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1 Introduction

In previous studies of invariants derived from the Homfly polynomial, or equiv-
alently from the unitary quantum groups, it was noted that no invariant given
by a module over SU(3), was known to distinguish a mutant pair of knots. In-
deed, any quantum group module whose tensor square has no repeated summands
determines a knot invariant which fails to distinguish mutants [3]. A table of in-
variants which fail to distinguish mutants was drawn up in [3], using this and
other evidence. Direct Homfly polynomial calculations showed that a certain
irreducible SU(N), invariant, coming from the module with Young diagram £’
could distinguish between some mutant pairs for N > 4, although not for N = 3.
These calculations also exhibited a Vassiliev invariant of finite type 11 which
distinguishes some mutant pairs. The calculations left open the possibility that
SU(3), invariants might never distinguish mutant pairs.

In this paper we give details of calculations with a specific SU(3),-module
which result in different invariants for the Conway and Kinoshita-Teresaka pair
of mutant knots. We also consider some features of Kuperberg’s skein-theoretic
techniques for SU(3), invariants in the context of mutant knots.

1.1 Background

The term mutant was coined by Conway, and refers to the following general
construction.

Suppose that a knot K can be decomposed into two oriented 2-tangles F' and
G as shown in figure 1.
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Figure 1
A new knot K’ can be formed by replacing the tangle F' with the tangle F”
given by rotating F' through 7 in one of three ways, reversing its string orienta-
tions if necessary. Any of these three knots K’ is called a mutant of K.
The two 11-crossing knots with trivial Alexander polynomial found by Conway
and Kinoshita-Teresaka are the best-known example of mutant knots. They are
shown in figure 2.

Figure 2

It is clear from figure 2 that the knots C' and KT are mutants, and the
consituent tangles F' and G are both given from a 3-string braid by closing off
one of the strings.

The simplest SU(3), invariant not previously known to agree on mutant pairs
is given by the 15-dimensional irreducible module with Young diagram HZ. The
Homfly polynomial of the 4-parallel with z = s —s~ and v = 5" is a sum of 4-cell
invariants for SU(N),. When N = 3 it is known that all 4-cell invariants except
that for 2 agree on mutants. Thus the Homfly polynomial of the 4-parallel,
with the substitution z = s — s7! and v = s3, agrees on mutants if and only if
the SU(3), invariant for F2 agrees on mutants.
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Equally, the same substitution in the Homfly polynomial of the satellite con-
sisting of the parallel with 3 strings, two oriented in one direction and one in
the reverse direction, gives the sum of certain 4-cell invariants for SU(3),, be-
cause the dual of the fundamental module, used to colour the reverse string, is
given by using the Young diagram with a single column of two cells. Then the
Homfly polynomial of the 3-parallel with one reverse string, after the substitution
z=s—s 1 v=s"agrees on mutants if and only if the SU(3), invariant for FD
agrees on mutants.

Kuperberg’s combinatorial methods for handling SU(3), invariants seemed
to us for a while to offer a chance that the behaviour of SU(3), would follow
that of SU(2),. We explored the SU(3), skein of the pair of pants, based on
Kuperberg’s combinatorial techniques, in the hope of proving this. An analysis
of this skein is given later, as it has a geometrically appealing basis, whose first
lack of symmetry again pointed the finger at the reversed 3-parallel as the first
potential candidate for distinguishing some mutant pairs.

We did not pursue the skein calculations for these parallels of Conway and
Kinoshita-Teresaka, as it is rather harder to use computational aids in dealing
with combinatorial skein diagrams once the number of crossings to be resolved
grows beyond easy blackboard calculations. Instead we returned to the SU(3),-
module calculations and made explicit computations for the invariants of the
knots C' and KT when coloured by the 15-dimensional module V1, using the

following scheme. We give further details of the method later.
When each of these knots is coloured by the SU(3),-module VEF':‘ the two con-

stituent tangles F' and G will be represented by an endomorphism of the module
VEF‘:‘ ® VEF':" To calculate the invariant of the knot, presented as the closure of

