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Abstract 

The aim of the present thesis is to model the conversion process of the fast pyrolysis vapours 

into liquid bio-oil in liquid collection systems. The study focuses on the two major types of 

condensation systems namely the indirect contact condensers and the direct contact 

condensers (quenching columns). 

In the first part of the research, the hydrodynamic and heat transfer characteristics of a bench 

scale quenching column are presented by conducting numerical simulations based on the 

immiscible Eulerian-Eulerian model. The simulations are compared with experimental 

observations on flooding phenomena and various design variants are proposed for their 

elimination.  

In the second part, a multiphase multi-component model, with the condensable vapours and 

non-condensable gases as the gaseous phase and the condensed bio-oil as the liquid phase, 

has been developed. Species transport modelling has been used to capture the detailed 

physical phenomena of 11 major compounds present in the pyrolysis vapours. The 

development of the condensation model relies on the saturation pressures of the individual 

compounds computed based on the corresponding state correlations. 

In the final part, detailed information is provided on the vapour phase change dynamics 

implemented on a disc and donut quenching column design obtained from the first part. The 

study investigates the effect of the different numbers of disc and donut pairs on the 

condensation performance of the column. The numerical simulations showed that different 

number of stages can significantly affect the final bio-oil composition. It is shown that heavy 

molecular weight compounds, condense rapidly even with a low number of stages, whereas 

an increased number of stages is needed to completely capture the heavier acidic fractions. 

The modelling results are in good agreement with data published in the existing literature. 
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Chapter 1 Introduction 

1.1 Overview 

The aim of this project is to develop a modelling strategy for multiphase-multicomponent 

flow within liquid collection systems used in pyrolysis processes. This approach will be used 

as a tool to aid the design and development of efficient liquid collection systems for bio oil 

production. The computational dynamics (CFD) software ANSYS FLUENT has been used as 

the computational platform in this project with in-house code which enhances the current 

capability of the commercial software. The supporting computational work conducted at 

XJTLU, whilst experimental works at the Bio Energy Research Group (BERG) of Aston 

University was leveraged for validation of the computational models. 

1.2 Background 

The demand for fossil fuels such as natural gas, petroleum, as well as coal-based fuels has 

been increased over past few decades due to the rapid growth in terms of global 

industrialization and development. Moreover, the depletion of fossil fuel reserves coupled 

with the increasing energy consumption and greenhouse gas emissions poses new challenges. 

These factors put thrust on the development of a range of novel technologies for the 

utilisation of renewable energy resources, such as biomass, solar and wind energy. In 

addition, many countries pledged to reduce the greenhouse gases, which have further 

intensified the need for renewable energy sources [1]. 
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The use of renewables, in particular biomass as a source for energy, in industrial and non-

industrial sectors, is one of the alternatives that can contribute to decreasing the share of 

fossil fuels [2]. Moreover, this will also lead to the reduction of greenhouse gas emissions [3]. 

Carbon balances of energy from different fuels can be seen in the Figure 1.1. This clearly 

highlights the key benefit of using biomass as an alternative for the fossil fuel. When 

compared with other renewable energy sources used for the production of heat and power, 

biomass stands as the only source for solid, liquid and gaseous fuels [4].  

 

Figure 1.1– Carbon balance of energy from different sources. 

 

Figure 1.2– Biomass conversion paths for energy generation. 
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Figure 1.2 shows various ways of converting biomass into useful forms of energy. Among all 

the conversion techniques available, the fast pyrolysis process presents certain advantages for 

the generation of liquid fuels [4]. The biomass fast pyrolysis process can provide a liquid fuel 

that has the potential to be a substitute for fossil fuel oil in any static heating or electricity 

generation application [4-6]. 

Pyrolysis is a process where the organic matter undergoes thermal degradation in the absence 

of oxygen to produce condensable vapours, non-condensable gases and char. In the present 

work, the condensable vapours are also denoted as liquids. Slow pyrolysis has been used 

from ancient times to produce charcoal, whilst more recently the fast pyrolysis process gained 

popularity for its capability to produce higher yields of liquids. In the fast pyrolysis process, 

the thermal decomposition of biomass occurs at moderate temperatures (around 500
O
C) and 

very short reaction times (around 2 s) with higher rates of heat transfer in the reaction zone. 

The process results in high yields of liquids (bio-oil) of up to 75 wt. % which can be used 

directly in a variety of applications or used as an efficient energy carrier in the upgraded form 

[7, 8]. 

In the fast pyrolysis process, the liquid bio-oil is produced by the rapid condensation of 

pyrolysis vapours within the heat exchangers called liquid collection systems (LCS).  Several 

types of heat exchangers are available for this purpose, ranging from simple indirect contact 

heat exchangers to more complicated and sophisticated quenching columns and spray 

columns. Inert gas like nitrogen is used to transport the pyrolysis vapours from the reactor to 

the heat exchanger with the aim of minimising the residence time to avoid secondary 

reactions. This is unavoidable as the higher residence time results in secondary reactions 

which will eventually reduce the liquid yields and convert vapour into permanent non-

condensable gases [9, 10]. The presence of these transport gases in the system, pose 

significant resistance to the heat and mass transfer, and thereby forcing the conventional 

indirect contact heat exchangers to larger sizes. Indirect contact heat exchangers can also 

cause preferential deposition of lignin-derived components, leading to liquid fractionation 
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and eventually blockage of the pipelines and consequently the heat exchanger itself [4]. 

Hence the direct contact heat exchangers are more preferable in pyrolysis processes over 

indirect contact heat exchangers. 

Several types of direct contact condensers are deployed in the fast pyrolysis liquid collection 

systems like spray columns and quenching columns. These direct contact heat exchangers, 

significantly minimise the previously stated limitations and provide greater surface area of 

contact between coolant and vapour which helps rapid cooling of the vapours as well as in 

capturing the condensed aerosols. The quenching column described in the current work uses 

either recirculated liquid bio-oil or an immiscible hydrocarbon solvent as a coolant medium. 

The advantages in using quenching columns for the condensation of pyrolysis vapours are the 

high heat transfer rates that can be obtained by the direct contact of the two working fluids, as 

well as the greater amount of gas scrubbing that can be achieved, something that could 

potentially lead to the complete removal of the electrostatic precipitator (ESP). This 

contributes in the reduction of the overall cost of the process, while making it more 

economically viable on a large scale. 

Recently, the sequential condensation of the pyrolysis vapours is gaining significant 

popularity [11 - 13]. The advantage of sequential condensation is that different fractions of 

bio-oil can be produced with different compositions so that the partial upgrading process can 

be achieved within the pyrolysis process. This will also contribute to the overall thermal 

efficiency of the plant [14, 15]. For the previously stated reasons, it is essential to understand 

the physical behaviour of the flows within the liquid collection system so that efficient 

designs can be developed. 

From the process point of view, rapid condensation of pyrolysis vapours is necessary to 

increase the final bio-oil yield. The design of efficiently operating quenching columns, using 

empirical relations, becomes extremely difficult, due to the high complexity of the physical 

phenomena involved in the process. The thermodynamics condenser model developed by 

Westerhof et al. [11], based on the well-known Rachford-Rice formulation [16], provided an 



1.3 Aims and objectives 5 

 

 

 

insight on how the water yield can be controlled during the pyrolysis vapour condensation 

process. However it only provides the mass balances, while it lacks the spatial and temporal 

hydrodynamic and thermodynamic details that are absolutely necessary for the development 

of efficient quenching column designs. The gas-liquid interactions, both in terms of mass, 

momentum and heat transport, result in complex flow regimes inside the quenching column, 

something that is difficult to predict by experimentation and physical models alone. Under 

these considerations, the employment of computational methods to provide an insight on the 

physical phenomena present in the process (i.e. hydrodynamics, heat transfer and phase 

change phenomena) becomes necessary. 

1.3 Aims and objectives 

The aim of the current work is to expand the capabilities of numerical modelling and build a 

strategy to simulate complex phase interactions such as mass, momentum, heat transport and 

phase transition phenomena among biomass pyrolysis vapours, liquid bio-oil and liquid 

coolant in direct contact heat exchangers. The model takes into account the gas-liquid 

interactions including the simultaneous condensation of pyrolysis vapours into liquid bio-oil. 

Multiphase-multicomponent flows occur in the majority of processes like combustion, 

evaporation, pyrolysis, pneumatic transport, condensation etc. The understanding of the 

physical phenomena that govern such processes is extremely valuable as well as the 

incorporation of these physical laws into the mathematical models can be extremely useful in 

the efficient design and optimisation of the equipment used in the previously mentioned 

processes. 



1.3 Aims and objectives 6 

 

 

 

 

Figure 1.3– Steps followed for the development of the condensation model. 

The scope of the present work is the numerical investigation of the liquid vapour interaction 

within the liquid collection system used in the pyrolysis process, where the condensation of 

the pyrolysis vapour leads to the formation of liquid bio-oil. In this study, a three-step 

approach has been implemented. In the first step, detailed hydrodynamics and heat transfer 

behaviour has been investigated within the quenching column which is a direct contact heat 

exchanger. In the second step, the condensation model has been implemented in an indirect 

contact water cooled condenser and validated against experimental data. Based on these two 

steps, a final comprehensive condensation model can be developed and applied in the 

quenching column. The steps followed in this work are better illustrated in Figure 1.3. 

In the first step, the computational method developed to study hydrodynamics, was applied to 

a 5 kg/hr feed rate fast pyrolysis system. The quenching column used in the experimental 

setup at Aston University was chosen as the basis for the base line model. In the experimental 

investigation, it was mentioned that the quenching column suffered from flooding phenomena 

[17]. Hence, the investigation in the first step was focused on the mitigation and elimination 

of the flooding phenomena. Modified design variants of the quenching column were 

compared and the optimal design was proposed based on the numerical results. 
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In the second step, the condensation model was developed and implemented on a 100 g/hr 

bench scale reactor. The model geometry and operating conditions are similar to the 

experimental setup at Aston University. In this model the phase change phenomena between 

the condensable vapours and liquid bio-oil were studied and compared with the experimental 

data. 

A comprehensive condensation model was implemented based on the two step studies and 

applied on the optimised design of the quenching column. This numerical model can be used 

for any type of condenser of this kind and is especially useful for optimisation studies. As an 

extension to the step 2, in the step 2A, the assumption of ideal gas has been assessed and 

compared with real gas models for future model developments. 

The commercial code FLUENT which is based on the finite volume method has been used as 

the basic platform for the development of the comprehensive condensation model. This 

model uses extended subroutines in the form of user defined functions (UDF) to simulate the 

heat and mass transfer phenomena within the liquid collection systems in the pyrolysis 

process. This work is focused on the development of the code that extends the computational 

capabilities of FLUENT in order to model and analyse the following: 

 Development of the baseline quenching column model based on the 5kg/hr 

experimental setup which uses octane as the coolant liquid entering the column at -

5
O
C. 

 Column flooding phenomena and their relation with flow rates. 

 Residence time of the vapours within the equipment. 

 Temperature and pressure variations along the flow path of the vapours. 

 Interphase heat exchange between liquid coolant and pyrolysis vapours. 

 Impact of the disc and donut configuration on the temperature and pressure profiles. 

 Evolution of the liquid bio-oil from the condensable pyrolysis vapours during the 

condensation process. 
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 Investigation of the condensation process to determine the influencing parameters like 

composition, temperature, pressure and design. 

The physics involved in the simulation of the liquid collection system involves 

 Multiphase-multicomponent flow of gas/liquid mixtures. 

 Tracking of the miscible and immiscible interfaces between phases. 

 Heat transfer between the coolant and the vapour. 

 Mass transfer between vapour and liquid via phase change during the condensation. 

 Momentum transfer due to phase change. 

The computational model implemented for each one of the physical phenomenon according 

to the following procedure: 

 Description of the computational models and methods used. 

 Presentation of the physical principles that govern the process. 

 Implementation of these principles in the computational model as an extension of the 

commercial code. 

1.4 Elements of novelty 

Numerous studies in the literature have been focused on simulating the hydrodynamics of 

fluidised beds or cyclones in the pyrolysis technology. As far as multiphase flow is 

concerned, most of the literature is focused on distillation column modelling without 

considering the heat transfer effects on it. Only few attempts to date have been identified on 

liquid collection system modelling using computational methods. None of these studies was 

focused on the quenching column which is a type of liquid collection system used in 

pyrolysis technology presented in the literature. As a matter of fact even the majority of the 

experiments related to the pyrolysis technology paid little attention to the liquid collection 

system design and its optimisation. 
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The novelty of the current work is the development of the comprehensive numerical 

condensation model for the quenching column used in the fast pyrolysis process and in the 

broader sense for any type of liquid collection system. This study investigates the detailed 

flow behaviour inside the liquid collection systems which includes hydrodynamics and phase 

change phenomena. 

This numerical model provides the detailed selective condensation characteristics occurring 

within the condenser while pyrolysis vapours undergo phase change. This model also 

presents the way to represent the complex mixture of pyrolysis vapours in terms of simplified 

composition which eventually reduces the computational resource requirements. This work 

proposes an optimum quenching column design for better performance and better scalability. 

This numerical model can be applied to different size physical models ranging from lab scale 

to industrial scale with suitable modifications to turbulence models according to the flow 

regimes. Different type of condensers either direct or indirect contact exchangers can be 

modelled using the developed numerical code. This general form of the computational code 

can be applied in different processes where multiphase flow involves condensation 

phenomena and where evaporation is neglected. 

1.5 Progress of the research 

The research started with the review of the literature on existing pyrolysis technologies and 

their liquid collection systems for the production of bio-oil. The operating principles of these 

technologies and their advantages and limitations were identified. A detailed review was also 

conducted to identify the appropriate numerical models. In order to cater to the aim of the 

project which is to develop a CFD methodology to design a liquid collection system for the 

bio oil production, a detailed three step strategy was formulated. Extensive focus was kept on 

understanding FLUENT’s code structure to develop a customised code to enhance its 
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capabilities in phase change physics under multi-phase and multi-species regime which are 

essential for the development of the condensation model. 

In order to understand the principles of the selective condensation, literature related to the 

fundamentals of physical chemistry and thermodynamic concepts were reviewed especially 

from the chemical engineer’s perspective. With this understanding multiphase-

multicomponent flow specific user defined functions (UDF’s) were studied and practiced for 

the implementation of the condensation modelling. Different pyrolysis methods applied to 

bio-oil production were also reviewed. 

Initially, 2D simulations of the multiphase flow in the quenching column were attempted. 

These studies showed that 2D models are not sufficient to capture transient and highly three 

dimensional features of the flows. For that reason, 3D models of the quenching column have 

been developed as a part of the step 1 program. In this step, several sensitivity studies were 

conducted on the gas and coolant flow rates to investigate the hydrodynamic and flooding 

phenomena. Based on the knowledge acquired from the CFD simulations on fluid flow 

behaviour, the quenching column design was suitably modified and simulated. From the CFD 

simulations it was observed that the modified models gave better performance in terms of 

heat transfer and flow rates. On the basis of these results a new set of disc and donut 

configurations were proposed. 

With the help of the concepts gained while reviewing the physical chemistry and the previous 

work done on the condensation models, a new condensation model was developed as part of 

step 2. This model included detailed species transport which accounts for the condensation of 

individual components in the pyrolysis vapours. Thereby it allows us to study the selective 

condensation phenomena and be validated by the previous experiments highlighted in the 

literature. As an extension to step 2, a comparative study was conducted to investigate the 

effect of the real gas and ideal gas consideration. This study provides a clear understanding of 

the significance of an ideal gas assumption in contrast to the real gas behaviour. 
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The basic target of the project was achieved when the step 1 and step 2 methods were used 

and deployed in step 3. This is having three distinct multicomponent phases (vapours together 

with transport gases and non-condensable gas, as well as coolant and condensed bio-oil). This 

computation was done by coupling species transport modelling together with the hybrid 

Eulerian-Eulerian multiphase model. The source terms were calculated using user defined 

subroutines to account for heat and mass transfer together with momentum transfer.  

During this period, parts of the research work were published in international journals and 

presented at three international conferences. The details of the research have been thoroughly 

analysed in the following chapters of the Thesis. 

1.6 Report structure 

This section outlines the report structure and gives a brief depiction of each chapter, starting 

from chapter two. 

The second chapter introduces the liquid collection systems and explains their importance in 

pyrolysis technology. The scope of the subject is analysed and the different physical 

processes that occur within the liquid collection system are explained. It also details the 

existing literature on various experimental models as well as relevant numerical models.  

The computational models and theory used in this work are detailed in the third chapter. 

Justification is also provided for the model selection for carrying out the simulations. The 

formulation described in chapter 3 has been used throughout this work unless otherwise 

stated.  

The fourth chapter focuses on the formulations used for computing the fluid properties. The 

liquid-vapour equilibrium formulations which form the basis for the condensation model are 

also described in this section. The selection of each empirical relation for the computation of 

the mixture properties is mentioned in this chapter with justification and sample calculations. 
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The fifth chapter provides a brief outline about the existing quenching column design and its 

operating conditions which forms the platform for this work. This section is entirely 

dedicated to the results obtained from steps 1 to 3. The first part of the analysis presents the 

quenching column design optimisation on the basis of hydrodynamic modelling. In step 2, the 

model is tested for fractional condensation and validated with experimental results. In 

addition, a real gas model is also developed and compared against the results obtained from 

the ideal gas model. Finally in step 3, a combined model obtained from step 1 and 2 is 

applied in the quenching column with the detailed mass transfer mechanisms associated with 

three distinct multi-component phases. The impact of the number of disc and donut stages of 

the column in the overall conversion of the pyrolysis vapours into liquid bio-oil is also 

investigated and analysed. 

The sixth chapter provides the summary of the main findings of the research and highlights 

the limitations of the developed model. Recommendations for future work are also listed at 

the end of this chapter. 
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Chapter 2 Literature review 

This chapter introduces the liquid collection systems and explains their importance in the 

pyrolysis technology. The scope of the subject is analysed and the different physical 

processes that occur within the liquid collection system are explained. It also details the 

existing literature on various experimental models as well as relevant numerical models. The 

following section provides a brief outline about the existing quenching column design and its 

operating conditions which forms the platform for this work. 

