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Abstract—Dynamic Spectrum Access (DSA)/Cognitive Radio
(CR) systems can detect transmission opportunities by means
of periodic spectrum sensing. The design and configuration of
spectrum sensing is commonly aimed at optimising the instan-
taneous detection of such opportunities. Besides the detection
of transmission opportunities, spectrum sensing can also be
exploited to provide DSA/CR systems with more sophisticated
and elaborated information, including for instance statistical
information on the occupancy pattern of primary channels.
However, the configuration of spectrum sensing in order to
minimise the estimation error of channel activity statistics has
received much less attention. In this context, this work explores
the configuration of an energy detector in order to enable an
accurate estimation of the real occupancy rate of a primary
channel, thus providing DSA/CR systems with accurate statistical
information of primary channels that can be used effectively in
spectrum and radio resource management decisions.

Keywords—Cognitive radio, dynamic spectrum access, primary
activity statistics, channel occupancy rate, energy detection.

I. INTRODUCTION

The Dynamic Spectrum Access (DSA) principle [1], based
on the Cognitive Radio (CR) paradigm [2], aims at increasing
spectrum efficiency by allowing unlicensed (secondary) users
to opportunistically access licensed bands temporarily/spatially
unused by the licensed (primary) users.

One of the most important requirements for a DSA/CR
system is not to cause harmful interference to primary users.
In order to guarantee interference-free spectrum access, sec-
ondary users can monitor the instantaneous busy/idle occu-
pancy state of primary channels by means of periodic sensing.
Spectrum sensing methods make a binary decision on the
busy/idle state of a channel based on a set of signal samples
of the channel. The main purpose of spectrum sensing is to
determine whether a signal is present in a primary channel
so that the DSA/CR system can decide whether the channel
can be accessed opportunistically or needs to be vacated after
the return of a primary user to the channel. However, besides
the detection of transmission opportunities, spectrum sensing
can also be exploited to provide the DSA/CR system with
more elaborated information. The sequence of binary busy/idle
decisions for a channel can be further processed in order to
compute relevant channel activity statistics such as the duration
of busy/idle periods, their minimum, mean and variance, or
the underlying distribution [3]. The knowledge of primary
activity statistics can be exploited by DSA/CR systems in
several ways, including for instance the prediction of future

trends in the spectrum occupancy [4], the selection of the
most appropriate channel/band of operation [5], and other
spectrum and radio resource management decisions to optimise
the system performance and spectrum efficiency [6].

The design and configuration of spectrum sensing algo-
rithms is commonly aimed at optimising the instantaneous
detection of spectrum opportunities. However, the configura-
tion of spectrum sensing algorithms in order to maximise the
accuracy of estimation of channel activity statistics constitutes
an area that has received much less attention [7]. In this
context, this work explores the configuration of spectrum
sensing for the estimation of channel activity statistics.

A wide range of sensing methods has been proposed in
the context of DSA/CR [8]. Despite its practical performance
limitations, energy detection [9] has gained popularity as a
spectrum sensing technique due to its general applicability and
simplicity as well as its low computational and implementation
costs. Energy detection has been a preferred approach for
many past spectrum sensing studies and also constitutes the
spectrum sensing method considered in this work. Energy
detection compares the energy received in a channel to a
properly set decision threshold. If the energy lies above (below)
the threshold, the channel is declared to be busy (idle). The
selection of the decision threshold constitutes a key aspect
in the configuration of an energy detector. While existing
methods are aimed at optimising the instantaneous detection of
spectrum opportunities, this work explores a novel threshold
selection criterion aimed at minimising the estimation error
of the Channel Occupancy Rate (COR), which represents the
probability (theoretical definition) or fraction of time (empir-
ical definition) that a channel is occupied by a primary user.
The interest of considering the COR as representative channel
activity statistic relies on its ability to quantify in a simple way
the amount of spectrum opportunities that a DSA/CR system
can expect to find in a primary channel. A DSA/CR system
can estimate the COR for several primary channels and then
select the channel with the lowest COR (i.e., the channel with
highest expected amount of transmission of opportunities).
Since the observed COR is computed based on spectrum
sensing observations, it may differ from the actual COR due to
sensing errors. The objective of this work is to investigate the
configuration of the energy detection method (i.e., the selection
of the decision threshold) in order to minimise the error in
the estimated COR, thus providing DSA/CR systems with an
accurate estimation of the real COR that can be used effectively
in spectrum and radio resource management decisions.



