
Actions with Durations and Failures in BDI Languages1

Louise A. Dennis and Michael Fisher2

Abstract. BDI programming languages provide a well developed
route to implementing intelligent agents. However, as such agents are
increasingly being used in physical environments their treatment of
external actions needs to be improved. In this paper we describe a
mechanism for handling actions which have durations and failures.

1 Introduction
BDI (Belief-Desire-Intention; [3]) languages typically model interac-
tion with the external environment either as an action or as a capabil-
ity. It is generally implicitly assumed that these do not take long and
usually execution of the program waits for them to complete before
processing other intentions, goals and plans.

Agents are increasingly being used as the discrete components of
hybrid systems. In these situations real actions may actually take con-
siderable time to complete. Therefore, we do not want the agent pro-
gram to suspend, but to continue operating, in order to perform er-
ror monitoring etc. Although ad hoc solutions to this problem exist,
these frequently involve treating the action/capability as the initia-
tion of an interaction with the environment. Perception is then used
to judge when the interaction has concluded. Furthermore an action
may need to be aborted while it is still executing.

Several life-cycles for goal processing in BDI agents have been
proposed. It is agreed that goals need to transition through a number
of states, including a Suspend state in which execution of any plans
associated with the goal is halted and an Active state in which the
goal is being processed. We adopt the semantics presented by Har-
land et al. [2] This semantics provides a comprehensive account of
the goal life-cycle presented in the generic CAN (Conceptual Agent
Notation) formal system [4] which we also adopt here.

Goals are represented as a tuple, 〈I,G,Rules, State, P 〉 where I
is a unique identifier for the goal, G is the goal type (a (achieve), m
(maintain), p (perform) or t (test)),Rules are a set of condition-goal
action pairs. These govern how the goal moves between states. State
is the current goal state andP is the current plan body associated with
the goal (if any). Further, ε indicates the absence of any plan body,
nil a trivially successful plan and fail a trivially unsuccessful plan.
Harland et. al [2] assume that means-end reasoning is employed to
select plan bodies. In our semantics for the addition of capabilities to
this framework we will sometimes choose to specify the outcome of
this means-end reasoning.

This paper is a shortened version of [1].

2 Adding Capabilities to the Goal life-cycle
We treat actions as capabilities and represent them as a tuple
〈C,Pre, Post, φs, φf , φa〉, where C is an identifier for the capa-
bility, Pre and Post are pre- and post-conditions, and φs, φf and
φa are logical conditions for when the capability has “completed and

1 Work funded by EPSRC Project EP/J011770: “Reconfigurable Autonomy”
2 University of Liverpool. email: L.A.Dennis@liverpool.ac.uk

succeeded”, “completed and failed”, or is “ongoing but in need of
an abort”. We will, for convenience, refer to a as C, and where rele-
vant to its components as Pre(C), Post(C), etc. Where a capability
has a non-trivial abort condition we will assume it also has a paired
capability, abort(C). We want condition-goal action rules that are
active only while an interaction is being undertaken. Therefore we
partition the set, Rules, into 〈R,RC〉 where RC is a dedicated set
of condition-goal action rules associated with some capabilityC. We
use the notation a;P to indicate the sequential composition of some
activity and a plan. HenceC;P indicates that capabilityC is the next
activity in some plan.

B |= Pre(C) do(C)

〈B,G ∪ {〈I,G, 〈R, ∅〉,Act, C;P 〉}〉 −→
〈B,G ∪ {〈I,G, 〈R, {〈φs(C), reactivate〉,

〈φf (C), reconsider〉, 〈φa(C), reactivate〉}〉,Ssp, C;P 〉}〉
(9)

Rule (9) adapts [2]’s semantics for the suspension of an active goal.
We suspend the goal and add a set of rules which govern how the
agent should react to success, failure or abort conditions. do(C) rep-
resents the activation of control systems to execute C.

Both success and abort states cause the goal to be reactivated.
In [2] reactivation of a goal causes it to move to the Act state and
replaces its plan body with ε (no plan). We specialise this rule.

〈φs(C), reactivate〉 ∈ RC B |= φs(C))

〈B,G ∪ {〈I,G, 〈R,RC〉,Ssp, C;P 〉}〉 −→
〈B ∪ Post(C),G ∪ {〈I,G, 〈R, ∅〉,Act, P 〉}〉

(10)

Rule (10) controls the successful conclusion of a capability.

〈φa(C), reactivate〉 ∈ RC B |= φa(C)

〈B,G ∪ {〈I,G, 〈R,RC〉,Ssp, C;P 〉}〉 −→
〈B,G ∪ {〈I,G, 〈R, ∅〉,Act, abort(C); fail〉}〉

(11)

Rule (11) handles aborts.

〈φ, reconsider〉 ∈ RC B |= φ

〈B,G ∪ {〈I,G, 〈R,RC〉,Ssp, C;P 〉}〉 −→
〈B,G ∪ {〈I,G, 〈R, ∅〉,Pnd, ε〉}〉

(12)

Rule (12) covers the case where the capability completes but with
failure. In the Pnd state goals are explicitly under consideration for
either adopting and pursuing, or dropping.

3 Semantics in Action: A Simple Example
Consider a simple wheeled robot with two capabilities, turn(θ)
(which turns through an angle, θ) and a move(D) which moves for-
ward a distance, D. Below is a simple move(D) capability.