the composite of the two 2-tangles, we may compose the endomorphisms for the
two 2-tangles, and then calculate the invariant of the closure of the composite
tangle in terms of the resulting endomorphism. Let us suppose that VEF‘:‘ ® VEF':‘

decomposes as a sum @ a,V, of irreducible modules, where a, € N and a,V,
denotes the sum of all submodules which are isomorphic to V,,. Any endomor-
phism then maps each isotypic piece a,V, to itself. It is convenient to regard each
isotypic piece as a vector space of the form W, ® V,,, where W, has dimension
a,, and can be explicitly identified with the space of highest weight vectors for
the irreducible module V), in VEFD ® VEFD' Any endomorphism « of VEFD ® VEFD

maps each space W, to itself, and is determined by the resulting linear maps
o, W, - W,.

Where two endomorphisms « and 3 of @(W, ® V) are composed, the corre-
sponding restrictions to each weight space W, compose, to give (ao3), = «, 00,.
Now the invariant of the closure of a tangle represented by an endomorphism
of (W, ® V,)) is known to be Y (tr(y,) x 6,), where 6, = Jo(V,) is the quan-
tum dimension of the module V,. The difference of the invariants for two knots



represented respectively by ~ and +' is then given in the same way using v — 7/
in place of 7.

The invariants for Conway and Kinoshita-Teresaka arise in this way from
endomorphisms v = ao # and 7' = o/ o 3, in which « and o' represent one of the
2-tangles for Conway, and the same tangle turned over for Kinoshita-Teresaka,
while the other tangle gives the same 3 in each case. We can write o/ = R loaoR
as module endomorphisms, where R is the R-matrix for VEF‘:" Clearly, for those

v with dim W, = 1 we will have o/, = «,, and so 7/, — v, = 0. (As noted in
3], if this happens for all v then the invariant cannot distinguish any mutant
pair). The final difference of invariants will thus depend only on those v where
the summand V,, has multiplicity greater than 1. In the case here there are just
two such v and in each case the space W, has dimension 2. The calculation then
reduces to the determination of the 2 x 2 matrices representing «,, o, and f3,.

1.2 Result of the explicit calculation

The difference between the values of the invariant on Conway’s knot and on the
Kinoshita-Teresaka knot is
s780(s8 4+ 1)2(s* + 1)* (s+1) 3(s — 1)13( s+1) (S +s+1)3
(% ="+t — s>+ 62— )(s +8°+ st + 88 +s +s+1)
(s — 83+ 5% — s+ 1)(s* +s + 82+ s+1)(sT—s2+1)(s>+1)8
(516 — s 42510 — 4638 1265 1 3631 — 432 46550 — 52 — 3% 1652
—45%2 + 450 42518 — 55106 4 5511 — 2512 2410 +438 —2s5+5*—1)

up to a power of the variable s.

This may be rewritten to indicate more clearly the appearance of roots of
unity as the product of (s — s +2510 -4 538 4236 1331 -4 532 + 6530 — 528 —
350 4+652 —4524+450 4258 55104551 251225104455 -255 452 -1)
with the factors (5% —s78)2(s"—s77)(s® —s70) (s> —s79) (s —s74)2(s® —s73)?(s% —
s7?)(s — s7')?, and a power of s.

When this is written as a power series in h with s = ¢™/“ the first term becomes
7+ O(h) and the other factors contribute ch'® + O(h'*), where the coefficient ¢
is ¢ = 82.7.6.5.42.3%.2. The coefficient of h'3 in the power series expansion of the
SU(3), invariant for the 15-dimensional irreducible module is thus a Vassiliev
invariant of type at most 13 which differs on the two mutant knots.

h/2

1.3 Some background to the calculational method

In this section we give details of the methods used in our calculations. We feel it
is important that others can in principle check the calculations, as we were very
much aware in setting up our initial data just how much scope there is for error.
It can easily cause problems, for example, if some of the data is taken from one
source and some from another which has been normalised in a slightly different



way. When the goal is to show that some polynomial arising from the calculations
is non-zero any mistake is almost bound to result in a non-zero polynomial even
if the true polynomial is zero.

