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Abstract 

 

S100P is overexpressed in a number of different cancers and this overexpression has been 

shown to be associated with a significant decrease in patient survival. This decrease in 

survival is thought to be due to unregulated high levels of S100P within the cells of the 

primary tumour resulting in an increased risk of metastasis. In this thesis it is 

demonstrated, in an S100P-inducible cancer cell system, that overexpression of S100P 

decreases cell-extracellular matrix adhesion and increases cell migration and invasion. 

These effects caused by overexpression of S100P are shown to be dependent on the 

breakdown of NMIIA-containing cytoskeletal filaments and are coupled with a reduction in 

the abundance and alteration in the distribution of immunofluorescently-stained focal 

adhesions. In order to determine whether there were any alterations in the abundance of 

proteins within S100P-overexpressing cells, whole cell mass spectrometry was utilized 

which yielded several proteins although none that would directly account for the observed 

reduction in cell adhesion. A novel adhesome isolation technique is presented using both 

non-ionic detergents and hydrodynamic shearing which was used to study the effect of 

overexpression of S100P on the cell adhesome fraction. Western blotting of this cell 

fraction showed that S100P-overexpression did not cause any changes in the abundance of 

core focal adhesion proteins. However, mass spectrometry of the cell adhesome did 

identify several key proteins, the cellular level of which was significantly altered due to 

S100P-overexpression. In particular, the scaffold protein IQGAP1 was identified using this 

method, the redistribution of which can have substantial effects on cell dynamics. Finally it 

was determined that there was an alteration in the rate of focal adhesion maturation 

possibly due to a loss of NMIIA-mediated tension caused by S100P overexpression, as 

demonstrated by a reduction in the phosphorylation state of focal adhesion signalling 

proteins, linked to adhesion maturation. It is concluded that overexpression of S100P 

results in a breakdown of NMIIA filaments, which reduces cellular tension leading to a 

reduction in focal adhesion maturation which, in turn, leads to a reduction in the rate and 

strength of cell-extracellular matrix adhesion within this system. With a greater 

understanding of the way in which overexpression of S100P mechanistically affects the 

adhesive properties of carcinogenic cells, it may be possible to develop therapeutic drugs 

targeting these pathways, thus inhibiting the harmful effects of S100P overexpression in 

cancers. 
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Chapter 1 

 

Introduction  

 

1.1 Cancer 

It is well established that the initiation of cancer can be caused by a wide range of agents 

including genetic disposition, lifestyle factors, radiation, exposure to carcinogenic chemicals 

and ageing [1]. Exposure to these results in mutations within normal healthy cells, such 

that they take on oncogenic properties. These mutations are commonly either in proto-

oncogenes or tumour suppressor genes. In the former, such as genes like RAS, gene 

mutations result in increased activity of the protein, at which time they are referred to as 

oncogenes [2]. In many cases the increased expression of these proteins amplifies the 

effect they have on a cell. It is often common for such proteins to have functions that 

include: increasing cell proliferation, decreasing cell differentiation, decreasing cell 

adhesion, inhibiting apoptosis and promoting cell migration. All of these factors, when 

altered, can result in tumorigenesis [3]. Tumour suppressors are, in many ways the reverse, 

having functions that prevent or limit the aforementioned properties that would promote 

tumorigenesis. Mutations in tumour suppressor genes such as Retinoblastoma protein or 

p53 either lower or completely knock-out their activity, thus leading to an increased chance 

of the affected cells becoming carcinogenic [4, 5]. 

 Despite the incidence of cancer is increasing, early detection and improved drug 

treatments are allowing a larger percentage of people to survive. However, once the cancer 

has spread, treatment options are dramatically reduced as surgery is no longer as easy on a 

larger number of smaller tumours. The result of this is patient mortality increases 

significantly in these cases [6]. The process by which cancerous cells disseminate from the 



Chapter 1 Introduction 

2 
 

primary tumour and form secondary tumours elsewhere in the body is known as cancer 

metastasis.  

 

1.2 Cancer metastasis 

Metastasis is described as the spread of cancerous cells from one organ to another via 

either the circulatory or lymphatic system, these cells can then attach to the lining of the 

endothelium or other vessel walls and form secondary tumours [1]. Just as normal healthy 

cells require specific mutations in order to become tumorigenic, cancer cells from the 

primary tumour also require additional mutations, which cause specific cellular alterations 

in order to become metastatic. These cellular alterations produce an increase in cell 

migration, increased cell invasion, promotion of angiogenesis, increased epithelial to 

mesenchymal transitions and a decrease in cell adhesion [7, 8]. These factors for cancer 

progression are likely caused by a number of proteins in overlapping pathways forming a 

complex cascade which self propagates and causes cells to become more and more 

metastatic over time. This study is primarily focused on alterations which lead to cancer 

cells becoming more metastatic, as such each of these factors will be considered 

individually in more detail.  

 

1.3 Changes in cellular adhesion 

1.3.1 Cell-cell adhesion 

For cells to become metastatic, cells need to break away from the primary tumour, and a 

crucial first step is breaking or inhibiting the adhesion sites which bind cells together [9]. 

Cell-cell intracellular adhesions are divided into three main groups:  adherens junctions, 

tight junctions and desmosomes [10]. The first group, adherens junctions are composed of 

two distinct protein families; cadherins and catenins (Figure 1.1) [11]. The former are 

transmembrane polypeptides of about 730 residues in length, consisting of a small 

intracellular component, a transmembrane region and a large extracellular domain [12]. 

Cadherins form calcium-dependent extracellular linkages between one another, adhering 

adjacent cells together, with the action of this linkage being dependent on the specific 

cadherins [13]. The family of cadherins encompasses over 100 different proteins. Many 
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cadherins are given single letter designations depending on their tissue specificity, e.g. P-

cadherin (placental), H-cadherin (heart) [14].The two most common cadherins are E-

cadherin and N-cadherin. E-cadherin (epithelial) is located in all epithelial tissues, whereas 

N-cadherin (neural), which was originally discovered in neurons, is present in other cell 

types, crucially including mesenchymal cells [15-17]. Catenin proteins are structural 

cytoplasmic proteins and occur as two major types: α-catenin and β-catenin [18, 19]. The 

former α-catenin type forms a linkage between β-catenin and the actin cytoskeleton, while 

β-catenin also binds to the cytoplasmic tail domain of cadherins. In this manner a chain is 

formed between two cells, where their cadherins bind extracellularly and then catenins 

bind this linkage intracellularly to the actin cytoskeleton [11]. In many ways this form of 

cell-cell binding is analogous to the way in which integrins activate during cell-extracellular 

adhesion by binding of talin. Similar to that system, the structural adhesion proteins alpha-

actinin and vinculin are recruited to strengthen and organise the intracellular actin linkages 

formed by the adherens junction [20, 21]. 

 Tight junctions act in a very different manner, whereby the junction firmly holds 

the cell membrane of two cells together, so they are in contact, acting as a physical barrier 

[22]. This physical barrier prevents the passage of extracellular ligands, other diffusible 

molecules and controls ion passage between bound cells [23]. This function allows for tight 

regulation of the molecules which pass through a particular tissue and into other cellular 

compartments. These junctions are primarily formed from three transmembrane proteins: 

occuldin, tricellulin and junction adhesion molecule proteins (JAM) (Figure 1.1) [24]. These 

proteins complex at the cell membrane, with their extracellular domains binding to their 

complementary protein on adjacent cells. The intracellular domains of each bind to zonula 

occludens (ZO) proteins which, in turn, bind to the actin cytoskeleton [25].  

 Lastly desmosomes form cell-cell junctions with the aim of reducing mechanical 

and shearing stresses on the cells [26]. They contain desmocollins (1-3) and desmogleins (1-

4), which are members of the cadherin protein family (Figure 1.1). These proteins form 

heterodimeric transmembrane linkages, where their extracellular domains bind to 

complementary homotypic partners from adjacent cells [27]. On the intracellular side, 

desmocollin and desmoglein bind to plakoglobin-containing and plakophilin-containing 

dense plaques [28, 29]. These plaques consist of two parts, outer and inner, where the 

outer part binds to the desmocollin and desmoglein, and the inner part binds to 
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desmoplakin. Desmoplakin then binds to intermediate filaments within the cell 

cytoskeleton [26].  

 In the context of cancer metastasis, deregulation of the above adhesion junctions 

allows cells to break away from the primary tumour more easily. At the cell-cell interface 

alterations in the cadherin or catenin, adherens junction proteins is also indicative of an 

epithelial to mesenchymal transition (EMT), a key hallmark in the progression of epithelial 

cancers (see Section 1.5). The breakdown of adherens junctions not only has a significant 

structural impact, but also results in increased cytoplasmic β-catenin which, through the 

Wnt signalling pathway, is able to promote expression of additional EMT proteins[30]. In 

tight junctions a loss or reduction of occuldin or claudin results in a loss of cell polarity and 

an increase in cell proliferation, and their loss has been associated with cancer cell 

metastasis [31-33]. Mutations in the genes expressing desmosomal proteins such as 

desmoplakin results in a similar situation to that found in adherens junctions, where there 

is promotion of the Wnt signalling pathway and, therefore, increased EMT protein 

production [34, 35]. A reduction in the desmosomal proteins has also been associated with 

a decrease in cell adhesion, an increase in cell invasion and promotion of cancer metastasis 

[36, 37]. For these reasons it is extremely common to find that cells in secondary tumour 

sites have undergone substantial loss of all three of these cell-cell junctions.  
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Figure 1.1. Cell-cell adhesion junctions in epithelial cells. Schematic representation of the 

way in which adherens junctions, tight junctions and desmosomes form cell-cell adhesions 

in epithelial cells. Abbreviations used are: junctional adhesion molecule (Jam), zonulae 

occludentes complex (ZO complex). Figure adapted from Neunlist, M. et al., 2012 [10] 

 

1.3.2 Cell-extracellular matrix adhesion 

The mechanism by which cells adhere to the extracellular matrix is complex and has been 

an area of intense research over the last 10 years. There are over 200 molecules that make 

up cell-extracellular matrix adhesion sites and up to as many as 800 proteins and roughly 

500 phosphoproteins, depending on how the adhesive cell fraction analysis was carried out 

[38-40]. These proteins have all been identified to have a role in cell to extracellular matrix 

adhesion and many of them form structural and signalling-based complexes at the cell 

membrane [41]. In its most simplistic form, cell-extracellular matrix adhesion takes place 

via integrin binding to the extracellular matrix which, via focal adhesion proteins, forms a 
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linkage to the cell cytoskeleton. This integrin and focal adhesion-based form of adhesion 

takes place in three phases: adhesion initiation, maturation and degradation [21, 42, 43].  

 

1.3.2.1 Adhesion initiation 

The first stage in cellular adhesion to the extracellular matrix is initial binding. This binding 

is initiated when protrusions from the cell's lamellipodium extend outwards from the cell 

during cell migration forming filopodia [43, 44]. Initial cell binding is undertaken by binding 

of the integrin receptor to the extracellular matrix along the periphery of a filopodia which 

protrudes from the cell at the leading edge [45]. 

 Integrins are a family of transmembrane heterodimeric receptor proteins which 

bind the cell to the extracellular matrix via their extracellular domains [21]. The structure of 

each integrin consists of 3 main parts, the first is a large globular extracellular domain, 

which binds to the extracellular matrix or to extracellular ligands. The second is a 

transmembrane region and the third is a short intracellular domain, which binds to the 

actin cytoskeleton through focal adhesion proteins. The heterodimeric structure of 

integrins consists of one α and one β subunit. There are a total of 18 α subunits and 8 β 

subunits with 24 known αβ integrin pairings (Figure 1.2). The various combinations 

determine tissue specificity, cellular distribution and to which component of the 

extracellular matrix the pair will bind (Table 1.1) [46, 47]. In many cases, the binding of 

integrins to the extracellular matrix is via the RDG motif recognition sites; these sites allow 

binding to fibronectin, vitronectin and fibrinogen [48].  

 Integrin activation, which is required for extracellular binding, involves a 

conformational change in the α and β subunits [40]. When inactive, the extracellular region 

of the integrin is bent and has a low affinity for extracellular ligands. When active, the 

extracellular regions straighten up and are considered to be in a high affinity state. Integrin 

inactivity is maintained by the α and β subunits associating with one another, forming a salt 

bridge between the two [21]. Activation takes place in two ways, either through initial 

binding to extracellular ligands, which is known as "outside-in" integrin signalling, or 

through the binding of intracellular adhesion proteins to the integrin's intracellular regions, 

which is known as "inside-out" integrin signalling [49-51]. Furthermore single molecule 

microscopy of integrins has shown that Integrins undergo fast free-diffusion while inactive 

and not bound into focal adhesions. It was also shown that integrin activation correlated 
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with integrin immobilization to the focal adhesion site, and that this process of diffusion 

and immobilization occurs in a cycle matching both the activation state of the integrin and 

formation of nascent focal adhesions. 

 

 

 

Figure 1.2. Integrin α and β subunit binding partners. Integrin alpha (α) subunits are 

indicated in red and beta (β) in green, with the blue lines indicating possible heterodimeric 

partners. Figure adapted from Bouvard et al., 2001 [52] 
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Integrin Extracellular binding ligands 

Integrin α1β1 Laminin, Collagen 

Integrin α2β1 Laminin, Thrombospondin, Collagen 

Integrin α3β1 Laminin, Thrombospondin 

Integrin α4β1 Thrombospondin, Fibronectin, Osteopontin 

Integrin α4β7 Fibronectin, Osteopontin 

Integrin α5β1 Fibronectin, Osteopontin 

Integrin α6β1 Laminin 

Integrin α6β4 Laminin 

Integrin α7β1 Laminin 

Integrin α8β1 
Fibronectin, Osteopontin, Vitronectin, 

Tenascin 

Integrin α9β1 Osteopontin, Tenascin 

Integrin α10β1 Laminin, Collagen 

Integrin α11β1 Collagen 

Integrin αIIbβ3 
Thrombospondin, Fibronectin, Vitronectin, 

Fibrinogen 

Integrin αDβ2 ICAM 

Integrin αEβ7 E-cadherin 

Integrin αLβ2 ICAM 

Integrin αMβ2 Fibrinogen, ICAM 

Integrin αVβ1 Fibronectin, Osteopontin, LAP-TGF-β 

Integrin αVβ3 Thrombospondin, Fibronectin, Osteopontin, 

Bone sialoprotein, MFG-E8, Vitronectin, 
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Tenascin, Fibrillin, Fibrinogen, LAP-TGF-β 

Integrin αVβ5 
Osteopontin, Bone sialoprotein, MFG-E8, 

Vitronectin 

Integrin αVβ6 Fibronectin, Osteopontin, LAP-TGF-β 

Integrin αVβ8 LAP-TGF-β 

Integrin αXβ2 Fibrinogen, ICAM 

 

Table 1.1 List of integrins with their known extracellular binding ligands. List taken from 

Humphries, J.D. et al., 2006  [53] 

 

  1.3.2.1.1 Inside-out integrin activation 

Inside-out integrin activation is more common in situations where cells are in close 

proximity to the integrin extracellular ligands, but activation is only required in response to 

specific external stimuli [51]. An example of this would be in the circulatory system where 

cells in the blood need only bind to the vascular walls as a wound response or due to 

inflammation [54]. Indeed this has been shown in platelets containg the inactive platelet 

integrin αIIbβ3 which is activated by this mechanism [55].  

In the "Inside-out" integrin mechanism, talin, an actin binding and structural 

adhesion protein binds to the NPxY motif on the intracellular region of the β integrin 

subunit [56]. Talin is found in two forms distinct isoforms, talin-1 and talin-2, both of which 

are large proteins at ~270 kDa [57]. The N-terminal head domain of talin is ~47 kDa and 

contains a FERM ((F) 4.1 protein, (E) ezrin, (R) radixin, (M) moesin) domain which binds to 

the NPxY motif of the β integrin [58, 59]. Talin also has a long (~220 kDa) C-terminal rod 

region, which contains multiple binding sites for other structural and signalling-based 

adhesion proteins. Included amongst these binding sites is one for vinculin, which is only 

activated when the talin tail is exposed to tensile force and an actin binding site [60-62]. 

Upon binding of talin to the β integrin tail, there is destabilisation of the salt bridge 

between the two integrin subunits and this destabilisation results in an extracellular 

conformational change which promotes binding to the extracellular matrix [63, 64]. Other 
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proteins are also able to bind in a similar manner to talin, such as Dok1 and tensin; 

however, binding of these proteins does not result in the conformational activation of the 

integrin. This difference is because the integrin-binding FERM domain on talin contains four 

subdomains F0, F1, F2 and F3. The last of these domains, F3, is unique to talin and assists in 

additional binding to a proximal site on the β integrin tail [58, 65]. This binding is achieved 

by the F2 and F3 subdomains acting in tandem to form the bond with integrin-binding site 

1 (IBS1). The correct positioning of F3 during IBS1 binding is required in order to facilitate 

correct binding of the F2 subdomain [66]. 

 The activation of integrins via the "Inside-out" pathway is tightly regulated. Talin, 

when not bound to integrins, is located in the cytoplasm in an inactive, auto-inhibitory 

form, which cannot bind to the β integrin tail [66, 67]. This auto-inhibition is caused by the 

N-terminal F3 subdomain of talin being bound to a region of its C-terminal rod. 

Homodimerization of talin takes place when in this inactive form and this self association 

masks the remaining integrin binding sites [68]. The way in which talin becomes activated is 

still not fully understood. The best current hypothesis is that phosphatidylinositol 4,5-

bisphosphate (PIP2) interrupts talin auto-inhibition and sequesters it to the membrane, 

where it binds to the β integrins [69]. PIP2 regulation is mediated by PIP-kinase type 1γ 

which, when bound to talin, results in increased expression of PIP2. Talin activation and 

recruitment to the plasma membrane can also be mediated by Rap1-GTP-interacting 

adaptor molecule (RIAM) which contains an N-terminal domain which binds to and 

activates talin [70, 71]. These two pathways interact, in that RIAM is sequestered to the 

plasma membrane by Rap1A which is recruited by increased PIP2.  

 Besides talin, integrins can also become activated by kindlins. Like talin, kindlins 

have a FERM domain which contains the all important F3 subdomain; this F3 subdomain 

allows binding to β1, β2 and β3 integrin tails [72]. However, unlike talin, kindlins alone are 

not sufficient to form focal adhesions, since they are unable to bind to the actin 

cytoskeleton. In vitro experiments have demonstrated that a complex is formed between 

the NxxY motif on the β integrin and the FERM domains of both kindlin and talin [73, 74]. 

Knock-down experiments have shown that kindlin alone is not sufficient to activate fully 

the integrins. Moreover, in the absence of kindlin, the ability of talin to activate integrins 

was also diminished, with the overall binding affinity of the extracellular integrin being 

reduced [75, 76]. The net result is that for full activation of integrins from a low affinity to a 
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high affinity state in the "Inside-out" signalling model, both talin and kindlins are required 

[57].  

 

1.3.2.1.2 Outside-in integrin activation 

When ligands of the extracellular matrix bind to the extracellular domains of the integrin 

proteins, a signal is transmitted altering the intracellular domains and affecting the 

adhesion signalling cascade [21]. Similar to the "Inside-out" pathway, talin is recruited first 

and this molecule completes a structural chain from the extracellular matrix to the actin 

cytoskeleton. Once this chain is formed, a nascent adhesion is said to have formed, after 

which a large number of proteins bind and interact with the early adhesion, as will be 

discussed later in adhesion maturation. This manner of integrin activation and adhesion 

initiation is more common in cells which are present in an ECM rich environment [77, 78]. 

In these situations the reduced affinity of the inactive integrins is lessened by the 

abundance of the ECM proteins. 

 

1.3.2.1.3 Syndecans in cell adhesion  

Syndecans are transmembrane proteoglycans, which act as co-receptors with 

transmembrane proteins such as integrins and growth factor receptors. There are four 

members of the syndecan family with syndecans 1-3 having tissue-specific expression and 

syndecan 4 being expressed ubiquitously across all tissues [79]. Structurally syndecans 

consist of a small cytoplasmic domain, which contains two conserved regions, present in all 

syndecan isoforms, and a variable region, which is distinctive for each isoform. Each 

syndecan has a single transmembrane domain leading to an extracellular protein core 

bound to three to five glycosaminoglycan chains (heparan sulfate or chondroitin sulfate), 

depending on the isoform. These long, flexible extracellular glycosaminoglycans allow for 

interactions with ligands that are slightly more distant from the membrane or are very 

dilute, as well as with key extracellular matrix proteins [80]. Functionally syndecans can 

perform several roles, the first of which is in growth factor receptor activation via binding 

of the extracellular glycosaminoglycans to ligands such as FGFs, VEGF, TGF-β and EGFs. The 

second main function is in promoting cell to extracellular matrix adhesion via binding to 
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structural extracellular matrix proteins, such as collagens I, III and V, fibronectin, 

thrombospondin, and tenascin. 

  In regards to focal adhesion initiation, it has been previously shown that cells 

grown on fibronectin are dependent on both integrin activation (α5β1) and syndecan 4 for 

formation of a nascent adhesion [81]. The manner in which this takes place is due to 

syndecan 4 activating PKCα and localising it to a newly-forming adhesion site, where it 

stimulates the Rac-Rho pathway. This happens by syndecan 4 binding fibronectin via its 

extracellular glycosaminoglycan chains; this allows the cytoplasmic variable region of 

syndecan 4 to bind to the kinase domain of PKCα, in conjunction with the inositol lipid PIP2. 

This activated tertiary complex, in conjunction with activated integrins, is then able to 

activate Rac1 which, in turn, promotes focal adhesion formation, although the exact 

manner in which the syndecan PKCα complex promotes this activation is still unclear [82, 

83]. Furthermore, it has been shown that once activated by extracellular matrix binding, 

syndecan 3 can activate FAK and SRCn, and it has been proposed that syndecan 4 is likely to 

possess the same ability. Again the exact manner in which this takes place is not known, 

although there is also evidence of syndecan 4 contributing to FAK regulation. FAK is 

activated by autophosphorylation at Y397, and in syndecan 4 knockout experiments it has 

been shown to be significantly inhibited, resulting in reduced cellular adhesion[82]. 

 

1.3.2.1.4 Adhesion initiation and cancer metastasis  

Within a tumour, a reduction in cell adhesion is often associated with local invasion, since 

cells can break away more easily from the surrounding cells of the tumour and from the 

extracellular matrix to which they are anchored [1]. With regards to adhesion initiation, 

changes in the integrins present within the cell can drastically change the adhesive 

phenotype. In metastatic cells, there is a reduction in the level of expression of integrins 

which bind cells to the basement membrane, such as α6β4 and α6β1. In place of these 

integrins, there is an increase in the abundance of β1-containing integrins that bind RGD, 

the overabundance of which is associated with a disruption of cell-cell E-cadherin adhesion 

junctions [84-86]. The fibronectin-binding integrin, α5β1 is also often overexpressed in 

these cells to promote further cell migration [87]. Metastatic cancer cells are frequently 

observed to produce additional fibronectin, which allows for increased cell migration by 

binding these specific integrins. Other integrins can become overexpressed, such as αVβ6 
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and αVβ8, both of which have been observed in colon, lung and liver cancers [88]. In the 

αVβ6 and αVβ8 cases, a greater abundance of these integrins results in increased secretion 

of TGFβ, an important protein, which can promote EMT and angiogenesis (Section 3.4) [89]. 

Lastly α6β4 is overexpressed in a number of cancers, and its overabundance is associated 

with increased cell proliferation, migration and invasion [90-92]. All of these alterations in 

integrin abundance highlight how important tight regulation of adhesion initiation is within 

the cell. 

 

1.3.2.2 Adhesion maturation 

Following integrin activation, the binding of talin and the formation of nascent adhesions 

linking the extracellular matrix to the actin cytoskeleton (Figure 1.3), several other 

structural and signalling-based adhesion proteins bind or interact with the newly formed 

adhesion sites. These nascent adhesion sites have a very rapid turnover, being created and 

broken down in ~60 seconds in migrating cells. Nascent adhesions consist of talin, vinculin, 

α-actinin, paxillin [93] and FAK [94], along with other signalling-based proteins such as SRC.  

 

1.3.2.2.1 Nascent adhesions 

The first amongst the proteins to bind after integrin activation and talin binding is vinculin, 

a 117kDa cytoskeletal scaffold protein involved in focal adhesion maturation, as well as in 

stability of cell-cell adherens junctions. Structurally vinculin consists of: a globular C-

terminal head domain which is able to bind to talin and α-actinin; a mid proline-rich neck 

region that binds VASP, vinexins and ponsin; and an N-terminal tail domain which, in turn, 

binds F-actin, PIP2 and paxillin [95]. The primary role of vinculin within the focal adhesion is 

to strengthen the integrin-talin-actin junction by forming a strong linkage between talin 

and the actin cytoskeleton. Inactive talin, not bound to integrins has its vinculin binding 

domain masked; however, due to a small amount of cellular tension exerted on talin by the 

integrin-actin junction, the binding site for vinculin is exposed allowing binding [61, 96].  

 α-actinin, a member of the spectrin superfamily, is an actin-binding protein which 

forms crosslinks between F-actin filaments . The N-terminal tail actin-binding domain (ABD) 

of α-actinin binds to a F-actin filament in an antiparallel homodimeric complex with 
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another α-actinin protein which binds to a second F-actin filament. This complex can then 

bind directly to talin-bound vinculin via the C-terminal domains which further strengthens 

the bond between the growing adhesion site and the actin cytoskeleton [97]. 

 Paxillin, a signal transduction adaptor and scaffold protein, is the first major 

adhesion scaffold and signalling protein that binds to the growing nascent adhesion, 

alongside FAK. The C-termini of paxillin contains four LIM (Lin11, Isl1, Mec3) domains which 

target paxillin to focal adhesion sites. The N-terminal domain contains five leucine aspartic 

acid repeat (LD) motifs, these act as protein binding/interacting domains, with specific LD 

motifs. These LD motifs are responsible for binding FAK, Src and vinculin, as well as other 

proteins that interact later in adhesion maturation, such as the IPP (ILK-PINCH-parvin) 

complex. Paxillin can also become phosphorylated at several tyrosine sites by FAK and 

these phosphorylations have implications in mediating later stages of adhesion maturation 

[98, 99]. 

 FAK is a tyrosine kinase, and the main signalling protein which results in the 

adhesion-mediated signalling cascades due to formation of focal adhesions. FAK activity is 

crucial during development of organisms and affects a large number of cellular processes, 

including cell-extracellular matrix adhesion, cell migration, control over cell polarity, cell 

proliferation and apoptotic pathways [94]. Structurally, FAK consists of a focal adhesion 

targeting domain (FAT) at the C-terminus, a central catalytic kinase domain and an N-

terminus containing a FERM domain (consisting of F1, F2 and F3 sub-domains). FAK can 

bind to the main nascent adhesion complex via the C-terminal FAT domain binding to the 

LD2 and LD4 sub-domains on paxillin's N-termini or to the F3 sub-domain on the C-terminal 

FERM domain of talin. There is also some evidence to suggest that FAK can bind to β-

integrins through the FERM domain, although the exact way in which this takes place is still 

not fully understood. FAK kinase activity is auto inhibited by binding of its FERM domain to 

a FERM binding site in the kinase domain. Full activation of FAK is achieved via 

phosphorylation of tyrosine 397 (Y397) near the N-terminus between the FERM domain 

and the kinase domain. Initial FAK activation is caused by autophosphorylation at Y397 is 

mediated by FAK binding to the proteins in the nascent adhesion, as described above. Upon 

phosphorylation, Y397 and an adjacent proline motif act as a recruitment and binding site 

for SRC. This binding of SRC to FAK is via its SRC homology 2 (SH2) and SRC homology 3 

domains (SH3) present on the C-terminal of SRC. Furthermore, SRC binding at this site 

enables src to phosphorylate FAK at Y925 which, in turn, increases FAK activity [100-102].  
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 SRC is a tyrosine kinase and acts as a proto-oncogene meaning that its 

overexpression, or activity has been linked with tumorigenesis.  SRC activity influences a 

wide range of cellular functions, including promoting cell survival, cytoskeletal integrations, 

angiogenesis, cell proliferation and cellular invasion [103]. This is achieved by interacting 

with a number of different signalling proteins and pathways including RAC/RHO signalling, 

RAS, MAPK, P13K, CAS and paxillin [104, 105]. A structural organisation of nascent 

adhesions is shown diagrammatically in Figure 1.3. 

 

 

Figure 1.3. Nascent cell-extracellular matrix adhesion. 

 

1.3.2.2.2 Adhesion complexes  

As cells continue to migrate forward forming new nascent adhesions at sites of filopodia, 

the majority of those adhesion sites are degraded; however, some begin to mature moving 

back to the lamellipodium–lamellum interface. These maturing adhesion foci are referred 
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to as focal complexes and are larger in size than nascent adhesions at roughly 1 μm. Focal 

complexes are also considerably more stable, being able to exist for several minutes after 

which they will either be broken down or continue to mature [42]. The control of nascent 

adhesion to focal complex maturation is still not fully understood, although it is known that 

binding to myosin stress fibres is required for focal complex maturation. RhoA signalling 

(Section 1.3.2.2.4) has also been implicated in the maturation of nascent adhesions, as it 

directly controls myosin contractions, actin polymerization, as well as other aspects of 

adhesion initiation and maturation [106-108]. Structurally, focal complexes are similar to 

nascent adhesions in that they contain a common set of proteins, with additional proteins 

such as the structural scaffold proteins, tensin and zyxin, which accumulate at these 

adhesion sites [109, 110]. These focal complexes contain a greater abundance of all the 

previously mentioned proteins due to integrin clustering and an expansion of the size, of 

the intracellular adhesion site along with cross linking of intracellular focal adhesion 

proteins. The first notable protein addition is a much greater abundance in α-actinin, since 

this protein is required to bind the focal complex tightly to the actomyosin stress fibres.  

 Tensins give increased structural strength to the growing adhesion site by binding 

β-integrins together, as well as binding them to F-actin filaments. The exact manner in 

which tensins are regulated and interact with adhesion sites is currently not fully 

understood, although it is observed in higher abundance in more mature adhesions [111]. 

Zyxin acts in a somewhat similar manner, since it is able to bind to F-actin and to α-actinin; 

however, it also has an important role in regulating actin dynamics. This regulation is 

achieved by active bound zyxin recruiting and directly binding to vasodilator-stimulated 

phosphoprotein (VASP). This binding is achieved either through proline rich FPPPPP motifs 

near the N-termini of zyxin, or via the C-terminal LIM domains [112]. VASP is able to bind 

several crucial signalling proteins, the most important of which is profilin, which is 

subsequently able to promote formation of ATP-actin monomers and add them to the free 

barbed ends of F-actin filaments [113, 114]. This results in increased actin polymerisation 

which strengthens the adhesion site, as well as being important in cellular migration. 

Crucially profilin activity is also mediated by RhoA signalling (Section 1.3.2.2.4), although 

the manner in which zyxin and VASP are regulated is less well understood [115]. 

 The signalling cascade continues to grow as adhesion complexes mature further, 

with other signalling complexes such as the ILK/PINCH/parvin complex (IPP) which binds to 

paxillin, being added to the adhesion site. These additional proteins mediate a wide range 
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of cellular processes and, as such, disruptions in adhesion maturation at this stage can 

cause alterations in many pathways [116]. 

 

1.3.2.2.3 Focal adhesions and fibrillar adhesions  

If the focal complexes are not degraded, they continue to mature and move further back 

into the cell lamellum via mediated myosin tension. At this stage, they are referred to as 

mature focal adhesions and are typically elongated in the direction of cell migration, being 

roughly 2μm wide and 3-10 μm long. Focal adhesions are attached to myosin-containing 

ventral stress fibres and act as the strongest anchoring points for the cell [117, 118]. They 

are also the points where the highest contractile forces from the myosin fibres are exerted. 

Structurally, focal adhesions are very similar to adhesion complexes, but contain a larger 

abundance of all the core structural proteins and have increased integrin clustering. As the 

cell moves forward, over the focal adhesion sites, the focal adhesions slowly move 

backwards towards the trailing edge of the cell, where they are then disassembled.  

 In environments which are rich in fibronectin, cells are also able to form highly 

elongated fibrillar adhesions which are a specialised form of focal adhesion dependent on 

the presence of fibronectin. These are the strongest of all focal adhesion, containing a large 

abundance of tensins and are not present in highly migratory cells. They also have a 

secondary function, whereby they are involved in fibronectin matrix assembly and 

reorganization of the extracellular matrix [119].  

 

1.3.2.3 Myosin structure and function 

Myosins encompass a large family of ATP-dependent motor proteins and are best known 

for their role in actin contractibility, both in muscle fibres, as well as within many migratory 

cell types. In total there are 18 distinct forms of myosin, many of which are not involved in 

actin contractions, but instead walk along actin cables transporting large intercellular 

components like vesicles or organelles[118]. Myosin II is the main myosin involved in actin 

contractibility and is found in two sub-types, muscle myosin and non-muscle myosin. 

Structurally myosin II is a homodimer and consists of 3 distinct pairs of polypeptides. The 

first of these are two large (230 kDa) myosin heavy chains, each of which have a long C-
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terminal tail that is helically coiled to the adjacent heavy chain. These heavy chains also 

contain an N-terminal globular head domain, which contains the binding site for both ATP 

and actin. Bound to the head domain of the heavy chain are 2 essential light chains, one on 

each chain which stabilises the heavy chains. Lastly there are 2 regulatory light chains 

which bind to the neck region of the heavy chain, between the globular head and coiled 

alpha helix. While these regulatory chains are unphosphorylated, myosin II folds in on itself 

in a compact, inactive form. In this form the globular head domains are still able to bind 

actin, however, myosin polymerization is not possible, as the alpha helix tails are folded. 

Upon phosphorylation of these chains at Ser19, the full myosin structure unfolds, allowing 

polymerisation in a bipolar manner via interactions between the helical tail domains on 

adjacent myosin molecules (Figure 1.4). While in this phosphorylated, polymerized state, 

actin which is bound to the heavy chain head domain, is moved in an anti-parallel way due 

to the ATPase activity of the myosin head domain initiating a conformation change. 
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Figure 1.4. Structure of Myosin II. Schematic representation of myosin II structure showing 

a dimerised inactive and active form. Figure adapted from Vicente-Manzanares, M. et.al 

2009 [118]. 

 

1.3.2.3.1 NMII isoforms 

Normal mammalian cells are able to express three forms of non-muscle myosin, although 

the abundance of each is dependent on the cell type. Three different genes code for these 

non-muscle myosins; myosin heavy chain 9, 10 and 11, which lead to the production of 

non-muscle myosin heavy chain IIA, IIB and IIC [118]. The whole myosin molecule with 

associated light chains is then referred to by its respective heavy chain isoform. In regards 

to function, there are two main properties that define NMII activity and distinguish the 

three isoforms. The first is actin activated ATPase activity, which is measured by the 

increase in ATPase activity of NMII when bound to actin. For this, NMIIA has the highest 

activity and as such is able to pull on actin cables more quickly than the other isoforms. The 
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second property is duty ratio, which is the amount of time that NMII can remain bound to 

actin in a force creating form. NMIIB has the highest duty ratio of the isoforms making it 

specialised in exerting tension for longer periods of time than NMIIA. 

 

1.3.2.4 Regulation of maturation of cell-extracellular matrix adhesion  

The regulatory mechanisms by which cell-extracellular matrix adhesion foci mature is not 

fully understood, although it is known that maturation from a nascent adhesion to a focal 

adhesion is not unidirectional, but dynamic. In this manner, adhesion sites grow and 

disperse depending on both the signals involved as well as the tension that is being exerted 

upon them. In most cases, once adhesion foci begin to disassemble they are fully 

disassembled, although it has been shown that this is not always the case and that they can 

re-assemble depending on fluctuations in the abundance of zyxin and tensins [120]. It is 

also worth noting that not all cell types exhibit all forms of adhesion foci, with highly motile 

cells such as neutrophils and macrophages exhibiting only nascent and adhesion complexes 

[42]. 

 It is clear that in order for focal adhesions to become fully mature, tensile force 

must be exerted upon the adhesion site via myosin contractions. The main regulator 

involved in this process is the RhoA signalling pathway, through which the contractile 

forces of NMIIA and NMIIB-containing actomyosin fibres is controlled [108, 121]. The effect 

of these myosin contractions has also been linked to increased adhesion maturation via 

phosphorylation of adhesion proteins. Increased tension on integrins due to myosin 

contractions has been shown to increase phosphorylation of FAK at Y397, which, while 

bound with SRC, subsequently promotes phosphorylation of paxillin at Y118 and Y31. The 

result of these phosphorylations is an increase in the rate of recruitment of focal adhesion 

proteins to the adhesion sites [99]. Specifically, this has been shown to be the case with 

vinculin recruitment, as well as with focal adhesion intermediates such as p130CAS-CRK 

and G protein-coupled receptor kinase interacting ArfGAP (GIT)–β-Pix; this in turn increases 

the rate of adhesion maturation and promotes integrin clustering and more structurally 

stable adhesion sites [122].  
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1.3.2.4.1 RhoA signalling 

RAS homologue gene family member A (RhoA) is a GTPase protein, known to control the 

actin cytoskeleton and affect cellular tension via interactions related to stress fibres, as well 

as it having effects on cell proliferation [123]. RhoA influences these factors via interactions 

with 3 crucial proteins: ROCK1, Rac1 and DIAPH (Figure 1.5). In the case of the first protein, 

RhoA activates ROCK1, which in turn promotes phosphorylation of myosin light chain (MLC) 

by inhibiting directly myosin light chain phosphatase (MLCP). When MLC is phosphorylated, 

it binds to myosin filaments allowing phosphorylation of the myosin filament at S19 and 

T18, which results in the formation of crossbridges between myosin and actin. This binding 

results in contraction of the actin cytoskeleton, which increases cellular tension. This 

increased tension, in turn, promotes maturation of focal adhesions. Activated ROCK also 

phosphorylates PIP5K and this phosphorylation results in increased PIP2. The increased 

PIP2 leads to increased activation of talin and, therefore, increased initiation of focal 

adhesions, and binding of vinculin, which promotes adhesion maturation [107, 124]. 

 RhoA further enhances this pathway by inhibiting Rac1, which results in decreased 

PAK2 activity. PAK2 is able to phosphorylate myosin light chain kinase (MLCK) which, in 

turn, inhibits MLCK's action as a kinase for MLC (Figure 1.2). The end result of the inhibition 

of Rac1 is, therefore, an increase in the abundance of phosphorylated, active MLC which is 

able to bind myosin filaments. Inhibition of Rac1 by RhoA results in a reduction in focal 

adhesion initiation and maturation in an inverse manner to ROCK signalling. Thus, inhibition 

of Rac1, inhibits activation of PIP5K, and therefore reduces PIP2 which results in less talin 

being activated and less binding of vinculin to mature focal complexes [125]. 

 Finally, RhoA activates Protein diaphanous homolog 1 (DIAPH1) through preventing 

its auto inhibition and localising it to the adhesion sites. Active DIAPH1, via its FH1 domain 

then binds profilin which, in turn, binds to monomeric actin and promotes actin 

polymerization. The increased actin polymerization produces a larger amount of 

filamentous actin (F-actin) within the cell, and this increase in F-actin enhances cell 

migration by promoting more F-actin at the lamellipodia. A diagrammatic summary of the 

full pathway is shown in Figure 1.4 [107]. 
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Figure 1.5. RhoA signalling pathway showing the cascade effects that lead to cellular 

alterations. Abbreviations used are: Protein diaphanous homolog (DIAPH), vinculin (vin), 

talin (tal), myosin light chain (MLC), myosin light chain kinase (MLCK) and myosin light chain 

phosphatase (MLCP). 
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1.4 Changes in cell migration 

Cells migrate by the extension of filopodia from the leading edge of the cell membrane 

followed by attachment of the protruding filopodia to the basal substrate via either inside-

out or outside-in activation of integrins. The integrins then bind to the substratum and 

form focal adhesions [126-128]. An intracellular adhesion protein, talin, is recruited to form 

these nascent adhesions, creating a bridge between the extracellular matrix and the actin 

cytoskeleton [55, 57, 126]. Once this attachment is formed, and the focal adhesions begin 

to mature, tensile forces created by the actomyosin cytoskeleton pull the cell in the 

direction of the leading filopodia, while at the same time, adhesion complexes at the 

trailing edge of the cell are disassembled. The rate at which this process takes place is 

dependent on a number of factors, primary amongst these is the polymerisation of actin in 

the lammellipodia, as this is required for adhesion maturation [129-131]. As discussed 

previously, it is the depolymerisation of actin at the trailing end of the cell, which, 

combined with integrin clustering, exerts force on the talin-actin junction, promoting 

recruitment of vinculin to talin and thus initiating early focal adhesion maturation [132]. 

Adhesion maturation is important, since this provides a much stronger anchoring point for 

the cell, so that it can exert a greater pulling force and drive the cell forwards. 

 Mature focal adhesions are strongly bound to the actin cytoskeleton and myosin 

contractions pull tightly on the actin structures, promoting the formation of stress fibres. 

This process is also mediated by changes in RhoA, ROCK and Rac1, all of which can affect 

adhesion maturation and actin polymerization, as well as controlling the strength and 

frequency of myosin contractions via myosin light chain (MLC) [108, 133]. Stress fibres 

consist of 10 - 30 short actin filaments bundled together through cross-linking with α-

actinin, which are then bound to myosin II [134]. There are three main types of stress fibres 

that are formed due to cellular tension; transverse fibres, dorsal fibres and ventral fibres 

[135]. The first of these fibres form just behind the lamellipodium at the leading edge of 

the cell and are not bound to any focal adhesion [133, 136]. These transverse stress fibres 

contain a repeating α-actinin-myosin pattern, where both myosin IIA and IIB are present, 

and convey contractile forces to the cell through their interaction with dorsal stress fibres. 

Crucially, since transverse fibres are not bound to adhesion sites, they are able to move 

from the leading edge to the centre of the cell during migration in a process known as 

retrograde flow. This process acts in a wave-like motion as the cell migrates forward. Dorsal 

stress fibres form at the leading edge of the cell and bind to newly formed focal adhesion 
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sites. Unlike transverse and ventral fibres, dorsal fibres very rarely contain myosin II and, as 

a result, they are unable to contract. Although the dorsal fibres lack this contracting ability, 

their role is crucial in binding to the focal adhesions and force is still exerted on them by 

contractions of transverse stress fibres. Lastly, ventral stress fibres contain both actin and 

large amounts of myosin IIB. They are attached to focal adhesion sites at both ends of the 

stress fibre and are generally located near the trailing edge of the cell. These strong stress 

fibres exert the major contractile forces which drives cells forward during migration. It is 

known that all of the above forms of stress fibres can interact and bind to one another, 

although the mechanism by which this takes place is still largely unknown [137-139]. A 

diagrammatical representation of these stress fibres in the context of a migrating cell can 

be seen in Figure 1.6. 

 In the context of metastasis, several alterations can take place that promote 

increased cellular migration [140]. One pathway that is frequently altered involves RhoA, 

which through ROCK, Rac1 and DIAPH has effects on initiation of focal adhesion, focal 

adhesion maturation, actin polymerization and myosin contraction (Section 3.3.2.2.2) 

[141]. Overexpression of RhoA is, therefore, common in many metastatic cancers and a 

reduction in RhoA has been shown to inhibit metastasis in lung cancer cell lines [142]. 

Mutations or cellular events such as epithelial to mesenchymal transitions (EMT) that cause 

alterations in cell-cell junctions are also common in metastatic cancers and can cause an 

increase in cell migration due to a reduction in cell-cell adhesion and disorganisation of the 

actin cytoskeleton [143].  
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Figure 1.6. Stress fibre and adhesion foci localisation in a migrating epithelial cell. Figure 

adapted from Vallenius, T. et.al  2013 [136]. 

 

1.4.1 Microtubules in cell migration 

The dynamic nature of microtubules is required for the migration of most mammalian 

cells[144]. During cell migration microtubules are oriented towards the leading edge of the 

cell. Dynamic microtubules regulate the levels of key proteins involved in adhesion and 

migration such as RhoA and Rac1. However, the exact manner in which cross-linking 

proteins coordinate the functions of the actin and microtubule cytoskeleton during 

migration is poorly understood [145]. Specifically, it is not known how exactly the 

mechanical properties of the F-actin filamental structure changes the outcome of actin to 
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microtubule interactions. These interactions do occur, however, such as F-actin 

coordination of microtubule growth. This microtubule growth is targeted towards focal 

adhesions present at the ends of stress fibres to regulate their turnover and promote 

migration. The main family of proteins known to be involved in the process of actin to 

microtubule crosslinking are spectraplakins, a family that contains proteins like 

microtubule-actin crosslinking factor (MACF), which is capable of physically cross-linking F-

actin and microtubules [146]. 

 

1.5 Epithelial to mesenchymal transition  

An epithelial to mesenchymal transition (EMT) is a process whereby cells from an epithelial 

tissue begin to lose their epithelial characteristics and take on more mesenchymal-like 

properties in exchange [147, 148]. This process is not linked solely to cancer progression, 

since it also occurs naturally during embryonic development and would healing [143, 149, 

150]. In either natural cases or as a result of mutation, EMT usually results in a decrease in 

cellular adhesion and an increase in cellular migration. In cancers, an increase in invasive 

properties is also commonly observed, this increase can sometimes be due to EMT. 

Recently, it has become apparent that EMT is not a linear pathway and cells can partially 

undergo an EMT or indeed the process can be reversed [148].  

 

1.5.1 Characteristics changes in an EMT 

One of the core alterations that is observed in EMT is the reduction of E-cadherin in cell-cell 

adherens junctions [148, 151]. This loss has the immediate effect of reducing the strength 

of cell-cell junctions, making it easier for cells to break away from neighbouring cells. 

Disruptions in these junctions also leads to a loss of cell polarity which, in turn, directly 

affects the dynamics of cytoskeletal actin within the cell, leading to increased cell migration 

due to an increase in the number of filopodia [140, 151]. This alteration in the actin 

cytoskelton and increase in filopodia at the leading edge of the lamellipodia causes 

elongation and flattening of the cells, making them both visually distinct, and more able to 

traverse the narrow gaps between cells and stromal tissues. A secondary effect caused by 

the loss of E-cadherin is a release of bound β-catenin into the cytoplasm, where it causes a 

signalling cascade which results in increased transcription of additional EMT proteins, such 
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as the mesenchymal intermediate filamental protein vimentin [117, 152]. This 

overexpression of vimentin reduces the abundance of epithelial cytokeratins which, is 

associated with a reduction in E-cadherin transport to the cell membrane. In this way, as is 

common with many of these changes, the result is a positive feedback loop, which drives 

the cell’s transformation forward. Vimentin filaments also interact with the proteins 

involved in cell migration such as the actin bundling protein fimbrin to promote further cell 

migration [153]. Lastly, with respect to E-cadherin, is what is commonly referred to as the 

"cadherin switch", whereby the reduction in E-cadherin is counteracted by the increased 

expression of N-cadherin [148, 154]. N-cadherin is found usually in neuronal cells, as well as 

in mesenchymal cells and its presence in adherens junctions forms much weaker 

interactions with neighbouring cells [155]. Crucially, the expression of N-cadherin due to 

EMT results in the expression of neural cell adhesion molecule (NCAM) which, in turn, 

causes an increase in assembly of focal adhesions, thus promoting migration [151, 156, 

157]. As well as the observed alterations in cell-cell junction proteins due to EMT, cell-

substrate proteins are also altered. Similar to the "cadherin switch", there is an "integrin 

switch" in which basement membrane binding integrins like α6β4 are down-regulated in 

favour of fibronectin-binding integrins like α6β1 or αVβ1 [84, 86]. 

 

1.5.2 Causes of EMT 

1.5.2.1 Transforming growth factor beta 

The transforming growth factor-β (TGFβ) superfamily encompasses a large range of 

proteins consisting of TGFβs, activins, NODAL, bone morphogenetic proteins (BMPs), 

growth and differentiation factors (GDFs) and anti-Müllerian hormone (AMH). Within these 

groups there are more than 30 TGFβ superfamily ligands, which are then divided into many 

more subfamilies based on their sequence similarity and biological function. Of particular 

interest in regards to EMT is the TGFβ subfamily [158]. TGFβs are secreted protein ligands 

that bind to the transmembrane TGF receptor TGFRII and have a role in cell proliferation, 

migration and differentiation [159-161]. Upon TGF binding, TGFRII associates with TGFRI 

resulting in receptor activity and intracellular signalling. The primary intracellular pathway 

activated by this process is SMAD signalling, which can be either activated or inhibited by 

the TGF signal [162-164]. Once TGFβ is bound to its receptor, SMAD2 or SMAD3 is recruited 

to the active TGF receptor by SARA to which it is bound, until SMAD2 or SMAD3 is 
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phosphorylated by the activated TGF receptor, thereby allowing SARA to dissociate. At this 

stage phosphorylated SMAD2/3 binds to SMAD4 in a heterodimeric complex and 

translocates to the nucleus, where it acts as a transcriptional activator inducing expression 

of EMT genes. These upregulated EMT genes include: Snail, Slug, ZEB1 and Twist, all of 

which contribute to promoting a more mesenchymal phenotype [148, 161, 165, 166].  

 As well as its effect on SMAD signalling, TGFβ also affects various other pathways 

that lead to an increase in EMT. During the formative stages of EMT, TGFβ causes 

degradation of RhoA, and then in the later stages, switches to promote increased RhoA 

expression and activation [167, 168]. As detailed in Section 3.3.2.2.2, RhoA signalling has 

effects on cellular migration, adhesion initiation, adhesion maturation and cytoskeletal 

remodelling. In the early stages of EMT, when RhoA is being degraded, this leads to 

increased Rac1 and a reduction in actin polymerization due to signalling through DIAPH 

[169, 170]. The exact manner and timing in which TGFβ performs this function is not fully 

understood; however, the initial degradation of RhoA is known to be via TGFβ, promoting 

upregulation of SMURF1 which then applies ubiquitin to RhoA [171]. 

 TGFβ also has an effect on the AKT and MAPK pathways, where increased TGFβR 

activation promotes EMT through up-regulation of Snail and MMPs, although the exact 

manner in which these changes take place is still not clear [172-174]. 

 

1.5.2.3 Key transcriptional regulating proteins 

As stated above, several transcriptional activators are up-regulated due to the initial EMT 

signalling. There are three major families of transcription factors that have their expression 

altered, The most significant of these are the Snail proteins (Snail1, Slug, Smuc) [175, 176], 

the ZEB proteins (ZEB1, ZEB2) [177] and the bHLH proteins (Twist1, Twist2) [178]. In many 

cases, these proteins act to inhibit the expression of E-cadherin, and, therefore, drive the 

EMT cascade forwards.  

 The Snail family of proteins have also been implicated in a range of developmental 

pathways, including cell survival and cell left-right identity and their overexpression has 

been strongly linked with cancer progression in several cancers [179, 180]. All Snail proteins 

contain four to six zinc finger domains at the C-terminus end, which bind to E-box motifs 

(5'CANNTG) on target genes. Curiously, elevated Snail expression has been associated with 
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suppressed tumour development during the early stages, but then switches to promote 

tumour progression via EMT when cells become resistant to TGF-β signals. It is during the 

later stages of EMT that TGF-β highly up-regulates Snail, via SMAD signalling. It has also 

been demonstrated that GSK-3β is the primary kinase for Snail, which causes its 

degradation. GSK-3β activity is inhibited by TGF-β signalling through AKT and integrin-

linked kinase (ILK), further promoting increased levels of Snail in the cell [176, 181].  

 

1.5.3 Mesenchymal to epithelial transition 

As discussed, EMT within a primary tumour results in a reduction in cell-cell and cell-

extracellular matrix adhesion, as well as an increase in cell migration and invasion. All of 

these changes are necessary to facilitate the breaking away of carcinogenic cells and their 

invasion into either the circulatory or lymphatic system, where they can then be 

transported to secondary sites. However, at this stage there is increasing evidence that 

these carcinogenic cells can begin to undergo a mesenchymal to epithelial transition (MET), 

whereby the changes wrought by EMT begin to be reversed, resulting in a return of some 

epithelial-like characteristics [182]. In theory this process makes sense, since cells 

transported by the blood or lymph system need to bind to other cells at a secondary sites 

and then grow into a secondary tumour. This process of cell growth and binding would be 

greatly hindered by the significant reduction in cell adhesion that cells which have 

undergone EMT exhibit. Evidence for this has been reported, in that secondary sites of 

metastasis seem to contain cells with a more epithelial-like phenotype, compared to those 

of the parental primary tumour [183, 184]. However, since single cells have not yet been 

followed from the primary tumour to secondary sites, it may be possible that more 

successful metastasising cells are simply less mesenchymal. Furthermore, the exact 

mechanism by which MET takes place and is regulated is still poorly understood, although 

these MET cells seem to exhibit almost the exact reverse of EMT in regards to their 

expression of EMT related proteins. Thus, MET of cells is currently characterised by the re-

acquisition and expression of E-cadherin and its localisation at adherens junctions [185]. 

Transcriptional regulators of EMT such as Snail, ZEB and Twist also show reduced 

expression, presumably driving the cells back towards a more epithelial phenotype. The 

final result is a heterogeneous tumour consisting of cells at different stages on the EMT-

MET continuum [182].  
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1.6 Metastasis-inducing proteins 

Over the last 50 years, several different proteins have been identified which lack either 

oncogenic or tumour suppressor activity, but can promote the progression of cancer. All of 

these proteins, when expressed within normal cells, cause no adverse effects. However, 

when overexpressed within benign tumours they dramatically increase the chance of 

cancer metastasis. Due to this unique property these proteins have been termed 

metastasis-inducing proteins (MIPs). The three major proteins or protein groups described 

currently are the S100 proteins, AGR2 and osteopontin [186-188]. 

