H

2
O

2
, POAEE and 10nM CCK 

induced ROS increases measured by CM-H
2
DCFDA. Traces are averages of at least 3 animals. Data 

has been normalised to the initial fluorescence reading t=0 expressed as F/F
0
. All data shown are 

mean ±SEM.  
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The Effect of H2O2 on Pancreatic Acinar Cell 

Apoptosis and Necrosis 

 

Acinar cells were loaded with a Caspase-3/7 Green reagent as an indicator of 

cellular apoptosis and levels of fluorescence monitored.  Treatment (1µM, 5µM and 

10µM H2O2) or NaHEPES (control) was administered for a 13 hour period and 

induced concentration-dependent increases in apoptosis. Significant changes were 

detected with 5µM and 10µM H2O2 at 7 hours and additionally with 1µM at 13 hour 

(Figure 5.15). In PI loaded cells 1µM, 5µM and 10µM H2O2 induced cellular necrosis 

also in a concentration-dependent manner. Significance changes were detected at 7 

hours with 10µM and at 13 hours with 5µM and 10µM (Figure 5.16).  

 

500µM and 1mM H2O2 predominantly induced a necrotic method of cell 

death in a concentration-dependent manner. Caspase-3/7 Green reagent loaded 

cells also showed a rapid increase in cellular apoptosis induced by 500µM and 1mM 

H2O2 within a 3 hour period in comparison to the NaHEPES control (Figure 5.17). The 

majority of cellular necrosis was also elicited over an initial 3 hour period (Figure 

5.18). The proportion of cellular necrosis and apoptosis is dependent on the 

concentration. The lower concentrations of 1µM, 5µM and 10µM H2O2 principally 

induced an apoptotic mechanism of cell death (Figure 5.19) whereas higher 

concentrations of 500µM and 1mM H2O2 predominantly induced necrotic cell death 

(Figure 5.20). The comparison is clearly highlighted in figure 5.21. 
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Figure 5.15 

 
Figure 5.15. Submillimolar H

2
O

2
-induced apoptosis.  CellEvent® Caspase-3/7 Green reagent was 

loaded into isolated pancreatic acinar cells as an indicator of cellular apoptosis.  Treatment (1µM, 
5µM and 10µM H

2
O

2
) or NaHEPES (control)  was administered. The data has been normalised to the 

initial fluorescence reading t=0 expressed as F/F
0
.
 
(A) Bar chart representative of time points. (B) Line 

graph presentation. Traces are averages of 9 animals. All data shown are mean ±SEM. * p<0.05. 
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Figure 5.16 

 
 

Figure 5.16. Submillimolar H
2
O

2
-induced necrosis.  PI loaded cells were treated 1µM, 5µM and 

10µM H
2
O

2
. The data has been normalised to the initial fluorescence reading t=0 expressed as F/F

0
.
 

(A) Bar chart representative of time points. (B) Line graph presentation. Traces are averages of 9 
animals. All data shown are mean ±SEM. *** p<0.001, **** p<0.0001. 
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Figure 5.17 

 
Figure 5.17. Submillimolar and millimolar H

2
O

2
-induced apoptosis.  CellEvent® Caspase-3/7 Green 

reagent was loaded into isolated pancreatic acinar cells as an indicator of cellular apoptosis.  
Treatment (500µM, 1mM H

2
O

2 
) or NaHEPES (control)  was administered  to each designated well in 

a 96 well plate prior to imaging over a 13 hour period. The data has been normalised to the initial 
fluorescence reading t=0 expressed as F/F

0. 
(A) Bar chart representative of time points (B) Line graph 

presentation. Traces are averages of 9 animals. All data shown are mean ±SEM. * p<0.05, *** 
p<0.001, **** p<0.0001.  
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Figure 5.18 

 
Figure 5.18. Submillimolar and millimolar H

2
O

2
-induced necrosis.  PI loaded cells were treated with 

either 500µM or 1mM H
2
O

2
. The data has been normalised to the initial fluorescence reading t=0 

expressed as F/F
0
.
 
(A) Bar chart representative of time points. (B) Line graph presentation. Traces are 

averages of 9 animals. All data shown are mean ±SEM. ** p<0.01, *** p<0.001, **** p<0.0001. 
 



Chapter 5: The Effects of H2O2 on Pancreatic Acinar Cells 

207 | P a g e  
 

Figure 5.19 

 

 
 
 
Figure 5.19. Submillimolar and millimolar concentration-dependent induction of apoptosis. 
CellEvent® Caspase-3/7 Green reagent loaded cells were treated as previously described. The data 
has been normalised to the initial fluorescence reading t=0 expressed as F/F

0
.
 
(A) The effects of 1µM, 

5µM, 10µM, 500µM and 1mM H
2
O

2 
on apoptosis presented as a line graph and bar chart from the 

beginning to end of readings obtained to show maximum cell death with each treatment. (B) 0-3 h 
time points (comparison to maximal cellular apoptosis reached with 500µM and 1mM H

2
O

2
). Traces 

are averages of 9 animals. All data shown are mean ±SEM. * p<0.05, *** p<0.001, **** p<0.0001.  
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Figure 5.20 

 
 

Figure 5.20. Submillimolar and millimolar concentration-dependent induction of necrosis. PI 
loaded cells were treated as previously described. The data has been normalised to the initial 
fluorescence reading t=0 expressed as F/F

0
.
 
(A) The effects of 1µM, 5µM, 10µM, 500µM and 1mM 

H
2
O

2 
on necrosis presented as a line graph and bar chart from the beginning to end of readings 

obtained to show maximum cell death with each treatment. (B) 0-3 h time points (comparison of 
maximal cellular necrosis reached with 500µM and 1mM H

2
O

2
). Traces are averages of 9 animals. All 

data shown are mean ±SEM. ** p<0.01, *** p<0.001, **** p<0.0001. 
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Figure 5.21 

 
 

Figure 5.21. Comparative 10µM and 1mM H
2
O

2
-induced apoptosis and necrosis. (A) Comparative 

apoptosis and necrosis induced by 10µM H
2
O

2
 and 1mM H

2
O

2
. (B) Differences in levels of apoptosis 

and necrosis induced by 10µM H
2
O

2
 and 1mM H

2
O

2
. Line graph presentation. Traces are averages of 

9 animals. The data has been normalised to the initial fluorescence reading t=0 expressed as F/F
0. 

All 

data shown are mean ±SEM. * p<0.05. 
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In Caspase-3/7 Green reagent loaded cells 0.2µM MitoQ pre-treatment 

exacerbated 500µM H2O2-induced pancreatic acinar cell apoptosis at the 1 hour 

time point and 1µM dTPP at all time points displayed. TPP+
 (1µM) worsened levels 

of apoptosis at the final 2 hour time point (Figure 5.22). MitoQ, dTPP and TPP+ had 

no effect on 1mM H2O2-induced apoptosis in Caspase-3/7 Green reagent loaded 

cells (Figure 5.23). Cells were loaded with PI and pre-treated for 30 minutes with 

0.2µM and 1µM MitoQ, dTPP and TPP+. All TPP derivatives exacerbated 500µM 

(Figure 5.24) and not 1mM H2O2-induced necrosis (Figure 5.25).  

 

Treatment with 1µM, 5µM and 10µM H2O2 and 100µM POAEE induced 

apoptosis detectable in Caspase-3/7 Green reagent loaded cells. At the earlier time 

point of 2 h only 100µM POAEE induced significant increases in apoptosis (Figure 

5.26A). All treatments except 1µM H2O2 induced cellular necrosis in PI loaded cells. 

At 2 hours 100µM POAEE also induced significant increases in necrosis and at 7 

hours with 10µM H2O2 treatment (Figure 5.26B). 
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Figure 5.22 

 
Figure 5.22. MitoQ, dTPP and TPP

+
 exacerbated submillimolar H

2
O

2
-induced apoptosis. CellEvent® 

Caspase-3/7 Green reagent loaded cells were treated as previously described and pre-treated for 30 

minutes with 1µM MitoQ/dTPP/TPP
+
. The data has been normalised to the initial fluorescence 

reading t=0 expressed as F/F
0
.
 
(A) The effects of 1µM MitoQ (and dTPP/TPP

+
) on 500µM H

2
O

2 

induced apoptosis presented as a line graph and bar chart. (B) The effects of 1µM MitoQ (and 

dTPP/TPP
+
) on 500µM H

2
O

2 
induced apoptosis presented as a line graph and bar chart. Traces are 

averages of 9 animals. All data shown are mean ±SEM. * p<0.05. 
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Figure 5.23 

 
Figure 5.23. MitoQ had no effect on millimolar H

2
O

2
-induced apoptosis. CellEvent® Caspase-3/7 

Green reagent loaded cells were treated as previously described and pre-treated for 30 minutes with 

1µM MitoQ/dTPP/TPP
+
. The data has been normalised to the initial fluorescence reading t=0 

expressed as F/F
0
.
 
(A) The effects of 1µM MitoQ (and dTPP/TPP

+
) on 1mM H

2
O

2
-induced apoptosis 

presented as a line graph and bar chart (B) The effects of 1µM MitoQ (and dTPP/TPP
+
) on 1mM H

2
O

2
-

induced apoptosis presented as a line graph and bar chart. Traces are averages of 9 animals. All data 
shown are mean ±SEM. 
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Figure 5.24 

 

 
 

Figure 5.24. MitoQ, dTPP and TPP
+
 exacerbated submillimolar H

2
O

2
-induced necrosis. PI loaded 

cells were treated as previously described and pre-treated for 30 minutes with 0.2µM and 1µM 
MitoQ. The data has been normalised to the initial fluorescence reading t=0 expressed as F/F

0
. (A) 

0.2µM MitoQ pre-treatment effects presented as a line graph and bar chart (B) 1µM MitoQ pre-
treatment effects on 500µM H

2
O

2 
induced necrosis presented as a line graph and bar chart. Traces 

are averages of 3 animals. All data shown are mean ±SEM. * p<0.05, ** p<0.01, *** p<0.001. 
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Figure 5.25 

 
 

Figure 5.25. MitoQ, dTPP and TPP
+
 had no effect on millimolar H

2
O

2
-induced necrosis. PI loaded 

cells were treated as previously described and pre-treated for 30 minutes with 0.2µM or 1µM 

MitoQ/dTPP/TPP
+
. The data has been normalised to the initial fluorescence reading t=0 expressed as 

F/F
0
.
 