In our work here we have been reassured to find that the non-zero difference
polynomial above at least has some roots which could be anticipated, since the
difference must vanish at certain roots of unity. An error in the calculations
would have been likely to give a difference which did not have these roots.

1.4 The quantum group SU(3),

We start from a presentation of the quantum group SU(3), as an algebra with
six generators, Xi-, X3, Hy, H,, and a description of the comultiplication and
antipode. Let M be any finite-dimensional left module over SU(3),. The action
of any one of these six generators Y will determine a linear endomorphism Y}, of
M. We build up explicit matrices for these endomorphisms on a selection of low-
dimensional modules, using the comultiplication to deal with the tensor product
of two known modules, and the antipode to construct the action on the linear
dual of a known module. We must eventually determine the matrices Yj; for the
15-dimensional module M = VEF‘:‘ above, and find the 225 x 225 R-matrix, Ry

which represents the endomorphism of M ® M needed for crossings.

Knowing Y, we can find the generators Y,;5; for the module M ® M, and
thus identify the highest-weight vectors for this module. We can follow the effect
of each 2-tangle F' and G on the highest-weight vectors when we know how to
take account of the closure of one of the strings in forming the 2- tangle from the
3-braid. To do this we need the fixed element 1" of the quantum group, corre-
sponding to Turaev’s ‘enhancement’ [5], which is used in forming the ‘quantum
trace’.

For the quantum groups coming from the classical Lie algebras there is a
simple prescription for 7' = exp(hp) in terms of a linear form p = 3 y; H;, with
coefficients determined by the Cartan matrix for the Lie algebra, [1]. In the
case of SU(3), we have p = H; + H,. The quantum dimension of any module
M is the trace of the matrix Ty, representing the action of 7" on M. More
generally, the effect of closing a string which is coloured by M, to convert an
endomorphism of V' ® M into an endomorphism of V', can be realised by acting on
M by T and then taking the partial trace of the composite linear endomorphism
of V®M. The element T is variously written as u™'v or u !0 where v is Turaev’s
‘ribbon element’ representing the full twist and « is constructed directly from the
universal R-matrix, [6], [1].

We follow Kassel in the basic description of the quantum group from [1],
chapter 17, using generators H; and H, for the Cartan sub-algebra, but with
generators X in place of X; and Y;. We use the notation K; = exp(hH;/4), and
set @ = exp(h/4), s = exp(h/2) = a® and ¢ = exp(h) = s?, unlike Kassel. The



elements satisfy the commutation relations [H;, H;] = 0, [H;, X;7] = +a; X7,
(X;", X ] = (K} — K;%)/(s — s71), where (a;;) = <_21 _21> is the Cartan
matrix for SU(3), and also the Serre relations of degree 3 between X~ and X;5-.
Comultiplication is given by
A(H;)) =H;®1+1® H,,
(so A(K;) =K;®K;,)
AXS) =X 0K+ K ' X,
and the antipode S by S(X) = —s*'X* S(H;) = —H;, S(K;) = K; .
The fundamental 3-dimensional module, which we denote by F, has a basis

in which the quantum group generators are represented by the matrices Yy as
listed here.

0 1 0 00 0
Xt=|0o0 0|, X,=[0 0 1
00 0 00 0

00 0 00 0
X;=|10 0 (000
00 0 0 1 0

1 0 0 00 0
H=[0 -1 0|, Hb=|0 1 0
0 0 0 00 -1

For calculations we keep track of the elements K; rather than H;, represented
by

a 0 0 10 0
Ki=|0 a' 0|, K,=]0 a 0
0 0 1 0 0 a!

for the module £.

We can then write down the elements Ygg for the actions of the generators
Y on the module £ ® E, from the comultiplication formulae. The R-matrix Rgg
representing the endomorphism of £ ® E which is used for the crossing of two
strings coloured by E can be given, up to a scalar, by the prescription

REE(ez' X €j) =€ & €, if 7 > 7,
=se; ®e;, ifi =7,
=e;®e+(s—s e Qe ifi <,
for basis elements {e;} of E.