 

1.6.1 S100 proteins 

The S100 proteins encompass 25 distinct members, which have a range of cellular functions 

including regulation of cell growth, differentiation and cell survival [189-191]. It has been 

previously shown that several of these proteins have an acute effect on cellular migration, 

and their overexpression in cancer cell models can result in dissemination and formation of 

secondary tumours when implanted into rat model systems [192, 193]. The S100 proteins 

are of low molecular weight (10 – 25 kDa) and all retain the ability to bind calcium. Of the 

25 known members designated as S100 proteins, 16 are S100A proteins (S100A1 – 

S100A16) and there are 9 other proteins including S100B, S100G, S100P and S100Z, all of 

which share between 16-98% sequence homology [188, 194, 195]. The ability of S100 

proteins to bind calcium is via a pair of highly conserved, calcium-binding regions; the first a 

C-terminal EF-hand motif containing 12 amino acids, and the second a 14 amino acid N-

terminal loop [196, 197]. S100 proteins are expressed naturally in a range of different 

tissues and cell types, as well as being overexpressed in several different cancers [198, 

199]. Over the past decade two S100 proteins, S100A4 and S100P have been shown to have 

the greatest clinical, metastasis-associated effects in patients, and in this study the latter, 

S100P, will be examined in detail [200, 201]. 
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1.6.2 S100P 

S100P is not limited to a role in disease-based systems and is found in abundance in 

developing placental and oesophagal tissues [199, 202]. The role of S100P within these cell 

types is poorly understood, as is the method by which its expression is regulated. However, 

recent evidence has suggested that its role in the placenta may be in mediating 

endometrial implantation via alterations in cell migration and invasion, and its expression 

seems to coincide with the ovarian cycle [202]. Evidence from disease systems support this 

idea, since in many cancers and in endometriosis, S100P has been observed to increase cell 

migration and invasion [203-205]. The link between the research in healthy tissues and 

diseased tissues is tenuous, since the majority of published information on S100P has all 

been conducted in either cancers or in endometriosis.  

 

1.6.2.1 Cellular effect of S100P 

The effect of S100P on cells is still not fully understood within either normal or disease cell 

systems, although it has been shown to interact directly with and affect various proteins, 

which are involved in cytoskeletal remodelling [206, 207]. S100P has been shown to 

interact directly with ezrin, a member of the Ezrin, Radixin, Moesin (ERM) protein family, 

which acts as cross-linking proteins between the plasma membrane and the cytoskeleton 

[203, 208]. This cross-linking is caused by ezrin activation via S100P, where the C-terminal 

ERM domain of ezrin binds to F-actin, and the N-terminal ((F) 4.1 protein, (E) ezrin, (R) 

radixin, (M) moesin) FERM domain binds to membrane proteins such as CD44 and ICAM-2 

[209, 210]. Ezrin can also be activated by other routes, such as through RhoA signalling, but 

regardless of its source of activation, binding results in alterations in migration due to F-

actin relocalisation [211, 212].   

 S100P has also been shown to interact with IQGAP1 a multi-domain 190 kDa 

protein involved in actin regulation and adhesion through interactions with Cdc42 and the 

Rac1 pathway [213-216]. IQGAP1 has also been shown to crosslink actin filaments and may 

be important in tumorigenesis, as knock-out studies have shown tumour formation is 

significantly inhibited due to a loss of IQGAP1. IQGAP1 also binds to b-RAF, MEK1, MEK2, 

ERK1 and ERK2 and, as such, is important in the MAPK pathway which leads to cell 

proliferation, differentiation, and apoptosis [217]. Due to IQGAP1 affecting so many crucial 
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pathways, it has been linked to a number of cancers, including colorectal, squamous cell, 

breast, liver, gastric and lung, where an increase in IQGAP1 is associated with a poor 

patient prognosis [218, 219]. The manner in which S100P affects IQGAP1 via its binding is 

still not fully understood. 

 Previous work by Du et.al. 2012 showed that using an IAsys two-channel resonant 

mirror biosensor, S100P binds directly to NMIIA in vitro. The exact binding site for S100P 

was determined by creating NMIIA mutants. Through these it was shown that, like S100A4, 

S100P binds to amino acids 1909-1937 on NMIIA. This region lies directly adjacent to a 

domain that regulates NMIIA filament polymerisation and due to a small overlap in 

sequence is thought to be the reason why S100P binding results in a decrease in NMIIA 

filament polymerisation. Extracellular S100P has also been suggested to be a factor in 

affecting the migratory properties of cells by interacting with RAGE receptors, although this 

interaction is poorly understood, as is the mechanism by which S100P could become 

released from a cell [220-222]. 

 

1.6.2.2 S100P in cancer 

A number of studies have been carried out linking the overexpression of S100P to the 

clinical outcome for patients in a range of cancers by using immunohistochemistry to stain 

for S100P in patient biopsies. In all cancers tested, including breast, colon, lung, prostate, 

gastric and cholangiocarcinoma, an increase in S100P within a tumour correlated with a 

very poor patient prognosis [193, 223-227]. 

 Furthermore, recent in-vitro research has shown that overexpression of S100P in 

both HeLa and benign Rama 37 mammary cell lines results in a more metastatic phenotype 

via increased cellular migration [206]. Knock-downs have also been carried out on S100P 

highly-expressing colon and pancreatic cancer cell lines. In both cases knock-downs of 

S100P resulted in a reduction in cell migration, as well as in cellular invasion [228, 229]. 
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1.7 Project aims 

As S100P has been shown to have a role in cancer progression, the main aim of this study is 

to investigate the mechanism by which S100P causes these phenotypic alterations leading 

to the promotion of metastatic characteristics. This goal will be broken down into two 

major parts, the first aim will be to determine and characterise the effect S100P has on 

cellular migration, adhesion and invasion and to try and ascertain possible causes for any 

observed alterations. The second major aim is to establish the levels of those proteins 

which are altered as a consequence of S100P overexpression. These aims will be achieved 

using the HeLa A3 cells as a model system. The overall aim, therefore, is to build up a better 

understanding of what the function of S100P is, as well as its effect in a cancer-based 

system. Utilizing this knowledge, longer term goals would therefore be to identify drugs 

which specifically target S100P in cancers. 
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Chapter 2 

 

Materials and Methods 

 

2.1 Chemicals and equipment 

All chemicals and equipment utilized during this study were used from communal stocks 

and obtained from Sigma (Sigma-Aldrich Co., St. Louis, MO, USA), Cell Signaling (Cell 

Signaling Technology, Inc., Danvers, MA, USA) or Fisher Scientific (Fisher Scientific UK Ltd., 

Loughborough, UK), unless otherwise stated. All equipment utilized for eukaryotic tissue 

culture was obtained from Corning (Corning Inc., Corning, NY, USA), unless otherwise 

stated. All solutions were made up to their required volume using deionised water, unless 

otherwise stated. 

 

2.2 Tissue culture 

All standard cell culture was carried out using Dulbecco's Modified Eagle's Medium 

(DMEM), which in all cases contained 4500mg/ml glucose, non-essential amino acids, 3.7g/l 

sodium bicarbonate and phenol red. All DMEM solutions had the following chemicals 

added to aid in cell growth: 100μg/μl penicillin, 100μg/μl streptomycin (added as a 

mixture), 4mM L-glutamine and 10% (v/v) foetal bovine serum (FBS); this solution will 

hereafter be referred to as Standard Culture Medium (SCM). All chemicals used were 

obtained from Gibco (Thermo Fisher Scientific, Waltham, MA, USA). 

Routine cell culture was undertaken using 10cm diameter tissue culture-treated Petri 

dishes containing 10ml of SCM. All cell culture was carried out under sterile conditions in a 
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negative air pressure Laminar Flow Hood. Cells were maintained in a 37°C humidified 

incubator set with an atmospheric carbon dioxide (CO2) concentration of 10% (v/v).  

 

2.2.1 Cell lines 

2.2.1.1 Parental cell lines  

The following parental cell lines were used during this study: 

HeLa cells - epithelial, human cancer cells originally derived from a human cervical cancer 

from Helen Lane; these cuboidal-like cells culture easily and have a clear and well defined 

cytoskeleton (including NMIIA) and adhesive structures [230, 231]. It has been shown in 

previous studies that HeLa cells are no longer true epithelial cells, as they have undergone 

an epithelial to mesenchymal transition to some extent, meaning that any alterations 

observed in adhesive or migratory properties due to S100P are unlikely to be due solely to 

this transformation. All of these properties are useful for studying the effect of S100P on 

the cytoskeleton and adhesive structures and, as such, HeLa cells were chosen as the 

primary model system for this thesis. Moreover an S100P-inducible HeLa cell system was 

available, which had previously been used for similar work. 

Cos7 cells - originally derived from the immortalization of CV-1 monkey kidney cells [232]. 

These are spindly epithelial cells and were utilized because they do not contain any NMIIA 

filaments. NMIIA is a known target of S100P and, as such, Cos7 cells were used to study the 

effects of S100P when this interaction is impossible. 

 

2.2.1.2 Transfected cell lines 

Prior to this study, HeLa and Cos7 cells had been transfected to create S100P inducible cell 

lines by Drs Min Du and Guogong Wang in our laboratory, as described in [206]. The 

inducible systems, stimulated by doxycyclin are achieved by the integration of two 

plasmids. The first, pBTE is integrated in order to express the regulatory element rtTA2(S)-

M2 which is responsible for acting as a doxycyclin switch. The second plasmid, pTRE-ins is 
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then integrated in order to express the S100P protein. The result of these transfections 

yielded the cell lines shown in Table 2.1. 

 

 

Parental cell 

name 

Transfected cell 

name 
Transfected cell characteristics 

HeLa HeLa A3 
Epithelial cancer cell, overexpresses 

S100P upon induction with doxycyclin 

Cos7 Cos7-S10 

Elongated epithelial-derived cell, no 

cytoskeletal NMIIA, overexpresses 

S100P upon induction with doxycyclin 

Table 2.1. Overview of S100P-inducible cell lines. Both transfected cell lines used during 

this study are inducible for S100P by doxycyclin. 

 

2.2.2 Cell passage 

Unless otherwise stated, cells were passaged once their confluence reached 70-80%, 

usually over the course of 2-3 days. All solutions used during a cell passage were pre-

warmed to 37°C to prevent thermal shock to the cells. SCM was removed from the Petri 

dishes using an aspirator and the cells were gently washed twice with phosphate-buffered 

saline (PBS). One ml of 0.05% (v/v) trypsin in versene was then added for 3 minutes for 

HeLa A3 cells or 2 minutes for Cos7-S10 cells, during which time the Petri dishes were 

returned to the 37°C incubator. Trypsin activity was then halted by the addition of SCM. 

The volume of SCM added was dependent on the ratio at which the cells were split, with 

HeLa A3 cells routinely split at a ratio of 1:6 and Cos7-S10 cells at 1:8. The ratios of these 

splits were altered in order to obtain a greater or lower cell confluency as required.  
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2.2.3 Freezing cells 

Cells were detached using the methods described in Section 2.2.2. The cell medium 

suspension was transferred to a 50ml Falcon tube and centrifuged at 1000 x g for 5 

minutes. The SCM was then removed by aspiration ensuring not to disturb the cell pellet. 

Two ml of Freezing Medium was then added for every 10cm diameter dish which was used 

during the initial collection. Freezing Medium is SCM as described in Section 2.2 with the 

addition of 7.5% (v/v) dimethyl sulfoxide (DMSO) to inhibit ice crystal formation during 

freezing. One ml of freezing medium / cell suspension was added per cryovial (STARLAB UK, 

Ltd., Milton Keynes, UK). Vials were then placed into a freezing container (Nalgene, Nalge 

Nunc International., Rochester, NY, USA) and were stored in a -80°C freezer overnight to 

ensure a rate of temperature decrease of roughly -1°C per minute. Cell vials were then 

transferred to a -135°C freezer for long term storage. 

 

2.2.4 Thawing cells 

Cryovials of cells were rapidly thawed in a 37°C water bath before the resultant solution 

was poured into a 10cm diameter tissue culture Petri dish containing 9ml of pre-warmed 

SCM. The dishes were then incubated for 24 hours, after which the SCM was replaced to 

remove any remaining DMSO. This was due to the fact that DMSO is toxic to cells at either 

high concentrations or over a prolonged period of time. 

 

2.2.5 Doxycyclin induction of S100P 

Doxycyclin powder (Clontech Laboratories Inc., Mountain View, CA, USA) was dissolved in 

reverse osmosis water to make a 5mg/ml stock solution. HeLa A3 or Cos7-S10 cells (as the 

experiment requires) were split as detailed in Section 2.2.2. Dishes marked as induced were 

inoculated with 10μl of stock doxycyclin solution giving a final concentration of 5μg/ml. 

Unless otherwise stated, cells were then left for 48 hour for S100P protein expression to 

reach acceptably detectable levels. In cases where long term induction was required, 

doxycyclin-containing SCM was replaced every 48 hour, either as part of a cell passage or 

by aspirating and reapplying this fresh medium to the cells.  
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2.2.6 Whole cell lysis 

Unless otherwise stated, cells were lysed once their confluence had reached 70-80%. Cell 

culture dishes were placed on ice and washed three times with ice-cold PBS. They were 

then tilted to 45° and left for 1 minute to allow residual PBS to pool. The residual PBS was 

then aspirated and replaced by 100µl of standard SDS Lysis Buffer per 10cm dish (Table 

2.2). The dishes were then thoroughly scraped using a cell scraper and the resultant lysis 

solutions pooled and collected in an Eppendorf. Samples were then sonicated on ice using a 

MSE Soniprep 150 plus (MSE UK, London, UK) with the 3mm exponential microprobe 

attachment at an amplitude of 12 microns for 15 seconds. Samples were then heated at 

95°C for 5 minutes, cooled on ice and stored at -80°C until needed.  

 

Standard SDS Lysis Buffer 

0.5% (w/v) SDS 

50mM Tris-HCL pH 6.8 

1mM EDTANa2 

150mM NaCl 

10% (w/v) Protease inhibitor 

cocktail* 

Table 2.2. Standard SDS-containing lysis buffer used for routine whole cell lysis. *Protease 

inhibitor cocktail complete EDTA-free tablets purchased from Roche (Roche Holding AG. 

Basel, Switzerland) were prepared in distilled water at 1 tablet per ml. The solution was 

then aliquotted and frozen at -20°C. Protease inhibitor cocktail solution was added to the 

Lysis Buffer just before use. 
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2.3 Cellular dynamics assays 

2.3.1 Migration assay 

This assay was carried out using Corning®, 6.5mm diameter, 24 well Transwells with 8μm 

diameter pore polycarbonate membrane inserts. FBS-free SCM was added (200μl) to the 

interior and exterior of the Transwells for 1 hour while the Transwell dish was placed in the 

incubator. This medium was aspirated just before the cells were added to the wells. Either 

HeLa A3 or Cos7-S10 cells (as required) were induced with doxycyclin 48 hours before this 

experiment was conducted, as described in Section 2.2.6. Control and induced cells were 

initially collected via the methods described in Section 2.2.3 and counted using a Z1 

Coulter® particle counter (Beckman Coulter., Brea, CA, USA). The cells were collected by 

centrifugation at 1000 x g and resuspended at 15000 cells/mL in 1% (v/v) FBS containing 

DMEM culture medium. SCM was added (200μl) to the exterior of the Transwell chambers 

followed by 100μl of the cell suspension containing 15000 cells into the Transwell chamber 

interior. These solutions were prepared to create a 1% to 10% (v/v) FBS difference  

between the inside and outside of the Transwell chamber in order for the cells to migrate 

via serum chemotaxis. Cells were incubated for 24 hours, after which time all medium was 

removed by aspiration and the interior of the membrane wiped clean using cotton buds 

purchased from Tesco (Tesco PLC., Cheshunt, UK). The Transwell membranes were then 

stained using a REAstain Quick Diff kit (Reagena., Siilinjärvi, Finland). The total number of 

cells that had migrated across the membrane were then counted per membrane using a 

light microscope with a 10x objective lense. All cell treatments were prepared in triplicate 

with the mean number of cells migrated +/- SD being used as the final value.  

 

2.3.2 Invasion assay  

This assay was carried out using Corning® BioCoat Matrigel 6.5mm diameter, 24 well 

Invasion Chambers with 8μm diameter pore polycarbonate membrane inserts. The method 

used in this assay was the same as that described in Section 2.3.1 with the following 

alteration. FBS-free culture medium was added (200μl) to the interior and exterior of the 

Matrigel-coated chambers for 2 hour prior to the addition of cells. This medium was then 

removed by aspiration before 20000 cells were seeded in the invasion chambers. All cell 
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treatments were prepared in triplicate with the mean number of cells migrated +/- SD 

being used as the final value.  

 

2.3.3 Time course adhesion assay 

Either HeLa A3 or Cos7-S10 cells (as required) were induced by addition of doxycyclin 48 

hours prior to this experiment being conducted, as described in Section 2.2.6. Uninduced 

control and induced cells were initially collected using the methods described in Section 

2.2.3 and counted using a Z1 Coulter® particle counter. The cells were collected by 

centrifugation at 1000 x g and resuspended at 200000 cells/mL in SCM. One ml per well of 

cell suspension was added into a 24 well tissue culture dish and cells were allowed to 

adhere at 37°C. At the appropriate time (30 min to 2 hours) the wells were carefully 

washed two times with PBS to remove unbound cells and 0.05% (v/v) trypsin in versene 

solution was added for 5 minutes. SCM was then added and the number of cells counted. 

The percentage of the original 200000 cells that had seeded compared to the number 

remaining was then calculated to give an adhesion efficiency. All cell treatments were 

prepared in triplicate. 

 

2.3.4 Strength of adhesion assay 

Either HeLa A3 or Cos7-S10 cells (as required) were induced with doxycyclin 48 hours prior 

to the experiment being conducted, as described in Section 2.2.6. Control and induced cells 

were initially collected using the methods described in Section 2.2.3. Cells were seeded in a 

24 well tissue culture dishes so as to yield an 80% confluent culture in 24 hours. Two 

identical dishes were set up in all experiments, with one acting as a test plate and the other 

a control plate, to aid in cell normalisation. After 24 hours, the wells on the dish were 

washed two times with PBS, and 250μl of 0.0125% (v/v) trypsin in versene solution was 

added for 5 minutes at 37°C. Wells were then carefully washed two times with PBS to 

remove weakly bound cells. Trypsin in versene solution was then added (250μl of 0.05% 

(v/v)) to both the test dish and the control dish for five minutes to remove all cells from the 

wells. SCM was added and the cells in all wells were then counted. The cell counts from the 

test dish were then compared to the cell counts from the control dish to calculate the 

proportion of cells which remained attached after the weak trypsin digestion step. All cell 
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treatments were prepared in triplicate with the mean number of cells migrated +/- SD 

being used as the final value. 

 

2.4 SDS-PAGE 

2.4.1 BCA assay  

The total protein concentration of cell lysates was determined using a bicinchoninic acid 

assay (BCA assay) using a BCA protein assay kit (Pierce Biotechnology, Waltham, MA, USA). 

A standard curve was constructed from the known concentrations of bovine serum albumin 

(BSA) using a 2mg/ml BSA standard (part of BCA kit). Protein range for the standard curve 

was 0-2000μg/ml. Unless otherwise stated, cell lysate samples were diluted five times in 

order to bring them within the range of the calibration curve. Ten μl of lysate sample or 

BSA standard were pipetted into a 96 well plate in triplicate. BCA reagent (mix of reagent A 

and B) was then pippeted into each well (200μl) and the dish briefly shaken before it was 

incubated at 37°C for 30 minutes. The absorbance of the samples was then read at 562nm 

using a Spectramax plu384 (Molecular Devices, Sunnyvale, CA, USA). The absorbance was 

plotted alongside the concentration of the known BSA standards to construct a linear 

calibration curve from which the unknown protein concentrations of the lysate samples 

could be determined.  
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Figure 2.1. Example of a BCA standard curve. Black line shows the linear fit determined by 

least square regression, with the adjacent equation used in determining the protein 

concentration of the samples. 

2.4.2 Assembly of polyacrylamide gels 

Polyacrylamide gels were erected using 1mm thick, mini-gel glass plates held together 

using a Biorad gel assembly kit (Bio-Rad Laboratories Inc., Hercules, CA, USA). Resolving Gel 

(Table 2.3) was poured and layered with 100μl of butanol to ensure an even surface during 

setting. The resolving gel was allowed to set for a minimum of 1 hour (this time was 

increased if required), after which all butanol was carefully removed using filter paper. 

Stacking Gel (Table 2.3) was poured into the remaining space above the resolving gel and a 

1mm comb (10 well or 15 well as required) was inserted. The resolving gel was allowed to 

set for a further 1 hour, after which the comb was carefully removed and the wells washed 

with distilled water. Gels were then either used immediately, or stored overnight for use 

the next day. Gels were stored by wrapping them in distilled water-soaked blue paper roll 

and then wrapping in polythene at 4°C. 
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Stacking Gel  Resolving Gel 

250mM Tris-HCl pH 6.8 

0.1% (w/v) SDS 

4% (v/v) acrylamide:bis-acrylamide 

0.06% (w/v) ammonium persulfate (APS) 

0.015% (v/v) 

tetramethylethylenediamine (TEMED) 

 

750mM Tris-HCl pH 8.9 

0.1% (w/v) SDS 

15%, 10%, 8% (v/v) acrylamide:bis-

acrylamide 

0.06% (w/v) ammonium persulfate (APS) 

0.015% (v/v) 

tetramethylethylenediamine (TEMED) 

Table 2.3. Composition of Stacking and Resolving Gel. 

 

2.4.3 Running polyacrylamide gels 

Prior to loading, cell lysate samples were defrosted and 3x SDS containing loading buffer 

was added in a 1:3 ratio. Samples were then heated at 95°C for 5 minutes. 

 

3x SDS containing Loading Buffer 

188mM Tris-HCl pH 6.8 

6% (w/v) SDS 

30% (v/v) glycerol 

300mM DTT 

0.625% (v/v) bromophenol blue 

Table 2.4. Composition of 3x SDS-containing Loading Buffer. 
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Previously cast polyacrylamide gels (Section 2.2.4) were inserted into a Biorad gel 

electrophoresis tank and the tank filled with SDS running buffer. Precision Plus Protein™ 

Dual Color Standards protein ladder (purchased from Biorad) was loaded onto the gel 

followed by the samples using gel loading tips. Gels were run at 200V for 1-2 hours 

depending on the acrylamide concentration used for the gel. Gels were then removed and 

the stacking gel removed, leaving the resolving gel for further analysis. 

 

SDS-containing Running Buffer (pH 8.3) 

50mM Tris 

192mM Glycine 

0.1% (w/v) SDS 

Table 2.5. Composition of SDS-containing running buffer. 

 

2.4.4 Coomassie Blue staining 

Once gels had been run and removed (Section 2.4.3), they were washed in distilled water 

before being immersed in coomassie blue stain. Gels were left to stain at room 

temperature for a minimum of 1 hour. After staining, gels were removed and washed with 

distilled water to remove any unbound stain. They were then immersed in coomassie 

destain three times for 15 minutes each time, in a container placed on a rocking apparatus 

to cause constant mixing of the solution. The gels were then left overnight in coomassie 

destain to remove as much unbound coomassie blue stain as possible, so that clearly 

stained protein bands were easily visible. Images were then recorded by scanning the gel 

inside a polythene pouch using an ImageScanner III gel scanner from GE Life Sciences (GE 

Healthcare., Little Chalfont, UK). 
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Coomassie Blue stain  Coomassie Destain 

0.1% (w/v) Coomassie Brilliant Blue 

50% (v/v) methanol 

7% (v/v) glacial acetic acid 

 

20% (v/v) methanol 

10% (v/v) glacial acetic acid 

Table 2.6. Composition of Coomassie Blue stain and Destain solutions. 

 

2.4.5 Western blotting 

2.4.5.1 Main Western blot protocol 

 

Protein Transfer buffer  TBS-Tween 

120mM Tris 

192mM Glycine 

20% (v/v) Methanol 

 

20mM Tris-HCl pH 7.5 

150mM NaCl 

0.1% (v/v) Tween20 

Table 2.7. Composition of Western blot transfer and TBS-Tween buffers. 

 

Once gels had been run (Section 2.4.3), the proteins within the gel were transferred onto 

Immobilon-P PVDF membrane (EMD Millipore, Billerica, MA, USA). Gels were washed in 

distilled water before being immersed in transfer buffer for 15 minutes at room 

temperature to equilibrate to the new buffer. During this time the PVDF membrane was 

cut to size and activated by immersing it in methanol for 20 seconds. Following this, the 

membrane was placed into the protein transfer buffer (Table 2.7). The gels, membrane, 

filter paper and sponges were assembled in a transfer cassette, with care taken to avoid 

any air bubbles in the apparatus. The cassette was then placed into a protein gel tank 
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within a tray filled with ice and water to ensure the temperature during transfer was kept 

as low as possible. Protein transfer was completed at 100V for 2 hour. 

 After transfer, the membranes were removed and the efficiency of the transfer 

assessed using ATX Ponceau S stain (Fluka - part of the Sigma-Aldrich group) to visualise 

any protein bands. Excess stain was removed, first with distilled water and then with a 

short incubation in Tris-buffered saline-Tween20 (TBST) (Table 2.7). Membranes were then 

blocked for one hour at room temperature in a protein-blocking solution consisting of 

either 5% (w/v) BSA in TBST or 5% (w/v) Marvel skimmed-milk powder in TBST, depending 

on the primary antibody. During this time, primary antibody (Table 2.8) was made up to the 

correct concentration in blocking solution in a total volume of 5ml in a 50ml Falcon tube. 

After blocking, membranes were inserted into the Falcon tubes, which were then incubated 

on a roller mixer overnight at 4°C.  

 Following primary incubation, the membranes were removed and washed for 10 

min, three times in TBST to remove any unbound primary antibody. Secondary antibody 

against the species of origin of the primary (Table 2.9) was made up to the correct 

concentration in blocking solution, in a total volume of 5ml in a 50ml Falcon tube. 

Membranes were again inserted into the new Falcon tubes and incubated on a roller mixer 

for 2 hours at room temperature. After the incubation with secondary antibody, the 

membranes were removed and washed for 5 minutes, three times in TBST, to remove any 

unbound secondary antibody. Excess TBST was then drained off the membrane, after which 

the membranes were incubated with 1ml of Amersham™ ECL™ substrate (GE Life Sciences) 

per membrane for 5 minutes. Membranes were then placed inside a developing cassette 

and taken to a dark room for film-based development. Super RX X-ray film (Kodak, 

Rochester, NY, USA) was exposed to the membranes for 10 seconds to 60 minutes, as 

required for adequate exposure, followed by development and fixation. In cases where 

long exposures with standard ECL proved insufficient to give clear bands, membranes were 

removed and washed for 5 min in TBST. Membranes were then incubated with 1ml of 

Amersham™ ECL Select™ substrate (purchased from GE Life Sciences) for 1 minute, after 

which exposure to X-ray film was repeated. 
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Primary antibodies 

Antibody Company Product 

code 

Host 

species 

Monoclonal 

or polyclonal 

Concentration 

used 

Block 

in 

S100P 
R&D 

Systems 
AF2957 Goat Polyclonal 1:1000 BSA 

Vinculin Abcam1 ab18058 Mouse Monoclonal 1:1000 Milk 

Paxillin Abcam1 ab32084 Rabbit Monoclonal 1:2000 Milk 

Non-

Muscle 

Myosin IIA 

Thermo 

Scientific 

PA1-

24943 
Rabbit Polyclonal 1:1000 Milk 

Integrin αV 
Cell 

Signaling 
4711S Rabbit Polyclonal 1:1000 Milk 

Integrin α5 
Cell 

Signaling 
4705S Rabbit Polyclonal 1:500 Milk 

Integrin β1 
Cell 

Signaling 
9699S Rabbit Monoclonal 1:1000 Milk 

Integrin β3 
Cell 

Signaling 
13166S Rabbit Monoclonal 1:1000 Milk 

Vimentin 
Cell 

Signaling 
5741S Rabbit Monoclonal 1:2000 Milk 

N-cadherin 
Cell 

Signaling 
13116S Rabbit Monoclonal 1:1000 Milk 

E-cadherin 
Cell 

Signaling 
3195S Rabbit Monoclonal 1:1000 Milk 

Snail 
Cell 

Signaling 
3879S Rabbit Monoclonal 1:500 Milk 
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Slug 
Cell 

Signaling 
9585S Rabbit Monoclonal 1:500 Milk 

Talin Abcam1 ab11188 Mouse Monoclonal 1:1000 Milk 

FAK Abcam1 ab40794 Rabbit Monoclonal 1:500 Milk 

Lamin β1 Abcam1 ab16048 Rabbit Polyclonal 1:1000 Milk 

VDAC Abcam1 ab14734 Mouse Monoclonal 1:1000 Milk 

GAP-DH Abcam1 ab8245 Mouse Monoclonal 1:10000 Milk 

Endoglin Abcam1 ab169545 Rabbit Monoclonal 1:1000 Milk 

Paxillin 

Y118 
Abcam1 ab4833 Rabbit Polyclonal 1:500 BSA 

Paxillin Y31 Abcam1 ab32115 Rabbit Monoclonal 1:500 BSA 

FAK Y397 Abcam1 ab81298 Rabbit Monoclonal 1:500 BSA 

Table 2.8. Primary antibodies used during Western blotting. 1Abcam plc, Cambridge, UK. 
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Secondary  antibodies 

Antibody Company Product 

code 

Host 

species 

Monoclonal or 

polyclonal 

Concentration 

used 

HRP conjugated 

Rabbit Anti – 

Mouse IgG 

DAKO1 P0260 Rabbit Polyclonal 1:5000 

HRP conjugated 

Swine Anti – 

Rabbit IgG 

DAKO1 P0217 Swine Polyclonal 1:5000 

HRP conjugated 

Rabbit Anti - 

Goat IgG 

DAKO1 P0160 Rabbit Polyclonal 1:5000 

Table 2.9. Secondary antibodies used during Western blotting. 1DAKO, Copenhagen, 

Denmark. 

 

2.4.5.2 Probing with multiple antibodies  

In many cases membranes were cut so that several antibodies for proteins with 

substantially different molecular weights could be probed using the same membrane. This 

was primarily carried out when looking at focal adhesion and integrin proteins, since their 

high molecular weight made it appropriate to cut the membrane so that GAP-DH, a control 

for equal loading of total protein in the sample, could also be probed on the same 

membrane. It was decided that this multiple probing technique was a more accurate 

method than stripping the membrane, since the latter can result in proteins being lost. 

Stripping was, however, used in scenarios where cutting the membrane was not possible 

due to the proteins having a similar molecular weight, such as studies on phosphorylation. 
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 In cases where stripping was required, membranes were washed for 5 minutes in 

TBST followed by immersion in Mild Stripping Buffer (Table 2.10) for 10 minutes at room 

temperature. The buffer was then removed and replaced with fresh buffer and the 

membranes incubated for a further 10 minutes. Membranes were washed two times in PBS 

for 10 minutes then two times in TBST for 5 minutes. After this step the membranes were 

ready to be blocked again (protocol provided by Abcam). 

   

Mild Stripping Buffer pH 2.21 

20mM Glycine 

0.1% (w/v) SDS 

1% (v/v) Tween20 

Table 2.10. Composition of Mild Stripping Buffer. 1The pH of the buffer was corrected 

using HCL and NaOH. 

 

2.4.5.3 Densitometic analysis 

Once X-ray films were developed, fixed and dried, they were scanned using a flatbed 

scanner (Ricoh, Tokyo, Japan). Analysis of the pixel density of protein bands was 

undertaken using Image J (http://imagej.nih.gov/ij/) to acquire the raw data and further 

analysed using Microsoft Excel (Microsoft Corporation, Redmond, WA, USA). 
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2.5 Immunofluorescent staining 

2.5.1 Preparation of paraformaldehyde  

Paraformaldehyde (PFA) was made up at 4% (w/v) in PBS and then heated to 70°C in a 

water bath. Once heated, 10M NaOH was added, drop-wise, until all the PFA had dissolved. 

The solution was then cooled and filtered under sterile tissue culture conditions using a 

0.22µm filter. PFA was then stored in aliquots at -20°C until needed. Frozen PFA was stored 

for a maximum of 2 weeks, after which a new fresh stock was made. 

 

2.5.2 Cell fixation, staining and imaging  

Multi-well culture slides (Beckman Coulter) were coated with 250μl of 15μg/ml bovine 

fibronectin in PBS. PBS was evaporated at room temperature for 4 hour in a Laminar Flow 

Hood, after which any residual PBS was aspirated and the slides allowed to dry completely. 

 Either HeLa A3 or Cos7-S10 cells (as required) were induced by addition of 

doxycyclin 48 hours prior to this experiment, as described in Section 2.2.6. Control and 

induced cells were initially collected using the methods described in Section 2.2.3. The cells 

were then counted and 5000 cells were seeded in the fibronectin-coated wells and left to 

grow overnight. 

 The next day all culture medium was removed by aspiration, and the cells were 

washed two times with warmed PBS. PFA at 4% (w/v) was added (200μl) for 10 min at 

room temperature to fix the cells, after which the cells were washed two times in PBS. 

Ammonium chloride (NH4Cl) was added (200μl) to the cells for 20 min in order to remove 

any remaining unreacted aldehyde groups. The cells were then washed a further two times 

with PBS prior to permeabilization.  

 Permeabilization was undertaken by adding 250μl of 0.5% (v/v) Triton X-100 in PBS 

for 10 minutes at room temperature. The cells were then blocked in immunofluorescent 

blocking solution (Table 2.11) for 1 hour at room temperature, after which all blocking 

solution was aspirated. Primary antibody (Table 2.11) was made up to the correct 

concentration in Immunofluorescent Blocking Solution and 100μl was added to the wells. 
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The cells were then incubated overnight at 4°C. In cases where co-localisation staining was 

being undertaken, both primary antibodies were added to the cells at the same time. 

 The next day the solution within the wells was aspirated and the cells washed for 

10 min, four times with 0.1% (v/v) Triton X-100 in PBS. Secondary antibody (Table 2.12) was 

made up to the correct concentration in immunofluorescent blocking solution and 100μl 

added to the wells for 30 min at room temperature, taking care to avoid any excessive 

exposure to light. The cells were again washed for 10 min, four times with 0.1% (v/v) Triton 

X-100 in PBS. In cases where nuclear staining with DAPI was carried out, 0.1µg/ml DAPI was 

added for 10 min at room temperature before its removal by aspiration. The culture slide 

was then placed in a shallow container of methanol for 10 minutes. This was undertaken so 

that the methanol only reached just over the glass slide, so as to loosen the glass slide from 

the plastic wells. The plastic wells were then removed and a glass cover slip mounted on 

the glass slide using Hydromount mounting medium (National Diagnostics, Atlanta, GA, 

USA). The slides were allowed to dry for at least 30 minutes at room temperature to ensure 

the mounting medium was sufficiently set before imaging. 

 Cells were imaged using an EVOS® FL microscope imaging system (Life 

Technologies, Carlsbad, CA, USA). 

 

Immunofluorescent Blocking solution1 

2% (w/v) BSA 

3% (w/v) Marvel skimmed milk powder 

0.5% (v/v) Triton X-100 

Table 2.11.  Composition of Immunofluorescent Blocking solution. 1This solution was 

made up in PBS. 
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Primary antibodies 

Antibody Company Product 

code 

Host 

species 

Monoclonal 

or polyclonal 

Concentration 

used 
 

S100P 
BD 

Biosciences1 
610307 Mouse Monoclonal 1:500  

NMIIA Abcam ab18058 Mouse Monoclonal 1:300  

Paxillin Abcam ab32084 Rabbit Monoclonal 1:1000  

Vinculin Sigma V9131 Mouse Monoclonal 1:500  

Talin Sigma T3287 Mouse Monoclonal 1:500  

IQGAP1 Abcam ab86064 Rabbit Polyclonal 1:100  

Table 2.12. Primary antibodies used for immunofluorescent staining. 1BD Biosciences, 

Franklin Lakes, NJ, USA. 
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Secondary  antibodies 

Antibody Company 
Product 

code 

Host 

species 

Monoclonal or 

polyclonal 

Concentration 

used 

Alexa Fluor 488 

Goat Anti – 

mouse IgG 

Life 

Technologies A-11029 Rabbit Polyclonal 1:500 

Alexa Fluor 488 

Goat Anti – 

rabbit IgG 

Life 

Technologies A-11034 Swine Polyclonal 1:500 

Alexa Fluor 568 

Goat Anti – 

rabbit IgG 

Life 

Technologies A-11036 Rabbit Polyclonal 1:500 

Table 2.13. Secondary antibodies used for immunofluorescent staining. 

 

2.6 Cell fraction isolation  

2.6.1 Triton insoluble protein isolation 

This method was undertaken to removed all cytoplasmic proteins and leave only the Triton 

X-100 insoluble cytoskeletal proteins and structural adhesion proteins. Triton X-100 is a 

non-ionic detergent that causes a breakdown in the phospholipid membrane of the cell by 

solubilising the lipid fraction. At very low concentrations Triton X-100 can, therefore, be 

used to permeabilise the cell membrane or at higher concentrations can be used to fully 

lyse the cell. This solubilisation, and therefore lysing, is not ubiquitous, however, as 

eukaryotic cell membranes often contain detergent-insoluble sphingolipids and cholesterol 

rafts. As these lipid rafts may not be solubilised by the addition of Triton X-100, any 
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proteins associated with these membrane structures may be retained and so not be found 

present in the lysed cell sample.  

 Cells were grown to 80% confluency before being washed three times in warm PBS. 

Cells were treated with 1ml of 0.5% (v/v) Triton X-100 in PBS containing protease-inhibitor 

cocktail for 2 minutes. During this time the cell culture dishes were gently rocked, side to 

side, to provide a slight shearing force to aid in initial lysis. All residual solution was 

removed by aspiration and the cell residue was washed three times in PBS. Following this, 

the cell residue was removed as described in Section 2.2.6 for cell lysis, with the following 

modification. The volume of Lysis Buffer used was reduced to 50μl to ensure a more 

concentrated sample. The sample was diluted two times during BCA analysis (Section 

2.4.1), rather than five times, due to the samples having a low protein concentration. When 

the SDS-PAGE gel was loaded (Section 2.4.3) only 4μg of protein per lane was available due 

to concentration limitations.  

 

2.6.2 Hydrodynamic shearing isolation  

2.6.2.1 Sample collection 

This method was undertaken due to limitations found in other methods for isolation of 

focal adhesions and was based on a method kindly provided by Professor Martin 

Humphries' group at The University of Manchester (The University of Manchester, Michael 

Smith Building, Manchester, UK). Cells were seeded in a 10cm diameter tissue culture dish 

(1.5x106) and grown to 80% confluency overnight, before they were washed in warmed 

PBS. Each dish of cells was exposed to pressurised reverse osmosis water from a Mira 4 

Spray Mode White Shower Head (B&Q, Liverpool, UK). The shower head was connected to 

an RO water tap using a Cooke & Lewis White PVC Shower Hose (B&Q) (Figure 2.2). The 

shower head was set so that the water jet was as tight as possible and the RO water tap 

opened to maximum. The amount of time the cells were exposed to the water flow was 

dependent on the cell type used. The time was varied to find the point where all cells are 

removed, while minimising subsequent additional damage. For HeLa A3 and Cos7-S10 cells, 

5 seconds of exposure per dish were found to be sufficient. This exposure was carefully 

timed, while ensuring the distance travelled by the water jet from shower head to the dish 

was maintained at 6 inches. The angle at which the plates were showered was 90° with a 
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set pattern being traced with the water jet each time to ensure consistency between dishes 

(Figure 2.3). 

 Once the cells had been sheared off the dish, the dish was immediately inspected 

under a light microscope to ensure all cells had been removed. The dishes were then 

placed on ice and washed five times with 10ml of ice-cold PBS. Plates were then tilted to 

45° for 1 minute to allow residual PBS to pool. This PBS was then removed by aspiration 

and 30µl per dish of modified SDS Lysis Buffer (as shown in Table 2.2 plus 300μM DTT) was 

added. The addition of DTT to the Standard Lysis Buffer was to prevent any aggregation of 

the large adhesion, cytoskeletal or extracellular proteins through their cysteine residues. 

The dishes were then thoroughly scraped using a cell scraper and the lysis solution pooled 

and collected in a 1.5ml Eppendorf tube. Another 30μl of modified SDS Lysis Buffer was 

then added and the scraping and collecting repeated. This procedure was undertaken to 

ensure the maximum amount of protein was removed from the dish using the minimum 

volume of modified SDS Lysis Buffer. Samples were then heated at 95°C for 5 minutes, after 

which samples were cooled and were either stored at -80°C or immediately processed for 

protein precipitation.  

 

 

Figure 2.2. Set up of the hydrodynamic shearing apparatus.  
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Figure 2.3. Hydrodynamic shearing. A) Red arrows indicated the angle at which the water 

jet was aligned to the tissue culture dish. B) Red arrows indicated the direction of the water 

jet pattern traced over 5 seconds to cover the maximum surface area in the minimum 

amount of time. The circular pattern was traced first followed by the zigzag pattern.  

 

2.6.2.2 Acetone precipitation  

A volume of cold (-20°C) acetone was added to the isolated samples, equal to 4 times the 

volume of sample in the Eppendorf. In cases where this volume was too large, the sample 

was first transferred to a larger receptacle before adding the acetone. Samples were then 

mixed and stored overnight at -80°C to allow the proteins to precipitate. The following day 

the Eppendorfs were centrifuged at 16.1 x g for 15 minutes at 4°C. The acetone 

supernatant was then carefully removed, and the pellet washed two times with the same 

volume of cold (-20°C) acetone. Care was taken at this step to ensure minimum agitation to 

the protein pellet. As much acetone was removed as possible without disturbing the 

protein pellet, and all remaining acetone allowed to evaporate at room temperature over 

10-20 min, depending on atmospheric conditions. The samples were then resuspended in 

SDS-containing loading buffer (Table 2.4). The volume used was 30μl per 2 dishes that were 

lysed. The pellet was solubilised by sonication three times in a water bath for 5 minutes 

followed by heating at 95°C for 5 minutes. Samples were then either immediately loaded 

onto SDS-PAGE gels or stored at -80°C until needed. For each whole-cell mass spectrometry 

analysis the above procedure was completed 4 times for control samples and 4 times for 

induced cell samples to give a total of 8 samples for every run.  
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2.6.2.3 Hydrodynamically-sheared sample analysis 

In order to determine the content of the isolated samples, Western blots were performed 

to ensure proteins not found in the cell-extracellular matrix adhesion fraction of the cell 

were absent from the sample. Western blots were also carried out looking for the presence 

of known cell-extracellular matrix adhesion proteins as a positive control for the isolated 

fraction. Blots for three negative control proteins were carried out; the first, GAP-DH was 

used to determine if any cytosolic proteins remained in the sample. The concentration of 

this antibody was increased from 1:10000 to 1:5000 to increase the detection sensitivity. 

Blots for Lamin-β1 were undertaken to ensure the cell nuclei had been completely 

removed. Lastly blots for voltage-dependent anion channel (VDAC), a mitochondrial 

membrane protein were used to ensure there were no remaining mitochondrial proteins 

present in the sample. Positive controls for talin, vinculin and paxillin were also run each 

time to ensure the expected proteins were present. 

 

2.6.2.4 Immunofluorescent staining of hydrodynamically-sheared cultures 

In order to ensure the adhesion foci remained intact after hydrodynamic shearing, 

immunofluorescent staining for vinculin was performed. The methodology used for this 

was the same as stated in Section 2.5.2 with the following alterations. Unlike with whole 

cells fixation with PFA no fixation or permeabilisation step was performed, since 

preliminary experiments determined that the addition of PFA prevented any signal being 

seen during imaging. Since no cell boundaries were visible when imaging, it was not 

possible to determine which vinculin-stained focal adhesions were derived from which cells 

during counting. To resolve this, the number of focal adhesions was counted per field of 

view in control, uninduced cells and in cells induced with doxycyclin, and the values 

compared.  
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2.7 Mass spectrometry  

2.7.1 Whole cell analysis 

2.7.1.1 Cell preparation 

HeLa A3 cells were thawed as stated in Section 2.2.4. After the first passage, cells were 

grown in phenol red-free DMEM supplemented, as stated in Section 2.2 with 4% (v/v) non-

essential amino acids. Cells were allowed to equilibrate in the new culture medium for two 

passages prior to S100P induction with doxycyclin. Four dishes of either control, uninduced 

HeLa A3 cells or doxycyclin-induced HeLa A3 cells were grown to 80% confluency. Cells 

from these 4 dishes were washed three times in warm PBS and incubated with enzyme-free 

Dissociation Buffer (Millipore) for 30 min at 37°C. This buffer was used instead of trypsin as 

it provides a far more gentle method of detachment. Following incubation, cells were 

collected in warmed PBS and centrifuged at 1250 x g for 10 minutes. The PBS was aspirated 

to remove all remaining enzyme-free Dissociation Buffer from the sample. Cells were 

washed in 20ml of warmed PBS, centrifuged again and resuspended in 10ml of PBS. The cell 

suspension (100μl) was counted using a Z1 Coulter® particle counter (Beckman Coulter) 

and 1x107 cells were transferred into a 15ml Falcon tube. This tube was then centrifuged 

and the supernatant aspirated. The pelleted cells were then snap frozen in liquid nitrogen 

and stored at -80°C.  

All further steps were conducted by the Protein Function Group in the Institute of 

Integrative Biology at the University of Liverpool. 

 

2.7.1.2 Cell lysis and peptide formation   

Cell pellets were thawed from the -80°C freezer and resuspended in 25mM ammonium 

bicarbonate (NH4HCO3).  Cells were then lysed by sonication and the DNA removed from 

the sample via digestion with 25 units of Benzonase nuclease (Novagen, Darmstadt, 

Germany). The protein concentration of the samples was then determined using the 

Brandford assay and the samples normalised accordingly. 

A volume of protein was then taken (100μl) from each sample and incubated with 0.05% 

(v/v) of RapiGest SF™ (Waters, Milford, MA, USA) in 25mM NH4HCO3 for 10 minutes at 
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80°C. DTT at 60mM was then added and the samples heated at 60°C for a further 10 min. 

Following this, 178mM iodoacetamide was added and the samples incubated in the dark at 

room temperature. To cleave the proteins and form peptide fragments, Gold mass 

spectrometry grade trypsin (Promega, Madison, WI, USA) was added and the samples 

incubated for 45 minutes at 37°C. Samples were then centrifuged at 17,000 x g for 30 min 

at room temperature to pellet any cell debris or insoluble proteins. To the supernatant 

0.1% (w/v) trifluoroacetic acid (TFA) was added to remove the RapiGest SF™ and trypsin, as 

well as acting as an ion-pairing agent for the liquid chromatography (LC). 

 

2.7.1.3  Liquid chromatograpic separation 

Peptide separation was carried out using an Ultimate 3000 nano High Pressure Liquid 

Chromatography (HPLC) system (Thermo Fisher Scientific). Sample was loaded (5μl/min) 

onto a trap column (Acclaim PepMap 100, 2cm x 75μm inner diameter, C18, 3μm, 100Å) 

with an aqueous solution containing 0.1% (v/v) trifluoroacetic acid (TFA) and 2% (v/v) 

acetonitrile and allowed to run for 3 min. Following this, the trap column was connected to 

an analytical column (Easy-Spray PepMap® RSLC 50cm x 75μm inner diameter, C18, 2μm, 

100Å) (Dionex, Sunnyvale, CA, USA) and peptide elution was performed by applying a 

mixture of 0.1% (v/v) formic acid in HPLC grade water (Solution A) and 80% (v/v) HPLC 

grade acetonitrile in 0.1% (v/v) formic acid (Solution B) to the column. The separation of 

peptides was carried out by applying a linear gradient of Solution B ranging from 3.8% (v/v) 

up to 50% (v/v) over 95 minutes at a flow rate of 300 μl/min. The column was then washed 

with 99% Solution B for 5 minutes. Finally the column was equilibrated with 3.8% (v/v) 

Solution B for 15 minutes before the next sample was loaded. MS/MS analysis was then 

performed on the eluted peptides. 

 

2.7.1.4  MS/MS mass spectrometry  

Mass spectrometric analysis was carried out using a Q Exactive™ Hybrid Quadrupole-

Orbitrap mass spectrometer (Thermo Scientific) operating in data-dependent positive 

mode, so as to switch automatically between full scan MS and MS/MS data acquisition. 

 

http://en.wikipedia.org/wiki/Liquid_chromatography
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2.7.1.5 Protein identification, quantification and analysis 

The raw MS data files were uploaded to proteome discoverer 1.3 and searched against the 

human Uniprot database using the Mascot search engine (version 2.4.1). This gave a list of 

possible proteins for each sample based on the peptides analysed. In order to quantify 

changes in protein abundance between different samples, Progenesis LC-MS label-free 

quantification software (Nonlinear Dynamics, Newcastle upon Tyne, UK) was used. For 

protein pathway analysis to determine the cellular localisation of each protein, QIAGEN’S 

Ingenuity Pathway Analysis was used (Qiagen, Limburg, Netherlands). 

 

2.7.2 Analysis of hydrodynamically-sheared fraction  

Two different purification methods were employed after initial hydrodynamic shearing 

(Section 2.6.2.1) in order to obtain the mass spectrometric data on this cell fraction. SDS is 

incompatible with mass spectrometry, and as such, any protocol needed to ensure that all 

SDS from the Lysis Buffer was removed. The first purification method followed that 

described in Section 2.6.2.2 with some alterations (noted below) using acetone 

precipitation to remove the SDS. This method was found to lead to removal, but still 

resulted in a low level of SDS contamination which caused peak drift of the peptide ions 

during LC-MS. As a result, a second method was used, Filter Aided Sample Preparation 

(FASP). This method involved a SDS to urea exchange step using spin filters to ensure all the 

SDS was removed.   

 

2.7.2.1 SDS removal 

Methods for hydrodynamic shearing and preparation of samples to be analysed by LC-MS 

were identical to that stated in Section 2.6.2.2 with the following alterations. The acetone 

precipitation of proteins in the samples was altered, since the proteins were not going to 

be resuspended in buffer following removal of SDS. Additional washing steps were also 

added to ensure maximum removal of SDS. The speed of centrifugation was reduced to 

prevent the pellet from becoming overly compacted, as this would cause problems during 

sample preparation for LC.  
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 When the samples had been precipitated in acetone overnight, they were 

centrifuged at 7.5 x g for 10 min at 4°C. The supernatant was carefully removed and the 

same volume of cold (-20°C) acetone was added and the sample centrifuged at 7.5 x g for 3 

minutes at 4°C. After this first wash, the supernatant was removed and fresh acetone was 

added. The protein pellet was then agitated with a pipette tip to release any SDS in the 

pellet. The sample was then centrifuged at 7.5 x g for 10 min at 4°C. Fresh acetone was 

added and the sample centrifuged at 7.5 x g for 3 min at 4°C twice more, discarding all 

supernatant in between washes. As much acetone was then removed as possible without 

disturbing the protein pellet, and all remaining acetone allowed to evaporate at room 

temperature over 10-20 min, depending on atmospheric conditions. The protein pellets 

were then frozen and stored at -80°C until needed.  

 LC-MC preparation was performed as reported in Section 2.6.2.2, but only from the 

RapiGest SF™ step onwards. Due to the low protein concentration of the samples, all the 

protein was treated as if the normalisation had been carried out beforehand, based on cell 

number, as was the case. This was to avoid wasting any sample in a Bradford assay. 

 

2.7.2.2 Filter aided sample preparation (FASP) digestion 

FASP filter units were prepared prior to receiving the samples. Formic acid was added 

(300μl of 1% (v/v)) to a VivaCon 500 10kDa MWCO HydroSart Filter unit (Millipore) and 

centrifuged at 14691 x g at 20°C for 15 min. Because FASP caused exchange of SDS in the 

Lysis Buffer for urea, no precipitation step was necessary after lysis, and the complete 

sample was sent for digestion. 

 The sample was gradually added to the filter unit and, with each arbitrary volume 

added, was centrifuged for 15 min at 14691 x g at 20°C. Once all the protein had been 

captured on the filter, 300μl of urea buffer (100mM Tris-HCl pH 8.5 and 8M urea) was 

added and the filter centrifuged for 15 min at 14691 x g at 20°C. This step was then 

repeated, followed by an additional, short 5 min centrifugation to ensure all urea buffer 

was removed. DTT Buffer (10mM DTT in urea buffer) was added (150μl) and the filter was 

briefly agitated by vortexing, before it was incubated at 56°C for 20 min. The filter was then 

centrifuged for 10 min at 14691 x g at 20°C. Then 150μl of urea buffer was added 

successively twice, and the filter was centrifuged for 10 min after each addition. 

Iodoacetamide buffer (50mM iodoacetamide in urea buffer) was added (150μl) and the 
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filter was briefly agitated by vortexing and then it was incubated at room temperature for 

20 minutes in the dark. The filter was then centrifuged for 10 min at 14691 x g at 20°C. 

Urea Buffer was added (150μl) successively twice, and the filter was centrifuged for 15 min 

after each addition. NH4HCO3 was added (150μl of 25mM) successively twice, and the filter 

was centrifuged again for 15 min after each addition. The filter unit was then transferred 

into a fresh collection tube which had been prewashed with 500μl of 1% (v/v) formic acid. 