2.1 Fast pyrolysis 

Pyrolysis is a thermochemical process where the biomass undergoes thermal decomposition 

in the absence of oxygen. It is typically classified into three categories slow, intermediate and 

fast pyrolysis respectively based on the heating rates. Fast pyrolysis produces three global 

products from biomass namely non-condensable gases, solid char and condensable organic 

vapours at various proportions depending on the conditions. The process can be seen in 

Figure 2.1. Compared to the other conversion processes such as gasification or carbonization, 

this process produces higher bio-oil yield [18]. Condensable vapours are converted into bio-

oil in the liquid collection systems which can be used as fuel or a source for various 

chemicals. The typical vapour composition consists of condensable vapours of low molecular 

weight chemicals, water vapours and complex oxygenated compounds. Water vapour in bio 

oil is either produced during the pyrolysis process or due to the original feed moisture 

content. 
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Figure 2.1– Fast pyrolysis process map. 

 

In order to gain maximum yield of the bio-oils, the vapours must be transported from the 

pyrolysis reactor to the heat exchanger as quickly as possible (<0.5 s) mainly for two reasons. 

First, when the pyrolysis products are cooled below 400
O
C, the hydrocarbons can combine to 

form visible aerosols which are tiny particles. These particles can readily stick to the surfaces 

which are less than 400
O
C temperature thereby causing fouling problems. Secondly, if the 

vapour products are maintained above 450
O
C for more than one second, secondary reactions 

will occur within vapour phase. To avoid these conditions, additional gas is supplied as a 

transport agent for the pyrolysis vapour. As the pyrolysis reaction needs to be carried out in 

an oxygen free environment, an inert gas such as nitrogen is used in varying proportions, 

depending on the reactor configuration. Some of the early types of pyrolysis reactors, as 

highlighted by Boukis et al. [19] are presented in Table 2.1.   
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Table 2-1 – Reactor types employed in pyrolysis process 

Reactor type Organisation/country Mode of heat transfer 

Up flow entrained flow bed GTRI / USA [20] 5–10% Conduction 

95–90% Convection 

Down flow entrained flow bed Egemin / Belgium [21] 5–10% Conduction 

95–90% Convection 

Fluidised bed Univ. of Waterloo/Canada [22] 

Union Fenosa/Spain [23] 

80–90% Conduction 

20–10% Convection 

Transport reactor Occidental Research Corporation  

USA. [24] 

30–40% Conduction 

70–60% Convection 

Ensyn, Inc./Canada [25] 50–60% Conduction 

50–40% Convection 

Ablative pyrolysis systems NREL/USA [26] 

Aston University/UK [27] 

10% Convection 

90% Conduction 

Vacuum pyrolysis University Laval/Canada [28]  

 

Before sending the pyrolysis products to the liquid collection system, char and suspended 

solid particles must be removed from it. This is mainly due to its catalytic nature which 

increases the vapour cracking and there by reduction in liquid yield. The conventional 
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technique for the removal of char and solids involves either cyclones or hot gas filtration. In 

the work of Diebold [29] it was shown that hot gas filtration is highly efficient. However, it is 

pointed out that the typical bag house residence time is approximately 6 seconds, which 

triggers secondary reactions within the vapours and eventually reducing the yield of liquids. 

For the above reasons cyclones are widely used to remove the solids. After the removal of 

suspended solids and char, it is necessary to condense and collect the liquid which is also 

referred as bio-oil. 

2.2 Liquid collection system (LCS) 

Understanding of the physics of the liquid collection has long been a major difficulty for the 

practicing engineer as well as for the researchers. Bridgwater [30] compared the pyrolysis 

products with the smoke emanating from cigarettes which has similar properties. According 

to this study, nearly all liquid collection devices used in the fast pyrolysis systems are 

inefficient in capturing condensable vapours.  

As mentioned previously, the condensable vapours are present in large volumes of non-

condensable gases at relatively low concentrations which present a significant heat and mass 

transfer resistance within the heat exchangers. The product vapours coming out from the 

pyrolysis reactor are in the form of mist or fumes which are not considered as true vapours. 

Moreover, the pyrolysis vapours characterised as a combination of micron sized droplets and 

polar molecules bonded with water molecules together with true vapours. This contributes to 

the collection problem as the requirement for the surface area is very high to capture the 

aerosols even after cooling below the dew point temperature [30]. This makes the usage of 

conventional heat exchangers inappropriate in this environment. In addition to this, pyrolysis 

liquids also cause significant fouling problems which make conventional heat exchangers 

inoperable. 
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ESP’s are effective and many leading research laboratories (e.g. EBRI, SJTU) employ them 

at the end of liquid collection systems. However, they have inherent problems of blockages 

caused by the condensed heavy compounds. They are also more prone to get short out as the 

polar nature of the condensing products causes arcing while it flows. Currently the ESP’s are 

the preferred method to capture aerosols at smaller scales up to pilot plants [4]. For large 

scale applications, they are considered expensive from the process economics point of view. 

2.3 Experimental works 

Although liquid collection systems are necessary and vital components in all pyrolysis 

processes, there is no significant amount of work done so far on their design. Extensive 

reviews have been conducted on the pyrolysis technology by Bridgwater and Peacocke [31].  

From these reviews, one can see that the majority of the systems use direct contact heat 

exchangers for condensing the pyrolysis vapours. Many of the systems are multi-stage with 

multiple liquid collecting systems which aim at fractional condensation. 

Fractional condensation is very important in the field of biomass pyrolysis. This is mainly 

due to the bio-oil properties which are highly dependent on chemical composition. The bio-

oil properties can be significantly improved via catalytic reactions like cracking and hydro-

treatment. However the main drawback is the economic viability as the liquid yield obtained 

from these methods is very low [32]. Bio-oil is a mixture of different compound groups 

which react under different conditions with different catalysts which makes it more difficult 

for the hydro-treatment [33]. For this reason, an efficient fractionation of bio-oil is necessary 

before upgrading it [34, 35]. Many experimentalists tried to achieve this by using different 

types of liquid collection systems. 

In this report, the liquid collection systems are broadly classified into two types based on the 

method of cooling. The first one is the indirect contact condensers and second being direct 
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contact condensers. The condensers used in the pyrolysis process are briefly mentioned in the 

following paragraphs. 

2.3.1 Indirect contact condensers 

Due to their simplicity many of the experimental works use indirect contact condensers as 

their liquid collection systems. In indirect contact condensers, the vapours are passed through 

a liquid-gas heat exchanger. The cooling medium is thus separated from vapour stream. This 

has two main advantages; first one being the non-contamination of the cooling medium while 

the second one being that a separation stage is not needed to separate the bio-oil from the 

cooling medium. The details of the experimental setups which use indirect contact 

condensers as LCS in pyrolysis process are listed below. 

A)  BERG (Aston University):  

The Bioenergy Research Group (BERG) at Aston University is a leading research group in 

fast pyrolysis with regular reviews on the process [36, 37]. The group’s main focus is on 

applied research in all aspects of the fast pyrolysis process, starting with biomass preparation 

[38] and fast pyrolysis in fluid bed and ablative pyrolysis reactors from 100 g/h to 5 kg/h [39] 

with the backing of CFD modelling [40 - 46]. BERG has also been involved in the design and 

development of liquid collection and quenching systems.  

With regards to liquid collection systems, indirect contact condensers are deployed for lab 

scale pyrolysis process with a feed rate of 150 g/hr. [47, 48]. Salter [48] employed two sets of 

liquid collection systems one with a three stage unit as shown in Figure 2.2 and another one 

with a two stage as shown in Figure 2.3. In the first unit, there is a provision for collecting 

three liquid bio-oil fractions, whereas in the second unit only one main liquid bio-oil collector 

and a small secondary bio-oil collector. 
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Figure 2.2– Three stage liquid collection system [48]. 

 

Figure 2.3– 150g/h single product water cooled condenser [47, 48]. 

In both liquid collection systems, the ESP was employed to collect the aerosols and 

particulates from the vapour. This was mainly to prevent the blockage of the cotton wool 

filter as the absence of ESP causes significant liquid collection in the filter. In the second type 
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of condenser, Salter used a Davies type double surface condenser to improve the contact area 

between the hot and the cold sides. Selecting the Davis type over the Liebig type in which the 

helical design gives much higher contact area is justified as the latter one is more prone to 

blockages and difficult to maintain. 

According to the Salter’s experimental work [48] a water flow of 1 to 2 l/ min at 15 
O
C 

achieved the required cooling of the vapours from 500
O
C to 29

O
C. Design of the condensers 

was carried out by computing the amount of heat transfer with standard LMTD equation. 

B) BEERC (SJTU): 

The Biomass Energy Engineering Research Centre at Shanghai Jiao Tong University (SJTU) 

is one of the leading laboratories in China in biomass pyrolysis. BEERC has conducted 

extensive research on bench scale fluidised bed reactors with biomass feed rate of 1-5 kg/hr 

capacity as shown in Figure 2.4. The research focus ranges from designing hot vapour 

filtration [50] to characterisation of bio-oils obtained from different sources of biomass [13, 

51, and 52]. 

 

Figure 2.4– Schematic of fluidised bed reactor fast pyrolysis system at SJTU [13]. 
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Figure 2.5– Fluidised bed reactor in lab scale at SJTU [49]. 

The bench scale experimental setup consists of four stainless steel condensers in series to 

collect the bio-oil fractions as shown in Figure 2.5. Water is used as the coolant medium and 

circulated through steel pipes within the condenser stages. The ESP was placed at the end of 

the condenser train to collect the escaping aerosols. The research in BEERC has shown that 

the fractional condensation is useful to separate water and chemical compounds from the 

final bio-oil. However most of the bio-oil is collected at the first stage of the condenser while 

the rest of the fractions are collected near the ESP [13]. Bio-oil yields of the condensers are 

65.6, 6, 1, and 10.4% respectively followed by 17% in ESP. This is mainly due to the fact 

that the temperature of the vapour dropped in the first stage condenser from 500
O
C to 37

O
C 

whilst in the rest of the condensers the temperature of the vapours is 25, 23 and 22.5 
O
C 

respectively. The residence time in the each condenser has been reported to be 3.4 s. The 

overall bio-oil yield is reported as 43.5% which is well below the theoretical maximum 

potential bio-oil yield from the fast pyrolysis process. This can be attributed to larger 

residence times in the condenser coupled with slower cooling rates associated with indirect 

contact condensers. 
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C) ARS (USDA):  

A bench scale fluidised bed fast pyrolysis reactor with a feed rate of 2.5kg/hr has been built at 

the Agriculture Research Service (ARS) of the U.S. Department of Agriculture (USDA) [53, 

54]. This was constructed to convert energy crops such as switch grass into bio-oil through 

pyrolysis technology. The collection system comprises of an impinger (vapour jet impinges 

on free surface of the liquid pool) type condenser system with four canisters inserted in to a 

chilled water tank as shown in Figure 2.6. The final capture of the bio-oil is done by an ESP. 

 

Figure 2.6– Fluidised bed reactor with fractional condensers at ARS [53]. 

The collected bio-oil at the each canister reported as 27.9, 17, 8.7 and 3.6 % respectively 

whilst the rest of the quantity, i.e. 42.7 %, was collected in the ESP. This accounts for 60.7% 

of the total biomass weight.  It is worth to note from the finding that the residence time spent 

by vapours in the first canister is around 1.3 s after the reaction which yielded good 

condensation as compared to fourth canister where the residence time stretched to 5.7 s. 

Water content within the bio oil collected from the 2nd, 3rd and 4th canister were similar at 

about 30 wt.%. In the ESP it ranged from 6-8 wt.%. However the acid number of the 
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collected bio oil increased linearly from canister 1 to the ESP. This is due to the late 

condensation of acidic compounds like acetic acids. 

D) BCRF (IASU):  

Bio Century Research Farm (BCRF) at Iowa State University possesses an 8 kg/h feed rate 

pyrolysis development unit which has been used to study fractionation of the bio-oil within 

the liquid collection system [55, 56]. This unit consists of a five-stage liquid collection 

system comprising of three condensers and two ESPs arranged in alternating sequence as 

shown in Figure 2.7. The condensers used in this unit are shell and tube exchangers with the 

coolant being on the shell side while vapours pass through the tubes. 

 

Figure 2.7– Pyrolysis process development unit at BCRF [55]. 

The coolant temperatures maintained at condensers from the first to the third are 85, 65 and 

18
O
C respectively. The condenser temperatures were designed to collect the fractions 

according to the dew point temperature. The placement of the ESP between the condensers is 

to capture the specific fractionate aerosols which are condensed in the preceding stage but 
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collected bio-oil is 6.6, 8, 9, 14.8 and 63.3 on % wt. basis from condenser 1 to 5 respectively.  

The same trend was also observed for the acid number which is given in sequence from 1 to 5 

as 34.9, 31, 79.1, 117.1 and 116.5. In the improved version, the results showed that the liquid 

collection system was able to recover distinct fractions which are robust in changes to the 

reactor temperatures and maximum bio-oil collection is around 67% on wt. basis [56]. 

E) University of Waterloo, Canada 

The fluidised bed pyrolysis reactor developed by the University of Waterloo is the first of its 

kind in terms of selective fractionation by placing two condensers in series [57]. The 

condensers are simple indirect contact type heat exchangers maintained at 100 and 0
O
C 

respectively. However the research focus was mainly on the role of the temperatures in the 

reactor itself, where the liquid yields were correlated with the pyrolysis temperature. 

F) LSGC, Universite de Lorraine, France 

Laboratoire des sciences du génie chimique (LSGC) ,Universite de Lorraine  and Centre 

national de la recherche scientifique (CNRS) developed an 1 kg/h fast pyrolysis process using 

cyclone reactor [58 - 62]. For the collection of bio-oil, three water cooled heat exchangers in 

series is utilised as shown in Figure 2.8. The recovery of the heavy fractions of bio-oil is 

followed by a refrigerated coil heat exchanger, maintained at -5
O
C, where light oil fraction is 

recovered. In order to capture the aerosols and recover the final fraction, electro-static and 

membrane filters are placed at the end of the liquid collection system. 
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Figure 2.8– Cyclone reactor pyrolysis process unit at LSGC [60]. 

From the results, it has been observed that the total liquid yield is 62.6 wt. % followed by 

25.7 and 11.7 for gas and solids respectively [60]. Heavy oils which contain water, have high 

viscosities and solid contents, while light oils would be more easily transportable but contain 

a much higher water content as of 45% [58].  

G) Other labs 

Williams et al. [63] from the University of Leeds constructed a pyrolysis reactor especially to 

pyrolyse tyre rubber and used a selective condensation system for the liquid collection. First 

three condensers are made up of stainless steel followed by a set of glass impingers (acetone 

and dry ice condensers) as seen in Figure 2.9. 
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Figure 2.9– Tyre pyrolysis process unit at University of Leeds [63]. 

The liquid collection system has been tested for different temperatures of 100, 150, 200 and 

250 
O
C and all steel condensers are maintained at the same temperature at a time. The glass 

impingers are maintained at -70
O
C for all experiments. The influence of the temperature on 

the yield of each condenser can be seen in Figure 2.10 and the maximum yield is around 67% 

on wt basis. 

 

Figure 2.10– Temperature influence on yield of bio-oil at different stages of LCS [63]. 
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2.3.2 Direct contact condensers 

In these condensers, the coolant is brought into direct contact with the vapours that need to be 

condensed. Direct contact condensers (DCCs) possess many benefits as compared to indirect 

contact type condensers (e.g. shell and tube condenser). These benefits are the lower capital 

and maintenance costs, simplicity in its design, high heat transfer rates and transfer areas, as 

well as the elimination of problems with fouling and corrosion especially in the pyrolysis 

environment. Due to their improved thermal performance, up to 60% less cooling medium is 

often required than that needed in indirect contact condensers [64]. Moreover, the effective 

mixing of the two fluids in these type condensers makes it work efficiently under low 

temperature differences. In the pyrolysis process, two kinds of coolants either bio-oil or 

immiscible fluid are generally employed for the cooling purposes. There is no need of 

separation when bio-oil itself is used as the coolant whereas in the case of any immiscible 

fluid, it should be easily separable from bio-oil. 

There are different types of direct contact condensers employed within the pyrolysis 

technology namely bubble, spray and film type condensers. Despite their popularity only few 

research groups have included direct contact condensers as their liquid collection system. 

A) TCCB (University of Twente):  

The Thermal Chemical Conversion of Biomass (TCCB) group at the University of Twente is 

actively working on converting biomass to biodiesel and bio-chemicals.  They developed a 

one kg/hr, fluidised bed pyrolysis reactor as process development unit (PDU) to obtain proof 

of the principle data. Two counter current spray condensers are used as the main liquid 

collection system with a provision of collecting bio-oil fractions separately from them [11, 

12, 65]. The arrangement of the condensers can be seen in the Figure 2.11. At the end of the 

LCS, an intensive cooler has been placed which operates on the knockout principle in which 

a quick change in gas direction takes place. 
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Figure 2.11– Counter current liquid spray column used in LCS [12]. 

In this system, Shell Ondina oil 917 was used as the coolant liquid. The vapour temperature 

at the entry of the first condenser is maintained at 400
O
C while its exit temperature varies 

between 20 to 115
O
C. The second condenser is kept at a constant temperature of 20

O
C. The 

yields of bio-oil from the given biomass are given in the Figure 2.12. 

From the results it was observed that up to 10% of acetic acid was captured in the second 

condenser when the first condenser operated at 70-90
O
C. Under the same conditions, the bio-

oil fraction collected from first condenser has less water (10-4 %) and less acetic acid (2-3%), 

which makes it more suitable for using as a fuel in transport sector. 

Cooling out

    Gas

Vapours in

Cooling in

Pyrolysis oil 
Intensive cooler

Pyrolysis oil 1  cond.   Pyrolysis oil 2 cond. 
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Figure 2.12– Bio-oil distribution at various stages condenser1 [12]. 

