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Abstract

A satellite formula relating the quantum invariants of a satellite knot and those of
its companion and pattern links will be described briefly. The SU(2), invariants
of a framed %-component link L, when the variable ¢ is replaced by an rth root
of unity yield a natural map

J(L) : R®* = A,,

where R, is a finite-dimensional truncation of the representation ring of SU(2),
and A, = Z[e™/?7]. The effect on J, of a framing change on L is given by
applying a suitable power of an automorphism F, of R, to each factor.

Use of the satellite formula for a simple choice of companion exhibits
Reshetikhin and Turaev’s invariant of the 3-manifold given by surgery on L as the
evaluation of J,.(L) on a fixed element M, in each R, , after slight normalisation.
Explicit calculation of My can be made easily because of a beautiful relation be-
tween Fy. and the invariants J.(H) of the Hopf link. This relation can be viewed
in terms of an action of PSL(2,Z) on R,, at least up to scalar multiples by roots
of unity, and shows how the invariant of the manifold given by Dehn surgery with
coeflicients a;/b; on a link L can be found by evaluating Jf,(L) on suitable el-
ements M,, s, € Ry. An indication is also given of how these results extend to
other quantum groups.

In the final section we give an explicit formula for the invariant when any Dehn
surgery is used, confirming its correctness via the Rolfsen moves.

Introduction

This is an account of a 3-manifold invariant for SU(2); which was conceived, fol-
lowing Reshetikhin and Turaev’s original description, as a direct approach with
the emphasis on using the multilinearity and the explicit formula of the satellite
calculations in [MS], avoiding specialisation of link invariants to a root of unity
until as late as possible. Much of the paper is an expansion of a talk presented in
Oberwolfach in September 1989. Tts eventual form followed the unexpected discov-
ery, prompted by explicit calculations, that apart from scalar factors, as detailed
later, the invariants of the Hopf link, together with the factors associated with a
change of framing, can be organised to represent the modular group PSL(2,Z),
once the variable is specialised to a root of unity. This suggests a way to calculate
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the invariant for manifolds given by general Dehn surgery from a link, in terms of
the link invariants. The conformal field theory approaches outlined by Segal as a
concrete means of handling Witten’s ideas make this very plausible, although suit-
able normalisations to deal with the scalar factors have been surprisingly elusive.

Independent work, both by Kirby and Melvin [KM], and very elegantly by
Lickorish [L}, has provided for different aspects of the invariants to be explored.
Our approach is somewhere between these two. We use the quantum group SU(2),
as in our development [MS] of Kirillov and Reshetikhin [KR], and draw on the
explicit form of multilinearity of parallels and satellites given there. We do not use
the finite-dimensional Hopf algebras, where a root of unity has been introduced.
There is then no need to take account of the more complicated representation
theory which arises in that case, as is done in [RT], and avoided by the use of
clever arguments in [KM].

Roots of unity will appear here only in specialisations of existing invariants,
and we develop enough background to ensure that such moves are completely
legitimate where we need them.

1. Link invariants

The SU(2), invariants of a framed link L with % components are described in
[KR]. Assign irreducible SU(2), modules W;; to the jth component of L, and
there is an invariant J(L;Wi,,..., W) € A = Z{g*'/*]. The definition can be
extended multilinearly to allow the use of a A-linear combination of modules on
each component. The invariants for L can then be viewed as a single A-linear
map
J(L) : R®* = A,

where R is the representation ring of SU(2),. It can be shown, for example
in [MS], that the product in the ring R has a nice interpretation in terms of
invariants of parallel links. The result can be summarised as follows.

Let m: R® R — R be the product in the ring, and let L be a framed kuot.

Then
J(L) om = J(L®),

where L® is the framed 2-parallel of L.

This result extends naturally to multiparallels of links with more than one
component, as in {MS]. It allows for an alternative description of J(L) to that in
terms of the irreducible module assignments.