Gold mass spectrometry grade trypsin was added (40μl) and the samples were left to 

incubate overnight at 37°C. The following day, the filter unit was centrifuged for 15 min 

before adding 30μl of NH4HCO3 successively twice, and the filter was centrifuged for 15 min 

after each addition. This procedure resulted in an approximate sample recovery volume of 

120μl. The flowthrough from the filter was then transferred to a new Eppendorf. TFA was 

added to a final concentration of 0.2% (v/v) to remove the trypsin, as well as acting as an 

ion-pairing agent for LC. The samples were then stored on ice and were analysed on the 

same day, as described in Section 2.7.1.3.  

 

2.8 Cell morphological analysis 

2.8.1 Time course of S100P induction  

HeLa A3 cells were thawed and passaged twice prior to beginning the time course. S100P 

was induced in the cells using doxycyclin, as described in Section 2.2.5. Cells were split into 

three 10cm diameter tissue culture dishes every two days, so as to yield a 60% confluent 

culture 48 hours after passage. Cultures at 60% confluence were selected, since trial runs 

showed these to be optimal for image analysis. Upon every passage, the doxycyclin was re-

applied to the cells at a concentration of 5μg/μl. At every time point (including before 

induction) images of the cells were recorded using a DC5000 CMEX microscope camera 

(Euromex, Edegem, Belgium) connected to a light microscope. Eight images were taken per 

dish in a regular arrangement. Two dishes each passage were lysed (Section 2.2.6), and the 

third was split to continue the culture. A control for this experiment was also carried out, 

where untransfected HeLa cells were incubated with 5μg/μl of doxycyclin over a two week 

time course, as described above. Images were taken of these cells to determine if the 

doxycyclin was having any effect on cell morphology independent of S100P induction.  
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2.8.2 Image analysis 

All cell morphology analyses were carried out using Fiji: ImageJ 2.0.0.rc24/1.49m_v64 

(http://fiji.sc/Fiji). To ensure the correct data was collected, the settings shown in Figure 

2.4 (A) were selected by running the [Analyze -> Set Measurements] command. Cell images 

were imported into the programme and the freehand selection tool was selected. The 

boundaries of each cell were traced and the information about the shape drawn stored by 

running the [Edit -> Selection -> Add to Manager] command after each cell (Figure 2.4). 

Once all the cells were selected for the current image, the shape properties were saved 

using ROI manager. Values for key morphological characteristics were determined for each 

of the cells by selecting "measure" in the ROI manager. This data was then copied into an 

Excel document. Multiple images were analysed for each time point, until 270 cells had 

been analysed for that time point. 

 

 

Figure 2.4. Analysis of cell morphology using Fiji: ImageJ programme. A) Set 

measurements menu showing parameters that were selected for image analysis. B) Traced 

cells using freehand selection tool. Numbers indicate the shape designations in the ROI 

manager.  
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2.8.3 Characterisation of cell morphology values 

The method by which Fiji: ImageJ program analyses the selected shapes inputted into the 

ROI manager is by using ellipse fitting macros. The dimensions of the selected shape are 

used in conjunction with the fitted ellipse to give shape parameters which relate directly to 

cell morphology (Figure 2.5). The key shape parameters that have been used in this study 

are characterised as follows: 

Area – The number of pixels present in the selected area of the shapes. 

Major axis – The longest possible diameter using the fitted ellipse that runs directly through 

the central foci of the ellipse. 

Minor axis – The longest possible diameter using the fitted ellipse that runs through the 

central foci of the ellipse and also runs perpendicularly to the major axis. 

Aspect ratio – The ratio of the major axis to the minor axis as obtained from the ellipse 

model. 

Roundness – A measure of how round the shape is based upon the fitted ellipse. This is 

calculated using 4([Area]/π[Major axis]2), where a value of 1 would be a perfect circle. 

Solidity – A measure of how much unfilled space is present between the selected shape 

and the fitted ellipse. This is calculated using (Area/Convex area) and is an expression of 

how convex the shape is, where a value of 1 would be a shape with no convex surfaces. 

Solidity can be used as an indication of exaggerated filopodia formation, as this results in 

increased convex surfaces and therefore lower solidity. 

 

 

 



Chapter 2 Materials and Methods 

66 
 

 

Figure 2.5. Measured parameters of selected cells. Parameters used are defined in Section 

2.8.3 above. 

 

2.9 Endoglin siRNA 

siRNA endoglin knock-downs were carried out on uninduced HeLa A3 cells. Cells (100000) 

in 2ml of SCM were seeded into the wells of a six-well tissue culture dish. Cells were then 

incubated under normal growth conditions for two hours. siRNA (150ng) (Table 2.13) was 

added to 400μl of serum-free culture medium followed by 12μl of HiPerFect Transfection 

Reagent (Qiagen, Limburg, Netherlands). This mixture was then incubated at room 

temperature for 10 min, to allow formation of the transfection complexes. The mixture was 

then added, drop-wise, onto the cells in one well of the six-well dish and the dish gently 

swirled to allow even distribution of the transfection complexes. This process was repeated 

for the scramble control siRNA, four separate endoglin siRNAs and a mixture of Hs_ENG_2 

siRNA and Hs_ENG_4 siRNA (50% of each present in the 150ng added). The cells were then 

allowed to grow under normal conditions and were lysed at 24 and 48 hours to determine 

the knock-down efficiency using Western blotting for their target, endoglin.  

 Following this control experiment, migration assays (Section 2.3.1) and adhesion 

rate assays (Section 2.3.3) were carried out on cells where endoglin had been knocked-

down by the most efficient siRNA. Due to the increased number of cells needed for these 

bio-assays, 10cm diameter tissue culture dishes were employed. This increased demand for 

cells required all values indicated above to be scaled up by a factor of five. 
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siRNA Name Product code Target sequence 

Negative control siRNA 1022076 5'- AATTCTCCGAACGTGTCACGT 

Hs_ENG_2 siRNA SI00002317 5'- AAGGGAGAACTTGAAACAGAT 

Hs_ENG_4 siRNA SI00002331 5'- ACCAATAAATCAGACCATGAA 

Hs_ENG_5 siRNA SI02663024 5'- CGCCATGACCCTGGTACTAAA 

Hs_ENG_6 siRNA SI02663031 5'- CAGCAATGAGGCGGTGGTCAA 

Table 2.14. siRNA used during endoglin knock-down experiments. All siRNAs were 

purchased as a kit from Qiagen. 

 

2.10 Statistical analysis 

All statistical analysis was performed using either the SPSS software package, version 20  

(IBM) or StatsDirect statistical software, version 2.7.9. 
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Chapter 3  

 

Characterisation of the effect of S100P on inducible 

cell lines 

 

3.1 Introduction 

As previously discussed, overexpression of S100P in primary tumours results in an 

increased chance of metastasis in number of different cancers. The steps by which benign 

cells transform into metastatic cells is a multifaceted process involving changes in cellular 

morphology and dynamics, both properties that S100P is suspected to affect. It has been 

shown that S100P binds directly to NMIIA, a crucial cytoskeletal protein involved in 

maintaining cell morphology and inhibiting cellular migration via stress fibre tension. The 

binding of S100P to NMIIA has been demonstrated to cause a breakdown in the NMIIA 

filamental structure and, as such, it was proposed that this promotes an increase in cell 

migration [206]. These experiments have been undertaken using HeLa A3 cells, a S100P 

transfected HeLa cell line, with expression of S100P placed under the control of a 

doxycyclin-inducible promoter. Thus, when doxycyclin is added to the medium, the cells 

overexpress S100P. Immunofluorescence staining for vinculin in these S100P 

overexpressing cells has also been carried out, which showed a reduction in the number of 

stained focal adhesions. This result may suggest that, indeed, cell-extracellular matrix 

adhesion, at least to the plastic surface of the Petri dish, is altered in some way by S100P 

overexpression. Similar observations have also been made looking at changes in cell 

morphology and cytoskeletal organisation in S100P overexpressing pancreatic (Panc-1) 

[233] and colon (LS174T) [234] cell lines. In all of these cases, significant alterations were 

observed whereby S100P-overexpressing cells appeared more elongated and had a less 

organised actin cytoskeleton. All cell lines were also observed to be 
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significantly more motile compared to control cells. Small hairpin RNA (shRNA) knockdowns 

of S100P have also been carried out using LS174T cells which resulted in reduced cellular 

motility, as well as a decrease in the rate of filopodia formation and retraction [235].  

 All of these studies suggest that S100P is having an important role in cytoskeletal 

organisation and cell migration, and this mechanism may involve NMIIA; however, this 

process is still not fully understood.  

 

3.1.1 Chapter objectives  

Utilising S100P-overexpressing, inducible cell lines, the aim of this chapter is to 

explore the effect of S100P induction on the adhesive, migratory and invasive properties of 

the cells using cell-based bioassays, as well as to observe any morphological alterations 

that take place upon induction. Furthermore, if any alterations are observed in these 

properties, they will be investigated further to determine if there are any alterations in the 

abundance or distribution of key focal adhesion or integrin proteins. This investigation will 

be conducted using the S100P-inducible HeLa A3 cells and the S100P-inducible Cos7-S10 

cells (Section 2.2.1), the latter contain no NMIIA, so the effect of S100P can be studied in 

the absence of its binding to NMIIA.  

Furthermore, determining if S100P causes an epithelial to mesenchymal transition 

(EMT) in HeLa A3 cells is an important factor to ascertain, since if this were the case, it 

would likely cause alterations in cell migration and adhesion. HeLa A3 cells are known to 

have previously undergone an EMT to some extent, but it is important to identify if this 

process is further progressed via overexpression of S100P. Described in detail in the 

Introduction, Section 1.5, EMT is the process by which epithelial cells lose epithelial cell 

characteristics in place of a more mesenchymal-like phenotype [151]. EMT is also common 

in many metastatic cancers, and has been shown to occur in cells overexpressing S100A4, 

another member of the S100 protein family closely related to S100P [236, 237]. EMT is 

characterised by several genotypic alterations in protein expression which are: a reduction 

in E-cadherin, replaced by an increase in N-cadherin, overexpression of the mesenchymal 

intermediate filament, vimentin and upregulation of several transcription factors including 

Snail and Slug [148]. The levels of these proteins in S100P overexpressing cells will 

therefore be determined.  
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Finally it is important to consider the signalling mechanisms behind any observed 

changes in focal adhesion distribution. These signalling mechanism can be investigated by 

looking at the phosphorylation state of focal adhesion proteins involved in vinculin 

recruitment and promotion of adhesion maturation. Expanding on themes in Section 

1.3.2.3, NMIIA-mediated tension results in FAK phosphorylation at Y397, which 

subsequently phosphorylates paxillin at Y118 and Y31, leading to an increased rate of 

recruitment of adhesion proteins to the adhesion sites [99]. Therefore, if the S100P-

dependent breakdown of NMIIA is causing a loss in cell tension resulting in reduced mature 

focal adhesions, it would be expected that there would be a reduction in the levels of 

phosphorylated Y397 FAK and Y118 / Y31 paxillin. 
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3.2 Results 

3.2.1 S100P overexpression in relation to cell morphology 

In order to determine the effect of S100P on cells in general, it was necessary to study its 

overexpression in vitro. A cell line was selected that could be induced with 5μg/ml of 

doxycyclin to overexpress S100P after a set time. HeLa A3 cells were used, as they provided 

an epithelial cancer cell line that could be easily cultured. The transfection of this cell line 

has also been achieved in-house and as such the cells were readily available.  

 In order to gain an insight into what was happening to the cells morphologically as 

a result of S100P overexpression, HeLa A3 cells were induced with doxycyclin (Section 

2.2.5) and imaged using a light microscope 48 hours after induction. Whole cell lysates 

were taken from the cultured dishes after imaging and Western blots were also carried out 

to determine the level of S100P expression compared to uninduced, control HeLa A3 cells. 

 When S100P was induced, the cells appeared more elongated with more clearly 

defined protrusions and an overall flatter appearance. The morphology of the control, 

uninduced cells was typical for subconfluent cultures in that they appeared somewhat 

irregular for these epithelial cells. At higher confluence, however, control uninduced HeLa 

A3 cells took on a more classical cuboidal appearance. Subconfluent cultures were 

henceforth selected, as at a higher confluence the differences between the uninduced and 

induced cells was less clear.  

 When observed under a light microscope (Figure 3.1), a clear and substantial 

morphological alteration occurred between the control, uninduced cells (Figure 3.1A) and 

the S100P-induced cells (Figure 3.1B). There was a significant 2.8-fold increase in the 

percentage of elongated cells present in the S100P-overexpressing HeLa A3 cell population 

(percentage of elongated cells in: control, uninduced cells 16.7%, S100P-induced cells 

48.1%, Student's t = 8.04, P = 0.0013). This does emphasize one issue with the inducible 

HeLa A3 cell system, however, in that there is heterogeneity within the cell population 

since not all cells responded in the same manner to doxycyclin treatment at the same time 

period.  

 The Western blot (Figure 3.1C) from whole-cell lysates of control, uninduced HeLa 

A3 cells and lysates from cells growing in the presence of 5μg/ml doxycyclin for 48 hours 

resulted in a band at the correct apparent molecular weight of 9kDa corresponding to 
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S100P. The intensity of this band was very high, however, due to a lack of detectable S100P 

in the uninduced, control cells, thus densitometry-based comparative analysis would be 

rather meaningless. 

 

 

Figure 3.1. HeLa A3 cell morphology in relation to S100P overexpression. A) Control, 

untreated more-cuboidal HeLa A3 cells show irregular morphology, but no clearly defined 

protrusions.  B) HeLa A3 cells 48 hour after addition of doxycyclin show a more elongated 

shape and an increase in filopodia. Arrows point to good examples of the more elongated 

cells. White bars = 100μm. A significant difference is seen in the percentage of elongated 

cells in the S100P-induced cells compared to the control, uninduced cells. Percentage of 

elongated cells in: control-uninduced cells 16.7%, SD = 6.4% and S100P-induced cells 

48.1%, SD = 2.2% (Student's t = 8.04, P < 0.05), 400 cells were used for measurements 

across n = 3 experiments. C) Western blot of S100P expression in HeLa A3 cells, 48 hour 

after addition of 5μg/ml doxycyclin (for full gel see Appendix 1). Twenty μg of protein was 

loaded per well on a 15% (w/v) polyacrylamide gel. Arrow points to position of S100P at an 

apparent molecular weight of 9kDa. 
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3.2.2 NMIIA null cells and S100P 

Since the main interaction of S100P reported previously was its binding to NMIIA, a S100P-

inducible cell line was used that contained no NMIIA. To study the effect of S100P 

overexpression in a system with no NMIIA, Cos7-S10 cells were utilized. These cells were 

inducible for S100P with 5μg/ml of doxycyclin, via the same transfection system used in the 

HeLa A3 cells. These cells are a more elongated cell line and were created in-house by Dr 

Min Du.  

 The same experiment was conducted as for the HeLa A3 cells, whereby Cos-S10 

cells were induced for 48 hour, imaged and then lysed to determine the levels of S100P 

using Western blotting (Figure 3.2). In contrast to the HeLa A3 cells, there was no 

observable difference between the cell morphology of uninduced, control and the S100P-

induced Cos7-S10 cells. The Western blot (Figure 3.2C) from whole-cell lysates of control, 

uninduced Cos7-S10 cells and lysates from cells growing in the presence of 5μg/ml 

doxycyclin for 48 hours resulted in a band at the correct apparent molecular weight of 

9kDa corresponding to S100P. The intensity of this band, similar to that shown in the  

S100P-overexpressing HeLa A3 cells, was very high, however, due to a lack of detectable 

S100P in the control, uninduced cells densitometry-based comparative analysis was of no 

value. 

The lack of a clear morphological change in the Cos7-S10 cells may indicate that it 

is the interaction between S100P and NMIIA that is required for changes in cell shape. 
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Figure 3.2. Cos7-S10 cell morphology in relation to S100P overexpression. A) Control, 

untreated Cos7-S10 cells showing a more cuboidal to spherical appearance except while 

dividing. B) Cos7-S10 cells 48 hour after addition of doxycyclin show no observable 

difference in cell morphology compared to control, uninduced cells which were not 

doxycyclin treated. 100% of the Cos7-S10 cells showed standard morphology with or 

without induction of S100P. White bars = 100μm. C) Western blot of S100P expression in 

Cos7-S10 cells 48 hour after addition of doxycyclin. Twenty μg of protein was loaded per 

well on a 15% (w/v) polyacrylamide gel. Arrow points to position of S100P at an apparent 

molecular weight of 9kDa. 

 

3.2.3 Changes in NMIIA in whole-cell lysates 

Since the alterations in cell morphology appeared dependent on the presence of NMIIA, it 

was important to determine the expression of NMIIA in the HeLa A3 and Cos7-S10 cell 

lines. As anticipated there was no visible NMIIA protein band for the Cos-S10 cells in either 

the uninduced, control or S100P-induced samples. In contrast, there was an observable 

band for NMIIA at the correct molecular weight of 230kDa in both HeLa A3 samples, but 

there was no significant difference between the levels of NMIIA in uninduced, control HeLa 

A3 samples compared to the S100P-induced cell samples. This may, therefore, suggest that 
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S100P in the HeLa A3 cells is not causing the NMIIA to be degraded, rather just 

depolymerising or preventing the formation of the NMIIA filamental structures. 

 

 

Figure 3.3. Identification of non-muscle myosin IIA (NMIIA) protein in HeLa A3 and Cos7-

S10 cells. Western blot of NMIIA protein using HeLa A3 and Cos7-S10 whole-cell lysates 48 

hours after induction with doxycyclin showing NMIIA at 230kDa present in the HeLa A3 

cells, but no observable band in Cos7-S10 cells. No significant difference is seen in the 

mean levels of NMIIA bands in HeLa A3 cells (0.99-fold change, Student’s t = 0.054, p = 

0.96, n = 3). GAP-DH bands at 37kDa are shown as a loading control. Ten μg of protein was 

loaded per well on an 8% (w/v) polyacrylamide gel.  

 

3.2.4 Phenotypic changes in cell dynamics 

3.2.4.1 S100P and cellular adhesion 

As mentioned in 3.1, there are many cellular properties that could be altered by a change 

in the cell’s cytoskeleton. Chief amongst these were potential changes in the cell's adhesive 

properties, which are reliant both on cellular tension and the actin-myosin cytoskeleton for 

adhesion initiation and maturation. As previously described, some studies found links 

between S100P and alterations in cellular adhesion and, as such, this aspect needed to be 

explored in more detail.  
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3.2.4.1.1 Rate of adhesion 

The rate at which cells can adhere to a surface is crucially important in the context of 

cancer. Once cells invade through into the circulatory system and break off to be carried by 

the blood/lymph flow, they need to be carried sufficiently far away and not adhere 

immediately to the adjacent vessel walls. HeLa A3 and Cos7-S10 cells were assayed to 

determine whether S100P had an effect on the rate of adhesion (Figure 3.4).  The HeLa A3 

cells (Figure 3.4A) showed a significant decrease in the number of cells adhering at each 

time point in the doxycyclin-induced cells compared to the uninduced control cells (30 min 

Student's t = 3.6, P = 0.022; 1 hour t = 4.3, P = 0.013; 2 hour t = 9.3, P = 0.0007, n = 3). The 

Cos7-S10 cells (Figure 3.4B) showed no significant difference in the number of cells 

adhering at each time point (30 min t = 0.4, P = 0.69; 1 hour t = 1.6, P= 0.19; 2 hour t = 1.6, 

P = 0.18, n = 3). These results may suggest that it is the depolymerisation of the filaments 

of NMIIA by S100P that causes the decrease in cell adhesion seen here. 
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Figure 3.4. Rate of adhesion assay time course. The percentage of cells remaining which 

have adhered to tissue culture dishes at different times after initial seeding are shown. 

Originally 200000 cells were seeded in each well using a 24 well plate. A) Control uninduced 

HeLa A3 cells and doxycyclin-induced HeLa A3 cells. Differences at 30 min Student’s t = 3.6, 

P < 0.05; 1 hour t = 4.3, P < 0.05; 2 hour t = 9.3, P < 0.05, n = 3. B) Control uninduced Cos7-

S10 cells and doxycyclin-induced Cos7-S10 cells. Differences at 30 min t = 0.4, P = 0.69; 1 

hour t = 1.6, P= 0.19; 2 hour t = 1.6, P = 0.18, n = 3. The induced cells were exposed to 

doxycyclin for 48 hour prior to the experiment and means +/- SD of each experiment are 

shown. Asterisk (*) indicates time points that are significantly different between 

uninduced, control and S100P-induced cells (Student’s t-test, P < 0.05).  
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3.2.4.1.2 Strength of adhesion 

As well as assessing the rate of cell adhesion, it was also necessary to determine how 

strongly the cells were bound to the culture dishes. Ultimately, if cells were bound less 

strongly to the surrounding matrix, then it would be easier for them to break free from a 

tumour.  HeLa A3 and Cos7-S10 cells were, therefore, assayed to determine whether S100P 

had an effect on the strength of cell adhesion.  The HeLa A3 cells (Figure 3.5A) showed a 

significant decrease in the number of cells that remained adhered to the tissue culture dish 

in the doxycyclin-induced cells compared to the uninduced control cells after weak 

trypsination (Student’s t = 6.7, P = 0.022, n = 3). The Cos7-S10 cells (Figure 3.5B) showed no 

significant difference in the number of cells that remained adhered to the tissue culture 

dish after weak trypsination (t = 0.6, P = 0.95, n = 3). These results, as with the rate of 

adhesion assay, suggest that it is the breakdown of filamental NMIIA by S100P that causes 

the decrease in strength of adhesion seen here. 

 

Figure 3.5. Strength of adhesion assay. Cells were seeded in a 24 well plate to form an 80% 

confluent monolayer 16 hours later. Cells were then digested with dilute 0.0125% (w/v) 

trypsin/versene for 5 min to remove weakly bound cells. The remaining bound cells were 

removed and counted using standard procedures (Materials and Methods). The values are 

expressed as a percentage of the original number of cells seeded. A) Control, uninduced 

HeLa A3 cells and doxycyclin-induced HeLa A3 cells. There was a significant 1.6-fold 

decrease in the strength of adhesion upon induction of S100P (Student’s t = 6.7, P < 0.05, n 

= 3). B) Control uninduced Cos7-S10 cells and doxycyclin-induced Cos7-S10 cells. There was 

no significant change in the strength of adhesion upon induction of S100P (t = 0.6, P = 0.95, 

n = 3). The induced cells were exposed to doxycyclin for 48 hour prior to the experiment. 
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Asterisk (*) indicates time points that are significantly different between uninduced, 

control and S100P-induced cells (Student’s t-test P < 0.05). 

 

3.2.4.2 Cell migration assays 

In order to substantiate previous studies, cell migration was measured in order to ensure 

S100P overexpression was causing the reported increase in cell motility. Cos7-S10 cells 

were also used in this assay to determine if any changes in migration were independent of 

the S100P-NMIIA interaction.  

 HeLa A3 cells showed a significant 4.7-fold increase in cell migration in doxcyclin-

induced cells compared to uninduced, control cells (Student’s t =  20.8, P <  0.0001, n = 3) 

(Figure 3.6A). The Cos7-S10 cells were very variable when performing migration assays, 

with the values substantially deviating around the means. The results in Figure 3.6B shows 

that there was a near 1.4-fold increase in cell migration between the uninduced and 

induced Cos7-S10 cells. However, due to the variability of the results, this increase due to 

S100P-overexpression was not significant (1.4 fold increase t = 1.68, P = 0.144, n = 4).  

 The HeLa A3 results are consistent with those in the literature and, as with the 

adhesion assays, the Cos7-S10 results may imply that NMIIA is required, in part, for S100P 

to have a full effect on increasing cell migration. 
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Figure 3.6. Effect of S100P on cell migration. Cells were seeded in Boyden chambers and 

allowed to migrate across a permeable membrane via chemotaxis induced by a 1% to 10% 

(v/v) serum difference. The number of cells migrated 16 hour after seeding was scored. A) 

Control uninduced HeLa A3 cells and doxycyclin-induced HeLa A3 cells. There was a 

significant 4.8 fold increase in migration upon induction of S100P (Student’s t = 20.8, P < 

0.05, n = 3). B) Control, uninduced Cos7-S10 cells and doxycyclin-induced Cos7-S10 cells. 

There was a 1.4 fold increase in migration upon induction of S100P, which proved not to be 

significant (t = 1.68, P = 0.144, n = 4). The induced cells were exposed to doxycyclin for 48 

hour prior to the experiment and means +/- SD of each experiment are shown. Asterisk (*) 

indicates samples that are significantly increased (Student’s t-test, P < 0.05). 

 

3.2.4.3 Cell invasion assays 

As well as cell migration, an indication of a cell’s invasive properties was sought to 

determine if S100P was causing alterations in the cell's ability to break down and traverse 

the extracellular matrix. Figure 3.7A shows that doxycyclin-induced HeLa A3 were more 

invasive than the control, uninduced HeLa A3 cells, showing a significant 3.2-fold increase 

in the number of invading cells compared to the control, uninduced HeLa A3 cells 

(Student’s t = 7.01, P = 0.0022, n = 3). Surprisingly, however, the opposite was observed for 

Cos7-S10 cells (Figure 3.7B) with a significant 2.5-fold decrease in cell invasion upon 

induction of S100P with doxycyclin compared to the control, uninduced cells (t = 3.81, P = 

0.0189, n = 3). This reduction rather than increase for Cos7-S10 cells may suggest that, 

unlike the HeLa A3 cells, S100P is having an inhibitory effect on the cell’s ability to invade 

via serum chemotaxis, when no NMIIA is present. 
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Figure 3.7. Effect of S100P on cell invasion. Cells were seeded in Boyden chambers and 

allowed to invade across a Matrigel-coated permeable membrane via a 1% to 10% (w/v) 

serum gradient. The number of cells migrated 16 hour after seeding was scored. A) Control, 

uninduced HeLa A3 cells and doxycyclin-induced HeLa A3 cells. There was a significant 3.2 

fold increase on induction of S100P (Student's t = 7.01, P < 0.05, n = 3) B) Control, 

uninduced Cos7-S10 cells and doxycyclin-induced Cos7-S10 cells. There was a significant 2.5 

fold decrease on induction of S100P (t = 3.81, P < 0.05, n = 3). The induced cells were 

exposed to doxycyclin for 48 hours prior to the experiment and means +/- SD of each 

experiment are shown. Asterisk (*) indicates samples that are significantly different 

(Student’s t-test, P < 0.05). 

 

3.2.5 Epithelial to mesenchymal cell transition in HeLa A3 cells 

As a significant difference was observed in the percentage of elongated cells in the S100P-

induced cells compared to the control, uninduced cells, combined with an increase in 

migration and a decrease in cell adhesion, it was crucial to determine if these alterations 

were taking place due to an epithelial to mesenchymal transition (EMT) alongside the 

depolymerisation of NMIIA. HeLa cells have been previously shown to have undergone 

EMT, at least partially, but due to the observed changes, it was important to assess the 

extent of this EMT. EMTs are mediated by a range of both signalling and structural proteins. 

The abundance of these EMT-related proteins was assessed using Western blotting in 

control, uninduced and S100P-overexpressing HeLa A3 cells (Figure 3.8). These results show 

that the abundance of immunoreactive N-cadherin (140 kDa band), a crucial cell-cell 

adhesion protein, is significantly increased by 1.5 fold (Student's t = 10.64, P = 0.0035, n=3). 

This increase is consistent with an EMT; however, in most cell systems this increase in N-

cadherin is paralleled by a decrease in E-cadherin. However, no detectable E-cadherin band 
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was visible in either the control or S100P-induced HeLa A3 samples. This lack of E-cadherin 

may suggest that HeLa A3 cells have already undergone a partial EMT which is supported 

by previous evidence on this cell line. Vimentin expression is characteristically increased in 

cells undergoing an EMT; however, S100P-overexpressing HeLa A3 cells showed no 

significant increase in the ratio of immunoreactive vimentin (57 kDa band) (fold increase = 

1.11, t = 0.28, P = 0.81, n = 3). Increased expression of the transcription factors Snail and 

Slug are also considered major factors in EMT progression. However, no significant increase 

was observed in the levels of immunoreactive Slug (30 kDa band) in S100P-overexpressing 

cells (fold increase = 1.27, t = 2.23, P = 0.16, n = 3) compared to the control, uninduced 

samples. Immunoreactive Snail (30 kDa band) showed a small, but significant reduction in 

protein abundance in the S100P-overexpressing HeLa A3 cells (fold decrease = 1.5, t = 

10.64, P = 0.0087, n = 3), the opposite of what is normally associated with EMT. From these 

results it is, therefore, difficult to decide whether there is an EMT taking place or not, as a 

result of S100P overexpression.  
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Figure 3.8. Levels of EMT proteins in S100P-induced HeLa A3 cells after 48 hours. 

Examples of Western blots for EMT proteins using whole-cell extracts of control, uninduced 

HeLa A3 cells and doxycyclin-induced HeLa A3 cells, with the GAP-DH bands being shown as 

a loading control. A significant increase is shown in S100P-overexpressing cells for N-

cadherin (fold increase = 1.5, Student's t = 16.85, P < 0.05, n=3) and a significant decrease 

for Snail (fold decrease = 1.5, t = 10.64, P < 0.05, n = 3). No significant alteration is seen in 

vimentin (fold difference = 1.1, t = 0.28, P = 0.81, n = 3) or Slug (fold difference = 1.3, t = 

2.23, P = 0.16, n = 3). No E-cadherin protein was detectable. The induced cells were 

exposed to doxycyclin for 48 hour prior to the experiment and 10μg of protein was loaded 

on a 10% (w/v) polyacrylamide gel for each well.  

 

3.2.6 The effect of S100P over time 

3.2.6.1 Analysis of cellular morphology over time 

Due to the inconsistency of the expression of different EMT marker proteins reported in 

Section 3.3, it was decided that the morphology of the S100P-overexpressing cells should 
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be studied in more detail over longer time periods. Three key parameters of cell 

morphology were measured over a two week time course (Figure 3.9A). The first of these 

parameters, Aspect Ratio, measures how elongated or spindle-like are the cells, and is 

derived by dividing the major axis of the cell by the minor axis. An increase in Aspect Ratio 

signifies an increase in cell elongation. When S100P was induced in HeLa A3 cells, there was 

an immediate and significant 1.3 fold increase (Student's t = 5.47, P < 0.0001, 270 cells 

examined) (Table 3.1) in Aspect Ratio 24 hours after induction of S100P. The Aspect Ratio 

of the S100P-overexpressing cells then increased steadily over the remainder of the two 

week period. Between the 24 hour and 334 hour time points the Aspect Ratio, and thus the 

cell elongation, increased significantly by another 1.3 fold (t = 8.52, P < 0.0001, 270 cells 

examined). 

 The second morphological parameter monitored is Solidity which is a measure of 

the cell's convex area. Morphologically, a decrease in Solidity is correlated with an increase 

in the number of convex surfaces present at the cellular periphery, which, in turn, implies 

an increase in filopodia-like protrusions. A small but significant 1.1 fold reduction in cellular 

solidity was observed at 24 hours (Student’s t = 9.82, P < 0.0001, 270 cells examined); 

however, unlike Aspect Ratio, no further significant change was seen between 24 and 336 

hours. 

 Lastly cellular Roundness was monitored, which is a measure of how spherical a cell 

is, with a perfect circle having a Roundness value of one. Morphologically, a decrease in 

Roundness indicates the cells are more elongated, although without taking into account 

the minor axis. Cells with a low Roundness can also be very wide in addition to being 

elongated. There was a significant 1.2 fold decrease (Student’s t = 7.52, P < 0.05, 270 cells 

examined) in cellular Roundness 24 hours after induction of S100P. This decrease was 

followed by a significant, although smaller 1.2 fold decrease (t = 4.72, P < 0.0001, 270 cells 

examined) between 24 and 334 hours. 

 In order to validate these results and ensure that any changes observed are due to 

S100P overexpression, this experiment was repeated by adding doxycyclin to untransfected 

HeLa cells. This experiment was carried out to remove the possibility that doxycyclin, itself 

was causing the morphological changes observed in the induced HeLa A3 cells. Figure 5.2B 

shows that there was no significant change in Aspect ratio (fold change = 1.005, t = 0.12, P 

= 0.91, 270 cells analysed), Solidity (fold change = 1.003, t = 0.21, P = 0.83, 270 cells 
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analysed) or Roundness (fold change = 1.014, t = 0.44, P = 0.66, 270 cells analysed) in the 

control, untransfected HeLa cells up to 336 hours after addition of doxycyclin.  

 These morphology results may suggest that S100P has an immediate effect on the 

cells which takes place at about 24 hours and causes an increase in cell elongation (increase 

in Aspect Ratio, decrease in Roundness), and an increase in filopodia (decrease in Solidity). 

A second effect then occurs between 24 and 334 hours, where elongation of cells continues 

to increase (1.25 fold increase in Aspect Ratio and 1.21 fold decrease in Roundness). 
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3.9. Time course of changes in HeLa A3 cell morphology upon induction of S100P. A) 

Morphological changes in Aspect Ratio (major axis/minor axis), Solidity (area/convex area) 

and Roundness (4[area]/π[major axis]2) in S100P-induced HeLa A3 cells over two weeks of 

S100P induction with 270 cells being analysed per time point. Significant fold changes are 

noted in Table 5.1. B) Morphological changes in Aspect ratio, Solidity and Roundness in 

untransfected HeLa cells. Doxycyclin was added to the medium of both cell lines every 48 

hours for two weeks. No significant change in Aspect ratio (fold change = 1.005, Student’s t 
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= 0.12, P = 0.91), Solidity (fold change = 1.003, t = 0.21, P = 0.83) or Roundness (fold change 

= 1.014, t = 0.44, P = 0.66) was observed 336 hours after addition of doxycyclin. Analysis 

was carried out using Image J-Fiji (Material and Methods, Section 2.8.2) and 270 cells were 

analysed per time point.  

 

Morphological 

parameter 
Change (0-24h) Change (24-336h) 

Aspect Ratio 
1.25 fold increase, t = 5.47, 

P< 0.0001 

1.25 fold increase, t = 8.52, 

P< 0.0001 

Solidity 
1.1 fold decrease, t= 9.82, P< 

0.0001 
No change 

Roundness 
1.21 fold decrease, t = 7.52, 

P< 0.0001 

1.2 fold decrease, t = 4.72, 

P< 0.0001 

 

Table 3.1. Fold change and statistical significance of alterations in cell morphological 

parameters identified from Figure 5.2A for S100P-induced HeLa A3 cells. Definitions of 

morphological parameters are described in Material and Methods, Section 2.8.3. 

 

3.2.6.2 Levels of expression of S100P over time in S100P-induced HeLa A3 cells 

At the same time the morphological analysis was undertaken over 336 hours (Section 

3.4.1), the relative levels of S100P were also determined using Western blotting at each 

time point. Upon addition of doxycyclin, the relative level of S100P increased at a steady 

rate from 0-100 hour, after which it levelled off somewhat, but a smaller rate of increase 

still continued up to 334 hour. This increase in the relative levels of S100P over time may 

well account for the steady increase in morphological changes that occurs after 24 hours. It 

is, however, unlikely that this second steady change in cellular morphological parameters 

between 24 hour and 336 hour is due to S100P breaking down the NMIIA filaments, since it 

has previously be shown that this takes place at earlier times [206]. 
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Figure 3.10. Induction of S100P in HeLa A3 cells as a function of time. A) Example of 

Western blot for S100P in whole-cell HeLa A3 extracts taken at different time points after 

addition of doxycyclin to induce S100P. GAP-DH bands are shown as a loading control. Ten 

μg of protein was loaded per well on 15% (w/v) polyacrylamide gels. B) Relative protein 

abundance of Western blots plotted against time. Protein bands for S100P were scanned 

and normalised against the relevant bands for GAP-DH. This ratio of pixel densities was 

then further normalised relative to the HeLa A3 band at t = 24 hour, since no protein band 

for S100P was observed at t = 0 hour.  
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3.2.6.3 Abundance of epithelial to mesenchymal transition (EMT)-related 

proteins over time 

As stated in Section 3.4.2, it was unlikely that the continued morphological changes 

observed in S100P-overexpressing cells after 24-48 hours were caused by breakdown of 

NMIIA filaments, since this breakdown had already taken place. The relative levels of EMT 

proteins were, therefore, re-examined to see if alterations were observable after 48 hours. 

Figure 3.11 shows the relative levels of the main EMT proteins, Snail, vimentin and N-

cadherin, over time determined by Western blots of lysates of S100P-induced HeLa A3 

cells. The most striking result was a substantial drop (30-fold decrease) in the relative levels 

of Snail. During the initial 48 hours after doxycyclin addition, when the filaments of NMIIA 

depolymerize, no change in immunoreactive Snail was observed (Table 3.2). However, 

between 48 and 334 hours, a 30-fold decrease was observed, with the decrease occurring 

only after about 100 hour. This substantial decrease is the opposite of what may be 

expected in a cell line undergoing EMT. The relative levels of N-cadherin and vimentin were 

somewhat more variable (Figure 3.11B). The relative levels of N-cadherin increased (1.40 

fold increase) in accordance with the early time points, as previously reported (Figure 3.8). 

However, N-cadherin levels did not rise substantially thereafter during the 48 to 334 hour 

period (1.1-fold increase). Levels of vimentin remained relatively constant with a small 1.1-

fold increase between 0 to 48 hours and then another small 1.2-fold increase between 48 

to 334 hours.  
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Figure 3.11. Levels of EMT proteins upon induction of S100P in HeLa A3 cells as a function 

of time. A) Example of Western blots for EMT proteins in whole-cell HeLa A3 extracts taken 

at different time points after addition of doxycyclin to induce S100P. The bands 

corresponding to Snail show no change up to 72 hour and then decrease dramatically from 

72 to 336 hours. No substantial alterations are seen in the relative levels of vimentin. The 

relative levels of N-cadherin increase substantially from 0 to 24 hours and then relatively 

more slowly up to 120 hours. GAP-DH bands are shown as a loading control. Ten μg of 

protein was loaded per well on a 10% (w/v) polyacrylamide gel. B) Relative protein 
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abundance, determined by scanning densitometry is plotted against time for bands 

corresponding to Snail, vimentin and N-cadherin. Pixel densities of the scanned bands are 

normalised to their relevant GAP-DH bands. These relative ratios are then further 

normalised to their band at 0 hours.  

 

Protein 

Fold change in protein 

abundance after short term 

S100P induction (0-48h) 

Fold change in protein 

abundance after long term 

S100P induction (48-336h) 

Snail 1.00 30.39 fold decrease 

Vimentin 1.05 fold increase  1.16 fold increase 

N-cadherin 1.40 fold increase 1.09 fold increase 

 

Table 3.2. Changes in EMT protein abundance upon long term overexpression of S100P in 

HeLa A3 cells. The fold increases or decreases are obtained from scans of Western blots 

(Figure 5.4) of the relative proteins normalised to their relevant GAP-DH bands. The change 

in these values is then shown as a ratio between either 0 to 48 hours or 48 to 336 hours 

after addition of doxycyclin and induction of S100P in whole-cell extracts of HeLa A3 cells. 

 

3.2.7 Immunofluorescence 

3.2.7.1 NMIIA cytoskeletal distribution 

Following on from the cell assays, it was desirable to establish the extent to which S100P 

was causing changes in the cell cytoskeleton in model cell systems being used, since 

decreases in adhesion and increases in migration by S100P, both seemed dependent on 

this interaction. Thus, NMIIA was immunofluorescently stained in both HeLa A3 (Figure 

3.12) and Cos7-S10 (Figure 3.13) cells. The inclusion of Cos7-S10 cells in this experiment 

was to determine if there was any NMIIA present in these cells that was not detectable by 

Western blots. Since maturation and to a lesser extent formation of focal adhesions is 

dependent on NMIIA filamental tension, cells were also stained for vinculin. This was 
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undertaken to determine the localised position of focal adhesions in relation to NMIIA in 

both S100P-induced and control, uninduced cells.  

 Control uninduced HeLa A3 cells showed clearly visible NMIIA filaments, which ran 

the entire length of the cell (Figure 3.8A). In contrast the S100P-induced HeLa A3 cells 

(Figure 3.8D) showed no distinct NMIIA filaments; these were replaced instead by a more 

uniform staining throughout the cell cytoplasm. This result would suggest that the protein 

was still present in the S100P-induced cells, but that the filaments had been 

depolymerized. Looking next at the focal adhesions stained for vinculin in the HeLa A3 cells, 

punctuate structures were clearly observed as green spots (Figure 3.12B, E). These spots 

are sites of vinculin bound into growing focal adhesions, strengthening the extracellular 

matrix interaction with actin via its binding to talin. Background cellular green staining was 

probably unbound, inactive cytosolic vinculin. Both the intensity of punctate staining and 

the number of stained foci was significantly reduced by about 2 fold in S100P-induced HeLa 

A3 cells (Student's t = 5.82, P = 0.002) (Figures 3.12E) compared to the uninduced control 

cells. In uninduced control HeLa A3 cells the merged images of staining for NMIIA and 

vinculin (Figure 3.8C) showed the focal adhesions were localised at the termini of the 

NMIIA filaments. In the S100P-induced cells, however (Figure 3.12F), it is more difficult to 

distinguish the distribution of focal adhesions, since the majority of the vinculin staining 

appears to be cytosolic.  

 Cos7-S10 cells did show some apparent very low level immunofluorescent staining 

for NMIIA (Figure 3.13A, D). This apparent weak staining was, however, thought to be non-

specific, since the staining was localised in the nucleus of the cells, where no NMIIA should 

be present. No alteration in this very weak staining pattern was observed between the 

uninduced control Cos7-S10 cells and the S100P-induced cells for NMIIA. When looking at 

the staining for vinculin (Figure 3.13B, E), the size and clarity of the focal adhesions was 

substantially less pronounced than in the HeLa A3 cells. In Cos7-S10 cells there was no 

significant change in the number of vinculin-stained focal adhesions between uninduced 

control cells (panel B) and S100P-induced cells (panel E) (t = 2.55, P = 0.63) (expanded upon 

in Figure 3.14). 

 

 



Chapter 3 Results 

93 
 

 

Figure 3.12. Effect of S100P expression on the NMIIA cytoskeleton of HeLa A3 cells. Cells 

were fixed with 4% (w/v) paraformaldehyde followed by permeabilization using 1% (w/v) 

Triton X-100 in PBS. Cells were immunofluorescently stained for (A,D) NMIIA (red) and (B,E) 

vinculin (green). Images were merged in C,F and show NMIIA filaments and vinculin co-

localising at filamental termini in panel C. The NMIIA filamental structure (red arrow) in (A) 

control uninduced HeLa A3 cells are broken down in (D) S100P-induced HeLa A3 cells. A 

significant decrease was seen in the abundance of vinculin-stained focal adhesions (green 

arrow) in S100P-induced HeLa A3 cells (E) compared to control uninduced cells (B) (vinculin 

control uninduced mean = 29, SD = 3.4, induced mean = 15, SD = 2.4, 50 fields of view 
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measured in n = 3, Student’s t = 5.82, P < 0.05). Statistical tests were carried out using 

Student’s t test. Bars = 100μm.  
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Figure 3.13. Effect of S100P expression on the NMIIA cytoskeleton of Cos7-S10 cells. Cells 

were fixed with 4% (w/v) paraformaldehyde followed by permeabilization using 1% (w/v) 

Triton X-100 in PBS. Cells were immunofluorescently stained for (A,D) NMIIA (red) and (B,E) 

vinculin (green). Images were merged in C,F. There was no specific staining for NMIIA in (A) 

Cos7-S10 uninduced control or in (D) S100P-induced Cos7-S10 cells with all staining being 

located in the cell nucleus. No significant change was observed in the abundance of 

vinculin-stained focal adhesions (green arrow) in S100P-induced Cos7-S10 cells (E) 

compared to control uninduced cells. (vinculin control uninduced mean = 28, SD = 2.4, 

induced mean = 23, SD = 2.3, 50 fields of view measured in n = 3, t = 2.55, P = 0.63) 
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resulting in a 1.93 fold and 1.23 fold decrease, respectively. Statistical tests were carried 

out using Student’s t test. Bars = 100μm.  

 

3.2.7.2 Focal adhesion fluorescence  

After analysing the NMIIA data, it was clear that there was a reduction in the number of 

vinculin-staining focal adhesions in HeLa A3 cells when S100P was induced with doxycyclin. 

This result was extended to look at staining for both vinculin and paxillin, since paxillin was 

a crucial adhesion-signalling protein present in the adhesion complexes, in contrast to the 

structural role of vinculin. A significant decrease of 2.1-fold in the number of focal 

adhesions stained for paxillin was observed in S100P-induced HeLa A3 cells (Figure 3.10B), 

compared to uninduced, control HeLa cells (Figure 3.10A) (Student's t = 16.4, P < 0.0001, 50 

fields of view measured in n = 3 experiments). This significant reduction was also observed 

in the vinculin staining focal adhesions between uninduced control cells and S100P-induced 

cells, accounting for a 1.9 fold reduction (Figure 3.10 C, D) (t = 5.82, P = 0.002, 50 fields of 

view measured in n = 3 experiments). 

 The Cos7-S10 cells showed a very small, but not significant 1.2-fold decrease in the 

number of focal adhesions upon S100P-induction. There was a 1.2-fold decrease in the 

number of paxillin foci in the S100P-induced Cos7-S10 cells (Figure 3.11A) compared to the  

uninduced control cells (Figure 3.11B) (Student's t = 1.88, P = 0.1334, 50 fields of view 

measured in n = 3 experiments) and a 1.2-fold decrease in vinculin between the uninduced 

control and the S100P-induced cells which was also not significant (Figure 3.11 C, D) (t = 

2.55, P = 0.63, 50 fields of view measured in n = 3 experiments). These decreases in focal 

adhesion protein-stained foci are small and not significant, and are consistent with the 

adhesive properties of the Cos7-S10 cells not changing during adhesion-based assays upon 

induction of S100P.  

 Based on this data, it is possible to infer that the changes in adhesive 

characteristics exhibited by HeLa A3 cells are mainly due to a breakdown in the NMIIA 

cytoskeleton and/or a reduction in the number of focal adhesions active in the cell. This link 

between S100P expression, loss of NMIIA filaments, loss of focal adhesions and loss of 

adhesive properties has been established here, since none of these parameters change in 

S100P-induced Cos7-S10 cells that lack NMIIA. Since the aim of this study is to examine and 

explore possible changes in cellular adhesion based upon S100P induction, Cos7-S10 cells 
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will not be used further. Thus, it is clear that the S100P-NMIIA binding is necessary for most 

of these adhesive alterations and will now be the primary focus in this chapter.  
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Figure 3.14. Effect of S100P overexpression on focal adhesion number and distribution in 

HeLa A3 cells. Cells were fixed with 4% (w/v) paraformaldehyde followed by 

permeabilization using 1% (v/v) Triton X-100 in PBS. HeLa A3 cells were 
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immunofluorescently stained for (A, B) paxillin (green) and for (C, D) vinculin (green). The 

numbers of punctate structures stained for paxillin or vinculin were significantly higher in 

the uninduced control cells compared to the S100P-induced HeLa cells (E) (paxillin control 

uninduced mean = 36, SD = 1.6, induced mean = 17, SD = 1.2, 50 fields of view measured in 

n = 3 experiments, Students’ t = 16.4, P < 0.05) (vinculin control uninduced mean = 29, SD = 

3.4, induced mean = 15, SD = 2.4, 50 fields of view measured in n = 3, t = 5.82, P < 0.05). 

This induction of S100P resulted in a 2.1 fold and 1.93 fold decrease in the number of 

paxillin and vinculin foci, respectively. Nuclei were stained blue using DAPI. Asterisk (*) 

indicates samples that are significantly different (Student’s t-test, P < 0.05). Bars = 100μm.  
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Figure 3.15. Effect of S100P overexpression on focal adhesion number and distribution in 

Cos7-S10 cells. Cells were fixed with 4% (w/v) paraformaldehyde followed by 

permeabilization using 1% (v/v) Triton X-100 in PBS. Cos7-S10 cells were 

immunofluorescently stained for (A, B) paxillin (green) and for (C, D) vinculin (green). The 
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numbers of punctate structures stained for paxillin or vinculin in Cos7-S10 cells were not 

significantly different in the uninduced control cells compared to the S100P-induced Cos7-

S10 cells (E) (paxillin control, uninduced mean = 33, SD = 3.5, induced mean = 28, SD = 3.0, 

50 fields of view measured in n = 3, t = 1.88, P = 0.13) (vinculin control uninduced mean = 

28, SD = 2.4, induced mean = 23, SD = 2.3, 50 fields of view measured in n = 3, t = 2.55, P = 

0.63). The fold difference was a 1.2 fold decrease in both the number of paxillin and 

vinculin foci. Statistical tests were carried out using Student’s t test. Bars = 100μm. 

 

3.2.7.3 S100P fluorescence  

Following the reduction in the number of focal adhesions due to induction of S100P, 

immunofluorescence was undertaken to determine if S100P co-localised at these adhesion 

sites (Figure 3.12). Antibodies to paxillin were used to image the focal adhesions due to 

their greater clarity compared to those to vinculin. In control, uninduced HeLa A3 cells, 

S100P was localised in the nucleus and in the cytosol, in the latter it formed punctate, dot-

like structures (Figure 3.12A). Upon overexpression of S100P, protein localisation was 

altered to become primarily in the nucleus, with some cytosolic staining and a loss of 

S100P-staining punctate structures (Figure 3.12D).  

 When the merged images of staining for S100P and for paxillin in the uninduced 

cells were examined, no co-localisation of focal adhesions and S100P foci was observed. 

This result may, therefore, suggest that the alterations observed in the focal adhesions are 

not due to any direct interaction with S100P, but due to the effect of S100P elsewhere in 

the cell. Since no S100P was observed in uninduced control cells using Western blotting, a 

no first antibody control was used to determine if the S100P-foci observed were genuine. 

The S100P foci were not seen when the antibody to S100P was omitted from the staining 

procedure and hence they are a genuine phenomenon. In the merged images for the S100P 

overexpressing cells (Figure 3.12D), the cells which have the highest nuclear staining for 

S100P appeared to have the fewest number of adhesion sites. This result may suggest that 

S100P is having an additional effect within the cell, possibly as a transcriptional regulator, 

given its prominence in the nucleus. This result also suggests that there is  considerable 

heterogeneity within the HeLa A3 cells population, since not all cells respond in the same 

way to doxycyclin induction. 
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Figure 3.16. Distribution of S100P in HeLa A3 cells. Cells were fixed with 4% (w/v) 

paraformaldehyde followed by permeabilization using 1% (w/v) Triton X-100 in PBS. HeLa 

A3 cells were immunofluorescently stained for (A, D) S100P (green), and (B,E) paxillin (red). 

The images in C, F were merged. S100P distribution in (A) control, uninduced cells shows 

cytoplasmic punctate foci. This changes (D) to strong nuclear and a weaker cytoplasmic 

staining in S100P-induced cells with 44.4% of cells showing strong nuclear staining whereas 

no nuclear staining was observed in the control, uninduced HeLa A3 cells (SD = 10.7, cells 

from 10 fields of view used from n = 3 experiments). (B) Punctate staining for paxillin in 

uninduced cells was greatly reduced in (F) S100P-induced HeLa A3 cells. (C) Green arrow 

indicates S100P foci and Red arrow indicates paxillin foci, there is no co-localisation 

between the two stains. Bars = 100 μm. 

 

3.2.8 Western blotting for adhesion proteins 

3.2.8.1 Intracellular focal adhesion proteins 

Following the decrease in the number of focal adhesion sites observed upon 

overexpression of S100P in the HeLa A3 cells, the next question was to determine if there 

were any alterations in the abundance of focal adhesion proteins within the cell. Western 

blots were carried out on whole-cell lysates using control, uninduced HeLa A3 and S100P-

induced HeLa A3 cell extracts. Talin, vinculin, paxillin and focal adhesion kinase (FAK) were 

chosen, since they all have been reported to play a crucial role in the formation of focal 

adhesions. These proteins encompassed a range of functions within the adhesions; the 

former two are structural proteins and the latter two are signalling proteins. On Western 

blots they all showed bands with the correct apparent molecular weights (paxillin 60kDa, 

vinculin 115kDa, talin 270kDa and FAK 119kDa). The control, uninduced HeLa A3 cells 

showed no substantial increase or decrease in the protein levels compared to the S100P-

induced HeLa A3 cells. Thus, changes in protein levels were not significant for paxillin 

(Student’s t = 2.24, P = 0.09), vinculin (t = 2.24, P = 0.09) and talin (t = 1.21, P = 0.29), 

although the small 1.1-fold difference observed in FAK levels was significant (t = 4.29, P = 

0.013) (Figure 3.11).  
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Figure 3.17. Western blotting of whole-cell lysates for key focal adhesion proteins. 