B) BERG (Aston University):  

The Bioenergy Research Group (BERG) at Aston University has developed a novel ablative 

pyrolysis reactor [68, 69]. Even though the reactor is capable of handling up to 30 kg/hr, the 

actual pyrolysis of biomass that has been carried out in this unit is up to 3 kg/hr due to the 

feeder limitation. To collect the liquid bio-oil, a counter flow direct contact condenser also 

called quenching column was utilised as shown in the process flow diagram in Figure 2.13. 

At the end of the LCS, an ESP has been placed to capture the aerosols. Octane which is 

immiscible with the condensed bio-oil was utilised as a liquid coolant. 

The pyrolysis reaction was carried out at 550
O
C with a feed rate of approximately 1 kg/hr. 

The liquid coolant temperature was maintained at -5 
O
C. The liquid bio-oil yield obtained 

was up to 65 % including the water content. However, it was reported by Robinson [17] that 

the quenching column suffered from flooding during its operation. For that reason the flow 

rate of the coolant was reduced which significantly affected the final liquid bio-oil yield in 

later operations. 
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Figure 2.13– Ablative pyrolysis process flow diagram [17]. 

Due to the flooding issues faced earlier with the counter flow quenching column, the co-

current configuration was developed for the 300 g/hr pyrolysis unit. This unit can be seen in 

Figure 2.14, where a dry ice condenser was placed after the ESP to collect the lighter 

fractions. 

In their later works on the 1 kg/hr systems the co-current quenching column is utilised [72, 

73]. Iso Par was used as the liquid coolant to quench the hot pyrolysis vapours. However 

from the observations, it was reported that the quenching column was frequently blocked due 

to the condensation of the heavy compounds forming on the plates within the quenching 

column [74]. 

Quenching Column

FI - F low i ndica tor
PI - P ressure indica tor
CV - Control v alve
IV - G enera l v alve
SC - Speed controller
TC -Temperature controller
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Figure 2.14– Process flow diagram for 300 g/hr unit [71]. 

2.4 Design of direct contact condensers used in pyrolysis. 

The collection of liquids has been a major bottleneck in the operation of fast pyrolysis 

processes due to the nature of the condensable product which is mostly in the form of 

aerosols rather than true vapours [31]. Quenching, i.e. direct contact with the cooling medium 

is efficient but it needs careful design and control of temperature to avoid blockage and 

flooding. Many of the experimental systems mentioned previously have been focused either 

on reactor design or on the effects of the operating parameters or on the type of biomass feed. 

Almost none of them focused on the proper design of the liquid collection system. The design 

methods available for the liquid collection systems especially for quenching columns applied 

in pyrolysis technology are scarce. Few design methods are available for scrubbers but are 

not specific to this application. 

The quenching of pyrolysis vapours may be considered to involve gas/vapour cooling with 

partial condensation. Typical equipment used for direct-contact heat transfer includes: 
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 Baffle-tray columns 

 Spray columns 

 Packed columns 

 Cross-flow columns 

 Pipeline contactors 

The design methods for these kinds of equipment were summarised by Fair [75, 76]. The 

most commonly used industrial equipment is the baffle-tray column and the spray columns 

shown in Figure 2.15.  Available data shows that they typically have a performance in which 

the number of transfer units (NTU) is only about one.  Back-mixing, and in the case of baffle-

trays the large gas-side pressure drop are the main issues for their reduced performance. As 

the pyrolysis process presents a significant fouling problem, baffle-tray columns are 

considered as a best choice for the liquid collection system. 

 

Figure 2.15– Direct contact condenser types [77]. 
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One of the reasons direct-contact heat exchangers are not more prevalent in the industry is the 

lack of reliable design and performance prediction methods. This is because direct contact 

heat exchangers are difficult to analyse, particularly in the pyrolysis environment for the 

following reasons as listed by Robinson [17]: 

 Vapour volumetric flow values and heat and mass transfer rates decrease continuously 

as phase change and temperature change occurs. 

 The velocity of the vapour in a direct-contact device varies greatly with distance 

travelled due to the continuous condensation and cooling effects. 

 Non-condensable gases are normally present and their effects on the mass transfer rate 

are difficult to predict under the varying flows experienced. 

 In many situations transition from turbulent to laminar flow occurs. 

Therefore, the widely used NTU design methods cannot be employed for designing these 

kinds of direct contact heat exchanger equipment [78]. This leaves only two options that may 

be employed for the design; either to use general design methods which utilises the specific 

design correlations or use of numerical methods. 

2.4.1 General design methods 

Heat exchangers involving the direct-contact between gas and liquid are designed along the 

same principles as gas absorbers and distillation columns. These principles are aimed to 

prevent excessive entrainment and flooding.  In general, the liquid coolant will flow between 

trays through down comers in the case of distillation columns which utilise bubble trays. 

Whereas in the case of dual flow trays, the liquid coolant and vapour flow counter currently 

through the same openings over a plate or tray.  These kinds of plates are useful especially 

when fouling is expected due to the condensation of heavy compounds with in a stage. 

However, they are not very popular due to their narrow operating range whilst they also lack 

design models which can be used for the prediction of their performance. 
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Figure 2.16– Baffle plate types [17]. 

Baffle trays shown in Figure 2.16, also called as dual flow trays, can be applied in many 

situations where a broad operating range is not necessary. Within the working range they 

provide high (Murphree efficiency is the measure of deviation of the actual concentration 

change in the phase to the change predicted by the equilibrium conditions) efficiency with 

low capital investment.. Moreover alternating liquid and vapour flow rates provide a self-

cleaning action within the equipment. However, the fluctuations in vapour and liquid 

dominant flow areas on the baffle plates make it more instable [80]. In baffle-tray columns, 

gas-liquid contact occurs in the curtain of the liquid that cascades from plate to plate. 

Very few results and design methods have been presented in the open literature as most of the 

design work has been done under proprietary works. Xu et al. [81] and Fair et al. [82, 83] 

have presented pioneering works on baffle trays where they especially attempted to 

generalise the calculations for tray efficiencies.  
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When the vapour velocity is high, more liquid entrainment will occur which eventually 

reduces the tray efficiency. In an extreme condition, with a higher vapour velocity, the down 

flow of liquid is prevented by the vapour flow, leading to flooding of the column [84]. For 

this reason, the accurate prediction of the hydraulic parameters is necessary. These 

parameters also help in the design of the equipment according to the requirement and 

capacity. The dimensions of the quenching column described in Robinson [17] works were 

chosen based on curtain and window velocities calculated near the bottom of the column 

where the maximum gas flow rate is expected. Note that the curtain and window velocities 

are computed based on flow rates and areas namely window area (minimum flow area on 

horizontal plane) and curtain area (surface area which can be identified with hypothetical 

surface formed by flow of liquid while falling vertically downwards).  Correlations for these 

velocities are shown in Equations (2-1) and (2-2). The values 1.15 and 0.58 are the 

recommended Souders-Brown coefficients [85]. 
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Calculations of the hydraulic parameters are based on the assumption that the properties of 

the mixture in the column are only function of the vertical distance as the mixture is nearly 

homogeneous in horizontal plane [86]. More recently an extensive review on the hydraulic 

correlations for baffle tray equipment was given by Mayer et al. [87]. This review states that 

many models ignored or did not disclose the hydraulic regime during operation which 

affected the application of these correlations under different operating conditions. Moreover 

most of the correlations were developed under inert environment and at room temperatures. It 
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also cautioned in evaluating the efficiencies because of the instabilities in the liquid vapour 

flow in the column. 

2.4.2 Computational modelling of liquid collection system 

Several process modelling software have been developed with the aim of simulating chemical 

processes. Aspen HYSYS [88] is one of these types of software that utilises various 

thermodynamic models to efficiently compute process parameters ranging from simple heat 

and mass balances to phase equilibrium behaviour and energy levels of both pure components 

and mixtures. In the works of Tumbalam Gooty et al. [89, 90], the results predicted by the 

models which are developed in HYSYS tool were utilised as guide to standardise the 

practical performance of the fractional condensation series. 

The thermodynamics condenser model developed by Westerhof et al. [11, 12], based on the 

well-known Rachford-Rice formulation [16], provides an insight on how the water yield can 

be controlled during the condensation of pyrolysis vapours. However this model only 

provides the overall mass balances and lacks the spatiotemporal details of the parameters 

within the condenser which are necessary to develop efficient designs. 

There is clear lack in the open literature in the area of CFD modelling of condensers and 

quenching columns used in the pyrolysis process. Most of the CFD work in the area of 

pyrolysis technology is focused on the pyrolysis reactor [92-99] or subsequent equipment like 

cyclone separators [100, 101] used for the separation of solid char particles and electrostatic 

precipitators [102, 103] used for aerosol capturing. One of the reasons for the lack of CFD 

models in this area is the scarcity of experimental data related to liquid collection systems. 

The experiments mentioned in the previous section gave a good insight on the inputs and 

outputs of the liquid collection system but failed to provide geometrical data onto the open 

literature. Another reason for the lack of condensation models for pyrolysis vapours is the 

complexity associated with the number and structure of the chemical compounds found in 

bio-oils. The determination of the thermodynamic properties, such as saturation vapour 
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pressures, of the highly complex compounds present in pyrolysis vapours as well as the 

appropriate group representation of certain compound families pose significant challenges in 

the correct and meaningful simulation of the condensation process. 

Some CFD studies have been carried out on the sieve trays which are similar to baffle tray 

columns as mentioned section 2.3. Many mathematical models are available for predicting 

the liquid weeping [104 - 106], to understand the behaviour of the trays under different flow 

regimes; CFD was extensively used to investigate the hydrodynamics within the equipment. 

Gesit et al. [107] performed CFD studies to predict flow patterns and hydraulic behaviour on 

sieve trays. Further to it, Hirschberg et al. [108] conducted two phase CFD simulations and 

validated them with Fractionation Research Inc. (FRI) tests. More recently Rahimi et al. [109 

-111] conducted several CFD models to obtain temperature and concentration data of liquid 

and vapour near the trays. Alizadehdakhel et al. [112] used the volume of fluid (VOF) model 

to simulate the performance of the valve tray column, while Yadav et al. [113] used 

Eulerian–Eulerian multiphase model to simulate a pulsed sieve plate column. However, all of 

these models were specifically focused on hydrodynamics while they did not take into 

account any phase change phenomena in their studies. Furthermore, the hydrodynamic 

modelling using multiphase models is not yet matured enough to capture heat and momentum 

transfer accurately and heavily rely on correlations developed under specific conditions. 

The main challenge in the condensation or phase change modelling is the complexity of the 

composition of the pyrolysis vapours themselves. These vapours consist of more than 

hundred different compounds which are not in the form of true vapours which readily 

undergo phase change. As previously mentioned the pyrolysis vapours consist of a mix of 

aerosols, true vapours and non-condensable gases which also include the carrier gas. The 

presence of the inert carrier gas used in pyrolysis process attributes to the very low partial 

pressures of the condensable vapours which makes them more resistant to condensation.  

Identifying the composition of the pyrolysis vapours is itself a challenge. In the open 

literature, several studies have been focused on the characterisation of the bio-oil product 
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under different reactor conditions and biomass feed types [114 - 117]. Very little research has 

been done on the determination and quantification of the representative compound groups 

because of the complexity of the bio-oil composition.  

As far as phase change modelling is concerned, Hallett and Clark [118] worked on the 

evaporation of bio-oil droplets using continuous thermodynamics theory. This theory is based 

on the assumption that the mixture, in this case bio-oil, contains an infinite number of true 

components rather than a finite number of pseudo components [119]. The composition of 

such mixtures is best described via distribution functions with specific independent variables 

such as the boiling point or the molecular weight. The theory was first developed by Ratzsch 

et al. [120]. According to their work, this theory is best applied to petroleum fractions and 

coal derived liquids, tars and polymers which are distillable. The realistic mixture models are 

represented with probability distribution functions with two parameters, mean and standard 

deviation. These two parameters are computed based on the distillation curves [121].  

However in most of the pyrolysis processes the final condensed bio-oil product is non-

distillable. In spite of possessing certain advantages in terms of computational load reduction, 

when applied in certain processes such as combustion where detailed chemistry describing 

the multicomponent features, the applicability of the continuous thermodynamic models is 

limited [122]. It is inadequate when it is necessary to track the mass fraction of each 

component during the condensation process. 

An alternative approach to simulate phase change in multicomponent fluids is the discrete 

component representation. The discrete multi-component (DMC) approach allows the 

tracking of the individual components within the vapour during the condensation and 

evaporation process. It allows coupling with the mass transfer mechanisms of the individual 

components. Brett et al. [123] used the DMC representation of bio-oil in their study, with the 

components and fractions chosen in such a way to discretely replicate the continuous 

representation of the bio-oil modelled by Hallett and Clark [118].  However, this approach is 

computationally expensive as additional transport equations need to be solved for each of the 
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phase components. However, this has become less of an issue in contemporary research as 

the computational capacity has been improved significantly and can be affordable. 

Most of the phase change models developed within the domain of pyrolysis have been 

focused on the evaporation models, whereas condensation modelling in the open literature is 

very scarce. Papadikis et al. [124] first attempted to model the condensation phenomena 

occurring within a water cooled indirect contact condenser using a DMC approach. However, 

in their study the pyrolysis vapours are treated as a single component where the fluid 

properties are calculated based on the initial composition of the mixture. 

From the previous discussion on the existing literature, it becomes evident that there is a 

complete lack of computational models that tackle the multiphase multicomponent nature of 

the pyrolysis vapours and that can provide spatiotemporal information about their fractional 

phase change in the condensation unit. The current study specifically focuses on the 

development of a computational approach that will enable the modelling of the condensation 

of pyrolysis vapours in different types of condensers. The key target of the model is to 

provide information on the way that different compounds behave inside the condensing 

equipment and to study the effect of condenser design and size on the final conversion of 

pyrolysis vapours into liquid bio-oil. 

2.5 Summary 

Chapter 2 presents a review on the liquid collection systems used in the pyrolysis process and 

introduced its requirements for better efficiency. It also includes a discussion about the 

experimental works from leading laboratories in the area of pyrolysis. Most of these works 

are focused on the fractional condensation of the bio-oil. This is the most preferred way of 

improving the quality of the bio-oil with less capital cost. Moreover, unlike conventional 

petroleum liquids, distillation of bio-oil is not feasible due to some of its highly reactive 

constituents, while it undergoes thermal degradation when it is heated which results in a solid 
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residue. Very few experiments have been focused on the design parameters of the liquid 

collection system. 

An extensive review of the design methods available in the open literature was also 

presented. Due to the complexity of the flow physics involved in liquid collections system, 

the general design rules are not applicable in specific cases especially in the case of pyrolysis. 

Some models have been developed based on thermodynamic principles but can only provide 

overall results while they fail to give necessary details for the designers which are useful in 

designing efficient equipment. 

It was also observed that very few computational models are available on phase change with 

respect to pyrolysis process. Some of these models were based on the continuous 

thermodynamic theory while others made use of the discrete component method (DCM). To 

the best of the author’s knowledge only one study has been identified in the computational 

(CFD) modelling of the condensation of pyrolysis vapours, however with significant 

limitations 
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Chapter 3 CFD Methodology 

This chapter introduces the fundamental equations necessary to solve the multiphase- 

multicomponent flows. It highlights the available multiphase models and provides 

justification on the selection of the models for the liquid collection system. All the models 

used in subsequent chapters follow the methodology explained here unless otherwise stated in 

the relevant chapters. In order to implement and solve these equations, commercial CFD code 

ANSYS Fluent with versions 13.0, 14.5 was used. This code utilises the numerical algorithms 

to compute the flow parameters over a domain of interest. ANSYS Fluent adopted finite 

volume method to solve the numerical equations and this was accomplished by dividing the 

domain into small control volumes or cells of known shapes. Using boundary conditions 

defined at the domain boundaries, flow variables within these control volumes are solved 

using iterative methods. 

3.1 Multiphase models 

The understanding of the flow behaviour is of significant importance in the CFD modelling 

of gas-liquid flows. CFD modelling needs to describe the physical process with a required 

level of accuracy. This essentially requires the identification of physical phenomena that has 

to be taken into account and formulation of mathematical models which can be used to 

describe it. It is essential that the various characteristics and physics of two phase flow should 

be modelled and formulated on a rational basis and supported by detailed scientific 

experiments. However, the derivation of such models for two-phase flow is considerably 
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more complicated than for single phase flow. The complex nature of two-phase flow arises 

from the existence of multiple, deformable and moving interfaces. As a result, specific 

models have to be developed to take account of flow regime-dependent characteristics. 

In general, multiphase regimes are classified into different categories namely gas-liquid or 

liquid-liquid flows, gas-solid flows, liquid-solid flows, and gas-liquid-solid flows. In the 

liquid collection system, the gas –liquid flow regime is expected by neglecting the presence 

of solid particulates under the assumption that the cyclone separates the char particles with 

100% efficiency. Baker [125] first worked on the simultaneous flow of oil and gas by 

classifying the flow into different regimes and developed the Baker chart to identify them 

which is shown in Figure 3.1. 

 

Figure 3.1– Liquid gas flow regimes (Baker chart). 
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Seven different flow regimes in a horizontal tube are identified by S.C.K. De Schepper et al. 

[126] as follows. 

 Stratified flow: A complete separation of the two phases is expected at low liquid 

and gas velocities. The two phases are clearly separated by an undisturbed interface. 

 Wavy flow: When the velocity of the gas increased under stratified flow conditions, 

liquid–gas interface is in the form of wave pattern. The height and frequency of the 

waves depends on the relative velocity between the two phases and the properties of 

the fluids. 

 Plug flow: Liquid is separated by elongated gas bubbles when the gas flow rate is 

low. However the liquid phase is continuous as the diameters of these bubbles are 

usually smaller than the flow passage. 

 Slug flow: In this regime, the interface between the liquid slugs and the elongated gas 

bubbles becomes less sharp as result of increased gas flow. 

 Annular flow: Higher gas flow rates will cause the liquid to form a continuous film 

and the interface disturbed by small amplitude waves. Dispersed liquid droplets are 

expected in the continuous gas phase. 

 Bubble flow: Gas bubbles are dispersed in the continuous liquid flow. 