(A) The effects of 0.2µM MitoQ (and dTPP/TPP

+
) on 1mM H

2
O

2
-induced necrosis presented as a 

line graph and bar chart. (B) The effects of 1µM MitoQ (and dTPP/TPP
+
) on 1mM H

2
O

2
-induced 

necrosis presented as a line graph and bar chart. Traces are averages of 9 animals. All data shown 
are mean ±SEM. 
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Figure 5.26 

 
Figure 5.26. H

2
O

2
 and POAEE induced apoptosis and necrosis.  (A) Comparison of 1µM, 5µM, 10µM 

H
2
O

2
, POAEE and 850mM ethanol on apoptosis, (B) Comparison of 1µM, 5µM, 10µM H

2
O

2
, POAEE 

and 850mM ethanol on necrosis. Traces are averages of at least 3 animals. Data has been normalised 
to the initial fluorescence reading t=0 expressed as F/F

0
 . All data shown are mean ±SEM. * p<0.05, 

*** p<0.001, **** p<0.0001. 
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Discussion 

 

ROS 

Reactive oxygen species are generally thought as detrimental to cells and in 

disease pathology. However, it is the balance of oxidants and antioxidant status, 

which is critical not only to cell fate but also to the outcome of a disease. H2O2 is 

very much a Jekyll and Hyde signalling molecule. Low concentrations of the 

micromolar and nanomolar range play a role in signal transduction pathways (Rhee 

1999; Stone et al. 2006; Millonig et al. 2012; Henriksen 2013), whereas high levels 

induce cellular oxidative stress, Ca2+ overload, mitochondrial membrane 

depolarisation and a depletion of ATP which would be typically followed by necrosis 

(Gonzalez et al. 2005; Granados et al. 2005; Bruce et al. 2007; Baggaley et al. 2008; 

Mankad et al. 2012). It is important to assess and understand this delicate balance 

in order to comprehend the consequences of antioxidant therapy and enable 

improved ROS mediation in oxidative stress related diseases. 

 

H2O2 

The action of H2O2 as an oxidant is generally limited to susceptible cysteine 

thiols and Fe-S-containing proteins. However, H2O2 can react with reduced iron and 

copper to produce OH•- and downstream product nitric acid and peroxynitrite (Day 
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2011). Cellular antioxidants act to prevent elevated levels of H2O2 and downstream 

damaging effects by removing H2O2 and converting it to water and oxygen. This 

oxidant-antioxidant balance fails when oxidative stress elevates to levels the 

antioxidant status cannot combat and/or diminished antioxidant status. Bacteria 

have developed an adaptive mechanism to peroxide stress, regulating levels of Fe2+ 

to restore the equilibrium (Faulkner et al. 2011). The balance between the two 

factors is important in the initiation of cell-protective responses. 

 

The mitochondria are the main source of ROS in PACs. H2O2 is produced in 

the cell via the conversion of O2
•- either spontaneously or enzymatically by 

superoxide dismutases (SOD) a family of metaloenzymes (Futatsugi et al. 2005). 

H2O2 can induce apoptosis via DNA fragmentation dependent on bcl-2-like protein 4 

(BAX)/BCL2-Antagonist/Killer (Bak) proteins, activation of caspase-3 and 

cytochrome c release (Satoh et al. 1997; Cook et al. 1999; Ryter et al. 2007). H2O2 

can be further converted to hypochlorous acid by myeloperoxidase, a pancreatitis 

severity marker (Bhatia et al. 2005; Winterbourn et al. 2006). Elevated ROS 

production induces the activation and proliferation of immune cells particularly 

neutrophils, macrophages and monocytes which also produce large amounts of ROS 

via the NOX family, detected in patients and experimental AP models (Tsuji et al. 

1994; Irani et al. 1997; Gukovskaya et al. 2002; Bedard et al. 2007).  

 

H2O2 has demonstrated diverse concentration-dependent cellular effects 

with pathophysiological implications. H2O2 production is essential for normal 

cellular growth factor signalling and has been established as an important regulator 
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of cellular events in mammalian skeletal muscle. Micromolar concentrations of 30-

90µM, engaged the insulin receptor substrate 1 (IRS-1)/PI3K/Protein kinase B (Akt)-

dependent insulin signalling pathway and activated MAPK and p38 MAPK 

(Henriksen 2013). In PACs H2O2 (0.1-100µM) induced concentration-dependent 

increases in ROS production detected by CM-H2DCFDA. Antioxidant cinnamtannin B-

1 inhibited the H2O2-induced ROS increases and diminished both H2O2 and CCK 

induced increases in [Ca2+]c demonstrating a role for H2O2 in Ca2+ mobilisation 

(Gonzalez et al. 2012). Heterogeneous Ca2+ responses have been demonstrated at 

<100µM H2O2 and inhibition of the PMCA at >50µM H2O2 leading to progressive 

increases in [Ca2+]c which lead to cell necrosis (Granados et al. 2006; Baggaley et al. 

2008). One millimolar H2O2 elicited both ER and mitochondrial Ca2+ release into the 

cytosol (Pariente et al. 2001). 

 

In the present study we showed progressive increases in cytosolic Ca2+, loss 

of redox potential and mitochondrial membrane depolarisation at 50-500µM. These 

results are complimentary to the published literature (Bruce et al. 2007; Baggaley et 

al. 2008). While micromolar concentrations of H2O2 (1µM) induced significant 

increases in cellular ROS over a 120 minute time period alongside an induction of 

apoptosis, 1µM H2O2 did not induce necrosis in our experiments.  These results are 

consistent with a role of ROS in the induction of apoptosis in this cell type. 

Preliminary results also indicated recovery of the redox ratio with 1µM H2O2. 

Further experiments are warranted and the application of <1µM H2O2 could be 

useful to investigate specific H2O2 signalling pathways such as stimulation of growth 

factors in PACs in order to shed light on the specific role of ROS in the pancreas 
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(Stone et al. 2006). Application of millimolar H2O2 highlighted the extensive effects 

of overwhelming oxidant status on levels of NAD(P)H and FAD+
 critical to 

mitochondrial energy metabolism.  

 

ROS and Cellular Redox Status 

NAD(P)H/FAD+ can be used as an indicator of mitochondrial redox ratio 

(Chance et al. 1979; Hajnóczky et al. 1995). For the first time in PACs submillimolar 

and millimolar H2O2 treatment are shown to induce mirrored concentration-

dependent decreases in NAD(P)H and increases in FAD+
 levels. In isolated nerve 

terminals, oxidative stress induced by 50 and 100µM H2O2 also decreased the 

NAD(P)H fluorescence signal proportional to the concentration of H2O2 

(Chinopoulos et al. 1999). H2O2 inhibition of the Krebs cycle enzymes was also 

shown to be concentration-dependent in isolated nerve terminals, inhibiting 

aconitase at 50µM and 100µM concentrations but α-KGDH only at the higher 

100µM dose. Inhibition of aconitase by 50µM H2O2 had no effect on NADH(P)H 

levels, whereas inhibition of α-KGDH with 100µM H2O2 induced parallel decreases in 

levels of NAD(P)H (Tretter et al. 2000). The reason for this was that when α-

ketoglutarate is available as a substrate, aconitase activity is not required for 

NAD(P)H production. Comparative TCA cycle inhibition by H2O2 has not yet been 

investigated in PACs yet. In intact cardiac mitochondria, H2O2 (12.5µM and 100µM) 

reduced NAD(P)H levels and oxygen consumption, of which NAD(P)H recovered to 

baseline levels with 12µM H2O2. These results were mirrored by reversible 

inhibition of succinate dehydrogenase and α-ketoglutarate dehydrogenase activity 
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and irreversible aconitase activity (Nulton-Persson et al. 2001). High levels of H2O2 

were applied to rat hippocampus isolated neurons (200µM - 5mM) directly oxidising 

cellular NADH and FADH2. In agreement with our results in PACs, 200µM-5mM  

H2O2 induced ΔΨm depolarisation (Gerich et al. 2009). Millimolar H2O2 treatment 

has also been shown to cause increases in FAD+ in PACs, as confirmed by our results 

(Gonzalez et al. 2005).  

 

MitoQ and dTPP (1µM) elicited a reduction of NAD(P)H levels in our 

evaluations. Here, H2O2 treatment exacerbated the effects of MitoQ (1µM) on the 

NAD(P)H/FAD+ ratio at concentrations as low as 10µM. The effects of dTPP on 

NAD(P)H were also worsened by oxidant treatment. Levels of FAD+ decreased with 

10µM and 30µM H2O2 in combination with dTPP, not demonstrating a detectable 

increase until 300µM. The effect of the uncoupling agent CCCP on FAD+ was also 

abolished. H2O2 effects on NAD(P)H/FAD+ autofluorescence levels are in summary 

progressive and concentration-dependent. The effects of dTPP were non-specific 

and the mechanism unknown. While MitoQ has demonstrated effective protective 

capabilities against H2O2-induced ROS increases, pre-treatment proved unable to 

prevent oxidant induced changes to the mitochondrial redox ratio and in fact 

exacerbated the effects. 

 

 

 



Chapter 5: The Effects of H2O2 on Pancreatic Acinar Cells 

221 | P a g e  
 

MPTP 

MPTP opening is caused by pathological Ca2+ overload and leads to the non-

specific permeabilisation of both inner and outer mitochondrial membranes to 

solutes of <1.5kDa. The resulting effects are depolarisation of the mitochondrial 

membrane, diminished [Ca2+]m and depletion of ATP (Mukherjee et al. 2015). ATP is 

crucial for induction of cellular apoptosis through caspase activation and therefore 

ATP depletion caused by opening of the MPTP leads to necrosis (Leist et al. 1997; 

Nakagawa et al. 2005; Mukherjee et al. 2015). Since evidence suggests that 

apoptosis is a protective mechanism in AP and necrosis associated with a more 

severe pathology, inhibition of MPTP opening has been highlighted as a potential 

therapeutic target (Kaiser et al. 1995; Gukovskaya et al. 1996; Mareninova et al. 

2006; Sung et al. 2009). Prevention of MPTP opening could prevent mitochondrial 

membrane depolarisation and ATP depletion and has been demonstrated as 

protective in experimental AP models (Crompton et al. 1987; Pastorino et al. 1999; 

Kinnally et al. 2011; Mukherjee et al. 2015). As described in the introduction 

chapter, the MPTP is thought to be formed between adjacent F0 sectors of F0F1-ATP 

synthase complex dimers (Strauss et al. 2008; Bernardi 2013; Giorgio et al. 2013) 

and in response to Ca2+ overload matrix CypD regulates MPTP opening by binding to 

the F0F1-ATP synthase lateral stalk, an action requiring Pi (Bernardi 2013; Giorgio et 

al. 2013). Elevated levels of ROS have been suggested to further sensitise the MPTP 

to Ca2+ through cross-linking two thiol groups of adenine nucleotide translocase 

(ANT) near the adenine nucleotide binding site, antagonising adenine nucleotide 

binding to ANT (McStay et al. 2002). CypD is a non-structural pore component and 
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therefore a promising pharmacological target for AP drug development. Inhibition 

of MPTP formation in CypD KO mice and with CypD inhibitor CsA, prevented ΔΨm 

depolarisation, ATP depletion and necrosis induced by Ca2+ overload and elevated 

ROS levels (Baines et al. 2005; Shalbueva et al. 2013). Antioxidant treatment has 

also demonstrated the ability to reduce MPTP opening and cell death in kidney 

injury (Mitchell et al. 2011), cardiac ischemia/reperfusion injury (Hansson et al. 