Western blots for (A) paxillin, (B) vinculin, (C) talin and (D) focal adhesion kinase (FAK) using 

whole-cell extracts of control, uninduced HeLa A3 cells and doxycyclin-induced HeLa A3 

cells are shown, with GAP-DH bands being shown as a loading control. No significant 

alteration is seen in the mean levels of: paxillin (fold difference = 1.15, Student’s t = 1.83, P 

= 0.14, n = 3), vinculin (fold difference = 0.90, t = 2.24, P = 0.09, n = 3), talin (fold difference 

= 0.95, t = 1.21, P = 0.29, n=3) and a very small, but significant difference is seen in FAK 

(fold difference = 1.10, t = 4.29, P < 0.05, n = 3). Fold differences are shown between bands 

for control, uninduced and S100P-induced cells, normalised against GAP-DH using scanning 

densitometry. The induced cells were exposed to doxycyclin for 48 hour prior to the 

experiment and 10μg protein was loaded on an 8% (w/v) polyacrylamide gel for each well.  
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3.2.6.1 Integrin proteins  

Since there was no significant difference in the total abundance of focal adhesion proteins 

between the control, uninduced HeLa A3 cells and the S100P-induced cells, it was 

necessary to ascertain if there was a change in the total abundance of proteins at an earlier 

stage of cell-extracellular adhesion formation. Integrin proteins are transmembrane and, as 

such, are the first step in the formation of cell-substrate adhesions. The integrins that were 

selected for Western blotting were chosen because of their presence in epithelial cells. 

Western blots confirmed the presence of integrin beta-1 at 135kDa, integrin beta-3 at 

100kDa, integrin alpha-V at 135kDa and integrin alpha-5 at 140kDa in whole-cell extracts of 

HeLa A3 cells (Figure 3.12). Once again the S100P-induced HeLa A3 extracts showed no 

significant increase or decrease in protein levels compared to the control, uninduced cells 

for integrin beta-1 (fold difference = 0.91, Student’s t = 2.67, P = 0.06, n=3), integrin beta-3 

(fold difference = 0.90, t = 2.58, P = 0.40, n=3), integrin alpha-V (fold difference = 1.04, t = 

2.62, P = 0.11, n=3) and integrin alpha-5 (fold difference = 1.07, t = 1.18, P = 0.30, n = 3). 
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Figure 3.18. Western blotting of whole-cell lysates for integrin proteins. Western blots for 

(A) integrin β1, (B) integrin β3, (C) integrin αV and (D) integrin α5 using whole-cell extracts 

of control, uninduced HeLa A3 cells and doxycyclin-induced HeLa A3 cells are shown, with 

GAP-DH bands being shown as loading controls. No significant alteration is seen in the 

mean levels of: integrin beta-1 (fold difference = 0.91, t = 2.67, P = 0.06, n = 3), integrin 

beta-3 (fold difference = 0.90, t = 2.58, P = 0.40, n = 3), integrin alpha-V (fold difference = 

1.04, t = 2.62, P = 0.11, n = 3) and integrin alpha-5 (fold difference = 1.07, t = 1.18, P = 0.30, 

n = 3). Fold differences are shown between control, uninduced and S100P-induced cell 

bands, normalised against GAP-DH using scanning densitometry. The S100P-induced cells 

were exposed to doxycyclin for 48 hour prior to the experiment and 10μg protein was 

loaded on an 8% (w/v) polyacrylamide gel for each well.  

 

3.2.8.1 The effect of S100P on focal adhesion protein phosphorylation 

S100P-overexpression was shown to cause a significant decrease in the adhesive strength 

and rate of adhesion in HeLa A3 cells (Figures 3.4 and 3.5). There was also a significant 

reduction in focal adhesions when visualised by immunofluorescence. However, the 
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abundance of key focal adhesion proteins in whole-cell lysates remained relatively 

unchanged between the control-uninduced and S100P-overexpressing cells (Figure 3.17). 

Since it is often the phosphorylation state of the focal adhesion proteins and not 

necessarily their levels that determines a cell’s adhesive strength, phosphorylation levels of 

the two main focal adhesion signalling proteins, paxillin and FAK were determined in 

whole-cell extracts by Western blotting (Figure 3.19). In the case of paxillin, a significant 

1.7-fold decrease (Student's t = 7.08, P = 0.0021, n = 3) was observed in the level of 

phosphorylated paxillin at tyrosine 118 (paxillin Y118), and a significant 1.6-fold decrease (t 

= 7.99, P = 0.0013, n = 3) in the abundance of phosphorylated paxillin at tyrosine 31 

(paxillin Y31). For FAK, a significant 1.8-fold decrease (t = 9.11, P = 0.0008, n = 3) was 

observed in the abundance of phosphorylated FAK at tyrosine 397 (FAK Y397). Thus, 

although the levels of these proteins remain relatively constant, there was a significant 

reduction in phosphorylation of key focal adhesion signalling proteins. Phosphorylation of 

these focal adhesion-signalling proteins is reported to be dependent on cellular tension and 

extracellular signalling. Phosphorylation at these tyrosine sites on both FAK and paxillin is 

associated with maturation of focal adhesions, suggesting that there is a decrease in the 

rate at which focal adhesions mature in the S100P-induced and overexpressing HeLa A3 

cells.  
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Figure 3.19. Alterations in focal adhesion protein phosphorylation upon S100P induction. 

Example of Western blots for paxillin and FAK phosphorylation sites in whole-cell extracts 

of control, uninduced and S100P-overexpressing HeLa A3 cells. A significant reduction is 

seen in phosphorylation of paxillin Y118 (fold decrease = 1.68, Student's t = 7.08, P < 0.05, n 

= 3), paxillin Y31 (fold decrease = 1.60, t = 7.99, P < 0.05, n = 3) and FAK Y397 (fold decrease 

= 1.83, t = 9.11, p < 0.05, n = 3). Unphosphorylated paxillin and FAK protein bands are 

shown as loading controls for normalization. The S100P-induced cells were exposed to 

doxycyclin for 48 hours prior to the experiment and 10 μg of protein was loaded on an 8% 

(w/v) polyacrylamide gel.  
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3.3 Discussion  

3.3.1 S100P and cell morphology  

3.3.1.1 S100P causes a breakdown in NMIIA altering cellular morphology 

S100P has been shown to bind to NMIIA and cause the NMIIA filamental structure to be 

degraded in a number of studies, including one which used the same HeLa A3 cell system 

used in this study [206]. However, it was crucial to determine if the effect of S100P on 

NMIIA could be substantiated in this system (Section 3.2.5.1). NMIIA is an important 

element of the cytoskeleton and acts to form tension within the cell alongside its isoform 

NMIIB in ventral and transverse stress fibres [118]. This tensile force mediates both the 

rigidity of the cell, and the maturation of focal adhesion sites, as previously described 

(Section 1.3.2.2). In the HeLa A3 cells, when S100P is induced with doxycyclin, the NMIIA 

filaments are depolymerised (Figure 3.8), but the overall abundance of NMIIA within the 

cell remains the same (Figure 3.3). A number of previous papers have shown that loss of 

NMIIA in epithelial cells causes a flattening of the cell and an increase in spreading of 

lamellipodia. Indeed it has also been reported in the literature that the reduction in NMIIA 

within cells flattens and elongates the cells due to inhibition of stress fibre retraction rates 

[118, 141, 238]. It is therefore reasonable to assume that this breakdown in NMIIA 

filaments is one of the main factors in the loss of the normal HeLa cells morphology, as 

seen in Figure 3.1. However, in order to remove the possibility that these morphological 

changes are taking place due primarily to other factors, NMIIA knock-downs would need to 

be carried out both in the presence and absence of S100P in HeLa A3 cells. 

 This explanation for the change in morphology was further substantiated by the 

use of Cos7-S10 cells. These cells which have previously been reported not to contain any 

NMIIA, were a useful model to see the effect of S100P in an NMIIA-independent system. 

Cos7 cells are substantially different to HeLa cells in both their origin and cell type, 

however, the absence of NMIIA made them invaluable in determining the effect of S100P. 

The results presented in this chapter with the Cos7-S10 cells confirmed that there was no 

detectable NMIIA from Western blots of whole-cell lysates (Figure 3.3). Curiously when 

these cells were immunofluorescently stained for NMIIA (Figure 3.8), some nuclear staining 

was observed. Parallel experiments using only the secondary antibody gave no staining at 

all. However, it is possible that the antibody is not entirely specific for NMIIA and 

recognises other structures within the nucleus. To ensure that the antibody was entirely 



Chapter 3 Discussion 

110 
 

specific, blocked controls with NMIIA protein would need to have been conducted to 

demonstrate that the nuclear staining was due to antibodies reacting with NMIIA. 

However, NMIIA is unlikely to be present in the nucleus due to its large size and, as such, 

the staining is assumed to be non-specific. Since there were no observable alterations in 

morphology of the Cos7-S10 cells 48 hours after doxycyclin induction (Figure 3.2), this 

suggests that indeed the morphological alterations observed in the HeLa A3 cells are 

primarily due to the direct effect of S100P on the breakdown of NMIIA filaments, rather 

than another NMIIA-independent, S100P-mediated interaction. 

 

3.3.1.2 S100P overexpression results in a two stage effect on cell morphology 

It was ascertained earlier in this Chapter (Figure 3.1) that S100P-overexpression resulted in 

elongation and flattening of the HeLa A3 cells. This morphological change occurred within 

48 hours after induction of S100P with doxycyclin, and within this same time period the 

NMIIA filamental structure was also broken down. These two events were thought to be 

linked, since the alterations in morphology were not seen in the NMIIA-negative, Cos7-S10 

cells upon induction of S100P. However, the abundance of EMT proteins did not change 

substantially during the first 48 hours, but then a 30-fold drop in the levels of Snail 

gradually occurred after this time up to 336 hours after induction of S100P. This fall in Snail 

may have further affected the HeLa A3 cell's morphology. Indeed a more in depth analysis 

of the parameters that describe cell morphology (Aspect Ratio, Solidity and Roundness) 

over time suggest that there may be two stages in which cellular morphology is altered in 

NMIIA-containing, S100P-overexpressing HeLa A3 cells. The first stage occurs in the first 24-

48 hours after induction of S100P, when NMIIA filamental structures within the cell are 

broken down. This NMIIA breakdown stage occurs at the same time as a 1.3-fold increase 

in the Aspect Ratio of the cells, a 1.1-fold decrease in Solidity and a 1.2-fold decrease in cell 

Roundness. All of these changes are consistent with the HeLa A3 cells becoming more 

elongated as well as having an increased number of longer filopodia. This conclusion is also 

consistent with reported finding in the literature that state that a reduction in NMIIA 

flattens and elongates cells due to inhibition of the retraction rates in stress fibres [118, 

141, 238].  

 The second stage of morphological change occurs slowly after the NMIIA filamental 

breakdown, from 48 hours up to 336 hours after induction of S100P. During this time a 
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further 1.3-fold increase is observed in the Aspect Ratio of the cells coupled with a further 

1.2-fold decrease in cell Roundness. Both of these alterations are gradual compared to the 

rapid changes observed during the NMIIA filament's breakdown stage. These observations 

may suggest that there is an S100P-dependent alteration taking place in the cell which is 

further changing cellular morphology, either independent of the NMIIA filamental 

breakdown or more likely dependent on a subsequent event triggered by its breakdown, 

since no morphological changes were seen in the Cos7-S10 cells upon induction of S100P. 

However, in the case of the Cos7-S10 cells, their morphology was examined only at 48 

hours after S100P induction. It is difficult to speculate on what may be causing this 

continued elongation of the S100P-overexpressing cells without further experimentation. 

In the future an examination of the differences in the proteome of “short term” (48 hours) 

S100P-overexpressing HeLa A3 cells and “long term” (336 hours) S100P-overexpressing 

HeLa A3 cells may give some indication as to why this change is taking place; unfortunately 

time did not permit these experiments to be conducted. 

 

3.3.2 S100P overexpression causes NMIIA dependent loss in cell-extracellular 

matrix adhesion 

Upon induction of S100P in HeLa A3 cells, a significant reduction was observed in the rate 

at which the induced cells adhered to a tissue culture dish compared to uninduced, control 

cells (Figure 3.4). This result was then shown to be dependent on the presence NMIIA, 

since no significant change was observed when conducting the same experiment using 

S100P-inducible Cos7-S10 cells (Figure 3.4). A significant reduction was also observed in the 

ability of monolayer-cultured S100P-induced HeLa A3 cells to resist digestion by a weak 

trypsin solution, compared to uninduced cells (Figure 3.5). This alteration was also 

dependent on NMIIA, since no change was seen in the adhesive strength of Cos7-S10 cells 

upon induction of S100P. However, in order to validate fully these conclusions on the effect 

of NMIIA on cell adhesion, NMIIA knockdowns would need to be carried out on HeLa A3 

cells. These reductions in adhesive properties upon induction of S100P in HeLa A3 cells may 

well be due to the tension-dependent nature of focal adhesion maturation. As outlined in 

detail in Section 1.3.2.2, myosin tension is required for nascent adhesions and focal 

complexes to continue maturing into ventral stress fibre-bound focal adhesions [42, 118]. 

The absence of these tightly-bound, focal adhesions present in the main body and trailing 

edge of the cell would reduce significantly the total adhesive strength of the cells.  
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 Regarding the decrease in the rate of cell adhesion due to overexpression of S100P 

in the HeLa A3 cells, as mentioned previously, loss of NMIIA has been shown to increase 

spreading of lamellipodia, as well as increasing significantly the number of filopodia 

protruding from the cell. Such changes may well imply that these cells would be faster at 

adhering to surfaces; however, since the cellular tension has been disrupted due to 

depolymerisation of filamental NMIIA, the ability of the S100P-overexpressing cells to form 

mature adhesions is likely to be substantially reduced. As a result, the S100P 

overexpressing HeLa A3 cells have a larger surface area, with reduced cellular tension and 

hence would be less able to form stable focal adhesions as quickly as the control, 

uninduced cells. 

 These hypotheses regarding the observed change in adhesive strength and rate of 

adhesion based upon NMIIA-mediated tension and adhesion maturation are confirmed by 

the Cos7-S10 results (Figure 3.4, 3.5), which showed that there was no change in the rate 

or strength of adhesion due to S100P overexpression in an NMIIA-independent system.  

 Regarding the viability of the two adhesion assays, the strength of adhesion assay 

was carried out to determine how strongly the cells adhered to the tissue culture dish. 

However a distinct limitation of this method is that it tests the cells' ability to resist 

digestion by trypsin. Although it is an appropriate method of determining how tightly 

bound the cells are to the dish, this method does involve an enzyme and as such other 

cellular alterations due to S100P may have occurred that affect the induced cells ability to 

resist trypsin. A more appropriate test of adhesive strength would be the application of 

controlled mechanical stress to the cells. However, all attempts made during this study at 

developing an assay, which could apply controlled mechanical stress to the cells did not 

produce consistently reproducible results.  

 

3.3.3 S100P overexpression causes alterations in the migratory and invasive 

properties of cells. 

When the migration rate of HeLa A3 cells is measured, S100P overexpression results in an 

increased rate of cell migration across a membrane via serum-gradient chemotaxis. This 

alteration, however, seems to be due, at least in part to the depolymerisation of NMIIA 

filaments in the S100P-overexpressing cells. There was also a considerable increase in 

migration in the Cos7-S10 cells of about half of that seen in the HeLa A3 cells due to S100P 
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overexpression. However, repeated experiments failed to show the increase was 

significant, largely due to the fact that the migration rates with Cos7-S10 cells were very 

variable. Therefore, it is not clear whether the majority or some of the increase in 

migration due to S100P is NMIIA dependent. The fact that at least some of the increase in 

cell migration is due to S100P depolymerising NMIIA filaments is supported by previous 

studies which suggests that removal of NMIIA, either by knock-downs or by inhibition of its 

activity, results in increased cell migration in this system [206, 239]. The breakdown of 

NMIIA filaments in these studies was shown to result in stabilization of microtubules and 

expansion of the tubulin structures into the lamellae. These results are, however, far from 

a complete story, since other studies have shown that a reduction in NMIIA in human 

cancer cells can result in either a reduction or increase in single cell motility, as well as, 

interestingly, an enhanced rate of wound closure [118, 240, 241]. Since there are so many 

possible pathways that can be altered during cancer metastasis that have an effect on 

cellular migration, it is not possible to ascertain if the increase in cell migration in S100P-

overexpressing cells is due solely to the loss of NMIIA filaments. 

 When the ability of cells to invade across a Matrigel-coated membrane via serum 

gradient chemotaxis is observed, a more complex picture emerges regarding the effect of 

S100P (Figure 3.7). In S100P-overexpressing HeLa A3 cells a significant increase was 

observed in the ability of cells to traverse the Matrigel-coated membrane. This result 

concurs with the bulk of the literature, which demonstrates clearly that, in the majority of 

normal/cancer cells, induction of S100P or S100A4 causes an increase in cell invasion [233, 

242]. In contrast the reverse was observed in Cos7-S10 cells, which showed a significant 

reduction in cell invasion due to S100P overexpression. The way in which S100P affects the 

invasive properties of cells is still not fully understood. However, the results with the 

NMIIA-containing HeLa A3 cells may suggest that S100P-mediated breakdown of NMIIA 

filaments is involved in increased cellular invasion. Indeed as stated above, a breakdown in 

the cytoskeleton of the cell due to S100P-overexpression leads to longer, flatter cells with 

an increased number of filopodia. This cell shape would make traversing pores in the 

Boyden chamber membrane and Matrigel layer far easier. Moreover, S100P overexpression 

has also been shown to affect cell invasion by promoting the secretion of matrix 

metalloproteinases 5/9 (MMP5/9) [243]. Thus these MMPs, which break down the 

extracellular matrix, allow for more efficient invasive dissemination through a barrier of 

collagen-containing, extracellular matrix like Matrigel. Furthermore, S100P has also been 

shown to enhance plasmin formation, which again promotes degradation of the 
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extracellular matrix (experiments carried out in house, data not published). From these 

results it is, therefore, difficult to ascertain fully the role of S100P in cell invasion; however, 

much of the current literature suggests that S100P does act to promote invasion. Thus, in 

the absence of NMIIA filaments, it is more likely that there is something novel taking place 

in the Cos7-S10 cells that results in the observed reduction in invasion due to S100P 

overexpression. It is worth noting that the observed alterations in migratory and invasive 

properties due to S100P overexpression were conducted on a 2D surface and, as such, the 

changes observed may not translate fully to a 3D model system.  

 

3.3.4 The effect of S100P on focal adhesions 

S100P-overexpression was shown to result in a significant reduction in the number of 

stained focal adhesion sites observed using immunofluorescent staining for paxillin and 

vinculin in HeLa A3 cells. This observation is consistent with previously-published work that 

noted that same reduction. However, this reduction in stained focal adhesions was not 

significant in S100P-overexpressing Cos7-S10 cells. These results may, therefore, suggest 

that the reduction in stained focal adhesions due to S100P overexpression is NMIIA 

dependent. This conclusion supports the hypothesis that loss of NMIIA filaments due to 

overexpression of S100P causes a reduction in focal adhesions, which, in turn, results in the 

loss of adhesive strength. There is also a notable relocalisation of the stained focal 

adhesions from the main body of the cell in the uninduced control HeLa A3 cells to the 

cellular periphery in the S100P-overexpressing cells. This relocalisation suggests that 

mature ventral stress fibres, which normally bind to focal adhesions are not present in the 

S100P-overexpressing cells. Interestingly the reduction in the focal adhesions in S100P-

overexpressing cells seems to be paralleled by the relocalisation of S100P to the nucleus of 

the cell (Figure 3.12). This result may suggest that S100P may be inducing nuclear events 

either directly, or more likely indirectly, such as transcription of genes. Moreover, recent 

studies have shown that the cellular localisation of S100P in early breast cancer is an 

important prognostic marker, with high nuclear staining yielding the poorest patient 

outcome [244]. These results suggest that S100P has a role in the nucleus, as well as in the 

cytoplasm.  

 When the abundances of integrins and focal adhesion proteins were examined in 

whole-cell lysates of HeLa A3 cells, there was no significant difference in the levels of any of 
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these proteins in the S100P-overexpressing cells, compared to the control, uninduced HeLa 

A3 cells (Figure 3.11, 3.12). Since there are no changes in the global levels of these adhesive 

proteins, there must be either an alteration in the cellular location of these proteins, 

and/or a change in the activity state of some of these proteins, such as changes in their 

phosphorylation, to cause a change in the number/distribution of focal adhesions and the 

consequent reduction in cellular adhesion.  

 

3.3.5 Does S100P overexpression cause alterations in the abundance of EMT 

proteins? 

When S100P was induced for a short period of time in HeLa A3 cells, and cell lysates were 

collected 48 hours after the addition of doxycyclin, only very small, if any, changes in the 

abundance of the main epithelial to mesenchymal transition (EMT) proteins were observed 

(Figure 5.1). These results, therefore, do not fit the standard criteria for an EMT. Typically 

EMT is characterised by an increase in N-cadherin, vimentin, Snail and Slug, as well as a 

reduction in E-cadherin [148]. These results did show an increase in N-cadherin, although 

there was no change in the abundance of vimentin and Slug, and showed, surprisingly a 

reduction in the abundance of Snail. Since E-cadherin was not present, these HeLa A3 cells 

have most likely already undergone a partial EMT prior to S100P-overexpression.  

 Since the changes in EMT-associated proteins were only very slight if at all, the 

effect of exposure to S100P long term was assessed to determine if any additional 

alterations could be observed in the EMT proteins after 48 hours (Figure 5.4). Indeed, there 

was a large 30-fold reduction in the abundance of Snail, although there were no substantial 

changes in the levels of N-cadherin or vimentin, when lysates taken from 48 hours and 336 

hours after the addition of doxycyclin were compared. This large, significant reduction in 

the abundance of Snail in the S100P-overexpressing cells is unexpected, since a reduction 

in Snail has been reported to reduce substantially cell motility, invasion and tumour growth 

[245, 246]. The effect of an overexpression of Snail in other cell systems due to EMT is 

downregulating the expression and inhibiting the activity of RhoA, as well as increasing 

MMP9 expression [247]. Furthermore, there is no published evidence that shows a large 

reduction in Snail being correlated with any form of negative impact on patient survival. 

However, there is a possible explanation in that loss of Snail is very strongly associated with 

a mesenchymal to epithelial transition MET [182]. This process which has been covered in 
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detail in Section 1.5.3, involves the loss of the mesenchymal characteristics gained by the 

cells in EMT and their reversion to a more epithelial-like cell. This process is very poorly 

understood in cancer metastasis, but it is known to be common in cells found at secondary 

tumour sites. It makes sense that cells become highly motile and have their adhesive 

properties significantly inhibited during the early stages of cancer metastasis. During this 

early stage the cells are migrating so as to break away from the primary tumour and 

disseminate through the surrounding tissue into either the blood and/or lymphatic 

circulatory systems. However, once cells reach a secondary site, in order for a tumour to 

grow effectively, it is advantageous if these alterations to cell motility and adhesion can be 

reversed. It may well be that this process occurs due to long term overexpression of S100P 

in HeLa A3 cells, and thus has an inhibitory effect on expression of Snail and perhaps 

mediates an EMT to MET switch. This conclusion is, however, highly speculative and is not 

supported by the morphological data that shows HeLa A3 cells exposed to S100P continue 

to become more elongated and mesenchymal-like up to 336 hours after initial induction. 

Therefore in order to determine the effect of reduced expression of Snail within this cell 

system due to S100P-overexpression, additional experiments would need to be conducted. 

The first of these would be Snail knockdowns to determine the effect of a reduction in Snail 

in the absence of S100P. Once this effect was fully characterised, it may be possible to 

determine the role S100P plays in snail regulation.   

 

3.3.6 S100P-overexpression affects maturation of focal adhesions through 

tension-dependent phosphorylation  

Upon overexpression of S100P in HeLa A3 cells, there was a significant decrease in the 

relative levels of phosphorylated FAK Y397, paxillin Y118 and paxillin Y31 compared to the 

control, uninduced cell lysates (Figure 5.8). Phosphorylation of FAK at Y397 is reportedly 

mediated by NMIIA-dependent tension and upon phosphorylation at this site, providing 

FAK is bound to src, FAK phosphorylates paxillin at Y118 and Y31. Paxillin phosphorylation 

at these sites then causes sequestering of increased vinculin, as well as p130CAS-CRK and G 

protein-coupled receptor kinase interacting ArfGAP (GIT)–β-Pix to focal adhesions, which, 

in turn, promotes focal adhesion maturation [99, 122]. Therefore, when the NMIIA 

filaments are depolymerised in the S100P-overexpressing HeLa A3 cells, cell tension is 

reduced and this causes a reduction in both of these phosphorylated forms of adhesion-

signalling proteins. This reduction and hence loss of activity of such proteins, suggests that 
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the rate of maturation of focal adhesions is reduced. It is, therefore, probable that this 

decrease in the rate of maturation of focal adhesions causes, either in whole or in part, the 

reduction in the number of anti-vinculin/anti-paxillin-stained focal adhesions observed by 

immunofluorescence in the S100P-induced HeLa A3 cells. 

 

3.4 Conclusions  

In this chapter the effects of S100P-overexression on cell morphology, cellular 

adhesion, migration and invasion were explored using NMIIA positive and NMIIA negative 

S100P inducible cell systems. Morphologically S100P-overexpressing HeLa A3 cells become 

more elongated and have increased convex area as the cells are induced over time. This 

change in morphology seems to take place in two stages, an early stage upto about 48 

hours which is NMIIA dependent and then a slow alteration that takes place due to long 

term overexpression of S100P. In the NMIIA positive, HeLa A3 cells, there was a significant 

reduction in the rate at which cells adhered, a significant reduction in the strength of 

cellular adhesion, a significant increase in cell chemotaxic migration and a significant 

increase in cell invasion due to overexpression of S100P. These changes all seemed to be 

dependent on the breakdown of filamental NMIIA, since they were not observed 

significantly in the NMIIA-negative, S100P-inducible Cos7-S10 cells. These observed 

phenotypic alterations in cellular properties may be explained either, in part or in whole, by 

an observed loss of the cytoskeletal NMIIA filamental structure when S100P is 

overexpressed and a significant reduction in the number of paxillin and vinculin-containing 

focal adhesions. However, the observed changes in cell adhesion are not due to any 

alterations in the global levels of key focal adhesion or integrin proteins, as determined by 

whole-cell Western blotting of the HeLa A3 lysates. It was also shown that S100P 

overexpression does not induce a conventional EMT; however, upon long term exposure to 

S100P, there is a significant reduction in the abundance of the EMT-related protein Snail.  

Lastly it was shown that there is a reduction in the relative abundance of phosphorylated 

FAK (Y397) and paxillin (Y118 and Y31) due to overexpression of S100P. A reduction in 

phosphorylation at these sites is associated with a reduction in maturation of focal 

adhesions.  
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 As an additional final point it is worth noting, as mentioned previously, that not all 

HeLa A3 cells behaved identically upon 48 hours after doxycyclin induction suggesting 

heterogeneity in the population at this time point. This heterogeneity would likely effect 

every experiment as either not all cells are responding to doxycyclin equally or responding 

to S100P equally. Despite this fact it can be assumed that any alterations that take place 

due to S100P overexpression would only be amplified if the cell population were more 

homogeneous.  
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Chapter 4  

 

Adhesome isolation and mass spectrometric analysis  

 

4.1 Introduction 

From the results presented in Chapter 3, it is clear that S100P causes alterations in the cells' 

adhesive, migratory and invasive properties, but that these alterations are not due to a 

reduction in the overall abundance of any key integrin or focal adhesion protein. To 

ascertain in more detail, if there were any alterations present within the full cell proteome, 

LC-MS/MS was selected as the method of analysis. Protein and mRNA array-based 

techniques were considered, however, since the function of S100P is currently so poorly 

understood, it was considered that analysing all protein changes due to S100P 

overexpression was a more thorough approach.  

 Since the primary aim of this study is to examine the effect of S100P on cellular 

adhesion, it was necessary to investigate possible methods that could isolate the cell-

extracellular matrix fraction. This investigation was undertaken to try and examine 

specifically, in the absence of all other cellular fractions, what was happening at the cell-

extracellular matrix junction due to enhanced levels of S100P.  

 Many methods have been reported which isolate the cell-extracellular matrix 

proteins from cells [248-252]. A core element, common to many of these methods is the 

application of a hydrodynamic shearing force to remove the cell body, organelles and all 

cytosol leaving only the proteins that were bound tightly to the tissue culture dish. This 

force is applied in a variety of ways, depending on the specific method, e.g. the use of a 

Water Pik filled with either sterile PBS or RO water is common. Some methods also utilize 

triethanolamine (TEA)-containing, low-ionic-strength buffers prior to hydrodynamic 
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shearing. These buffers promote hypotonic pressure within the cell which weakens the 

integrity of the plasma membrane. This weakening of the plasma membrane allows the use 

of less hydrodynamic pressure during shearing, thus minimising any damage to the focal 

adhesion structures. In some cases cell-permeable, chemical cross-linking agents such as 

dithiobis-succinimidyl propionate and 1,4-bis[3-(2-pyridyldithio)propionamido]butane have 

been applied to cells prior to hydrodynamic lysis [250]. These chemicals cross-link lysine 

and cysteine residues within the cell and this method has been reported to improve the 

recovery of integrin-based focal adhesions. The aim in each of each of these techniques 

was to isolate the integrin-containing, cell-extracellular matrix adhesive fraction with as 

high a purity as possible. However, in all these reported examples, the cells used were 

fibroblastic cell lines, which are quite different structurally to the epithelial HeLa A3 cells 

that are used in this study. The main difference is the strong cell-cell adhesions that 

epithelial cells form, which are not present in fibroblasts. As a result, this may make some 

of these methods based on shearing of fibroblasts unsuitable for epithelial cells.  

 

4.1.1 Chapter objectives 

Using mass spectrometry, it will be determined whether there are observable changes in 

the abundance of proteins in whole-cell, S100P-induced HeLa A3 cells compared to control, 

uninduced cells. If there are any proteins that are of particular interest from the whole-cell 

mass spectrometry data, further investigation will then be conducted on these proteins. 

Following this, the active cell-extracellular matrix, adhesive fraction of HeLa A3 cells will be 

isolated from the whole-cell fraction and analysed. The aim is to determine, firstly whether 

there are any novel proteins present as a result of S100P induction within this fraction, and 

secondly whether there are alterations in the abundance of known proteins. Similar to the 

whole-cell mass spectrometry data, any proteins of particular interest will be investigated 

in further detail.  
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4.2 Results  

4.2.1 Mass spectrometry of whole-cell HeLa A3 extracts  

The data shown in Chapter 3 indicated that there were no observable alterations in the 

abundance of either focal adhesion or integrin proteins due to S100P overexpression in 

whole HeLa A3 cells. To determine whether there were any alterations in the abundance of 

any other proteins present within S100P-overexpressing cells, mass spectrometry of whole-

cell extracts was undertaken. This high resolution technique allowed most cellular proteins 

to be examined and their relative abundance compared between the control, uninduced 

and S100P-induced cells. 

 When 4 independent cell extracts of uninduced-control and S100P-induced HeLa 

A3 cells were compared, a total of 1227 protein were identified during mass spectrometric 

analysis (Appendix 2). Of these proteins, Table 4.1 shows all the proteins that were found 

to have their relative abundance changed significantly between the uninduced-control and 

S100P-induced groups. To identify the proteins that had been most substantially altered in 

their abundance, a cut-off was selected consisting of identification of a particular protein 

by at least two unique peptides per protein, and a fold change of 1.5 times between the 

two groups. For the up-regulated proteins in the induced, S100P-expressing HeLa A3 cells, 

three proteins were identified (0.25% of total proteins identified) that had both the 

minimum number of peptides required and at least a 1.5-fold increase in abundance. 

S100P, as anticipated, had the highest fold increase at almost five times (Anova, P < 0.001). 

RPS29 showed a 2.7-fold increase in abundance in the S100P-overexpressing cells (Anova, P 

= 0.0027) and is a member of the S14P family of ribosomal proteins, being part of the 40S 

ribosomal subunit. Oddly, this protein has been associated with Ras-related protein 1A, 

acting to enhance its tumour suppressor activity. More interestingly, there was a two fold 

increase in the abundance of asparagine synthetase (ASUS) (Anova, P < 0.001). 

Overexpression of this protein has been shown to confer resistance to chemotherapeutic 

agents and apoptosis induced by glucose deprivation [253].  

With respect to the significant down-regulated proteins caused by S100P overexpression, 

ten proteins were identified (0.8% of total proteins identified). These down-regulated 

proteins affected cell biosynthesis, apoptosis, and cell proliferation (Table 4.1), with the 

following being of particular note: Histone-binding protein RBBP7 (2.7-fold change, Anova, 

P = 0.0013); this protein has been shown to interact directly with retinoblastoma protein 
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and BRCA1, although its function is not well understood. Complement C3 (2.3-fold 

reduction, Anova, P < 0.001); this protein is crucial in the complement system and as such a 

reduction may cause a lowering of the surrounding immune response [254, 255]. 

Programmed cell death protein 4 (2.7-fold reduction, P < 0.001); this protein is an 

important tumour suppressor, with its reduction being correlated with poor patient 

outcome in a number of cancers, it also has a role in response to DNA damage [256, 257]. 

Retrotransposon-derived protein (PEG10) (2.2-fold reduction, Anova, P < 0.001) and 

endoglin (2.0-fold reduction, Anova, P < 0.001); both proteins are involved in the TGFβ 

pathway. The former has been shown to be associated with an increase in metastasis and 

invasion, although its overexpression is positively correlated with these factors rather than 

the decrease shown in this study [258, 259]. The latter protein, endoglin has a range of 

effects on cell migration and patient outcome, with some studies suggesting that an 

increase in cellular endoglin is associated with a metastatic phenotype, and some 

suggesting the exact opposite [260-262]. CD109 antigen (2.13 fold reduction, Anova, P < 

0.001) poses another curiosity, since its overexpression is associated with metastasis and a 

poor patient outcome in a number of cancers, yet in this system its abundance is decreased 

due to S100P overexpression [263, 264]. 

 There results pose several questions with regards to the function of S100P within 

the cell, however, since the aim of this project was to study the effect of S100P on cellular 

adhesion, most of these differentially-expressed proteins were not studied in any further 

detail.  
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Up-regulated proteins in induced S100P-expressing whole-HeLa A3 cells 
 

Protein / Gene name UniProt ID Fold Change Cellular 

  
Up Location 

S100 calcium binding protein P (S100P) P25815 4.9 Cytoplasm 

ribosomal protein S29 P62273 2.7 Cytoplasm 

asparagine synthetase (glutamine-hydrolyzing) P08243 1.9 Cytoplasm 

 

Down-regulated proteins in induced S100P-expressing whole-HeLa A3 cells 
 

Protein / Gene name UniProt ID Fold Change Cellular 

  
Down Location 

UMP-CMP kinase (CMPK1) P30085 -2.9 Nucleus 

Histone-binding protein RBBP7 (RBBP7) Q16576 -2.7 Nucleus 

Programmed cell death protein 4 (PDCD4) Q53EL6 -2.7 Nucleus 

Mitochondrial carrier homolog 2 (MTCH2) Q9Y6C9 -2.6 Cytoplasm 

Complement C3 (C3) P01024 -2.3 
Extracellular 

Space 

Retrotransposon-derived protein (PEG10) Q86TG7 -2.2 Nucleus 

CD109 antigen (CD109) Q6YHK3 -2.1 
Plasma 

Membrane 

Trifunctional enzyme subunit beta, 
mitochondrial (HADHB) 

P55084 -2.1 Cytoplasm 

1-phosphatidylinositol 4,5-bisphosphate 
phosphodiesterase beta-3 (PLCB3) 

Q01970 -2.0 Cytoplasm 

Endoglin (ENG) P17813 -2.0 
Plasma 

Membrane 

 

Table 4.1. Mass spectrometry of S100P-overexpressing whole-HeLa A3 cells. Identification 

of upregulated and downregulated proteins in whole-cell extracts of S100P-induced and 

overexpressing HeLa A3 cells relative to uninduced HeLa A3 cells. The fold change in 

protein levels between control, uninduced and S100P-induced HeLa A3 cells is shown, 

together with the number of unique peptides used to identify the protein. For inclusion P < 

0.05 for each protein selected using Anova and there was a minimum of two unique 

peptides used for identification. This resulted in a total of 1227 proteins identified, samples 

used for analysis n = 4. The induced cells were exposed to doxycyclin for 48 hours prior to 

the experiment. QIAGEN’S Ingenuity Pathway Analysis was used for determining the 

cellular localisation of each protein. 
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4.2.1.1 Analysis of endoglin expression 

It was decided that the alterations shown in cell morphology and EMT protein abundance 

which occurred at protracted (>48 hour) times after S100P induction, were probably not 

due to the breakdown of NMIIA filaments, but a secondary effect of S100P on cell signalling 

pathways. To explore this aspect, the first protein to be investigated in detail was endoglin, 

since its expression was shown by mass spectrometry to be reduced in whole-cell extracts 

of S100P-induced HeLa A3 cells (Table 4.1). A reduction in the expression of endoglin had 

also been linked with changes in cancer progression in a number of different cancers, as 

such its role within this S100P system was explored.  

 

4.2.1.2 Western blot validation and siRNA knock-down of endoglin 

Before determining the effect that endoglin was having on the S100P overexpressing cells, 

it was necessary to validate the reduction in endoglin protein levels, which had been 

observed in whole-cell mass spectrometry (Table 4.1). This validation was undertaken using 

Western blotting (Figure 4.1 A), followed by densitometric scanning of the proteins bands. 

These results showed a 2.5-fold decrease (Student’s t = 8.05, P < 0.05, n = 3) in 

immunoreactive endoglin levels in whole-cell, S100P-overexpressing HeLa A3 cells, 

compared to the control, uninduced cell lysates. This reduction was slightly greater than 

the 2-fold reduction seen by mass spectrometry (Anova P < 0.0001).  

 Since the Western blots confirmed the reduction in whole-cell endoglin as a result 

of S100P overexpression, an endoglin knock-down was performed on control, uninduced 

HeLa A3 cells. A commercial kit of different endoglin siRNAs numbered 1-6 was used and 

the cellular knock-down efficiency determined by Western blots of whole-cell lysates at 

both 24 and 48 hours after siRNA transient transfection. In all cases the knock-downs were 

more effective after 48 hours compared to 24 hours (Figure 4.1C). Table 4.2 shows the fold 

decrease in endoglin abundance compared to the abundance of endoglin in cells treated 

with a scrambled control siRNA. Endoglin siRNA 6 showed the largest 33.7-fold decrease in 

abundance. Although this was a much larger reduction than that due to overexpression of 

S100P in the same cell system, this allowed the cellular properties of endoglin to be 

examined in a more extreme setting, where any alterations it caused to the cells would be 
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more easily observed. For this reason, endoglin siRNA 6 was used for all further knock-

down experiments. 

 

 

 

 

Figure 4.1. Levels of Endoglin in S100P-induced and in siRNA-treated HeLa A3 cells. A) 

Example of Western blot for endoglin in whole-cell extracts of control, uninduced and 

doxycyclin-induced, S100P-overexpressing HeLa A3 cells. The induced cells were exposed to 

doxycyclin for 48 hours prior to the experiment. Ten μg of protein was loaded on 10% (w/v) 

polyacrylamide gels. B) Quantification of Western blots shows a significant reduction in 

endoglin in S100P-expressing cells (fold reduction = 2.5, Student’s t= 8.05, P < 0.05). 

Asterisk (*) indicates that the difference between samples is significant (Student’s t-test, P 

< 0.05). C) Western blots showing endoglin siRNA knock-downs in HeLa A3 cells after 24 

and 48 hours. The control siRNA used was a scrambled vector control to ensure that the 

siRNA was not affecting or harming the cells, the different siRNA numbers refer to different 

siRNAs added.   
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Endoglin siRNA 

Fold decrease compared to 

siRNA scrambled control at 

24h 

Fold decrease compared to 

siRNA scrambled control at 

48h 

siRNA 2 2.7 fold 3.7 fold 

siRNA 4 3.1 fold 5.4 fold 

siRNA 5 4.1 fold 27.2 fold 

siRNA 6 3.4 fold 33.7 fold 

siRNA 2+4 3.0 fold 9.8 fold 

 

Table 4.2. Fold change in endoglin abundance in HeLa A3 cells treated with different 

endoglin siRNAs. Fold decrease was determined from densitometric scans of Western blots 

for endoglin shown in Figure 5.5. The siRNA numbers refer to those in the commercial 

siRNA kit against endoglin (Materials and Methods, Table 2.13). 

 

4.2.1.3 Phenotypic effects of siRNA knock-downs of endoglin in HeLa A3 cells 

In order to assess the effect of the endoglin knock-down on the HeLa A3 cells, cell adhesion 

and migration assays were carried out, since alterations in these key properties are strongly 

linked with cancer progression. For both assays, cells were incubated with endoglin siRNA 6 

for 48 hour before the experiments were started. Thus, when the HeLa A3 control, 

uninduced cells were transiently transfected with siRNA 6, there was a significant reduction 

in the rate of cell adhesion (Figure 4.2A) at both 1 hour (1.5-fold reduction, Student's t = 

 6.66 P = 0.0026, n = 3) and 2 hours (1.1-fold reduction, t = 17.43, P < 0.0001, n = 3) after 

the cells were seeded. These results are consistent with the known characteristics upon 

induction of S100P (Figure 3.4). However, when control, uninduced HeLa A3 cells were 

transfected with endoglin siRNA, there was a significant 1.6-fold decrease in cell migration 

(Figure 4.2B) (t = 4.9, P < 0.0001, n = 3). This result is the opposite of what was observed 

when S100P was induced in HeLa A3 cells (Figure 3.6). This result may suggest that the 

reduction in endoglin due to S100P overexpression may not be having any substantial 
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effect on the cells' migratory characteristics, or its effect may be masked by the breakdown 

of the NMIIA filaments. 

 The phenotypic changes observed in the knock-down experiments (a small 

reduction in rate of adhesion and a decrease in cell migration not consistent with S100P 

overexpression) were associated with a 30-fold decrease in endoglin, whereas 

overexpression of S100P caused a more modest 2-fold decrease in endoglin expression. 

Thus, it would appear that the changes in cell behaviour due to S100P overexpression were 

not consistent with endoglin mediating the mechanism, so it was decided that it was not 

worth pursuing endoglin in any further detail here.  
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Figure 4.2. Effects of endoglin knockdown on cellular properties. A) Cell adhesion assays 

show the percentage of cells remaining adhered to tissue culture dishes at different times 

after initial seeding. Uninduced HeLa A3 cells were seeded at 200k cells per well in each 

well, using a 24 well culture dish and transiently transfected with a scrambled control 

siRNA or endoglin siRNA 6. Differences at 30 min Student’s t = 3.6, P < 0.05, 1 hour t = 6.66, 

P < 0.05 and at 2 hours t = 17.43, P < 0.05, n = 3. B) Cell migration assay showing the 

number of migrating HeLa A3 cells transiently transfected with their scrambled control 

siRNA or endoglin siRNA 6. Cells were seeded in Boyden chambers and allowed to migrate 

across a permeable membrane via a 1% to 10% (v/v) serum gradient. The numbers of cells 

migrated 16 hours after seeding were scored. Student’s t = 4.9, P < 0.05, n = 3. Scrambled 

control siRNA-treated HeLa A3 cells and endoglin siRNA 6-treated HeLa A3 cells were 



Chapter 4 Results 

129 
 

exposed to the siRNA 48 hours prior to the adhesion or motility assay. Asterisk (*) indicates 

time points that are significant (Student’s t-test, P < 0.05). 

 

4.2.2 Adhesome isolation  

As neither Western blots looking for alterations in cytoskeletal or adhesion proteins, nor 

mass spectrometry of whole cells, gave any indication as to why S100P-overexpressing cells 

have such a substantially altered phenotype, a more in depth method of studying a cell's 

adhesive properties was required. Since the immunofluorescent staining for adhesion 

proteins yielded a quantifiable reduction between the uninduced-control cells and the 

S100P-induced HeLa A3 cells, a way of isolating and analysing them was sought. To this end 

a variety of methods were attempted in order to isolated the substratum-cell adhesive 

fraction of HeLa A3 cells, as follows.  

 

4.2.2.1 Detergent cell lysis 

A Triton X-100 PBS solution was added to the cells to cause lysis without removing any 

Triton-insoluble proteins, such as those of the cytoskeleton and adhesive complexes. Figure 

4.3 shows the resultant Western blots using this fraction. A significant reduction in the 

abundance of talin, shown at 270kDa (fold difference = 2.6, Student’s t = 11.98, P = 0.0003, 

n = 3) and vinculin, shown at 119kDa (fold difference = 1.7, t = 8.55, P = 0.001, n = 3) was 

observed. No bands were present for paxillin or FAK in any of the blots carried out. Thus, 

the results for the structural adhesion proteins showed promise, since a decrease was 

observed in the S100P-overexpressing cells of roughly the same fold as seen by 

immunofluorescent staining of the same proteins. However, the ability to identify the 

adhesion signalling proteins using this method was somewhat limited. The inclusion of a 

Triton X-100 in PBS washing step also made it impossible to analyse this cell fraction using 

subsequent mass spectrometry due to the detergent’s effect on the separation column.  

 



Chapter 4 Results 

130 
 

 

Figure 4.3. Western blotting for focal adhesion proteins in Triton-insoluble cell extracts. 

Example of Western blots for key focal adhesion proteins in Triton X-100 treated control, 

uninduced and doxycyclin-induced, S100P-overexpressing HeLa A3 cells is shown. Cells 

were treated with 0.5% (v/v) Triton X-100 in PBS and the residue solubilised in standard 

SDS-containing Sample Buffer. A significant reduction is shown in S100P expressing cells for 

talin (fold difference = 2.6, Student’s t = 11.98, P < 0.05, n = 3) and vinculin (fold difference 

= 1.6, t = 8.55, P < 0.05, n = 3). No bands corresponding to paxillin or FAK were observed in 

this Triton-insoluble fraction. The induced cells were exposed to doxycyclin for 48 hour 

prior to the experiment and 4μg of protein was loaded onto an 8% (w/v) polyacrylamide 

gel.  

 

4.2.2.2 Alternative methods for isolation of adhesion proteins 

Due to the limitation of the detergent cell-lysis method described above, several 

alternative methods were attempted that had been described in the literature at the time.  

 The first method involved using a triethanolamine-containing low ionic strength 

buffer to shock hypotonically the cells, which increased cell turgidity. Cells were then 

exposed to a jet of PBS from a Waterpik to rupture the cells. The dishes were then washed 

and the adhesive cell residue removed by RIPA buffer and a cell scraper [249]. This method 

was attempted many times, altering all facets of the protocol; however, in all cases the 

resultant cell fraction contained substantial cytosolic contamination. The reason for this 
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contamination may have been that this method had been developed for fibroblastic cells. 

The increased adhesive strength of the epithelial HeLa A3 cells, together with their cell-cell 

junctions, meant that it was very difficult to lyse and remove all the cells using the 

Waterpik. The resulting Western blots showed GAP-DH contamination and very variable 

results for the abundance of adhesion proteins. This method was therefore deemed to be 

unsatisfactory.  

The use of additional cross-linking agents was also attempted in order to try and anchor the 

adhesion complexes more firmly to the basal substratum, prior to shearing with a 

Waterpik. Dithiobis succinimidyl propionate and 1,4-bis[3-(2-

pyridyldithio)propionamido]butane were used, these reagents cross-linked any lysine and 

cysteine residues [250]. Similar to the previous method, however, samples were found to 

be impure and variable with a large amount of DNA and cytosolic protein remaining in the 

processed sample. 

 Data for these experiments is not shown, since, in all cases, Western blots were 

either completely blank or indistinguishable from whole cell blots. Thus, a new method to 

isolate focal adhesions was sought, that of hydrodynamic cell shearing.  

 

4.2.2.3 Hydrodynamic shearing 

As described in Materials and Methods Section 2.6.2, hydrodynamic shearing of the cells 

using a focused water shower jet was next attempted to isolate the cell-substratum 

fraction. This was carried out following collaborative discussions with Professor Martin 

Humphries and group, who identified this method as a possible technique for isolating the 

epithelial cell adhesome. 

 

4.2.2.3.1 Whole cell vs. hydrodynamically sheared samples 

 Figure 4.4 shows an example of a Western blot of the hydrodynamically-sheared residue 

from HeLa A3 cells compared to that from a whole-cell lysate. Negative controls for marker 

proteins of other cellular fractions were also blotted to ensure proteins from unwanted cell 

fractions were removed. These marker proteins were lamin-β1 (for the nuclear fraction), 

voltage-dependent anion channels (VDAC) (for the mitochondrial fraction) and GAP-DH (for 



Chapter 4 Results 

132 
 

the cytoplasmic fraction). In all cases bands of 66kDa, 50 kDa and 37 kDa, respectively, 

corresponding to lamin-β1, VDAC and GAP-GD were observed in whole-cell lysates, but 

were not detectable in the hydrodynamically-isolated residue. Western blots for the 

structural adhesion proteins talin and vinculin produced bands corresponding to their 

reported molecular weights of 270 kDa and 119 kDa, respectively, in the isolated residue. 

An important improvement in this method is the appearance of paxillin, an adhesion 

signalling protein, in Western blots, which was absent from all other isolation methods. A 

clear band of 60 kDa corresponding to paxillin can be observed in the isolated residues, 

when the blots were exposed to X-ray film for a long exposure time (30 min).  

The result of the hydrodynamic shearing procedure is that all unwanted proteins from cell 

fractions are removed, the structural components of the adhesion proteome (hereafter 

referred to as the adhesome) are maintained and some of the less strongly-bound 

signalling proteins of the adhesome are also present.  
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Figure 4.4. Western blotting of isolated residues of hydrodynamically-sheared HeLa A3 

cells. Two 10cm diameter tissue culture dishes were exposed to a hydrodynamic force from 

a standardised shower. The residue was washed with PBS and dissolved in SDS-containing 

Sample Buffer. Positive and negative control Western blots were used to assess the purity 

of the residue produced from HeLa A3 cells. A) Negative control protein blots for lamin-β1 

(nuclear fraction), voltage-dependent anion channel (VDAC) (mitochondrial fraction) and 

GAP-DH (cytoplasmic fraction) show no observable marker protein present in the isolated 

residue. B,C) Positive control protein blots for talin, vinculin and paxillin show the presence 

of these proteins in the isolated residue. C = double the exposure time of B. A 10% (w/v) 

polyacrylamide gel was used. For the full, uncropped Western blot see Appendix 5. 
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4.2.2.3.2 Western blots of hydrodynamically-sheared residues in S100P-

overexpressing cells 

The hydrodynamically-sheared residues from control, uninduced and S100P-induced HeLa 

A3 cells were compared on a Coomassie blue-stained SDS polyacrylamide gel, the pattern 

of protein bands was similar in both samples (Figure 4.5 panel A). Moreover, the overall 

intensities of the Coomassie blue-stained proteins were almost identical between both 

residues (1% difference). This was determined by densitometric analysis of the whole lanes. 

This result suggests that any differences in protein abundance may either be very minor, or 

it may not be possible to observe these changes using a Coomassie blue stain. 

 As with the previous samples, all hydrodynamically-sheared residues were analysed 

using Western blotting for marker proteins to ensure there was no contamination from 

unwanted cell fractions. Figure 4.5B shows an example of these control blots, where no 

bands were observed for proteins that would not typically be found in the cell adhesome, 

suggesting the sample has a very low level of contamination. Figure 4.5C shows an example 

of Western blots for focal adhesion proteins. Protein bands for talin (fold difference = 1.4, 

Student’s t = 1.75, p = 0.22, n = 3), and vinculin (fold difference = 1.3, t = 3.37, p = 0.08, n = 

3) showed no significant reduction between control, uninduced and S100P-induced cell 

residues. This result was slightly different from the whole-cell immunofluorescence results 

for vinculin (Figure 3.9) which showed a significant reduction in the number of fluorescent 

foci in S100P overexpressing cells. Bands for paxillin (fold difference = 1.2, t = 12.19, p = 

0.01, n = 3) and FAK (fold difference = 1.3, t = 4.77, p = 0.04, n = 3) showed an apparent 

significant increase and decrease, respectively, in their intensities in S100P-induced 

residues compared to the control uninduced residues. The magnitude of these alterations 

are, however, below most reasonable cut-off points, in this study for example a 1.5 fold 

cut-off is used for all mass spectrometric experiments, below which any alterations are 

assumed to have a minimal effect on the cell. Similarly, the results for paxillin are 

unexpected, since the immunofluorescence results for paxillin (Figure 3.9) showed a 

significant reduction rather than increase in the number of paxillin-staining foci in S100P-

overexpressing cells. 
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Figure 4.5. Analysis of isolated hydrodynamically-sheared residues in S100P-

overexpressing HeLa A3 samples. Two 10 cm diameter tissue culture dishes were exposed 

to a hydrodynamic force from a standardised shower. The residue was washed with PBS 

and dissolved in SDS-containing Sample Buffer. Acetone precipitation was then carried out 

to concentrate the samples, after which the residues were suspended in 30μl of Sample 

Buffer and each one loaded into a single well. All samples were normalised against the 

number of cells present on the dish prior to shearing. A) Example of Coomassie Blue-

stained gel showing protein bands present in isolated residues from control, uninduced and 

S100P-induced HeLa A3 cells. B) Example of negative control Western blots for lamin-β1 

(nuclear fraction), voltage-dependent anion channel (VDAC) (mitochondrial fraction) and 

GAP-DH (cytoplasmic fraction) shows no specific subcellular markers present in the 
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hydrodynamically-sheared residue. C) Positive control protein blots for talin (fold reduction 

= 1.4, Student’s t = 1.75, p = 0.22, n = 3), vinculin (fold reduction = 1.25, t = 3.37, p = 0.08, n 

= 3), paxillin (fold increase = 1.2, t = 12.19, p < 0.05, n = 3) and FAK (fold reduction = 1.27, t 

= 4.77, p < 0.05, n = 3) show no significant difference for talin and vinculin and a significant 

difference in paxillin and FAK in intensity of stained bands between control, uninduced and 

S100P-induced hydrodynamically-sheared residues from HeLa A3 cells. The induced cells 

were exposed to doxycyclin for 48 hours prior to the experiment and 10% (w/v) 

polyacrylamide gels were used.  

