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Abstract—Dynamic Spectrum Access (DSA)/Cognitive Radio
(CR) systems can benefit from the knowledge of the activity
statistics of primary channels. A particularly relevant statistic
is the Channel Occupancy Rate (COR) of a primary channel,
which represents the probability that a channel is occupied by a
primary user. The COR can be estimated based on a set of binary
(idle/busy) spectrum sensing decisions. However, an important
practical question is how many sensing observations are necessary
(i.e., the sensing sample size) in order to estimate the COR of a
primary channel to a certain desired level of accuracy. This work
analyses the problem of estimating the COR of a primary channel
based on spectrum sensing decisions and derives a tight closed-
form expression for the required sensing sample size. Moreover,
an iterative algorithm is proposed to accurately determine the
sensing sample size required to estimate the primary COR to a
desired level of accuracy. The obtained results demonstrate the
ability of the proposed algorithm to make an arbitrarily accurate
estimation of the real COR of unknown primary channels using
the essential minimum number of sensing samples.

Keywords—Cognitive radio, dynamic spectrum access, primary
activity statistics, channel occupancy rate, spectrum sensing.

I. INTRODUCTION

Dynamic Spectrum Access (DSA) [1, 2] based on the Cog-
nitive Radio (CR) paradigm [3-5] has the potential to increase
spectrum efficiency by enabling unlicensed (secondary) users
to opportunistically access licensed bands that are temporarily
and/or spatially unused by the licensed (primary) users. By
sensing the primary spectrum periodically, DSA/CR users can
identify spectrum gaps and transmit opportunistically without
causing harmful interference to primary users. Spectrum sens-
ing methods make a binary decision on the busy/idle state of
a primary channel based on a set of signal samples of the
channel. While the main purpose of spectrum sensing is the
detection of transmission opportunities that can be exploited
by the DSA/CR system, the sequence of spectrum sensing
decisions can certainly be exploited in order to produce more
elaborated information. In particular, the sequence of binary
busy/idle decisions for a channel can be used to compute
relevant channel activity statistics such as the duration of the
busy/idle periods, their minimum value, mean and variance,
or the underlying distribution [6]. The knowledge of primary
activity statistics can be exploited by DSA/CR systems in
several ways, including the prediction of future trends in the
spectrum occupancy [7, 8], the selection of the most appropri-
ate channel/band of operation [9-13], and other spectrum and
radio resource management decisions to optimise the system
performance and spectrum efficiency [14—18].
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A particularly relevant activity statistic is the Channel Oc-
cupancy Rate (COR) of a primary channel. From a theoretical
point of view, the COR can be defined as the probability that
a channel is occupied by a primary user. From an empirical
point of view, the COR can be defined as the fraction of time
that a primary channel is busy, which can be estimated in
practice as the fraction of sensing events where the channel is
observed as busy. The main interest of the COR as a channel
activity statistic relies on its ability to summarise in a single
numerical quantity the amount of spectrum opportunities that
a DSA/CR system can expect to find in a primary channel.
A DSA/CR system can estimate the COR for several primary
channels (based on spectrum sensing observations) and then
select the channel with the lowest COR (i.e., the channel with
the highest expected amount of transmission opportunities).
Since the primary channel of operation selected by a DSA/CR
system will have an important impact on the overall system
performance, it is essential for the DSA/CR system that
the CORs of the candidate primary channels are estimated
accurately. In this context, an important practical question is
how many sensing observations are necessary (i.e., the sensing
sample size) in order to estimate the COR of a primary channel
to a certain desired level of accuracy. This work analyses the
problem of estimating the COR of a primary channel based
on spectrum sensing decisions and derives a tight closed-
form expression for the required sensing sample size. The
required sample size is found to be dependent on the COR
itself, which is unknown. To solve this problem, an iterative
algorithm is proposed. The obtained results demonstrate that
the proposed algorithm is capable to determine accurately
the sensing sample size required to estimate the COR of a
primary channel to a specified level of accuracy. Therefore, this
algorithm enables DSA/CR systems to estimate the real COR
of unknown primary channels to an arbitrary level of accuracy
using the essential minimum number of sensing samples.