 Spray or dispersed flow: Discrete liquid droplets are dispersed in the continuous gas 

phase 

The Baker chart in Figure 3.1 shows that the boundaries of various flow regimes are 

functions of the superficial velocity of the gas phase G, and the ratio of superficial velocities 

of the liquid and gas phase L/G. The dimensionless parameters λ and ψ shown in equations 

(3-1), (3-2) were introduced to make the chart in general form. Under the standard 

combination, where water (W) and air (A) flow at atmospheric pressure and at room 

temperature, the parameters λ and ψ are equal to unity. 
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Liquid collection systems possess all the above mentioned regimes. However the focus of this 

study is specific to quenching columns, hence the dispersed flow (spray) modelling was not 

considered here. It was observed that different flow regimes are present at different locations 

of the equipment depending on the liquid and vapour flow rates. For this reason a robust 

multiphase model is necessary to capture all the previously mentioned regimes. The most 

popular multiphase models are the volume of fluid (VOF) and the Eulerian models which 

address most of the gas liquid flow regimes. 

3.1.1 The volume of fluid (VOF) model 

The VOF model is used when accurate representation of interface between two immiscible 

fluids is needed. This is achieved by solving a single set of conservation equations while the 

volume fraction is tracked for each fluid throughout the flow domain. However, the VOF 

formulations assume that the two fluids are not interpenetrating. All field variables and 

properties are shared by the various phases and represent volume averaged values. VOF is 

not appropriate if the interface length is smaller than the computational cell length. This 

makes the model expensive in terms of number of computational cells needed to capture the 

interface even though it has less number of equations to solve. Moreover, the VOF method 

has certain limitation in modelling flooding as it solves one set of Navier-Stokes equations 

shared by two phases which makes momentum exchange between them is hard to obtain. 
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Furthermore, the phase change due to condensation induces a misty phase in the domain 

which is very hard to capture with the VOF model. 

3.1.2 Eulerian model 

The Eulerian- Eulerian model is used for the modelling of multiple phases which are 

interacting and interpenetrating in nature. The phases can be gases, liquids and / or solids 

with any combination between them. In this model a single pressure is shared by all phases. 

Continuity and momentum equations are solved for each phase while tracking the volume 

fractions of each phase in the particular cells. The interphase drag force modelling mostly 

affects the computational accuracy especially when flooding occurs within the quenching 

column.  A general model which is closer to the actual physics, less empirical and 

independent of geometry is missing for the drag force modelling. Moreover, this model has a 

limitation in tracking the interface accurately as VOF model.  

3.1.3 Multi fluid – VOF model 

The Multi-fluid VOF model provides a method to couple VOF and Eulerian multiphase 

models. This makes the usage of the model more suitable for both sharp and dispersed 

interface regimes. This also overcomes the limitations of the VOF which is based on shared 

velocity temperature formulation. This model is more suitable as a multiphase model due to 

its robustness in terms of handling both dispersed and free surface flows as well as 

combination of two. Moreover, there is no limitation in creating finer grids to capture finer 

volume fractions of the phases accurately. The applicability of the models can be seen in 

Figure 3.2. 
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Figure 3.2– Flow regimes and recommended multiphase models. 

3.2 Transport equations for multiphase systems 

The basic assumption for the derivation of the transport equation in the multiphase system is 

that the system consists of a sufficient number of particles so that any discontinuities can be 

neglected, or in other words the phases are continuous. This implies that, the derivatives of 

the various properties of the system exists and are continuous.  

As explained before, the fluid dynamics modelling approach in this study is based on the 

immiscible Eulerian model (Multi-fluid VOF model), which is able to track the interface 

between two immiscible phases, while providing a solution of the governing equations for 

each phase. The major advantage of this modelling approach over the standard VOF method 

developed by Hirt et al. [127], is that the solution of the conservation equations for each 

phase can provide information about the slip velocity at the interface of the two phases, 

which consequently leads to a more accurate prediction of the heat transfer computations.  

The commercial CFD package ANSYS Fluent was used as the computational platform for the 

simulation of the quenching column hydrodynamics.  



3.2 Transport equations for multiphase systems 47 

 

 

 

3.2.1 Mass conservation equation 

In continuum mechanics, the general form of a mass conservation law is expressed by using 

the continuity equation. The Navier-Stokes equations are derived by applying Newton's 

second law to fluid motion and govern the flow of the Newtonian fluid. They describe the 

unsteady and three dimensional nature of the flow. The mass continuity equation specific to 

multiphase systems is as follows 

 
(
𝜕

𝜕𝑡
(𝛼𝑝𝜌𝑝) + ∇ (𝛼𝑝𝜌𝑝𝑣𝑝̅̅ ̅)) = (�̇�𝑞𝑝 − �̇�𝑝𝑞) . (3-3) 

The continuity equation which provides the mass balance for phase p can be given in terms of 

volume fraction αp and its density ρp. In equation (3-3)  the mass source terms  �̇�𝑞𝑝 − �̇�𝑝𝑞 

correspond to mass transfer from phase p to phase q and vice versa. In step one (section 5.2) 

studies the mass source term was kept as zero as the condensation model is not included in 

that model.  

The mass transfer from the vapour phase to the bio-oil phase corresponds to the sum of the 

individual species mass transferred to the bio-oil. This is calculated based on the vapour 

liquid equilibrium (VLE) conditions as described in section 4.2. In this study, the mass 

transfer between the coolant and other phases is neglected.  

In addition to the continuity equation, an additional equation for the volume fraction is 

solved. The volume fraction of each fluid is defined in equation (3-4).  The volume fraction  

𝛼𝑝 is solved only for secondary phases. The primary phase volume fraction is calculated 

based on the fact that the sum of all phase volume fractions in the particular cell is equal to 1 

as shown in equation (3-5) 
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The secondary phase volume fraction equations are solved using an explicit scheme which 

uses a finite-difference interpolation method. This type of discretisation allows the usage of 

the Geo-Reconstruct method to get a clear interface without numerical diffusion. Since it uses 

the previous time step values as the basis for calculating current time step values, it does not 

require an iterative solution during each time step. The explicit formulation is time dependent 

and discretisation of volume fraction is done as shown in equation (3-6) .  
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𝑞=1 ]𝑉.  (3-6) 

Here, 𝛼𝑝,𝑓
𝑛   is the face value of the p

th
 phase volume fraction, whereas  𝑈𝑓

𝑛 represents the 

volume fluxes through the faces. The indices of the current and previous time steps are 

represented with n and n+1.This was computed with a compressive scheme when the 

interface involves the liquid coolant. In the case of an interface between bio-oil and pyrolysis 

vapour, the calculations were performed by using a second order upwind scheme.  

3.2.2 Momentum conservation equations. 

The momentum conservation equation for phase p is given in equation (3-7) 

 
𝜕

𝜕𝑡
(𝛼𝑝𝜌𝑝𝑣𝑝) + ∇ (𝛼𝑝𝜌𝑝𝑣𝑝�̅�𝑝) = −𝛼𝑝∇𝑃 + ∇ 𝜏�̿� + 𝛼𝑝𝜌𝑝�̅� + �̅� F + �̅�𝑠,𝑝.  (3-7) 
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where p is the stress-strain tensor, R  is the interaction force between two phases calculated 

by using equation (3-8) 

 
�̅� = 𝐾𝑝𝑞(�̅�𝑞 − �̅�𝑝).  (3-8) 

The interphase momentum exchange coefficient 𝐾𝑝𝑞defined as  
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  (3-9) 

In this study, the drag function 𝑓 used is based on Schiller-Naumann drag model [128]  and is 

defined as 𝐶𝐷𝑅𝑒/24. The drag coefficient 𝐶𝐷 is given by equation (3-10). At high Reynolds 

number, a constant value 0.44 was used for drag coefficient following Michaelides [129]. The 

relative Reynolds number Re is given in equation (3-11). 

 
𝐶𝐷 = {24 ( 1 + 0.15 𝑅𝑒

0.687)  𝑅𝑒⁄          𝑅𝑒 ≤ 1000
0.44                                                     𝑅𝑒 > 1000

.  (3-10) 

 
𝑅𝑒 =  

𝜌𝑝𝑞 |�̅�𝑝−�̅�𝑞|𝑑

𝜇𝑝𝑞
  (3-11) 

The particulate relaxation time 𝜏𝑝𝑞 used in equation (3-11), is defined as 

 
𝜏𝑝𝑞 =

𝜌𝑝𝑞𝑑
2

18𝜇𝑝𝑞
.  (3-12) 

The subscript pq denotes the volume averaged properties for density and viscosity. The 

interfacial area 
qA  shown in equation (3-9) is estimated based on algebraic relation between 

interfacial area concentration and specific bubble diameter. This relationship is explained in 
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equation (3-13). The symmetric model is employed for the calculation of the interface 

between the coolant and vapours. In the case of vapours and bio-oil where some mist flow is 

expected, the particle model was used. However, for the computation of the drag forces, the 

symmetric drag model was utilised. This model is recommended when the dispersed phase in 

one region becomes a continuous phase in another region of the domain, this is true between 

vapours and liquid coolant. 

 

𝐴𝑞 = {

6𝛼𝑞

𝑑𝑞
                 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑚𝑜𝑑𝑒𝑙

6𝛼𝑞( 1− 𝛼𝑞)

𝑑𝑞
      𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑜𝑑𝑒𝑙

  (3-13) 

The diameter of the dispersed phase q is represented by dq, where in this work has been set 

equal to 0.0001m which is 10 % of the minimum grid length scale. The term Fσ used in 

equation (3-7) is a source term, which represents the surface tension forces at the interface. 

The formulation for the surface tension is based on the work of Brackbill et al. [130]. Surface 

tension forces mainly arise as a result of attractive forces between molecules in a fluid at the 

interface. The surface force F  mentioned in equation (3-7) is computed using the equation 

(3-14) and equation (3-15) for two-phase and three-phase flows respectively. 

 

 
.

5.0 qp

pppqk
F









   (3-14) 

 

 
.

5.0,, ji

iijijjii

ij

jijPairsi

kk
F









 



  (3-15) 

In equation (3-14), kp is defined as the curvature and is computed from the unit normal which 

is defined as the gradient of the volume fraction of the liquid phase given in equation (3-16). 
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The momentum source �̅�𝑠,𝑝 is calculated based on the mass exchanged between the phases 

i.e. from vapour phase to bio-oil phase as shown in equation (3-18). This is enabled in the 

computational model where the phase change models are implemented. 

 
�̅�𝑠,𝑝 = �̇�𝑞𝑝(�̅�𝑞 − �̅�𝑝).  (3-18) 

Here �̇�𝑝𝑞 is equal to the sum of all the individual species mass sources condensed to form 

the bio-oil and is computed as �̇�𝑝𝑞 = ∑ �̇�𝑐
𝑖

𝑖 . 

3.2.3  Species transport equation 

The discrete component model was chosen in this work as a means to represent pyrolysis vapour 

composition. In order to solve the conservation equations for individual chemical species within the 

vapour phase, the convection-diffusion equation of the i
th
 species as shown in equation (3-19) is used. 

 
𝜕

𝜕𝑡
(𝜌𝑦𝑖) + ∇. 𝜌�̅�𝑦𝑖 = −∇. 𝐽�̅� + 𝑆𝑖.  (3-19) 

The diffusion flux 𝐽�̅� of the component i is computed based on Fick’s law which states that mass 

diffusion is due to concentration gradients. The mass diffusion coefficient is assumed to be a default 

constant value in the mixture which is 2.88 × 10 
– 5 

m
2
/s. 𝑆𝑖 is the source or sink term based on the 

mass exchange between species belongs to different phases or within the same phase. 

Equation (3-19) solved for N-1 species where N being the total number chemical species 
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present in the fluid phases. The N
th

 mass fraction is determined by subtracting the sum of N-1 

species mass fractions from one. In order to minimise the numerical errors associated while 

solving, species having the largest mass fraction was chosen as the N
th

 species, in this case it 

is the transport gas (Nitrogen) used for transporting pyrolysis vapours. 

3.2.4 Energy conservation equation 

The energy conservation for phase p is given as 

 
𝜕

𝜕𝑡
 (𝑎𝑝𝜌𝑝ℎ𝑝) + ∇. (𝑎𝑝𝜌𝑝�̅�𝑝ℎ𝑝) = −𝑎𝑝

𝜕𝑃𝑝

𝜕𝑡
+ 𝜏�̿�: ∇�̅�𝑝 − ∇. �̅�𝑝 + 𝑄 + 𝐻𝑠,𝑝. (3-20) 

In equation (3-20), ℎ𝑝 is the specific enthalpy of the phase p. 𝑞𝑝is the heat flux and Q is the 

volumetric rate of energy transfer between two phases as defined in the equation (3-21). 

 
𝑄 = ℎ𝑝𝑞(𝑇𝑞−𝑇𝑝) (3-21) 

The heat transfer coefficient ℎ𝑝𝑞 between two phases was estimated based on the Ranz-

Marshall correlation [131]. The heat source due to phase change 𝐻𝑠,𝑝 mentioned in equation 

(3-21) is computed by 

 

𝐻𝑠,𝑝 = 

{
 
 

 
 

    

∑(−�̇�𝑐
𝑖𝐻𝑝

𝑖 )

𝑖

                                              𝑓𝑜𝑟  𝑡ℎ𝑒 𝑣𝑎𝑝𝑜𝑢𝑟 𝑝ℎ𝑎𝑠𝑒

∑�̇�𝑐
𝑖 (𝐻𝑝

𝑖 − Δ𝐻𝑣
𝑖)

𝑖

                                  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑏𝑖𝑜 − 𝑜𝑖𝑙 𝑝ℎ𝑎𝑠𝑒
 (3-22) 

The terms 𝐻𝑝
𝑖& Δ𝐻𝑣

𝑖  are the enthalpy and latent heat of vaporisation of the species i.  
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3.2.5 Turbulence modelling 

Most of the flows in the engineering fields fall within the turbulent regime. Turbulent flows 

are unsteady in nature. Flow properties within these types of flows fluctuate randomly. These 

quantities can be expressed as the sum of the mean and the fluctuating components, e.g. 

summation of the 𝑢𝑖velocity component can be seen in equation (3-23). 

 
𝑢𝑖 = �̅�𝑖 + 𝑢

′
𝑖 (3-23) 

The fluctuating velocity component 𝑢′  in equation (3-23) gives an additional term in the 

Reynolds averaged Navier Stokes equation. This term expressed through velocity gradients 

and turbulent viscosity 𝜇𝑡 as shown in equation (3-24). 

 
−𝜌𝑚𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ = 𝜇𝑡 (

𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
) (3-24) 

Prandl [133] proposed an expression for turbulent viscosity as given in equation (3-25) called 

Prandtl’s mixing length model. 

 
𝜇𝑡 = 𝐶𝑙𝑚

2 |
𝜕𝑢

𝜕𝑦
| (3-25) 

When the one dimensional structure of a flow breaks down the ‘mixing length model’ is no 

longer suitable. Hence, the two-equation models were proposed. The k-ε model is the most 

popular model and has been successfully used by many researchers over the years. This 

model is implemented in the indirect contact condenser model where turbulent flow is 

expected. In this model, two quantities are introduced: k, the turbulent kinetic energy and ε 

the rate at which the turbulent kinetic energy is dissipated to compute the turbulent viscosity 

term as shown in the equation 
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𝜇𝑡 = 𝐶𝜇𝜌

𝑘2

𝜀
 (3-26) 

Two transport equations are solved for k and ε as below. 

  

 𝜕

𝜕𝑡
(𝜌𝑚𝑘) + ∇ (𝜌𝑚�̅�𝑚𝑘) = ∇ ((μ𝑚 + 

μ𝑡,𝑚
𝜎𝑘

)∇𝑘) + 𝐺𝑘,𝑚 − 𝜌𝑚𝜖 (3-27) 

 𝜕

𝜕𝑡
(𝜌𝑚𝜀) + ∇ (𝜌𝑚�̅�𝑚𝑘𝜀) = ∇ ((μ𝑚 + 

μ𝑡,𝑚
𝜎𝜀
) ∇ε𝑘) +

𝜖

𝑘
(𝐶1𝜀𝐺𝑘,𝑚 − 𝐶2𝜀𝜌𝑚𝜀) (3-28) 

The mixture properties mentioned in equations (3-27) and (3-28) are defined in below set of 

equations from (3-29) to (3-31). 

 

𝜌𝑚 =∑𝑎𝑝𝜌𝑝

𝑁

𝑝=1

 (3-29) 

 

𝜇𝑚 =∑𝑎𝑝𝜇𝑝

𝑁

𝑝=1

 (3-30) 

 
�̅�𝑚 =

∑ 𝑎𝑝𝜌𝑝�̅�𝑝
𝑁
𝑝=1

∑ 𝑎𝑝𝜌𝑝
𝑁
𝑝=1

 (3-31) 

The turbulence kinetic energy 𝐺𝑘,𝑚 is calculated from the equation (3-32). 

 
𝐺𝑘,𝑚 = μ𝑡,𝑚(∇�̅�𝑚 + (∇�̅�𝑚)

𝑇): ∇�̅�𝑚 (3-32) 
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Chapter 4 Condensation model 

This section provides the details of the condensation model which was implemented on the 

liquid collection system CFD models in the subsequent chapter. It outlines the physics 

involved behind the process and also shows how the mass transfer between phases can be 

estimated with certain limitations. This section also gives some details about estimation 

techniques of pyrolysis vapour and bio oil properties. The computational equations required 

to perform this kind of simulations are also mentioned. 

4.1 Discrete component method (DCM) 

Pyrolysis vapours consist of more than 100 compounds. It is computationally very 

demanding to model the complete spectrum of species found in the pyrolysis vapours. There 

are two popular approaches to model the phase change dynamics of the pyrolysis vapour 

components available in the literature, as mentioned in the section 2.4.2. One is the 

continuous thermodynamics approach while the other one is the discrete component 

approach. Unlike the continuous thermodynamics approach, if the vapour contains or can be 

represented by few components, it is more desirable to track the mole fraction of the each 

component during the condensation process. 