The rest of this work is organised as follows. First, Sec-
tion II provides an overview of spectrum sensing based on
energy detection. Then, Section III reviews existing threshold-
selection methods for energy detection and Section IV pro-
poses a novel method aimed at minimising the COR estimation
error. The performance of the considered methods is assessed
by means of simulations, following the simulation approach
presented in Section V, and their accuracy in estimating the
COR is compared and analysed in Section VI. Finally, Section
VII summarises and concludes the paper.

II. ENERGY DETECTION

A. Operating principle

Energy detection measures the energy of the samples y[n]
(which include pure primary signal and noise) taken from a
primary channel during an observation interval of N samples
and declares the channel state as busy (hypothesis H1) if the
measured energy is greater than a decision threshold λ, or idle
(hypothesis H0) otherwise [9]:

N∑

n=1

|y[n]|2
H1

≷
H0

λ (1)

B. Theoretical performance

An ideal spectrum sensor would select hypothesis H1

whenever a primary signal is present and hypothesis H0 oth-
erwise. In practice, spectrum sensing algorithms are affected
by errors, which can be classified into missed detections
(when a primary signal is present in the sensed channel
and the spectrum sensing algorithm selects hypothesis H0)
or false alarms (when the sensed spectrum channel is idle
and the spectrum sensing algorithm selects hypothesis H1).
The performance of any spectrum sensing algorithm can be
summarised by means of two probabilities: the probability of
missed detection Pmd = P (H0|H1), or its complementary
probability of detection Pd = P (H1|H1) = 1− Pmd, and the
probability of false alarm Pfa = P (H1|H0). For an energy
detector, these probabilities can be approximated by [10]:

Pd(λ) = Q
(
λ−N(σ2

x + σ2
w)√

2N(σ2
x + σ2

w)

)
(2)

Pfa(λ) = Q
(
λ−Nσ2

w√
2Nσ2

w

)
(3)

where Q(·) is the Gaussian tail probability Q-function [11,
(26.2.3)], σ2

x is the received primary signal power and σ2
w is

the noise power. As it can be appreciated, the performance of
energy detection depends on the selected decision threshold λ,
which constitutes a key design parameter.

III. EXISTING THRESHOLD-SELECTION METHODS

This section reviews several threshold-selection criteria
proposed in the literature, which have as a common objective
the maximisation of detected spectrum opportunities. While
this objective is different from the one pursued in this work,
these criteria are considered as a reference due to the lack of
methods specifically envisaged for COR estimation.

A. Constant False Alarm Rate (CFAR)

A common approach in the existing literature is to select
the decision threshold so that a certain target probability of
false alarm P ∗

fa is met [12]. Solving (3) for λ yields the
optimum threshold λ∗ according to the CFAR criterion:

λ∗ =
(
Q−1

(
P ∗

fa

)√
2N +N

)
σ2
w (4)

which only requires the noise power σ2
w to be known.

B. Constant Signal Detection Rate (CSDR)

An alternative approach is to select the decision threshold
so that a certain target probability of detection P ∗

d is met [13].
Solving (2) for λ yields the optimum decision threshold λ∗:

λ∗ =
(
Q−1 (P ∗

d )
√
2N +N

)
(γ + 1)σ2

w (5)

which requires not only the noise power σ2
w but also the Signal-

to-Noise Ratio (SNR) γ = σ2
x/σ

2
w to be known.