The rest of this work is organised as follows. First, Section
II presents the system model considered in this work. Then, a
theoretical analysis is performed in Section III, where a closed-
form expression for the required sensing sample size is derived.
The required sample size is found to be dependent on the
COR itself. To address this problem, several practical solutions
are proposed in Section IV. The performance of the proposed
solutions is assessed by means of simulations. The obtained
simulation results are presented and discussed in Section V.
A discussion on the practical use of the proposed solution in
DSA/CR systems is provided in Section VI. Finally, Section
VII summarises and concludes the paper.
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Fig. 1. Considered system model.

II. SYSTEM MODEL

A DSA/CR system makes an estimation, denoted as ¥, of
the real COR of a primary channel, denoted as ¥ € [0, 1].
To this end, the DSA/CR system senses the primary channel
periodically and takes a certain number of spectrum sensing
samples, K, as illustrated in Figure 1. The set of sensing
samples X = { X} | contains a total of K samples, each of
which represents the outcome of one spectrum sensing event,
which can be either an idle channel (denoted as X = 0) or
a busy channel (denoted as X = 1). Based on the set X
of spectrum sensing samples, the DSA/CR system makes an
estimation ¥ of the COR as:
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The estimation U obtained in (1) is considered by the
DSA/CR system as a representative value of the real COR
U of the primary channel and used in subsequent spectrum
and radio resource management decisions (e.g., selection of
the primary channel with lowest estimated COR value).

In this context, an important practical question is how many
sensing samples K are required (i.e., the sensing sample size)
in order to guarantee that the estimated COR W does not differ
from the real COR W by more than a specified maximum
absolute estimation error €2}2* (i.e., €aps = |¥ — \IJ| < e

III. THEORETICAL ANALYSIS

The elements of the set X = { X}/ | can take one of two
possible values, either X = 0 (idle channel) or X, = 1 (busy
channel). Therefore, each sensing sample X is a random
variable that follows a Bernoulli distribution with “success”
probability given by the real COR, P(X = 1) = ¥. The mean
and variance of the distribution are given by E{X;} = ¥ and
V{X;} = ¥(1 — ), respectively.

The COR is estimated in (1) as the sample mean of the
set X by averaging a number of Bernoulli-distributed random
variables. The estimated COR ¥ can be thought of as the
probability of obtaining m “successes” (i.e., X = 1) out of K
Bernoulli trials, where each trial has probability of “success”
P(X) = 1) = ¥ and probability of “failure” P(Xj) = 0) =
1 — W. Therefore, the estimated COR ¥ follows a Binomial
distribution with Probability Mass Function (PMF) given by:

T o_my K m(q K—m _
p(\pK)<m>\1’ (1- ) for m=0,1,..., K
(2)

TABLE 1. RELATION BETWEEN Kk AND p FOR VARIOUS

CONCENTRATION INEQUALITIES [20].

Inequality Relation
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The mean and variance of the estimated COR are given by:
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As it can be appreciated, the estimated COR has a certain
distribution around the real COR value with a variance/width
that depends on the sensing sample size. According to (4),
the width of the distribution can be reduced by increasing the
value of K, meaning that the estimated COR ¥ can be made
arbitrarily accurate by increasing the sensing sampling size.