Vapours obtained from pyrolysis reactor contain different compounds and it will vary greatly 

with the type of reactor and type of feed stock and it highly depends on the operating 

parameters. It is hard to obtain a universally acceptable composition for the pyrolysis 
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vapours. In fact, many approaches have been reported in the literature in order to separate the 

bio-oil into fractions [134 - 137]. This kind of fractioning or grouping is very useful in 

modelling phase change and reactions as well as developing upgrading strategies. Garcia-

Perez et al. [138] developed a characterisation approach to determine bio-oil chemical 

compositions in terms of macro-chemical families. These families are highlighted in the 

Table 4-1. 

Table 4-1– Typical bio oil chemical families 

Macro-chemical family Chemical compounds (example) 

Volatile non-polar compounds Ethylbenzene 

Volatile polar compounds Cyclopentanol 

Tetrahydro-2-furanmethanol 

Mono- lignols Alkylated and methoxylated phenols 

Benzenediol 

Polar compounds with 

moderate volatility 

5-methyl-2-furaldehyde 

Sugars Levoglucosane 

Extractive-derived compounds Fatty and resin acids 

Paraffins 

Heavy non-polar compounds  

Heavy polar compounds  

 

 

The chemistry of the pyrolysis oils are qualitatively well expressed by Hallet and Clark.[121]. 

The main components for the pyrolysis compounds are organic acids, phenols, aldehydes, 

pyrolytic lignin, ketones, levoglucosan and water typically between 15-25%. Brett et al. [123] 

utilised a similar composition in their DCM model for bio-oil evaporation modelling. 

Moreover, this composition was later utilised by Papadikis et al. [124] to develop a 
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condensation model. The condensation model used in the present work is an analytical 

improvement of the work of Papadikis et al. [124] model. In contrast with the uniform vapour 

composition presented in that study the current model treats each individual species as a 

separate compound that is condensed according to its individual saturation vapour pressure. 

In this way, fractional condensation modelling is enabled and the prediction of the bio-oil 

composition at each condensation stage becomes possible, once the initial vapour 

composition is known. The pyrolysis vapours are modelled by using a discrete representation 

of 11 chemical species dominant in bio-oil. The chemical species are listed in Table 4-2. 

Table 4-2 – Pyrolysis vapour composition. 

Name 
Initial Volume  

fraction 

Molecular 
weight 

(g/mol) 

Critical  
Temperature 

(K) 

Critical  
pressure 

(atm) 

Critical  
volume 

(cm3/mol) 

Acentric  
factor 

Critical   
compressibility 

factor 

Acetic acid 0.037 60.05 594 57.1 171 0.454 0.2 

Butanal 0.109 72.11 524 40 278 0.352 0.26 

Butyric acid 0.011 88.11 628 52 292 0.67 0.295 

Coniferyl alcohol 0.19 180.2 569.9 33.6 482 1.155 0.346 

Formic acid 0.042 46.02 580 57.34 120 0.368 0.1445 

Guaiacol 0.108 124.14 696.8 46.613 338 0.563 0.275 

Pentanal 0.021 86.13 554 35 333 0.4 0.26 

Phenol 0.054 94.11 694.2 60.5 229 0.44 0.24 

Propanal 0.144 58.08 496 47 223 0.313 0.26 

Propionic acid 0.017 74.08 612 53 230 0.536 0.242 

Water Vapour 0.267 18.01 647.3 217.6 56 0.344 0.229 

Nitrogen     126.19 33.53 90.1 0.037 0.292 

 

The representative composition with chemical structure can be seen in Figure 4.1 
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Figure 4.1– Bio-oil composition simplified. 

4.2 Vapour liquid equilibrium (VLE) 

4.2.1 Equation of state 

The physical properties of every chemical compounds depends on the nature of the molecules 

present in it. However, there is a significant gap in understanding the molecule behaviour 

completely. Early experimental observations of the Charles and Gay-Lussac laws together 

with Avogadro’s hypothesis formed the ideal gas law PV=NRT which formed the basis for 

the concept of the equation of state (EOS). By definition, an equation of state is a 

thermodynamic equation which is used to describe the state of the fluid under a given set of 
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physical conditions. It is useful in providing the relationship between two or more state 

functions like temperature volume and pressures. 

As pointed out by the Poling et al.[141] the following points are important while choosing the 

appropriate method for estimating physical properties. 

 Provide reliable estimation of physical properties for pure substances and mixtures. 

 Indicate the thermodynamic state of the substance. 

 Use minimum data for inputs. 

 Optimise error while estimating. 

 Indicate the error magnitude. 

 Computationally easy. 

Many molecular theories are available and useful for data correlation; the law of 

corresponding state is particularly useful. This law generalises and relates the critical 

properties in a universal way. In this study most of the simulations have been solved using 

ideal gas law. However, most of the properties are estimated using different estimation 

techniques explained in section 4.3. In many practical situations this may induce error in 

predicting quantities accurately. Engineers and researchers need to take proper justification 

when using the appropriate equation of state. For this reason, results obtained from real gas 

model Peng-Robinson equation of state were compared with the results obtained from Ideal 

gas laws (section 5.3.5). 

There are several equations of state available in the open literature. Lawal et al.[139] 

introduced a more general equation of state which can accommodate different equation of 

state by simply replacing its coefficients as mentioned in Table 4-3. The Lawal- Lake- 

Silberg (LLS) equation developed by Lawal et al. [139]  is given in equation (4-1). 

 
𝑃 =

𝑅𝑇

𝜐 − 𝑏
− 

𝑎(𝑇)

𝜐2 + 𝛼𝑏𝜐 −  𝛽𝑏2
 (4-1) 
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Where 𝛼 and 𝛽 are the coefficients of the quadratic and are given in the Table 4-3 for 

different equations of state. 

 

Table 4-3 – LLS equation coefficients 

EOS year 
Coefficient of the quadratic 

α β α − β 

Two constant equations:     

Van der Waal 1873 0 0 0 

Redlich - Kwong 1949 1 0 1 

Peng - Robinson 1976 2 1 1 

Three constant equations     

Clausius 1881 2c/b c
2
/b

2
 

1 

(c=b) 

Patel - Teja 1982 (b+c)/b c/b 1 

Yu -Lu 1987 3+ ω ω 3 

Four-constant equations:     

Lawal -Lake -Silberberg 1983 α β α − β 

Adachi- Lu 1983 (b
2
+ b

3
)/b (b

2
b

3
)/b

2
 1 

Trebble -Bishnoi 1987 (b+c)/b (bc-d
2
)/b

2
 1 

 

Among all the EOS mentioned in the table, the Peng Robinson EOS has become more 

popular and widely used in petroleum industry. It is better suited to gas condensate systems. 

The P-R Equation of state can be written in terms of compressibility factor as given in 

equation (4-2). 
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𝑍3 − [1 + (1 − 𝛼)𝐵]𝑍2 + [𝐴 − 𝛼𝐵 − (𝛽 + 𝛼)𝐵2]𝑍 − [𝐴𝐵 − 𝛽(𝐵2 − 𝐵3)] = 0 (4-2) 

Where 𝛼 and 𝛽 are taken as 2 and 1 respectively as shown in the Table 4-3. Cubic equation 

coefficients A and B are calculated as shown in equations (4-3) and (4-4). 

 
𝐴 =  

𝑎(𝑇)𝑃

(𝑅𝑇)2
 (4-3) 

 
𝐵 =

𝑏𝑃

𝑅𝑇
 (4-4) 

The coefficients ‘a’ and ‘b’ are made functions of critical properties of the species by 

imposing critical conditions on the cubic equation. They are defined as follows. 

 
𝑎 =  [1 + (0.37464 +  1.54226𝜔 − 0.26992𝜔2)(1 − √𝑇𝑟)]

2
(0.45724

𝑅2𝑇𝑐
2

𝑃𝑐
). (4-5) 

 
𝑏 = 0.0778

𝑅𝑇𝑐

𝑃𝑐
. (4-6) 

4.2.2 Saturation pressure 

When condensation or evaporation takes place in an enclosed volume, escaping molecules 

from the vapour accumulate as liquid and vice versa. As the molecule exchange between 

vapour and liquid reaches equilibrium, the vapour is said to be saturated and vapour pressure, 

density and temperature at that point is constant and there is no further change observed 

[142]. When the vapour phase of the fluid is in equilibrium with its liquid phase, the equality 

of the chemical potential, temperature and pressures gives the well-known Clapeyron 

equation.  
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 𝑑𝑃𝑉𝑝

𝑑𝑇
= 

Δ𝐻𝑣
𝑇Δ𝑉𝑣

= 
Δ𝐻𝑣

(𝑅𝑇2/𝑃𝑉𝑝)Δ𝑍𝑣
 (4-7) 

 𝑑𝑙𝑛 𝑃𝑉𝑝 

𝑑(1 𝑇⁄ )
= − 

Δ𝐻𝑣
𝑅Δ𝑍𝑣

 (4-8) 

In the equations (4-7) and (4-8), Δ𝐻𝑣 and Δ𝑍𝑣 corresponds to the difference in enthalpies and 

compressibility factors of saturated liquid and vapours. Most of the estimation techniques for 

the vapour pressure come from integration of equation (4-8). The simplest of these is given in 

the equation (4-9), which assumes Δ𝐻𝑣 / Δ𝑍𝑣 is constant and independent of temperature. 

 
𝑙𝑛 𝑃𝑉𝑝 = 𝐴 − 𝐵/𝑇. (4-9) 

The above equation holds for small temperature ranges. However it suffers at large 

temperature ranges and near critical point regions. Antoine [143] proposed a simple 

modification of the above equation which can be used in limited temperature ranges. Wagner 

[144] used a statistical method to develop an equation. More recently, Mejbri and Bellagi 

[145] developed a generalised three parameter corresponding states correlation for vapour 

pressure. In this correlation, the natural logarithm of the reduced saturated vapour pressure 

and acentric factor 𝜔𝑖 are in linear relation as shown in equation (4-10) with an average 

relative deviation between data and estimated values is about 0.16% and maximum being 

around 0.3%.  

 
ln(𝑃𝑟 

𝑖 ) =  𝑓0(𝜏
𝑖)  + 𝜔𝑖𝑓1(𝜏

𝑖), (4-10) 

where 𝜏𝑖  is the inverse of the reduced temperature 𝑇𝑟
𝑖 of the i 

th
 species and is equal to 1/𝑇𝑟

𝑖. 

The functions 𝑓0 and 𝑓1 are given by equations  
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𝑓0(𝜏

𝑖) = 𝛾1(𝜏
𝑖 − exp(1 − 𝜏𝑖)) + 𝛾2 ((𝜏

𝑖)𝛾3 − exp (1 − 𝜏𝑖)) (4-11) 

 
𝑓1(𝜏

𝑖) = 𝛾4(𝜏
𝑖 − exp(1 − 𝜏𝑖)) + 𝛾5 ((𝜏

𝑖)𝛾6 − exp (1 − 𝜏𝑖)) (4-12) 

The values of the six universal γ coefficients which are used in the above two equations are 

listed in Table 4-4. 

Table 4-4 – Coefficients of equation (4-11) and (4-12). 

k γk 

1 -5.53357241 

2 11.0210515 

3 -0.51243147 

4 -10.6722729 

5 29.4364927 

6 -0.44101891 

 

For estimating vapour pressures with equation (4-10), the critical pressures and temperatures 

are needed along with the acentric factor. If the acentric factor is not available, Mejbri and 

Bellagi [145] recommended estimating it using the boiling temperature 𝑇𝑏
𝑖 by using equation 

(4-13). 
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𝜔𝑖 = (0.013162987 − ln 𝑃𝑐

𝑖 − 𝑓0(𝜏𝑏
𝑖 )) 𝑓1(𝜏𝑏

𝑖⁄ ) (4-13) 

where 𝜏𝑏
𝑖  is the ratio between critical and boiling temperatures i.e. 𝜏𝑏

𝑖 = 𝑇𝑐
𝑖 𝑇𝑏

𝑖⁄ . The critical 

pressure 𝑃𝑐
𝑖 used in equation (4-13)  is expressed in bars.  

The condensation rate is governed by the magnitude of the relative saturation value which is 

the ratio of the vapour fugacity 𝑓𝑣
𝑖 to the saturated vapour fugacity𝑓𝑙

𝑖. Under the vapour liquid 

equilibrium (VLE) conditions, the relative saturation will be unity. The vapour fugacity in 

this case is the partial pressure of the particular species in the system as given in equation 

(4-14). 

 𝑓𝑣
𝑖 = 𝜙𝑖𝑃𝑖 = 𝜙𝑖𝑥𝑖𝑃 (4-14) 

where 𝑃𝑖 is the partial pressure of the species ‘i’ and P is the total pressure of the mixture. 𝑥𝑖 

is the mole fraction of the i
th

 species within the vapour mixture. The saturated vapour 

fugacity computed from the reduced saturation pressure obtained from equation (4-12) as 

shown in equation (4-15). 

 
𝑓𝑙
𝑖 = 𝜙𝑠𝑎𝑡

𝑖 𝑃𝑟 
𝑖𝑃𝑐

𝑖 (4-15) 

Here the fugacity coefficients 𝜙𝑖and 𝜙𝑠𝑎𝑡
𝑖  which measure the departure from ideal behaviour 

are assumed as 1 and hence the saturated vapour pressure is considered the same as the 

saturated vapour fugacity. This is especially true when the system is not under high pressures 

and is evident from equation (4-14) 

 
lim
𝑝→0

    ln 𝜙𝑖 = 0 (4-16) 
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4.3 Thermodynamic properties 

4.3.1 Viscosity 

In a confined fluid subjected to shearing stress, the fluid will move with certain velocity 

gradient. The ratio obtained between the shear stress and the velocity gradient at that location 

is defined as the viscosity of the fluid. It is a measure of internal fluid friction. It is a function 

of thermodynamic state of the fluid like density. However it is referred to as non-equilibrium 

property. Viscosity is independent of the magnitude of applied shear stress or velocity 

gradient in the Newtonian fluids which is the case in liquid collection system flows. In order 

to estimate the viscosity of gases at low pressures, a number of corresponding states methods 

are available and most of them use the relation shown in equations (4-17)and (4-18). 

 
𝜇 =

𝑓(𝑇𝑟)

𝜉
 (4-17) 

 

𝜉 = 0.176 (
𝑇𝑐

𝑀3𝑃𝑐4
)

1
6⁄

 (4-18) 

ξ is inverse viscosity and expressed in μP
-1

 . 

The viscosity of the vapour mixture is estimated based on the Dean and Stiel [146] relation 

which is a function of the reduced mixture temperature. Mixture viscosity in equation (4-19) 

is expressed in micro poise. 

 

𝜇𝑚 = {  
3.4 𝑇𝑟𝑚

8
9⁄ 𝜉𝑚 ⁄                                                        𝑇𝑟𝑚  ≤     1.5

16.68 (0.1338 𝑇𝑟𝑚 − 0.0932)
5
9⁄ 𝜉𝑚          𝑇𝑟𝑚  >     1.5⁄

 (4-19) 
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𝜉𝑚 = (
𝑇𝑐𝑚

( 𝑀𝑚 
3𝑃𝑐𝑚

4)
)

1
6⁄

 (4-20) 

The reduced mixture temperature 𝑇𝑟𝑚  is expressed as the ratio between temperature of the 

vapour phase and mixture critical temperature. Here the mixture critical temperatures and 

mixture molecular weight were calculated by mass fraction weightage basis i.e. ∑𝑦𝑖𝑇𝑐
𝑖 , 

∑𝑦𝑖𝑀𝑖 respectively. The mixture critical pressure 𝑃𝑐𝑚 expressed in atmospheres is calculated 

using equation (4-21). The universal gas constant R is equal to 82.05746 (atm. cm
3
/ mol K). 

 
𝑃𝑐𝑚 = 

𝑅(∑ 𝑦𝑖𝑍𝑐
𝑖

𝑖 ) 

∑ 𝑦𝑖𝑉𝑐
𝑖

𝑖

𝑇𝑐𝑚 (4-21) 

4.3.2 Thermal conductivity 

Due to lack of the group contribution data, in this analysis, the more accurate correlations like 

Chung et al. [147] are not considered for calculating the thermal conductivity. The famous 

Eucken correlation offers a simple method to estimate the mixture’s thermal conductivity, 

 

𝑘𝑚 = (1.32 +
1.77

(𝐶𝑝𝑚 𝑅⁄ − 1)
)(

𝜇𝑚(𝐶𝑝𝑚 − 𝑅)

𝑀𝑚 
) (4-22) 

 

where 𝑘𝑚  is the thermal conductivity of the vapours, 𝐶𝑝𝑚
 is the heat capacity of the vapours, 

which is calculated based on a mass fraction average, i.e. ∑𝑤𝑖𝐶𝑝
𝑖.  
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4.3.3 Heat capacity 

The specific heat capacities of the individual species are given in Table 4-5. These values are 

obtained from Reid et al. [148]  and Stull et al.[149]. Group contribution using Constantinou 

and Gani (CG) method [150, 151] was employed when the data for the heat capacity were 

missing.  

 

Table 4-5 – Heat capacities of individual components present in pyrolysis vapours. 

 

Chemical 

compound 

Cp = A1+A2T+A3T2 

A1 A2 A3 

Acetic acid 195.74849 3.5237048 -0.001545339 

Butanal 245.97362 4.4604585 -0.001734686 

Butyric acid 229.03995 3.9854485 -0.001549761 

Coniferyl alcohol 527.97236 3.1066709 -0.000768719 

Formic acid 326.7 2.5160000 -0.00105 

Guaiacol 531.24523 3.0758568 -0.000739824 

Pentanal 202.39221 4.7575163 -0.001883003 

Phenol -158.75528 4.9638417 -0.002442437 

Propanal 240.36658 4.2292475 -0.001671269 

Propionic acid 164.9201 4.0156030 -0.001735477 

Water Vapour 1779.0173 0.1717701 0.000362651 

 

4.3.4 Heat of vaporisation/condensation 

The enthalpy of condensation is equal to the enthalpy of vaporisation by definition except 

that it has opposite sign. An enthalpy change in case of vaporisation is positive (taken by the 

fluid), whereas in condensation it is negative (given by the fluid). 
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The heat of vaporization for each chemical species within the vapour is estimated based on 

the law of corresponding states. The relationship of the heat of vaporisation with the acentric 

factor 𝜔𝑖, and the reduced temperature  𝑇𝑟
𝑖  shown in equation (4-23) is an analytical 

representation of the Pitzer’s [152] correlation. 