We made a quick check with Maple to confirm that the matrices Yz all com-
mute with Rgg, as they should. It can also be checked that Rpg has eigenvalues
s with multiplicity 6 and —s~! with multiplicity 3, and satisfies the equation
R—R'=(s—s")Id.

The linear dual M* of a module M becomes a module when the action of a
generator Y on f € M* is defined by < Yy« f,v >=< f,S(Yar)v >, for v € M.



For the dual module F' = E* we then have matrices for Y}, relative to the dual
basis, as follows.

0 0 0 0 0 0
Xt=|-s 00|, Xf=]|0 0 o0
0 0 0 0 —s 0
0 —s' 0 00 0
Xr=[0 0o o], X,=[0 0 —s!
0 0 0 00 0
al 0 0 1 0 0
Ki=| 0 a 0], Ky=[0 a' 0
0 0 1 0 0 a

The most reliable way to work out the R-matrices Rgp, Rpgp and Rpp is to
combine Rgpp with module homomorphisms cupgp, cuppg, capgp and cappg
between the modules £ ® F, FF ® E and the trivial 1-dimensional module, I,
on which Xii acts as zero and K; as the identity. For example, to represent a
homomorphism from I to £'® F' the matrix for cupy, must satisfy Ygp cupgp =
cupgy Y7, which identifies cupy, as a common eigenvector of the matrices Ygp,
with eigenvalue 0 or 1 depending on Y. The matrices are determined up to a
scalar by such considerations; when one has been chosen the scalar for the others
is dictated by diagrammatic considerations. They are quite easy to write down
theoretically, although to be careful about compatibility and possible miscopying
it is as well to get Maple to find them in this way for itself. Once these matrices
have been found they can be combined with the matrix R}, to construct the
R-matrices Rgp, Rpg, Rpp, using the diagram shown in figure 3, for example, to
determine Rpp. This gives

Repr=1p®1lgp ®@capgpolp ®RE}E® lpocupry ® 1 ® 1p.

F E
F E L
b
F E _E/\F
= \/
F E/ \E F
N ?
E F
E F
Figure 3

The module structure of M = VEF‘:‘ can be found by identifying M as a 15-

dimensional submodule of £ ® F ® F. We know that there will be a direct sum
decomposition of FEQ E® F as M & N, and indeed that N will decompose further
into the sum of two copies of a 3-dimensional module isomorphic to £ and one
6-dimensional module with Young diagram H. The full twist element on the
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three strings coloured by F, E and F' acts by a scalar on each of the irreducible
submodules of E® E'® F'. It can be expressed as a 27 X 27 matrix in terms of the
R-matrices above. Maple can then produce a basis for each of the eigenspaces,
one of dimension 15 and the other two each of dimension 6. Write P and () for
the 27 x 15 and 27 x 12 matrices whose columns are made of these basis vectors.
Then P and @) give bases for M and N respectively. The partitioned matrix
(P|Q) is invertible. When its inverse, found by Maple, is written in the form

R
<§> we have a 15 x 27 matrix R which satisfies RP = I5 and R = 0. Regard

P as the matrix representing the inclusion of the module M into £ ® £ ® F.
Then R is the matrix, in the same basis, of the projection from F® E® F to M.
The module generators Y), satisfy Yy, = RYggrr P, giving the explicit action of
the quantum group on M.

We use the injection and projection further to find the 15% x 152 R-matrix
Ryryr. First include M @ M in (E® E® F)® (E® E® F), then construct the
R-matrix for £ ® F ® F from the crossing of three strings each coloured with F
or F' over three others using the various matrices Ry from above, and finally
project to M @ M.

The calculations can be completed in principle from here. Represent the 3-
braid in the 2-tangle F' by an endomorphism of M @ M ® M, using Ry and its
inverse. Then use Ty, and the partial trace to close off one string, hence giving
the endomorphism F);y, of M ® M determined by F. A similar calculation
gives the endomorphism Gjsp,. The invariant for one of the knots is given by
the trace of Ty FyniGuar- The other is given by replacing Gy, with the
conjugate R;/}MG vy BRyar. Some calculation can be avoided by using Gy —
R]T}MG vy Ry in place of Gy, to get the difference of the invariants directly.