E{V}

V{U}

The weak law of large numbers [19] states that it is possible
to define a confidence interval of x standard deviations around
the expected value of an estimator w such that the estimated
values are within that interval with a minimum probability p
(confidence level):

P ([E{w} - w| < wy/Viw]) 2 p ®)

which for the estimator in (1), w = \Tl, reduces to:

P <|E{\f/} —U| < m/v{@}) > (6)
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where 415 = |¥ — | and el = k\/¥(1 - ¥)/K. Hence,
the sample size corresponding to a certain maximum absolute
error is given by:

2
K= (Em’zx> U(1- ) 9)

abs

The value of x for a certain confidence level p can be
derived from concentration inequalities [20]. Some examples
are shown in Table I. It is worth noting that the relations in
Table I are obtained from inequalities, which lead to (rather
loose) upper bounds on the maximum absolute error as shown
in Figure 2. As result, these relations, when introduced in (9),
lead to an overestimation of the required sample size.
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Fig. 2. Maximum absolute error of the estimated COR, 5;%‘“‘, observed in

a fraction p = 0.99 of cases (i.e., at the 99% percentile) as a function of the
sample size, K, for a channel with COR ¥ = 0.5.

A more accurate estimation of the required sample size
can be obtained by noting that the distribution of the esti-
mated COR W can be approximated (according to the Central
Limit Theorem) by a normal distribution with the same mean
E{¥} and variance V{W} as the actual binomial distribution.
The normal approximation of a binomial random variable is
accurate when KW > 1 and KW(1 — W) > 1 [19], which is
true is most practical cases. Based on this approximation, the
inequalities (6)—(8) can be expressed as:
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Solving (10) for « yields the relation x > /2 erf _1(;)), which
provides a more accurate estimation of the maximum absolute
error as illustrated in Figure 2. Introducing the relation x >
V2erf(p) in (9) yields the much tighter bound:

P(Eabs < Emax)

abs
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abs
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Thus, the minimum (optimum) number of sensing samples
required to guarantee that the absolute estimation error of the
COR of a primary channel does not exceed the value e3}%*
with a probability (confidence level) of p is given by:

—1 2
K* = {2 (erfm}({p» W(l - \I/)—‘ (12)
Cabs

where [-] denotes the ceil operator (i.e., rounding to the nearest
integer towards infinity).

IV. PROPOSED PRACTICAL SOLUTIONS

The result in (12) indicates that the minimum sensing
sample size required to estimate the COR of a primary channel
to a certain level of accuracy depends on the COR itself. This
means that a DSA/CR system cannot determine in advance
how many sensing samples need to be taken from a primary
channel in order to produce a reliable estimation of its COR.
To address this problem, two solutions are proposed, which
are presented and discussed in the following subsections.

A. Worst-case design

A possible solution is to adopt a worst-case design where
the number of samples taken from a primary channel guaran-
tees that the COR is estimated to the desired level of accuracy
even in the worst possible case. The sample size required for
the worst possible case can be determined by finding the value
of U that maximises (12), which can be obtained by solving
the equation 9K* /0¥ = 0 and is found to be ¥ = 1/2. It can
be shown that 9> K*/0W? < 0. Therefore, K* has a global
maximum at ¥ = 1/2, which is given by:

—1 2
Ky = F (erf(p)) w (13)
2 Eabs

The result in (13) does not require the knowledge of the
real COR (it only requires the desired maximum absolute error
e and the probability p that it is not exceeded) and is able to
guarantee the desired level of accuracy irrespective of the real
COR. However, an important drawback of this method is that
the sample size predicted by (13) can be significantly higher
than the sample size actually required to provide a reliable
COR estimation. In practice, this means that the DSA/CR
system might need a significantly long time in order to collect
the number of samples K, .. predicted by (13), even if such
a high number is not actually needed in order to estimate
the COR to the desired level of accuracy. To cope with this

drawback, an iterative algorithm is proposed in Section IV-B.

B. Iterative algorithm

In order to overcome the main drawback of the worst-case
design discussed in Section IV-A, the iterative procedure of
Algorithm 1 is proposed. The objective of this algorithm is to
produce an empirical estimation of the required sample size
as close to K* as possible, but not lower, so that the DSA/CR
system can produce a reliable COR estimation within a period
of time as short as allowed by the desired level of accuracy.