2015) and the isolated heart (Davidson et al. 2012). More specifically treatment 

with antioxidant DecylQ reduced MPTP opening which prevented dissipation of 

ΔΨm (Fontaine et al. 1998). More recent therapeutic approaches continue to 

demonstrate promise through the specific inhibition of CypD or MPTP opening. 

 

Our results demonstrate that ΔΨm depolarisation induced by high levels of 

oxidative stress (1mM H2O2) is not reduced in CypD KO mice, suggesting that ROS 

do not play a pivotal role in PAC MPTP formation. 1mM H2O2-induced NAD(P)H 

depletion was very slightly worsened and increases in cellular ROS levels were 

elevated. H2O2 (1mM)-induced effects on NAD(P)H levels and ΔΨm are very rapid 

and have a variety of non-specific damaging effects on cellular components and 

membranes. Therefore it is also possible that any protection provided by inhibition 

of MPTP opening is not visible when applying high concentrations of H2O2. To date, 

little is known of any possible concentration-dependent effects of H2O2 on CypD 

MPTP opening. These experiments would require a more detailed assessment at 

lower concentrations of H2O2. More recent studies in mouse and human PACs 

demonstrate that CypD inhibition with CsA and BKA had protective effects. Both 

CsA and BKA treatment protected against mitochondrial impairment and necrosis 
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caused by TLCS and CCK-induced rises in intracellular Ca2+. (Mukherjee et al. 2015). 

TLCS-induced rises of ROS were not different from the wild-type control and 

therefore ruled out as a protective mechanism through induction of apoptosis. 

CypD inhibition with non-immunosuppressive D-MeAla3-EtVal4-cyclosporine 

(Alisporivir, DEB025) (Zorov et al. 2009) and inhibition of MPTP opening with 3,5-

Seco-4-nor-cholestan-5-one oxime-3-ol (TRO40303) (Schaller et al. 2010) also 

demonstrated protective effects of the same nature. In comparison to liver 

mitochondria, PAC mitochondria possess a heightened sensitivity to Ca2+-induced 

depolarisation through MPTP opening (Odinokova et al. 2009; Gukovskaya et al. 

2011). The specific mechanisms for MPTP opening in PACs could be also different to 

that seen in other cell types. A recent study in human embryonic kidney 293 (HEK 

293T) cells has proposed that CypD is a regulator of mitochondrial gene expression 

(Radhakrishnan et al. 2015). The authors demonstrated CypD interaction with 

transcription factor B2, mitochondrial (TFB2M). Silencing of CypD lead to a down-

regulation of NADH dehydrogenase 1 (ND1), cytochrome oxidase 1 (COX1) and ATP 

synthase subunit 6 (ATP6). Mitochondrial membrane potential was also reduced, 

alongside diminished oxygen consumption and results suggesting down regulation 

of electron transport complexes. Further work could be carried out to assess these 

effects of CypD KO in PACs. 
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Apoptosis and Necrosis 

 

There is now strong evidence for the concentration-dependent promotion of 

apoptosis and necrosis by ROS in PACs. Here, low micromolar concentrations (1-

10µM) of H2O2 favour induction of apoptosis whilst high submillimolar and 

millimolar concentrations (500µM-1mM) favour necrosis. The induction of both 

modes of cell death occurred rapidly with high submillimolar and millimolar 

concentrations of H2O2. Low micromolar concentrations promoted a gradual 

induction of cell death with a delayed onset. Further studies would need to be 

carried out to compare the number of cells undergoing apoptosis versus necrosis in 

comparison to the total cell count by applying the confocal assessment technique 

employed by Booth et al. (2011). In comparison to the effects in other cell types, 

Hampton et al. (1997) demonstrated that 50µM-500µM H2O2 had two distinct 

effects in Jurkat T-lymphocytes. Caspases were activated 3 hours post treatment 

with lower concentrations of H2O2 such as 50µM and led to apoptosis. In 

comparison, treatment with high concentrations of H2O2 such as 500µM did not 

lead to the activation of caspases or they remained inactive and necrosis occurred 

(Hampton et al. 1997). Building on this study, Saito et al. (2006) demonstrated that 

while activation of caspases-3 and -9 was observed with 50µM H2O2 treatment and 

not 500µM H2O2, release of cytochrome c from the mitochondria occurred under 

both treatment concentrations. Furthermore, in concurrence with these results, 

depletion of ATP, essential for apoptosome formation, occurred only with the 

higher concentration of 500µM H2O2, resulting in necrosis. A study in cultured 

mammalian fibroblasts treated with low micromolar concentrations of H2O2 (0.1 to 
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0.5µmol/107 cells caused mitogenic responses. Raising the concentration to 15 to 

30µmol/107 cells led to apoptosis, and necrosis was caused by concentrations of 

over 150 to 300µmol/107 cells (Davies 1999). 

 

 

MitoQ has demonstrated effectiveness at inhibiting H2O2-induced ROS 

increases and cell death in alternate cell types (Kelso et al. 2001; Chen et al. 2004; 

Dhanasekaran et al. 2004; James et al. 2005). However, MitoQ did not prevent 

H2O2-induced cell death in PACs. We have demonstrated that continuous perfusion 

for 30 minutes with 1mM H2O2 induced a large increase in ROS detectable by CM-

H2DCFDA and effectively inhibited by 1µM MitoQ (Figure 3.3). These results are 

confirmed in our plate reader experiments over a longer time period of 120 minutes 

in a concentration and pre-treatment dependent manner (Figures 5.11, 5.12 and 

5.13). However, MitoQ proved ineffective at protecting against H2O2-induced 

cellular necrosis and apoptosis in PACs.  

 

 

The induction of oxidative stress is also dependent on the stimulus. Toxic 

concentrations of CCK and EtOH induced a short term elevation of ROS levels in 

PACs, whereas POAEE and high concentrations of H2O2 induced progressive long 

term increases in ROS. H2O2 at 500µM and TLCS treatment predominantly induced 

necrosis. On the other hand, POAEE and CCK induced both apoptosis and necrosis, 

highlighting the different extent of effects between these treatments. In contrast to 

POAEE however, CCK-induced effects on ROS elevations were relatively short lasting 
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(Figure 5.14). ROS production induced by CCK (Granados et al. 2004), TLCS (Booth et 

al. 2011), EtOH (González et al. 2006) and POAEE (Criddle et al. 2007) has been 

demonstrated in PACs, although to date this study provides the first comparative 

assessment.  

 

 

In the clinical setting, AP therapy cannot be commenced prophylactically; 

therefore therapeutic methods are constrained to inhibition of particular 

pathophysiological steps. While antioxidants have demonstrated some beneficial 

effects with prophylactic application in experimental AP, there was a failure to 

improve experimental pancreatitis severity when therapy was applied post 

onslaught (Demols et al. 2000). Our experiments support the lack of protection 

offered by antioxidants unless administered prophylactically, as MitoQ was unable 

to effectively inhibit high submillimolar and millimolar induced ROS increases 

without adequate pre-treatment. 

 

 

 

 

 

 

 

 



Chapter 5: The Effects of H2O2 on Pancreatic Acinar Cells 

227 | P a g e  
 

Conclusions 

In summary, this section evaluated the novel comparative effects of low 

micromolar to millimolar H2O2 on NAD(P)H/FAD+
 redox ratio, cytosolic Ca2+, 

membrane potential, ROS levels and cell death in PACs. ROS have long been held in 

a negative light and thought of as deleterious detrimental by-products of 

mitochondrial energy production (Finkel 1998). There is now ample evidence 

demonstrating the crucial role of ROS in normal cellular processes such as signal 

transduction and induction of apoptosis, which can be protective in the 

development of AP (Booth et al. 2011). These effects are concentration-dependent 

due to the delicate oxidant/antioxidant balance in the cell and thus not only 

excessive oxidant levels but excessive antioxidant levels via therapeutic intervention 

have the potential to interfere pathologically in a detrimental manner. MitoQ 

provided a lack of protection against H2O2-induced effects and reduction of H2O2-

induced ROS increases was not only concentration-dependent but also dependent 

on the time period of MitoQ pre-treatment. 
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The Effects of Mitoquinone on Murine 

Pancreatic Acinar Cells 

 

The effects of mitochondria-targeted antioxidant MitoQ on PACs were 

assessed in comparison to non-antioxidant moiety control dTPP and a basic TPP+ 

derivative. This was in order to shed light on the contradictory effects of general 

and targeted antioxidants in experimental evaluations, with unsuccessful 

translation to the clinic (Uden et al. 1990; Katsinelos et al. 2005; Bjelakovic et al. 

2007; Siriwardena et al. 2007; Besselink et al. 2008; Sateesh et al. 2009; Bansal et al. 

2011). Oxidative stress occurs early in the development of AP. In response to known 

AP precipitants, oxidative stress and elevated levels of ROS in PACs have been 

successively and repeatedly demonstrated in a number of studies (Granados et al. 

2004; González et al. 2006; Palmieri et al. 2007; Fernandez-Sanchez et al. 2009; 

Booth et al. 2011). An imbalance between ROS and endogenous antioxidants has 

been linked to an elevated disease severity (Tsai et al. 1998). However, as discussed 

earlier, the application of general antioxidants has shown mixed effects in isolated 

cells, animal models and in the clinic. This led to the development of more specific 

antioxidants targeted to the predominant source of ROS production, the 

mitochondria. These were readily diffusible with improved tissue penetration. 

Theoretically these targeted antioxidants would more effectively reduce elevated 

levels of ROS associated with the development of oxidative stress related disorders 

such as AP. MitoQ has to date been shown to exert protective effects in diverse 

disease models that are associated with oxidative stress, including colitis (Dashdorj 
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et al. 2013), encephalomyelitis (Davies et al. 2013), cardiac ischaemia-reperfusion 

injury (Chouchani et al. 2013), and sepsis (Lowes et al. 2013). However, concern has 

developed for MitoQ as an antioxidant therapy. This is due to limited therapeutic 

benefits and evidence demonstrating adverse effects at both the cellular level and 

in clinical trials (Gane et al. 2010; Snow et al. 2010; Reily et al. 2013). Although 

some recent work has investigated the adverse effects of mitochondrial targeted 

compounds, a deeper understanding of the effects in PACs is lacking (Reily et al. 

2013; Trnka et al. 2015). Until recently, the effects of MitoQ had not been assessed 

in in vivo and in vitro models of acute pancreatitis (Huang et al. 2015).  

 

MitoQ and NAD(P)H/FAD+ Levels 

In vitro, MitoQ effectively inhibited H2O2-induced ROS increases in PACs. 