C. Minimum Sensing Error Rate (MSER)

Another option is to select the decision threshold so that
the total sensing error rate is minimised [12, 14]. To this end,
a total sensing error function is defined as:

fe(λ) = Pfa(λ) + Pmd(λ) (6)

and the optimum threshold is then obtained as:

λ∗ = argmin
λ

fe(λ) (7)

which can be calculated by solving dfe(λ)/dλ = 0 for λ:

λ∗ =

(
1 +

√
1 +

4

N

γ + 2

γ
ln(γ + 1)

)
γ + 1

γ + 2
Nσ2

w (8)

It can be shown that d2fe(λ)/dλ
2
∣∣
λ=λ∗

> 0. Therefore, fe(λ)
has a global minimum at λ = λ∗. Note that (8) requires both
the noise power σ2

w and the SNR γ to be known.

IV. PROPOSED THRESHOLD-SELECTION METHOD

A. Accurate Channel Occupancy Rate (ACOR)

The objective of the proposed criterion is not to maximise
the detection of spectrum opportunities by minimising sensing
error rates, but minimise the COR estimation error.

Let Ψ be the real COR of a primary channel and Ψ̂ the
COR estimated by a DSA/CR user (based on spectrum sensing
observations). A primary channel is observed as busy when it
is busy and successfully detected as such, or when it is idle
but observed as busy because of a false alarm. Hence:

Ψ̂ = P (H1)P (H1|H1) + P (H0)P (H1|H0)

= ΨPd(λ) + (1−Ψ)Pfa(λ) (9)

The objective is to minimise the COR estimation error:

fe(λ) = |Ψ− Ψ̂| (10)

Hence, the optimum decision threshold is given by:

λ∗ = argmin
λ

fe(λ) (11)
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Fig. 1. COR estimation error as a function of the decision threshold for SNR
= 0 dB (top) and SNR = –10 dB (bottom) when N = 100.

Figure 1 shows an example of the error function in (10) for
various COR (Ψ) and SNR (γ) values. As it can be appreciated,
λ∗ is sometimes achieved at values of λ for which fe(λ)
is not differentiable. Therefore, λ∗ cannot be calculated by
solving dfe(λ)/dλ = 0 for λ. However, Figure 1 indicates
that the minimum estimation error that can be attained is zero.
Therefore, λ∗ can be obtained by solving fe(λ) = |Ψ−Ψ̂| = 0
for λ, which leads to the expression:

Pfa(λ
∗)

1− Pd(λ∗) + Pfa(λ∗)
= Ψ (12)

This result indicates that an exact estimation of the actual
COR of a primary channel is feasible if the decision threshold
is selected in such a way that the resulting probabilities of
detection and false alarm, according to (2) and (3), satisfy
the relation expressed in (12). While (12) cannot be solved
in closed-form for λ, the optimum decision threshold λ∗ can
readily be obtained from (12) by means of simple numerical
methods. However, this requires not only the SNR and noise
power (γ and σ2

w) to be known but also the exact COR value
itself (Ψ), which leads to a chicken-and-egg problem. To solve
this issue, an iterative threshold-setting algorithm is proposed.

B. Iterative threshold-setting algorithm

According to (12), setting the optimum decision threshold
that enables an accurate estimation of the real COR requires
the knowledge of the COR itself. However, the COR of a
primary channel is unknown and indeed the parameter to be
estimated. Based on the result of (12), the iterative process of
Algorithm 1 is proposed, which is aimed at iteratively adapting
the decision threshold until the right value is reached and an
accurate estimation of the COR is obtained.