The proposed algorithm takes as input parameters the
desired maximum absolute error €}}%* and the probability p
that it is not exceeded along with the value selected for the
algorithm parameter 3 € (0,1). The output provided by the
algorithm is an estimation W of the COR that meets the
desired level of accuracy as specified by e;* and p. The
main difference with respect to the method of Section IV-A
is that the COR estimation ¥ is produced based on a number
of samples close to the minimum required value K* given by
(12), thus avoiding the need to use the sample size K .. given

max

by (13), which corresponds to the worst case (K* < K

max )'



Algorithm 1 Iterative algorithm
Input: e} € (0,1), p€ (0,1), B € (0,1)
Output: ¥ € [0,1] )
s K < [(erf ™ (p) /2030?21
K [BK ]
Sense the channel until a sample set {X},}/_, is available
Ve (/E) S X
Knew < |—2 (erf—l(p)/ggi)a;x)z \II(]' - \Ilﬂ
if K, ow > K then

K < KHeW

Go to step 3
end if

R AN Al >

First, the algorithm computes, based on (13), the sample
size K. required in the worst possible case (step 1). The
obtained K .. is then employed to compute an initial value of
the sample size as K = [SK}, .| (step 2), where 5 € (0,1)
is an algorithm parameter that represents the fraction of K.
that is considered as the initial sample size. For example, a
value § = 0.1 means that the initial sample size considered
by the algorithm is one tenth of the maximum required sample
size K ... In the first iteration of the algorithm, a set of K =
[BK x| sensing samples is collected from a primary channel
(step 3) and used to produce, based on (1), an estimation ¥ of
the COR (step 4). In order to determine whether more sensing
samples are required to attain the desired level of accuracy, a
new sample size Kew is computed (step 5) based on (12) and
making use of the COR value U estimated in step 4. If the
obtained sample size Ky is greater than the sample size K
employed in the current iteration (step 6), then more sensing
samples are required. In such a case, the value of the sample
size K is updated to the new estimated sample size Koy (Step
7) and a new iteration is executed (step 8). In the next iteration
of the algorithm, more sensing samples are collected until the
new/larger amount K of sensing samples is available (step 3)
and a new estimation of the COR V¥ is computed based on the
larger sample set (step 4). The most recent COR estimation
W is used in each iteration in order to compute a new sample
size Kyew (step 5) and determine whether more samples are
required (step 6). The algorithm is designed to iterate until the
employed sensing sample size K is greater than (or equal to)
the optimum value K* predicted by (12). When the employed
sample size exceeds K™, the condition in step 6 becomes false
(Kpew < K) and the algorithm stops. When the algorithm
stops, the employed sample size is expected to be close to the
optimum value K* and the COR value ¥ estimated in the last
iteration of the algorithm is expected to meet the desired level

of accuracy as specified by ;12 and p.

An important practical aspect of the algorithm is its conver-
gence (i.e., its ability to stop instead of iterating indefinitely).
A new iteration implies the collection of additional sensing
samples and therefore a larger sample set, which in turn implies
a lower COR estimation error. After a certain number of
iterations, the employed sample size will be large enough to
produce a sufficiently accurate estimation of the COR. When
this occurs, the new sample size computed in step 5 will be
lower than the sample size employed in the last iteration. In
such a case, the conditional test of step 6 guarantees that no
more iterations are executed and thus the algorithm converges.

abs
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Fig. 3. Example of the operation of the proposed iterative algorithm.
TABLE II. EXAMPLE OF THE OPERATION OF THE PROPOSED
ITERATIVE ALGORITHM.
Iteration 1 Iteration 2 Iteration 3 Target
Ky =1659 Ko =10108 K3 =11023 K* =10616
T, =0.1875 Ty = 0.2104 Ty = 0.2093 U =02
Cabs,1 = 00125 | eapeo = 0.0104 | eaps3 = 00093 | B2 =0.01
Kuow,1 = 10108 | Kyow,a = 11023 | Kpews = 10981 | Kpew < K

V. SIMULATION RESULTS

The performance of the proposed iterative algorithm is
evaluated by means of simulations. First, Section V-A presents
an example illustrating the operation of the iterative algorithm.
Afterwards, Section V-B presents a comprehensive perfor-
mance evaluation of the proposed algorithm based on extensive
simulations over a wide range of operation conditions.