However, there were also effects on mitochondrial bioenergetics, represented by a 

transient increase and progressive depletion of NAD(P)H. These results were 

mirrored by an elevation of oxidised FAD+. In summary, MitoQ exhibited progressive 

alterations of the redox state, which were mirrored by non-antioxidant analogue 

dTPP. On the other hand, the MitoQ-induced elevation of FAD+ levels was not 

mirrored with dTPP treatment. The differing cellular effects of the targeting 

component/acyl chain and antioxidant quinone group in vitro support our in vivo 

findings and those of recent cellular studies, which will be detailed in the remaining 

discussion (Huang et al. 2015; Trnka et al. 2015).  
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One proposal for the transient increase in NAD(P)H levels is a transient 

inhibition of ETC complex I, during accumulation of MitoQ and dTPP into the 

mitochondria. The depletion of NAD(P)H is likely to be as a result of mild uncoupling 

effects of the TPP+/acyl chain leading to an increase of NAD(P)H oxidation as a 

compensatory mechanism. The extent of the TPP+/acyl chain effects are thought to 

be dependent on the length of the acyl chain and hydrophobicity (Trnka et al. 2015). 

In contrast, there is also evidence for increased ETC complex I activity with both 

MitoQ and dTPP in articular cartilage which would lead depleted levels of NAD(P)H 

(Martin et al. 2012). MitoQ is continuously recycled by complex II of the ETC (Kelso 

et al. 2001). Therefore, the increase in oxidised FAD+, not present with dTPP 

treatment, is likely due to up-regulated FADH2 consumption to facilitate recycling of 

the antioxidant component of MitoQ.  

 

MitoQ and [Ca2+]i 

The transient increase in NAD(P)H with both MitoQ and dTPP treatment 

could also be a Ca2+-dependent mechanism due to non-specific effects of the 

targeting component and/or the acyl chain. An increase in cytosolic Ca2+ leads to an 

uptake of Ca2+ by the mitochondria. The subsequent increase in [Ca2+]m activates 

TCA cycle dehydrogenases, and is visualised by an increase in levels of NAD(P)H 

(Voronina et al. 2002). MitoQ and dTPP treatment caused an increase in [Ca2+]c 

alongside a transient increase in NAD(P)H. Therefore, we assessed elevated levels of 

[Ca2+]m. However, employment of the dye Rhod-2-AM did not identify any increases 
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of fluorescence. This technique has been successful in detecting mitochondrial Ca2+ 

rises in PACs by several groups including our own (Gonzalez et al. 2000; Camello-

Almaraz et al. 2002; Johnson et al. 2002; Voronina et al. 2002; Booth et al. 2011). 

The changes in [Ca2+]c and NAD(P)H induced by MitoQ were very small. It is possible 

that any increases in [Ca2+]m were not detected due to a lack of sensitivity of the 

Rhod-2-AM dye at detecting fluctuations of this size. Employment of a more 

sensitive technique such as patch clamp may highlight any increases. A transient 

NAD(P)H increase, could also be due to inhibitory effects by the targeting 

component on the mitochondrial Na+/Ca2+ exchanger, as demonstrated in HeLa cells 

(Leo et al. 2008). This would prevent efflux of Ca2+ from the mitochondria leading to 

raised matrix Ca2+ concentrations and therefore NAD(P)H (Leo et al. 2008).  

 

As mentioned, it is also possible that there is a transient inhibition of ETC 

complex I by MitoQ and dTPP, leading to increases in NAD(P)H, as demonstrated in 

PACs with complex I inhibitor rotenone (Voronina et al. 2002). ETC inhibition with 

rotenone can induce a rise in [Ca2+]c due to a reduced electrical gradient and 

therefore diminished mitochondrial Ca2+ uptake (Johnson et al. 2002; Nguyen et al. 

2009; Gravina et al. 2010; Takekawa et al. 2012). Inhibition of all four ETC 

complexes by lipophilic triphenylphosphonium cations has been shown in rat 

skeletal muscle, with a particular sensitivity of complexes I and III (Trnka et al. 

2015). Therefore, the transient increase in [Ca2+]c induced by both MitoQ and dTPP 

could be due to non-specific inhibitory effects of the targeting component on the 

ETC, leading to reduced uptake of Ca2+ into the mitochondria. While MitoQ and 
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dTPP caused a transient increase in [Ca2+]c, neither compound demonstrated any 

effects on ER Ca2+ release in response to CCK hyperstimulation. MitoQ has 

previously been shown to inhibit Ca2+ oscillations induced by CCK (Camello-Almaraz 

et al. 2006) and prevent MPTP opening (Lu et al. 2007; Davidson et al. 2012). These 

effects were suggested to be due to the antioxidant activity, however, evidence in 

this thesis highlight an additional mechanism of action, potentially attributed to the 

targeting component on the ETC, as opposed to the antioxidant ubiquinone of 

MitoQ.  

 

As detailed, MitoQ and dTPP did not affect ER Ca2+ release in response to 

CCK hyperstimulation. However, ER Ca2+ measurements were not made during 

MitoQ and dTPP perfusion as previously employed for cytosolic Ca2+ measurements. 

Therefore, future experiments would analyse the effects of MitoQ and dTPP on ER 

Ca2+ to mirror the cytosolic Ca2+ measurements. It would then be prudent to 

perform experiments with 0Ca2+ in the extracellular solution during MitoQ and dTPP 

treatment. The aim of these experiments would be to establish if the MitoQ/dTPP-

induced transient elevation in [Ca2+]c is extracellular in origin due to Ca2+ influx 

across the plasma membrane. The progressive and continued increase in [Ca2+]c 

with dTPP but not MitoQ could be due to the TPP+ component or acyl chain and 

would also require investigation. Therefore, incorporating TPP+ into further 

experiments would help to elucidate the specific effects. Subsequent experiments 

would also use 0Ca2+ media and include ER store depletion with plant sesquiterpene 

lactone thapsigargin prior to PAC treatment with MitoQ/dTPP/TPP+. These 
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experiments could rule out or establish the ER as the source or suggest a 

mitochondrial or non-mitochondrial Ca2+ source. The application of BAPTA-AM 

could abolish the transient increase in NAD(P)H and therefore rule out uptake of 

cytosolic Ca2+ as a cause and support the ETC inhibition theory. 

  

The Effects of Excessive MitoQ Accumulation 

Application of both MitoQ and dTPP at 10µM caused partial mitochondrial 

depolarisation and eliminated any inhibitory effects of MitoQ on H2O2-induced ROS 

increases. These results support mild uncoupling effects of TPP+ derivatives 

observed in alternative cell types (Echtay et al. 2002; Fink et al. 2009; Reily et al. 

2013), which could indicate a protonophoric effect. However, the gradual 

depolarisation observed with both MitoQ and dTPP would suggest more complex 

metabolic effects contributing to proton leak, such as by matrix and inter-

membrane space cycling or protein interactions (Ross et al. 2008; Reily et al. 2013).  

 

 

The Effects of MitoQ on  Apoptosis and Necrosis 

All three TPP+ derivatives assessed (MitoQ, dTPP and TPP+) induced 

concentration-dependent induction of cell apoptosis and necrosis. This was initially 

believed to be indicative of nonspecific toxic effects due to accumulation of fatty 

acyl chains in the mitochondria that may relate to uncoupling actions (Borst et al. 
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1962; Smith et al. 2003). The justification for this proposal was that fatty acids are 

known to uncouple oxidative phosphorylation, and application of long-chain fatty 

acids to isolated PACs cause mitochondrial depolarisation, loss of NAD(P)H and ATP, 

leading to necrosis (Criddle et al. 2004; Criddle et al. 2006). This proposal however, 

did not encompass the basic TPP+ derivative, which does not possess a fatty acyl 

chain. It can be suggested that the effects on pancreatic acinar cell death are likely 

due to the triphenylphosphonium cation. However, a role of the fatty acyl chain in 

the cellular effects cannot be ruled out and further experiments would need to be 

completed including the TPP+ component and dUb, which does not contain the TPP+ 

component. For example, the comparative effects of TPP+ to dTPP and dUb could be 

assessed on membrane depolarisation and levels of NAD(P)H.  

 

Conclusions 

The proposal of a central TPP+ involvement in the described effects of MitoQ 

is in concurrence with studies using a variety of TPP+ derivatives. These results have 

demonstrated a sensitivity of cellular bioenergetics to the TPP+ cation and the acyl 

chain, leading to inhibition of ETC complexes, mild mitochondrial uncoupling and 

inhibition of mitochondrial Ca2+ efflux (James et al. 2005; Leo et al. 2008; Fink et al. 

2009; Reily et al. 2013; Trnka et al. 2015). The study by Trnka et al. (2015) showed 

that acyl chain containing TPP+ derivatives inhibit all four ETC complexes with 

complexes I and III being most sensitive. Therefore, in PACs, cell specific effects of 

TPP+, acyl chain and antioxidant group could be investigated in comparison to 
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known ETC inhibitors rotenone (complex I), malonate (complex II) and antimycin A 

(complex III). It has also been shown that the nonspecific mild uncoupling effects of 

the TPP+ derivatives led to a rapid increase in proton production rate, an indicator 

of glycolysis. The authors proposed that the up-regulation of glycolysis is a 

compensatory mechanism for loss of ATP production (Reily et al. 2013). MitoQ-

induced depletion of ATP has also been demonstrated in articular cartilage (Martin 

et al. 2012). ATP measurements could be assessed during treatment with MitoQ, 

dTPP and TPP+, employing magnesium green for indirect cytosolic measurements 

with or without ATPase inhibitor oligomycin. It is clear from the described data that 

there are effects of the TPP+ group on cellular bioenergetics with an additional 

specific sensitivity to the acyl linker and hydrophobicity of the conjugated chain or 

group. The effects of MitoQ on cellular respiration could be assessed using the 

Seahorse XF flux analyzer (Reily et al. 2013; Trnka et al. 2015). The above detailed 

effects are the main limiting factors for therapy with TPP-derived antioxidants. 

 

 

Protective Capabilities of MitoQ against 

Toxin-Induced Effects on PACs 

 

MitoQ has undergone two phase II clinical trials, a double-blind, placebo-

controlled study in Parkinson's disease (Snow et al. 2010) and a double-blind, 

randomized, placebo-controlled trial in patients with a documented history of 
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chronic HCV infection (Gane et al. 2010). A phase II study to compare MitoQ and 

placebo to treat non-alcoholic fatty liver disease was terminated due to poor 

patient recruitment. The phase II study of hepatitis C was the first report of 

potential beneficial effects of MitoQ treatment in humans. Patients were 

randomized 1:1:1 to receive either 40mg or 80 mg MitoQ, or placebo for 28 days. 