 
𝐻𝑣
𝑖 = (7.08 (1 − 𝑇𝑟

𝑖)
0.354

+ 10.95𝜔𝑖(1 − 𝑇𝑟
𝑖)
0.456

)  𝑅 𝑇𝑐
𝑖 (4-23) 

4.4 Bio-oil properties 

In this work, the bio-oil is treated as a homogeneous compound and hence its composition is 

not varied spatially or temporally. Representative bio-oil properties were sourced from the 

recent works of Oasmaa et al. [153 – 155]. The bio-oil properties along with the coolant 

liquid and the transport gas are shown in Table 4-6. 

Table 4-6 – Fluid properties. 

Fluid Density 

(kg/m
3
) 

Specific heat 

capacity (J/kg∙K)* 

Thermal 

conductivity 

(W/m∙K)* 

Dynamic 

viscosity 

(kg/m∙s)* 

Surface 

tension 

(N/m) 

Nitrogen Ideal gas 979.043 + 

0.4179639 T – 

0.001176279 T
2
 + 

1.674394 e-06 T
3
 – 

7.256297 e-10 T
4
 

0.004737109  

+ 7.271938 e-

05 T – 

1.122018 e-

08 T
2
  + 

1.454901 e-

12 T
3
 – 

7.8712 e-17 

T
4
 

7.473306 e-06 + 

4.083689 e-08 T 

– 8.244628 e-12 

T
2
 + 1.305629 e 

-15 T
3
 – 

8.177936 e-10 

T
4
 

 

Octane 722.32 2127.812 0.13415 0.000769 0.024088 

Bio-oil 1200 3200 0.386 

12.9881-

0.080204T 

+0.000124T
2
 

- 
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The pyrolysis vapour and liquid bio-oil properties are subjected to errors associated with the 

estimation techniques and experimental values used for their computation. However, there is 

great confidence that the deviations from reality will not significantly affect the final results 

of the numerical model as the previously mentioned correlations and experimental values 

have been widely used and accepted by the chemical industry for several years. 
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Chapter 5 LCS model – Results and discussion 

The fifth chapter provides a brief outline about the existing quenching column design and its 

operating conditions which forms the platform for this work. The rest of the section primarily 

divided in to four parts following each of the steps in detail as outlined in section 1.3. The 

current chapter is entirely dedicated to the results obtained from steps 1 to 3. The first part of 

the analysis presents the quenching column design optimisation on the basis of hydrodynamic 

modelling. In step 2, the model is tested for fractional condensation and validated with 

experimental results. In addition, in step 2A, a real gas model is also investigated and 

compared against the results obtained from the ideal gas model. Finally in step 3, a combined 

model obtained from steps 1 and 2 is applied in the quenching column with the detailed mass 

transfer mechanism associated with three distinct multi-component phases. The impact of the 

number of disc and donut stages of the column in the overall conversion of the pyrolysis 

vapours into liquid bio-oil is also investigated and analysed. 

5.1 Quenching column Design and Operating condition 

The liquid collection system of the pyrolysis rig comprised of a quenching column coupled 

with an electrostatic precipitator. The pyrolysis reactor is designed to operate at a biomass 

feeding rate of 5 kg/hr; however, the feeding rate was limited to 3 kg/hr. due to feeder 

limitations. 
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The original (baseline) design of the quenching column is shown in Figure 5.1. The 

equipment has been designed for a total gas (i.e. gases plus pyrolysis vapours) flow rate of  

0.0044 m
3
/s with a temperature of 400

O
C. The gaseous composition consists of 87% N2, 7% 

water vapour, 4% non-condensable gases and 1.5% organics, by volume. The design 

specifications of the discs and donuts inside the quenching column are given in Table 5-1. The 

dimensions of the quenching column are based on the maximum intended gas flow rates from 

the pyrolysis reactor, as well as the flooding factors. 

 

Figure 5.1– Sketch of experimental quenching column. 
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Table 5-1 – Quenching column design parameters 

Parameter Experiment 

Volumetric flow rate, m
3
/s 0.0044 

Temperature, OC 400 

Column diameter, cm 9.7 

Donut inner annular diameter, cm 3.4 

Disc diameter, cm  9 

Spacing  between disc and donut , cm 2 

Number of discs  18 

Number of donuts 19 

 

Octane at -5
O
C has been used as the direct contact cooling medium because of its 

immiscibility with the highly oxygenated hydrocarbons present in the final liquid bio-oil 

product. The experimental findings reported flooding of the quenching column at the design 

gaseous flow rate of 0.0044 m
3
/s. The problem was finally resolved by lowering the liquid 

coolant flow rate and by reducing the diameter of the discs. However, these modifications 

severely affected the quenching capacity of the equipment. It was also reported that the 

original quenching column design could only operate normally when the gaseous flow rate 

was reduced to 10% of its original design value. Flooding was reported in the thesis [17] for 

any gas flow rate above this value. All of the previously mentioned issues set the platform for 

resolving the problems associated with the operation of quenching columns. 

5.2 Step1 - Quenching column hydrodynamics 

In this study, an attempt on the modelling of the hydrodynamic and heat transfer phenomena 

with the aim of eliminating the flooding issues of the previously mentioned quenching 
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column is presented. The gas liquid interactions are simulated using the immiscible Eulerian 

– Eulerian approach (multi-fluid VOF). The CFD studies validated the flooding phenomena, 

occurring at 50% of the design gas flow rate, while it is shown that the column can normally 

operate at 10% of the design gas flow rate. Both of these conditions were reported in the 

experimental investigations [17]. Under these considerations, four alternative design 

configurations are presented and modelled. The results are thoroughly analysed and discussed 

in terms of both hydrodynamic and heat transfer performance. 

5.2.1 Model assumptions 

The implementation of the hydrodynamic model is based on the following assumptions. 

I. Nitrogen has been used to represent the total gaseous flow rate in the column. The current 

model does not take into account the phase change of the condensable vapours present in the 

gaseous mixture. The small concentration of the condensable vapours compared to the 

dominant presence of non-condensable gases (especially N2 as the fluidising gas) was 

considered not to play an important role in the development of the hydrodynamic 

characteristics of the quenching column. 

II. For the previously mentioned reasons, the heat transfer calculations were assumed to be 

governed solely by the presence of N2. 

III. Buoyancy induced laminar flow conditions were assumed inside the quenching column 

since the Rayleigh number of the flow is well below the 10
8
 value. It has also been previously 

reported that laminar flow assumptions give better predictions for this type of flow [28].  

5.2.2 Initial conditions and Boundary conditions 

Initially 2D models were considered as these will give quick insight into the physics. 

However, due to flow which is highly unsymmetrical and random in nature, 3D transient 

analysis was adopted for this modelling task. 
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The initial volume fraction of the coolant was set to zero and the entire equipment was filled 

with nitrogen at room temperature i.e. at 25
O
C. The initial velocity and pressure were set to 

zero (gauge) in the whole domain. A mass flow rate of 0.025 kg/s of octane is supplied at the 

coolant inlet at -5
O
C. The initial run was continued until the coolant liquid reaches the bottom 

surface of the equipment. 

Once the liquid flow was developed, Nitrogen was injected from the vapour inlet at 400
O
C. 

The initial flow rate supplied is about 10% of the designed flow rate. The designed flow rate 

for this equipment is 0.0044m
3
/s, since the detailed chemical components of the pyrolysis 

vapours not included and the flow is assumed to be governed by nitrogen, the calculated mass 

flow rate is about 0.002232 kg/s based on its density at 400
O
C. For the baseline model two 

studies conducted with different flow rates one at 10% flow rate and another one at 50% flow 

rate. The modified models were run with 50, 75 and 100% flow rates respectively. 

The quenching column wall was considered as adiabatic and heat transfer from it is 

neglected. Atmospheric pressure outlet was maintained at the gas outlet. The coolant outlet is 

modelled as a mass flow inlet with a negative flow rate. Based on the liquid levels at the 

bottom, the flow rate changes to either ‘0’ or ‘-0.025’kg/s in order to avoid rising the liquid 

coolant beyond specified levels. 

5.2.3 Baseline model 

The baseline model was constructed based on the existing experimental quenching column 

dimensions which were shown in Table 5-1. The sketch of the experimental quenching 

column is shown in Figure 5.1. The original design has 18 sets of disc and donuts. Flooding 

is caused by choking flow near the flow area either at disc plates or donut plate’s i.e. up flow 

of the vapour restricts the down flow of the liquid coolant [84]. In order to assess this 

phenomenon in the computational model, it is sufficient to consider the bottom three stages 

of donut arrangement as the maximum expected flow rates of the vapour is expected in this 
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area. For this reason, a three donut and two disc plate arrangement is considered in the 

baseline model as shown in Figure 5.2. 

 

Figure 5.2– Disc and Donut plate arrangement. 

Based on the observations from the results of the baseline model, a new design was proposed 

at this stage and modelled. The modified design is identical to the baseline model except for 

the donut plate configuration. In this model, eight holes with liners (herein after called 

caps/weirs) were placed circumferentially. The pitch circle diameter for these holes is the 

same for all donut plates. However the holes are arranged in an alternate pattern as seen in 

Figure 5.2. This is to facilitate bypassing of some gas to the next stage and at the same time 

not allowing vapours to escape directly in the vertical direction. The lining was about 5mm in 

height. 

Due to the size of the quenching column (Figure 5.3) and its complexity of the flow 

behaviour, the grid size was chosen as 1.5 mm with uniform spacing. Hexahedral cells were 
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used for the domain discretisation as they give better accuracy than tetrahedral cells when 

computing surface tension effects.  

 

Figure 5.3– CFD Domain - Quenching column. 

The section of the meshed model is shown in Figure 5.4. The total number of cells for the 

baseline model is 0.66 million whereas for the modified design model is 0.73 million. 
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Figure 5.4– Grid spacing – section taken at mid height. 

5.2.4 Validation study results 

All the models started with 0.001 s time step which was found to be the optimal in this kind 

of simulation and grid size. Moreover, the global courant number is well below the value 1 

when this time step was used.  After monitoring the gas temperatures at the exit and the liquid 

flow rate at the intermediate section which was located in between the disc plate and the 

donut, the nearly stable state was achieved after 8s maximum in all cases. The exception to 

this is the baseline with 50% gas flow case, where the stable state solution for these flow rates 

has not been achieved due to flooding of the coolant. The presented data in this part 

corresponds to data obtained after this time. Figure 5.5 shows the coolant liquid inside the 

domain for the baseline case. According to this figure, the coolant liquid is clearly flowing 

towards the bottom stages for the 10% flow case (10% to the designed flow rate condition). It 
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also clearly shows that in 50% flow case flooding is occurring at the top donut plate as it has 

been also reported in the experimental procedure.  

 

Figure 5.5– Instantaneous contours and iso-surface plots for the baseline models. 
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The coolant liquid level is constantly rising on the donut whilst a very small quantity is 

flowing towards the bottom stage as this is evident from the liquid level at the bottom for 

these two cases. The liquid is forced to move upwards through the donut due to the higher 

pressure exerted by the gases from the lower stages. Moreover, the accumulation of the liquid 

coolant at the top of the donut caused by the choked flow of gases causing further increase of 

the resistance from the coolant on smooth passage of the gas. This prevents the smooth flow 

of the coolant to the lower stages of the column and eventually leads to flooding at high gas 

and liquid flow rates. 

 

Figure 5.6– Instantaneous velocity vectors in baseline models. 

The velocity vectors for the gas combined with temperature contours varying from the 

maximum 400
O
C to minimum -5

O
C are presented in Figure 5.6. This section was created by 

slicing the equipment vertically at the centre which passes through the vapour inlet. From 
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this, it can be observed that in the 50% case of the base line model, the maximum velocity 

reached by the vapour is about 5m/s which is well below the permissible velocity mentioned 

in the literature based on which the equipment was designed. Since flooding is observed at 

50% flow of the designed flow rate, simulation of the 100% flow case on the baseline model 

was not conducted. 

As observed in Figure 5.6, the flow is highly unsymmetrical. It is also observed from the 

transient simulation that the flow is fluctuating from one side to the other over time. Based on 

the results of the baseline model, it was observed that the main issue lies with the donut plate 

design. The flow area for the donut plate is less than the flow area available for disc in the 

baseline model. In order to obtain the same open area for the disc and donut plates, eight 

holes with liners were introduced on the donut plate. The liners on the hole aimed to allow 

only the passage of the vapours through them so that the flooding can be avoided.  

 

Figure 5.7– Iso-surface with 0.4 volume fraction for oil showing coolant under different vapour flow rates. 
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Figure 5.7 shows the coolant liquid flow pattern in the modified model for different flow 

conditions. From this picture it is evident that the flooding is avoided completely by this new 

configuration and is able to perform up to its designed limits. It was also observed that the 

disc plates are not fully wetted by the coolant where rivulet patterns can be observed. As this 

is expected to reduce the heat transfer considerably, it would be preferable that liners are 

provided for the disc plates as well so that a constant level of coolant will be always 

maintained on the disc plates. 

 

Figure 5.8– Velocity vectors and temperature under different vapour flow rates. 
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Figure 5.8 shows the combined plot of velocity vectors coloured by velocity magnitude and 

the temperature contours for the all three cases of the modified model. It is evident that a part 

of the vapour is bypassing through the holes provided on the donut plates. The holes act as 

nozzles which direct the vapour towards the disc plates. As the vapours come in contact with 

the disc plates a vapour recirculation towards the donut plate is observed, thus increasing the 

contact time with residing coolant while maintaining the high heat transfer rates and higher 

effectiveness. It is also observed that the flow directions/vectors are unchanged irrespective 

of the flow conditions and this gives the equipment a scope for scaling up. 

 

Figure 5.9– Average temperature of the gas along the quenching column height. 

The average temperatures of the gas for the different flow cases are presented in Figure 5.9. 

For the modified model at 100% flow condition, the minimum temperature attained was 

about 68
O
C which indicates that a significant amount of cooling can be achieved simply by 
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just three stages. Further cooling can be achieved if more stages are introduced inside the 

column. This depends on the nature of the process and the degree of cooling that is required. 

From this graph it is noted that the major cooling occurs at the disc plate section as it presents 

two types of cooling. The first one is impingement cooling which refers to indirect cooling 

and the second is direct contact cooling. After the passage through the holes of the donut 

plate the vapour are directed towards the disc plate which is highly desired for faster heat 

transfer. 

 

Figure 5.10– Average pressure of the gas along the quenching column height. 

Figure 5.10 shows the pressure plot along the length of the quenching column for different 

simulations. I it is evident that in the baseline model 50% flow case, a large pressure drop 

occurs at the top most donut section which is 12 -13 cm from the vapour inlet. This is due to 

the increasing levels of the coolant over the vapour due to flooding. In the case of 10% gas 
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flow, the maximum gas flow rate occurs at the bottom donut plate level as the temperature of 

the vapour is high and hence the pressure drop is high at that location. In the modified models 

the maximum pressure drop was limited to approximately 11 Pa compared to 90 Pa in the 

baseline case. 

The gas flow residence times for the different cases are tabulated in Table 5-2. The top row 

shows the per cent of the total inlet flow which directly pass through the outlet within a given 

time. 85% of the flow in the modified model is reaching the outlet within 1 second and thus 

rapid cooling of pyrolysis vapours can be achieved. 

Table 5-2 – Gas residence times (sec) under different vapour flow rate conditions 

CFD Run 
% of inlet flow 

25% 50% 75% 80% 85% 

Baseline model with 10% 8.25  - - - - 

Modified model  with 50% - 1.18  1.76  1.86  - 

Modified model  with 75% - 0.83  1.13 1.26  - 

Modified model  with 100% - 0.65  0.84  0.89  0.97  

5.2.5 Design variants 

Based on the previous study and understanding, four new design variants for the quenching 

column were developed. The dimensions were chosen based on curtain and window 

velocities calculated near the bottom of the column where the maximum gas flow rate is 

expected. Correlations for these velocities are shown in equations (2-1) and (2-2). The values 

of 1.15 and 0.58 are the recommended Souders-Brown coefficients [85]. 
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Figure 5.11– Design variants and their disc and donut plate configurations. 

The modified designs are identical to the baseline model except for the donut and disc plate 

configurations. Eight holes of 17 mm in diameter were placed circumferentially on the donut 

plates. This was done to facilitate the bypassing of a certain quantity of gas to the next stage 

and thereby reducing the window velocities to the desired range. The four new variants are 

different among them in terms of the placement of weirs on the disc and donuts. This can also 

be seen in Figure 5.11, whereas the height of each weir is approximately 5mm. The grid for 

the four design variants consists of approximately 0.73 million hexahedral cells and 

maintained a similar grid as shown for baseline model. 

The four design variants were numerically investigated at the design flow rate of 0.0044 m
3
/s 

(100% flow condition). Figure 5.12 shows the pressure, temperature and velocity contours, as 
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well as the liquid coolant iso-surfaces for all cases. It is clearly demonstrated that the flooding 

phenomena have been completely eliminated in all configurations. 