A. Operation of the iterative algorithm

Figure 3 and Table II show an example of the operation of
the proposed iterative algorithm. The primary channel under
study has a real COR of ¥ = 0.2 and the DSA/CR system
aims at estimating such value with a maximum estimation error
of g1 = 0.01, which is to be guaranteed with a probability
(confidence level) of p = 0.99. According to the theoretical
results obtained in Section III, the sample size required for the
desired level of accuracy in the worst case is K, = 16588

and the minimum sample size actually required for the real
COR is K* = 10616 (these values are shown in Figure 3).

As it can be appreciated, the iterative algorithm stops after
3 iterations. In the first iteration, the initial sample size is
K, = [BK},.] = [0.1-16588] = 1659. After collecting
K sensing samples, the COR estimated in the first iteration
is Uy = 0.1875. This estimation differs from the real COR
by €abs,1 = |¥ — ¥y| = ]0.2 — 0.1875| = 0.0125, which is
greater than the target ;1. In order to determine whether
more samples are required, the new sample size computed
in the first iteration is Kyew,1 = 10108, which is greater

than the used sample size K; = 1659. Therefore, a new



TABLE III. SIMULATION RESULTS FOR W = 0.05.
emax | p | KA | K* | K Red. v gmax
0.90 | 6764 1286 | 1342 | 80.2% | 0.0493 | 0.0101
0.01 | 0.95 9604 1825 | 1892 | 80.3% | 0.0495 | 0.0101
0.99 | 16588 | 3152 | 3240 | 80.5% | 0.0497 | 0.0102
0.90 1691 322 345 | 79.6% | 0.0471 | 0.0240
0.02 | 0.95 2401 457 482 | 79.9% | 0.0476 | 0.0242
0.99 | 4147 788 828 | 80.0% | 0.0488 | 0.0242
0.90 271 52 62 77.1% | 0.0382 | 0.0500
0.05 | 095 385 73 80 79.2% | 0.0397 | 0.0500
0.99 664 127 140 | 78.9% | 0.0435 | 0.0500
TABLE IV. SIMULATION RESULTS FOR ¥ = 0.1.
emax |, | KE | K* K Red. v gmax
0.90 | 6764 | 2435 | 2521 | 62.7% | 0.0996 | 0.0099
001 | 0.95 9604 | 3458 | 3562 | 62.9% | 0.0998 | 0.0097
0.99 | 16588 | 5972 | 6106 | 63.2% | 0.0998 | 0.0100
0.90 1691 609 650 | 61.6% | 0.0988 | 0.0196
0.02 | 0.95 2401 865 914 | 61.9% | 0.0990 | 0.0201
099 | 4147 1493 | 1560 | 62.4% | 0.0994 | 0.0203
0.90 271 98 108 | 60.2% | 0.0891 | 0.0537
0.05 0.95 385 139 151 60.8% | 0.0910 | 0.0544
0.99 664 239 262 | 60.5% | 0.0961 | 0.0540

iteration is executed. In the second iteration, the considered
sample size is Ky = Kyew,1 = 10108. After collecting the
required extra samples to reach the new sample size K3, a
new COR estimation Vo = 0.2104 is made. The absolute error
of this new estimation i8 €aps2 = [0.2 — 0.2104] = 0.0104,