Results from both treatment groups demonstrated decreased serum alanine 

transaminase (ALT), an indicator of liver damage. However, there was no effect on 

viral load, indicating MitoQ treatment reduced liver damage but with no effect on 

viral replication. Thirteen patients from the 80mg MitoQ group withdrew due to 

adverse effects compared with 1 receiving placebo and 2 from the 40mg MitoQ 

group (Gane et al. 2010). The large study in Parkinson’s disease (PD) enrolled 128 

newly diagnosed untreated PD patients and administered 40 or 80mg/day MitoQ 

for 12 months (Snow et al. 2010). This study showed no difference between MitoQ 

and placebo groups regarding disease progression as measured by the Unified 

Parkinson Disease Rating Scale. Over 15% of patients exhibited unexplained dose 

dependent nausea and vomiting not anticipated from Phase I studies or the study 

by Gane et al. (2010). Therefore, the study was not continued to Phase III. The 

primary sponsor of both trials, Antipodean Pharmaceuticals, continues product 

development of mitochondrial targeted antioxidant compounds which include 

Mitotocopherol, Mitoascorbic acid and Mitolipoic acid. More recently, the 

University of Delaware has sponsored a phase IV clinical trial, which commenced 

March 2015 to examine the effects of MitoQ on vascular function in patients with 

moderate to severe chronic kidney disease. 
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TLCS and Caerulein Models of AP 

To investigate the potential efficacy of MitoQ in acute pancreatitis, two 

established experimental models of AP were employed: caerulein-induced (CER-AP) 

and bile acid TLCS-induced (TLCS-AP). Caerulein analogue CCK hyperstimulation and 

TLCS treatment in vitro have been shown to induce ROS increases and Ca2+ 

overload, although via separate mechanisms detailed earlier (Saillan-Barreau et al. 

1998; Voronina et al. 2002; Granados et al. 2004; Barrow et al. 2008; Booth et al. 

2011). In vivo, the CER-AP model is a popular non-invasive method, which induces 

acute interstitial acute oedematous pancreatitis, closely resembling that in humans 

(Lerch et al. 1994; Saluja et al. 2007; Lerch et al. 2013). CER-AP benefits from its 

reproducibility and convenience, although is not likely to imitate mechanisms 

responsible for the pathogenesis (Takacs et al. 2008; Ziegler et al. 2011). CER-AP is 

self-limited and reversible, characterised by sustained intracellular Ca2+ rises, 

pancreatic oedema, premature zymogen activation due to impaired cytoskeleton 

integrity and systemic inflammatory response (Lerch et al. 1993; Lerch et al. 1994; 

Halangk et al. 2000; Krüger et al. 2001; Mooren et al. 2001; Halangk et al. 2002; 

Lerch et al. 2002; Schnekenburger et al. 2005). Caerulein pancreatitis has also been 

demonstrated to induce early stress-activated protein kinases (SAPK) activation, 

acinar glutathione depletion, and diminished ATP and tissue necrosis (Schoenberg 

et al. 1991; Luthen et al. 1995; Grady et al. 1996).  
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In vivo, experimental biliary acute pancreatitis can be induced by infusion of 

retrograde ductal taurocholate into the pancreatic duct, or more acutely retrograde 

injection into the hepatopancreatic duct, leading to the development of 

haemorrhagic and necrotising pancreatitis. This model is highly reproducible and a 

clinical parallel to gallstone obstruction associated AP, which accounts for 30 – 50% 

of AP cases (Wan et al. 2012). Experimental biliary acute pancreatitis has been 

extensively used to investigate AP associated with multiple organ dysfunction, 

including lung injury, a major cause of early death in patients (Lichtenstein et al. 

2000). Bile acid-induced haemorrhagic pancreatitis is characterised by zymogen 

degranulation, oedema, haemorrhage and rapid necrosis of the pancreatic tissue, 

and elevated amylase and lipase levels (Steer et al. 1991; Su et al. 2006; Wan et al. 

2012). 

 

 

TLCS- and CCK-Induced Apoptosis and Necrosis 

While CER-AP induces a comparatively mild self-limiting disorder, TLCS-AP 

causes a severe necrotising, haemorrhagic pancreatitis that reaches maximal 

severity within 24 h post-induction in mice (Perides et al. 2010). In TLCS-induced 

pancreatitis, but not caerulein-induced Gpbar1 (G-protein-coupled, cell surface bile 

acid receptor) is expressed at the apical pole of acinar cells. Gpbar1 genetic deletion 

is correlated to reduced inflammation, oedema, hyperamylasemia, reduced 

pathological Ca2+ overload, intracellular activation of zymogens and PAC injury in 
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TLCS-induced pancreatitis, but not caerulein-induced (Perides et al. 2010). A study 

by Schoenberg et al. (1991) compared the pathology of CER-AP in rats (5 

micrograms/kg/h) and sodium taurocholate-induced-AP by retrograde injection of 

5% sodium taurocholate for 30 min, 3.5 h, and 12 h. Histological and serum enzyme 

levels were similar between the two models. However, the development with TLCS 

was more traumatic and rapid with extensive cellular necrosis and zymogen 

degranulation after 3.5 h and amylase levels elevated to 6 times those of the 

caerulein AP model. These observations are concurrent with the level and rapid 

increase of TLCS-induced necrosis shown in our pancreatic acinar cell suspensions, 

compared to near negligible TLCS-induced apoptosis. The induction of pancreatic 

acinar cell necrosis with CCK hyperstimulation in pancreatic acinar cell suspensions 

was mild and biphasic and reached a plateau within around 3-4 h with a secondary 

increase of necrosis at 10-13.5 h.  

 

In the study by Schoenberg et al. (1991), CER-AP caused elevated levels of 

conjugated dienes and malondialdehyde, which reached their maximum after 3.5 h. 

At this time point, levels of interstitial oedema and intravascular granulocyte 

margination in the pancreatic gland were initially observed. Pronounced zymogen 

degranulation, tissue necrosis and granulocyte migration into the tissue was not 

observed until after 12 hours. In our plate reader experiments, CCK induced 

apoptosis in a progressive trend that reached a significant increase from the control 

at approximately 2 h post stimulation. Our results also compliment the study by 

Gukovskaya et al. (2002), which detected apoptosis through activated caspases-3, -
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8, and -9 at 3 hours post stimulation. Our  results are not only novel, demonstrating 

the contrasting effects of TLCS and CCK hyperstimulation on cell death, but provide 

exciting parallels to the in vivo observations. These results may provide further 

evidence for a proposed protective role of apoptosis in the severity of AP, since 

necrosis is reduced (Booth et al. 2011). 

 

The Effects of MitoQ in vivo 

on TLCS-AP and CER-AP 
 

MitoQ demonstrated no protective capabilities against AP induced by the 

precipitant TLCS in vivo and in vitro and mixed effects against both caerulein and 

analogue CCK. MitoQ partially ameliorated overall pancreatic histopathology in CER-

AP, reducing pancreatic oedema and neutrophil infiltration but not biochemical 

markers pancreatic trypsin or serum amylase. However, these beneficial effects 

were also shared by non-antioxidant moiety control dTPP. In addition, dTTP 

unexpectedly reduced tissue necrosis, pancreatic trypsin and MPO activity. MitoQ 

also aggravated systemic injury, inducing concurrent increases in lung MPO and     

IL-6. In vitro, both MitoQ and dTPP abolished CCK induced NAD(P)H rises and 

exacerbated CCK induced cell death. In the TLCS-induced AP model MitoQ 

treatment was not protective (Huang et al. 2015), mirrored in the current in vitro 

experiments of this study.  
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The Role of Leukocyte and  

Neutrophil Infiltration in AP 

 

Leukocyte and neutrophil infiltration are well known to play a central role in 

ROS production associated with the development of acute pancreatitis, systemic 

inflammatory response syndrome and lung injury (Sarr et al. 1987; Rinderknecht 

1988; Guice et al. 1989; Simms et al. 1994; Inagaki et al. 1997; Rau et al. 2000; 

Gukovskaya et al. 2002; Mayerle 2009). Polymorphonuclear leukocytes (PMNs) are 

granulocytic leukocytes and have been suggested to contribute to organ 

dysfunction in acute pancreatitis (Sarr et al. 1987; Rinderknecht 1988; Simms et al. 

1994; Oiva et al. 2013). The PMNs, which account for about 60% of leukocytes, are 

essential for innate immunity and one of earliest inflammatory cells to arrive at the 

infection/injury site (Brinkmann et al. 2007). In the experimental AP models, 

histology indicated that PMNs accumulated moderately within the pancreas 2 hours 

post induction and were abundant at 6 hours. In clinical acute pancreatitis, 

enrolment and infiltration of PMNs in the pancreas and distant organs are a 

principal feature of the disease (Mayerle 2009). PMNs may further aggravate tissue 

injury by releasing ROS that are generated by NAD(P)H oxidase (Gukovskaya et al. 

2002) or by degranulation and release of their nuclear contents to form 

extracellular traps (Brinkmann et al. 2004). Serum IL-6, mainly secreted by myeloid 

cells including PMNs, is a cytokine known to connect pancreatic injury to distal 

organ damage (Zhang et al. 2013) and also serves as a severity marker for human AP 

(Aoun et al. 2009).  



Chapter 6: General Discussion 

243 | P a g e  
 

The Effects of MitoQ on PMN ROS generation 

In vivo, activation of NAD(P)H oxidase in isolated PMNs was induced by 

50ng/mL phorbol myristate acetate (PMA), causing a dramatic increase of ROS in 

the extracellular solution around PMNs. PMA is a PKC agonist and results in 

increased  neutrophil superoxide production . The increase in ROS peaked within a 

few minutes and declined to a plateau after approximately 20 minutes. Application 

of NAD(P)H oxidase inhibitor diphenylene iodonium (DPI) reduced the PMA-induced 

ROS peak and abolished the plateau. MitoQ caused biphasic effects on the PMA-

induced ROS production and plateau. At first a concentration-dependent inhibition 

of the initial ROS peak was observed. This was followed by a concentration-

dependent elevation of the ROS plateau at 40 min, an action shared by dTPP only at 

the higher concentration (10µM). Thus, an overall increase in ROS production in the 

PMNs induced by MitoQ and dTPP may have facilitated lung MPO, generating 

hypochlorous acid and reactive oxidants, further enhancing its activity. Indeed, both 

MitoQ and dTPP at the doses used for the in vivo experiments significantly 

increased lung MPO activity per se.  

 

The Effects of Ethanol and POAEE on Apoptosis 

and Necrosis 

 

PACs metabolise alcohol to produce FAEEs at levels adequate to induce 

damage to the pancreas (Haber et al. 2004). Although it is evident that there is 

patient-specific susceptibility to excessive drinking, it is unclear why not all heavy 
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drinkers develop AP (Criddle 2015). Here, an improved method was developed for 

maintaining POAEE in aqueous solution for long term assays. This allowed for the 

use of a lower concentration of ethanol (85mM) and an optimised ethanol to non-

oxidative metabolite POAEE ratio for maximum POAEE-derived cell death. For the 

first time in PACs, the comparative effects of POAEE and ethanol on apoptosis and 

necrosis were evaluated applying long time course plate reader experiments. 