The algorithm needs as input information an initial guess of

the COR (Ψ̂0), the SNR of the primary channel (γ) which can
be estimated by using appropriate SNR estimation methods,
and the selected sensing period (N ). The output produced by

the algorithm is the estimated COR (Ψ̂). In the first iteration
of the algorithm, a decision threshold λ∗ is computed by
numerically solving (12) for λ, assuming that the COR is

Algorithm 1 Iterative threshold-setting algorithm

Input: Ψ̂0 ∈ (0, 1), γ ∈ R
+, N ∈ N

Output: Ψ̂ ∈ (0, 1)
1: χ← Ψ̂0

2: λ∗ ← Numerical solution for λ of
Pfa(λ)

1−Pd(λ)+Pfa(λ)
= χ

3: Ψ̂← COR estimation based on decision threshold λ∗

4: χ← Ψ̂
5: Go to step 2

the initial guess Ψ̂0. Based on an energy detector with the
computed decision threshold λ∗, the sequence of energy values
measured in the primary channel is converted to a sequence of

busy/idle states, which is used to estimate the COR (Ψ̂). The

estimated Ψ̂ is then used to recompute a new decision threshold
λ∗, which is applied to the same sequence of measured energy
values in order to obtain a new (and eventually more accurate)

estimation of the COR (Ψ̂). In each new iteration, the value of
the employed decision threshold λ∗ is recomputed based on

the latest COR estimation Ψ̂. The underlying hypothesis of this
algorithm is that after a sufficiently high number of iterations
the algorithm should reach the desired decision threshold so
that the real COR should be estimated accurately.

V. SIMULATION APPROACH

The performance of the threshold-selection methods con-
sidered in this work is evaluated by means of simulations. The
employed simulation approach is based on the following steps:

1) Generate a random binary sequence of channel states
with a predefined COR value. This sequence repre-
sents the real busy/idle states of a primary channel
and is generated in such a way that the quotient be-
tween the number of busy samples and total number
of samples meets a predefined COR value Ψ.

2) Determine the binary sequence of channel states that
would be observed by a DSA/CR user after sensing
the sequence generated in step 1:

a) Compute the optimum decision threshold λ∗

according to the considered criterion, based
on (4) for CFAR, (5) for CSDR, (8) for
MSER, and (12) for ACOR.

b) Compute the probabilities of detection and
false alarm corresponding to the decision
threshold obtained in step 2.a, Pd(λ

∗) and
Pfa(λ

∗), based on (2) and (3), respectively.
c) Process each sample (channel state) of the bi-

nary sequence generated in step 1 as follows:
when the channel is idle, the observed state
may randomly change to busy with probabil-
ity Pfa(λ

∗); when the channel is busy, the
observed state may randomly change to idle
with probability Pmd(λ

∗) = 1−Pd(λ
∗). No-

tice that random sensing errors are introduced
in the sequence generated in step 1 according
to the error probabilities corresponding to the
selected decision threshold λ∗.

3) Compute the COR estimated by a DSA/CR user Ψ̂
as the COR value of the sequence obtained in step 2.
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Fig. 2. Estimated COR as a function of the SNR (CFAR).
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Fig. 3. Estimated COR as a function of the SNR (CSDR).

VI. SIMULATION RESULTS

A. Performance evaluation

Figures 2, 3, 4 and 5 show the COR estimated (based on a
sufficiently large number of sensing observations) by CFAR,
CSDR, MSER and ACOR, respectively, as a function of SNR.

As it can be appreciated, both CFAR and CSDR fail to
provide accurate COR estimations. While CFAR and CSDR
COR estimations are significantly more accurate at high SNR
values than low ones, the estimations provided at high SNR
values can sometimes be quite inaccurate. The reason is that
these methods are designed to provide a constant false alarm or
signal detection rate. In the case of CFAR, signal misdetections
are presumably non-existent when the SNR is high (i.e., the
presence of a signal can always be detected at sufficiently
high SNR values). However, due to a constant false alarm
rate, the channel is sometimes observed as busy when it is
idle. As a result, the channel is observed as busy more often
than it actually is and thus CFAR leads to an overestimation
of the COR. Therefore, CFAR COR estimations at high SNR
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Fig. 4. Estimated COR as a function of the SNR (MSER).
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Fig. 5. Estimated COR as a function of the SNR (ACOR).