The ring R is spanned by the irreducible representations W;, one of each
dimension i, or equally well by the powers (W;)’, since R = A[W,] as a ring.
Since the evaluation of J(L) on the element W; for each component is essentially
the bracket polynomial version of the Jones polynomial of L it is then possible
to calculate J(L) in terms of the Jones polynomials for multiparallels of L. This
corresponds to the use of powers of W, as the A-basis for R rather than the
irreducibles. The change of basis information needed to pass from one basis to the
other is noted in [MS], and also in a nice form in [KM]. The basis of powers has
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been used by Lickorish [L] in his approach to the 3-manifold invariants, allowing
him to avoid any use of the other irreducibles W;,¢ > 2, and so present the
manifold invariants without having to consider the quantum group SU(2), at all.

Satellites. Where a link P is given which has one distinguished unknotted com-
ponent, the remaining components form a closed tangle relative to the distin-
guished component as axis. The tangle can then be used as a pattern to form
satellites of given companion knots or links, based on the pattern P. The relation
between the invariants of the companion, satellite and pattern is summarised in
the next theorem, from [MS].

Theorem 1.1. Let P be a pattern link with k components, with one dis-
tinguished unknotted component. There is a A-linecar map G : RO®F-D L R
such that any satellite K formed from a companion C' using P as patlern has
mvariant

J(K)=J(C)oG.

Proof: This is given in [MS] by constructing G in terms of the basis of irreducibles
for R. If C' has more than one component then G is used on that component
which 1s to be embellished by the pattern. O

Remark. Although it is not initially clear that the ring A can be used without
extension to permit some denominators, this follows by working with the basis of
powers of W, and using the skein relations for the bracket polynomials on the
resulting tangles in the construction of G.

The pattern link P itself can be considered as a satellite of the Hopf link H
using P as pattern, so that

J(P)y=J(H)o(G®idg)-
The map G can then be recovered from the invariants J(H) and J(P).

We always assume that we are considering links with a given choice of fram-
ing, and that when satellite and parallel constructions are made they respect the
framing. It is easy to calculate the change which takes place in the invariant when
the same underlying link is used, but the framing on one or more components is
altered.

Theorem 1.2. There 15 a linear isomorphism F : R — R which can be used
on the copy of R corresponding to one component, L; say, of L before applying
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J(L), and will then give the invariant J for the link whose framing on L; has
been increased by one.

Proof: 1t is known [KR] how the framing change on a component affects the
invariant when an irreducible is selected in R for that component. This determines
the map F explicitly by F(W;) = f;W; where the ‘framing factor’ f; is given by
fi= (=1t O

Remark. We retain the sign in f; as in [KR] and [MS]. Kirby and Melvin use
a variant where the sign does not appear, but this needs a little caution in in-
terpreting the relation with the bracket polynomial. One source of signs can be
accounted for by considering —W, in place of Wy as the polynomial generator for

R.

2. Roots of unity

We now consider the behaviour of J when the variable ¢ in A is specialised to be
an 7th root of unity. We shall suppose that g*/* is a primitive 4rth root of unity,
and we consider the ring A, given by factoring out the cyclotomic polynomial
¢4r generated by the 4r-th root a in A = Z[a*!]. We then have a specialisation
homomorphism e, : A — A, = A/ < p4r(a) >.

Proposition 2.1.  For any link L the evaluation e (J(L;W;,..., Wi )) =0
if Wy, =W, forany j.

Proof: For each j we can find A; € A such that J(L;W;,...,W;) = A6,

TR ¥
where 6; = (—1)""" " as in [MS]. Now e.(§,) = 0. O

_a_z ’

Corollary 2.2. If V; € R lies in the ideal generated by W,., for some j, then
er(J(L;V1,..., Vi) =0.

Proof: Without loss of generality we may consider the case where k£ = 1, and
V =W,V with V' ¢ R. Then

e (J(L; V) = e (J(LP; W,, V') = 0.0
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Notation. Write W, = A,(W2) as a polynomial in W3. The polynomial A,
satisfies A,.(2cos8) =sinré/sinf, and is closely related to the Tchebychev poly-
nomial T} with 7.(2cosf) = cosré.

Write Ry = (R®A)/< Wy > =2 A [Wa]/< A(W2) >, and write pr : R = Ry
for the projection. The ring R, is known as a Verlinde algebra; similar algebras
may be defined for representation rings of other simple Lie groups.