 

4.2.2.3.3 Triton X-100 treatment of hydrodynamically-sheared HeLa A3 residues 

The results shown in Section 4.2.2.3.1 suggest that upon S100P induction, there was little 

or no change in the abundance of a subset of focal adhesion proteins present in the 

hydrodynamically-sheared residue of HeLa A3 cells. However, this result potentially 

contradicts the results observed in Section 4.2.2.1 when Triton X-100 in a PBS solution was 

added to whole HeLa A3 cells in order to remove any cytosolic and detergent-soluble 

proteins, leaving only Triton X-100-insoluble cytoskeletal and adhesion-related proteins. 

When this Triton X-100 procedure was carried out on whole cells, a reduction was observed 

in the abundance of talin and vinculin. To determine if the addition of Triton X-100 was 

having a different effect to hydrodynamic shearing of cells, Triton X-100 in PBS was added 

to the hydrodynamically-sheared residue of HeLa A3 cells after the standard PBS washes, 

but prior to residue collection in the SDS-containing lysis buffer. Figure 4.6 shows that 

indeed, when the hydrodynamically-sheared residue was treated with Triton X-100, a 10-

fold reduction in the abundance of talin and a 2.2 fold reduction in vinculin was observed. 

Moreover no bands corresponding to paxillin and FAK were observed on Western blots. 

These results may therefore suggest that Triton X-100 is removing more weakly bound 

components of the cell adhesome in HeLa A3 cells and, as such, may not be an appropriate 

method for analysing the total cell-extracellular matrix adhesome.  
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Figure 4.6. Western blotting for focal adhesion proteins in Triton X-100 treated 

hydrodynamically-sheared HeLa A3 cell residues. Two 10 cm diameter tissue culture 

dishes were exposed to a hydrodynamic force from a standardised shower. The residues 

were washed with PBS, then treated with Triton X-100 in PBS, washed again with PBS and 

then the remaining residue dissolved in SDS-containing Sample Buffer. Acetone 

precipitation was then carried out to concentrate the samples, after which the residues 

were resuspended in 30μl of Sample Buffer and each loaded into a single well. Both 

samples were normalised against the number of cells present on the dish prior to shearing. 

A 10 fold and 2.2 fold reduction in the intensity of the blotted band for talin and vinculin, 

respectively, was observed in the S100P-induced HeLa A3 cell residue compared to the 

control, uninduced cell residue. The induced cells were exposed to doxycyclin for 48 hours 

prior to the experiment and 10% (w/v) polyacrylamide gels were used.  

 

4.2.2.3.4 Immunofluorescent staining of hydrodynamically-sheared HeLa A3 

residues 

In order to compare results obtained by Western blots for the hydrodynamically-sheared 

residues with an in situ technique, antibodies to vinculin were used to stain 

immunofluorescently the adhesion foci, since they gave a stronger signal than antibodies to 

the other focal adhesion proteins.  The results were standardised to the number of cells on 

each dish prior to shearing, since the outline of the cells was now no longer apparent. 

Figure 4.7 shows that the hydrodynamically-sheared residues from S100P-induced HeLa A3 

cells produced a significantly lower (2.7-fold decrease, Student’s t = 12.52, P < 0.0001) 
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number of punctate structures containing immunoreactive vinculin compared to the 

control, uninduced cell residues (vinculin control, uninduced mean = 106, SD = 29.9, S100P 

induced mean = 39, SD = 16.7, t = 12.52, P < 0.0001, foci in 30 fields of view counted in n = 

3 experiments). The decrease in the number of immunoreactive vinculin-containing foci 

was greater than that previously seen in the immunofluorescently-stained whole cells 

(Figure 3.9), perhaps due to it being easier to count the foci when most of the other cellular 

components were removed. These results were, however, consistent with the 2.2 fold 

reduction in Western blots of Triton X-100-treated, hydrodynamically-sheared residues. 
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Figure 4.7. Immunofluorescent staining of hydrodynamically-sheared cell residues. A) 

Uninduced control and S100P-induced HeLa A3 cells were hydrodynamically sheared and 

the resultant residues were immunofluorescently stained for vinculin. White bars = 100μm. 

B) The number of foci stained for vinculin per field of view showed a significant 2.7 fold 

decrease in the S100P-induced HeLa cells compared to the control, uninduced cells 

(vinculin control uninduced mean = 106, SD = 29.9, S100P-induced mean = 39, SD = 16.7, 

Student's t = 12.52; P < 0.05, foci in 30 fields of view counted in n = 3 experiments). Values 

were normalised based on the number of HeLa A3 cells originally adhered to the dishes. 

  

4.2.2.3.5 Mass spectrometry of adhesome residue  

Mass spectrometry on the hydrodynamically-sheared cell residues was undertaken for two 

reasons. Firstly, to determine whether the Western blots for the abundance of focal 

adhesion proteins reported in Figure 4.5 can be validated using this higher resolution 

technique. The second reason was to determine if there were any alterations in potentially 

novel proteins present at the adhesive interface as a result of S100P overexpression.  

 

4.2.2.4.1 Explorative adhesome mass spectrometry  

Mass spectrometry was initially performed only on residues from hydrodynamically-

sheared control, uninduced HeLa cells. The mass spectrometric analysis yielded a full list of 

proteins that were present in this cell fraction (Table 4.3). This result gives insight into the 

diversity of proteins that are present within this cell fraction, the majority being 

extracellular matrix, cytoskeletal or proteins associated with the plasma membrane. A 

range of proteins were also present that either bind to these groups of proteins, or are 

present on the cell membrane and, as such are preserved within the sheared residue. 

However, there are some nuclear proteins present such as histone H4, which are 

unexpected in this cell fraction, as they should have been removed during the 

hydrodynamic shearing process. One explanation for proteins such as this is histones carry 

a positive charge and, as such, when the cells are lysed, they may have bound 

adventitiously to heparan sulphate chains or to phosphatidyl inositol membrane patches, 

both of which are strongly negatively charged [265-267]. An additional important point to 

note is the lack of focal adhesion signalling proteins such as paxillin and FAK, which, as 
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previously shown by Western blots are definitely present within the hydrodynamically-

sheared protein residue. Even after repeated runs, these signalling proteins were not 

detected by mass spectrometry, but were routinely observed at low levels in all Western 

blots. The reason for this is currently unclear, but may reflect a lack of sensitivity of the 

mass spectrometric technique. 

 

Acetone precipitation-treated hydrodynamically-sheared HeLa A3 cell mass spectrometry  
 

Protein / gene name 
UniProt 

ID 
 Cellular location Adhesome Protein 

    

tubulin, beta 1 class VI Q9H4B7 Cytoplasm Yes 

four and a half LIM domains 1 Q5JXI8 Cytoplasm Yes 

filamin A, alpha Q5HY54 Cytoplasm Yes 

tubulin, alpha 1b P68363 Cytoplasm Yes 

actin, alpha, cardiac muscle 1 P68032 Cytoplasm Yes 

actin, beta P60709 Cytoplasm Yes 

keratin 2, type II P35908 Cytoplasm Yes 

myosin, heavy chain 9, non-muscle P35579 Cytoplasm Yes 

keratin 9, type I P35527 Cytoplasm Yes 

keratin 5, type II P13647 Cytoplasm Yes 

keratin 10, type I P13645 Cytoplasm Yes 

keratin 16, type I P08779 Cytoplasm Yes 

keratin 1, type II P04264 Cytoplasm Yes 

keratin 6B, type II P04259 Cytoplasm Yes 

keratin 14, type I P02533 Cytoplasm Yes 

actinin, alpha 4 O43707 Cytoplasm Yes 

myosin, light chain 12A, regulatory, non-sarcomeric J3QRS3 Cytoplasm Yes 

myosin, light chain 6, alkali, smooth muscle and non-
muscle 

G3V1V0 Cytoplasm Yes 

vimentin B0YJC4 Cytoplasm Yes 

tubulin, alpha 4a A8MUB1 Cytoplasm Yes 

stonin 2 Q8WXE9 Cytoplasm Possible interaction 

RAB12, member RAS oncogene family Q6IQ22 Cytoplasm Possible Interaction 

peptidylprolyl isomerase A (cyclophilin A) P62937 Cytoplasm Possible interaction 

ribosomal protein S13 P62277 Cytoplasm Possible interaction 

RAP1B, member of RAS oncogene family P61224 Cytoplasm Possible interaction 

lipoprotein lipase P06858 Cytoplasm Possible interaction 

quiescin Q6 sulfhydryl oxidase 1 O00391 Cytoplasm Possible interaction 

aldolase A, fructose-bisphosphate J3KPS3 Cytoplasm Possible interaction 

nucleobindin 1 H7BZI1 Cytoplasm Possible interaction 

nascent polypeptide-associated complex alpha subunit H0YHX9 Cytoplasm Possible interaction 

heat shock 70kDa protein 8 E9PKE3 Cytoplasm Possible interaction 

triosephosphate isomerase 1 U3KPZ0 Cytoplasm No 

heat shock protein 90kDa alpha (cytosolic), class A 
member 1 

Q86U12 Cytoplasm No 

glyceraldehyde-3-phosphate dehydrogenase P04406 Cytoplasm No 

lactate dehydrogenase A P00338 Cytoplasm No 
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adaptor-related protein complex 2, alpha 1 subunit O95782 Cytoplasm No 

biliverdin reductase B M0QZL1 Cytoplasm No 

adaptor-related protein complex 2, sigma 1 subunit M0QYZ2 Cytoplasm No 

calpain, small subunit 1 K7EIV0 Cytoplasm No 

ubiquitin B J3QS39 Cytoplasm No 

pyruvate kinase, muscle H3BTN5 Cytoplasm No 

signal recognition particle 14kDa (homologous Alu RNA 
binding protein) 

H0YLA2 Cytoplasm No 

adaptor-related protein complex 2, mu 1 subunit E9PFW3 Cytoplasm No 

family with sequence similarity 179, member A Q6ZUX3 Cytoplasm No 

S100 calcium binding protein A1 Q5T7Y6 Cytoplasm Indirect Signalling 

profilin 1 P07737 Cytoplasm Indirect Signalling 

enolase 1, (alpha) P06733 Cytoplasm Indirect Signalling 

thrombospondin, type I, domain containing 4 Q6ZMP0 Cytoplasm Indirect Signalling 

GLI pathogenesis-related 2 Q5VZR0 Cytoplasm Indirect Signalling 

transgelin 2 P37802 Cytoplasm Indirect Signalling 

related RAS viral (r-ras) oncogene homolog P10301 Cytoplasm Indirect Signalling 

myeloperoxidase P05164 Cytoplasm Indirect Signalling 

secretory leukocyte peptidase inhibitor P03973 Cytoplasm Indirect Signalling 

neural precursor cell expressed, developmentally 
down-regulated 4, E3 ubiquitin protein ligase 

H0Y8H4 Cytoplasm Indirect Signalling 

heat shock 27kDa protein 1 F8WE04 Cytoplasm Indirect Signalling 

NME/NM23 nucleoside diphosphate kinase 1 E7ERL0 Cytoplasm Indirect Signalling 

wingless-type MMTV integration site family, member 
5A 

P41221 Extracellular Space Yes 

TIMP metallopeptidase inhibitor 3 P35625 Extracellular Space Yes 

fibrillin 2 P35556 Extracellular Space Yes 

fibrillin 1 P35555 Extracellular Space Yes 

tenascin C P24821 Extracellular Space Yes 

collagen, type V, alpha 1 P20908 Extracellular Space Yes 

collagen, type VI, alpha 1 P12109 Extracellular Space Yes 

laminin, gamma 1 (formerly LAMB2) P11047 Extracellular Space Yes 

thrombospondin 1 P07996 Extracellular Space Yes 

vitronectin P04004 Extracellular Space Yes 

EGF-like repeats and discoidin I-like domains 3 O43854 Extracellular Space Yes 

laminin, alpha 5 O15230 Extracellular Space Yes 

gelsolin F5H1A8 Extracellular Space Yes 

inter-alpha-trypsin inhibitor heavy chain 2 Q5T985 Extracellular Space Possible interaction 

bone morphogenetic protein 1 P13497 Extracellular Space Possible interaction 

serpin peptidase inhibitor, clade E (nexin, plasminogen 
activator inhibitor type 1), member 1 

P05121 Extracellular Space Possible interaction 

apolipoprotein H (beta-2-glycoprotein I) P02749 Extracellular Space Possible interaction 

sema domain, immunoglobulin domain (Ig), short basic 
domain, secreted, (semaphorin) 3D 

O95025 Extracellular Space Possible interaction 

complement factor I G3XAM2 Extracellular Space Possible interaction 

C-type lectin domain family 3, member B E9PHK0 Extracellular Space Possible interaction 

inter-alpha-trypsin inhibitor heavy chain 3 E7ET33 Extracellular Space Possible interaction 

serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, 
pigment epithelium derived factor), member 2 

C9JMH6 Extracellular Space Possible interaction 

C1q and tumor necrosis factor related protein 3 Q9BXJ4 Extracellular Space No 

peroxidasin Q92626 Extracellular Space No 

ribonuclease, RNase A family, 4 P34096 Extracellular Space No 

pregnancy-zone protein P20742 Extracellular Space No 

complement component 4B (Chido blood group) P0C0L4 Extracellular Space No 
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alpha-2-macroglobulin P01023 Extracellular Space No 

serpin peptidase inhibitor, clade C (antithrombin), 
member 1 

P01008 Extracellular Space No 

coagulation factor X P00742 Extracellular Space No 

coagulation factor XIII, A1 polypeptide P00488 Extracellular Space No 

alpha-fetoprotein J3KMX3 Extracellular Space No 

albumin H0YA55 Extracellular Space No 

hemoglobin, alpha 1 G3V1N2 Extracellular Space No 

coagulation factor II (thrombin) E9PIT3 Extracellular Space No 

lactotransferrin E7EQB2 Extracellular Space No 

platelet derived growth factor C B4E3A5 Extracellular Space No 

SPARC related modular calcium binding 1 Q9H4F8 Extracellular Space Indirect Signalling 

HtrA serine peptidase 1 Q92743 Extracellular Space Indirect Signalling 

transforming growth factor, beta-induced, 68kDa Q15582 Extracellular Space Indirect Signalling 

sema domain, immunoglobulin domain (Ig), short basic 
domain, secreted, (semaphorin) 3A 

Q14563 Extracellular Space Indirect Signalling 

hyaluronan binding protein 2 Q14520 Extracellular Space Indirect Signalling 

HtrA serine peptidase 3 P83110 Extracellular Space Indirect Signalling 

dermcidin P81605 Extracellular Space Indirect Signalling 

microfibrillar-associated protein 2 P55001 Extracellular Space Indirect Signalling 

lumican P51884 Extracellular Space Indirect Signalling 

tissue factor pathway inhibitor 2 P48307 Extracellular Space Indirect Signalling 

serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, 
pigment epithelium derived factor), member 1 

P36955 Extracellular Space Indirect Signalling 

connective tissue growth factor P29279 Extracellular Space Indirect Signalling 

lysyl oxidase P28300 Extracellular Space Indirect Signalling 

insulin-like growth factor binding protein 5 P24593 Extracellular Space Indirect Signalling 

glutathione peroxidase 3 P22352 Extracellular Space Indirect Signalling 

insulin-like growth factor binding protein 2, 36kDa P18065 Extracellular Space Indirect Signalling 

insulin-like growth factor binding protein 3 P17936 Extracellular Space Indirect Signalling 

tissue factor pathway inhibitor (lipoprotein-associated 
coagulation inhibitor) 

P10646 Extracellular Space Indirect Signalling 

serpin peptidase inhibitor, clade E (nexin, plasminogen 
activator inhibitor type 1), member 2 

P07093 Extracellular Space Indirect Signalling 

serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 7 

P05543 Extracellular Space Indirect Signalling 

histidine-rich glycoprotein P04196 Extracellular Space Indirect Signalling 

apolipoprotein B P04114 Extracellular Space Indirect Signalling 

alpha-2-HS-glycoprotein P02765 Extracellular Space Indirect Signalling 

apolipoprotein E P02649 Extracellular Space Indirect Signalling 

apolipoprotein A-I P02647 Extracellular Space Indirect Signalling 

insulin-like growth factor 2 P01344 Extracellular Space Indirect Signalling 

complement component 5 P01031 Extracellular Space Indirect Signalling 

complement component 3 P01024 Extracellular Space Indirect Signalling 

protease, serine, 23 O95084 Extracellular Space Indirect Signalling 

gremlin 1, DAN family BMP antagonist O60565 Extracellular Space Indirect Signalling 

cysteine-rich, angiogenic inducer, 61 O00622 Extracellular Space Indirect Signalling 

vascular endothelial growth factor A H0Y2S8 Extracellular Space Indirect Signalling 

cartilage oligomeric matrix protein G3XAP6 Extracellular Space Indirect Signalling 

latent transforming growth factor beta binding protein 
2 

G3V3X5 Extracellular Space Indirect Signalling 

midkine (neurite growth-promoting factor 2) E9PLM6 Extracellular Space Indirect Signalling 

fibrinogen beta chain D6REL8 Extracellular Space Indirect Signalling 

periostin, osteoblast specific factor B1ALD9 Extracellular Space Indirect Signalling 
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apolipoprotein C-III B0YIW2 Extracellular Space Indirect Signalling 

histone cluster 1, H2bn U3KQK0 Nucleus No 

coiled-coil domain containing 80 Q76M96 Nucleus No 

brain abundant, membrane attached signal protein 1 P80723 Nucleus No 

small nuclear ribonucleoprotein D2 polypeptide 
16.5kDa 

P62316 Nucleus No 

small nuclear ribonucleoprotein polypeptide E P62304 Nucleus No 

histone cluster 1, H1e P10412 Nucleus No 

transforming growth factor beta 1 induced transcript 1 O43294 Nucleus No 

ribosomal protein L22 K7EJT5 Nucleus No 

RAN, member RAS oncogene family H0YFC6 Nucleus No 

Y box binding protein 1 H0Y449 Nucleus No 

small nuclear ribonucleoprotein polypeptide G F5H013 Nucleus No 

cysteine and glycine-rich protein 1 E9PP21 Nucleus No 

peptidylprolyl isomerase E (cyclophilin E) E9PEQ6 Nucleus No 

small nuclear ribonucleoprotein polypeptide N B3KVR1 Nucleus No 

H3 histone, family 3C Q6NXT2 Nucleus No 

nephronectin Q6UXI9 Plasma Membrane Yes 

fibronectin type III domain containing 1 Q4ZHG4 Plasma Membrane Yes 

ras-related C3 botulinum toxin substrate 1 (rho family, 
small GTP binding protein Rac1) 

P63000 Plasma Membrane Yes 

LIM and senescent cell antigen-like domains 1 P48059 Plasma Membrane Yes 

basigin (Ok blood group) P35613 Plasma Membrane Yes 

moesin P26038 Plasma Membrane Yes 

integrin, beta 5 P18084 Plasma Membrane Yes 

integrin, alpha 5 (fibronectin receptor, alpha 
polypeptide) 

P08648 Plasma Membrane Yes 

integrin, alpha V P06756 Plasma Membrane Yes 

integrin, beta 1 (fibronectin receptor, beta 
polypeptide, antigen CD29 includes MDF2, MSK12) 

P05556 Plasma Membrane Yes 

integrin, beta 3 (platelet glycoprotein IIIa, antigen 
CD61) 

P05106 Plasma Membrane Yes 

agrin O00468 Plasma Membrane Yes 

integrin-linked kinase B7Z1I0 Plasma Membrane Yes 

guanine nucleotide binding protein (G protein), alpha 
13 

Q14344 Plasma Membrane Possible interaction 

apolipoprotein M Q5SRP5 Plasma Membrane No 

coagulation factor V (proaccelerin, labile factor) P12259 Plasma Membrane No 

tumor necrosis factor receptor superfamily, member 
11b 

O00300 Plasma Membrane No 

transferrin receptor G3V0E5 Plasma Membrane No 

CD59 molecule, complement regulatory protein E9PNW4 Plasma Membrane No 

solute carrier family 2 (facilitated glucose transporter), 
member 1 

C9JIM8 Plasma Membrane No 

CD55 molecule, decay accelerating factor for 
complement (Cromer blood group) 

B1AP13 Plasma Membrane No 

guanine nucleotide binding protein (G protein), beta 
polypeptide 1 

B1AKQ8 Plasma Membrane No 

plasminogen activator, urokinase receptor M0QYR6 Plasma Membrane Indirect Signalling 

solute carrier family 3 (amino acid transporter heavy 
chain), member 2 

J3KPF3 Plasma Membrane Indirect Signalling 

annexin A2 H0YMD0 Plasma Membrane Indirect Signalling 
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Table 4.3 Mass spectrometric identification of proteins in hydrodynamically-sheared 

residue of HeLa A3 cells using acetone precipitation. Three 10 cm diameter tissue culture 

dishes (6 x106 cells) were exposed to a hydrodynamic force from a standardised shower. 

The residue was washed with PBS and dissolved in SDS-containing sample buffer. SDS was 

removed using acetone precipitation for sample preparation before liquid chromatography 

followed by MS-MS mass spectrometry (LC-MS). A total of 171 proteins were identified 

from two independently isolated samples. Proteins were designated as an adhesome 

protein (yes) if they were considered to be either an adhesive protein or a protein that 

directly affects cell adhesion. Proteins noted as having indirect signalling designation have 

an effect on cellular adhesion via intermediate pathways, complexes or signalling events. 

Proteins noted as having a possible interaction are those with a uniprot entry that suggests 

either localisation to sites of adhesion or that have a structure / function that may relate to 

adhesion but lack substantial evidence. Proteins were only designated as "No" if they had 

no link to cellular adhesion. QIAGEN’S Ingenuity Pathway Analysis was used for determining 

the cellular localisation of each protein. The proteins “adhesome” status was determined 

using the corresponding Uniprot entry. 

 

4.2.2.4.2 Limitations in adhesome analysis 

When the explorative mass spectrometric determination of proteins that were present in 

the hydrodynamically-sheared residue was complete, a comparative experiment to 

investigate differences in relative amounts of proteins was undertaken between control, 

uninduced and S100P-overexpressing HeLa A3 cells. Relative comparisons of protein 

abundance using this method, however, proved to be impossible using the current method 

of sample preparation due to broadening and time drift of the peaks of the tryptic peptides 

during LC analysis. Figure 4.8 shows the complete base peak ion chromatogram of tryptic 

peptides from two control and two S100P-induced sheared cell residue samples. It is clear 

that there was considerable variability between the two control, and between the two 

S100P-induced sheared samples, as well as between control and S100P-induced sample 

peaks. This variability has been exemplified in Figure 4.9, where a single peak of tryptic 

peptides at a (m/v) of 710.35 has been isolated. This peak elutes at different times 

between samples and is substantially broad, making peptide identification difficult and 

relative quantification using the Progenesis programme impossible. It was thought that this 
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artefact was due to contamination of the samples by SDS resulting from insufficient 

removal during acetone precipitation and washings.    

In order to be able to perform relative quantification on the isolated residues, an 

alternative method in which all the SDS could be removed was required.  
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Figure 4.8. Base peak ion chromatogram of tryptic peptides from hydrodynamically-

sheared residues of HeLa A3 cells purified using acetone precipitation. Two 

hydrodynamically-sheared control, uninduced and two S100P-induced HeLa A3 cell 

residues were run on LC-MS. The relative absorbance of the tryptic peptides, eluted with 

time is shown together with the m/v of the major peptide peaks and time of elution. 
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Roughly 180 proteins were identified per run. Three 10cm diameter tissue culture dishes (6 

x106 cells) were exposed to a hydrodynamic force from a standardised shower per sample. 

The residue was washed with PBS and suspended in SDS-containing sample buffer. The 

induced cells were exposed to doxycyclin for 48 hours prior to the experiment. SDS was 

removed by precipitation with acetone before LC-MS.  
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Figure 4.9. Extracted ion chromatogram of acetone precipitated HeLa A3 residues from 

Figure 4.8 for ion peak 710.35 (m/v). The relative absorbance against time of elution in 

minutes has been extracted for this tryptic peptide peak at 710.35 (m/v). Peak drift and 

peak broadening can be observed making label-free quantification using the Progenesis 

programme impossible. The SDS was removed by precipitation with acetone before LC-MS. 
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4.2.2.4.3 Use of filter-aided sample preparation (FASP) as a viable method for 

comparative mass spectrometry  

As discussed in Materials and Methods Section 2.7.2.2, FASP was selected as a replacement 

method instead of precipitation with acetone to remove SDS from the hydrodynamically-

sheared residues. When this method was used, the peaks of the tryptic peptides in both 

the base peak ion chromatogram (Figure 4.10A) and in an extracted ion chromatogram 

(Figure 4.10B) align, with no peak drift and a suitably sharp peak width. This profile is 

especially noticeable when compared to the ion chromatograms shown in Figures 4.8 and 

4.9.  

 Moreover, a larger number of proteins were identified by using FASP (488) rather 

than by acetone precipitation (171). Due to the increased number of proteins, a 

representative list is presented in Table 4.4 with the full list of proteins obtained from mass 

spectrometry shown in Appendix 4. Similar to the list of proteins obtained from 

hydrodynamically-sheared HeLa A3 cells, followed by acetone precipitation, a range of 

proteins were present from all cellular compartments. As would be expected, there were a 

number of proteins that would be considered adhesome proteins also present at the 

plasma membrane, either because they are key adhesion proteins or because they directly 

affect cell adhesion. The structural focal adhesion proteins talin and vinculin were both 

present, as well as a number of integrins. However, as with the acetone precipitation 

method of removing SDS, signalling-based focal adhesion proteins like paxillin and FAK 

were absent from the list. Cell-cell adhesion proteins were also present, such as the 

desmosomal proteins: plakophilin, desmocollin and desmoglein. Indirect adhesion 

signalling proteins that could be localised to the cell membrane were also present such as 

plasminogen activator, which enables matrix metalloproteinase activity, and annexin, 

which can act as a membrane scaffolding protein, binding important adhesion-signalling 

lipids such as PIP2.  

 Similar to the technique of acetone precipitation several nuclear proteins were also 

present. It is not possible to say for certain why these proteins occurred in this sheared 

fraction when all nuclear material should have been removed. However, as stated 

previously, histones carry a positive charge and, as such, when cells were lysed, they may 

have bound electrostatically to heparan sulphate chains or phosphatidyl inositol-enriched 

membrane patches, which are negatively charged. This explanation does not, however 

explain why some histones are present in the list and not others. For the purposes of this 
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experiment it is suggested that any nuclear proteins are contaminants and are present due 

to non-specific binding during cell lysis.  

 Within the extracellular space fraction a number of extracellular matrix proteins 

were identified including collagens, laminins, fibrillins and fibronectin. Other extracellular 

matrix-binding proteins such as heparan sulfate proteoglycan 2 and fibrinogen chains which 

have a role in cell adhesion were also observed. Several proteins commonly found in cell 

culture serum (transferrin, alpha-fetoprotein, albumin) were identified; this result shows 

that trace amounts of serum may have still been present following hydrodynamic shearing. 

The extracellular proteins also included several matrix metalloproteinases such as 

plasminogen and several proteins such as osteoglycin which can bind to heparin sulphate 

chains.  

 Many cytoskeletal elements found within the cytoplasm were also identified 

including those of the actin / myosin cytoskeleton and microtubule structures. 

Furthermore, proteins involved in adhesion and migration signalling such as RAP1 and 

representatives of members of the S100 proteins were also present. There were several 

heat shock proteins, which may have a hitherto unsuspected role in adhesion signalling or 

they may be contaminants. A few ribosomal proteins were also identified. It is not clear 

whether these are present because they bind negatively charged polymers (rRNA, heparan 

sulfate, phosphatidyl inositol-enriched membrane patches) and so are contaminants or, 

since in several cases there has been evidence to suggest that they may localise to sites of 

cell-extracellular matrix adhesion, that they are a bona fide adhesion proteins. 

 Based on the quality of both the chromatogram alignment and protein content 

results, the FASP method was deemed to be suitable for more extensive experiments to 

determine quantifiable differences between isolated, control and S100P-induced 

hydrodynamically-sheared cell residues.  
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Figure 4.10. Peak ion chromatograms for FASP-treated, hydrodynamically-sheared HeLa 

A3 cell residues. The relative absorbance at 280nm was recorded using LC for FASP 

processed, control, uninduced and S100P-induced, HeLa A3 hydrodynamically-sheared cell 

residues. A) Base peak ion chromatogram from hydrodynamically-sheared, uninduced 

control and S100P-induced HeLa A3 cell samples. The elution time for the major peaks of 

tryptic peptides and the mean mass ions (m/v) were recorded on the trace. B) Extracted ion 

chromatogram from FASP-treated HeLa A3 residues using a peak extracted at 519.27 (m/v). 
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Using the FASP exchange method the tryptic peptide peaks line up and are suitably sharp, 

allowing for quantification. 

FASP-treated hydrodynamically-sheared HeLa A3 cell mass spectrometry  
 
  

Protein / Gene name 
 

UniProt 
ID 

Cellular Location Adhesome protein 

talin 1 Q9Y490 Plasma 
Membrane 

Yes 

testin LIM domain protein Q9UGI8 Plasma 
Membrane 

Yes 

nephronectin Q6UXI9 Plasma 
Membrane 

Yes 

plakophilin 1 Q13835 Plasma 
Membrane 

Yes 

integrin-linked kinase Q13418 Plasma 
Membrane 

Yes 

desmocollin 1 Q08554 Plasma 
Membrane 

Yes 

desmoglein 1 Q02413 Plasma 
Membrane 

Yes 

integrin, alpha 3 (antigen CD49C, alpha 3 subunit of 
VLA-3 receptor) 

P26006 Plasma 
Membrane 

Yes 

vinculin P18206 Plasma 
Membrane 

Yes 

integrin, beta 5 P18084 Plasma 
Membrane 

Yes 

endoglin P17813 Plasma 
Membrane 

Yes 

desmoplakin P15924 Plasma 
Membrane 

Yes 

integrin, alpha 5 (fibronectin receptor, alpha 
polypeptide) 

P08648 Plasma 
Membrane 

Yes 

integrin, alpha V P06756 Plasma 
Membrane 

Yes 

integrin, beta 1 (fibronectin receptor, beta 
polypeptide, antigen CD29 includes MDF2, MSK12) 

P05556 Plasma 
Membrane 

Yes 

integrin, beta 3 (platelet glycoprotein IIIa, antigen 
CD61) 

P05106 Plasma 
Membrane 

Yes 

plasminogen activator, urokinase receptor Q03405 Plasma 
Membrane 

Indirect Signalling 

annexin A2 P07355 Plasma 
Membrane 

Indirect Signalling 

 

H1 histone family, member X Q92522 Nucleus No 

histone cluster 2, H2bf Q5QNW6 Nucleus No 

histone cluster 1, H1e P10412 Nucleus No 

H2A histone family, member Z P0C0S5 Nucleus No 

histone cluster 1, H2bj P06899 Nucleus No 

small nuclear ribonucleoprotein polypeptide G P62308 Nucleus No 

small nuclear ribonucleoprotein polypeptide F P62306 Nucleus No 

small nuclear ribonucleoprotein polypeptide E P62304 Nucleus No 

 

collagen, type XII, alpha 1 Q99715 Extracellular 
Space 

Yes 

laminin, alpha 4 Q16363 Extracellular 
Space 

Yes 
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heparan sulfate proteoglycan 2 P98160 Extracellular 
Space 

Yes 

fibrillin 2 P35556 Extracellular 
Space 

Yes 

fibrillin 1 P35555 Extracellular 
Space 

Yes 

collagen, type VIII, alpha 1 P27658 Extracellular 
Space 

Yes 

tenascin C P24821 Extracellular 
Space 

Yes 

collagen, type V, alpha 1 P20908 Extracellular 
Space 

Yes 

collagen, type VI, alpha 3 P12111 Extracellular 
Space 

Yes 

collagen, type VI, alpha 1 P12109 Extracellular 
Space 

Yes 

fibronectin 1 P02751 Extracellular 
Space 

Yes 

laminin, alpha 5 O15230 Extracellular 
Space 

Yes 

transferrin P02787 Extracellular 
Space 

No 

alpha-fetoprotein P02771 Extracellular 
Space 

No 

albumin P02768 Extracellular 
Space 

No 

fibrinogen gamma chain P02679 Extracellular 
Space 

Indirect Signalling 

fibrinogen beta chain P02675 Extracellular 
Space 

Indirect Signalling 

tissue plasminogen activator P00750 Extracellular 
Space 

Indirect Signalling 

plasminogen activator, urokinase P00749 Extracellular 
Space 

Indirect Signalling 

plasminogen P00747 Extracellular 
Space 

Indirect Signalling 

osteoglycin P20774 Extracellular 
Space 

Possible interaction 

 

tubulin, alpha 4a P68366 Cytoplasm Yes 

tubulin, alpha 1b P68363 Cytoplasm Yes 

actin, beta P60709 Cytoplasm Yes 

myosin, light chain 9, regulatory P24844 Cytoplasm Yes 

actinin, alpha 4 O43707 Cytoplasm Yes 

vimentin P08670 Cytoplasm Yes 

profilin 1 P07737 Cytoplasm Yes 

keratin 8, type II P05787 Cytoplasm Yes 

keratin 18, type I P05783 Cytoplasm Yes 

keratin 1, type II P04264 Cytoplasm Yes 

keratin 6B, type II P04259 Cytoplasm Yes 

keratin 6A, type II P02538 Cytoplasm Yes 

keratin 14, type I P02533 Cytoplasm Yes 

myosin, light chain 12B, regulatory O14950 Cytoplasm Yes 

ribosomal protein S16 P62249 Cytoplasm Possible interaction 

ribosomal protein S15a P62244 Cytoplasm Possible interaction 

ribosomal protein S8 P62241 Cytoplasm Possible interaction 

ribosomal protein S3 P23396 Cytoplasm Possible interaction 

ribosomal protein S27a P62979 Cytoplasm No 
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ribosomal protein L11 P62913 Cytoplasm No 

ribosomal protein L30 P62888 Cytoplasm No 

ribosomal protein L35 P42766 Cytoplasm No 

ribosomal protein L13a P40429 Cytoplasm No 

heat shock protein 90kDa alpha (cytosolic), class B 
member 1 

P08238 Cytoplasm No 

heat shock protein 90kDa alpha (cytosolic), class A 
member 1 

P07900 Cytoplasm No 

glyceraldehyde-3-phosphate dehydrogenase P04406 Cytoplasm No 

RAP1A, member of RAS oncogene family P62834 Cytoplasm Indirect Signalling 

ras homolog family member A P61586 Cytoplasm Indirect Signalling 

RAB10, member RAS oncogene family P61026 Cytoplasm Indirect Signalling 

S100 calcium binding protein A7 P31151 Cytoplasm Indirect Signalling 

S100 calcium binding protein A4 P26447 Cytoplasm Indirect Signalling 

S100 calcium binding protein A1 P23297 Cytoplasm Indirect Signalling 

S100 calcium binding protein A9 P06702 Cytoplasm Indirect Signalling 

S100 calcium binding protein A8 P05109 Cytoplasm Indirect Signalling 

 

Table 4.4 Representative sample of proteins obtained from mass spectrometry of 

hydrodynamically-sheared residue of HeLa A3 cells using FASP SDS removal. Three 10 cm 

diameter tissue culture dishes (6 x106 cells) were exposed to a hydrodynamic force from a 

standardised shower. The residue was washed with PBS and dissolved in SDS-containing 

sample buffer. SDS was removed using FASP for sample preparation before liquid 

chromatography followed by MS-MS mass spectrometry (LC-MS). A total of 488 proteins 

were identified from four independently isolated samples. Proteins were designated as an 

adhesome protein (yes) if they were considered to be either an adhesive protein or a 

protein that directly affects cell adhesion. Proteins noted as having indirect signalling have 

an effect on cellular adhesion via intermediate pathways, complexes or signalling events. 

Proteins noted as having a possible interaction are those with a uniprot entry that suggests 

either localisation to sites of adhesion or that have a structure / function that may relate to 

adhesion but lack substantial experimental peer-reviewed evidence. Proteins were 

designated as "No" if these same sources provided no link to cellular adhesion. QIAGEN’S 

Ingenuity Pathway Analysis was used for determining the cellular localisation of each 

protein. The proteins “adhesome” status was determined using the corresponding Uniprot 

entry. 

4.2.2.4.4 Comparative mass spectrometry of FASP-treated, hydrodynamically-

sheared HeLa A3 residues 

When FASP was used to remove SDS contamination, it was possible to acquire a full list of 

proteins identified by at least two unique tryptic peptides that had their abundance altered 
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by two-fold or more within the adhesome fraction, as a result of S100P overexpression 

(Table 4.4). The most obvious point to note is that talin and vinculin were not present in 

this list, in line with the results obtained by standard Western blots of these cellular 

residues. 

 When proteins were up-regulated by S100P overexpression, there appeared to be 

some contamination in this sheared fraction from other cellular fractions, particularly in 

nuclear proteins. Of the 11 proteins that were up-regulated, only two could be considered 

as proteins that should be present within this cellular fraction. The rest are mainly nuclear 

proteins, transcription factors or ribosomal-interacting proteins. Of the remaining two, Ras 

GTPase-activating-like protein IQGAP1 (IQGAP1) showed the highest significant increase at 

2.81 fold (Anova P = 0.0045). IQGAP1 is a scaffold protein involved in cytoskeletal 

rearrangement, as well as cell-cell adhesion, cellular motility and cell invasion [218].  

 Overexpression of IQGAP1 has been shown to increase tumorigenesis and increase 

cancer cell invasion resulting in metastasis in a number of cancers, including ovarian, 

colorectal and breast [219, 268-270]. In these cases where cells took on a metastatic 

phenotype, it was shown that high levels of IQGAP1 occurred localised to the cell 

membrane. This localisation could explain its increased presence in the sheared residue in 

S100P-induced cells and its failure to register a difference between control, uninduced and 

S100P-induced whole cells in the mass spectrometric results shown in Table 4.1. 

 Growth/differentiation factor 15 (GDF15) was also significantly unregulated by 2.5-

fold (Anova P = 0.0043). GDF15 is an extracellular protein growth factor which binds 

transmembrane receptors [271]. This membrane-binding activity is the likely reason that 

this protein is present within the adhesome fraction. Similar to IQGAP1, its overexpression 

has been implicated in the progression of a number of epithelial cancers [272-275]. 

 When proteins were down-regulated by S100P, there would appear to be less 

contaminating proteins present in the sheared reside than with the up-regulated proteins. 

The proteins with the largest significant fold change, collagen alpha-1(XII) chain (COL12A1) 

(fold decrease 3.36, Anova P = 0.00018) and fibrillin-1 (FBN1) (fold decrease 2.65, Anova P = 

0.00002) are both extracellular matrix proteins, possibly suggesting that S100P may have a 

downstream effect on the composition of the extracellular matrix. Another protein of 

particular note is transforming growth factor-beta-induced protein ig-h3 (TGFβI) (fold 

decrease 2.19, Anova P = 0.05). This is a secreted protein that has been shown to be 
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involved in mediating cell to matrix junctions. Crucially, recent evidence may suggest a link 

between a loss in TGFβI and progression of cancer [276]. Angiopoietin-1 (ANGPT1), a 

secreted protein shown to promote angiogenesis, is significantly reduced by about two-fold 

(fold decrease 2.18, Anova P = 0.0004). Curiously, overexpression of this protein has been 

shown to inhibit tumour growth in breast cancer, despite its known function in 

angiogenesis [277]. Integrin alpha-5, a crucial cell to matrix binding protein is also 

significantly reduced by about two-fold (fold decrease 2.2, Anova P = 0.0094). This 

reduction may be important, since its loss in the adhesive fraction of the S100P-

overexpressing cells may explain the reduction in focal adhesions observed using 

immunofluorescence. Finally the membrane glycoprotein Thy-1 (THY1), a membrane 

integrin-interacting protein, also showed a two-fold reduction (fold decrease 2.0, Anova P = 

0.003). Like many of the proteins in this list, a reduction in this protein has been associated 

with cancer progression [278].  

 As a final observation of this dataset, it is worth commenting on the absence of 

what would be considered to be true adhesion proteins, with the exception of Integrin 

alpha-5. However, alterations in proteins which have never been linked to S100P were 

observed in this sheared residue. It is possible that they may be linked by signalling 

pathways and cause the observed alterations in cell dynamics and loss of cellular adhesion. 
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Up-regulated proteins in S100P-induced HeLa A3 cell residues 
 

Protein / Gene name  
 

UniProt 
ID 

Fold 
Change 

up 

Cellular 
Location 

Adhesome 
protein 

nucleolin P19338 3.2 Nucleus No 

nucleophosmin (nucleolar phosphoprotein B23, 
numatrin) 

P06748 3.0 Nucleus No 

IQ motif containing GTPase activating protein 1 P46940 2.8 Cytoplasm Yes 

DEK proto-oncogene P35659 2.8 Nucleus No 

interleukin enhancer binding factor 2 Q12905 2.8 Nucleus No 

histone cluster 1, H1e P10412 2.8 Nucleus No 

signal recognition particle 14kDa (homologous 
Alu RNA binding protein) 

P37108 2.6 Cytoplasm No 

growth differentiation factor 15 Q99988 2.5 
Extracellular 

Space 
Indirect Signalling 

nascent polypeptide-associated complex alpha 
subunit 

E9PAV3 2.4 Cytoplasm 
Possible 

interaction 

high mobility group box 2 P26583 2.3 Nucleus No 

Y box binding protein 1 P67809 2.2 Nucleus No 

 

Down-regulated proteins in S100P-induced HeLa A3 cell residues 
 

Protein / Gene name  
 

UniProt 
ID 

Fold 
Change 
down 

Cellular 
Location 

Adhesome 
protein 

collagen, type XII, alpha 1 Q99715 
3.4 

Extracellular 
Space 

Yes 

fibrillin 1 P35555 
2.7 

Extracellular 
Space 

Yes 

milk fat globule-EGF factor 8 protein Q08431 
2.6 

Extracellular 
Space 

Indirect Signalling 

ATPase, Na+/K+ transporting, alpha 1 
polypeptide 

P05023 
2.5 

Plasma 
Membrane 

No 

microfibrillar-associated protein 2 P55001 
2.4 

Extracellular 
Space 

Indirect Signalling 

transforming growth factor, beta-induced, 68kDa Q15582 
2.2 

Extracellular 
Space 

Indirect Signalling 

angiopoietin 1 Q15389 
2.2 

Extracellular 
Space 

Indirect Signalling 

integrin, alpha 5 (fibronectin receptor, alpha 
polypeptide) 

P08648 
2.2 

Plasma 
Membrane 

Yes 

solute carrier family 7 (amino acid transporter 
light chain, L system), member 5 

Q01650 
2.1 

Plasma 
Membrane 

No 

Thy-1 cell surface antigen P04216 
2.0 

Plasma 
Membrane 

Possible 
interaction 

 

Table 4.5. Comparative mass spectrometry of residues from hydrodynamically-sheared 

S100P-overexpressing HeLa A3 cells. The fold change in protein levels between control, 

uninduced and S100P-induced, HeLa A3 hydrodynamically-sheared residues together with 

the number of unique peptides used to identify each particular protein during LC-MS 

analysis are shown. Filter aided sample preparation (FASP) to exchange the SDS for urea 
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was used before LC-MS. The induced cells were exposed to doxycyclin for 48 hours prior to 

the experiment. For inclusion the fold change had to be greater than two, at least two 

unique peptides used for protein determination and P < 0.05 for each protein selected, 

using Anova for a total of 213 proteins identified. The number of samples used for analysis, 

n = 4. QIAGEN’S Ingenuity Pathway Analysis was used for determining the cellular 

localisation of each protein. The proteins “adhesome” status was determined using the 

corresponding Uniprot entry. 

 

4.2.2.5 Cellular distribution of IQGAP1 

Mass spectrometric analysis of hydrodynamically-sheared residues from S100P-

overexpressing and control, uninduced HeLa A3 cells showed a 2.8-fold increase in the 

abundance of IQ motif-containing GTPase activating protein 1 (IQGAP1) in the S100P-

overexpressing sheared cell residue (Table 4.4). IQGAP1 is an important scaffold protein 

involved in a wide range of cellular processes and its expression and cellular localisation 

have been linked to cancer progression. Since IQGAP1 did not show any alteration in 

abundance due to S100P-overexpression in the whole-cell mass spectrometric results 

(Table 4.1), it was probably relocated to the cell- extracellular matrix adhesome of the cell 

in the S100P-overexpression cells. Therefore, in order to ascertain if this were correct, 

immunofluorescence staining for IQGAP1 was carried out on S100P-induced HeLa A3 cells. 

In control, uninduced HeLa A3 cells, the distribution of IQGAP1 staining was primarily 

perinuclear and cytoskeletal (Figure 4.11A,B). In comparison S100P-overexpressing HeLa A3 

cells showed no perinuclear staining and substantially reduced cytoskeletal staining (Figure 

4.11C, D). The S100P-overexpressing cells also showed more uniform cytosolic staining with 

scattered stained foci suggesting that there was a substantial redistribution of IQGAP1 due 

to the overexpression of S100P, some of which was perhaps relocated to the focal 

adhesions. However, it was not possible to determine whether this redistribution also 

occurred in IQGAP1-immunofluorescent staining of hydrodynamically-sheared cell residues. 
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Figure 4.11. Effect of S100P-overexpression on the cellular localisation of IQGAP1. Cells 

were fixed with 4% (w/v) paraformaldehyde followed by permeabilization using 1% (w/v) 

Triton X-100 in PBS. HeLa A3 cells were immunofluorescently stained for IQGAP1 (green). 

Control, uninduced HeLa A3 cells (A,B) show strong filamental cytoskeleton staining (green 

arrows) and perinuclear staining for IQGAP1. S100P-overexpressing cells (C,D) in 

comparison, show substantially diminished filamental staining, more cytosolic and punctate 

staining and no perinuclear staining for IQGAP1. White bar = 100μm. 

 

4.2.2.6 Protein distribution based on normalised abundance 

Due to the uniqueness of the isolation method of the adhesome fraction and the complex 

sample preparation, it was critical to know if the proteins and their relative abundance 

were generally constant between hydrodynamically-sheared residues from uninduced and 

S100P-induced HeLa A3 cells. Although alterations in the abundance of some proteins was 

to be expected, in general the adhesome of both the uninduced control and S100P-induced 

cell residue should be similar in the proteins present and their abundance. Figure 4.12 

shows the Log10 of protein abundance for all 525 proteins present in each of the sheared 

residues. These abundance values had been normalised using the Progenesis program; 
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however, due to careful preparation during the initial sample collection, this normalisation 

change was extremely small. It can be observed that the distribution of all proteins from 

the sheared residues of both the control, uninduced and S100P-induced HeLa A3 cells 

followed a similar trend. This indicated that the two sheared residues were relatively 

similar in overall protein composition and abundance. This result along with the ion 

chromatograms shown in Figure 4.10 suggested that the method of hydrodynamic shearing 

followed by FASP sample preparation for comparative adhesome proteomics is a viable 

technique. 

 

 

Figure 4.12. The Log10 of the normalised protein abundance plotted for each protein 

present in the hydrodynamically-sheared fraction. Full list of normalised Progenesis 

proteins from hydrodynamically-sheared control, uninduced and S100P-induced HeLa A3 

cells is shown. Protein distribution is consistent between the two isolates indicating sample 

preparation has conserved the majority of proteins between both of the samples. Total 

proteins = 525. 
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4.3 Discussion 

As can be seen in Table 4.1 only a very small number of proteins had their abundance 

significantly altered as a result of 48 hours of S100P overexpression in HeLa A3 cells, when 

determined by mass spectrometry of whole cells. This may suggest that any of the 

alterations in cellular properties previously seen in S100P-overexpressing HeLa A3 cells 

(changes in adhesion, migration and invasion) are not due to major changes in protein 

expression, but instead are likely to be due to more mechanistic signalling-based 

alterations. However, it is also worth noting that the total number of proteins obtained 

from whole cell mass spectrometry of the HeLa A3 cells was considerably lower than that 

of previous studies. Only 1227 proteins in total were identified in this thesis, in comparison 

with another study which also used HeLa cells and showed 10255 different proteins 

encoded by 9207 human genes [279]. It is difficult to determine with certainty why this is 

the case; however, in that study every effort was made to try and isolate the maximum 

number of proteins with the abundance of each being of secondary importance. With 

single pass unlabelled mass spectrometry the total number of identified proteins will be 

lower, but the proteins observed will be in a larger abundance and as such, any changes 

that are present due to S100P overexpression can be considered to have a greater 

potential for causing a biological effect. None of the proteins identified in whole cells which 

were altered in abundance due to overexpression of S100P were focal adhesion or integrin 

proteins; although several of them were linked to adhesion and cancer progression. In 

particular, both PEG10 and endoglin are closely linked to the TGFβ pathway and 

programmed cell death protein 4 acts as a tumour suppressor [256, 258]. Of the two of 

these, endoglin is of particular interest, since alterations in its expression have been linked 

to cancer progression and cell migration [260, 280, 281]. With the relatively high diversity 

in the function of proteins which change in abundance, it may be that the effect of S100P 

overexpression on the cell is more substantial than just on the previously described 

breakdown of filamental NMIIA.  
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4.3.1 Endoglin expression and effect 

Endoglin is a homodimeric membrane glycoprotein which interacts with the TGFβ receptor 

complex. Binding between endoglin and TGFβ receptor 1, 2 and 3 has been shown, 

although there is no direct interaction with the TGF-β ligand. Through binding to TGFβ 

receptor 2, endoglin activates the cytoplasmic kinase activity of the receptor, resulting in 

the subsequent phosphorylation of TGFβ receptor 1, which then, in turn, interacts with a 

wide range of downstream signalling proteins including SMADs. However, the exact 

manner in which endoglin contributes to the activity of the TGFβ receptors and the related 

downstream pathways are still not fully understood. Upon TGFβ1 binding to the TGFβ 

receptor, the phosphorylation state of endoglin is reduced [281, 282]. When 

overexpression studies were carried out on endoglin, it was shown that the normal effect 

of TGFβ1 binding to its receptor was substantially reduced in the endoglin-overexpressing 

cells. This reduced binding of TGFβ1 to its receptor resulted in increased cell proliferation 

and an increase in cellular migration [282, 283]. However, recently the reverse of this has 

also been shown where overexpression of endoglin results in a decrease in cellular 

migration and invasion [284-286]. Endoglin is also reported to be important in 

angiogenesis, since in endoglin-null mice all endoglin knocked down embryos died from 

defects in vascular development [281, 287]. Furthermore, when tissues were undergoing 

angiogenesis, they immunohistochemically stained strongly for endoglin compared to 

adjacent tissues. Thus endoglin probably acts to promote proliferation, migration and 

angiogenesis through its interactions with TGFβ receptors. In contrast, other studies 

looking at possible effects of endoglin on cellular adhesion showed this effect was 

independent of TGFβ [288]. Moreover, these studies showed that the overexpression of 

endoglin was associated with a reduction in zyxin, an important focal adhesion protein, via 

a direct interaction. This interaction also resulted in a loss of the zyxin-interacting proteins 

p130cas and CrkII. The result of these pathway alterations was a reduction in cellular 

migration [260]. 

 In the context of cancer progression, the role of endoglin is apparently 

contradictory in several studies [280, 284, 289, 290]. In all cases, however, the studies 

agreed that endoglin has a significant effect on tumour growth, cellular migration and 

ultimately cancer metastasis; however, the direction of this effect is controversial. It has 

been suggested that these contradictory findings may be due to the action of TGFβ as a 

tumour suppressor in the pre-metastatic tumours, whereas it acts as a tumour enhancer in 
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advanced metastatic cancers. In line with the latter effect, the abundance of endoglin in 

blood plasma has been strongly associated with cancer progression, with high levels of 

soluble endoglin being linked to an increased chance of metastasis in several cancers [280, 

291]. 

In the HeLa A3 cell system, a 2-fold reduction in the abundance of endoglin was observed in 

the S100P-overexpressing HeLa A3 cells determined by whole-cell mass spectrometry 

(Table 4.1) and validated using Western blotting. The exact manner in which S100P could 

cause this reduction is not clear, and it would require further work to try and determine 

this link. However, in order to ascertain the effect the reduction in endoglin was having on 

the properties of S100P-overexpressing HeLa A3 cells, siRNA knock-downs were carried 

out. These knock-downs reduced the levels of endoglin present in HeLa A3 cells by up to 30 

fold. This reduction in endoglin resulted in a decrease in the rate of cell adhesion and a 

decrease in cell migration (Figure 5.6). The reduction in cell adhesion observed here 

parallels studies which suggest that a reduction in endoglin promotes an increased 

metastatic phenotype, whereas the decrease in cell migration seen here would seem to 

suggest the reverse. Ultimately, however, these small alterations in cell adhesion and 

migration are the result of a large 30-fold change in endoglin in the HeLa A3 cells, whereas 

S100P-overexpression produces only a 2 - 2.5 fold reduction in endoglin. As a result it is 

unlikely that the reduction in endoglin in S100P-overexpressing HeLa A3 cells causes a 

significant impact on cell adhesion and migration in this system. However, this is not to say 

that the reduction in endoglin is not having any effect on the cell. 