A considerable shortcut can be made at this point by concentrating on the
effect of Fysyr and Gyrpr on certain highest weight vectors in M ® M, rather than
considering the whole of the module. A highest weight vector v of a module V'
is a common eigenvector of H; and Hy (or equally K; and K,) which satisfies
Xt (v) = X5 (v) = 0. The submodule of V' generated by a highest weight vector
is irreducible. Its isomorphism type is determined by the eigenvalues of H; and
H,, which are non-negative integers. It follows easily from the relations in the
quantum group that any module homomorphism f : V' — W carries highest
weight vectors to highest weight vectors of the same type.

Calculation in Maple determines the linear subspace of M ® M which is
the common null-space of X;" and X,". This turns out to have dimension 10,
spanned by two highest weight vectors of type (3, 1), two of type (1,2) and six
further highest weight vectors each of a different type. Then the endomorphism
F restricts to a linear endomorphism F), of the space of highest weight vectors
of type v, for each v. We remarked earlier that weight spaces of dimension 1
will not contribute to the difference of the invariants on two mutant knots, so we
need only calculate the maps F, and G, for the two 2-dimensional weight spaces



= (3,1) and v = (1,2). We thus choose two spanning vectors for one of these
spaces and follow each of these through the 2-tangle F', taking the tensor product
with M and mapping to M ® M ® M as above (using repeated operations of the
225 x 225 R-matrix on a vector of length 225 x 15) before applying the matrix Ty,
and taking a partial trace to finish in M ® M. Since the result in each case must
be a linear combination of the two chosen weight vectors it is not difficult to find
the exact combination. This determines a 2 X 2 matrix representing F), for the
weight space of type v. Similar calculations for the other weight space and for
G, along with a quick calculation of the 2 x 2 matrix representing Rj;,s on each
weight type gives enough to find the contribution of each of these weight types to
the difference. The final difference comes from multiplying the trace of the 2 x 2
difference matrix for each type v by the quantum dimension of the irreducible
module of type v for each of the two types and then adding the results.
Up to the same power of s in each case the contribution from the weight space
of type (3,1) was found to be

ty1 = (S5+ 122+ D)4+ 12 (s+ 1)B(s — 1)Bs5(s2 — s+ 1)(s2 + 5+ 1)
st s+ D) (st st s+ 1)
05t =2 s+ 1)(P S st s s+ 1)
2520 4518 45— 5124268 56 1)
(5 =6 + 50 =25 + 352 + 25" — % +25° +2)
= (250 458 4511 — 5124248 — 56 1)
(5% =6+ 50 =25 + 352 + 25" — % +25° + 2)
x (55 — s78)2(sT — 57T)(s% — 579)(s* — 5
S 53 (s? — 572)(5 — 51010,

and the contribution from type (1,2) to be

tp = (s° S+s — 34 —s+ 1D (P+ 5+ st + st s+ 1)?
(st — s>+ 1)(s®+1)2(s* + 1)°(s* + 1)8
(s*+s —i— D(s*=s+1)(s—D"(s+ "0 —s*+ st —s2+1)
(s18 — 516 — 511 4+ 2512 2510 4 266 — 251 — 52 1)

= (s —510 — 511 4245122510 4256 — 251 — 52 +1)

(510 — 68 4+ 5% — 52 1 1)
x (5% — s78)2(sT — 577)2(s5 — s76) (st — 5743
w(s? — 572)2(s — s~1Y1g%,

The quantum dimension for the irreducible module of type (3,1), which has
Young diagram B, is a product of quantum integers [6][4] = (s5 — s76)(s* —
s7*)/(s — s71)?. For the module of type (1,2), with Young diagram HF , it is
[BI[B] = (s° = s7)(s° = s7%) /(s = 57")%.

The difference between the SU(3), invariants with the module Vo for the

Conway and Kinoshita-Teresaka knots is then given, up to a power of s = e"/2,

v [5][3]t12 + [6][4]t31. This yields the polynomial quoted earlier.