We shall extend the definition in R to allow W; with i < 0 by setting W_; =
—Wp for k > 0. Multiplication in R can then be described simply, for 7,7 > 0 as

i+ji—1 jti-1
W= S W= 3 W
k=i—j+1 k=j—i+1

where the sum is in steps of 2, [MS], since the excess terms in one of these sums
will cancel. (Under a suitable convention for sums, the same result holds for all
i,7.) It then follows that

(Wj+1 —Wi_ )W, =Wy, + W,—j, forall r,j.

Proposition 2.3. The invariant J(L) : R®* = A induces a A, -linear map
J(L): R®* — A, with e, 0 J(L) = J.(L)op®*.

Proof: The map e, o J(L) is zero on the kernel of p®* | by corollary 2.2. N

Proposition 2.4. The isomorphism F : R — R induces F.: R, — R, such
that F.op, =pro F.

Proof: We must show that p, o F' is zero on the ideal generated by W,. This
ideal is spanned by the elements W, and

(Wj+1 - Wj_l)W,- = W,-_j + W-,-+J‘ for j € N.

Now

bro F(Wr) = frPr(Wr) =0
and
Py O F(WT‘—J + W’r‘-l-j) = p, ((_1)T—j—1a(f‘—j)2_1wr_j + (_1)T+jﬁla(r+j)2_.lwr+j)
= (~1)" e (@M p (W) + a2 pe (Wit ) = 0
as pr(Wr_;) = —pr(W,4;) and e (a?”) = 1. O
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Notation. We abuse notation by writing W; for p,.(W;) € R,.. We shall write
t 3@k for ¢, 3, k betweenn 1 and r—1 to mean that W; has non-zero coefficient
in the product W; ® W; in R,..

Then we have
Lemma 2.5. jei@kskeci®y.

Proof: We have W,y , = —-W,_, in R,.. Thus

W@ W, = Z W;
[i—k[4+1

where m = min(i + k£ — 1,2r —i — k — 1), and the sum runs in steps of two. If we
let & =(—1)/2, 8=(j—1)/2 and v = (k—1)/2 then the condition for W; to
be a summand of W; ® W}, is that «, # and -y form the sides of a triangle, with
perimeter an integer less that r» — 1. Since this is clearly a symmetric condition
the lemma is proved. O

Note: In the case of a deformation of a general simple Lie algebra, the statement
would need to be altered to allow for multiplicities, and for the fact that conjugate
representations enter in.

We may now use the reduced invariants J.(L) of framed links L, which
can be calculated from their standard SU(2), invariant J(L), to determine the
Reshetikhin-Turaev invariant of the manifold given by surgery on L. We construct
U € R, so that the invariant in A, is a simple multiple of J.(L;U,...,U).

Write M3(L) for the manifold constructed from a framed link L by surgery.

Theorem. (Kirby, Fenn-Rourke)

1 Bvery closed oriented M® arises in this way.

2 There 1s an orientelion preserving homeomorphism M3(L) = M*(L') if and
only of L,L' are related by a sequence of Kirby moves.

Kirby moves are of two types, shown in figure 1.
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L — ¢ +(L)

Figure 1

Remark. Fenn and Rourke [FR] showed that Kirby’s original moves could be
reduced to these.

In all diagrams we shall use the convention that the link is framed with the
planar framing, i.e. the chosen parallel is given by the edge of a ribbon following
one side of the curve in the plane of the diagram.

To a framed oriented link L = Ly U Lo U ... U Lg we can associate a quadratic
form with k x k matrix (;;) where

£;; = Wk(Li, Lj), i # 7,
£;; = framing on L;.

Write sig(L) for the signature of this form. (This is not generally the signature

of the link L in the usual sense.)
Then sig(L) is independent of the choice of orientation of L, and

sigpy(L) = sigL F 1.

Invariants of M*(L)

For each root of unity a, find ¢(a), T7.(a) € A, for each L, such that

T‘P+(L) = (a)Ty,
Tp_(zy = (c(a)) ™' T
Then Z(M) = ¢(a) SIE LTy, depends only on M(L).
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To demonstrate independence of the invariant on the choice of framed link it is
sufficient to ensure that it is unaltered by the Kirby moves. We must then compare
the invariants of the two links L and @ (L).