values are more accurate for lower target P ∗

fa values. In the
case of CSDR, the provision of a constant signal detection
rate implies necessarily the occurrence of signal misdetections,
even at high SNR values. As a result, the channel is observed
as busy less often than it actually is and thus CSDR leads to an
underestimation of the COR. Thus, CSDR COR estimations at
high SNR values are more accurate for higher target P ∗

d values.
The accuracy of both CFAR and CSDR degrades significantly
as the SNR decreases. It is interesting to note that the more
accurate these methods are at high SNR values, the more
significant the accuracy degradation is at low SNR values.

Compared to CFAR and CSDR, MSER constitutes a more
convenient approach for COR estimation. The balance between
false alarm and signal detection rates provided by this method
results in a more accurate COR estimation at high SNR values.
However, the accuracy of the MSER COR estimation degrades
at low SNR values as it is also the case of CFAR and CSDR.
As it can be appreciated, the accuracy of these three methods
begins to experience a significant degradation as the SNR
decreases below a certain threshold (0 dB in these examples).



On the other hand, the COR estimated by the proposed
ACOR method shows a remarkable accuracy for the whole
range of SNR values as shown in Figure 5. The threshold-
selection criterion of ACOR is capable to balance the false
alarm and signal detection rates, not only at high but also low
SNR values, thus providing an accurate COR estimation at
any SNR. The only difference between low and high SNR
conditions is the number of iterations required by ACOR
to converge to the right decision threshold and provide a
sufficiently accurate estimation, which is illustrated in Figure

6 (the initial COR guess for this example is Ψ̂0 = 0.5). As it
can be appreciated, the number of iterations required is higher
for low SNR values. At high SNR values, the specific value
of the decision threshold does not play a crucial role. The
reason is that for high SNR values there is a wide range of
valid decision thresholds between the maximum noise power
and the minimum signal power. Any decision threshold within
this range will eventually lead to a perfect spectrum sensing
performance (i.e., Pd = 1 and Pfa = 0) and thus an accurate
COR estimation (see Figure 1). As a result, the specific value
of the decision threshold is not crucial at high SNR values.
As shown in Figure 6 for an SNR of 5 dB (i.e., a relatively
high SNR value), the COR is accurately estimated in the first
iteration of ACOR, for all COR values, despite having chosen

an arbitrary initial guess (Ψ̂0 = 0.5). The range of valid
decision thresholds becomes narrower as the SNR decreases.
For low SNR values, where signal and noise power levels
can be similar, the specific value of the decision threshold
is crucial for an accurate COR estimation (see Figure 1). In

such a case, the initial guess Ψ̂0 is in general inadequate and
several iterations of ACOR are required in order to find the
right decision threshold. The example of Figure 6 indicates
that the number of iterations required to estimate the real COR
with a maximum absolute error of 0.01 at an SNR of –15 dB
(i.e., a relatively low SNR value) is 68 (for Ψ = 0.05), 42
(for Ψ = 0.2), 1 (for Ψ = 0.5), 48 (for Ψ = 0.8) and 97 (for
Ψ = 0.95). The number of iterations required by ACOR to
provide a COR estimation with a certain degree of accuracy
depends on the real COR, the SNR and the initial COR guess

Ψ̂0 of the iterative threshold-setting algorithm. However, the
results shown in Figure 6 demonstrate that ACOR is capable to
converge to an arbitrarily accurate estimation of the real COR
regardless of the specific operation conditions. This makes of
ACOR an excellent method to accurately estimate the real
COR of unknown primary channels in DSA/CR systems.

B. Impact of imperfect SNR estimation

The proposed ACOR method is able to estimate accurately
the COR of a primary channel at any arbitrary SNR, provided
that the SNR is known. The knowledge of the SNR is required
in order to set the decision threshold based on the numerical
resolution of (12). This section analyses the impact of an
imperfect SNR estimation on the ACOR accuracy with respect
to CSDR and MSER. Notice that the CFAR decision threshold
in (4) is independent of the SNR and therefore CFAR is not
considered in the study carried out in this section.