POAEE substantially induced both apoptosis and necrosis over a 13 hour period. 

Ethanol at 850mM also induced extensive cell death of both modes.  

 

The 850mM Ethanol and POAEE necrosis results are in agreement with a one 

hour end point necrosis assay, quantified by inspection of light-transmitted images 

(Criddle et al. 2004). POAEE was shown to induce necrosis in a Ca2+-dependent 

manner primarily through IP3R-mediated Ca2+ release from the ER (Criddle et al. 

2004; Criddle et al. 2006). On the other hand, ethanol of concentrations up to 

850mM showed little or no increases in [Ca2+]i. It was concluded that pancreatic 

acinar cell toxicity was mediated by nonoxidative fatty acid metabolites, rather than 

ethanol itself. While POAEE and POA caused Ca2+ toxicity via depleted ATP levels, 

ethanol did not (Criddle et al. 2006; Voronina et al. 2010). In addition, ethanol at 

10mM did not induce apoptosis or necrosis above control values (Huang et al. 

2014). Ethanol/palmitoleic acid-induced necrosis was prevented by 3-benzyl-6-

chloro-2-pyrone (3-BCP), an inhibitor of carboxylester lipase (CEL), an enzyme 

synthesized and secreted by acinar cells (Huang et al. 2014). Non-oxidative ethanol 

metabolism generates FAEEs through the action of FAEE synthases such as 
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carboxylester lipase. FAEEs principally accumulate in PAC mitochondria where they 

are hydrolysed into FAs (Huang et al. 2014), in agreement with an earlier 

biochemical study in cardiomyocytes (Lange et al. 1983). 

 

The Effects of MitoQ on Ethanol/POAEE-Induced 

Cell Death 

 

MitoQ demonstrated some protective capabilities against POAEE-induced cell 

apoptosis in a dose dependent manner, offering protection at the lower 

concentration of 0.2µM. MitoQ also demonstrated very mild inhibition of ethanol-

induced cell apoptosis in the same manner to the POAEE-induced effects. The 

reduction of apoptosis by MitoQ could be due to the antioxidant activity. Ethanol-

induced ROS production has been demonstrated in PACs (Wittel et al. 2003; 

González et al. 2006). These results are in concurrence with MitoQ inhibition of 

TLCS-induced apoptosis demonstrated by Booth et al. (2011). As apoptosis has been 

highlighted as a protective mechanism in AP, inhibition by MitoQ does not suggest 

benefits of MitoQ targeted antioxidant therapy in alcoholic AP.  

 

Conclusions 

In summary, CER-AP is a non-invasive model of acute pancreatitis, which 

produces a mild, self-limiting and reversible disease. (Lerch et al. 1993; Lerch et al. 

1994). Bile acid treatment induces a severe AP pathology and is characterised by 

tissue necrosis, leukocyte infiltration, oedema, and haemorrhage (Yagci et al. 2004). 
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The severity of AP correlates with the extent of necrosis, and the balance between 

the two modes of cell death, apoptosis and necrosis, may prove critical to the 

disease outcome (Gukovskaya et al. 2006). For example, the severity of caerulein-

induced pancreatitis is reduced when apoptosis is enhanced. Inhibition of caspase 

activity  and apoptosis, lead to the development of a severe necrotising pancreatitis 

(Bhatia et al. 1998). Our long time-course apoptosis and necrosis assay supported 

these in vivo findings. The plate reader method applied is a faster, higher 

throughput assay than previously employed fluorescence microscopy cell counting. 

The technique allows for a long time course assessment of cell death and therefore 

enables improved comparison to in vivo findings. TLCS-induced a predominantly 

necrotic mechanism of cell death which compliments short time point confocal 

experiments performed by Booth et al. (2011). MitoQ does not provide protection 

against mild, self-limited caerulein/CCK or severe TLCS-induced effects in AP in vitro 

or in vivo. 

 

H2O2-Induced Effects on Pancreatic 

Acinar Cells 

Oxidative stress plays a role in the development of a range of diseases such 

as neurodegenerative diseases, cardiovascular disease, cancer and lung diseases 

(Schulz et al. 1999; Madamanchi et al. 2005; Park et al. 2009; Uttara et al. 2009; 

Reuter et al. 2010). It is established that ROS and oxidative stress are involved in the 

development and severity of acute pancreatitis (Schoenberg et al. 1990; Tsai et al. 
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1998; Telek et al. 2001). Oxidative stress occurs early in the progression of AP 

alongside an oxidant/antioxidant imbalance (Braganza et al. 1995; Tsai et al. 1998). 

However, attempts to restore the depleted levels of antioxidants have produced 

mixed results in the clinic (Virlos et al. 2003; Siriwardena et al. 2007). It is apparent 

however, that ROS can bring about not only irreversible but reversible alterations to 

protein function in response to physiological stimuli (Weber et al. 1998; Nulton-

Persson et al. 2001; Granados et al. 2004; Rigoulet et al. 2011). These actions enable 

ROS mediation of signalling pathways as detailed previously (Trimm et al. 1986; 

Suzuki et al. 1997; Denu et al. 1998; Finkel et al. 2000; Pelletier et al. 2012; Pérez et 

al. 2015).  

 

It is crucial we understand this balance, as although oxidative stress has 

been researched to a variety of levels in oxidative stress related diseases, our 

understanding is still lacking, and antioxidant therapy in acute pancreatitis has been 

largely unsuccessful (Virlos et al. 2003; Siriwardena et al. 2007; Sateesh et al. 2009; 

Bansal et al. 2011). Historically, attention was predominantly focussed on the 

negative effects of oxidative stress and the pathophysiological role of ROS 

(Gerschman et al. 1954; Radi et al. 1991). The effects of oxidative stress have been 

commonly assessed through stimulating increased cellular oxidant production 

(Turrens et al. 1982; Sanfey et al. 1984; Sanfey et al. 1985).  
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The Role of ROS in the Development of AP 

More recent redox studies in vitro have frequently used exogenously applied 

hydrogen peroxide to investigate the effects of oxidative stress. H2O2 is 

predominantly the oxidant of choice due to continuous production in the 

mitochondria through aerobic metabolism and because of its lack of charge, 

enables relatively easy diffusion across cellular membranes (Chance et al. 1979) 

which can be aquaporin-facilitated (Bertolotti et al. 2013; Bienert et al. 2014). 

Generally, these results supported clinical observations as high levels of oxidants 

cause extensive cellular damage. These actions are through Ca2+ overload, 

irreversible damage to nuclear and mitochondrial DNA, proteins and lipids, leading 

to a predominantly necrotic mode of cell death. ROS produced by PACs play a key 

mediatory role in inflammation and initiation of an innate immune response, 

recruiting leukocytes and neutrophils to the inflamed pancreas (Tsai et al. 1998; 

Chan 2009; Dios 2010), for example, though the activation of cytokine expression, 

as described earlier. These include pancreatic acinar cell produced TNF-α and 

activation of the transcription factor NF-κB (Norman et al. 1995; Chen et al. 2002; 

Ramudo et al. 2005).  

 

ROS amplify the inflammatory cascade in AP by cross-talk with pro-

inflammatory cytokines. This cross-talk is mediated by NF-κB, activator protein 1 

(AP-1), Signal Transducer and Activator of Transcription 3 (STAT3), and MAPKs 

(Dabrowski et al. 2000; Ramnath et al. 2006; Yu et al. 2014; Pérez et al. 2015). 
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Leukocytes and neutrophils recruited to the pancreas then release further cytokines 

and potentiate tissue damage (Sandoval et al. 1996). Acute lung injury (ALI) is 

characterised by enhanced pulmonary vascular permeability and non-cardiogenic 

pulmonary oedema. The development of ALI has been linked with mediation of lung 

P-selectin ligation and ICAM-1 neutrophil infiltration (Folch et al. 1999; Folch et al. 

2000; Grommes et al. 2011). Proteases derived from polymorphonuclear leukocytes 

have been associated with the development of acute respiratory distress syndrome 

(ARDS) (Simms et al. 1994; Lichtenstein et al. 2000; Zhou et al. 2010; Akbarshahi et 

al. 2012).  

 

These responses are linked with elevated severity of acute pancreatitis, the 

development of infected pancreatic necrosis, systemic inflammatory response 

syndrome (SIRS), and with repeated incidence chronic pancreatitis (Rinderknecht 

1988; Guice et al. 1989; Sandoval et al. 1996; Bhatia et al. 1998; Beger et al. 2000). 

Our understanding of the importance of ROS in the development of AP has been 

further advanced with antioxidant treatment, which typically resulted in a reduction 

in cellular ROS production and biomarkers in vivo.  

 

ROS and Disease: Recent Developments 

More recently, the roles of ROS in cellular signalling, particularly H2O2, have 

received more attention. These include the reversible activation or inhibition of 
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proteins and enzymes involved in signalling pathways, gene transcription, 

differentiation, cell survival and apoptosis. Elevated levels of oxidants in pancreatic 

acinar cells and AP can induce apoptosis. Evidence suggests that apoptosis can be a 

protective mechanism in acute pancreatitis, reducing the disease severity. This is 

because when a cell undergoes apoptosis rather than necrosis, the remaining cell 

debris is easier to clear from the affected organ, therefore leading to less 

inflammation (Gerschenson et al. 1992). However, it should be noted that excessive 

apoptosis could also be detrimental, leading to a progressive loss of pancreatic 

tissue. On the other hand, necrosis mediated cell destruction leads to the release of 

activated proteases. These cause local damage and initiate an inflammatory 

response in the surrounding tissue, which prevents phagocytic removal of dead cells 

(Bhatia et al. 1998; Bhatia 2004; Bhatia 2004). The dose-dependent effects of ROS 

H2O2 on apoptosis and necrosis have not been investigated in PACs to date. 

 

 

The Effects of H2O2-Induced  

Oxidative Stress in PACs 

 

In PACs, studies have commonly applied high micromolar and millimolar 

concentrations of H2O2 to assess the effects of oxidative stress (Dabrowski et al. 

2000; Pariente et al. 2001; Rosado et al. 2002; Gonzalez et al. 2005; Weber et al. 

2005; Andreolotti et al. 2006; Camello-Almaraz et al. 2006; Ohashi et al. 2006; Bruce 

et al. 2007; Weber et al. 2007; Weber et al. 2013). Specifically, a number of studies 
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have applied 1mM H2O2 that causes rapid and substantial cellular damage in PACs. 