The pattern determined by the tangle T defines G : R®*! — R. For a
fixed assignment of elements Vi,...,Vi_1 of R to the strings of T write X =
G(V1,...,Vik_1). The satellite formula then shows that, for a choice of element
Y € R on the unknotted component of the first link, this link has invariant
J(H; FP(X), F(Y)). This must be compared with the invariant of the second link,

which is J(O; X) = J(H; X, W), where O is the unknot, as indicated in figure 2.
X Y X

>0 O

Figure 2
The reduced invariants of the two links will then be J.(H; F.(X), F;(Y')) and
J(H; X, W1).

Notation. Write < , >, for the bilinear form on R, determined by J.(H) as
<V\W >, =J.(H;V,W).

Theorem 2.6.  The element U = 3.1 §;W; € R, satisfics
<F(X),Fo(U)>r=c4< X, W1 >,
< F7HX),F7NU) >r = c_< X, W1 >,
for every X € R,, where c;. =Y, f;63, and c_ =4 € A,.

Notation. Write ¢y = p(a)c(a) with p(a) > 0 and |¢(a)] = 1.
Remark. The element c(a)? turns out to be the power a™ ~7=% of a.

Corollary 2.7.  The element p(a)_kc(a)Sig(L)Jr(L; U,...,U) depends only on
the manifold given from the k component framed link L by surgery, where sig(L) is
the signature of the quadratic form determined by the linking numbers and framings
of L.




Proof: Take Tp, = Jo(L; p(a)™1U,..., p(a) " 'U) and use theorem 2.6 to compare
the invariants arising from L and ¢4 (L). O

Remark. Apart from a factor of ¢(¢) this gives the invariant of Reshetikhin
and Turaev, Kirby and Melvin use exactly this normalisation, which ensures that
oppositely oriented manifolds have conjugate invariants.

We shall give the proof of theorem 2.6 shortly, in the context of further prop-
erties of F. and < , >, leading to a means for finding the invariant for the
manifold given by general Dehn surgery on a link in terms of the invariant of the
link.

It is helpful to view each copy of R, associated to a link component as de-
pending on a choice of parallel and meridian for the peripheral torus. The auto-
morphism F, corresponds to altering the choice of parallel, by Dehn twists about
the meridian, to allow for integer framing change when calculating the invar-
ant of the link exterior. We use the bilinear form < , >, to construct another
automorphism which will correspond to a Dehn twist about the parallel.

We shall prove

Theorem 2.8. For any X € R, we have
<X, U >, =< F,(X),U >,.

Theorem 2.9. The symmetric bilinear form < |, >, 1s non-degenerate. Iis
matriz H, relative to the basis of irreducibles Wy, ..., W,_1 satisfies
H? = p(a)’I.

Definition. We may then define ¢, : R, — R, to be the adjoint of F,., that is
<F.(X),Y > =< X,9,.(Y) >, forall X,Y.

The matrices of F,. and ®, in the basis of irreducibles are then related by
$,.=H- 1F.H,. This necessitates extending the coefficient ring A, to include an
inverse for det(H); making 2r invertible will be sufficient, as we shall see in the
proof of theorem 2.9. In order to include p(a) and ¢(a) we also need the square
root of two, or equivalently of ¢; one possibility would be to take A, to be the
cyclotomic field generated by the 8rth roots of unity.
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Corollary 2.10. The element U is an eigenvector of &, with eigenvalue 1.

Proof: We have < X,U >, = < F.(X),U >, = <X,®,(U) >, for all X, so
U=2a,.U). 0

Remark. From theorem 2.6 we have cy < X, W) >, = < Fi(X), F(U) >, =
< X,®,F,(U) >, so that ®,F.(U) = ¢, W1. This could be used as a definition of
U.