Figure 5.12 shows a magnified view of the velocity vectors for all design variants at different 

planes. A description of the planes can be seen in Figure 5.11. It is evident that the gas flow 

pattern differs significantly among the various design configurations. There are certain 

similarities between the types 1 and 3, while the flow pattern is also quite similar for types 2 

and 4, indicating a clear correlation between the structure of the weirs in the donut plates and 

the resulting gas flow pattern in the quenching column. In cases 1 and 3, no weirs have been 

incorporated on the donut plate openings; hence the liquid spreading on top of the donut 

plates affects the gas flow structure in a similar way. The same applies for the types 2 and 4, 

where weirs have been incorporated on the donut plates of both configurations. However, the 

liquid flow pattern presents some differences for all configurations, something that has to do 

with the presence of the weirs on the disc plates of types 3 and 4. In those cases, the presence 

of weirs on the disc plates, forces the liquid coolant to be accumulated on top of them, 

providing constant cooling to the plate as well as controlling the downward flow of the 

coolant in a more uniformly distributed manner. This is clearly evident in Figure 5.12 when 

one compares the liquid flow pattern, at the disc plate, in types 1 and 2, with the much more 

uniform flow occurring in types 3 and 4 due to the presence of the weirs.  
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Figure 5.12– Contours and iso-surface plots for the four design variants. 
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Figure 5.13– Velocity vectors at three different planes for the four design variants. 
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This has also a huge impact on the liquid flowing from the bottom donut plate, in which an 

atomised liquid flow pattern is present compared to a more uniform liquid jet flow pattern 

present in types 2 and 4. Looking at the temperature plot (Figure 5.14) it is clearly evident 

that the atomised liquid flow pattern of types 1 and 3 provides rapid cooling to the inflowing 

gases, resulting to a much lower gas temperature of approximately 260
O
C near the gas inlet 

region. This large temperature drop is a result of the higher heat transfer surface area 

provided by the liquid droplet flow pattern in cases 1 and 3, compared to the uniform liquid 

jet present in types 2 and 4 (gas inlet region  temperature of approximately 320
O
C). 

 

Figure 5.14– Average gas temperatures - Design variants. 
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Figure 5.15– Static (gauge) pressure for the four design variants. 

Figure 5.15 shows the variation of static pressure along the various stages of the quenching 

column. It is shown that types 1 and 2 present a much higher pressure build up because of the 

absence of flow control weirs in their disc plates. In these cases, the momentum contained in 

the liquid cannot be dissipated by the presence of weirs (like in types 3 and 4), thus allowing 

the liquid to fully cover the disc openings resulting in higher pressure build up in the 

quenching column (see Figure 5.12, liquid flow pattern for types 1 and 2). From the industrial 

application point of view, this means that configurations 1 and 2 are more susceptible to 

flooding when the coolant flow rate is increased. These issues are not as severe in cases 3 and 

4 where the presence of weirs on the disc plates results in a much more uniform and 

controlled liquid flow from the disc plate to the following donut plate. The uniform liquid 

curtain present on these two types allows the gas to smoothly transit from a donut plate to the 

disc plate right above it, without significant flow restrictions, which consequently lead to 

pressure rise in the column.    
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Figure 5.16– Maximum axial velocities for the four design variants. 

 

 Figure 5.17– Gas residence time in the quenching column – Design variants. 
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Figure 5.16 and Figure 5.17 show the mean axial velocities and vapour residence times for all 

design configurations. It is clear that type 2 presents the higher mean axial velocity which 

results in the lower residence time of the gases into the column. However the lower residence 

time in type 2 leads to a lesser interaction time between gas and coolant liquid which leads to 

an inefficient heat transfer between them. Types 1, 3 and 4, present similar velocity patterns, 

apart from small deviations between disc 1 and donut 2. This results in a similar gas 

residence time for the three types. 

Considering all of the above observations, one can state that the type 4 design is the most 

suitable design for more flexible and efficiently continuous operation of the quenching 

column. The fourth type of quenching column might not be able to provide a rapid initial 

cooling as can be seen in types 1 and 3, however, the uniform hydrodynamic conditions and 

efficient gas-liquid contact at the subsequent stages, results in the final gas temperature 

similar to types 1 and 3. Type 4 design also demonstrates a minimum pressure build up in the 

quenching column, something that makes it more flexible in changes of the liquid coolant 

flow rates. Types 1 and 2 present higher pressure build up for the same coolant flow rate, 

something that makes them more susceptible to flooding at higher liquid flow rates or at 

higher gas flow rates. Overall, it has been shown that the incorporation of weirs on both disc 

and donut plates result on a smooth and uniform liquid flow pattern inside the quenching 

column, providing efficient gas-liquid contact and thus significantly improving the heat 

transfer rates. 

5.2.6 Hybrid design 

The hybrid design is a combination of the Type 3 and Type 4 design variants as it is proposed 

in section 5.2.5. The main features of the hybrid design is that it offers the atomisation pattern 

present in the Type 3 variant at the bottom stage of the column, while it maintains the 

uniform flow characteristics of Type 4 variant for the rest of the column stages. This 
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configuration provides a rapid cooling on the pyrolysis vapours as they enter the quenching 

column, while it minimises the pressure build up and eliminates any flooding phenomena.  

 

Figure 5.18– Hybrid design of the quenching column. 
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The hybrid design shown in Figure 5.18, presents better inlet heat transfer characteristics than 

Type 4 variant whereas Type 3 variant provides the most rapid cooling at the inlet point 

mainly due to the increased heat transfer area resulting from the intense coolant atomisation. 

However, as the vapours flow through the first (i.e. between 3.5 and 5.5 cm) stage of the 

column, a sudden drop in the vapour temperature is observed in the hybrid design shown in  

Figure 5.19 is due to the combined effects of the coolant atomisation at the bottom donut 

plate and the uniform curtain flow from the upper disc plate. The vapour temperature is 

further decreased at the subsequent stages where it is eventually matched by the Type 3 

variant towards the outlet of the column. The Type 4 variant is not able to provide as efficient 

vapour cooling as the Type 3 or the hybrid configuration at any stage of the column. 

 

Figure 5.20– Average pressure ratio plot – hydrodynamic models. 
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Types 3 and 4 variants. Comparing the pressure build up as a pressure ratio of Types 3 and 4 

to the hybrid design, one can observe that the pressure close to the inlet is higher in the 

hybrid configuration, something that is expected to positively affect the rapid vapour 

condensation at an early stage. The column pressure significantly increases at the later stages 

for Types 3 and 4 compared to the hybrid case. This pressure rise is expected to improve 

vapour to liquid conversion at the subsequent stages; however it makes the column more 

susceptible to flooding phenomena. 

Overall, the hybrid design has been shown to provide better heat transfer performance with 

rapid vapour cooling. The increased vapour pressure at the early stages in the hybrid design 

facilitates better condensation, whereas its uniform hydrodynamic conditions and low 

pressure build up at the subsequent stages greatly overcome possible flooding phenomena.  

5.2.7 Conclusion 

The hydrodynamic behaviour of a quenching column used for the condensation of fast 

pyrolysis vapours has been presented in step1 studies. The study focused on the column 

design optimisation for the elimination of the flooding phenomena which were reported in the 

experimental procedures. The effect of the design alterations on the liquid to gas heat transfer 

has also been investigated. The original design (baseline model) has been simulated for two 

different gas flow conditions of 10% and 50% design flow rates. Flooding phenomena were 

already observed on the 50% flow case, as also reported in the experimental procedure, thus 

the operation of the column at the design flow rate (100%) was not attempted. 

Four new design variants, based on the Souders-Brown coefficients, were developed and 

simulated. It was shown that the gas flow is greatly affected by the weirs on the donut discs 

(gas flow similarities between types 1 and 3), while the presence of weirs on the disc plates 

greatly affected the liquid flow distribution at each stage. It was shown that the absence of 

weirs at bottom donut plate in types 1 and 3 resulted in an atomised liquid flow which has a 

significant impact on the initial temperatures of the gases due to the high heat transfer area. 
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Types 2 and 4 present a more uniform jet like type of liquid flow on the bottom donut plate, 

something that reduces the gas-liquid heat transfer rate which causes 50
O
C higher average 

temperature at the first stage compared with type 1 and 3. However, it was shown that the 

uniform liquid flow at the subsequent stages of the column is able to provide the necessary 

gas-liquid contact area for efficient interphase heat transfer and subsequent cooling of the 

pyrolysis gases. The type 4 configuration was proved to be the more efficient and flexible 

design among all the cases. However, in order to maximise the rapid heat transfer, we 

propose the type 4 configuration combined with type 3 donut plate configuration at the 

bottom most stage. 

In this study, the important problem of quenching column flooding and hydrodynamic 

behaviour was tackled and resolved. Apart from that, the pressure difference across the 

system has been reduced from 90Pa in the base line case to 25-15 Pa in design variants 

without compromising heat transfer. In all design variations, the gas flow time within the 

quenching column was less than 0.8 seconds signifying the rapid cooling of the vapours 

which is essential for higher liquid bio-oil yield. 

5.3 Step2 – Condensation model for indirect contact condenser 

This section presents the detailed modelling of the water cooled condenser. It also outlines 

the boundary and operating conditions used in this simulation. The assumptions made during 

the development of the condensation model are also mentioned. 
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Figure 5.21– Double surface water cooled condenser. 

The scope of the step 2 study is to simulate the phase change phenomena and to capture the 

selective condensation of the pyrolysis vapours inside the liquid collection system (LCS). 

The double surface water cooled condenser shown in Figure 5.24 was selected as the model 

condenser for validation purposes. The commercial CFD code ANSYS Fluent 13.0 has been 

used as the computational platform for the simulation of the condensation process. The phase 

change phenomena were incorporated to the code as user defined functions (explained in 

Appendix A).  

The computational grid size is around 1.1 million and comprised of all hexahedral elements 

as shown in the Figure 5.22. 
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Figure 5.22– Grid - Double surface water cooled condenser. 

5.3.1 Operating conditions 

The double surface water condenser (Figure 5.22) was used in the experiments conducted at 

Aston University as a first stage condenser within the liquid collection system (LCS) [48]. 

According to Salter [48], the flow rate of the cooling water is 2 L/min at 15
O
C and the vapour 

flow rate into the condenser 12 L/min at 500
O
C. The vapour flow includes condensable and 

non-condensable gases. In the current computational model the wall surfaces, which are 

exposed to the water modelled with constant temperature of 15
O
C with an assumption of 

marginal increase in cooling water temperature in the system.  
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Biomass was injected to the experimental reactor at rate of 100g/hr. According to the mass 

balances obtained from the experiments, the total conversion of biomass into vapours is 

approximately 70 wt.%, whereas the non-condensable gases amount to 15 wt.%. Nitrogen is 

used as the carrier gas, which is also modelled together with the non-condensable gases. 

5.3.2 Assumptions 

The condensation model application is based on the following assumptions. 

I. The pyrolysis vapours together with the carrier gas nitrogen is treated as an ideal 

mixture. This is mainly due to the unavailability of the excess function data in the literature. 

II. The density of the species over the computational domain was calculated based on the 

ideal gas assumption. However, while estimating the vapour pressures, and critical properties 

such as viscosity and thermal conductivity, real gas behaviour was considered. 

III. Pyrolysis vapours are modelled with 11 chemical species (Table 4-2) and are assumed 

to represent the majority of its behaviour in terms of critical properties. This is a compromise 

between accuracy and the speed of the solution. In reality, pyrolysis vapours consist of more 

than 100 chemical compounds and it is nearly impossible to model all the species in this kind 

of study. The model presented here is readily scalable to different species groups based on the 

feedstock used for pyrolysis. 

IV. Fugacity coefficients are assumed as 1. This assumption can be justified when the 

system is not under high pressures.  

The non-condensable gases obtained from the mass balance done during the experiment are 

modelled as Nitrogen and clubbed with the carrier gas composition. The very low 

concentration of the non-condensable gas fraction produced during biomass pyrolysis, is not 

expected to significantly influence the thermodynamic and fluid dynamic behaviour of the 

system. 
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Figure 5.23– Bio-oil mass fraction contours. 

 

5.3.3 Results and discussion 

The geometry of the condenser used in the current CFD model is the same as the double 

surface condenser used in the pyrolysis experiments [48]. 
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Figure 5.23 (b) shows the volume fraction of the bio oil at the outer tube and inner tube 

surfaces of the condenser. The contours of the bio-oil volume fractions on the vertical section 

of the condenser are presented in Figure 5.23(a). From this figure, it is evident that 

condensation is more intense at the surfaces at which the cooling water is in contact with. It 

also demonstrates the bio-oil droplet accumulation on the condenser during the condensation 

process. The dynamics of the bio-oil mist is highly influenced by the gas flow within the 

condenser. This is evident from the contours on the inner tube surface volume fraction as they 

can be seen in Figure 5.23(b), where ripple like formation is observed. In the case of the outer 

tube, the gas flow at the bottom side forces the bio-oil droplets into the central zone of the 

annular section. 

 

Figure 5.24–Temperature plot along the length of the condenser. 

0

600

500

400

300

200

100

0.05 0.10 0.15 0.200

500 250 15

g

V
ap

o
u

r 
a
v

e
ra

g
e
 t

em
p

er
a
tu

re
 (

C
) 

o

Axial distance from inlet (m) 



5.3 Step2 – Condensation model for indirect contact condenser 102 

 

 

 

In Figure 5.24, the contours of the gas temperature are shown where it can be observed that 

the gas temperature is lower at the wall surfaces than in the middle zone of the annulus space 

between the inner and the outer tubes. The gravitational force vector is shown in the same 

figure as ‘g’. The liquid bio-oil droplet formation discussed in the previous section is mainly 

due to this particular temperature profile of the gas. To have a clearer picture of the 

temperature variation along the length of the condenser, the average temperature, from the 

inlet to the outlet, is plotted in the same figure. The rapid vapour temperature drop can be 

seen in the same plot, where the inlet vapour temperature is approximately 500
O
C and outlet 

temperature is around 18
O
C. It can be observed that the most significant region for vapour 

cooling is located between ≈ 0.02 – 0.07m of the length of the condenser. 
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Figure 5.25– Relative saturation plot. 
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Figure 5.25 shows the variation of the relative saturation of the different compounds along 

the length of the condenser. The dashed lines represent the maximum and minimum values at 

the different sections, while the continuous line represents the volume averaged compound 

saturation at each particular section of the condenser.  

 

Figure 5.26– Mass fractions of the pyrolysis vapour components at inlet. 

A compound will change phase (condense) when its relative saturation exceeds unity. From 

Figure 5.25, it can be seen that the maximum relative saturation for Butyric Acid, Coniferyl 

Alcohol, Guaiacol, Phenol and water reaches its maximum value before 0.1 m of length, 

while the curve relaxes towards its equilibrium value as the vapours continue to condense 

beyond this region. The maximum relative saturation occurs close to the wall boundaries due 

to the significantly lower temperatures at those points. The minimum relative saturation 

values are mainly located towards the centre of the annular section where temperatures are 

higher. The volume averaged relative saturation line represents the volume weighted average 

of the relative saturation at different sections of the condenser. It shows that the average 

relative saturation along the condenser has an increasing trend (approaching unity) due to the 

rapid cooling of the vapours and gives a very good indication of the bio-oil composition at 

the first stage of condensation.  
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One can see that for the components where the average saturation has exceeded unity, a 

significant proportion of them will be collected in the form of liquid bio-oil at the first stage. 

For some of the components with low initial partial pressures, as shown in Figure 5.26 (e.g. 

propionic acid), only small traces will be collected that are mainly determined by the 

maximum relative saturation. For those components that none of the maximum and 

consequently none of the average and minimum saturations have exceeded unity, no traces 

will be detected in the final bio-oil product. 

 

Figure 5.27– Relative mass fraction of the vapour components. 
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The relative mass fraction contours of each compound are shown in Figure 5.27. These 

contours are plotted at the vertical mid-section of the condenser. At the inlet, all the values 

are equal to unity. As the vapours flow through the condenser, the values of the relative mass 

fraction decrease or increase depending on whether the compound within the condenser 

changes its phase to liquid bio-oil or not. Those compounds with maximum relative 

saturation above unity within 0.1 m of length keep condensing as the vapours flow along the 

length of the condenser. The relative mass fractions of those decrease continuously. The blue 

colour at the outlet indicates that a particular compound is completely condensed. Light green 

colour indicates that those components have been partially condensed within the condenser, 

whereas the red colour indicates that those compounds have been slightly or not been 

condensed at all. 

Another interesting point that can be observed in Figure 5.27 is that the values of the relative 

saturation increase sharply for many components at around 0.18m. This is primarily 

attributed to the rise in gas pressure near the exit of the condenser due to the diffuser effect at 

the point where the inner tube ends. As the inner tube ends, the cross sectional area increases 

steadily over a small distance which effectively gives a small rise in pressure.  

The maximum velocity of the vapour and the average pressure within the condenser are 

plotted in Figure 5.28 and Figure 5.29 respectively. From Figure 5.29, it is evident that at lower 

temperatures, a small increase in pressure highly increases the value of the relative saturation 

of the components. The relative saturation values shown in Figure 5.25 indicate that at higher 

temperatures condensation is primarily affected by heat transfer rates whereas at later stages, 

where the temperature is low, they highly depend on pressure changes. 
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Figure 5.28– Maximum velocity plot. 

 

Figure 5.29– Average vapour pressure plot. 
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Figure 5.30– Cumulative mass source ratio plot. 

Figure 5.30 shows the plot of cumulative mass source (amount of mass transferred from 

vapour phase to bio-oil phase) ratio along the direction of the flow. This is the ratio between 

the cumulative mass source of the particular component and its mass fraction at the inlet. 

When the value of this ratio approaches unity, it indicates the complete conversion of that 

particular component. From Figure 5.30 we can see that Guaiacol is the first component 

condensed completely followed by Coniferyl Alcohol and Phenol. It is also worth noticing 

Cumulative mass source ratio = 
cumulative mass source / total mass 
present in the vapour at the inlet.
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that butyric acid and water have been partially condensed within the condenser. 

Approximately 35% of water vapour is condensed in the bio-oil.  

 

Figure 5.31– Instantaneous mass source of the condensed vapour components. 
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fraction source of Coniferyl Alcohol is the greatest among all components, followed by 

Guaiacol. From Figure 5.31  we can see that the condensation of Guaiacol, Coniferyl Alcohol 

and Phenol starts at almost the same location in the condenser (approximately 0.025 m from 

the inlet). The condensation of components like water and Butyric acid starts at 

approximately 0.05m from the inlet. In the case of water, a considerable amount is transferred 

from the vapour phase to liquid bio-oil phase near the outlet region. This is mainly due to 

increased pressure at lower temperatures. From Figure 5.31 we can safely conclude that most 

of the condensation takes place between 0.025 to 0.1 m of the condenser. 