The majority of investigations have focussed on the effects of H2O2 on intracellular 

Ca2+ mobilisation and responses. These results showed that high micromolar and 

millimolar H2O2 elevated ROS levels and caused large increases in cytosolic Ca2+ by 

an IP3-receptor independent mechanism (Pariente et al. 2001). Micromolar to 

millimolar concentrations of H2O2 bring about increases in [Ca2+]c through Ca2+ 

release from intracellular stores including the ER and the mitochondria (Pariente et 

al. 2001; Gonzalez et al. 2005; Granados et al. 2006). These sustained increases of 

[Ca2+]i led to partial depolarisation of the ΔΨm and increased oxidised FAD+ levels 

(Gonzalez et al. 2005). Any specific mechanisms for H2O2-induced mitochondrial 

Ca2+ release via the mitochondrial Na+/Ca2+ exchanger have not been elucidated yet 

in PACs (Muallem et al. 1988; Zima et al. 2006).  

 

A previous study highlighted that >50µM H2O2 induced concentration-

dependent inhibition of PMCA activity, therefore preventing clearance of Ca2+ from 

the cytosol (Bruce et al. 2007; Baggaley et al. 2008). H2O2 mediates inhibition of 

Ca2+-ATPases by the oxidation of sulfhydryl groups (Pariente et al. 2001).  Reduction 

of SERCA activity occurs through oxidative modification of SERCA Cys674 (Qin et al. 

2013). Our results support these findings, demonstrating progressive increases in 

[Ca2+]c with 50µM  and 500µM H2O2 in line with results seen with 100µM H2O2 

(Mankad et al. 2012). H2O2 concentrations of <100µM have additionally 

demonstrated the ability to induce Ca2+ responses of an oscillatory manner 

(Granados et al. 2006; Gonzalez et al. 2012). The compiled results provide 
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supporting evidence for a heterogeneous nature of H2O2-induced effects on Ca2+ 

signalling in PACs (Bruce et al. 2007).  

 

The Effects of Low Dose H2O2 in PACs 

A relatively limited number of investigations have been employed in PACs to 

address the comparative effects of mild oxidative stress and low micromolar 

concentrations of H2O2 (<50µM) (Morgado et al. 2008; Gonzalez et al. 2012), which 

are likely more physiologically relevant concentrations required for H2O2 signalling 

capacity (Toledano et al. 2010; Pérez et al. 2015). The majority of studies have 

investigated a concentration range from mid-low micromolar (>50µM) up to high 

micromolar and millimolar, therefore there are still gaps in our understanding of the 

low micromolar and nanomolar concentration range. Our results further our 

understanding by demonstrating dose- and time-dependent effects of H2O2 in 

primary isolated PACs on mitochondrial function, intracellular Ca2+ and cell death.  

 

The effects of H2O2 on NAD(P)H levels were exacerbated by nonspecific 

effects of both MitoQ and dTPP pre-treatment. However, while MitoQ did not affect 

H2O2-induced effects on FAD+ levels, dTPP did. These results support the differing 

effects of alky chain and TPP+ to the antioxidant group seen in our in vivo and in 

vitro work, as well as studies in alternative cell types (Reily et al. 2013; Huang et al. 

2015; Trnka et al. 2015). The technique employed applied simultaneous 
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measurements of natural fluorophores, NAD(P)H and FAD+, and can be used as an 

indicator of the cellular redox state. This avoided the use of a fluorescent probe, 

which can potentially affect cellular responses. These sensitive NAD(P)H/FAD+ 

measurements enabled the novel demonstration of acute H2O2 effects at low 

micromolar concentration ranges in direct comparison to those seen  

on ΔΨm and [Ca2+]c. 

 

The Cellular Effects of H2O2 

Our experiments with 50µM and 500µM H2O2 caused partial ΔΨm 

depolarisation in a concentration-dependent manner, alongside mirrored increases 

in [Ca2+]c. These results were in accordance with findings from separate studies 

(Baggaley et al. 2008; Mankad et al. 2012). The simultaneously mirrored ΔΨm and 

[Ca2+]c changes are in agreement with experiments strongly suggesting that ΔΨm 

depolarisation occurs due to large increases in cytosolic Ca2+ (Duchen 2000; 

Voronina et al. 2004). H2O2-induced ΔΨm depolarisation however, is likely caused 

by both elevated levels of Ca2+ and free radical-derived cellular injury. While H2O2 at 

concentrations as low as 0.1µM have demonstrated induction of Ca2+ oscillations 

and detectable ROS increases, mirrored measurements of ΔΨm have not been 

assessed at these concentrations. Novel findings were obtained through 

simultaneous measurements of ΔΨm and [Ca2+]c alongside sensitive measurements 

of NAD(P)H. These results interestingly show that the effects of H2O2 on levels of 

NAD(P)H were more substantial than on ΔΨm and [Ca2+]c. 50µM induced immediate 
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and significant effects on NAD(P)H levels, demonstrated by a rapid decrease in 

fluorescence. In contrast, the effects on ΔΨm and [Ca2+]c were delayed and gradual.  

 

The Effects of H2O2 on NAD(P)H and FAD+ levels 

These novel results were further investigated with simultaneous 

measurements of NAD(P)H and FAD+ in response to H2O2. Previously, Granados et 

al. (2005) showed that levels of 1mM H2O2 induce large increases in non-reduced 

FAD+. These results were confirmed (Figure 5.2B) and further included 

measurements of NAD(P)H, demonstrating mirrored effects on NAD(P)H/FAD+. 

These results indicate changes to the rate of NAD(P)H and FADH2 oxidation. In 

summary, concentrations from 10µM to 10mM demonstrated concentration-

dependent effects on levels of NAD(P)H and FAD+. Preliminary results suggested 

reversible actions of 1µM H2O2 on NAD(P)H levels, however further experiments are 

required. It is interesting that 10µM H2O2 elicited greater effects on NAD(P)H levels 

than FAD+. This could indicate less sensitivity of the FAD+ measurement technique 

or H2O2-specific effects on the TCA cycle. The assessment of H2O2 effects on ETC 

complexes and Krebs cycle enzymes have not been performed in PACs to date. 

Nulton-Persson et al. (2001) have demonstrated concentration-dependent 

reversible inhibition of mitochondrial respiration and the activities of specific 

mitochondrial enzymes in isolated rat heart mitochondria. These effects were 

visible via a decrease in levels of NAD(P)H with 12.5µM H2O2. The enzymes inhibited 

by H2O2 were ETC complexes and Krebs cycle enzymes, succinate dehydrogenase 
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(SDH), α-KGDH, and aconitase. H2O2 at <50µM did not however affect complexes I, 

III or IV of the ETC or ATP synthase. It is possible that H2O2 inhibition of Kreb cycle 

enzymes leads to more substantial changes to levels of NAD(P)H than FAD+ 

observed in more sensitive NAD(P)H responses. Alternatively, imaging of NAD(P)H 

autofluorescence may be more sensitive than FAD+ measurements and therefore 

the technique not sensitive enough to detect H2O2-induced changes. 

 

H2O2: ROS Generation, Apoptosis and Necrosis 

 Induction of ROS increases by 1-500µM H2O2 were demonstrated in a 

concentration-dependent manner. While several studies have demonstrated H2O2-

induced ROS increases, an assessment of dose dependent H2O2-induction of ROS in 

comparison to apoptosis and necrosis has not been carried out in PACs. 

Concentrations of >1µM induced apoptosis and >10µM necrosis during a 13 hour 

period. Apoptosis was the major mode of cell death induced by 1-10µM H2O2, 

whereas mainly necrosis was induced with 500µM-1mM H2O2. It is extremely 

interesting that 1µM H2O2 induced apoptosis but not necrosis, consistent with prior 

observations in PACs showing that ROS promotes apoptosis (Criddle et al. 2006). 

MitoQ inhibited 500µM- and 1mM H2O2-induced ROS increases in a dose-

dependent manner. Although MitoQ has demonstrated partial inhibition of POAEE- 

and ethanol-induced apoptosis, consistent with blockade of ROS, there was no 

protection provided against 500µM- and 1mM H2O2-induced apoptosis and in fact 

MitoQ exacerbated H2O2-induced necrosis. In comparison, non-targeted natural 
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antioxidant cinnamtannin B-1, reduced 0.1-100µM H2O2-induced concentration-

dependent increases in ROS (Gonzalez et al. 2012) and reversed 1µM H2O2-induced 

inhibition of CCK-induced amylase secretion. Cells incubated with H2O2 led to a 

concentration-dependent reduction of cell viability from 0.1-100µM H2O2 in 

concurrence with our results. However, cinnamtannin B-1 inhibited the decrease in 

cell viability, while MitoQ did not in our experiments. It is likely that these results 

are due to the MitoQ-induced cell death independent of H2O2 induction.  

 

Work has also been performed with AR42J tumorigenic cell line as a model 

for pancreatic acinar cell function to assess H2O2 -induction of apoptosis (Song et al. 

2003; Weber et al. 2013). These results are in accord with the 10µM H2O2 results, 

but not those demonstrated with 1µM. Morgado et al. (2008) showed that 10µM 

H2O2 activated caspase-3 and cytochrome c release from the mitochondria to the 

cytosol. After 12 and 24 hours 1µM H2O2 did not activate caspase-3, whereas at 13 

hours our results in PACs demonstrated a significant increase in apoptosis. The 

differences are likely to be due to the different cell types used, since AR42J cells 

may not accurately reflect primary isolated PACs. However, they do highlight the 

need to investigate further at these concentrations and down into the nanomolar 

range in primary isolated PACs. Interestingly, preliminary experiments measuring 

NAD(P)H levels with 1µM H2O2 treatment, showed a transient decrease which 

returned to basal levels during continuous perfusion. Treatment with 10µM H2O2 

induced a decrease in NAD(P)H levels with no effect on FAD+ levels. In a minority of 

experiments 10µM H2O2 also demonstrated an induction of mirrored NAD(P)H and 
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FAD+ waves. These NAD(P)H/FAD+ waves could be reversible inhibition of TCA 

dehydrogenases or a reflection of the heterogeneous effects of H2O2 on Ca2+ 

signalling reflected in NAD(P)H/FAD+ changes (Bruce et al. 2007). 

 

H2O2 Effects in CypD Deficient Mice 

Our results with Ppif-/- cells indicated that oxidative stress induced by H2O2 is 

exacerbated in the absence of a functional MPTP. Both levels of ROS and depletion 

of NAD(P)H levels were elevated in compared to the wild type. Lower levels of H2O2 

have not been assessed and additional investigation may provide further insights. 

MPTP opening is a central trigger for necrotic cell death in PACs, rather than 

apoptosis (Nakagawa et al. 2005; Kinnally et al. 2011; Mukherjee et al. 2015).  

Reversible opening of the MPTP could however restore membrane potential and 

ATP production (Crompton et al. 1987; Pastorino et al. 1999; Kinnally et al. 2011). 