Proof of theorem 2.6: To give a self-contained argument we shall work in coor-
dinates relative to the basis of irreducibles in R,. Let X have coordinate vector
x = (z1,...,2,—1). Now U has coordinate vector 6 = (é1,...,8,—1) which is also
the first column of the matrix H, so we must show that

xTF.H, F.6 = c %% 6,

for all x.
Tt is then enough to show that the vector § = (61, 82,...6-_1) is an eigenvector
of the matrix F,.H, F, with eigenvalue ey = ’1"_1 frb2.
The ijth entry of Hy is given by Y faf; ' fi 6.
kEi®]
r—1
So the ith entry of F.H,.F.6 is Z Z fréxdj. By lemma 2.5, we can re-
=1 k€i®j

arrange this sum as
r—1 r—1
S febe Y 5= febububi = c16i,
k=1 jEIRk k=1

and the result is proved. B B
_ Conjugation gives the other half of the result, since § = § and H, = H, while

F,=F'and ¢y =c_. a

We can represent theorem 2.6 diagrammatically by figure 3.
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. (O
X
e. O
Figure 3

As noted before theorem 2.6, it then follows from the satellite formula that the
invariants of the two links L and o4 (L) are the same, up to the factor c;, when
U is used on the unknotted string, with the same assignments made to the strings
of the tangle T in each case.

e

X

O’\/DCXD . GD
o0 - y

Figure 4

-

c

@)

(

Proof of theorem 2.8: Apply this result to the link shown in figure 4 in which each
component labelled with the element U plays the role of the unknotted curve in

turn, for a suitable choice of T, gives two links with the same invariant, one being
< X,U >, and the other < F.(X),U >_. N

The original proof of theorem 2.9, which we give here, relies on explicit knowl-
edge of the entries in H,., and follows the details in [S]. A similar technique has
also been used to show that (H,.F,)? is a scalar matrix. In the next section we give
a more diagrammatic argument for these results, using connected sums of links,
and the other results of this section.

Proof of theorem 2.9: As shown in [MS], the invariant J(H;W;, W;) of a Hopf
link labelled by irreducibles W; and W; is
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H;; = (_1)‘i+jfij___ﬂ

— )
s — s 1

where s = a*®. Let c¢i be the general entry in H2, then

r—1
(_1)i+k(5 . S_I)ZCik — Z(Sij _ s—ij)(sjk _ S—jk)
=1

r—1 r—1
— Z(3i+k)j n (S—(i-l-k))j _ Z(Si—k)j + (S—(i—k))j.
1 1
Writing z1 = s'1F, 23 = s*=% we have
r—1 ) . r—1 . . r—1 ) ]
Yo H-) =) (A+a) =D (At b~ 25+ 2 —
j=—(r-1) Jj=1 =1

=(s—s e + (1) — (1) 7*
=(s— .5_1)2cik.
Now the sum of any 2r consecutive powers of a 2rth root of unity, other than 1,
is zero; and zz = 1 exactly when ¢ = j, whereas z; # 1. Then
L B 0 i j
1yt _ 1N2 . — »
O Rt s
—2
This shows that H2? = (—%I . We can now use the proof of theorem 2.6 to
8—8
identify the scalar with p(a)?. For we have F.H, F.§ = cy$ and FT1H . F716 =
c_6. Tt follows that
FHIFTYS = cpe b = p(a)?s.
_ —2r —2r
On the other hand, FL HZF ! = (s—_.s"l—)EI’ and so p(a)? = G com-
pleting the proof. O

3. Modular group

In this section we shall show that F,. and ®,, as automorphisms of R,, obey

the same relations as the generators (é i) and (_} (1)) of SL(2,Z}, up to

multiplication by powers of the scalar ¢(a)?, giving us a ‘projective’ representation
for the modular group PSL({2,Z) on R,. As John Humphreys has pointed out, one
could easily make this a genuine representation of a central extension of PSL(2,Z)
by an element whose 4rth power was the identity.

Theorem 3.1.  The automorphisms F,. and @, of R, satisfy
F.¢,.F,=¢,.F.®,.
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Theorem 3.2.  The automorphism (Fr.®,F,)? is scalar multiplication by c(a)’.

These two results will follow by establishing

Proposition 3.3.  The mairices H, aend F, satisfy
(H,F,)? = cyp(a)’I = p(a)’c(a)].