which is still greater than the target £}%°. Based on the

estimated W, the new sample size is Kpcwo = 11023 >
K> = 10108, so a new iteration is executed. In the third
iteration, K3 = KAncw,Z = 11023 > K™ and the new
estimated COR is V3 = 0.2093, whose estimation error is
€abs,3 = [0.2 — 0.2093] = 0.0093 < 01>, Note that the third
iteration is the first iteration where the used sample size is
greater than the minimum required value K" and the absolute
estimation error is lower than the target £;%*. In the third
iteration, Kcw,3 = 10981 < K3 = 11023 and the algorithm
correctly stops since no more samples are required and the
desired level of accuracy has been achieved. As it can be
observed, the proposed algorithm is able to estimate the COR
with the desired level of accuracy, making use of a sample
size (K = 11023) that is close to the minimum required value
(K* = 10616) and significantly lower than the sample size
corresponding to a worst-case design (K .. = 16588).

B. Performance of the iterative algorithm

The performance of the iterative algorithm is evaluated by
means of extensive simulations for ¥ = {0.05,0.1,0.2,0.5},
egmax — 10.01,0.02,0.05} and p = {0.90,0.95,0.99}. For

abs
each possible combination of ¥, 2% and p, a total of 10000
statistically independent repetitions of the same experiment are
performed. The obtained results are summarised in Tables III,

IV, V and VI for ¥ = 0.05, ¥ = 0.1, ¥ = 0.2 and ¥ = 0.5,

TABLE V. SIMULATION RESULTS FOR W = 0.2.
emex | p | Kioo| K* K Red. T gmax
090 | 6764 | 4329 | 4419 | 347% | 0.1999 | 0.0101
001 | 095 | 9604 | 6147 | 6256 | 34.9% | 0.1999 | 0.0097
099 | 16588 | 10616 | 10758 | 352% | 0.1999 | 0.0100
090 | 1691 | 1083 | 1126 | 33.4% | 0.1994 | 0.0196
002 | 095 | 2401 1537 | 1591 | 33.7% | 0.1996 | 0.0198
099 | 4147 | 2654 | 2724 | 343% | 0.1998 | 0.0200
090 | 271 174 189 | 303% | 0.1965 | 0.0491
005 | 095 | 385 246 265 | 312% | 0.1976 | 0.0500
099 | 664 425 452 | 31.9% | 0.1985 | 0.0516
TABLE VI. SIMULATION RESULTS FOR W = 0.5.
emax |, | KXo | K* K Red. v gmax
090 | 6764 | 6764 | 6764 | 0.00% | 0.4999 | 0.0099
001 | 095 | 9604 | 9604 | 9603 | 0.01% | 0.5000 | 0.0099
0.99 | 16588 | 16588 | 16587 | 0.01% | 0.5000 | 0.0100
090 | 1691 | 1691 | 1691 | 0.00% | 0.5002 | 0.0198
002 | 095 | 2401 | 2401 | 2400 | 0.04% | 04999 | 0.0200
0.99 4147 4147 4146 0.02% 0.5000 0.0202
090 | 271 271 270 | 037% | 05003 | 0.0502
005 | 095 | 385 385 384 | 0.26% | 05002 | 0.0497
099 | 664 664 663 | 0.15% | 0.5002 | 0.0495

respectively. It is worth noting that the results obtained for
¥ = ( are similar to those obtained for ¥ = 1 — (. Therefore,
only results for COR values ¥ < 0.5 are shown. The results
in Tables III (¥ = 0.05), IV (¥ = 0.1) and V (¥ = 0.2) are
also valid for ¥ = 0.95, ¥ = 0.9 and ¥ = 0.8, respectively.

The columns of each table show the following informa-
tion: desired maximum absolute error £,;%°, desired level of
confidence p, sample size required in the worst case K.,
sample size required for the actual COR K*, average sample
size predicted by the proposed iterative algorithm K (i.e.,
sample size at which the algorithm stops, averaged over all
repetitions), percentage by which the sample size K reduces
the sample size required in the worst case Ky, average
estimated COR ¥ (i.e., COR estimated by the algorithm,
averaged over all repetitions), and maximum absolute error
~max

observed in the simulation in a fraction p of the cases £,;".