 

4.3.2 Adhesome analysis 

In order to try and determine the effect of S100P overexpression on the HeLa A3 cell-

extracellular matrix adhesome, a range of different methods were attempted. Of these 

only two provided reproducible results. The first was the addition of a PBS-Triton X-100 

solution to remove the cytosolic and detergent-soluble parts of the cell, in principle leaving 

only the cytoskeleton and adhesome proteins remaining on the tissue culture dish. The 

second method involved hydrodynamically shearing cells from the tissue culture dish using 

a focused water jet, leaving the cell-extracellular matrix proteins remaining on the dish.  
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4.3.2.1 Triton X-100 treatment vs. hydrodynamic shearing 

When utilizing both of these techniques to observe the abundance of key focal adhesion 

proteins via Western blots a discrepancy arose. Triton X-100-treated cells showed a 

significant reduction in the structural focal adhesion proteins due to S100P overexpression, 

whereas the hydrodynamically-sheared samples showed no significant alteration in the 

abundance of both the structural and signalling-based focal adhesion proteins. This 

discrepancy was resolved by treating the hydrodynamically-sheared residue from the HeLa 

A3 cells with the PBS-Triton X-100 solution. Figure 4.4 shows that when HeLa A3 

hydrodynamically-sheared cellular residues remaining on the dish were treated with Triton 

X-100 in PBS a substantial and significant reduction in talin (10 fold decrease) and vinculin 

(2.2 fold decrease) was observed. Moreover similar to cell samples treated only with Triton 

X-100, these sheared and Triton X-100-treated residues showed no bands corresponding to 

paxillin or FAK upon Western blotting. These results may suggest that the Triton X-100 

solution is removing more weakly-bound focal adhesion proteins including removing 

weakly bound signalling-based complexes, leaving only the tightly-bound mature focal 

adhesions. Thus S100P overexpression in HeLa A3 cells may indeed have an effect, not on 

the abundance of focal adhesion proteins in the adhesome, but on a reduction in their 

strength of binding as complexes in the focal adhesions. Since there is a larger reduction in 

the abundance of talin compared to vinculin, this interpretation has some validity, since 

there is a greater proportion of talin in immature, nascent adhesions compared to vinculin, 

the latter accumulates later as focal adhesions mature [42]. Thus, the number of immature 

focal adhesions would be similar in S100P-induced and non-induced cells, but the number 

of mature focal adhesions would decrease.  

 The above hypothesis is in line with that discussed in Section 3.4, whereby loss of 

NMIIA-mediated tension due to S100P may result in a reduction in maturation of focal 

adhesions. These less mature, nascent adhesion sites may be more susceptible to non-ionic 

detergents, due to their overall size being substantially smaller than that of mature focal 

adhesions. Another explanation is that nascent adhesions are made up of very few integrin 

proteins and have limited intracellular focal adhesion protein cross-linking [292]. In 

contrast, mature focal adhesions have high integrin clustering and strong intracellular focal 

adhesion protein cross-linking [293]. As such, when the plasma membrane is dissolved by 

Triton X-100, there is very little protein attaching nascent adhesions to the tissue culture 

dish and holding them together structurally. Subsequent PBS washing steps may, therefore, 
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dislodge the weakly-bound nascent adhesions, since they now lack plasma membrane 

support leaving only the mature focal adhesions attached to the dish. Further evidence to 

support this idea comes from the immunofluorescent staining of hydrodynamically-sheared 

HeLa A3 cells (Figure 4.5). As part of the immunofluorescence protocol, Triton X-100 was 

used to treat these hydrodynamically-sheared residues. Thus in this experiment the 

abundance of focal adhesions stained for immunoreactive vinculin was significantly lower 

in the hydrodynamically-sheared, Triton X-100-treated residues of S100P-overexpressing 

HeLa A3 cells compared to those residues from control, uninduced cells. Once again the 

addition of Triton X-100 may have resulted in some of the more weakly bound focal 

adhesion proteins in the immature focal adhesions being removed. A repeat of the 

immunofluorescence experiment using a protocol containing no Triton X-100 would be a 

method of ascertaining if this were the case. However, all attempts to do so during this 

study have failed to produce clear immunoreactive foci for vinculin in these samples. 

 These results, while providing evidence supporting the hypothesis of a decrease in 

maturation of focal adhesions upon induction of S100P, also highlights that the use of 

Triton X-100-based solutions to isolate the entire cell-extracellular matrix adhesome of cells 

is too drastic compared to procedures using hydrodynamic shearing. The use of Triton X-

100 also prevents samples from being analysed using routine mass spectrometry without 

further purification steps, since Triton X-100, like SDS, can cause problems during the trap 

column and size exclusion column steps. In this way hydrodynamic-shearing is both more 

effective in preserving what are believed to be adhesome proteins and more convenient 

for routine mass spectrometric analysis than the use of Triton X-100. 

  

4.3.2.2 Viability of mass spectrometric analysis of hydrodynamically-sheared 

HeLa A3 residues 

 Mass spectrometric analysis of the hydrodynamically-sheared HeLa A3 cell residues further 

validates the Western blots of the residues, since no change is seen in the abundance of 

talin and vinculin. However, the absence of paxillin and FAK from the mass spectrometry 

results is somewhat puzzling, even though these proteins are detected in Western blots of 

the same samples. It is possible that peptides with very low abundance have become 

obscured by a very high number of peptides detected from more abundant proteins in the 

sample. There are methods of removing these high abundance peptides, however, their 
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removal reduces the total amount of protein remaining in the sample and since the 

hydrodynamically-sheared residues contain little protein to begin with, it was decided that 

this was not a viable option in this study.  

 Normalisation of the hydrodynamically-sheared samples was also somewhat 

difficult, since it was not possible to determine accurately the total amount of protein 

present in the sheared samples. Instead three methods were used to try and ensure the 

data was normalised as accurately as possible. Firstly, the samples were normalised against 

the number of cells on the dishes that were sheared. Secondly, following comparative 

analysis of the S100P-overexpressing and control, uninduced samples using the Progenesis 

programme, an estimation of differences in total protein content between the two sheared 

samples was carried out based on the overall total peak height of the polypeptides in the 

peak ion chromatograms. In the case of the experiment conducted in Table 4.4, this 

difference was extremely small suggesting normalisation by cell number despite 

subsequent sample processing had been accurate. Thirdly the distribution of all proteins 

based upon their abundance was checked in both S100P-induced and uninduced samples 

to ensure that they were relatively similar (Figure 4.9). If the two samples showed 

substantially different patterns of protein abundance, they would be considered to be 

contaminated and would not be analysed in further detail. 

 

4.3.2.3 The effect of S100P-overexpression on HeLa A3 cell adhesome 

Utilizing the hydrodynamic-shearing method, it was possible to ascertain that there was no 

significant difference in the abundance of focal adhesion proteins in the adhesome of 

S100P-overexpressing HeLa A3 cells compared to control, uninduced cells, when analysed 

by both Western blotting and mass spectrometry. However, twelve proteins were 

significantly altered and these alterations were considered not to be due to contamination. 

Amongst these there was a 2-fold decrease in the abundance of integrin alpha-5, a 

fibronectin-binding integrin subunit. The fibronectin-binding integrin, alpha-5 is frequently 

unregulated in cancer and its upregulation has been reported to be important for 

metastasis of several different cancers. However, there have also been studies suggesting 

that a reduction in integrin alpha-5 results in a decrease in cell adhesion, which may 

actually promote a more metastatic phenotype [294, 295]. This reduction in the levels of 

integrin alpha-5 is likely to have a substantial effect on the adhesive properties of the 
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S100P-overexpressing cells. Other adhesion-related proteins such as transforming growth 

factor-beta-induced protein ig-h3 (TGFβI) were also down regulated. Since one of the 

functions of TGFβI is the inhibition of cell-extracellular matrix adhesion via TGFβ-mediated 

signalling linked to a EMT, it is somewhat puzzling that it is down-regulated when S100P is 

overexpressed in the HeLa A3 cells. Down regulation of this protein has been shown to 

promote increased cell adhesion, which is the opposite of what is observed in adhesion-

based assays on HeLa A3 cells due to S100P overexpression (Figure 3.4 and 3.5). However, 

more recent studies have shown a decrease in TGFβI results in a poor prognosis in cancer 

and high TGFβI levels were associated with increased overall survival in patients [276].  

As described in Section 2.2.4.3, many of the other observed protein alterations are 

also associated with cancer progression, the most notable is the complex scaffold protein 

IQGAP1. Although many of the proteins in the list are associated with either cell adhesion 

or cancer progression, with the exception of integrin alpha-5 and IQGAP1, none of them 

interact directly with the assembly of connections between the cell-extracellular matrix or 

maturation of focal adhesion complexes. This conclusion provides further evidence to 

support the idea that the alterations observed in cell adhesion due to overexpression of 

S100P are signalling based, since even at the cell-extracellular matrix interface, there are 

very few changes in the abundance of focal adhesion proteins. This observation in no way 

detracts from the importance of the changes obtained from the mass spectrometric 

analysis of differences in the adhesomes between S100P-induced and uninduced HeLa A3 

cells, some of which are likely to contribute to an increased metastatic phenotype due to 

overexpression of S100P. 

 

4.3.2.4 IQGAP1 expression and effect 

IQ motif-containing GTPase activating protein 1 (IQGAP1) is a 190kDa cytoplasmic scaffold 

protein, which acts as an important mediator of cell properties including cell–cell adhesion, 

cell-extracellular matrix adhesion and cellular migration via its reorganization of the actin 

and tubulin cytoskeletons. IQGAP1 accumulates at the leading edge of migrating cells and 

regulates actin assembly [296]. As well as these structural roles controlling cell dynamics, 

IQGAP1 has also been shown to be an essential regulator of the Wnt signalling and MAPK 

pathways, with a result that it has an effect on cell proliferation and cell fate [217, 297]. 

Biochemically, IQGAP has a vast array of binding partners and protein interactions (more 
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than 50) making it one of the most complicated scaffold proteins in mammalian systems 

[298]. Structurally IQGAP1 is complex with six distinct protein-interacting domains. The first 

is an N-terminal calponin homology (CH) domain which regulates the actin cytoskeleton via 

binding to Wiskott–Aldrich syndrome protein (N-WASp), as well as directly interacting with 

F-actin, promoting increased actin polymerization. The second domain is a coiled coil (CC) 

region which binds ezrin, an important protein involved in cell migration and membrane-

associated cell adhesion. Crucially it has been shown that ezrin can interact directly with 

S100P. The third domain in IQGAP1 is a tryptophan-tryptophan (WW) domain which is able 

to bind Erk1 and 2. The fourth domain is the central isoleucine-glutamine containing (IQ) 

domain which is able to bind a wide range of proteins including: S100P, S100B, Rac1, Mek1, 

PIPK, myosin essential light chains, EGFR, HER2 and many more. The binding of S100P and 

S100B to IQGAP1 has been shown to be calcium-dependent and it is thought that this 

binding results in a reduction in IQGAP1 activity, although how this reduction is achieved is 

still not fully understood. The fifth domain of IQGAP1 contains a GRD domain adjacent to 

the IQ domain and binds small GTPases such as Rac1 and Cdc42. The final sixth C-terminal 

domain is a RGCT domain which interacts with the cell-cell junction proteins β-catenin and 

E-cadherin, as well as several microtubule-binding proteins and PIP2 [214, 215]. 

 IQGAP1 has been shown to be associated with cancer progression in a number of 

different cancers and it has been suggested that it is a critical component in the metastatic 

cascade [218]. Moreover, there is increased IQGAP1 expression and significantly altered 

cellular localisation in samples of tumour tissues, as well as in several different metastatic 

cancer cell lines [299-301]. This increased expression of IQGAP1 is correlated with a poor 

patient prognosis in colon, squamous cell, breast, liver, gastric, lung, and ovarian cancers 

[218, 219]. Since IQGAP1 plays an important role in a wide array of cellular pathways 

including adhesion and migratory-based networks, it was important to try and determine 

what effect its increase in the hydrodynamically-sheared fraction of S100P overexpressing 

HeLa A3 cells would be on the cells (Table 4.3). Since there was no change in levels of 

IQGAP1 in the whole-cell mass spectrometric results, it is likely that it was modified and/or 

relocalised in the S100P-overexpressing cells.  

The immunostaining results for IQGAP1 have given some clues as to its role, since 

there were substantial changes in the location of immunostaining for IQGAP1 in the S100P-

induced HeLa A3 cells (Figure 5.7). One major change was the absence of perinuclear 

staining in S100P-overexpressing HeLa A3 cells compared to substantial staining in the 
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control, uninduced cells. The perinuclear staining is likely to be due to IQGAP1 occurring in 

the endoplasmic reticulum, since previous studies have shown this to be the case [302, 

303]. It has been suggested that the role of perinuclear IQGAP1 may be to tether localised 

microtubules to perinuclear actin, as well as influencing protein synthesis via interactions 

with the nuclear translocation complex [304]. IQGAP1 binding may additionally act to 

regulate the nuclear/microtubule organising centre, which then results in the stabilisation 

of nuclear positioning for cell polarization during migration of the cell [305]. Thus S100P 

may be causing a reduction in perinuclear staining of IQGAP1 due to a breakdown in 

perinuclear actin. S100P-overexpressing HeLa A3 cells also showed diminished 

immunostaining of the cytoskeleton for IQGAP1, which is also likely to be due to the 

breakdown of the actin filaments. The effect of this loss in actin bound-IQGAP1 is difficult 

to envisage without further experimental data, given the complexity of this protein. 

However, since increased levels of IQGAP1 are detected in the adhesome of S100P-

overexpressing HeLa A3 cells using mass spectrometry (Section 4.2.2.4.3), it is logical to 

assume that the cytoskeletal breakdown due to S100P results in the re-localisation of 

IQGAP1 from actin filaments to the cell-extracellular matrix interface. Indeed, IQGAP1 has 

been shown to interact with β1 integrins and Rac1, as well as several other cell surface 

receptors such as EGFR. Finally the increase in general cytoplasmic fluorescence in S100P-

induced HeLa A3 cells may be due to its liberation from actin-containing filaments and 

perhaps its interaction with the large excess of cytoplasmic S100P produced in these cells 

[306, 307]. 

Mechanistically IQGAP1 has been shown to be important in Rac1-mediated directional cell 

migration via its direct binding to β1 integrins resulting in inhibition of Rac1 activity [306]. 

As described in detail in Section 1.3.2.3.1, inhibition of Rac1 activity would result in a 

decrease in focal adhesion formation/maturation and alterations in cell migration. 

Furthermore, in the context of adhesion, it has been reported that a loss in binding of 

IQGAP1 to F-actin due to disruption of the actin filaments results in inhibition of the 

stabilisation of binding of actin to integrin β1 [307] which, in turn, is likely to inhibit the 

formation of mature focal adhesions and hence substantially reduce cellular adhesion. All 

of this would be consistent with the observation of enhanced immunofluorescent staining 

for IQGAP1 in punctate structures, presumably integrin-containing focal adhesions in the 

S100P-overexpressing HeLa A3 cells. The consequences of the cytoplasmic IQGAP1, either 

unbound or bound to S100P in this cell system are unknown. 
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4.4 Conclusions  

In this chapter the effects of S100P-overexpression on the whole-cell proteome of HeLa A3 

cells 48 hours after S100P-induction was compared to the proteome of control, uninduced 

cells. Very few alterations in protein levels were found in this whole-cell proteome 

between the S100P-induced and uninduced HeLa A3 samples, with no changes being 

observed in focal adhesion or integrin proteins. However, some changes, such as a 

reduction in endoglin warranted further investigation based on its potential impact on cell 

adhesion. To this end, it was confirmed by Western blotting that S100P overexpression 

causes a decrease in endoglin expression in HeLa A3 cells consistent with the mass 

spectrometric results observed in chapter 4. When endoglin is knocked down, a reduction 

in cell adhesion is observed, however, these knock-downs also result in a decrease in cell 

migration, making the biological effect of reduced endoglin due to S100P overexpression 

somewhat unclear. The adhesome of HeLa A3 cells was also examined to identify protein 

alterations at the cell-extracellular matrix interface. Using Triton X-100 in PBS it was found 

that the application of a non-ionic detergent removed weakly-bound focal adhesion 

proteins resulting in a significant reduction in the levels of structural adhesion proteins 

present in S100P-induced HeLa A3 cells, compared to control cells. This method, however, 

resulted in a loss of several important focal adhesion proteins and as such, a second 

method was developed that utilized hydrodynamic-shearing to isolate the full adhesome 

fraction. Using this method, mass spectrometric analysis of hydrodynamically-sheared HeLa 

A3 cells showed that there were several alterations in this fraction, although none of them 

were core focal adhesion proteins. This result suggests that the changes observed in the 

adhesive properties of S100P-overexpressing HeLa A3 cells are largely due to signalling 

alterations rather than a reduction in, or addition of, specific proteins found in the cell 

adhesome. However, similar to the whole-cell mass spectrometry, some of the proteins 

identified in the adhesome of the cells did show substantial alterations in abundance due 

to S100P-overexpression. Several of the proteins identified have reported to be involved in 

cell adhesion, such as IQGAP1 and, as such, warrant further investigation. To this end it was 

shown that the cellular location of IQGAP1 upon S100P induction changed, showing a 

substantial reduction in perinuclear staining of IQGAP1 and a reduction in the intensity of 

cytoskeletal staining, as well as an apparent increase in staining of punctate structures. 

Utilizing both the Triton X-100 and hydrodynamic-shearing methods in Western blots and 

immunofluorescence, it was possible to ascertain that indeed Triton X-100 removed 

weakly-bound focal adhesions. These results provide further evidence to suggest that 
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S100P-overexpressing HeLa A3 cells have substantially less strongly-bound mature focal 

adhesions than uninduced, control cells. 
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Chapter 5  

 

General Discussion 

 

The work presented in this thesis examined, in detail, the effect of overexpression of S100P 

on cells and, in particular, the effect of S100P on cellular adhesion. Since S100P 

overexpression has been associated with a poor patient prognosis in a number of cancers, a 

greater understanding of the way in which this protein affects cancerous cells could lead to 

the identification of drug targets in these dangerous S100P-positive cancers. 

 Within the S100P-inducible HeLa A3 cell system, overexpression of S100P was 

shown to be associated with a significant decrease in the rate and strength of cell-

extracellular matrix adhesion, as well as an increase in cell migration and cell invasion. 

These alterations were shown to be dependent, in whole or in part, on the presence of 

NMIIA and to be associated with an alteration in the distribution and abundance of focal 

adhesion sites, although there were no alterations in the total whole-cell abundance of 

specific focal adhesion or integrin proteins. In comparative proteomic analysis of S100P-

overexpressing whole-HeLa A3 cells and uninduced, control cells, several proteins were 

identified that had their abundance significantly altered upon overexpression of S100P. 

Proteomic analysis of the adhesome of HeLa A3 cells isolated by hydrodynamic shearing 

was then assessed. Similar to the proteome of the whole cell, the protein alterations 

identified in the adhesome due to overexpression of S100P warrant further investigation, 

particularly that due to IQGAP1. The effect of S100P on EMT was also investigated and 

showed that S100P-overexpression does not induce a standard EMT response in cells. 

Finally the effect of S100P-overexpression on the modification and distribution of several 

important signalling proteins was established. 
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Pulling together this data, many of the results form curiosities relating to the 

possible effect of S100P-overexpression in HeLa A3 cells. However, for most of these 

results including the change in EMT-related proteins, redistribution of IQGAP1, effect of 

endoglin and the redistribution of S100P to the nucleus in S100P overexpressing cells, it is 

difficult to speculate on the effect of these changes beyond what is discussed in their 

respective sections. However, when the results directly related to cell-extracellular matrix 

adhesion are combined, they can give a plausible explanation as to some of the effects of 

S100P-overexpression in HeLa A3 cells. 

  

5.1 The role of S100P in maturation of focal adhesions  

Using S100P-inducible HeLa A3 cells, it was shown that S100P-overexpression results in a 

reduction in both the rate and strength of cell adhesion. It was then shown that 

overexpression of S100P in HeLa A3 cells caused depolymerisation of NMIIA filaments, but 

no significant reduction in the total abundance of NMIIA within the cell. Crucially the 

reduction in cell adhesion and the breakdown of NMIIA filaments were linked, since when 

S100P was induced in the NMIIA negative Cos7-S10 cell system, no change was observed in 

the adhesive characteristics of the cells. The number of immunofluorescently-stained focal 

adhesions was also reduced in S100P-overexpressing HeLa A3 cells, compared to 

uninduced, control cells. Similar to the change in adhesive characteristics, this alteration 

was also shown to be dependent on the loss of NMIIA filaments, since this result was not 

observed in the S100P-induced Cos7-S10 cells. Since NMIIA is a critical component of stress 

fibres, the reduction in filamental NMIIA would, most likely cause a reduction in cell 

tension; indeed this has been shown in a number of studies in other systems [239]. 

Moreover, it has been previously reported that a reduction in stress fibre-mediated tension 

in epithelial cell systems results in a reduction in phosphorylation of focal adhesion 

proteins [99]. This relationship was shown to be the case in this system, since S100P-

overexpressing HeLa A3 cells showed a significant reduction in the relative levels of 

phosphorylation at FAK Y397, paxillin Y118 and at paxillin Y31. A number of studies have 

shown that a reduction in phosphorylation at these sites is associated with a reduction in 

the recruitment of several important focal adhesion proteins including vinculin and tensin. 

This reduction in phosphorylation then reportedly results in a significant reduction in the 

maturation rate of affected focal adhesions [99, 308]. 
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Using the HeLa A3 cell system, it was shown in Chapter 4 that there was a 

reduction in the abundance of mature focal adhesions in the S100P overexpressing cells. 

This reduction in mature focal adhesions was suggested because of the manner in which 

the hydrodynamic shearing and Triton X-100 treatment affected the composition of the 

HeLa A3 cell’s adhesome. The results from Western blots of hydrodynamically-sheared 

HeLa A3 cell residues showed a reduction in abundance of vinculin and talin when residues 

were treated with Triton X-100. This was consistent with the immunofluorescent results, 

however, no changes were observed in the absence of Triton X-100 treatment. Immature 

nascent adhesions consist of a small number of integrin proteins, in contrast, mature focal 

adhesions have high levels of integrin clustering and strong intracellular cross-linking of 

proteins [42, 110]. Thus, when the plasma membrane is dissolved by Triton X-100, the 

smaller number of uncrosslinked complexes are likely to be removed, whereas those that 

are strongly cross-linked to the cytoskeleton and extracellular matrix remain attached to 

the dish. A reduction in the abundance of mature focal adhesions would, therefore, explain 

both the reduction in the number of observable focal adhesions during immunofluorescent 

staining, as well as the reduction in the adhesive characteristics of the HeLa A3 cells due to 

overexpression of S100P. A diagrammatic representation of this is shown in Figure 6.1. 

The reduction in the maturation of focal adhesions, as well as the total number of 

adhesion sites, may also be affected by the redistribution of IQGAP1. As shown in Chapter 

4, increased levels of IQGAP1 were detected in the adhesome of S100P-overexpressing 

HeLa A3 cells using mass spectrometry. Immunostaining for IQGAP1 showed that in control, 

uninduced cells it was located primarily in the cell perinuclear zone as well as in the 

cytoskeleton. In the S100P-overexpressing cells this changed to a more uniform cytosolic 

staining with reduced cytoskeletal and perinuclear IQGAP1 staining, but increased staining 

of punctate structures. Since S100P-overexpression breaks down the cytoskeleton of the 

cells it is reasonable to assume that the IQGAP1 bound to the cytoskeleton in control cells 

is released in the S100P-overexpressing cells and relocalises to the cell-extracellular matrix 

interface. It is possible that IQGAP1 then binds to β1 integrin and Rac1 complexes in the 

focal adhesions or potentially other transmembrane surface receptors [306]. The binding to 

β1 integrin and Rac1 could result in inhibition of Rac1 activity and a subsequent decrease in 

maturation of focal adhesions, which, in turn, would substantially reduce cellular adhesion 

[107, 124].  
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Figure 5.1. The effect of S100P-overexpression on cell-extracellular matrix adhesion. 

Upon induction of S100P in HeLa A3 cells NMIIA is depolymerised leading to reduced 

cellular tension which inhibits phosphorylation of FAK (Y397) and paxillin (Y118 and Y31). 

Reduced phosphorylation at these sites subsequently causes a reduction in the recruitment 

of focal adhesion proteins which leads to reduced maturation of focal adhesions. This 

reduction in focal adhesion maturation then leads to a decrease in cell-extracellular matrix 

adhesion. Dotted arrows indicate a possible secondary effect leading to inhibition of focal 

adhesion maturation via IQGAP1 relocalisation and inhibition of Rac1.  

 

5.2 The effect of S100P-overexpression in metastasis  

In this thesis it has been demonstrated that the overexpression of S100P results in a 

significant decrease in the maturation rate of focal adhesions, which leads to a subsequent 

reduction in the rate and strength of adhesion as well as an increase in migration and 

invasion in an S100P-inducible human epithelial cancer cell system.  The reduction in 

adhesion and increase in migration are consistent with the results obtained in S100A4 

permanently-overexpressing mouse/rat mammary [309, 310] and bladder [311] carcinoma 

cell lines as well as in S100P-overexpressing rat and human carcinoma cell lines [206]. Thus, 

the results obtained and conclusions drawn in this thesis are likely to reflect a universal 

mechanism for the action of S100 proteins in reducing cell adhesion and in acting to 

increase cell migration/invasion, the first and most important step in the process of 

metastasis. Overall, a clearer picture of the role of S100P in metastasis is emerging, which 

may lead to the development of anti-S100P therapeutic agents to treat S100P positive 

cancers. 

 

5.3 Further work 

In order to substantiate further the model proposed in Section 6.1, fluorescently tagged 

paxillin would need to be transfected into HeLa A3 cells. Confocal time lapse 

immunofluorescent microscopy could then be undertaken to visualise in real-time the 

changes in formation, maturation and degradation rates of focal adhesions upon induction 

of S100P. Alternatively total internal reflection fluorescence microscopy (TIRF) could be 
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utilized to observe the formation of nascent focal adhesions in cells. Immunofluorescent 

experiments could also be conducted looking at the distribution of other focal adhesion 

proteins involved in the later stages of adhesion maturation, one such example would be 

fluorescently-labelled tensin. Additionally, in order to determine the extent to which the 

reduction in filamental NMIIA affects cellular tension and rigidity, atomic force microscopy 

could be carried out. Using this technique it would be possible to quantify the change in 

tension, rigidity and cell adhesion between control, uninduced and S100P-overexpressing 

HeLa A3 cells. Several results from this study also warrant further experimentation, in 

particular quantitative analysis of immunofluorescently-stained focal adhesions with and 

without Triton X-100 treatment to confirm this treatment is causing a reduction in nascent 

adhesions. The effect of relocation of S100P to the nucleus upon overexpression also 

warrants further investigation as well as the curious re-localisation of IQGAP1 to the 

adhesome in S100P-overexpressing cells. Lastly it would be interesting to investigate if the 

proteome and adhesome of S100P-overexpressing HeLa A3 cells is significantly different at 

later time points after induction of S100P. These experiments may help to explain the 

unexpected results for certain EMT proteins seen after long term overexpression of S100P.  
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Appendices 

 

 
Appendix 1. Whole uncropped Western blot for S100P in HeLa A3 whole-cell lysates. 

Western blot of S100P expression in HeLa A3 cells 48 hour after addition of 5μg/ml 

doxycyclin. Twenty μg of protein was loaded per well on a 15% (w/v) polyacrylamide gel. 

Recombinant S100P bands show a slightly higher molecular weight due to the protein being 

His-tagged.  
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Whole-cell mass spectrometry of HeLa A3 cells 
 

Protein / gene name 
UniProt 

ID 
Location 

   

sulfide quinone reductase-like (yeast) Q9Y6N5 Cytoplasm 

basic leucine zipper and W2 domains 2 Q9Y6E2 Cytoplasm 

mitochondrial carrier 2 Q9Y6C9 Cytoplasm 

phosphoserine aminotransferase 1 Q9Y617 Cytoplasm 

signal recognition particle receptor, B subunit Q9Y5M8 Cytoplasm 

translocase of inner mitochondrial membrane 13 homolog 
(yeast) 

Q9Y5L4 Cytoplasm 

ubiquitin carboxyl-terminal hydrolase L5 Q9Y5K5 Cytoplasm 

SAMM50 sorting and assembly machinery component Q9Y512 Cytoplasm 

hypoxia up-regulated 1 Q9Y4L1 Cytoplasm 

ribosomal protein L36 Q9Y3U8 Cytoplasm 

RNA exonuclease 2 Q9Y3B8 Cytoplasm 

nitric oxide synthase interacting protein Q9Y314 Cytoplasm 

guanine deaminase Q9Y2T3 Cytoplasm 

glutathione S-transferase kappa 1 Q9Y2Q3 Cytoplasm 

developmentally regulated GTP binding protein 1 Q9Y295 Cytoplasm 

phenylalanyl-tRNA synthetase, alpha subunit Q9Y285 Cytoplasm 

voltage-dependent anion channel 3 Q9Y277 Cytoplasm 

nudC nuclear distribution protein Q9Y266 Cytoplasm 

eukaryotic translation initiation factor 3, subunit L Q9Y262 Cytoplasm 

dynamin 3 Q9UQ16 Cytoplasm 

NSFL1 (p97) cofactor (p47) Q9UNZ2 Cytoplasm 

WD repeat domain 3 Q9UNX4 Cytoplasm 

ribosomal protein L26-like 1 Q9UNX3 Cytoplasm 

proteasome (prosome, macropain) 26S subunit, non-
ATPase, 13 

Q9UNM6 Cytoplasm 

GTPase activating protein (SH3 domain) binding protein 2 Q9UN86 Cytoplasm 

sorting nexin 12 Q9UMY4 Cytoplasm 

coronin, actin binding protein, 1C Q9ULV4 Cytoplasm 

proteasome (prosome, macropain) activator subunit 2 
(PA28 beta) 

Q9UL46 Cytoplasm 

CDV3 homolog (mouse) Q9UKY7 Cytoplasm 

nudix (nucleoside diphosphate linked moiety X)-type motif 
5 

Q9UKK9 Cytoplasm 

MRT4 homolog, ribosome maturation factor Q9UKD2 Cytoplasm 

drebrin-like Q9UJU6 Cytoplasm 

solute carrier family 25 (aspartate/glutamate carrier), 
member 13 

Q9UJS0 Cytoplasm 

eukaryotic translation initiation factor 2B, subunit 4 delta, 
67kDa 

Q9UI10 Cytoplasm 

prefoldin subunit 2 Q9UHV9 Cytoplasm 

prenylcysteine oxidase 1 Q9UHG3 Cytoplasm 

septin 9 Q9UHD8 Cytoplasm 

ATP-binding cassette, sub-family F (GCN20), member 2 Q9UG63 Cytoplasm 

adducin 3 (gamma) Q9UEY8 Cytoplasm 

ubiquitin-like modifier activating enzyme 2 Q9UBT2 Cytoplasm 

DnaJ (Hsp40) homolog, subfamily B, member 11 Q9UBS4 Cytoplasm 

cathepsin Z Q9UBR2 Cytoplasm 

eukaryotic translation initiation factor 3, subunit K Q9UBQ5 Cytoplasm 
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ataxin 10 Q9UBB4 Cytoplasm 

leucyl-tRNA synthetase Q9P2J5 Cytoplasm 

mitochondrial ribosomal protein L15 Q9P015 Cytoplasm 

mitochondrial carrier 1 Q9NZJ7 Cytoplasm 

FAST kinase domains 2 Q9NYY8 Cytoplasm 

UDP-glucose glycoprotein glucosyltransferase 1 Q9NYU2 Cytoplasm 

tropomodulin 3 (ubiquitous) Q9NYL9 Cytoplasm 

dipeptidyl-peptidase 3 Q9NY33 Cytoplasm 

coiled-coil-helix-coiled-coil-helix domain containing 3 Q9NX63 Cytoplasm 

inositol monophosphatase domain containing 1 Q9NX62 Cytoplasm 

huntingtin interacting protein K Q9NX55 Cytoplasm 

ATPase family, AAA domain containing 3A Q9NVI7 Cytoplasm 

ubiquinol-cytochrome c reductase complex assembly 
factor 1 

Q9NVA1 Cytoplasm 

ethylmalonyl-CoA decarboxylase 1 Q9NTX5 Cytoplasm 

Obg-like ATPase 1 Q9NTK5 Cytoplasm 

autophagy related 3 Q9NT62 Cytoplasm 

phenylalanyl-tRNA synthetase, beta subunit Q9NSD9 Cytoplasm 

translocase of outer mitochondrial membrane 22 homolog 
(yeast) 

Q9NS69 Cytoplasm 

diablo, IAP-binding mitochondrial protein Q9NR28 Cytoplasm 

PDZ and LIM domain 7 (enigma) Q9NR12 Cytoplasm 

nitrilase family, member 2 Q9NQR4 Cytoplasm 

reticulon 4 Q9NQC3 Cytoplasm 

GrpE-like 1, mitochondrial (E. coli) Q9HAV7 Cytoplasm 

Sec61 alpha 2 subunit (S. cerevisiae) Q9H9S3 Cytoplasm 

methyltransferase like 7A Q9H8H3 Cytoplasm 

acyl-CoA dehydrogenase family, member 9 Q9H845 Cytoplasm 

dCTP pyrophosphatase 1 Q9H773 Cytoplasm 

transcription factor B2, mitochondrial Q9H5Q4 Cytoplasm 

EH-domain containing 1 Q9H4M9 Cytoplasm 

arginyl aminopeptidase (aminopeptidase B) Q9H4A4 Cytoplasm 

protein O-fucosyltransferase 1 Q9H488 Cytoplasm 

RAB1B, member RAS oncogene family Q9H0U4 Cytoplasm 

integrin-linked kinase-associated serine/threonine 
phosphatase 

Q9H0C8 Cytoplasm 

large 60S subunit nuclear export GTPase 1 Q9H089 Cytoplasm 

transmembrane protein 126A Q9H061 Cytoplasm 

ubiquitin-like modifier activating enzyme 5 Q9GZZ9 Cytoplasm 

N(alpha)-acetyltransferase 50, NatE catalytic subunit Q9GZZ1 Cytoplasm 

WD repeat domain 12 Q9GZL7 Cytoplasm 

apoptosis inhibitor 5 Q9BZZ5 Cytoplasm 

eukaryotic translation initiation factor 2A, 65kDa Q9BY44 Cytoplasm 

sideroflexin 3 Q9BWM7 Cytoplasm 

acetyl-CoA acetyltransferase 2 Q9BWD1 Cytoplasm 

HIG1 hypoxia inducible domain family, member 2A Q9BW72 Cytoplasm 

ELOVL fatty acid elongase 1 Q9BW60 Cytoplasm 

nucleoporin 85kDa Q9BW27 Cytoplasm 

transmembrane emp24 protein transport domain 
containing 9 

Q9BVK6 Cytoplasm 

transmembrane protein 109 Q9BVC6 Cytoplasm 

methylthioribose-1-phosphate isomerase 1 Q9BV20 Cytoplasm 

latexin Q9BS40 Cytoplasm 
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endoplasmic reticulum protein 44 Q9BS26 Cytoplasm 

thioredoxin domain containing 17 Q9BRA2 Cytoplasm 

coronin, actin binding protein, 1B Q9BR76 Cytoplasm 

tubulin, alpha 1c Q9BQE3 Cytoplasm 

MACRO domain containing 1 Q9BQ69 Cytoplasm 

actin related protein 2/3 complex, subunit 5-like Q9BPX5 Cytoplasm 

nipsnap homolog 1 (C. elegans) Q9BPW8 Cytoplasm 

1-acylglycerol-3-phosphate O-acyltransferase 1 Q99943 Cytoplasm 

BCL2-associated athanogene Q99933 Cytoplasm 

chaperonin containing TCP1, subunit 7 (eta) Q99832 Cytoplasm 

aconitase 2, mitochondrial Q99798 Cytoplasm 

nucleosome assembly protein 1-like 4 Q99733 Cytoplasm 

hydroxysteroid (17-beta) dehydrogenase 10 Q99714 Cytoplasm 

prohibitin 2 Q99623 Cytoplasm 

DnaJ (Hsp40) homolog, subfamily C, member 7 Q99615 Cytoplasm 

family with sequence similarity 129, member B Q96TA1 Cytoplasm 

G elongation factor, mitochondrial 1 Q96RP9 Cytoplasm 

VPS35 retromer complex component Q96QK1 Cytoplasm 

CNDP dipeptidase 2 (metallopeptidase M20 family) Q96KP4 Cytoplasm 

up-regulated during skeletal muscle growth 5 homolog 
(mouse) 

Q96IX5 Cytoplasm 

succinate-CoA ligase, GDP-forming, beta subunit Q96I99 Cytoplasm 

phosphoglycerate mutase family member 5 Q96HS1 Cytoplasm 

endoplasmic reticulum oxidoreductase alpha Q96HE7 Cytoplasm 

phosphoglucomutase 2 Q96G03 Cytoplasm 

OTU deubiquitinase, ubiquitin aldehyde binding 1 Q96FW1 Cytoplasm 

adaptor-related protein complex 2, mu 1 subunit Q96CW1 Cytoplasm 

optineurin Q96CV9 Cytoplasm 

Fas associated factor family member 2 Q96CS3 Cytoplasm 

protein phosphatase 1, regulatory (inhibitor) subunit 14B Q96C90 Cytoplasm 

pyrroline-5-carboxylate reductase family, member 2 Q96C36 Cytoplasm 

FK506 binding protein 10, 65 kDa Q96AY3 Cytoplasm 

ribulose-5-phosphate-3-epimerase Q96AT9 Cytoplasm 

leucine rich repeat containing 59 Q96AG4 Cytoplasm 

fermitin family member 2 Q96AC1 Cytoplasm 

nicalin Q969V3 Cytoplasm 

golgi glycoprotein 1 Q92896 Cytoplasm 

CUGBP, Elav-like family member 1 Q92879 Cytoplasm 

TRK-fused gene Q92734 Cytoplasm 

phosphatidylinositol glycan anchor biosynthesis, class K Q92643 Cytoplasm 

GCN1 eIF2 alpha kinase activator homolog Q92616 Cytoplasm 

heat shock 105kDa/110kDa protein 1 Q92598 Cytoplasm 

stonin 2 Q8WXE9 Cytoplasm 

programmed cell death 6 interacting protein Q8WUM4 Cytoplasm 

ATP-binding cassette, sub-family F (GCN20), member 1 Q8NE71 Cytoplasm 

SERPINE1 mRNA binding protein 1 Q8NC51 Cytoplasm 

SPC24, NDC80 kinetochore complex component Q8NBT2 Cytoplasm 

thioredoxin domain containing 5 (endoplasmic reticulum) Q8NBS9 Cytoplasm 

collagen beta(1-O)galactosyltransferase 1 Q8NBJ5 Cytoplasm 

jagunal homolog 1 Q8N5M9 Cytoplasm 

phospholipase C, delta 3 Q8N3E9 Cytoplasm 

calcium homeostasis endoplasmic reticulum protein Q8IWX8 Cytoplasm 
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phospholipase D family, member 3 Q8IV08 Cytoplasm 

calcium/calmodulin-dependent protein kinase ID Q8IU85 Cytoplasm 

cullin-associated and neddylation-dissociated 1 Q86VP6 Cytoplasm 

metadherin Q86UE4 Cytoplasm 

basic leucine zipper and W2 domains 1 Q7L1Q6 Cytoplasm 

La ribonucleoprotein domain family, member 1 Q6PKG0 Cytoplasm 

3-hydroxyisobutyryl-CoA hydrolase Q6NVY1 Cytoplasm 

solute carrier family 25 (mitochondrial carrier; phosphate 
carrier), member 24 

Q6NUK1 Cytoplasm 

phosphodiesterase 12 Q6L8Q7 Cytoplasm 

twinfilin actin binding protein 2 Q6IBS0 Cytoplasm 

atlastin GTPase 3 Q6DD88 Cytoplasm 

Rho GTPase activating protein 17 Q68EM7 Cytoplasm 

KIAA0368 Q5VYK3 Cytoplasm 

BRO1 domain and CAAX motif containing Q5VW32 Cytoplasm 

translocase of inner mitochondrial membrane 23 homolog 
B (yeast) 

Q5SRD1 Cytoplasm 

COX20 cytochrome c oxidase assembly factor Q5RI15 Cytoplasm 

acylglycerol kinase Q53H12 Cytoplasm 

inverted formin, FH2 and WH2 domain containing Q27J81 Cytoplasm 

inner membrane protein, mitochondrial Q16891 Cytoplasm 

tumor protein D52-like 1 Q16890 Cytoplasm 

thioredoxin reductase 1 Q16881 Cytoplasm 

UDP-glucose pyrophosphorylase 2 Q16851 Cytoplasm 

caseinolytic mitochondrial matrix peptidase proteolytic 
subunit 

Q16740 Cytoplasm 

kynureninase Q16719 Cytoplasm 

NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 5 Q16718 Cytoplasm 

mannosidase, alpha, class 2A, member 1 Q16706 Cytoplasm 

fascin actin-bundling protein 1 Q16658 Cytoplasm 

drebrin 1 Q16643 Cytoplasm 

dihydropyrimidinase-like 2 Q16555 Cytoplasm 

translocase of outer mitochondrial membrane 34 Q15785 Cytoplasm 

thyroid hormone receptor interactor 13 Q15645 Cytoplasm 

Sec23 homolog A (S. cerevisiae) Q15436 Cytoplasm 

Ras suppressor protein 1 Q15404 Cytoplasm 

transmembrane emp24 domain trafficking protein 2 Q15363 Cytoplasm 

reticulocalbin 1, EF-hand calcium binding domain Q15293 Cytoplasm 

prostaglandin E synthase 3 (cytosolic) Q15185 Cytoplasm 

pyrophosphatase (inorganic) 1 Q15181 Cytoplasm 

plectin Q15149 Cytoplasm 

phosphoprotein enriched in astrocytes 15 Q15121 Cytoplasm 

protein disulfide isomerase family A, member 6 Q15084 Cytoplasm 

eukaryotic translation initiation factor 4H Q15056 Cytoplasm 

lysyl-tRNA synthetase Q15046 Cytoplasm 

leucyl-tRNA synthetase 2, mitochondrial Q15031 Cytoplasm 

septin 2 Q15019 Cytoplasm 

proteasome (prosome, macropain) 26S subunit, non-
ATPase, 6 

Q15008 Cytoplasm 

LIM and SH3 protein 1 Q14847 Cytoplasm 

glucosidase, alpha; neutral AB Q14697 Cytoplasm 

UDP-galactose-4-epimerase Q14376 Cytoplasm 

FK506 binding protein 8, 38kDa Q14318 Cytoplasm 
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dynein, cytoplasmic 1, heavy chain 1 Q14204 Cytoplasm 

eukaryotic translation initiation factor 3, subunit A Q14152 Cytoplasm 

coactosin-like F-actin binding protein 1 Q14019 Cytoplasm 

Ras and Rab interactor 1 Q13671 Cytoplasm 

four and a half LIM domains 1 Q13642 Cytoplasm 

RAB32, member RAS oncogene family Q13637 Cytoplasm 

RAB31, member RAS oncogene family Q13636 Cytoplasm 

IQ motif containing GTPase activating protein 2 Q13576 Cytoplasm 

phosphatidylinositol binding clathrin assembly protein Q13492 Cytoplasm 

PDGFA associated protein 1 Q13442 Cytoplasm 

nicotinamide nucleotide transhydrogenase Q13423 Cytoplasm 

eukaryotic translation initiation factor 3, subunit I Q13347 Cytoplasm 

poly(A) binding protein, cytoplasmic 4 (inducible form) Q13310 Cytoplasm 

selenium binding protein 1 Q13228 Cytoplasm 

proteasome (prosome, macropain) 26S subunit, non-
ATPase, 2 

Q13200 Cytoplasm 

p21 protein (Cdc42/Rac)-activated kinase 2 Q13177 Cytoplasm 

peroxiredoxin 4 Q13162 Cytoplasm 

Fas (TNFRSF6)-associated via death domain Q13158 Cytoplasm 

enoyl CoA hydratase 1, peroxisomal Q13011 Cytoplasm 

TNF receptor-associated protein 1 Q12931 Cytoplasm 

transducin (beta)-like 3 Q12788 Cytoplasm 

peptidase (mitochondrial processing) alpha Q10713 Cytoplasm 

adaptor-related protein complex 1, beta 1 subunit Q10567 Cytoplasm 

cytoskeleton-associated protein 4 Q07065 Cytoplasm 

complement component 1, q subcomponent binding 
protein 

Q07021 Cytoplasm 

peroxiredoxin 1 Q06830 Cytoplasm 

proteasome (prosome, macropain) activator subunit 1 
(PA28 alpha) 

Q06323 Cytoplasm 

caldesmon 1 Q05682 Cytoplasm 

protein tyrosine kinase 2 Q05397 Cytoplasm 

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, eta 

Q04917 Cytoplasm 

single-stranded DNA binding protein 1, mitochondrial Q04837 Cytoplasm 

aldo-keto reductase family 1, member C2 Q04828 Cytoplasm 

glyoxalase I Q04760 Cytoplasm 

keratin 17, type I Q04695 Cytoplasm 

eukaryotic translation initiation factor 4 gamma, 1 Q04637 Cytoplasm 

glutathione S-transferase mu 4 Q03013 Cytoplasm 

solute carrier family 25 (mitochondrial carrier; 
oxoglutarate carrier), member 11 

Q02978 Cytoplasm 

nucleobindin 1 Q02818 Cytoplasm 

ribosomal protein L18a Q02543 Cytoplasm 

kinesin family member 23 Q02241 Cytoplasm 

transgelin Q01995 Cytoplasm 

phospholipase C, beta 3 (phosphatidylinositol-specific) Q01970 Cytoplasm 

phosphofructokinase, platelet Q01813 Cytoplasm 

fatty acid binding protein 5 (psoriasis-associated) Q01469 Cytoplasm 

sorbitol dehydrogenase Q00796 Cytoplasm 

solute carrier family 25 (mitochondrial carrier; phosphate 
carrier), member 3 

Q00325 Cytoplasm 

cytochrome c, somatic P99999 Cytoplasm 

ribosomal protein L19 P84098 Cytoplasm 
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ras homolog family member G P84095 Cytoplasm 

ribosomal protein L36a P83881 Cytoplasm 

ribosomal protein L24 P83731 Cytoplasm 

mitochondrial ribosomal protein S9 P82933 Cytoplasm 

chaperonin containing TCP1, subunit 2 (beta) P78371 Cytoplasm 

eukaryotic translation initiation factor 4 gamma, 2 P78344 Cytoplasm 

tubulin, alpha 1b P68363 Cytoplasm 

actin, alpha, cardiac muscle 1 P68032 Cytoplasm 

thymosin beta 10 P63313 Cytoplasm 

guanine nucleotide binding protein (G protein), beta 
polypeptide 2-like 1 

P63244 Cytoplasm 

eukaryotic translation initiation factor 5A P63241 Cytoplasm 

ribosomal protein S21 P63220 Cytoplasm 

ribosomal protein L38 P63173 Cytoplasm 

dynein, light chain, LC8-type 1 P63167 Cytoplasm 

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, zeta 

P63104 Cytoplasm 

ribosomal protein S27a P62979 Cytoplasm 

peptidylprolyl isomerase A (cyclophilin A) P62937 Cytoplasm 

ribosomal protein L11 P62913 Cytoplasm 

ribosomal protein L32 P62910 Cytoplasm 

ribosomal protein L31 P62899 Cytoplasm 

ribosomal protein L30 P62888 Cytoplasm 

ribosomal protein S28 P62857 Cytoplasm 

ribosomal protein S26 P62854 Cytoplasm 

ribosomal protein S25 P62851 Cytoplasm 

ribosomal protein S24 P62847 Cytoplasm 

ribosomal protein S15 P62841 Cytoplasm 

ribosomal protein L23 P62829 Cytoplasm 

ribosomal protein S6 P62753 Cytoplasm 

ribosomal protein L23a P62750 Cytoplasm 

protein phosphatase 2, catalytic subunit, beta isozyme P62714 Cytoplasm 

ribosomal protein S4, X-linked P62701 Cytoplasm 

eukaryotic translation termination factor 1 P62495 Cytoplasm 

ribosomal protein L7a P62424 Cytoplasm 

ribosomal protein S11 P62280 Cytoplasm 

ribosomal protein S13 P62277 Cytoplasm 

ribosomal protein S29 P62273 Cytoplasm 

ribosomal protein S18 P62269 Cytoplasm 

ribosomal protein S23 P62266 Cytoplasm 

ribosomal protein S14 P62263 Cytoplasm 

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, epsilon 

P62258 Cytoplasm 

ribosomal protein S16 P62249 Cytoplasm 

ribosomal protein S15a P62244 Cytoplasm 

ribosomal protein S8 P62241 Cytoplasm 

protein phosphatase 1, catalytic subunit, alpha isozyme P62136 Cytoplasm 

ribosomal protein S7 P62081 Cytoplasm 

syntaxin binding protein 1 P61764 Cytoplasm 

ras homolog family member A P61586 Cytoplasm 

ribosomal protein L37a P61513 Cytoplasm 

ribosomal protein L27 P61353 Cytoplasm 

ribosomal protein L15 P61313 Cytoplasm 
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ribosomal protein L26 P61254 Cytoplasm 

ATP-binding cassette, sub-family E (OABP), member 1 P61221 Cytoplasm 

RAB14, member RAS oncogene family P61106 Cytoplasm 

ubiquitin-conjugating enzyme E2K P61086 Cytoplasm 

ubiquitin-conjugating enzyme E2M P61081 Cytoplasm 

RAB10, member RAS oncogene family P61026 Cytoplasm 

signal recognition particle 54kDa P61011 Cytoplasm 

signal peptidase complex subunit 3 P61009 Cytoplasm 

destrin (actin depolymerizing factor) P60981 Cytoplasm 

cell division cycle 42 P60953 Cytoplasm 

S100 calcium binding protein A10 P60903 Cytoplasm 

proteasome (prosome, macropain) subunit, alpha type, 6 P60900 Cytoplasm 

ribosomal protein S20 P60866 Cytoplasm 

eukaryotic translation initiation factor 4A1 P60842 Cytoplasm 

actin, beta P60709 Cytoplasm 

myosin, light chain 6, alkali, smooth muscle and non-
muscle 

P60660 Cytoplasm 

eukaryotic translation initiation factor 3, subunit E P60228 Cytoplasm 

triosephosphate isomerase 1 P60174 Cytoplasm 

actin related protein 2/3 complex, subunit 4, 20kDa P59998 Cytoplasm 

epiplakin 1 P58107 Cytoplasm 

transmembrane protein 33 P57088 Cytoplasm 

eukaryotic translation initiation factor 6 P56537 Cytoplasm 

methionyl-tRNA synthetase P56192 Cytoplasm 

eukaryotic translation initiation factor 3, subunit B P55884 Cytoplasm 

aminopeptidase puromycin sensitive P55786 Cytoplasm 

tumor protein D52 P55327 Cytoplasm 

hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA 
thiolase/enoyl-CoA hydratase (trifunctional protein), beta 

subunit 

P55084 Cytoplasm 

valosin containing protein P55072 Cytoplasm 

eukaryotic translation initiation factor 5 P55010 Cytoplasm 

aldehyde dehydrogenase 18 family, member A1 P54886 Cytoplasm 

adenylate kinase 2 P54819 Cytoplasm 

tyrosyl-tRNA synthetase P54577 Cytoplasm 

arginyl-tRNA synthetase P54136 Cytoplasm 

coatomer protein complex, subunit alpha P53621 Cytoplasm 

methionyl aminopeptidase 1 P53582 Cytoplasm 

ATP citrate lyase P53396 Cytoplasm 

biliverdin reductase A P53004 Cytoplasm 

hexokinase 2 P52789 Cytoplasm 

spermine synthase P52788 Cytoplasm 

phosphogluconate dehydrogenase P52209 Cytoplasm 

hydroxysteroid (17-beta) dehydrogenase 4 P51659 Cytoplasm 

RAB7A, member RAS oncogene family P51149 Cytoplasm 

fragile X mental retardation, autosomal homolog 1 P51114 Cytoplasm 

chaperonin containing TCP1, subunit 4 (delta) P50991 Cytoplasm 

chaperonin containing TCP1, subunit 8 (theta) P50990 Cytoplasm 

ribosomal protein L14 P50914 Cytoplasm 

palmitoyl-protein thioesterase 1 P50897 Cytoplasm 

methionyl aminopeptidase 2 P50579 Cytoplasm 

suppression of tumorigenicity 13 (colon carcinoma) (Hsp70 
interacting protein) 

P50502 Cytoplasm 
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GDP dissociation inhibitor 2 P50395 Cytoplasm 

transmembrane emp24-like trafficking protein 10 (yeast) P49755 Cytoplasm 

acyl-CoA dehydrogenase, very long chain P49748 Cytoplasm 

proteasome (prosome, macropain) subunit, beta type, 2 P49721 Cytoplasm 

seryl-tRNA synthetase P49591 Cytoplasm 

histidyl-tRNA synthetase 2, mitochondrial P49590 Cytoplasm 

alanyl-tRNA synthetase P49588 Cytoplasm 

ubiquitin-conjugating enzyme E2A P49459 Cytoplasm 

signal recognition particle 9kDa P49458 Cytoplasm 

Tu translation elongation factor, mitochondrial P49411 Cytoplasm 

chaperonin containing TCP1, subunit 3 (gamma) P49368 Cytoplasm 

deoxyhypusine synthase P49366 Cytoplasm 

fatty acid synthase P49327 Cytoplasm 

lectin, mannose-binding, 1 P49257 Cytoplasm 

aldehyde dehydrogenase 9 family, member A1 P49189 Cytoplasm 

chaperonin containing TCP1, subunit 5 (epsilon) P48643 Cytoplasm 

glutathione synthetase P48637 Cytoplasm 

serpin peptidase inhibitor, clade B (ovalbumin), member 4 P48594 Cytoplasm 

malic enzyme 1, NADP(+)-dependent, cytosolic P48163 Cytoplasm 

ATP synthase, H+ transporting, mitochondrial F1 complex, 
O subunit 

P48047 Cytoplasm 

glutaminyl-tRNA synthetase P47897 Cytoplasm 

eukaryotic translation initiation factor 1A, X-linked P47813 Cytoplasm 

capping protein (actin filament) muscle Z-line, beta P47756 Cytoplasm 

capping protein (actin filament) muscle Z-line, alpha 2 P47755 Cytoplasm 

phospholipase A2, group IVA (cytosolic, calcium-
dependent) 