Proof of theorem 8.1: Using the matrices in the basis of irreducibles, we have
F.$.F.=F.H'F.H,F,
= p(a)2F,H,F,.H,F, by theorem 2.9
= ¢, H ' by theorem 3.3

and

$,.F,®, =H 'F.H F.H 'F.H,
=p(a)"*H'F,H F,H.F.H,

=cy  H.
O
Proof of theorem 3.2: Again using the matrices we have
(F.®,F,) = F,®,F,8,.F.%,
= () (F,H,)°
= p(a)~%(p(a)*c(a))*T
= ¢(a)*I.
t

In order to prove proposition 3.3, we will use the work of the previous section,
together with the following result on the invariant of a connected sum of two links;

Lemma 3.4. Let K=K U...UKp and let L =Ly U... UL, be two framed
links. Let W be any irveducible representation of SU(2)g, and let L#K denote the
connected sum of L and K along the first components of L and K. Then

J(L;W’,Xg,...,Xm)J(K;W,E,...,Yn) = bw I (LH#IKW, Xo, . .. s X, Y2, .., Yn)
for any X; end Y; in R.
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Proof: Present K and L as the closures of 1-1 tangles .S and T on the first strings;
then the connected sum will be the closure of the tangle ST. By Schur’s lemma,
the invariants of S and T are scalars ¢ and 7 say times the identity map on W.
The invariants of K, L and K#L are then oéw , 7éw and ordw respectively,
proving the lemma. O

Figure 5

Proof of proposition $.8: The ijth entry, b;; say, of the matrix H.F, is
J(H; Wi, F.(W;)). This is the SU{(2), invariant of a Hopf link with a positive
twist on the second component, and labelled by representations W; and W;, , as
shown in figure 5. Let T;;x be the invariant of the link shown in figure 6, with
elements W;, W; and Wy assigned to the components as shown. Regarding the
link as the connected sum of two links shows, by lemma 3.4, that §;T;;1 = bi;bjz.

The ikth entry, c;x say, of (H,F,)? is then ZI_I 85Tk

O

Figure 6
We may rewrite this sum as the inva,rla,nt of the same zonent link, in which the
central component has the element 7~ 1 6;W; = U attached, while the other two
strings have W; and W}, respectively. Make a positive Kirby move on this central
string, to get a new framed link Z, as in figure 7, and then ¢y = ¢y Jo(L; Wi, Wy),
by theorem 2.6. Now L is a Hopf link, with altered framing, and its invariant
Jo(L; Wi, W) = J.(H; FH(W5), Wk) is the skth entry of F, 1 H,.

Then (H,F,.)* = ey F7 H,, giving (H,F,)* = e;p(a)*l. 0
W Q U W, Wy
—— C+
Figure 7

We now give an alternative proof of theorem 2.9, using the same methods.
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This proof does not use explicit knowledge of the Hopfl link invariants, and can
be modified to give a similar result for other quantum groups, with a permutation
matrix (of order 2) in place of the identity.

Alternative proof of theorem 2.9: As in the proof of 3.3, we can write the ikth
element, c;x, of HZ as the invariant J,(L; W;, U, W3) of a 3-component link, which
is the connected sum of two Hopf links, this time with zero framing on all compo-
nents, as shown in figure 8.

D - 6o

Figure 8
Now this 3-component link is the 2-parallel of a Hopf link, in which one of the
components is replaced by two, carrying the elements W; and W;. By the result
for invariants of parallels, we can then write

cik = Jo(L; Wi, U, Wie) = J(H; WiWa, U) = Y Jo(H; W;,U).
JEiRk

Since 1 € 1 @k if and only if ¢ = &, for 1 < ¢,k < r — 1, it is enough to show
that J.(H;W;,U)=0when 1 < j <r —1, giving ¢;x = 0 for i # k and H? =
J(H; W, U)I. Now J.(H;W;,U) = J.(H;F(W;),U) = e.(f;)J.(H; W;,U),
using theorem 2.8, and e,(f;) = @’ 1=1in A.for j <r—1if and only if j = 1,
at least for r prime. An explicit proof that J.(H; W;,U) = 0 for 5 # 1 is needed
to complete the proof in general by this method.