As it can be appreciated, the iterative algorithm is able
to predict accurately the minimum sample size required to
estimate the COR. The predicted sample size K is always
greater than (or equal to) the minimum required size K™,
which is necessary in order to estimate the COR with the
desired level of accuracy. However, K is just slightly greater
than the optimum value K™ (in most cases, K is only about 2-
5% greater than K ™). Therefore, the sample size K predicted
by the algorithm is a very close approximation to the optimum
value K*. As a result, the proposed algorithm enables a sig-
nificant reduction of the number of samples K . that would
have been taken under a worst-case design, and therefore a
significant reduction in the time required by a DSA/CR system
to estimate the COR. For ¥ = (.5 there is no reduction since
this is indeed the worst possible case. However, the reduction



can be very important for lower (higher) CORs: 30-35% for
¥ = 0.2 (¥ = 0.8), 60-63% for ¥ = 0.1 (¥ = 0.9), and
77-81% for W = 0.05 (¥ = 0.95). However, this significant
reduction of the employed sample size does not come at the
expense of a degraded estimation accuracy since, at it can be
appreciated, the estimated COR is in all cases very close to the
real COR and its degree of accuracy £ is in line with the
target €, . Therefore, the proposed algorithm is able not only
to estimate the COR of an unknown primary channel with a
specified level of accuracy but also to do so with a sample size
that is very close to the minimum/optimum size required for
the actual COR, thus providing significant reductions in the
amount of time required to provide a reliable COR estimation.

It is also worth noting that the average number of iterations
required by the algorithm to find the right value of K is 2.75,
which does not depend on the operation conditions. Therefore,
the computational cost of the algorithm itself is very low and
can therefore be employed even if the DSA/CR system oper-
ates over a large number of primary channels. Furthermore,
the computational cost of collecting a large number of sensing
samples and computing their average in order to estimate
the COR can be significantly higher that the computational
cost of iterating the proposed algorithm 2-3 times. Since the
proposed algorithm leads to a significant reduction of the
required sample size, it can be stated that its application also
results in a reduction of the overall computational cost of
estimating the COR of a primary channel.

VI. DISCUSSION

An interesting observation from (12) is that the primary
channels that are more attractive to DSA/CR systems (i.e., with
low CORs) require a smaller sample size and can be identified
faster. The algorithm proposed in this work enables DSA/CR
systems to effectively find primary channels with low CORs
faster, regardless of the employed search strategy.

For instance, the DSA/CR system may scan several primary
channels in parallel until the channel with the lowest COR is
identified reliably (i.e., with the desired level of accuracy). The
proposed algorithm guarantees that the first COR estimated
reliably will be the lowest one. The DSA/CR system can then
select that channel, thus finding the channel with the lowest
COR in the shortest time. It may also happen that the first
COR estimated reliably corresponds to a channel with a high
COR (e.g., ¥ = 0.05 and ¥ = 0.95 require the same sample
size). In such a case, the DSA/CR system can discard channels
with high COR values and keep scanning the rest of channels,
which also helps reducing the channel search time.

The DSA/CR system may also scan several primary chan-
nels sequentially until a channel with a COR lower than a
certain target is found (e.g.,.U < 0.2). The sample size K*
required for the target COR can be determined based on
(12). Once K* samples have been collected, if the proposed
algorithm determines that more samples are needed (based
on the test performed in step 6), then that means that the
actual COR is greater than the target COR. In such a case the
DSA/CR system can discard the channel and scan a new one
(i.e., there is no need to spend more time scanning the current
channel), which in practice reduces the total time required to
find a channel that meets the needs of the DSA/CR system.

VII. CONCLUSIONS

This work has analysed the sample size required to provide
a reliable estimation of the COR of a primary channel and has
proposed an algorithm that enables DSA/CR systems to make
arbitrarily accurate estimations of the real COR of unknown
primary channels using the essential minimum number of
sensing samples, which can reduce significantly the search
time required to find an adequate channel of operation.
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