P47712 Cytoplasm 

IQ motif containing GTPase activating protein 1 P46940 Cytoplasm 

microtubule-associated protein 1B P46821 Cytoplasm 

ribosomal protein S5 P46782 Cytoplasm 

ribosomal protein S9 P46781 Cytoplasm 

ribosomal protein L21 P46778 Cytoplasm 

ribosomal protein L5 P46777 Cytoplasm 

ribosomal protein L27a P46776 Cytoplasm 

N-ethylmaleimide-sensitive factor P46459 Cytoplasm 

ubiquitin specific peptidase 5 (isopeptidase T) P45974 Cytoplasm 

voltage-dependent anion channel 2 P45880 Cytoplasm 

signal sequence receptor, alpha P43307 Cytoplasm 

leucine-rich pentatricopeptide repeat containing P42704 Cytoplasm 

ribosomal protein S27 P42677 Cytoplasm 

aldo-keto reductase family 1, member C3 P42330 Cytoplasm 

enoyl-CoA delta isomerase 1 P42126 Cytoplasm 

eukaryotic translation initiation factor 1 P41567 Cytoplasm 

isoleucyl-tRNA synthetase P41252 Cytoplasm 

glycyl-tRNA synthetase P41250 Cytoplasm 

eukaryotic translation initiation factor 2, subunit 3 gamma, 
52kDa 

P41091 Cytoplasm 

hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA 
thiolase/enoyl-CoA hydratase (trifunctional protein), alpha 

subunit 

P40939 Cytoplasm 

malate dehydrogenase 2, NAD (mitochondrial) P40926 Cytoplasm 

malate dehydrogenase 1, NAD (soluble) P40925 Cytoplasm 

ribosomal protein L13a P40429 Cytoplasm 
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nicotinamide N-methyltransferase P40261 Cytoplasm 

chaperonin containing TCP1, subunit 6A (zeta 1) P40227 Cytoplasm 

dolichyl-diphosphooligosaccharide--protein 
glycosyltransferase subunit (non-catalytic) 

P39656 Cytoplasm 

ribosomal protein S19 P39019 Cytoplasm 

heat shock 70kDa protein 9 (mortalin) P38646 Cytoplasm 

electron-transfer-flavoprotein, beta polypeptide P38117 Cytoplasm 

transaldolase 1 P37837 Cytoplasm 

transgelin 2 P37802 Cytoplasm 

signal recognition particle 14kDa (homologous Alu RNA 
binding protein) 

P37108 Cytoplasm 

glutathione peroxidase 4 P36969 Cytoplasm 

phosphoglucomutase 1 P36871 Cytoplasm 

lon peptidase 1, mitochondrial P36776 Cytoplasm 

ribosomal protein L4 P36578 Cytoplasm 

ATP synthase, H+ transporting, mitochondrial F1 complex, 
gamma polypeptide 1 

P36542 Cytoplasm 

glutaredoxin (thioltransferase) P35754 Cytoplasm 

adducin 1 (alpha) P35611 Cytoplasm 

sterol O-acyltransferase 1 P35610 Cytoplasm 

coatomer protein complex, subunit beta 2 (beta prime) P35606 Cytoplasm 

myosin, heavy chain 10, non-muscle P35580 Cytoplasm 

myosin, heavy chain 9, non-muscle P35579 Cytoplasm 

cystathionine-beta-synthase P35520 Cytoplasm 

radixin P35241 Cytoplasm 

serpin peptidase inhibitor, clade B (ovalbumin), member 6 P35237 Cytoplasm 

heat shock 70kDa protein 4 P34932 Cytoplasm 

serine hydroxymethyltransferase 2 (mitochondrial) P34897 Cytoplasm 

kinesin family member 5B P33176 Cytoplasm 

guanylate binding protein 2, interferon-inducible P32456 Cytoplasm 

pyrroline-5-carboxylate reductase 1 P32322 Cytoplasm 

peroxiredoxin 2 P32119 Cytoplasm 

stress-induced phosphoprotein 1 P31948 Cytoplasm 

stratifin P31947 Cytoplasm 

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, beta 

P31946 Cytoplasm 

5-aminoimidazole-4-carboxamide ribonucleotide 
formyltransferase/IMP cyclohydrolase 

P31939 Cytoplasm 

3-hydroxyisobutyrate dehydrogenase P31937 Cytoplasm 

ubiquinol-cytochrome c reductase core protein I P31930 Cytoplasm 

carbamoyl-phosphate synthase 1, mitochondrial P31327 Cytoplasm 

methionine adenosyltransferase II, alpha P31153 Cytoplasm 

succinate dehydrogenase complex, subunit A, flavoprotein 
(Fp) 

P31040 Cytoplasm 

aldehyde dehydrogenase 1 family, member B1 P30837 Cytoplasm 

serpin peptidase inhibitor, clade B (ovalbumin), member 1 P30740 Cytoplasm 

sorcin P30626 Cytoplasm 

heme oxygenase 2 P30519 Cytoplasm 

peptidylprolyl isomerase F P30405 Cytoplasm 

protein phosphatase 2, regulatory subunit A, alpha P30153 Cytoplasm 

protein disulfide isomerase family A, member 3 P30101 Cytoplasm 

phosphatidylethanolamine binding protein 1 P30086 Cytoplasm 

peroxiredoxin 5 P30044 Cytoplasm 

biliverdin reductase B P30043 Cytoplasm 
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peroxiredoxin 6 P30041 Cytoplasm 

endoplasmic reticulum protein 29 P30040 Cytoplasm 

eukaryotic translation elongation factor 1 delta (guanine 
nucleotide exchange protein) 

P29692 Cytoplasm 

serpin peptidase inhibitor, clade B (ovalbumin), member 3 P29508 Cytoplasm 

cellular retinoic acid binding protein 2 P29373 Cytoplasm 

SHC (Src homology 2 domain containing) transforming 
protein 1 

P29353 Cytoplasm 

leucine aminopeptidase 3 P28838 Cytoplasm 

proteasome (prosome, macropain) subunit, beta type, 5 P28074 Cytoplasm 

proteasome (prosome, macropain) subunit, beta type, 4 P28070 Cytoplasm 

calnexin P27824 Cytoplasm 

microtubule-associated protein 4 P27816 Cytoplasm 

calreticulin P27797 Cytoplasm 

carbamoyl-phosphate synthetase 2, aspartate 
transcarbamylase, and dihydroorotase 

P27708 Cytoplasm 

ribosomal protein L10 P27635 Cytoplasm 

tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 
activation protein, theta 

P27348 Cytoplasm 

FK506 binding protein 2, 13kDa P26885 Cytoplasm 

eukaryotic translation elongation factor 1 gamma P26641 Cytoplasm 

valyl-tRNA synthetase P26640 Cytoplasm 

S100 calcium binding protein A4 P26447 Cytoplasm 

S100 calcium binding protein P P25815 Cytoplasm 

proteasome (prosome, macropain) subunit, alpha type, 4 P25789 Cytoplasm 

proteasome (prosome, macropain) subunit, alpha type, 2 P25787 Cytoplasm 

ATP synthase, H+ transporting, mitochondrial F1 complex, 
alpha subunit 1, cardiac muscle 

P25705 Cytoplasm 

ribosomal protein S12 P25398 Cytoplasm 

myosin, light chain 9, regulatory P24844 Cytoplasm 

acetyl-CoA acetyltransferase 1 P24752 Cytoplasm 

eukaryotic translation elongation factor 1 beta 2 P24534 Cytoplasm 

KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein 
retention receptor 1 

P24390 Cytoplasm 

eukaryotic translation initiation factor 4B P23588 Cytoplasm 

adenosylhomocysteinase P23526 Cytoplasm 

glycine cleavage system protein H (aminomethyl carrier) P23434 Cytoplasm 

ribosomal protein S3 P23396 Cytoplasm 

tryptophanyl-tRNA synthetase P23381 Cytoplasm 

peptidylprolyl isomerase B (cyclophilin B) P23284 Cytoplasm 

ubiquinol-cytochrome c reductase core protein II P22695 Cytoplasm 

ubiquitin-like modifier activating enzyme 1 P22314 Cytoplasm 

sterol carrier protein 2 P22307 Cytoplasm 

phosphoribosylaminoimidazole carboxylase, 
phosphoribosylaminoimidazole succinocarboxamide 

synthetase 

P22234 Cytoplasm 

phosphoribosylglycinamide formyltransferase, 
phosphoribosylglycinamide synthetase, 

phosphoribosylaminoimidazole synthetase 

P22102 Cytoplasm 

protein-L-isoaspartate (D-aspartate) O-methyltransferase P22061 Cytoplasm 

transglutaminase 2 P21980 Cytoplasm 

catechol-O-methyltransferase P21964 Cytoplasm 

voltage-dependent anion channel 1 P21796 Cytoplasm 

aconitase 1, soluble P21399 Cytoplasm 

filamin A, alpha P21333 Cytoplasm 
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glutathione S-transferase mu 3 (brain) P21266 Cytoplasm 

IMP (inosine 5'-monophosphate) dehydrogenase 1 P20839 Cytoplasm 

calpastatin P20810 Cytoplasm 

proteasome (prosome, macropain) subunit, beta type, 1 P20618 Cytoplasm 

MX dynamin-like GTPase 1 P20591 Cytoplasm 

RAB6A, member RAS oncogene family P20340 Cytoplasm 

eukaryotic translation initiation factor 2, subunit 2 beta, 
38kDa 

P20042 Cytoplasm 

spermidine synthase P19623 Cytoplasm 

eukaryotic translation initiation factor 2-alpha kinase 2 P19525 Cytoplasm 

regulator of chromosome condensation 1 P18754 Cytoplasm 

phosphoglycerate mutase 1 (brain) P18669 Cytoplasm 

ribosomal protein L17 P18621 Cytoplasm 

protein tyrosine phosphatase, non-receptor type 1 P18031 Cytoplasm 

t-complex 1 P17987 Cytoplasm 

calpain 2, (m/II) large subunit P17655 Cytoplasm 

glutamic-oxaloacetic transaminase 1, soluble P17174 Cytoplasm 

stathmin 1 P16949 Cytoplasm 

ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 P16615 Cytoplasm 

P450 (cytochrome) oxidoreductase P16435 Cytoplasm 

carbonyl reductase 1 P16152 Cytoplasm 

ribosomal protein S2 P15880 Cytoplasm 

NAD(P)H dehydrogenase, quinone 1 P15559 Cytoplasm 

NME/NM23 nucleoside diphosphate kinase 1 P15531 Cytoplasm 

ubiquitin carboxyl-terminal esterase L3 (ubiquitin 
thiolesterase) 

P15374 Cytoplasm 

ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit 
B1 

P15313 Cytoplasm 

UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, 
polypeptide 1 

P15291 Cytoplasm 

G1 to S phase transition 1 P15170 Cytoplasm 

aldo-keto reductase family 1, member B1 (aldose 
reductase) 

P15121 Cytoplasm 

ubiquinol-cytochrome c reductase binding protein P14927 Cytoplasm 

aspartyl-tRNA synthetase P14868 Cytoplasm 

cyclin B1 P14635 Cytoplasm 

heat shock protein 90kDa beta (Grp94), member 1 P14625 Cytoplasm 

pyruvate kinase, muscle P14618 Cytoplasm 

aldo-keto reductase family 1, member A1 (aldehyde 
reductase) 

P14550 Cytoplasm 

farnesyl diphosphate synthase P14324 Cytoplasm 

protein kinase C substrate 80K-H P14314 Cytoplasm 

protein kinase, cAMP-dependent, regulatory, type II, alpha P13861 Cytoplasm 

acylaminoacyl-peptide hydrolase P13798 Cytoplasm 

plastin 3 P13797 Cytoplasm 

tumor protein, translationally-controlled 1 P13693 Cytoplasm 

prolyl 4-hydroxylase, alpha polypeptide I P13674 Cytoplasm 

protein disulfide isomerase family A, member 4 P13667 Cytoplasm 

eukaryotic translation elongation factor 2 P13639 Cytoplasm 

actinin, alpha 1 P12814 Cytoplasm 

annexin A3 P12429 Cytoplasm 

creatine kinase, brain P12277 Cytoplasm 

IMP (inosine 5'-monophosphate) dehydrogenase 2 P12268 Cytoplasm 

solute carrier family 25 (mitochondrial carrier; adenine P12236 Cytoplasm 
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nucleotide translocator), member 6 

poly(A) binding protein, cytoplasmic 1 P11940 Cytoplasm 

phosphoribosyl pyrophosphate synthetase 2 P11908 Cytoplasm 

methylenetetrahydrofolate dehydrogenase (NADP+ 
dependent) 1, methenyltetrahydrofolate cyclohydrolase, 

formyltetrahydrofolate synthetase 

P11586 Cytoplasm 

pyruvate carboxylase P11498 Cytoplasm 

glucose-6-phosphate dehydrogenase P11413 Cytoplasm 

acyl-CoA dehydrogenase, C-4 to C-12 straight chain P11310 Cytoplasm 

v-ral simian leukemia viral oncogene homolog A (ras 
related) 

P11233 Cytoplasm 

pyruvate dehydrogenase (lipoamide) beta P11177 Cytoplasm 

heat shock 70kDa protein 8 P11142 Cytoplasm 

heat shock 70kDa protein 5 (glucose-regulated protein, 
78kDa) 

P11021 Cytoplasm 

heat shock 60kDa protein 1 (chaperonin) P10809 Cytoplasm 

protein kinase, cAMP-dependent, regulatory, type I, alpha P10644 Cytoplasm 

ribosomal protein S17 P0CW22 Cytoplasm 

ubiquinol-cytochrome c reductase, Rieske iron-sulfur 
polypeptide 1 pseudogene 1 

P0C7P4 Cytoplasm 

aldolase C, fructose-bisphosphate P09972 Cytoplasm 

leukotriene A4 hydrolase P09960 Cytoplasm 

cytochrome c oxidase subunit VIc P09669 Cytoplasm 

dihydrolipoamide dehydrogenase P09622 Cytoplasm 

tropomyosin 1 (alpha) P09493 Cytoplasm 

glutathione S-transferase pi 1 P09211 Cytoplasm 

signal recognition particle 19kDa P09132 Cytoplasm 

ribosomal protein SA P08865 Cytoplasm 

guanine nucleotide binding protein (G protein), alpha 
inhibiting activity polypeptide 3 

P08754 Cytoplasm 

keratin 7, type II P08729 Cytoplasm 

vimentin P08670 Cytoplasm 

cytochrome c-1 P08574 Cytoplasm 

asparagine synthetase (glutamine-hydrolyzing) P08243 Cytoplasm 

heat shock protein 90kDa alpha (cytosolic), class B member 
1 

P08238 Cytoplasm 

phosphofructokinase, muscle P08237 Cytoplasm 

ubiquinol-cytochrome c reductase hinge protein P07919 Cytoplasm 

heat shock protein 90kDa alpha (cytosolic), class A member 
1 

P07900 Cytoplasm 

glutamyl-prolyl-tRNA synthetase P07814 Cytoplasm 

profilin 1 P07737 Cytoplasm 

calpain 1, (mu/I) large subunit P07384 Cytoplasm 

cathepsin D P07339 Cytoplasm 

prolyl 4-hydroxylase, beta polypeptide P07237 Cytoplasm 

lactate dehydrogenase B P07195 Cytoplasm 

epoxide hydrolase 1, microsomal (xenobiotic) P07099 Cytoplasm 

tropomyosin 3 P06753 Cytoplasm 

phosphorylase, glycogen, liver P06737 Cytoplasm 

enolase 1, (alpha) P06733 Cytoplasm 

S100 calcium binding protein A6 P06703 Cytoplasm 

ATP synthase, H+ transporting, mitochondrial F1 complex, 
beta polypeptide 

P06576 Cytoplasm 

uroporphyrinogen decarboxylase P06132 Cytoplasm 

keratin 8, type II P05787 Cytoplasm 



Appendicies  

192 
 

keratin 18, type I P05783 Cytoplasm 

ribosomal protein, large, P2 P05387 Cytoplasm 

ribosomal protein, large, P1 P05386 Cytoplasm 

eukaryotic translation initiation factor 2, subunit 1 alpha, 
35kDa 

P05198 Cytoplasm 

solute carrier family 25 (mitochondrial carrier; adenine 
nucleotide translocator), member 5 

P05141 Cytoplasm 

S100 calcium binding protein A8 P05109 Cytoplasm 

ribophorin II P04844 Cytoplasm 

ribophorin I P04843 Cytoplasm 

heat shock 27kDa protein 1 P04792 Cytoplasm 

glyceraldehyde-3-phosphate dehydrogenase P04406 Cytoplasm 

tubulin, beta 4A class IVa P04350 Cytoplasm 

ornithine aminotransferase P04181 Cytoplasm 

cystatin B (stefin B) P04080 Cytoplasm 

aldolase A, fructose-bisphosphate P04075 Cytoplasm 

glucosidase, beta, acid P04062 Cytoplasm 

catalase P04040 Cytoplasm 

NADH dehydrogenase, subunit 5 (complex I) P03915 Cytoplasm 

NADH dehydrogenase, subunit 4 (complex I) P03905 Cytoplasm 

hemoglobin, zeta P02008 Cytoplasm 

argininosuccinate synthase 1 P00966 Cytoplasm 

adenylate kinase 1 P00568 Cytoplasm 

phosphoglycerate kinase 1 P00558 Cytoplasm 

glutamic-oxaloacetic transaminase 2, mitochondrial P00505 Cytoplasm 

hypoxanthine phosphoribosyltransferase 1 P00492 Cytoplasm 

superoxide dismutase 1, soluble P00441 Cytoplasm 

cytochrome c oxidase subunit II P00403 Cytoplasm 

cytochrome b5 reductase 3 P00387 Cytoplasm 

glutamate dehydrogenase 1 P00367 Cytoplasm 

lactate dehydrogenase A P00338 Cytoplasm 

cytochrome b5 type A (microsomal) P00167 Cytoplasm 

translocase of outer mitochondrial membrane 40 homolog 
(yeast) 

O96008 Cytoplasm 

thioredoxin domain containing 12 (endoplasmic reticulum) O95881 Cytoplasm 

adaptor-related protein complex 2, alpha 1 subunit O95782 Cytoplasm 

AHA1, activator of heat shock 90kDa protein ATPase 
homolog 1 (yeast) 

O95433 Cytoplasm 

6-phosphogluconolactonase O95336 Cytoplasm 

leucine zipper-EF-hand containing transmembrane protein 
1 

O95202 Cytoplasm 

ubiquitination factor E4B O95155 Cytoplasm 

SEC31 homolog A, COPII coating complex component O94979 Cytoplasm 

adaptor-related protein complex 2, alpha 2 subunit O94973 Cytoplasm 

glutaminase O94925 Cytoplasm 

translocase of outer mitochondrial membrane 70 homolog 
A (S. cerevisiae) 

O94826 Cytoplasm 

glutaredoxin 3 O76003 Cytoplasm 

trio Rho guanine nucleotide exchange factor O75962 Cytoplasm 

ATP synthase, H+ transporting, mitochondrial Fo complex, 
subunit d 

O75947 Cytoplasm 

ADP-ribosylation factor-like 6 interacting protein 5 O75915 Cytoplasm 

isocitrate dehydrogenase 1 (NADP+), soluble O75874 Cytoplasm 

eukaryotic translation initiation factor 3, subunit J O75822 Cytoplasm 
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cell division cycle 123 O75794 Cytoplasm 

lysophospholipase I O75608 Cytoplasm 

cold shock domain containing E1, RNA-binding O75534 Cytoplasm 

SEC22 vesicle trafficking protein homolog B (S. cerevisiae) 
(gene/pseudogene) 

O75396 Cytoplasm 

citrate synthase O75390 Cytoplasm 

peroxisomal biogenesis factor 14 O75381 Cytoplasm 

filamin B, beta O75369 Cytoplasm 

tubulin folding cofactor A O75347 Cytoplasm 

programmed cell death 6 O75340 Cytoplasm 

NADH dehydrogenase (ubiquinone) Fe-S protein 2, 49kDa 
(NADH-coenzyme Q reductase) 

O75306 Cytoplasm 

gamma-glutamylcyclotransferase O75223 Cytoplasm 

clustered mitochondria (cluA/CLU1) homolog O75153 Cytoplasm 

Rho-associated, coiled-coil containing protein kinase 2 O75116 Cytoplasm 

ATP-binding cassette, sub-family B (MDR/TAP), member 7 O75027 Cytoplasm 

eukaryotic translation initiation factor 5B O60841 Cytoplasm 

perilipin 3 O60664 Cytoplasm 

procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 O60568 Cytoplasm 

acyl-CoA synthetase long-chain family member 4 O60488 Cytoplasm 

translocase of inner mitochondrial membrane 8 homolog A 
(yeast) 

O60220 Cytoplasm 

NADH dehydrogenase (ubiquinone) Fe-S protein 5, 15kDa 
(NADH-coenzyme Q reductase) 

O43920 Cytoplasm 

adenosylhomocysteinase-like 1 O43865 Cytoplasm 

calumenin O43852 Cytoplasm 

myosin IB O43795 Cytoplasm 

asparaginyl-tRNA synthetase O43776 Cytoplasm 

endosulfine alpha O43768 Cytoplasm 

actinin, alpha 4 O43707 Cytoplasm 

tumor protein D52-like 2 O43399 Cytoplasm 

thioredoxin-like 1 O43396 Cytoplasm 

eukaryotic translation elongation factor 1 epsilon 1 O43324 Cytoplasm 

3'-phosphoadenosine 5'-phosphosulfate synthase 1 O43252 Cytoplasm 

phosphoglycerate dehydrogenase O43175 Cytoplasm 

cytochrome b5 type B (outer mitochondrial membrane) O43169 Cytoplasm 

actin related protein 2/3 complex, subunit 5, 16kDa O15511 Cytoplasm 

eukaryotic translation initiation factor 3, subunit H O15372 Cytoplasm 

eukaryotic translation initiation factor 3, subunit D O15371 Cytoplasm 

actin related protein 2/3 complex, subunit 2, 34kDa O15144 Cytoplasm 

actin related protein 2/3 complex, subunit 1B, 41kDa O15143 Cytoplasm 

phosphoribosylformylglycinamidine synthase O15067 Cytoplasm 

solute carrier family 27 (fatty acid transporter), member 2 O14975 Cytoplasm 

myosin, light chain 12B, regulatory O14950 Cytoplasm 

ubiquinol-cytochrome c reductase, complex III subunit VII, 
9.5kDa 

O14949 Cytoplasm 

interferon-induced protein with tetratricopeptide repeats 
3 

O14879 Cytoplasm 

tripeptidyl peptidase I O14773 Cytoplasm 

protein arginine methyltransferase 5 O14744 Cytoplasm 

inositol(myo)-1(or 4)-monophosphatase 2 O14732 Cytoplasm 

prostaglandin E synthase O14684 Cytoplasm 

adaptor-related protein complex 3, delta 1 subunit O14617 Cytoplasm 

pyridoxal (pyridoxine, vitamin B6) kinase O00764 Cytoplasm 
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ubiquitin-conjugating enzyme E2C O00762 Cytoplasm 

DEAD (Asp-Glu-Ala-Asp) box helicase 3, X-linked O00571 Cytoplasm 

proteasome (prosome, macropain) 26S subunit, non-
ATPase, 14 

O00487 Cytoplasm 

procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 O00469 Cytoplasm 

dynamin 1-like O00429 Cytoplasm 

insulin-like growth factor 2 mRNA binding protein 3 O00425 Cytoplasm 

eukaryotic translation initiation factor 3, subunit F O00303 Cytoplasm 

proteasome (prosome, macropain) 26S subunit, non-
ATPase, 11 

O00231 Cytoplasm 

myosin IC O00159 Cytoplasm 

acyl-CoA thioesterase 7 O00154 Cytoplasm 

PDZ and LIM domain 1 O00151 Cytoplasm 

kinesin heavy chain member 2A O00139 Cytoplasm 

nascent polypeptide-associated complex alpha subunit E9PAV3 Cytoplasm 

cofilin 2 (muscle) Q9Y281 Extracellular 
Space 

sushi domain containing 2 Q9UGT4 Extracellular 
Space 

family with sequence similarity 49, member B Q9NUQ9 Extracellular 
Space 

coiled-coil domain containing 47 Q96A33 Extracellular 
Space 

myosin, heavy chain 14, non-muscle Q7Z406 Extracellular 
Space 

tumor necrosis factor, alpha-induced protein 2 Q03169 Extracellular 
Space 

mesencephalic astrocyte-derived neurotrophic factor P55145 Extracellular 
Space 

hepatoma-derived growth factor P51858 Extracellular 
Space 

serpin peptidase inhibitor, clade H (heat shock protein 47), 
member 1, (collagen binding protein 1) 

P50454 Extracellular 
Space 

nicotinamide phosphoribosyltransferase P43490 Extracellular 
Space 

wingless-type MMTV integration site family, member 5A P41221 Extracellular 
Space 

chitinase 3-like 1 (cartilage glycoprotein-39) P36222 Extracellular 
Space 

granulin P28799 Extracellular 
Space 

thymidine phosphorylase P19971 Extracellular 
Space 

lectin, galactoside-binding, soluble, 3 P17931 Extracellular 
Space 

laminin, gamma 1 (formerly LAMB2) P11047 Extracellular 
Space 

lectin, galactoside-binding, soluble, 1 P09382 Extracellular 
Space 

fibroblast growth factor 2 (basic) P09038 Extracellular 
Space 

prosaposin P07602 Extracellular 
Space 

glucose-6-phosphate isomerase P06744 Extracellular 
Space 

ISG15 ubiquitin-like modifier P05161 Extracellular 
Space 

vitronectin P04004 Extracellular 
Space 
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complement component 9 P02748 Extracellular 
Space 

complement component 3 P01024 Extracellular 
Space 

WD repeat domain 1 O75083 Extracellular 
Space 

RNA binding motif protein 8A Q9Y5S9 Nucleus 

UTP18 small subunit (SSU) processome component 
homolog (yeast) 

Q9Y5J1 Nucleus 

suppressor of Ty 16 homolog (S. cerevisiae) Q9Y5B9 Nucleus 

talin 2 Q9Y4G6 Nucleus 

SAM domain and HD domain 1 Q9Y3Z3 Nucleus 

chromatin target of PRMT1 Q9Y3Y2 Nucleus 

NOC2-like nucleolar associated transcriptional repressor Q9Y3T9 Nucleus 

NOP16 nucleolar protein Q9Y3C1 Nucleus 

ribosomal RNA processing 15 homolog Q9Y3B9 Nucleus 

NOP58 ribonucleoprotein Q9Y2X3 Nucleus 

RuvB-like AAA ATPase 1 Q9Y265 Nucleus 

peptidylprolyl cis/trans isomerase, NIMA-interacting 4 Q9Y237 Nucleus 

chromosome 14 open reading frame 166 Q9Y224 Nucleus 

structural maintenance of chromosomes 3 Q9UQE7 Nucleus 

proliferation-associated 2G4, 38kDa Q9UQ80 Nucleus 

serine/arginine repetitive matrix 2 Q9UQ35 Nucleus 

Fas (TNFRSF6) associated factor 1 Q9UNN5 Nucleus 

nucleolar protein 7, 27kDa Q9UMY1 Nucleus 

pre-mRNA processing factor 19 Q9UMS4 Nucleus 

NIN1/RPN12 binding protein 1 homolog Q9ULX3 Nucleus 

RALY heterogeneous nuclear ribonucleoprotein Q9UKM9 Nucleus 

LSM7 homolog, U6 small nuclear RNA and mRNA 
degradation associated 

Q9UK45 Nucleus 

bromodomain adjacent to zinc finger domain, 1B Q9UIG0 Nucleus 

poly-U binding splicing factor 60KDa Q9UHX1 Nucleus 

mortality factor 4 like 1 Q9UBU8 Nucleus 

BRCA2 and CDKN1A interacting protein Q9P287 Nucleus 

regulator of chromosome condensation 2 Q9P258 Nucleus 

myoferlin Q9NZM1 Nucleus 

apoptosis antagonizing transcription factor Q9NY61 Nucleus 

GAR1 homolog, ribonucleoprotein Q9NY12 Nucleus 

testis expressed 10 Q9NXF1 Nucleus 

NHP2 ribonucleoprotein Q9NX24 Nucleus 

RNA binding motif protein 22 Q9NW64 Nucleus 

RNA binding motif protein 28 Q9NW13 Nucleus 

anti-silencing function 1B histone chaperone Q9NVP2 Nucleus 

structural maintenance of chromosomes 4 Q9NTJ3 Nucleus 

DEAD (Asp-Glu-Ala-Asp) box helicase 21 Q9NR30 Nucleus 

steroid receptor RNA activator 1 Q9HD15 Nucleus 

calcyclin binding protein Q9HB71 Nucleus 

coiled-coil domain containing 86 Q9H6F5 Nucleus 

HEAT repeat containing 1 Q9H583 Nucleus 

activating signal cointegrator 1 complex subunit 2 Q9H1I8 Nucleus 

N-acetyltransferase 10 (GCN5-related) Q9H0A0 Nucleus 

fat mass and obesity associated Q9C0B1 Nucleus 

transducin (beta)-like 1 X-linked receptor 1 Q9BZK7 Nucleus 
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GTP binding protein 4 Q9BZE4 Nucleus 

serrate, RNA effector molecule Q9BXP5 Nucleus 

splicing factor 3b, subunit 5, 10kDa Q9BWJ5 Nucleus 

guanine nucleotide binding protein-like 3 (nucleolar) Q9BVP2 Nucleus 

heterogeneous nuclear ribonucleoprotein U-like 1 Q9BUJ2 Nucleus 

transmembrane protein 43 Q9BTV4 Nucleus 

acidic (leucine-rich) nuclear phosphoprotein 32 family, 
member E 

Q9BTT0 Nucleus 

nucleolar protein 10 Q9BSC4 Nucleus 

MYB binding protein (P160) 1a Q9BQG0 Nucleus 

WD repeat domain 77 Q9BQA1 Nucleus 

elaC ribonuclease Z 2 Q9BQ52 Nucleus 

protein arginine methyltransferase 1 Q99873 Nucleus 

EBNA1 binding protein 2 Q99848 Nucleus 

copine I Q99829 Nucleus 

heterogeneous nuclear ribonucleoprotein A/B Q99729 Nucleus 

translin-associated factor X Q99598 Nucleus 

nucleoporin 88kDa Q99567 Nucleus 

parkinson protein 7 Q99497 Nucleus 

prefoldin subunit 5 Q99471 Nucleus 

cell division cycle 5-like Q99459 Nucleus 

myeloid-associated differentiation marker Q96S97 Nucleus 

RNA binding motif protein 14 Q96PK6 Nucleus 

zinc finger RNA binding protein Q96KR1 Nucleus 

far upstream element (FUSE) binding protein 3 Q96I24 Nucleus 

DEAD (Asp-Glu-Ala-Asp) box polypeptide 27 Q96GQ7 Nucleus 

small nuclear ribonucleoprotein 40kDa (U5) Q96DI7 Nucleus 

cirrhosis, autosomal recessive 1A (cirhin) Q969X6 Nucleus 

ubiquitin specific peptidase 7 (herpes virus-associated) Q93009 Nucleus 

transportin 1 Q92973 Nucleus 

KH-type splicing regulatory protein Q92945 Nucleus 

UPF1 regulator of nonsense transcripts homolog (yeast) Q92900 Nucleus 

DEAD (Asp-Glu-Ala-Asp) box helicase 17 Q92841 Nucleus 

histone deacetylase 2 Q92769 Nucleus 

N-myc downstream regulated 1 Q92597 Nucleus 

H1 histone family, member X Q92522 Nucleus 

DEAD (Asp-Glu-Ala-Asp) box helicase 1 Q92499 Nucleus 

ataxin 2-like Q8WWM
7 

Nucleus 

importin 4 Q8TEX9 Nucleus 

gem (nuclear organelle) associated protein 5 Q8TEQ6 Nucleus 

UTP15, U3 small nucleolar ribonucleoprotein, homolog (S. 
cerevisiae) 

Q8TED0 Nucleus 

cleavage and polyadenylation specific factor 7, 59kDa Q8N684 Nucleus 

serine/arginine repetitive matrix 1 Q8IYB3 Nucleus 

FtsJ homolog 3 (E. coli) Q8IY81 Nucleus 

WD repeat domain 75 Q8IWA0 Nucleus 

histone cluster 2, H2ab Q8IUE6 Nucleus 

Aly/REF export factor Q86V81 Nucleus 

poly(A) binding protein, nuclear 1 Q86U42 Nucleus 

NOP9 nucleolar protein Q86U38 Nucleus 

paternally expressed 10 Q86TG7 Nucleus 

DEAH (Asp-Glu-Ala-His) box helicase 30 Q7L2E3 Nucleus 
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DEAD (Asp-Glu-Ala-Asp) box polypeptide 46 Q7L014 Nucleus 

staphylococcal nuclease and tudor domain containing 1 Q7KZF4 Nucleus 

WD repeat domain 74 Q6RFH5 Nucleus 

BRCA1-associated ATM activator 1 Q6PJG6 Nucleus 

pre-mRNA processing factor 8 Q6P2Q9 Nucleus 

cell division cycle 73 Q6P1J9 Nucleus 

polymerase I and transcript release factor Q6NZI2 Nucleus 

ubiquitin protein ligase E3 component n-recognin 4 Q5T4S7 Nucleus 

heterochromatin protein 1, binding protein 3 Q5SSJ5 Nucleus 

histone cluster 2, H2bf Q5QNW6 Nucleus 

deoxynucleotidyltransferase, terminal, interacting protein 
2 

Q5QJE6 Nucleus 

ribosomal RNA processing 12 homolog Q5JTH9 Nucleus 

programmed cell death 4 (neoplastic transformation 
inhibitor) 

Q53EL6 Nucleus 

smu-1 suppressor of mec-8 and unc-52 homolog (C. 
elegans) 

Q2TAY7 Nucleus 

TSR1, 20S rRNA accumulation, homolog (S. cerevisiae) Q2NL82 Nucleus 

heterogeneous nuclear ribonucleoprotein U-like 2 Q1KMD3 Nucleus 

interferon, gamma-inducible protein 16 Q16666 Nucleus 

cleavage and polyadenylation specific factor 6, 68kDa Q16630 Nucleus 

serine/arginine-rich splicing factor 7 Q16629 Nucleus 

retinoblastoma binding protein 7 Q16576 Nucleus 

damage-specific DNA binding protein 1, 127kDa Q16531 Nucleus 

cysteine and glycine-rich protein 2 Q16527 Nucleus 

neural precursor cell expressed, developmentally down-
regulated 8 

Q15843 Nucleus 

splicing factor 1 Q15637 Nucleus 

splicing factor 3a, subunit 1, 120kDa Q15459 Nucleus 

splicing factor 3b, subunit 4, 49kDa Q15427 Nucleus 

scaffold attachment factor B Q15424 Nucleus 

splicing factor 3b, subunit 3, 130kDa Q15393 Nucleus 

transcription elongation factor B (SIII), polypeptide 2 
(18kDa, elongin B) 

Q15370 Nucleus 

transcription elongation factor B (SIII), polypeptide 1 
(15kDa, elongin C) 

Q15369 Nucleus 

poly(rC) binding protein 2 Q15366 Nucleus 

RNA binding protein S1, serine-rich domain Q15287 Nucleus 

PWP2 periodic tryptophan protein homolog (yeast) Q15269 Nucleus 

non-POU domain containing, octamer-binding Q15233 Nucleus 

WD repeat domain 43 Q15061 Nucleus 

ribosome biogenesis regulator homolog Q15050 Nucleus 

elongation factor Tu GTP binding domain containing 2 Q15029 Nucleus 

nuclear mitotic apparatus protein 1 Q14980 Nucleus 

nucleolar and coiled-body phosphoprotein 1 Q14978 Nucleus 

karyopherin (importin) beta 1 Q14974 Nucleus 

DR1-associated protein 1 (negative cofactor 2 alpha) Q14919 Nucleus 

major vault protein Q14764 Nucleus 

lamin B receptor Q14739 Nucleus 

protein phosphatase 2, regulatory subunit B', delta Q14738 Nucleus 

BMS1 ribosome biogenesis factor Q14692 Nucleus 

structural maintenance of chromosomes 1A Q14683 Nucleus 

minichromosome maintenance complex component 6 Q14566 Nucleus 

RNA binding motif protein 39 Q14498 Nucleus 
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block of proliferation 1 Q14137 Nucleus 

heterogeneous nuclear ribonucleoprotein D (AU-rich 
element RNA binding protein 1, 37kDa) 

Q14103 Nucleus 

cytoskeleton associated protein 5 Q14008 Nucleus 

exosome component 2 Q13868 Nucleus 

DEAD (Asp-Glu-Ala-Asp) box polypeptide 39B Q13838 Nucleus 

KRR1, small subunit (SSU) processome component, 
homolog (yeast) 

Q13601 Nucleus 

peptidylprolyl cis/trans isomerase, NIMA-interacting 1 Q13526 Nucleus 

Treacher Collins-Franceschetti syndrome 1 Q13428 Nucleus 

tripartite motif containing 28 Q13263 Nucleus 

serine/arginine-rich splicing factor 5 Q13243 Nucleus 

serine/arginine-rich splicing factor 9 Q13242 Nucleus 

chromobox homolog 3 Q13185 Nucleus 

heterogeneous nuclear ribonucleoprotein A0 Q13151 Nucleus 

interleukin enhancer binding factor 3, 90kDa Q12906 Nucleus 

interleukin enhancer binding factor 2 Q12905 Nucleus 

interferon-related developmental regulator 2 Q12894 Nucleus 

AHNAK nucleoprotein Q09666 Nucleus 

NOP2/Sun RNA methyltransferase family, member 2 Q08J23 Nucleus 

structure specific recognition protein 1 Q08945 Nucleus 

DEAH (Asp-Glu-Ala-His) box helicase 9 Q08211 Nucleus 

serine/arginine-rich splicing factor 4 Q08170 Nucleus 

serine/arginine-rich splicing factor 1 Q07955 Nucleus 

KH domain containing, RNA binding, signal transduction 
associated 1 

Q07666 Nucleus 

lamin B2 Q03252 Nucleus 

ribosomal protein L6 Q02878 Nucleus 

FK506 binding protein 4, 59kDa Q02790 Nucleus 

exosome component 10 Q01780 Nucleus 

down-regulator of transcription 1, TBP-binding (negative 
cofactor 2) 

Q01658 Nucleus 

serine/arginine-rich splicing factor 2 Q01130 Nucleus 

SET nuclear proto-oncogene Q01105 Nucleus 

U2 small nuclear RNA auxiliary factor 1 Q01081 Nucleus 

heterogeneous nuclear ribonucleoprotein U (scaffold 
attachment factor A) 

Q00839 Nucleus 

FK506 binding protein 3, 25kDa Q00688 Nucleus 

high density lipoprotein binding protein Q00341 Nucleus 

serine/arginine-rich splicing factor 3 P84103 Nucleus 

SAP domain containing ribonucleoprotein P82979 Nucleus 

brain abundant, membrane attached signal protein 1 P80723 Nucleus 

protein kinase, DNA-activated, catalytic polypeptide P78527 Nucleus 

ribonucleic acid export 1 P78406 Nucleus 

general transcription factor IIi P78347 Nucleus 

ubiquitin-conjugating enzyme E2L 3 P68036 Nucleus 

Y box binding protein 1 P67809 Nucleus 

ubiquitin-conjugating enzyme E2I P63279 Nucleus 

small ubiquitin-like modifier 1 P63165 Nucleus 

transformer 2 beta homolog (Drosophila) P62995 Nucleus 

ribosomal protein L10a P62906 Nucleus 

RAN, member RAS oncogene family P62826 Nucleus 

proteasome (prosome, macropain) 26S subunit, ATPase, 6 P62333 Nucleus 
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small nuclear ribonucleoprotein D3 polypeptide 18kDa P62318 Nucleus 

small nuclear ribonucleoprotein D2 polypeptide 16.5kDa P62316 Nucleus 

small nuclear ribonucleoprotein D1 polypeptide 16kDa P62314 Nucleus 

small nuclear ribonucleoprotein polypeptide F P62306 Nucleus 

small nuclear ribonucleoprotein polypeptide E P62304 Nucleus 

proteasome (prosome, macropain) 26S subunit, ATPase, 5 P62195 Nucleus 

nuclear transport factor 2 P61970 Nucleus 

WD repeat domain 5 P61964 Nucleus 

ribosomal protein S3A P61247 Nucleus 

WD repeat domain 4 P57081 Nucleus 

heterogeneous nuclear ribonucleoprotein H2 (H') P55795 Nucleus 

SNU13 homolog, small nuclear ribonucleoprotein 
(U4/U6.U5) 

P55769 Nucleus 

adenosine deaminase, RNA-specific P55265 Nucleus 

adenosine kinase P55263 Nucleus 

nucleosome assembly protein 1-like 1 P55209 Nucleus 

CSE1 chromosome segregation 1-like (yeast) P55060 Nucleus 

RAD23 homolog B, nucleotide excision repair protein P54727 Nucleus 

SUB1 homolog (S. cerevisiae) P53999 Nucleus 

nucleoporin 98kDa P52948 Nucleus 

heterogeneous nuclear ribonucleoprotein F P52597 Nucleus 

polymerase (RNA) II (DNA directed) polypeptide H P52434 Nucleus 

karyopherin alpha 2 (RAG cohort 1, importin alpha 1) P52292 Nucleus 

heterogeneous nuclear ribonucleoprotein M P52272 Nucleus 

SWI/SNF related, matrix associated, actin dependent 
regulator of chromatin, subfamily a, member 4 

P51532 Nucleus 

annexin A11 P50995 Nucleus 

MRE11 homolog A, double strand break repair nuclease P49959 Nucleus 

guanine monphosphate synthase P49915 Nucleus 

RAN binding protein 2 P49792 Nucleus 

RNA binding motif protein 25 P49756 Nucleus 

minichromosome maintenance complex component 2 P49736 Nucleus 

primase, DNA, polypeptide 2 (58kDa) P49643 Nucleus 

nuclear autoantigenic sperm protein (histone-binding) P49321 Nucleus 

Yes-associated protein 1 P46937 Nucleus 

BCL2-associated athanogene 6 P46379 Nucleus 

NOP2 nucleolar protein P46087 Nucleus 

Ran GTPase activating protein 1 P46060 Nucleus 

marker of proliferation Ki-67 P46013 Nucleus 

chromobox homolog 5 P45973 Nucleus 

RAN binding protein 1 P43487 Nucleus 

mutS homolog 2 P43246 Nucleus 

matrin 3 P43243 Nucleus 

cyclin-dependent kinase inhibitor 2A P42771 Nucleus 

superkiller viralicidic activity 2-like 2 (S. cerevisiae) P42285 Nucleus 

signal transducer and activator of transcription 1, 91kDa P42224 Nucleus 

thymopoietin P42167 Nucleus 

BUD31 homolog P41223 Nucleus 

signal transducer and activator of transcription 3 (acute-
phase response factor) 

P40763 Nucleus 

flap structure-specific endonuclease 1 P39748 Nucleus 

ribosomal protein L3 P39023 Nucleus 

eukaryotic translation initiation factor 4A3 P38919 Nucleus 
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RNA binding motif protein, X-linked P38159 Nucleus 

polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa P36954 Nucleus 

protein phosphatase 1, catalytic subunit, gamma isozyme P36873 Nucleus 

tripartite motif containing 23 P36406 Nucleus 

proteasome (prosome, macropain) 26S subunit, ATPase, 2 P35998 Nucleus 

DEK proto-oncogene P35659 Nucleus 

FUS RNA binding protein P35637 Nucleus 

ribosomal protein L22 P35268 Nucleus 

prohibitin P35232 Nucleus 

minichromosome maintenance complex component 7 P33993 Nucleus 

minichromosome maintenance complex component 5 P33992 Nucleus 

minichromosome maintenance complex component 4 P33991 Nucleus 

deoxyuridine triphosphatase P33316 Nucleus 

ribosomal protein L9 P32969 Nucleus 

cytidine deaminase P32320 Nucleus 

heterogeneous nuclear ribonucleoprotein H1 (H) P31943 Nucleus 

heterogeneous nuclear ribonucleoprotein H3 (2H9) P31942 Nucleus 

DnaJ (Hsp40) homolog, subfamily A, member 1 P31689 Nucleus 

ribonucleotide reductase M2 P31350 Nucleus 

cytidine monophosphate (UMP-CMP) kinase 1, cytosolic P30085 Nucleus 

ribosomal protein L12 P30050 Nucleus 

polymerase (DNA directed), delta 1, catalytic subunit P28340 Nucleus 

APEX nuclease (multifunctional DNA repair enzyme) 1 P27695 Nucleus 

replication protein A1, 70kDa P27694 Nucleus 

threonyl-tRNA synthetase P26639 Nucleus 

polypyrimidine tract binding protein 1 P26599 Nucleus 

ribosomal protein L13 P26373 Nucleus 

U2 small nuclear RNA auxiliary factor 2 P26368 Nucleus 

DNA (cytosine-5-)-methyltransferase 1 P26358 Nucleus 

DEAD (Asp-Glu-Ala-Asp) box helicase 6 P26196 Nucleus 

DnaJ (Hsp40) homolog, subfamily B, member 1 P25685 Nucleus 

nuclear transcription factor Y, beta P25208 Nucleus 

minichromosome maintenance complex component 3 P25205 Nucleus 

ribonucleotide reductase M1 P23921 Nucleus 

cofilin 1 (non-muscle) P23528 Nucleus 

splicing factor proline/glutamine-rich P23246 Nucleus 

transcription elongation factor A (SII), 1 P23193 Nucleus 

heterogeneous nuclear ribonucleoprotein A2/B1 P22626 Nucleus 

fibrillarin P22087 Nucleus 

cysteine and glycine-rich protein 1 P21291 Nucleus 

parathymosin P20962 Nucleus 

lamin B1 P20700 Nucleus 

basic transcription factor 3 P20290 Nucleus 

nucleolin P19338 Nucleus 

ligase I, DNA, ATP-dependent P18858 Nucleus 

SON DNA binding protein P18583 Nucleus 

ribosomal protein L7 P18124 Nucleus 

proteasome (prosome, macropain) 26S subunit, ATPase, 3 P17980 Nucleus 

DEAD (Asp-Glu-Ala-Asp) box helicase 5 P17844 Nucleus 

CTP synthase 1 P17812 Nucleus 

high mobility group AT-hook 1 P17096 Nucleus 

Y box binding protein 3 P16989 Nucleus 
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histone cluster 1, H1b P16401 Nucleus 

heterogeneous nuclear ribonucleoprotein L P14866 Nucleus 

small nuclear ribonucleoprotein polypeptides B and B1 P14678 Nucleus 

X-ray repair complementing defective repair in Chinese 
hamster cells 5 (double-strand-break rejoining) 

P13010 Nucleus 

X-ray repair complementing defective repair in Chinese 
hamster cells 6 

P12956 Nucleus 

translocated promoter region, nuclear basket protein P12270 Nucleus 

proliferating cell nuclear antigen P12004 Nucleus 

cyclin-dependent kinase 4 P11802 Nucleus 

topoisomerase (DNA) II alpha 170kDa P11388 Nucleus 

topoisomerase (DNA) I P11387 Nucleus 

TROVE domain family, member 2 P10155 Nucleus 

poly (ADP-ribose) polymerase 1 P09874 Nucleus 

small nuclear ribonucleoprotein polypeptide A' P09661 Nucleus 

heterogeneous nuclear ribonucleoprotein A1 P09651 Nucleus 

high mobility group box 1 P09429 Nucleus 

nuclear factor I/C (CCAAT-binding transcription factor) P08651 Nucleus 

H1 histone family, member 0 P07305 Nucleus 

nucleophosmin (nucleolar phosphoprotein B23, numatrin) P06748 Nucleus 

cyclin-dependent kinase 1 P06493 Nucleus 

prothymosin, alpha P06454 Nucleus 

Sjogren syndrome antigen B (autoantigen La) P05455 Nucleus 

lamin A/C P02545 Nucleus 

purine nucleoside phosphorylase P00491 Nucleus 

actin-like 6A O96019 Nucleus 

3'(2'), 5'-bisphosphate nucleotidase 1 O95861 Nucleus 

importin 7 O95373 Nucleus 

LUC7-like 3 pre-mRNA splicing factor O95232 Nucleus 

pre-mRNA processing factor 6 O94906 Nucleus 

metastasis associated 1 family, member 2 O94776 Nucleus 

signal recognition particle 72kDa O76094 Nucleus 

ribosomal L1 domain containing 1 O76021 Nucleus 

survival motor neuron domain containing 1 O75940 Nucleus 

DnaJ (Hsp40) homolog, subfamily C, member 8 O75937 Nucleus 

breast carcinoma amplified sequence 2 O75934 Nucleus 

nucleoporin 155kDa O75694 Nucleus 

surfeit 6 O75683 Nucleus 

small nuclear ribonucleoprotein 200kDa (U5) O75643 Nucleus 

splicing factor 3b, subunit 1, 155kDa O75533 Nucleus 

barrier to autointegration factor 1 O75531 Nucleus 

PC4 and SFRS1 interacting protein 1 O75475 Nucleus 

PRP40 pre-mRNA processing factor 40 homolog A O75400 Nucleus 

H2A histone family, member Y O75367 Nucleus 

dyskeratosis congenita 1, dyskerin O60832 Nucleus 

polyglutamine binding protein 1 O60828 Nucleus 

synaptotagmin binding, cytoplasmic RNA interacting 
protein 

O60506 Nucleus 

aquarius intron-binding spliceosomal factor O60306 Nucleus 

SWI/SNF related, matrix associated, actin dependent 
regulator of chromatin, subfamily a, member 5 

O60264 Nucleus 

nudix (nucleoside diphosphate linked moiety X)-type motif 
21 

O43809 Nucleus 



Appendicies  

202 
 

HIV-1 Tat specific factor 1 O43719 Nucleus 

BUB3 mitotic checkpoint protein O43684 Nucleus 

pleiotropic regulator 1 O43660 Nucleus 

2'-deoxynucleoside 5'-phosphate N-hydrolase 1 O43598 Nucleus 

exportin, tRNA O43592 Nucleus 

heterogeneous nuclear ribonucleoprotein R O43390 Nucleus 

transforming growth factor beta 1 induced transcript 1 O43294 Nucleus 

zw10 kinetochore protein O43264 Nucleus 

ribosomal RNA processing 8, methyltransferase, homolog 
(yeast) 

O43159 Nucleus 

DEAH (Asp-Glu-Ala-His) box helicase 15 O43143 Nucleus 

CD3e molecule, epsilon associated protein O15446 Nucleus 

progesterone receptor membrane component 2 O15173 Nucleus 

polymerase (RNA) I polypeptide C, 30kDa O15160 Nucleus 

exportin 1 O14980 Nucleus 

heterogeneous nuclear ribonucleoprotein D-like O14979 Nucleus 

histone acetyltransferase 1 O14929 Nucleus 

transcription elongation regulator 1 O14776 Nucleus 

karyopherin alpha 4 (importin alpha 3) O00629 Nucleus 

NOP56 ribonucleoprotein O00567 Nucleus 

pescadillo ribosomal biogenesis factor 1 O00541 Nucleus 

bridging integrator 1 O00499 Nucleus 

importin 5 O00410 Nucleus 

chloride intracellular channel 1 O00299 Nucleus 

DNA fragmentation factor, 45kDa, alpha polypeptide O00273 Nucleus 

aryl hydrocarbon receptor interacting protein O00170 Nucleus 

DEAD (Asp-Glu-Ala-Asp) box polypeptide 39A O00148 Nucleus 

protein phosphatase methylesterase 1 Q9Y570 Other 

LUC7-like 2 pre-mRNA splicing factor Q9Y383 Other 

thioredoxin-related transmembrane protein 2 Q9Y320 Other 

cysteine and histidine-rich domain (CHORD) containing 1 Q9UHD1 Other 

family with sequence similarity 105, member A Q9NUU6 Other 

acidic residue methyltransferase 1 Q9H993 Other 

replication termination factor 2 domain containing 1 Q9BY42 Other 

eukaryotic translation initiation factor 3, subunit C Q99613 Other 

pseudouridylate synthase 7 (putative) Q96PZ0 Other 

ubiquitin protein ligase E3 component n-recognin 7 
(putative) 