The obtained simulation results indicated that the COR
estimation error depends not only on the SNR error but also on
the SNR value itself. For an SNR of 5 dB (high SNR), it was
observed that the COR estimated by CSDR, MSER and ACOR
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Fig. 6. Estimated COR as a function of the iteration number (ACOR).

is not affected by the SNR error (the estimated COR was
observed to be the same as for a perfect SNR estimation even
for high SNR errors of ± 6 dB). As explained in Section VI-A,
for high SNR values there is a wide range of valid decision
threshold values for which the sensing performance is perfect.
As a result, the specific value of the decision threshold is not
crucial under high SNR conditions. An error in the estimated
SNR will lead to an incorrect decision threshold. However, the
resulting decision threshold may still lie within the range of
perfect sensing performance. As a result, the COR estimated
by CSDR, MSER and ACOR is not affected significantly by
SNR estimation errors if the SNR is sufficiently high. However,
the SNR error may have an important impact under low SNR
conditions. Figures 7, 8 and 9 show the COR estimation error
for CSDR (with P ∗

d = 0.90), MSER and ACOR, respectively,
for an SNR of –15 dB (i.e., a low SNR value). As it can be
observed, the COR estimation error for CSDR and MSER is
not significantly affected by the SNR error. This is due to the
fact that CSDR and MSER are characterised by a high COR
estimation error at low SNR values, even for a perfect SNR
estimation (see Figures 3 and 4). As a result, an SNR error does
not contribute significantly to the already high COR estimation
error of these methods. Nevertheless, in the case of ACOR,
which is able to provide an accurate COR estimation under
perfect SNR estimation (i.e., SNR error of 0 dB in Figure
9), the COR estimation error increases rapidly as the SNR
error increases. This indicates that ACOR is sensitive to SNR
estimation errors. In particular, Figure 9 indicates that SNR
errors of 2 dB or more may lead to appreciable COR estimation
errors. Therefore, an accurate estimation of the COR based on
the ACOR method requires accurate SNR estimation methods.

The accuracy of ACOR depends on the accuracy of the
underlying SNR estimation method. Under sufficiently accu-
rate SNR estimations, ACOR is able to provide nearly perfect
estimations of the real COR of unknown primary channels. It is
worth noting that, despite its sensitivity to SNR errors, ACOR
is significantly more accurate than CFAR, CSDR and MSER,
even in the presence of SNR errors. Therefore, under realistic
conditions ACOR still constitutes a more convenient COR
estimation method compared to other existing alternatives.
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VII. CONCLUSIONS

DSA/CR systems rely on spectrum sensing observations
to identify transmission opportunities in primary channels.
Besides the detection of transmission opportunities, spectrum
sensing observations can also be exploited to provide the
DSA/CR system with more elaborated information (e.g., pri-
mary channel activity statistics), which can be exploited in
spectrum and radio resource management decisions. The de-
sign and configuration of spectrum sensing algorithms has tra-
ditionally been aimed at optimising the instantaneous detection
of spectrum opportunities. However, the estimation of channel
activity statistics based on spectrum sensing has received less
attention. This work has analysed the configuration of an
energy detector (i.e., the selection of the decision threshold)
in order to minimise the COR estimation error. The obtained
results demonstrate that the proposed ACOR method is able to
provide an arbitrarily accurate estimation of the real COR of an
unknown primary channel regardless of the specific operation
conditions (i.e., real COR and SNR). ACOR has been shown
to be significantly more accurate than other existing threshold-
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Fig. 9. COR estimation error as a function of the SNR error (ACOR).

selection alternatives, even in the presence of SNR errors, thus
constituting a more convenient approach for the estimation of
the COR of unknown primary channels in DSA/CR systems.
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