As for the earlier proof of theorem 2.9, it now follows, knowing that H? is a
scalar matrix, that the scalar is p(a)?. This gives another calculation for p(a)?
since J.(H;W1,U) = z;:ll 8%, which is clearly the product of the first row and
column of H,. |

For general simple Lie algebras, and hence for their quantum groups by [Ro],
it can be shown that if U, V and W are three irreducible representations, then
U is a summand of V @ W if and only if V1 is a summand of W ® UT, where
T denotes the conjugate representation. Thus the one dimensional representation
will be contained as a summand of V ® W exactly when V and W are conjugate.
In the case of quantum groups having representations which are not self conjugate
(so that the invariants are orientation dependent), this has the consequence that
the matrices H, do not square to a scalar, but to a multiple of the permutation
matrix P, which interchanges conjugate modules. On the other hand, it is still
true that the universal module is a scalar times the sum of §ywW as W runs over
the relevant irreducibles; this follows because the é for W is identical to that for

WTL, as changing the orientation of an unknotted component does not alter a link.
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In particular, following the proof of theorem 3.3 will show that (H,F;)® is now a
multiple of P,.. It can be seen that the theorems 3.1 and 3.2 will also go through
for other quantum groups, as P, commutes with H, and F.., and hence does not
affect the proof in any essential way.

4. General Dehn surgery

In the final section we indicate how the modular group action allows us to han-
dle the manifold invariant for a manifold given from a framed link L by general
Dehn surgery. The principle adopted is to regard the invariant J,.(L) of a link as
an invariant of a 3-manifold with boundary components which carry a choice of
parallel and meridian. In the spirit of Segal’s views of Witten’s work it is appro-
priate to think of the map J.(L) : R®* — A, as determined by the link exterior;
each boundary component, with chosen parallel and meridian coordinates, having
associated with it a copy of R,. Ewvaluation of J.(L) at W, € R, for a given
boundary component gives the invariant of the link with that boundary compo-
nent removed, and can be thought of as the manifold given by attaching a solid
torus whose meridian disc spans the meridian of the boundary torus.

To perform any other surgery, say on a (p,q) curve (relative to the meridian
and parallel coordinates on L), we apply an automorphism of the modular group,
as represented by F, and ®, on R,, to the appropriate copy of R, which will
carry the meridian (1,0) to the (p, ¢) curve before evaluating J.(L) at Wr. Thus
the invariant of the new manifold, with one fewer boundary component, might be
expected to be given by evaluating J,.(L) on an element M, /, = 8,/,(W7). In this
notation we should write W, = M.

While there is some choice of automorphism to carry the meridian to the (p, ¢)
curve there will be no ambiguity, apart from powers of ¢(a), in the choice of
M, 4 because the automorphisms will differ on W; by an automorphism which
carries the meridian to itself. These automorphisms are represented by powers
of ¥, and F,.(W1) = W;. The precise choice will be governed by the fact that
the signature of the generalised linking matrix of L, whose diagonal entries are
now possibly fractional framings, may be changed under the third Rolfsen move
described below; and this will affect the calculation of corollary 2.7.

We take the following to constitute the exact definition of M|, for each «. First,
define M, = Wi, and then let

Fr(Mo) = Moy,
o . o
B ()= { Mooy B S with o =
®, (M) = c(a) Mo
®,(Ms) = cla)M_;
To show that this leads to a well-defined choice, we must prove that
3,F.8,(M,) = F,8,F(M,) and
(F.®.F,)*(M,) = c(a)* M,
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for all . To do this we shall temporarily allow F and & to stand for their coun-
terparts in PSL(2,Z) acting on QP', so that we can represent the two products
above by

3 e F 1 & 1

o — — —— — - —
1—a l—a o

o T ap1 W% elor L
—« @

The second route will give rise to a factor of ¢(a)? exactly when o > 0 (oo is
neither positive nor negative).The first route will do the same if @ > 1 (on the
first application of @) or 1 > a > 0 (on the second); if & = 1, the factor will also
arise in two halfs. For @ = 00 or 0, either route introduces a factor of ¢(a).

For the second identity above, we follow the second route throughout. If « is
finite and non-zero, then exactly one of @ and —% is positive, so the factor ¢(a)?
comes in; for a = 0 or oo we get two separate factors of ¢(a).

