Evolution and functional diversity of the Calcium Binding Proteins (CaBPs)



Haynes, Lee P ORCID: 0000-0002-1296-0338, McCue, Hannah V and Burgoyne, Robert D ORCID: 0000-0002-9219-0387
(2012) Evolution and functional diversity of the Calcium Binding Proteins (CaBPs). FRONTIERS IN MOLECULAR NEUROSCIENCE, 5 (FEBRUA). 9-.

Access the full-text of this item by clicking on the Open Access link.

Abstract

The mammalian central nervous system (CNS) exhibits a remarkable ability to process, store, and transfer information. Key to these activities is the use of highly regulated and unique patterns of calcium signals encoded by calcium channels and decoded by families of specific calcium-sensing proteins. The largest family of eukaryotic calcium sensors is those related to the small EF-hand containing protein calmodulin (CaM). In order to maximize the usefulness of calcium as a signaling species and to permit the evolution and fine tuning of the mammalian CNS, families of related proteins have arisen that exhibit characteristic calcium binding properties and tissue-, cellular-, and sub-cellular distribution profiles. The Calcium Binding Proteins (CaBPs) represent one such family of vertebrate specific CaM like proteins that have emerged in recent years as important regulators of essential neuronal target proteins. Bioinformatic analyses indicate that the CaBPs consist of two subfamilies and that the ancestral members of these are CaBP1 and CaBP8. The CaBPs have distinct intracellular localizations based on different targeting mechanisms including a novel type-II transmembrane domain in CaBPs 7 and 8 (otherwise known as calneuron II and calneuron I, respectively). Recent work has led to the identification of new target interactions and possible functions for the CaBPs suggesting that they have multiple physiological roles with relevance for the normal functioning of the CNS.

Item Type: Article
Additional Information: Haynes, Lee P McCue, Hannah V Burgoyne, Robert D Switzerland Frontiers in molecular neuroscience Front Mol Neurosci. 2012 Jan 23;5:9. Epub 2012 Feb 21. ## TULIP Type: Articles/Papers (Journal) ##
Uncontrolled Keywords: calcium, Calcium Binding Protein, bioinformatics, protein evolution, protein targeting, protein-protein interaction
Depositing User: Symplectic Admin
Date Deposited: 28 Apr 2016 10:12
Last Modified: 19 Jan 2023 07:37
DOI: 10.3389/fnmol.2012.00009
Open Access URL: http://journal.frontiersin.org/article/10.3389/fnm...
Related URLs:
URI: https://livrepository.liverpool.ac.uk/id/eprint/3000902