2 The Kuperberg skein for mutants

Let K and K’ be the mutants shown schematically earlier. As K and K’ are knots,
precisely one of F' or G must induce the identity permutation on the endpoints,
while the other induces the transposition, by following the strings through the
tangle. We will consider these two cases separately.

In [2] Kuperberg gives a skein-theoretic method for handling the SU(3), in-
variant of a link when coloured by the fundamental module, which he denotes by
<>4,. Knot diagrams are extended to allow 3-valent oriented graphs in which
any vertex is either a sink or a source. Crossings can be replaced locally in this
skein by a linear combination of planar graphs, and any planar circles, 2-gons or
4-gons can be replaced by linear combinations of simpler pieces.

In using skein-based calculations it is helpful when dealing, for example, with
satellites to regard the pattern as a diagram in an annulus, and note that it can
be replaced by any equivalent linear combination of diagrams in the skein of the
annulus. Thus we should consider the Kuperberg skein of the annulus, namely
linear combinations of admissibly oriented 3-valent graph diagrams subject to
local relations as before. A similar definition can be made for the skein of other
surfaces. Notice that the relations ensure that the skein is spanned by oriented
graphs lying entirely in the surface, without simple closed curves, 2-gons or 4-gons
which bound discs in the surface.

In the case of the annulus this shows that the skein is spanned by unions
of oriented simple closed curves parallel to the boundary of the annulus, with
orientations in either direction.

When a mutant knot K is made up from two 2-tangles F' and G as above then
one of F' and G, let us suppose GG, must be a pure tangle, in the sense that the
arcs of G connect the entry point at top left with the exit at bottom left, and top
right with bottom right. Then K can be viewed as made from the diagram in the
disc P with two holes, shown in figure 4, by embedding the planar surface P so
that the two ‘ears’ are tied around the arcs of G. Turning the diagram in P over
along the axis indicated before embedding it in the same way, and reversing all
string orientations, will give one of the mutants K’ of K. Any satellites of K and
K’ are related in a similar way, for we can view a satellite of K as constructed by
decorating the diagram in P with the required pattern, and then tying the ears
of P around G as before. The corresponding satellite of K’ is given by turning P
over, with the decorated diagram, reversing all strings, and then using the same
embedding of P.
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Figure 4

If we could show that the Kuperberg skein of P is spanned by elements which
are invariant under turning over and reversing orientation then we could deduce
that satellites of mutants such as K and K’ would have the same SU(3), invari-
ants, by considering the decorated diagram in this skein. A proof for all mutants
would need a similar analysis for the skein of the once-punctured torus, to deal
with one of the other mutation operations, and the third case would then fol-
low, using a similar argument to [4], where the truth of the corresponding results
in the Kauffman bracket skein showed that satellites of mutants have the same
SU(2), invariants.

We shall now describe a spanning set for the Kuperberg skein of P, which
has some nice symmetry properties, but not enough to give the invariance above.
Indeed a diagram coming from a 3-fold parallel with one reversed string will give
a linear combination of basis elements in the skein in which all but at most one
pair are invariant. (Diagrams from 2-fold parallels of any orientation determine
elements of the invariant subspace.)

Theorem 1 The Kuperberg skein of a disc with two holes is spanned by diagrams
consisting of the union of simple closed curves parallel to each boundary compo-
nent and a trivalent graph with a 2-gon nearest to each of the three boundary
components and 6-gons elsewhere.

Proof: Use the skein relations to write any diagram as a linear combination of
admissibly oriented trivalent graphs in the surface. We can assume that there are
no simple closed curves or 2-gons or 4-gons with null-homotopic boundary. There
may be a number of simple closed curves parallel to each of the boundary compo-
nents. The remaining graph must be connected, otherwise one of its components
lies in an annulus inside the surface, and can be reduced further to a linear com-
bination of unions of parallel simple closed curves. Consider the graph as lying
in S?, by filling in the three boundary components of the surface. It dissects S*
into a number of n-gons, with n even, and n > 6 except possibly for the three
n-gons containing the added discs. Now calculate the Euler characteristic of the
resulting sphere S from the dissection by the graph. As vertices are trivalent
and each edge now bounds two faces, we can count the Euler characteristic as a
sum over the n-gons, in which each vertex contributes 1/3 and each edge —1/2.
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Therefore each n-gon will contribute 1 — n/6, so the only positive contribution
to x(S) can come from 2-gons or 4-gons. These can only arise from the original
three boundary components, where the maximum possible total positive contri-
bution is 2 when each boundary component gives a 2-gon. Since the total must
be 2 and the only other contributions are negative or zero, we must have three
2-gons forming the original boundary components and 6-gons elsewhere.