Definition. A 3-manifold is said to be given Dehn surgery on a framed k-
component link L, with surgery coefficients (a@y,...,ax),a; € QU {co}, when
it 1s constructed by gluing a solid torus to each boundary component of the link
exterior along a curve of slope «; relative to the meridian and chosen parallel for

the zth component.

Thus slope oo will always refer to the meridian, while slope 0 will give the
parallel chosen by the framing,.

Rolfsen [R] shows that if two oriented manifolds given by Dehn surgeries on
links L, L' are homeomorphic then L and L' are related by a sequence of moves of
three types. (Rolfsen only used framing zero, but the modifications for arbitrary
framing are straightforward.)

I. Change the framing, and the surgery coefficients so that the underlying link
and surgery curves are unchanged. This has the effect of adding or subtracting an
integer to the surgery coefficient when the framing is changed on a component.
II. Add or remove a component with surgery coefficient co.

A

Figure 9

D)

Cé‘
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ITI. Replace a link L which has one distinguished unknotted component of fram-
ing 0 by L' as shown in figure 9. The framing in each diagram is planar (so that
the framing on components has been changed depending on their linking number

with the unknotted curve) and the surgery coeflicients are unchanged on all except
le’

the unknotted component, where the coefficient o' becomes o = o
o

Theorem 4.1. Let a closed §-manifold be given by Dehn surgery on a
framed k-component link L with surgery coefficients oy, ..., ar relative to the fram-
ing coordinates on L. Then the tnvariant of the manifold can be calculated as
c(a,)Sig(L)Jr(L; My,,..., My,), where sig(L) 13 calculated as the signature of the
linking matriz with the absolute surgery coefficients (i.e. relative to the topolog-
ical framings) down the diagonal, omitling any components with infinite surgery
cocfficients.

In. order to prove this result, we will need the following lemma

Lemma 4.2. Let A and A' be the k X k mairices

a I7 d o 2r
¢ B o ¢ B-u"
where o = 72—, a # 1 and £ and B are (k—1)x 1 and (k—1) x (k — 1) mairices

1—a?
respectively. Then the signatures of these matrices are related by

sig(A) = sig(A") + sign(a) — sign(a’).

1 0
—a7¢ T

T 4 0

So sig(A) = sign(e) + sig(B — o~ 14T). Similarly, sig(A’) = sign(a/} + sig(B —
26T — o/~ 12¢7). But 14+ ™! = a1, so the last term in each of these expressions
is the same, proving the lemma for a £ 0.

When a = 0, we take P = (_111;, ?), so that PAPT = A’, completing the
2
proof. O

Proof: Let P be the matrix ( ); then, for o # 0,

Proof of theorem 4.1: We use Rolfsen’s moves on framed links to pass between
surgery descriptions of a manifold.

It is readily seen that the first two moves leave the invariant unaltered, since
with the definitions chosen My, = W; has the effect of ignoring a component,
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while the reframing works because F.(M,) = My41. Neither of these affect the
generalised linking matrix.

When move I1I is applied the two links L and L' will yield invariants
< X, My >, and < F.(X), My >, for some X, by the satellite theorem. Now

< F(X), My >, =< X,2,(M,) >,

by the adjoint property of F}. and ®,, and we have ®,.(My) = My (up to powers of
¢(a)). Any discrepancy in the power of ¢(a) is compensated for by a change in the
signature of the generalised linking matrix, as follows. Let A and A’ be the matrices
for the two links in figure 9; then these are related as in lemma 4.2. For a < 1
we have sign(a) = sign(a’) and ®,(My) = My For @ > 1 we have sign(a) =
sign(a') + 2, compensating for the fact that ®.(My) = c(a)’My. Finally, for
a =1,a' = co the method of the lemma shows that sig(4) = 1+sig(B —£¢7); and
for @ = c0,a’ = —1 we have sig(A’) = —1 + sig(B), which deals with the special
cases. O

We have been able to make some calculations for lens spaces given both by
framed surgery on torus knots, and also by Dehn surgery on the unknot, which
confirm the above result.
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