〈move(D), at(X,Y ) ∧ angle(θ),>,
¬motors on ∧ at(X +Dsin(θ), Y +Dcos(θ)),
¬motors on ∧ ¬at(X +Dsin(θ), Y +Dcos(θ)),⊥〉



Beliefs Goal

{at(0, 1), angle(0)} 〈r02 ,a, 〈∅, ∅〉,Act,move(1 )〉 (1)

{at(0, 1), angle(0),motors on} 〈r02 ,a, 〈∅, {〈¬motors on ∧ at(0, 2), reactivate〉, (2)

〈¬motors on ∧ ¬at(0, 2), reconsider〉}〉,Ssp,move(1 )〉
{at(0, 2), angle(0)} 〈r02 ,a, 〈∅, ∅〉,Act, nil〉 (3)

{at(0.25, 0.3), angle(0)} 〈r02 ,a, 〈∅, ∅〉, reconsider, ε〉 (4)

Figure 1. Execution of a Wheeled Robot Agent with a simple Move capability

Beliefs Goal

{pp(0.5, 1.5), cp(0.6, 1.6), angle(90),motors on} 〈r02 ,a, 〈∅, {〈¬motors on ∧ at(0, 2), reactivate〉, (5)

〈¬motors on ∧ ¬at(0, 2), reconsider〉,
〈pp(X ′, Y ′) ∧ cp(X ′′, Y ′′)∧√

X ′2 + (2− Y ′)2 >
√
X ′′2 + (2− Y ′′)2, reactivate〉}〉,

Ssp,move(1 )〉
{pp(0.5, 1.5), cp(0.6, 1.6), angle(90),motors on} 〈r02 ,a, 〈∅, ∅〉,Act, abort(move(1 )); fail〉 (6)

{pp(0.5, 1.5), cp(0.6, 1.6), angle(90),motors on} 〈r02 ,a, 〈∅, {〈¬motors on, reactivate〉}〉,Ssp, abort(move(1 )); fail〉 (7)

{pp(0.5, 1.5), cp(0.6, 1.6), angle(90)} 〈r02 ,a, 〈∅, ∅〉,Act, fail〉 (8)

Figure 2. Execution of a Wheeled Robot Agent with a Move capability with an abort condition

This precondition determines the location of the robot and the direc-
tion it is facing. We assume perception informs the agent when its
motors are engaged (motors on). It has no abort condition.

The agent’s goal is to reach (0, 2) identified as, r02 . The agent’s
initial belief base is {at(0, 1), angle(0)}. As a result of means-end
reasoning it adopts the plan move(1 ). The agent state at this point
is shown in (1). For presentational reasons we have split the tuple
〈B,G〉 and only show the single goal we are interested in, not the
set of all goals. After (9) fires, the motors are engaged, and the goal
is suspended. The new state is shown in (2). Beliefs continue to be
updated via perception. Eventually the agent believes at(0, 2) and no
longer believes motors on . (10) fires and the agent is in state (3).

If the robot at (0.25, 0.3) when the motors stop, the agent transi-
tions using (12) to (4).

We add two beliefs, cp(X,Y ) and pp(X,Y ) – the agent’s current
and previous position – and an abort condition and capability:

〈move(D), at(X,Y ) ∧ angle(θ),>,
¬motors on ∧ at(X +Dsin(θ), Y +Dcos(θ)),
¬motors on ∧ ¬at(X +Dsin(θ), Y +Dcos(θ)),
motors on ∧ pp(X ′, Y ′) ∧ cp(X ′′, Y ′′)∧√

(X +Dsin(θ)−X ′)2 + (Y +Dsin(θ)− Y ′)2 >√
(X +Dsin(θ)−X ′′)2 + (Y +Dsin(θ)− Y ′′)2〉

〈abort(move(D)),motors on,>,¬motors on,⊥,⊥〉 (13)

If the agent’s state is that shown in (5), it transitions, via (11),
to (6). The abort capability is invoked and (9) transitions the agent
to (7). Assuming the motors stop this will then transition to (8).

4 Conclusion
We have argued that BDI representations of interactions with the en-
vironment need to account for actions taking time to complete and
aborts. We have extended the semantics for the life-cycle of goals
presented in [2] to show how the declarative representation of capa-
bilities with durations, failures and aborts can be integrated with this
semantics.

REFERENCES
[1] Louise A. Dennis and Michael Fisher, ‘Actions with durations and fail-

ures in bdi languages’, Technical Report SomeNumber, University of
Liverpool, (2014).

[2] J. Harland, D. N. Morley, J. Thangarajah, and N. Yorke-Smith, ‘An Op-
erational Semantics for the Goal Life-Cycle in BDI Agents’, Auton. Ag.
and M.-Ag. Sys., 28(4), 682–719, (2014).

[3] A. S. Rao and M. P. Georgeff, ‘An Abstract Architecture for Rational
Agents’, in Proc. 3rd International Conference on Principles of Knowl-
edge Representation and Reasoning (KR), pp. 439–449, (1992).

[4] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah, ‘Declarative
Procedural Goals in Intelligent Agent Systems’, in Proc. KR&R, pp.
470–481, (2002).