If we start with a 3-parallel of a tangle F' inside the planar surface P, with
two strands in one direction and one in the other, and write it in the Kuperberg
skein we will get a linear combination of graphs as above, each having at most 3
strings around each ‘ear’. Some of these will be the union of some simple closed
curves around the punctures and trivalent graphs. In figure 5 we show one such
trivalent graph which fails to be symmetric under the order 2 operation of turning
the surface over (and reversing edge orientations).

Figure 5

Note however that this graph is symmetric under the operation of order 3 in
which the three boundary components are cycled. This is a general feature of the
connected trivalent graphs which arise in our construction, as appears from the
following description, where we replace P by a 3-punctured sphere.

We call a trivalent graph in the 3-punctured sphere admissible if it is oriented
so that each vertex is either a sink or a source, and every region not containing
a puncture is a hexagon.

Theorem 2 FEvery admissible graph in the 3-punctured sphere is symmetric, up
to isotopy avoiding the punctures, under a rotation which cycles the punctures.
It can be constructed from the hexagonal tesselation of the plane by choosing an
equilateral triangle lattice whose vertices lie at the centres of some of the hexagons
and factoring out the translations of the lattice and the rotations of order 3 which
preserve the lattice.

Proof: Let I' be the admisible graph. By our Euler characteristic calculations
we know that each puncture is contained in a 2-gon. There is a 3-fold branched
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cover of S? by the torus T? with three branch points each cyclic of order 3.
The inverse image of I' in 7% then consists of hexagonal regions, with three
distinguished regions containing the branch points. This inverse image is invariant
under the deck transformation of order 3 which leaves each distinguished region
invariant. The further inverse image under the regular covering of T2 by the plane
is a tesselation of the plane by hexagons, and the inverse image of the centre of one
of the distinguished regions determines a lattice in the plane. We want to show
that this is an equilateral triangle lattice, when the hexagonal tesselation is drawn
in the usual way. We need only lift the deck transformation to a transformation
of the plane keeping the tesselation invariant and fixing one of the lattice points
to see that it must lift to a rotation of the tesselation about the centre of a
distinguished hexagon. Since the lattice is invariant under this transformation it
follows that the lattice must be equilateral. The inverse image of each of the other
two branch points will also form an equilateral lattice, invariant under the first
rotation, and so their vertices lie in the centres of the triangles; by construction
they also lie in the middle of hexagons. Although the equilateral lattice need not
lie symmetrically with respect to reflections of the tesselation, as in the example
shown below, it does follow that the rotation which permutes the three lattices
will also preserve the tesselation. This rotation induces the symmetry of the
sphere which cycles the branch points and preserves I'.

Figure 6 shows such an equilateral triangle lattice superimposed on a hexagon
tesselation.

Figure 6

The resulting graph in the 3-punctured sphere, whose fundamental domain
is indicated, is the graph shown in figure 5 as a non-symmetric skein element
in the disk with two holes. The labelling of the puncture points as 1, 2 and 3
corresponds to that of the boundary components. The 3-fold symmetry of the
graph in the surface when the boundary components are cycled is evident from
this viewpoint.

The Kuperberg skein of the punctured torus does not appear to have such
a simple spanning set. The region around the puncture may be a 2-gon or a
4-gon, giving the following possible combinations: (i) a 2-gon, two 8-gons and
6-gons elsewhere, (ii) a 2-gon, one 10-gon and 6-gons elsewhere, (iii) a 4-gon,
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one 8-gon and 6-gons elsewhere, (iv) 6-gons only. We did not try to analyse the
configurations further, in view of the results of our quantum calculations.
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