Targeted antioxidant therapy can diminish cellular ROS levels in correlation to 

reduced MPTP opening and cell death in kidney and cardiac ischemia/reperfusion 

injury (Mitchell et al. 2011; Hansson et al. 2015). However, our results in Ppif-/- mice 

did not support a pivotal role for ROS in PAC MPTP opening.  
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Conclusions 

The results obtained demonstrated novel H2O2 concentration-dependent 

effects on a variety of parameters including membrane potential, levels of NAD(P)H 

and FAD+, ROS, apoptosis, necrosis and the effects of mitochondria-targeted 

antioxidant MitoQ. These findings contribute to our knowledge of the effects of ROS 

H2O2 in PACs, increasing our understanding for potential future studies of 

concentration ranges responsible for reversible oxidative effects. Further 

investigations into specifically <1µM H2O2-induced effects could provide further 

clarity in future work. Determination of H2O2 concentrations which have reversible 

effects on pancreatic acinar cellular bioenergetics could provide a therapeutic 

approach to manage ROS mediated cell signal transduction in the inflammatory 

response, cell death balance and development of AP and other oxidative stress 

related diseases. 
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Overall Conclusions and Future Work 

The findings of this study further emphasize the unsuitability of the use of 

antioxidant therapy in the treatment of AP, previously highlighted by a randomised, 

double-blind, and placebo-controlled clinical trial (Siriwardena et al. 2007). Targeted 

antioxidant therapy was also not suitable for the treatment of PD (Snow et al. 

2010). This study has demonstrated mixed effects of MitoQ both in vivo and in vitro. 

While MitoQ inhibited H2O2-induced ROS increases, pre-treatment offered no 

protection against cell death. MitoQ treatment alone caused a concentration-

dependent increase of both apoptosis and necrosis. Protective effects included 

reducing pancreatic oedema and neutrophil infiltration in CER-AP. However, MitoQ 

exacerbated CCK-induced apoptosis and necrosis, systemic injury, inducing 

concurrent increases in lung MPO and IL-6. In contrast, the cytotoxic effects of 

MitoQ have however shown promise as a breast cancer treatment, through 

induction of autophagy and apoptosis 30-fold more than in healthy mammary cells 

(Rao et al. 2010).  

 

Attempts have been made to improve the balance between reported 

antioxidant and pro-oxidant effects of MitoQ and facilitate improved delivery. 

Plastoquinonyl-decyl-triphenylphosphonium (SkQ1) was one such compound and 

demonstrated greater permeability across synthetic lipid bilayers. However, SkQ1 

exhibited similar undesirable effects of MitoQ on cellular bioenergetics, which were 

attenuated by non-targeted antioxidant NAC (Smith et al. 2008; Skulachev et al. 

2009; Fink et al. 2012). Further experiments could be applied to determine the 
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more specific effects of TPP+ and derivatives MitoQ and dTPP on ETC inhibition and 

mitochondrial bioenergetics. It is unlikely that MitoQ has direct effects on Ca2+ 

levels but this might occur indirectly via antioxidant or pro-oxidant effects and due 

to the targeting component.  

 

Our work, combined with evidence in other cell types, indicates mild 

uncoupling effects of MitoQ and TPP+ conjugated compounds via alteration of 

mitochondrial bioenergetics (Reily et al. 2013). This is supported by studies in 

endothelial cells and mesangial cells showing an inhibitory effect of all TPP+
 

derivatives on basal respiration, ATP turnover, ETC complexes and mild uncoupling 

of the mitochondrial membrane (Fink et al. 2012; Reily et al. 2013; Trnka et al. 

2015). In C2C12 mouse myoblast cell line and rat skeletal muscle homogenate, 

lipophilic triphenylphosphonium cations induced proton leak, loss of mitochondrial 

membrane potential and inhibition of all four respiratory chain complexes in 

particular complexes I and III (Trnka et al. 2015). In bovine aortic endothelial cell 

mitochondria, MitoQ inhibited reverse electron transport to complex I and 

enhanced forward transport through complex I (O'Malley et al. 2006). Alternatively, 

MitoQ elevated mitochondrial respiration under rotenone inhibition of complex I in 

liver mitochondria (Kargin et al. 2008). Excessive accumulation of lipophilic cations 

in the mitochondria are also toxic due to disruption to ATP synthesis, (Smith et al. 

2003) membrane integrity and respiration (Murphy 2008).  

 

Further experiments could assess the actions of MitoQ, dTPP and TPP+ on 

levels of NAD(P)H and FAD+ in an inhibitor study applying ETC and ATPase inhibitors 
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rotenone, oligomycin and antimycin A. Induction of apoptosis is dependent on 

levels of ATP. Depletion of ATP can prevent apoptosis, a proposed protective 

mechanism in AP (Criddle et al. 2006; Booth et al. 2011). Oligomycin is a commonly 

used inhibitor of the ATP synthase and may be applied to assess any effects of 

MitoQ and TPP+ derivatives monitored using cytosolic- or mitochondrial-targeted 

luciferases or magnesium green (Criddle et al. 2006; Bell et al. 2007; Voronina et al. 

2010).  

 

Prooxidant capabilities of MitoQ and ubiquinone have repeatedly been 

demonstrated in alternative cell types and mitochondria such as bovine heart 

mitochondrial membranes, human pulmonary endothelial cells, HepG2 liver 

hepatocellular carcinoma cells and isolated rat liver mitochondria (James et al. 

2004; James et al. 2005; O'Malley et al. 2006; Doughan et al. 2007; Plecitá-Hlavatá 

et al. 2009). Although it is evident from these studies that MitoQ can produce 

superoxide, the rate of production in PACs is potentially too small and not detected 

in our experiments with a general oxidative stress indicator. These conclusions are 

supported by James et al. (2005) in Saccharomyces cerevisiae, where MitoQ induced 

superoxide production was too low to cause significant damage to mitochondrial 

enzymes.  

 

It is, however, possible that applying a more specific probe (optimised with 

spectral analysis) such as DHE (Dihydroethidium) or MitoSOX (DHE plus TPP+) or 

electron spin resonance (ESR) spectroscopy in future work may have the potential 

to highlight increases in superoxide production seen in other cell types (Bindokas et 
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al. 1996; Li et al. 2003; Rivera et al. 2005). A new antioxidant prototype based on 

the dietary cinnamic acid-caffeic acid conjugated to TPP+ has also been developed 

(Teixeira et al. 2015). However, the effects of the triphenylphosphonium cations in 

PACs have not been thoroughly characterised and it may prove more fruitful to 

investigate novel non TPP+ conjugated compounds or alternative therapeutic 

strategies. With recent accumulating evidence for ROS as signalling molecules and 

lack of success of management strategies attention is moving to alternative targets 

such as inhibition of MPTP opening. While it does not appear that MitoQ is 

effective, there are novel findings in this study. These provide insight into the role 

of ROS in AP, which is not only important in AP but also in all oxidative stress-

induced diseases. 

 

 

Antioxidant Therapy in the Clinic 

It cannot be disputed that antioxidant application in vitro effectively reduces 

elevated levels of cellular ROS (Hackert et al. 2011; Assaly et al. 2012; Armstrong et 

al. 2013; Huang et al. 2015). Direct measurements of ROS production in the clinical 

setting are problematic, therefore oxidative stress is detected indirectly through the 

measurement of lipid peroxidation by-products, such as MPO (Holley et al. 1993; 

Armstrong et al. 2013; Huang et al. 2015). Elevated levels have been detected in a 

broad range of diseases including AP, cardiovascular diseases, cancer and 

neurological diseases (Dhalla et al. 2000; Chernyak et al. 2006; Uttara et al. 2009; 

Reuter et al. 2010; Booth et al. 2011; Berndt et al. 2013). Subsequently, ROS have 
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been frequently described to have a causal role, leading to a major research and 

treatment focussed on reducing elevated levels of ROS (Iannitti et al. 2009; Uttara 

et al. 2009; Esrefoglu 2012). However, there are many confounding factors, which 

have not been fully addressed to date. A wealth of clinical trials have applied 

antioxidant therapy, with inconsistent outcomes. Many trials have found no 

beneficial effects and only a small proportion of trials have used adequate 

methodologies (Gluud 2006; Bjelakovic et al. 2007). A recent meta-analysis that 

pooled results from 68 randomized trials, involving 232,606 patients, demonstrated 

that participants in the antioxidant treatment arms had a tendency for higher 

mortality (Madamanchi et al. 2005; Bjelakovic et al. 2007). These trials included 

patients with a range of diseases including coronary heart disease, alcoholic 

hepatitis, colorectal adenomas, PD, ischemic heart disease and additionally 

cigarette smokers. These concerns are further mirrored in patients with AP 

receiving antioxidant supplementation (Siriwardena et al. 2007). It is now becoming 

more widely acknowledged that antioxidant supplementation may disrupt the 

cellular redox balance, prevent normal cellular functions and apoptosis (Bouayed et 

al. 2010; Booth et al. 2011; Kinnally et al. 2011).  

 

The area of antioxidant therapy is controversial. This thesis, while 

contributing to our current knowledge, also highlights that our understanding of the 

role of cellular oxidant levels in signalling and regulation of cellular processes is 

limited. Substantial cellular based in vitro and pre-clinical investigations are 

required in order to provide a more comprehensive understanding of what is a 
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highly sensitive and regulated system. Furthermore, the development of a non-

invasive, reliable, quantitative method to monitor ROS production in the clinic 

would greatly aid investigations. Extensive, well-controlled safety studies are 

required to establish the long-term systemic effects (real world) of antioxidant 

therapy in the healthy population. A wide range of antioxidant dosages have been 

used in clinical trials and it is crucial that these doses are more tightly controlled 

and reviewed to establish a smaller effective dose range and minimise any adverse 

effects. Until these steps have been taken, antioxidant therapy is not recommended 

in a clinical setting. 
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Final Remarks 

In this study, the effects of mitochondria-targeted antioxidant Mitoquinone 

were evaluated, on pancreatic acinar cell physiology and cell death, alongside the 

protective capabilities against the effects of AP precipitants. Briefly, MitoQ 

demonstrated a lack of protection and induced adverse effects on PACs in a 

concentration-dependent manner. These effects were caused either by MitoQ 

alone or in combination with bile acid TLCS, non-oxidative metabolite POAEE, CCK 

hyperstimulation and H2O2-induced oxidant elevation. Novel low micromolar to 

millimolar concentration-dependent effects of H2O2 were demonstrated on 

mitochondrial respiration, cell death and ROS levels in comparison to known AP 

precipitants and hyperstimulatory responses. MitoQ, while inhibiting H2O2-induced 

ROS increases, did not protect against H2O2-induced cell death or against 

detrimental effects on the NAD(P)H/FAD+ redox ratio. These results  

provide novel insights, which advance our understanding of the ROS  

balance in PACs.  
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