Q8N806 Other 

eukaryotic translation initiation factor 3, subunit M Q7L2H7 Other 

La ribonucleoprotein domain family, member 4 Q71RC2 Other 

RNA binding motif, single stranded interacting protein 3 Q6XE24 Other 

5'-nucleotidase domain containing 1 Q5TFE4 Other 

ubiquitin associated protein 2-like Q14157 Other 

G protein pathway suppressor 1 Q13098 Other 

cyclin-dependent kinase 3 Q00526 Other 

ribosomal protein L8 P62917 Other 

acidic (leucine-rich) nuclear phosphoprotein 32 family, 
member A 

P39687 Other 

tropomyosin 2 (beta) P07951 Other 

hemoglobin, delta P02042 Other 

phosphoribosyl pyrophosphate synthetase-associated 
protein 2 

O60256 Other 

phosphoglycolate phosphatase A6NDG6 Other 
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chloride intracellular channel 4 Q9Y696 Plasma 
Membrane 

talin 1 Q9Y490 Plasma 
Membrane 

canopy FGF signaling regulator 2 Q9Y2B0 Plasma 
Membrane 

stomatin (EPB72)-like 2 Q9UJZ1 Plasma 
Membrane 

testin LIM domain protein Q9UGI8 Plasma 
Membrane 

prostaglandin F2 receptor inhibitor Q9P2B2 Plasma 
Membrane 

sema domain, seven thrombospondin repeats (type 1 and 
type 1-like), transmembrane domain (TM) and short 

cytoplasmic domain, (semaphorin) 5B 

Q9P283 Plasma 
Membrane 

transmembrane protein 14C Q9P0S9 Plasma 
Membrane 

VAMP (vesicle-associated membrane protein)-associated 
protein A, 33kDa 

Q9P0L0 Plasma 
Membrane 

cornichon family AMPA receptor auxiliary protein 4 Q9P003 Plasma 
Membrane 

olfactory receptor, family 5, subfamily AC, member 2 Q9NZP5 Plasma 
Membrane 

podocalyxin-like 2 Q9NZ53 Plasma 
Membrane 

trans-2,3-enoyl-CoA reductase Q9NZ01 Plasma 
Membrane 

FAT atypical cadherin 2 Q9NYQ8 Plasma 
Membrane 

Ly1 antibody reactive Q9NX58 Plasma 
Membrane 

adipocyte plasma membrane associated protein Q9HDC9 Plasma 
Membrane 

pinin, desmosome associated protein Q9H307 Plasma 
Membrane 

tweety family member 3 Q9C0H2 Plasma 
Membrane 

solute carrier family 38, member 2 Q96QD8 Plasma 
Membrane 

membrane bound O-acyltransferase domain containing 7 Q96N66 Plasma 
Membrane 

potassium channel tetramerization domain containing 12 Q96CX2 Plasma 
Membrane 

solute carrier family 38, member 5 Q8WUX1 Plasma 
Membrane 

kinectin 1 (kinesin receptor) Q86UP2 Plasma 
Membrane 

zinc finger CCCH-type, antiviral 1 Q7Z2W4 Plasma 
Membrane 

CD109 molecule Q6YHK3 Plasma 
Membrane 

vasorin Q6EMK4 Plasma 
Membrane 

tensin 3 Q68CZ2 Plasma 
Membrane 

STEAP family member 4 Q687X5 Plasma 
Membrane 

annexin A8-like 1 Q5VT79 Plasma 
Membrane 

GNAS complex locus Q5JWF2 Plasma 
Membrane 
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NODAL modulator 1 Q5JPE7 Plasma 
Membrane 

zyxin Q15942 Plasma 
Membrane 

vesicle-associated membrane protein 3 Q15836 Plasma 
Membrane 

solute carrier family 1 (neutral amino acid transporter), 
member 5 

Q15758 Plasma 
Membrane 

solute carrier family 9, subfamily A (NHE3, cation proton 
antiporter 3), member 3 regulator 2 

Q15599 Plasma 
Membrane 

paraoxonase 2 Q15165 Plasma 
Membrane 

plastin 1 Q14651 Plasma 
Membrane 

cell cycle associated protein 1 Q14444 Plasma 
Membrane 

flotillin 2 Q14254 Plasma 
Membrane 

cortactin Q14247 Plasma 
Membrane 

desmoglein 2 Q14126 Plasma 
Membrane 

spectrin, alpha, non-erythrocytic 1 Q13813 Plasma 
Membrane 

four and a half LIM domains 3 Q13643 Plasma 
Membrane 

trophoblast glycoprotein Q13641 Plasma 
Membrane 

tissue specific transplantation antigen P35B Q13630 Plasma 
Membrane 

integrin-linked kinase Q13418 Plasma 
Membrane 

aminoacyl tRNA synthetase complex-interacting 
multifunctional protein 2 

Q13155 Plasma 
Membrane 

bone marrow stromal cell antigen 2 Q10589 Plasma 
Membrane 

caveolin 1, caveolae protein, 22kDa Q03135 Plasma 
Membrane 

solute carrier family 7 (amino acid transporter light chain, L 
system), member 5 

Q01650 Plasma 
Membrane 

interferon induced transmembrane protein 3 Q01628 Plasma 
Membrane 

CAP, adenylate cyclase-associated protein 1 (yeast) Q01518 Plasma 
Membrane 

spectrin, beta, non-erythrocytic 1 Q01082 Plasma 
Membrane 

clathrin, heavy chain (Hc) Q00610 Plasma 
Membrane 

Dab, mitogen-responsive phosphoprotein, homolog 2 
(Drosophila) 

P98082 Plasma 
Membrane 

guanine nucleotide binding protein (G protein), gamma 5 P63218 Plasma 
Membrane 

ras-related C3 botulinum toxin substrate 1 (rho family, 
small GTP binding protein Rac1) 

P63000 Plasma 
Membrane 

guanine nucleotide binding protein (G protein), beta 
polypeptide 2 

P62879 Plasma 
Membrane 

guanine nucleotide binding protein (G protein), beta 
polypeptide 1 

P62873 Plasma 
Membrane 

chemokine (C-X-C motif) receptor 4 P61073 Plasma 
Membrane 

chloride channel, nucleotide-sensitive, 1A P54105 Plasma 
Membrane 
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solute carrier family 16 (monocarboxylate transporter), 
member 1 

P53985 Plasma 
Membrane 

basal cell adhesion molecule (Lutheran blood group) P50895 Plasma 
Membrane 

CD151 molecule (Raph blood group) P48509 Plasma 
Membrane 

STT3A, subunit of the oligosaccharyltransferase complex 
(catalytic) 

P46977 Plasma 
Membrane 

melanoma cell adhesion molecule P43121 Plasma 
Membrane 

ATPase, H+ transporting, lysosomal 70kDa, V1 subunit A P38606 Plasma 
Membrane 

basigin (Ok blood group) P35613 Plasma 
Membrane 

catenin (cadherin-associated protein), alpha 1, 102kDa P35221 Plasma 
Membrane 

glypican 1 P35052 Plasma 
Membrane 

L1 cell adhesion molecule P32004 Plasma 
Membrane 

transmembrane 4 L six family member 1 P30408 Plasma 
Membrane 

myristoylated alanine-rich protein kinase C substrate P29966 Plasma 
Membrane 

stomatin P27105 Plasma 
Membrane 

moesin P26038 Plasma 
Membrane 

cadherin 2, type 1, N-cadherin (neuronal) P19022 Plasma 
Membrane 

vinculin P18206 Plasma 
Membrane 

endoglin P17813 Plasma 
Membrane 

CD44 molecule (Indian blood group) P16070 Plasma 
Membrane 

mucin 1, cell surface associated P15941 Plasma 
Membrane 

folate receptor 1 (adult) P15328 Plasma 
Membrane 

ezrin P15311 Plasma 
Membrane 

alanyl (membrane) aminopeptidase P15144 Plasma 
Membrane 

junction plakoglobin P14923 Plasma 
Membrane 

CD99 molecule P14209 Plasma 
Membrane 

CD59 molecule, complement regulatory protein P13987 Plasma 
Membrane 

lysosomal-associated membrane protein 2 P13473 Plasma 
Membrane 

annexin A4 P09525 Plasma 
Membrane 

annexin A5 P08758 Plasma 
Membrane 

solute carrier family 3 (amino acid transporter heavy 
chain), member 2 

P08195 Plasma 
Membrane 

CD55 molecule, decay accelerating factor for complement 
(Cromer blood group) 

P08174 Plasma 
Membrane 

ras homolog family member C P08134 Plasma 
Membrane 
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annexin A6 P08133 Plasma 
Membrane 

annexin A2 P07355 Plasma 
Membrane 

integrin, alpha V P06756 Plasma 
Membrane 

alkaline phosphatase, liver/bone/kidney P05186 Plasma 
Membrane 

ATPase, Na+/K+ transporting, alpha 1 polypeptide P05023 Plasma 
Membrane 

guanine nucleotide binding protein (G protein), alpha 
inhibiting activity polypeptide 2 

P04899 Plasma 
Membrane 

annexin A1 P04083 Plasma 
Membrane 

transferrin receptor P02786 Plasma 
Membrane 

neuroblastoma RAS viral (v-ras) oncogene homolog P01111 Plasma 
Membrane 

epidermal growth factor receptor P00533 Plasma 
Membrane 

VAMP (vesicle-associated membrane protein)-associated 
protein B and C 

O95292 Plasma 
Membrane 

ER lipid raft associated 2 O94905 Plasma 
Membrane 

flotillin 1 O75955 Plasma 
Membrane 

ER lipid raft associated 1 O75477 Plasma 
Membrane 

solute carrier family 16 (monocarboxylate transporter), 
member 7 

O60669 Plasma 
Membrane 

diaphanous-related formin 1 O60610 Plasma 
Membrane 

LanC lantibiotic synthetase component C-like 1 (bacterial) O43813 Plasma 
Membrane 

erythrocyte membrane protein band 4.1-like 2 O43491 Plasma 
Membrane 

solute carrier family 16 (monocarboxylate transporter), 
member 3 

O15427 Plasma 
Membrane 

leptin receptor overlapping transcript O15243 Plasma 
Membrane 

solute carrier family 9, subfamily A (NHE3, cation proton 
antiporter 3), member 3 regulator 1 

O14745 Plasma 
Membrane 

progesterone receptor membrane component 1 O00264 Plasma 
Membrane 

 

Appendix 2. Full list of proteins obtained from whole-cell mass spectrometry of HeLa A3 

cells. Identification of proteins in the whole cell proteome of HeLa A3 cells. For inclusion P 

< 0.05 for each protein selected using Anova and there was a minimum of two unique 

peptides used for identification. Total proteins identified = 1227. QIAGEN’S Ingenuity 

Pathway Analysis was used for determining the cellular localisation of each protein. 
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Appendix 3. Coomassie blue-stained gel showing acetone vs. TCA precipitation of 

hydrodynamically-sheared HeLa A3 cell residues. Six 10 cm diameter tissue culture dishes 

were exposed to a hydrodynamic force from a standardised shower. The residues were 

washed with PBS and dissolved in SDS-containing Sample Buffer. Acetone precipitation or 

TCA precipitation was then carried out to concentrate the samples after which the residues 

were suspended in 30μl of Sample Buffer and each one loaded into a single well. A 10% 

(w/v) polyacrylamide gel was used. 
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FASP-treated hydrodynamically-sheared HeLa A3 cell mass spectrometry  
  

Protein / gene name 
 

UniProt ID Cellular location Adhesome protein 

LIM domain and actin binding 1 Q9UHB6 Cytoplasm Yes 

PDZ and LIM domain 7 (enigma) Q9NR12 Cytoplasm Yes 

tubulin, beta 1 class VI Q9H4B7 Cytoplasm Yes 

BRICK1, SCAR/WAVE actin-nucleating complex 
subunit 

Q8WUW1 Cytoplasm Yes 

cell migration inducing protein, hyaluronan binding Q8WUJ3 Cytoplasm Yes 

keratin 78, type II Q8N1N4 Cytoplasm Yes 

fermitin family member 3 Q86UX7 Cytoplasm Yes 

keratin 77, type II Q7Z794 Cytoplasm Yes 

keratin 71, type II Q3SY84 Cytoplasm Yes 

keratin 31, type I Q15323 Cytoplasm Yes 

LIM and SH3 protein 1 Q14847 Cytoplasm Yes 

four and a half LIM domains 1 Q13642 Cytoplasm Yes 

myosin IE Q12965 Cytoplasm Yes 

caldesmon 1 Q05682 Cytoplasm Yes 

keratin 17, type I Q04695 Cytoplasm Yes 

keratin 76, type II Q01546 Cytoplasm Yes 

sushi-repeat containing protein, X-linked P78539 Cytoplasm Yes 

tubulin, beta 4B class IVb P68371 Cytoplasm Yes 

tubulin, alpha 4a P68366 Cytoplasm Yes 

tubulin, alpha 1b P68363 Cytoplasm Yes 

actin, alpha 2, smooth muscle, aorta P62736 Cytoplasm Yes 

actin, beta P60709 Cytoplasm Yes 

myosin, light chain 6, alkali, smooth muscle and non-
muscle 

P60660 Cytoplasm Yes 

capping protein (actin filament) muscle Z-line, alpha 
2 

P47755 Cytoplasm Yes 

IQ motif containing GTPase activating protein 1 P46940 Cytoplasm Yes 

keratin 2, type II P35908 Cytoplasm Yes 

myosin, heavy chain 9, non-muscle P35579 Cytoplasm Yes 

keratin 9, type I P35527 Cytoplasm Yes 

coronin, actin binding protein, 1A P31146 Cytoplasm yes 

CAP-GLY domain containing linker protein 1 P30622 Cytoplasm Yes 

myosin, light chain 9, regulatory P24844 Cytoplasm Yes 

filamin A, alpha P21333 Cytoplasm Yes 

keratin 4, type II P19013 Cytoplasm Yes 

calpain 2, (m/II) large subunit P17655 Cytoplasm Yes 

plastin 3 P13797 Cytoplasm Yes 

keratin 5, type II P13647 Cytoplasm Yes 

keratin 13, type I P13646 Cytoplasm Yes 

keratin 10, type I P13645 Cytoplasm Yes 

actinin, alpha 1 P12814 Cytoplasm Yes 

keratin 3, type II P12035 Cytoplasm Yes 

keratin 16, type I P08779 Cytoplasm Yes 

vimentin P08670 Cytoplasm Yes 

pleckstrin P08567 Cytoplasm Yes 

profilin 1 P07737 Cytoplasm Yes 

tubulin, beta class I P07437 Cytoplasm Yes 

enolase 1, (alpha) P06733 Cytoplasm Yes 
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keratin 8, type II P05787 Cytoplasm Yes 

keratin 18, type I P05783 Cytoplasm Yes 

keratin 1, type II P04264 Cytoplasm Yes 

keratin 6B, type II P04259 Cytoplasm Yes 

keratin 6A, type II P02538 Cytoplasm Yes 

keratin 14, type I P02533 Cytoplasm Yes 

adaptor-related protein complex 2, alpha 2 subunit O94973 Cytoplasm Yes 

keratin 34, type I O76011 Cytoplasm Yes 

filamin B, beta O75369 Cytoplasm Yes 

keratin 86, type II O43790 Cytoplasm Yes 

actinin, alpha 4 O43707 Cytoplasm Yes 

myosin, light chain 12B, regulatory O14950 Cytoplasm Yes 

myosin IC O00159 Cytoplasm Yes 

cofilin 1 (non-muscle) P23528 Cytoplasm Yes 

GULP, engulfment adaptor PTB domain containing 1 Q9UBP9 Cytoplasm Possible interaction 

stonin 2 Q8WXE9 Cytoplasm Possible interaction 

SERPINE1 mRNA binding protein 1 Q8NC51 Cytoplasm Possible interaction 

coiled-coil domain containing 146 Q8IYE0 Cytoplasm Possible interaction 

hornerin Q86YZ3 Cytoplasm Possible interaction 

filaggrin family member 2 Q5D862 Cytoplasm Possible interaction 

RAB11B, member RAS oncogene family Q15907 Cytoplasm Possible interaction 

Ras suppressor protein 1 Q15404 Cytoplasm Possible interaction 

peptidylprolyl isomerase A (cyclophilin A) P62937 Cytoplasm Possible interaction 

ribosomal protein S4, X-linked P62701 Cytoplasm Possible interaction 

tyrosine 3-monooxygenase/tryptophan 5-
monooxygenase activation protein, epsilon 

P62258 Cytoplasm Possible interaction 

ribosomal protein S16 P62249 Cytoplasm Possible interaction 

ribosomal protein S15a P62244 Cytoplasm Possible interaction 

ribosomal protein S8 P62241 Cytoplasm Possible interaction 

RAP1B, member of RAS oncogene family P61224 Cytoplasm Possible interaction 

ribosomal protein L29 P47914 Cytoplasm Possible interaction 

epidermal growth factor receptor pathway substrate 
15 

P42566 Cytoplasm Possible interaction 

ribosomal protein S3 P23396 Cytoplasm Possible interaction 

poly(A) binding protein, cytoplasmic 1 P11940 Cytoplasm Possible interaction 

heat shock 70kDa protein 8 P11142 Cytoplasm Possible interaction 

heat shock 70kDa protein 5 (glucose-regulated 
protein, 78kDa) 

P11021 Cytoplasm Possible interaction 

prolyl 4-hydroxylase, beta polypeptide P07237 Cytoplasm Possible interaction 

lipoprotein lipase P06858 Cytoplasm Possible interaction 

ribosomal protein, large, P2 P05387 Cytoplasm Possible interaction 

arginase 1 P05089 Cytoplasm Possible interaction 

aldolase A, fructose-bisphosphate P04075 Cytoplasm Possible interaction 

Kirsten rat sarcoma viral oncogene homolog P01116 Cytoplasm Possible interaction 

torsin family 1, member B (torsin B) O14657 Cytoplasm Possible interaction 

quiescin Q6 sulfhydryl oxidase 1 O00391 Cytoplasm Possible interaction 

nascent polypeptide-associated complex alpha 
subunit 

E9PAV3 Cytoplasm Possible interaction 

keratin associated protein 2-3 P0C7H8 Cytoplasm Possible interaction 

ribosomal protein L36 Q9Y3U8 Cytoplasm No 

MRT4 homolog, ribosome maturation factor Q9UKD2 Cytoplasm No 

cysteine-rich secretory protein LCCL domain 
containing 1 

Q9H336 Cytoplasm No 
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cysteine-rich secretory protein LCCL domain 
containing 2 

Q9H0B8 Cytoplasm No 

adaptor-related protein complex 2, mu 1 subunit Q96CW1 Cytoplasm No 

programmed cell death 6 interacting protein Q8WUM4 Cytoplasm No 

chromosome 3 open reading frame 58 Q8NDZ4 Cytoplasm No 

chromosome 1 open reading frame 68 Q5T750 Cytoplasm No 

keratinocyte proline-rich protein Q5T749 Cytoplasm No 

eukaryotic translation initiation factor 4A2 Q14240 Cytoplasm No 

bleomycin hydrolase Q13867 Cytoplasm No 

phosphatidylinositol binding clathrin assembly 
protein 

Q13492 Cytoplasm No 

transcription factor A, mitochondrial Q00059 Cytoplasm No 

ribosomal protein L24 P83731 Cytoplasm No 

hemoglobin, beta P68871 Cytoplasm No 

ribosomal protein S27a P62979 Cytoplasm No 

ribosomal protein L11 P62913 Cytoplasm No 

ribosomal protein L30 P62888 Cytoplasm No 

Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) 
ubiquitously expressed 

P62861 Cytoplasm No 

ribosomal protein S23 P62266 Cytoplasm No 

ADP-ribosylation factor 3 P61204 Cytoplasm No 

triosephosphate isomerase 1 P60174 Cytoplasm No 

adaptor-related protein complex 2, sigma 1 subunit P53680 Cytoplasm No 

suppression of tumorigenicity 13 (colon carcinoma) 
(Hsp70 interacting protein) 

P50502 Cytoplasm No 

signal recognition particle 9kDa P49458 Cytoplasm No 

ribosomal protein L34 P49207 Cytoplasm No 

ATP synthase, H+ transporting, mitochondrial F1 
complex, O subunit 

P48047 Cytoplasm No 

peptidylprolyl isomerase C (cyclophilin C) P45877 Cytoplasm No 

ribosomal protein L35 P42766 Cytoplasm No 

ribosomal protein L13a P40429 Cytoplasm No 

hippocalcin-like 1 P37235 Cytoplasm No 

signal recognition particle 14kDa (homologous Alu 
RNA binding protein) 

P37108 Cytoplasm No 

caspase 14, apoptosis-related cysteine peptidase P31944 Cytoplasm No 

biliverdin reductase B P30043 Cytoplasm No 

adenosylhomocysteinase P23526 Cytoplasm No 

peptidylprolyl isomerase B (cyclophilin B) P23284 Cytoplasm No 

eukaryotic translation initiation factor 2, subunit 2 
beta, 38kDa 

P20042 Cytoplasm No 

ribosomal protein S2 P15880 Cytoplasm No 

pyruvate kinase, muscle P14618 Cytoplasm No 

aldo-keto reductase family 1, member A1 (aldehyde 
reductase) 

P14550 Cytoplasm No 

eukaryotic translation elongation factor 2 P13639 Cytoplasm No 

glutathione S-transferase pi 1 P09211 Cytoplasm No 

guanine nucleotide binding protein (G protein), alpha 
inhibiting activity polypeptide 3 

P08754 Cytoplasm No 

heat shock protein 90kDa alpha (cytosolic), class B 
member 1 

P08238 Cytoplasm No 

heat shock protein 90kDa alpha (cytosolic), class A 
member 1 

P07900 Cytoplasm No 

lactate dehydrogenase B P07195 Cytoplasm No 

creatine kinase, muscle P06732 Cytoplasm No 
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calpain, small subunit 1 P04632 Cytoplasm No 

glyceraldehyde-3-phosphate dehydrogenase P04406 Cytoplasm No 

phosphoglycerate kinase 1 P00558 Cytoplasm No 

lactate dehydrogenase A P00338 Cytoplasm No 

adaptor-related protein complex 2, alpha 1 subunit O95782 Cytoplasm No 

beta-1,4-glucuronyltransferase 1 O43505 Cytoplasm No 

metallothionein 1M Q8N339 Cytoplasm No 

numb homolog (Drosophila)-like Q9Y6R0 Cytoplasm Indirect Signalling 

developmentally regulated GTP binding protein 1 Q9Y295 Cytoplasm Indirect Signalling 

protein kinase C and casein kinase substrate in 
neurons 2 

Q9UNF0 Cytoplasm Indirect Signalling 

adducin 3 (gamma) Q9UEY8 Cytoplasm Indirect Signalling 

calmodulin-like 5 Q9NZT1 Cytoplasm Indirect Signalling 

tropomodulin 2 (neuronal) Q9NZR1 Cytoplasm Indirect Signalling 

GLI pathogenesis-related 2 Q9H4G4 Cytoplasm Indirect Signalling 

thioredoxin interacting protein Q9H3M7 Cytoplasm Indirect Signalling 

spectrin, beta, non-erythrocytic 4 Q9H254 Cytoplasm Indirect Signalling 

neural precursor cell expressed, developmentally 
down-regulated 4-like, E3 ubiquitin protein ligase 

Q96PU5 Cytoplasm Indirect Signalling 

protein tyrosine phosphatase type IVA, member 1 Q93096 Cytoplasm Indirect Signalling 

thrombospondin, type I, domain containing 4 Q6ZMP0 Cytoplasm Indirect Signalling 

coactosin-like F-actin binding protein 1 Q14019 Cytoplasm Indirect Signalling 

peroxiredoxin 1 Q06830 Cytoplasm Indirect Signalling 

transgelin Q01995 Cytoplasm Indirect Signalling 

RAP1A, member of RAS oncogene family P62834 Cytoplasm Indirect Signalling 

ras homolog family member A P61586 Cytoplasm Indirect Signalling 

RAB10, member RAS oncogene family P61026 Cytoplasm Indirect Signalling 

cell division cycle 42 P60953 Cytoplasm Indirect Signalling 

phosphatidylinositol-5-phosphate 4-kinase, type II, 
alpha 

P48426 Cytoplasm Indirect Signalling 

transgelin 2 P37802 Cytoplasm Indirect Signalling 

peroxiredoxin 2 P32119 Cytoplasm Indirect Signalling 

S100 calcium binding protein A7 P31151 Cytoplasm Indirect Signalling 

phosphatidylethanolamine binding protein 1 P30086 Cytoplasm Indirect Signalling 

peroxiredoxin 6 P30041 Cytoplasm Indirect Signalling 

serpin peptidase inhibitor, clade B (ovalbumin), 
member 3 

P29508 Cytoplasm Indirect Signalling 

calmodulin-like 3 P27482 Cytoplasm Indirect Signalling 

S100 calcium binding protein A4 P26447 Cytoplasm Indirect Signalling 

S100 calcium binding protein A1 P23297 Cytoplasm Indirect Signalling 

RAB5A, member RAS oncogene family P20339 Cytoplasm Indirect Signalling 

ADP-ribosylation factor 4 P18085 Cytoplasm Indirect Signalling 

NME/NM23 nucleoside diphosphate kinase 1 P15531 Cytoplasm Indirect Signalling 

UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, 
polypeptide 1 

P15291 Cytoplasm Indirect Signalling 

enolase 3 (beta, muscle) P13929 Cytoplasm Indirect Signalling 

v-ral simian leukemia viral oncogene homolog A (ras 
related) 

P11233 Cytoplasm Indirect Signalling 

clusterin P10909 Cytoplasm Indirect Signalling 

related RAS viral (r-ras) oncogene homolog P10301 Cytoplasm Indirect Signalling 

calpain 1, (mu/I) large subunit P07384 Cytoplasm Indirect Signalling 

S100 calcium binding protein A9 P06702 Cytoplasm Indirect Signalling 

ATP synthase, H+ transporting, mitochondrial F1 
complex, beta polypeptide 

P06576 Cytoplasm Indirect Signalling 
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myeloperoxidase P05164 Cytoplasm Indirect Signalling 

S100 calcium binding protein A8 P05109 Cytoplasm Indirect Signalling 

heat shock 27kDa protein 1 P04792 Cytoplasm Indirect Signalling 

epsin 2 O95208 Cytoplasm Indirect Signalling 

copine III O75131 Cytoplasm Indirect Signalling 

spondin 1, extracellular matrix protein Q9HCB6 Extracellular 
Space 

Yes 

collagen, type XII, alpha 1 Q99715 Extracellular 
Space 

Yes 

laminin, alpha 4 Q16363 Extracellular 
Space 

Yes 

keratin 33B, type I Q14525 Extracellular 
Space 

Yes 

collagen, type XIV, alpha 1 Q05707 Extracellular 
Space 

Yes 

heparan sulfate proteoglycan 2 P98160 Extracellular 
Space 

Yes 

keratin 85, type II P78386 Extracellular 
Space 

Yes 

laminin, beta 2 (laminin S) P55268 Extracellular 
Space 

Yes 

wingless-type MMTV integration site family, member 
5A 

P41221 Extracellular 
Space 

Yes 

TIMP metallopeptidase inhibitor 3 P35625 Extracellular 
Space 

Yes 

fibrillin 2 P35556 Extracellular 
Space 

Yes 

fibrillin 1 P35555 Extracellular 
Space 

Yes 

thrombospondin 4 P35443 Extracellular 
Space 

Yes 

collagen, type VIII, alpha 1 P27658 Extracellular 
Space 

Yes 

tenascin C P24821 Extracellular 
Space 

Yes 

brain-derived neurotrophic factor P23560 Extracellular 
Space 

Yes 

anosmin 1 P23352 Extracellular 
Space 

Yes 

fibulin 1 P23142 Extracellular 
Space 

Yes 

collagen, type V, alpha 1 P20908 Extracellular 
Space 

Yes 

collagen, type VI, alpha 3 P12111 Extracellular 
Space 

Yes 

collagen, type VI, alpha 1 P12109 Extracellular 
Space 

Yes 

laminin, gamma 1 (formerly LAMB2) P11047 Extracellular 
Space 

Yes 

collagen, type IV, alpha 2 P08572 Extracellular 
Space 

Yes 

collagen, type I, alpha 2 P08123 Extracellular 
Space 

Yes 

thrombospondin 1 P07996 Extracellular 
Space 

Yes 

laminin, beta 1 P07942 Extracellular 
Space 

Yes 

gelsolin P06396 Extracellular 
Space 

Yes 

vitronectin P04004 Extracellular Yes 
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Space 

fibronectin 1 P02751 Extracellular 
Space 

Yes 

collagen, type III, alpha 1 P02461 Extracellular 
Space 

Yes 

collagen, type I, alpha 1 P02452 Extracellular 
Space 

Yes 

transforming growth factor, beta 1 P01137 Extracellular 
Space 

Yes 

keratin 33A, type I O76009 Extracellular 
Space 

Yes 

WD repeat domain 1 O75083 Extracellular 
Space 

Yes 

EGF-like repeats and discoidin I-like domains 3 O43854 Extracellular 
Space 

Yes 

chondroadherin O15335 Extracellular 
Space 

Yes 

laminin, alpha 5 O15230 Extracellular 
Space 

Yes 

matrilin 2 O00339 Extracellular 
Space 

Yes 

inter-alpha-trypsin inhibitor heavy chain family, 
member 4 

Q14624 Extracellular 
Space 

Possible interaction 

inter-alpha-trypsin inhibitor heavy chain 3 Q06033 Extracellular 
Space 

Possible interaction 

serpin peptidase inhibitor, clade H (heat shock 
protein 47), member 1, (collagen binding protein 1) 

P50454 Extracellular 
Space 

Possible interaction 

osteoglycin P20774 Extracellular 
Space 

Possible interaction 

inter-alpha-trypsin inhibitor heavy chain 1 P19827 Extracellular 
Space 

Possible interaction 

inter-alpha-trypsin inhibitor heavy chain 2 P19823 Extracellular 
Space 

Possible interaction 

bone morphogenetic protein 1 P13497 Extracellular 
Space 

Possible interaction 

serpin peptidase inhibitor, clade F (alpha-2 
antiplasmin, pigment epithelium derived factor), 

member 2 

P08697 Extracellular 
Space 

Possible interaction 

complement component 8, beta polypeptide P07358 Extracellular 
Space 

Possible interaction 

C-type lectin domain family 3, member B P05452 Extracellular 
Space 

Possible interaction 

complement factor I P05156 Extracellular 
Space 

Possible interaction 

serpin peptidase inhibitor, clade G (C1 inhibitor), 
member 1 

P05155 Extracellular 
Space 

Possible interaction 

serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 5 

P05154 Extracellular 
Space 

Possible interaction 

serpin peptidase inhibitor, clade E (nexin, 
plasminogen activator inhibitor type 1), member 1 

P05121 Extracellular 
Space 

Possible interaction 

group-specific component (vitamin D binding 
protein) 

P02774 Extracellular 
Space 

Possible interaction 

apolipoprotein H (beta-2-glycoprotein I) P02749 Extracellular 
Space 

Possible interaction 

complement component 9 P02748 Extracellular 
Space 

Possible interaction 

sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3D 

O95025 Extracellular 
Space 

Possible interaction 

C-type lectin domain family 11, member A Q9Y240 Extracellular 
Space 

No 

phospholipase A2, group IID Q9UNK4 Extracellular No 
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Space 

platelet derived growth factor C Q9NRA1 Extracellular 
Space 

No 

C1q and tumor necrosis factor related protein 3 Q9BXJ4 Extracellular 
Space 

No 

peroxidasin Q92626 Extracellular 
Space 

No 

ADAM metallopeptidase with thrombospondin type 
1 motif, 13 

Q76LX8 Extracellular 
Space 

No 

dermokine Q6E0U4 Extracellular 
Space 

No 

keratinocyte differentiation-associated protein P60985 Extracellular 
Space 

No 

afamin P43652 Extracellular 
Space 

No 

ribonuclease, RNase A family, 4 P34096 Extracellular 
Space 

No 

pregnancy-zone protein P20742 Extracellular 
Space 

No 

carboxypeptidase N, polypeptide 1 P15169 Extracellular 
Space 

No 

carboxypeptidase A1 (pancreatic) P15085 Extracellular 
Space 

No 

complement component 4B (Chido blood group) P0C0L4 Extracellular 
Space 

No 

protein S (alpha) P07225 Extracellular 
Space 

No 

coagulation factor XIII, B polypeptide P05160 Extracellular 
Space 

No 

sex hormone-binding globulin P04278 Extracellular 
Space 

No 

lecithin-cholesterol acyltransferase P04180 Extracellular 
Space 

No 

lactotransferrin P02788 Extracellular 
Space 

No 

transferrin P02787 Extracellular 
Space 

No 

alpha-fetoprotein P02771 Extracellular 
Space 

No 

albumin P02768 Extracellular 
Space 

No 

alpha-2-macroglobulin P01023 Extracellular 
Space 

No 

serpin peptidase inhibitor, clade C (antithrombin), 
member 1 

P01008 Extracellular 
Space 

No 

coagulation factor X P00742 Extracellular 
Space 

No 

coagulation factor IX P00740 Extracellular 
Space 

No 

coagulation factor II (thrombin) P00734 Extracellular 
Space 

No 

coagulation factor XIII, A1 polypeptide P00488 Extracellular 
Space 

No 

dickkopf WNT signaling pathway inhibitor 1 O94907 Extracellular 
Space 

No 

cytokine receptor-like factor 1 O75462 Extracellular 
Space 

No 

angiopoietin-like 3 Q9Y5C1 Extracellular 
Space 

Indirect Signalling 

lysyl oxidase-like 2 Q9Y4K0 Extracellular 
Space 

Indirect Signalling 
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angiopoietin-like 2 Q9UKU9 Extracellular 
Space 

Indirect Signalling 

ADAM metallopeptidase with thrombospondin type 
1 motif, 1 

Q9UHI8 Extracellular 
Space 

Indirect Signalling 

netrin 4 Q9HB63 Extracellular 
Space 

Indirect Signalling 

gremlin 2, DAN family BMP antagonist Q9H772 Extracellular 
Space 

Indirect Signalling 

SPARC related modular calcium binding 1 Q9H4F8 Extracellular 
Space 

Indirect Signalling 

angiopoietin-like 4 Q9BY76 Extracellular 
Space 

Indirect Signalling 

R-spondin 3 Q9BXY4 Extracellular 
Space 

Indirect Signalling 

growth differentiation factor 15 Q99988 Extracellular 
Space 

Indirect Signalling 

sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3C 

Q99985 Extracellular 
Space 

Indirect Signalling 

proteoglycan 4 Q92954 Extracellular 
Space 

Indirect Signalling 

frizzled-related protein Q92765 Extracellular 
Space 

Indirect Signalling 

HtrA serine peptidase 1 Q92743 Extracellular 
Space 

Indirect Signalling 

ADAM metallopeptidase with thrombospondin type 
1 motif, 15 

Q8TE58 Extracellular 
Space 

Indirect Signalling 

latent transforming growth factor beta binding 
protein 4 

Q8N2S1 Extracellular 
Space 

Indirect Signalling 

plexin domain containing 2 Q6UX71 Extracellular 
Space 

Indirect Signalling 

transforming growth factor, beta-induced, 68kDa Q15582 Extracellular 
Space 

Indirect Signalling 

angiopoietin 1 Q15389 Extracellular 
Space 

Indirect Signalling 

periostin, osteoblast specific factor Q15063 Extracellular 
Space 

Indirect Signalling 

latent transforming growth factor beta binding 
protein 2 

Q14767 Extracellular 
Space 

Indirect Signalling 

latent transforming growth factor beta binding 
protein 1 

Q14766 Extracellular 
Space 

Indirect Signalling 

sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3A 

Q14563 Extracellular 
Space 

Indirect Signalling 

hyaluronan binding protein 2 Q14520 Extracellular 
Space 

Indirect Signalling 

sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3F 

Q13275 Extracellular 
Space 

Indirect Signalling 

noggin Q13253 Extracellular 
Space 

Indirect Signalling 

sema domain, immunoglobulin domain (Ig), short 
basic domain, secreted, (semaphorin) 3B 

Q13214 Extracellular 
Space 

Indirect Signalling 

multimerin 1 Q13201 Extracellular 
Space 

Indirect Signalling 

secreted phosphoprotein 2, 24kDa Q13103 Extracellular 
Space 

Indirect Signalling 

EGF containing fibulin-like extracellular matrix 
protein 1 

Q12805 Extracellular 
Space 

Indirect Signalling 

milk fat globule-EGF factor 8 protein Q08431 Extracellular 
Space 

Indirect Signalling 

lysyl oxidase-like 1 Q08397 Extracellular 
Space 

Indirect Signalling 

HGF activator Q04756 Extracellular Indirect Signalling 
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Space 

HtrA serine peptidase 3 P83110 Extracellular 
Space 

Indirect Signalling 

dermcidin P81605 Extracellular 
Space 

Indirect Signalling 

transforming growth factor, beta 2 P61812 Extracellular 
Space 

Indirect Signalling 

lysozyme P61626 Extracellular 
Space 

Indirect Signalling 

protease, serine, 12 (neurotrypsin, motopsin) P56730 Extracellular 
Space 

Indirect Signalling 

phospholipid transfer protein P55058 Extracellular 
Space 

Indirect Signalling 

microfibrillar-associated protein 2 P55001 Extracellular 
Space 

Indirect Signalling 

lumican P51884 Extracellular 
Space 

Indirect Signalling 

cartilage oligomeric matrix protein P49747 Extracellular 
Space 

Indirect Signalling 

mannan-binding lectin serine peptidase 1 (C4/C2 
activating component of Ra-reactive factor) 

P48740 Extracellular 
Space 

Indirect Signalling 

tissue factor pathway inhibitor 2 P48307 Extracellular 
Space 

Indirect Signalling 

serpin peptidase inhibitor, clade F (alpha-2 
antiplasmin, pigment epithelium derived factor), 

member 1 

P36955 Extracellular 
Space 

Indirect Signalling 

chitinase 3-like 1 (cartilage glycoprotein-39) P36222 Extracellular 
Space 

Indirect Signalling 

connective tissue growth factor P29279 Extracellular 
Space 

Indirect Signalling 

lysyl oxidase P28300 Extracellular 
Space 

Indirect Signalling 

macrophage stimulating 1 P26927 Extracellular 
Space 

Indirect Signalling 

insulin-like growth factor binding protein 5 P24593 Extracellular 
Space 

Indirect Signalling 

bone morphogenetic protein 6 P22004 Extracellular 
Space 

Indirect Signalling 

midkine (neurite growth-promoting factor 2) P21741 Extracellular 
Space 

Indirect Signalling 

bone morphogenetic protein 7 P18075 Extracellular 
Space 

Indirect Signalling 

insulin-like growth factor binding protein 2, 36kDa P18065 Extracellular 
Space 

Indirect Signalling 

insulin-like growth factor binding protein 3 P17936 Extracellular 
Space 

Indirect Signalling 

vascular endothelial growth factor A P15692 Extracellular 
Space 

Indirect Signalling 

chemokine (C-C motif) ligand 5 P13501 Extracellular 
Space 

Indirect Signalling 

tissue factor pathway inhibitor (lipoprotein-
associated coagulation inhibitor) 

P10646 Extracellular 
Space 

Indirect Signalling 

serpin peptidase inhibitor, clade E (nexin, 
plasminogen activator inhibitor type 1), member 2 

P07093 Extracellular 
Space 

Indirect Signalling 

serpin peptidase inhibitor, clade A (alpha-1 
antiproteinase, antitrypsin), member 7 

P05543 Extracellular 
Space 

Indirect Signalling 

histidine-rich glycoprotein P04196 Extracellular 
Space 

Indirect Signalling 

apolipoprotein B P04114 Extracellular 
Space 

Indirect Signalling 

alpha-2-HS-glycoprotein P02765 Extracellular Indirect Signalling 
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Space 

alpha-1-microglobulin/bikunin precursor P02760 Extracellular 
Space 

Indirect Signalling 

fibrinogen gamma chain P02679 Extracellular 
Space 

Indirect Signalling 

fibrinogen beta chain P02675 Extracellular 
Space 

Indirect Signalling 

apolipoprotein C-III P02656 Extracellular 
Space 

Indirect Signalling 

apolipoprotein E P02649 Extracellular 
Space 

Indirect Signalling 

apolipoprotein A-I P02647 Extracellular 
Space 

Indirect Signalling 

insulin-like growth factor 2 P01344 Extracellular 
Space 

Indirect Signalling 

complement component 5 P01031 Extracellular 
Space 

Indirect Signalling 

complement component 3 P01024 Extracellular 
Space 

Indirect Signalling 

plasminogen activator, tissue P00750 Extracellular 
Space 

Indirect Signalling 

plasminogen activator, urokinase P00749 Extracellular 
Space 

Indirect Signalling 

plasminogen P00747 Extracellular 
Space 

Indirect Signalling 

protease, serine, 23 O95084 Extracellular 
Space 

Indirect Signalling 

gremlin 1, DAN family BMP antagonist O60565 Extracellular 
Space 

Indirect Signalling 

cysteine-rich, angiogenic inducer, 61 O00622 Extracellular 
Space 

Indirect Signalling 

peptidylprolyl isomerase E (cyclophilin E) Q9UNP9 Nucleus No 

GAR1 homolog, ribonucleoprotein Q9NY12 Nucleus No 

copine I Q99829 Nucleus No 

S100 calcium binding protein A16 Q96FQ6 Nucleus No 

ADP-ribosyltransferase 4 (Dombrock blood group) Q93070 Nucleus No 

H1 histone family, member X Q92522 Nucleus No 

Aly/REF export factor Q86V81 Nucleus No 

poly(A) binding protein, nuclear 1 Q86U42 Nucleus No 

coiled-coil domain containing 80 Q76M96 Nucleus No 

histone cluster 2, H2bf Q5QNW6 Nucleus No 

serine/arginine-rich splicing factor 7 Q16629 Nucleus No 

interleukin enhancer binding factor 2 Q12905 Nucleus No 

AHNAK nucleoprotein Q09666 Nucleus No 

serine/arginine-rich splicing factor 3 P84103 Nucleus No 

brain abundant, membrane attached signal protein 1 P80723 Nucleus No 

Y box binding protein 1 P67809 Nucleus No 

transformer 2 beta homolog (Drosophila) P62995 Nucleus No 

RAN, member RAS oncogene family P62826 Nucleus No 

small nuclear ribonucleoprotein D3 polypeptide 
18kDa 

P62318 Nucleus No 

small nuclear ribonucleoprotein D2 polypeptide 
16.5kDa 

P62316 Nucleus No 

small nuclear ribonucleoprotein D1 polypeptide 
16kDa 

P62314 Nucleus No 

small nuclear ribonucleoprotein polypeptide G P62308 Nucleus No 

small nuclear ribonucleoprotein polypeptide F P62306 Nucleus No 
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small nuclear ribonucleoprotein polypeptide E P62304 Nucleus No 

ribosomal protein S3A P61247 Nucleus No 

SUB1 homolog (S. cerevisiae) P53999 Nucleus No 

ArfGAP with FG repeats 1 P52594 Nucleus No 

BUD31 homolog P41223 Nucleus No 

RNA binding motif protein, X-linked P38159 Nucleus No 

DEK proto-oncogene P35659 Nucleus No 

high mobility group box 2 P26583 Nucleus No 

cysteine and glycine-rich protein 1 P21291 Nucleus No 

basic transcription factor 3 P20290 Nucleus No 

nucleolin P19338 Nucleus No 

small nuclear ribonucleoprotein polypeptides B and 
B1 

P14678 Nucleus No 

X-ray repair complementing defective repair in 
Chinese hamster cells 6 

P12956 Nucleus No 

histone cluster 1, H1e P10412 Nucleus No 

H2A histone family, member Z P0C0S5 Nucleus No 

high mobility group box 1 P09429 Nucleus No 

small nuclear ribonucleoprotein polypeptide A P09012 Nucleus No 

small nuclear ribonucleoprotein polypeptide B P08579 Nucleus No 

heterogeneous nuclear ribonucleoprotein C (C1/C2) P07910 Nucleus No 

histone cluster 1, H2bj P06899 Nucleus No 

nucleophosmin (nucleolar phosphoprotein B23, 
numatrin) 

P06748 Nucleus No 

ribosomal L1 domain containing 1 O76021 Nucleus No 

synaptotagmin binding, cytoplasmic RNA interacting 
protein 

O60506 Nucleus No 

LUC7-like 2 pre-mRNA splicing factor Q9Y383 Nucleus No 

basic transcription factor 3-like 4 Q96K17 Nucleus No 

heterogeneous nuclear ribonucleoprotein A1-like 2 Q32P51 Nucleus No 

talin 1 Q9Y490 Plasma 
Membrane 

Yes 

testin LIM domain protein Q9UGI8 Plasma 
Membrane 

Yes 

cadherin, EGF LAG seven-pass G-type receptor 3 Q9NYQ7 Plasma 
Membrane 

Yes 

CUB domain containing protein 1 Q9H5V8 Plasma 
Membrane 

Yes 

fibroblast growth factor receptor-like 1 Q8N441 Plasma 
Membrane 

Yes 

nephronectin Q6UXI9 Plasma 
Membrane 

Yes 

fibronectin type III domain containing 1 Q4ZHG4 Plasma 
Membrane 

Yes 

protein tyrosine phosphatase, receptor type, K Q15262 Plasma 
Membrane 

Yes 

plakophilin 1 Q13835 Plasma 
Membrane 

Yes 

integrin-linked kinase Q13418 Plasma 
Membrane 

Yes 

contactin 1 Q12860 Plasma 
Membrane 

Yes 

desmocollin 1 Q08554 Plasma 
Membrane 

Yes 

desmoglein 1 Q02413 Plasma 
Membrane 

Yes 

ras-related C3 botulinum toxin substrate 1 (rho P63000 Plasma Yes 
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family, small GTP binding protein Rac1) Membrane 

CD81 molecule P60033 Plasma 
Membrane 

Yes 

dynamin 2 P50570 Plasma 
Membrane 

Yes 

vasodilator-stimulated phosphoprotein P50552 Plasma 
Membrane 

Yes 

numb homolog (Drosophila) P49757 Plasma 
Membrane 

Yes 

LIM and senescent cell antigen-like domains 1 P48059 Plasma 
Membrane 

Yes 

melanoma cell adhesion molecule P43121 Plasma 
Membrane 

Yes 

basigin (Ok blood group) P35613 Plasma 
Membrane 

Yes 

integrin, alpha 3 (antigen CD49C, alpha 3 subunit of 
VLA-3 receptor) 

P26006 Plasma 
Membrane 

Yes 

vinculin P18206 Plasma 
Membrane 

Yes 

integrin, beta 5 P18084 Plasma 
Membrane 

Yes 

endoglin P17813 Plasma 
Membrane 

Yes 

CD44 molecule (Indian blood group) P16070 Plasma 
Membrane 

Yes 

desmoplakin P15924 Plasma 
Membrane 

Yes 

junction plakoglobin P14923 Plasma 
Membrane 

Yes 

microtubule-associated protein 2 P11137 Plasma 
Membrane 

Yes 

integrin, alpha 5 (fibronectin receptor, alpha 
polypeptide) 

P08648 Plasma 
Membrane 

Yes 

integrin, alpha V P06756 Plasma 
Membrane 

Yes 

integrin, beta 1 (fibronectin receptor, beta 
polypeptide, antigen CD29 includes MDF2, MSK12) 

P05556 Plasma 
Membrane 

Yes 

integrin, beta 3 (platelet glycoprotein IIIa, antigen 
CD61) 

P05106 Plasma 
Membrane 

Yes 

agrin O00468 Plasma 
Membrane 

Yes 

prostaglandin F2 receptor inhibitor Q9P2B2 Plasma 
Membrane 

Possible interaction 

insulin-like growth factor 2 receptor P11717 Plasma 
Membrane 

Possible interaction 

Thy-1 cell surface antigen P04216 Plasma 
Membrane 

Possible interaction 

epsin 1 Q9Y6I3 Plasma 
Membrane 

No 

guanine nucleotide binding protein (G protein), 
gamma 12 

Q9UBI6 Plasma 
Membrane 

No 

tweety family member 3 Q9C0H2 Plasma 
Membrane 

No 

plasmalemma vesicle associated protein Q9BX97 Plasma 
Membrane 

No 

G protein-coupled receptor, class C, group 5, 
member A 

Q8NFJ5 Plasma 
Membrane 

No 

solute carrier family 1 (neutral amino acid 
transporter), member 5 

Q15758 Plasma 
Membrane 

No 

solute carrier family 7 (amino acid transporter light 
chain, L system), member 5 

Q01650 Plasma 
Membrane 

No 
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clathrin, heavy chain (Hc) Q00610 Plasma 
Membrane 

No 

guanine nucleotide binding protein (G protein), 
gamma 5 

P63218 Plasma 
Membrane 

No 

adaptor-related protein complex 2, beta 1 subunit P63010 Plasma 
Membrane 

No 

guanine nucleotide binding protein (G protein), beta 
polypeptide 2 

P62879 Plasma 
Membrane 

No 

guanine nucleotide binding protein (G protein), beta 
polypeptide 1 

P62873 Plasma 
Membrane 

No 

alanyl (membrane) aminopeptidase P15144 Plasma 
Membrane 

No 

carboxypeptidase M P14384 Plasma 
Membrane 

No 

CD59 molecule, complement regulatory protein P13987 Plasma 
Membrane 

No 

coagulation factor V (proaccelerin, labile factor) P12259 Plasma 
Membrane 

No 

solute carrier family 2 (facilitated glucose 
transporter), member 1 

P11166 Plasma 
Membrane 

No 

clathrin, light chain A P09496 Plasma 
Membrane 

No 

membrane metallo-endopeptidase P08473 Plasma 
Membrane 

No 

CD55 molecule, decay accelerating factor for 
complement (Cromer blood group) 

P08174 Plasma 
Membrane 

No 

alkaline phosphatase, liver/bone/kidney P05186 Plasma 
Membrane 

No 

ATPase, Na+/K+ transporting, alpha 1 polypeptide P05023 Plasma 
Membrane 

No 

guanine nucleotide binding protein (G protein), alpha 
inhibiting activity polypeptide 2 

P04899 Plasma 
Membrane 

No 

annexin A1 P04083 Plasma 
Membrane 

No 

transferrin receptor P02786 Plasma 
Membrane 

No 

major histocompatibility complex, class I, A P01891 Plasma 
Membrane 

No 

apolipoprotein M O95445 Plasma 
Membrane 

No 

tumor necrosis factor receptor superfamily, member 
11b 

O00300 Plasma 
Membrane 

No 

immunoglobulin lambda-like polypeptide 1 B9A064 Plasma 
Membrane 

No 

notch 3 Q9UM47 Plasma 
Membrane 

Indirect Signalling 

mannose receptor, C type 2 Q9UBG0 Plasma 
Membrane 

Indirect Signalling 

epidermal growth factor receptor pathway substrate 
15-like 1 

Q9UBC2 Plasma 
Membrane 

Indirect Signalling 

EH-domain containing 4 Q9H223 Plasma 
Membrane 

Indirect Signalling 

immunoglobulin superfamily, member 8 Q969P0 Plasma 
Membrane 

Indirect Signalling 

low density lipoprotein receptor-related protein 1 Q07954 Plasma 
Membrane 

Indirect Signalling 

plasminogen activator, urokinase receptor Q03405 Plasma 
Membrane 

Indirect Signalling 

interferon induced transmembrane protein 3 Q01628 Plasma 
Membrane 

Indirect Signalling 

CAP, adenylate cyclase-associated protein 1 (yeast) Q01518 Plasma Indirect Signalling 
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Membrane 

Dab, mitogen-responsive phosphoprotein, homolog 2 
(Drosophila) 

P98082 Plasma 
Membrane 

Indirect Signalling 

ADP-ribosylation factor 6 P62330 Plasma 
Membrane 

Indirect Signalling 

EPH receptor B4 P54760 Plasma 
Membrane 

Indirect Signalling 

AXL receptor tyrosine kinase P30530 Plasma 
Membrane 

Indirect Signalling 

stomatin P27105 Plasma 
Membrane 

Indirect Signalling 

moesin P26038 Plasma 
Membrane 

Indirect Signalling 

CD63 molecule P08962 Plasma 
Membrane 

Indirect Signalling 

solute carrier family 3 (amino acid transporter heavy 
chain), member 2 

P08195 Plasma 
Membrane 

Indirect Signalling 

ras homolog family member C P08134 Plasma 
Membrane 

Indirect Signalling 

annexin A2 P07355 Plasma 
Membrane 

Indirect Signalling 

 

Appendix 4. Full list of proteins obtained from mass spectrometry of hydrodynamically-

sheared HeLa A3 cells treated with FASP. Proteins were designated as an adhesome 

protein (yes) if they were considered to be either an adhesive protein or a protein that 

directly affects cell adhesion. Proteins noted as having indirect signalling have an effect on 

cellular adhesion via intermediate pathways, complexes or signalling events. Proteins noted 

as having a possible interaction are those with a uniprot entry that suggests either 

localisation to sites of adhesion or that have a structure / function that may relate to 

adhesion but lack substantial evidence. Proteins were only designated as "No" if they had 

no link to cellular adhesion. 
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Appendix 5. Whole, uncropped Western blots for negative and positive control proteins 

used to determine the purity of hydrodynamically-sheared cell residues. Two 10cm 

diameter tissue culture dishes were exposed to a hydrodynamic force from a standardised 

shower. The residue was washed with PBS and dissolved in SDS-containing Sample Buffer. 

Negative control protein blots for lamin-β1 (nuclear fraction), voltage-dependent anion 

channel (VDAC) (mitochondrial fraction) and GAP-DH (cytoplasmic fraction). Positive 

control protein blots for talin, vinculin and paxillin. A 10% (w/v) polyacrylamide gel was 

used.  
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