 

Figure 5.32– Reduced temperature. 
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The reduced temperature variation of all components within the vapour phase can be seen in 

Figure 5.32. The reduced temperature, which represents the ratio between the vapour 

temperature and the corresponding component’s critical temperature, varies between 1.5 and 

0.4.  More importantly between the lengths 0.025 m and 0.1 m where maximum condensation 

taking place, the reduced temperatures vary between 1.0 and 0.6. This is an essential 

condition for using the enthalpy of condensation relationship mentioned in equation (4-23).  
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Figure 5.33– Enthalpy source due to the condensation. 
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The enthalpy of condensation for each condensed component is plotted separately in Figure 

5.33.  The continuous line represents the total enthalpy of vaporisation within each axial 

segment of the condenser. The plot follows a similar trend as mass sources plot shown in 

Figure 5.31. The enthalpy of vaporization values are embedded into solver as energy source 

terms and are removed from the bio-oil phase. Dotted lines represent the maximum value of 

the enthalpy of condensation within a particular segment. The maximum enthalpy of 

condensation both in terms of total and maximum value is observed for Coniferyl Alcohol 

and followed by Guaiacol. One order of magnitude lower values are observed in the case of 

water and Phenol in comparison to Coniferyl alcohol. The rest of the acids contributed 

relatively negligible amounts of enthalpy towards the outlet region of the condenser. 

 

Figure 5.34– Velocity of the pyrolysis vapour. 
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Marshal correlation assumes that the secondary phase forms spherical droplets in the primary 

one. Moreover, the temperature at the outlet varies spatially over entire section so it was not 

clear at what location the actual measurement has been taken. Fivga’s [47] experiments, in 

which the same equipment has been used, also showed that the water vapour partially 

condensed in this stage of the liquid collection system. In the experiments, the condensed 

water percentage varies between 45 to 30% of the total water content. It is also mentioned 

that the pH value of the first stage condensed bio-oil is higher than the subsequent collection 

stages. This is primarily due to the condensation of the acid components at the later stages. In 

this numerical study, we also observed a similar trend where acids like formic acid and acetic 

acid are not condensed in the present condenser. 

It is worth commenting that the vapour thermochemical properties and in turn the 

condensation patterns of it will vary if a different initial vapour composition is used. In the 

real cases, the bio-oil and pyrolysis vapour composition is much more complex than the one 

described in this work. However, the numerical predictions of our simulation showed a very 

good agreement with the experimental results. Based on the type of biomass and type 

compounds present in it, the composition can be modified or further simplified and the 

properties can be estimated accordingly. In this way, this model can be utilised during the 

designing stage of biomass specific or function specific heat exchangers/condensers.  

5.3.4 Conclusion 

A species transport model has been implemented within the Eulerian multiphase approach to 

model the fractional condensation of bio-oil. The generalised corresponding states method 

has been used to estimate the saturation vapour pressure of the individual components. In this 

study, 11 discrete chemical compounds were selected to represent the pyrolysis vapours 

composition, together with Nitrogen which represents the carrier gas and the non-

condensable fraction. The mixture of pyrolysis vapours was treated as an ideal gas mixture. 

From the simulations, it was observed that only few components condensed completely in 
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this stage of the condenser something that it is in good agreement with the experiments. 

According to Fivga’s [47] experimental study, only 30% of the water vapour was condensed. 

Guaiacol, Coniferyl Alcohol and Phenol components were completely condensed within the 

first half of the length of the condenser. It is also observed that the marginal increase in the 

pressure at the lower temperature towards the outlet of the condenser resulted in the increase 

of relative saturation of water and other acidic components. The reduced temperatures within 

the condensing region for most of the components fall in the range of 1 to 0.5, which is the 

recommended range for using the Pitzer correlation for estimating the enthalpy of 

condensation. The model can be utilised for the design and optimisation of condensers and/or 

heat exchangers used in bio-oil liquid collection systems. 

5.3.5 Step 2A - Real gas effects on vapour temperature and pressure 

In this step, the condenser model was simulated by using real gas model and compared with 

ideal gas model temperature predictions. The Peng Robinson real gas equation of state was 

used for calculating vapour mixture properties. 

 

Figure 5.35– Vapour temperature difference between ideal real gas model predictions. 
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From Figure 5.35, it is evident that there is a marginal decrease in the vapour temperature 

when the real gas model is used. The maximum temperature difference observed was around 

3
O
C which can be safely considered as insignificant in terms of condenser operating 

temperatures.  

 

Figure 5.36– Compressibility factor for vapour mixture. 
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5.4 Step3 - Quenching column phase change model 

The aim of the step 3 study is to model the phase change phenomena due to condensation 

occurring within a quenching column. The gas-liquid interactions are simulated using the 

immiscible Eulerian – Eulerian approach. The selection of the quenching column design was 

based on the assessment of its hydrodynamic performance that was presented in the Step 1 

studies. The chemical thermodynamics governing the condensation process have been 

incorporated in user-defined subroutines to account for the flow regimes within the 

quenching column. The numerical model has been applied for the determination of the 

optimum number of stages and their effect on the condensation of individual species. The 

CFD results clearly show the impact of the number of stages, temperature and pressure on the 

relative saturation of the individual compounds. In addition, the effect of the species volatility 

on the phase change characteristics is thoroughly analysed and discussed 

5.4.1 Geometry 

The existing experimental quenching column dimensions are given in the Table 5-1. The 

original configuration includes 9 stages (pairs) of discs and donuts. However, in order to 

assess the effects of the number of stages on the condensation of pyrolysis vapours, the 

hybrid design (Figure 5.37) is modelled with 3, 5 and 9 stages respectively.  
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Figure 5.37– Donut and disc configuration for 3, 5 and 9 stage models. 

Set 3

Set 9Set 5



5.4 Step3 - Quenching column phase change model 119 

 

 

 

5.4.2 Model assumptions 

The implementation of the condensation model is based on the following assumptions. 

I. The pyrolysis vapours together with the carrier gas nitrogen are treated as an ideal 

mixture. This is mainly due to the unavailability of the excess function data in the 

literature. 

II. Fugacity coefficients are assumed as 1. This assumption has been justified when 

the system is not under high pressures as explained in section 5.3.5.  

III. Uniform properties for the condensed bio-oil were assumed within the quenching 

column, whereas, for the bio-oil phase, a diffusive behaviour similar to a mist 

flow regime is assumed. 

IV. Buoyancy induced laminar flow conditions were assumed inside the quenching 

column. 

V. Interaction between bio-oil phase and coolant phase is not modelled. 

5.4.3 Results and discussions 

The condensation process is studied in different hybrid configurations consisting of 3, 5 and 9 

stages respectively (Figure 5.37) in order to determine the optimum column size and vapour 

conversion efficiencies. 

As shown in Figure 5.38 the number of stages as well as the different pressure build ups in 

the different configurations do not have a significant impact on the maximum velocities at 

which the vapours travel through the column. It is observed that higher velocities are 

achieved close to the inlet with a magnitude ranging between 6-7 m/s, whereas a significant 

decrease (2-3 m/s) is noted when the vapours flow through the disc and donut pairs on the 

column. Hence, the residence time and consequently the condensation time of the vapours 

will mainly depend on the geometrical aspects of the column rather than its two phase flow 

characteristics, which at steady state are almost identical for all three configurations. 
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Figure 5.38– Maximum vapour velocity plot – 3, 5 and 9 stage models. 
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Figure 5.39– Contours of temperature, pressure and volume fractions. 
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Figure 5.40– Average temperature plot – 3, 5 and 9 stage models. 
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Figure 5.41– Average pressure plot – 3, 5 and 9 stage models.. 
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Figure 5.42– Relative saturation. 
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This result is in many aspects different compared to a previous study conducted in step 2, 

where the condensation of pyrolysis vapours was investigated in an indirect contact heat 

exchanger. In that study, only traces of acetic and propionic acid were condensed due to a 

sudden change in pressure towards the outlet of the condenser. This was also validated by the 

experimental observations [47]. These results are also in good agreement with the 

observations of Westerhof et al. [11, 12], where the light organic compounds (e.g. acetic 

acid) were primarily collected in the second condenser. It needs to be noted though that 

different operating conditions and different types of condensers (spray columns) were used in 

that study. It is clearly evident that the lower temperature and especially the greater vapour 

pressure build up in the quenching column significantly promote the phase change of the 

acidic components (35 to 62% for acetic acid and 66 to 81% for propionic acid as shown in 

Table 5-3).  

In both studies however, the highly volatile compounds such as formic acid and the aldehyde 

group have not been condensed at all. It is worth to note that compound condensation 

continues to take place until the outlet of the column for all configurations. The only 

compound that shows significant difference in its thermodynamic behaviour between the 5-

stage and the 9-stage configurations is the butyric acid. The mole fraction ratio in the vapour 

mixture (Figure 5.43) shows how the concentration of each of the pyrolysis vapours 

compound changes relative to its concentration at the inlet, as the various compounds 

condense in the column. A value of zero in the relative mole fraction graph indicates 

complete conversion of that compound. As shown in Figure 5.42 and Figure 5.43, butyric 

acid is completely condensed only in the 9-stage configuration due to the increased pressure 

build up in the column. This shows the significant role that pressure variations can play in the 

liquid collection system. Taking into account that coolant temperatures present a lower limit 

and can significantly limit phase change, the design of quenching columns needs to focus on 

pressure control for the optimisation of the final liquid yield. In this study, butyric acid is the 

perfect example of such influence of the system pressure on the thermodynamic behaviour of 

selected compounds. However, the upper limit for pressure gradient build up in the column is 
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dictated by flooding phenomena, as described in the part A of this study. Excessive 

condensation of the remaining six compounds, with nearly over 50% in all configurations, is 

also observed as shown in Table 5-3 with acetic acid being the only exception in the 3-stage 

configuration with 35% conversion. 

Table 5-3 – Conversion of pyrolysis vapours at different column configurations 

Chemical Compound Degree of Conversion (% of inlet mass fraction) 

3-stages 5-stages 9-stages 

Acetic Acid 35 57 62 

Butanal 0 0 0 

Butyric Acid 35 95 100 

Coniferyl Alcohol 0 100 100 

Formic Acid 0 0 0 

Guaiacol 100 100 100 

Pentanal 0 0 0 

Phenol 99 99 99 

Propionic Acid 66 78 81 

Water 85 90 91 
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Figure 5.43– Relative mole fraction. 
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Figure 5.44– Axial mass source per segment of the column. 
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As shown in Figure 5.44, the higher fraction of vapour conversion occurs within the bottom 3 

stages of each column configuration. This is an expected outcome if one considers that the 

partial pressure of the vapour compounds is significantly higher at the inlet of the column. 

However, the mass source of each species varies significantly depending on the degree of 

volatility of the corresponding compound. It is clear that compounds with lower volatility 

(i.e. coniferyl alcohol, phenol, guaiacol) are nearly completely condensed even at the first 

stage of the column, whereas the fraction with higher volatility is only partially condensed at 

the end of the third stage. As mentioned earlier, butyric acid behaves differently in the 9-

stage configuration due to higher pressure build up in the column. 

It is shown (Figure 5.44) that in the 3- and 5- stage configurations it is only partially 

condensed at the end of the third stage, whereas it is completely converted at the end of the 

first stage in the 9-stage configuration. A significant amount of water is also converted 

primarily in the bottom 2 stages of the column in all configurations, while its overall 

conversion is only slightly affected by the number of stages in the column (i.e. only 6% 

difference between the 3-stage and 9-stage configurations). The rate of water condensation is 

also found to be in line with the predictions of the thermodynamic model of Westerhof et al. 

[11, 12], where limited condensation is observed at for temperatures below 20
O
C. 

The total and maximum enthalpy of condensation per segment (Figure 5.45) is directly 

related to the condensed mass of each species and they follow a similar trend. The enthalpy 

of vaporization values are embedded into the solver as energy source terms and are subtracted 

from the bio-oil phase. As it is the case for the mass sources of the individual compounds, the 

higher total as well as maximum enthalpy values are attributed to the lower volatility 

compounds and water, where an order of magnitude difference is observed with the rest of 

the condensed components. Despite its complete conversion in the 9-stage configuration, 

butyric acid’s contribution to the total and maximum enthalpies of condensation is still low 

due to its higher vapour pressure. 
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Figure 5.45– Total and maximum enthalpies of condensation per segment. 

Acetic acid Butyric acid Coniferyl alcohol Guaiacol

Phenol Propionic acid Water

Acetic acid Butyric acid Coniferyl alcohol Guaiacol

Phenol Propionic acid Water

0.6

0.4

0.2

0
0 10 20 30 0 10 20 30

0

0.4

0.8

0

4

8

0 10 20 30

6

4

2

0
0 10 20 30

0

1.0

2.0

0 10 20 30

0.6

0.4

0.2

0
0 10 20 30

8

6

2

0

4

0 10 20 30

0.012

0.004

0

0.008

0 10 20 30

0.02

0.015

0.005

0

0.01

0.12

0.04

0

0.08

0.08

0.06

0.02

0

0.04

0.006

0.002

0

0.004

0.006

0.002

0

0.004

0

0.04

0.08

0 10 20 30 0 10 20 30 0 10 20 30

Y- Axis : Total enthalpyEsum

of condensation in the
segment ( J/s )

X-Axis : D , Distance from 
the vapour inlet (cm)

3 Sets

5 Sets

9 Sets

3 Sets

5 Sets

9 Sets

Y- Axis : , MaximumEmax

enthalpy of condensation in
the segment ( J/s )

X-Axis : D ,  Segment 
Distance from the vapour 
inlet (cm)

0 10 20 30 0 10 20 300 10 20 30



5.4 Step3 - Quenching column phase change model 131 

 

 

 

5.4.4 Conclusion 

A species transport model was implemented within the immiscible Eulerian multiphase 

approach to model the pyrolysis vapour condensation in a disc and donut quenching column. 

It was found that the design of this equipment needs to be a trade-off between two 

fundamental factors; the hydrodynamic performance, which will ensure the continuous 

operation of the column and the maximum degree of vapour to liquid conversion. In this step, 

it was shown that the lower coolant temperatures and higher pressure build up in the column 

promote the condensation of the higher volatility compounds. However, the limiting factor 

will always be the desired pyrolysis vapours conversion and hydrodynamic stability of the 

column. 

In step 3, it was shown that the lower volatility compounds were rapidly and totally 

condensed in all three different column configurations. However, significant differences in 

the final degree of conversion were observed for the higher volatility compounds. Partial 

condensation was observed for the acidic components except formic acid which was not 

condensed at any configuration. It was shown that the higher pressure build up in the column, 

due to the increased number of stages, can significantly aid the conversion of the compounds 

with higher volatility, such as butyric acid. The highly volatile compounds such as the 

aldehyde group as well as formic acid were not condensed at any column configuration, 

leading to the conclusion that secondary low temperature condensers will be required in the 

system.  

It has to be noted that the presented numerical model can be used for the design and 

optimisation of most of heat exchangers used for the condensation of fast pyrolysis vapours. 

However, the fluid dynamic and heat transfer characteristics which will eventually affect the 

equilibrium properties of the selected compounds will be specific to the condenser under 

study. And hence the model needs to be attuned to suit the flow conditions of the particular 

condensers such as turbulence modelling methods. The results presented in this study are 
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specific to the proposed quenching column and cannot be extrapolated to other types of 

condensers. 
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Chapter 6 Conclusions 

This chapter outlines the conclusions made throughout this work and describes its 

contributions to the science of research. Potential areas of future work also suggested at the 

end. 

6.1 Attainment of objectives 

The aim of the current work was to expand the capabilities of numerical modelling and build 

a strategy to simulate complex phase interactions such as mass, momentum, heat transport 

and phase transition phenomena among biomass pyrolysis vapours, liquid bio-oil and liquid 

coolant in direct contact heat exchangers. The key objectives were outlined as below. 

To progress CFD modelling in the liquid collection system design and optimisation through 

a) The development of a hydrodynamic model to examine the flooding phenomena.  

b) The evaluation of design parameters and their effect on the performance of the 

quenching column. 

To develop condensation model for the liquid collection system through 

a) The development of a fractional condensation model for indirect contact condensers. 

b) The validation of the results obtained from the model with experimental 

observations. 

To deploy the condensation model for direct contact condensers through 

a) The implementation of the fractional condensation model in a quenching column. 
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b) The evaluation of  the effect of different number of stages on the final liquid bio-oil 

yields. 

 

6.2 Overall conclusion 

This report presented the development and application of computational modelling applied to 

liquid collection system used in pyrolysis technology. The simulation platform used was the 

commercial CFD code FLUENT and the condensation models were implemented in the form 

of user defined functions (UDF). The main concept behind the code was to visualise the flow 

behaviour inside the quenching column (liquid collection system) which can bring some 

significant insights during the design stage of such equipment in the future.  

6.2.1 Hydrodynamics and design optimisation study 

The first part of the simulations involves the hydrodynamics study of the quenching column 

which involves multiphase flow phenomena. Initially baseline conditions were simulated for 

two different flow conditions, one with 10% design gas flow rate and another with 50% 

design gas flow rate. In the 50% condition, flooding of the liquid coolant was observed at the 

upper most donut plate as it was also observed during the experiments. It was identified that 

the flow area near the donut plate was not sufficient for the specified amount of gas flow 

rates even though it was designed by considering the design correlations using standard 

design methods. Modified designs were developed by providing extra flow area to the gas 

phase. The effect of the design alterations on the liquid to gas heat transfer has also been 

investigated. Four new design variants, based on the Souders-Brown coefficients, were 

developed and simulated. It was shown that the gas flow is greatly affected by weirs on the 

donut discs (gas flow similarities between types 1 and 3), while the presence of weirs on the 

disc plates greatly affected the liquid flow distribution at each stage. From this step an 

optimum design called hybrid configuration for the quenching column has been identified. 
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6.2.2 Condensation model development 

In the second part of the simulations, a condensation model was developed to account for the 

phase change and validated. A species transport model has been implemented for this and the 

Eulerian multiphase approach was used to model the fractional condensation of bio-oil.  The 

generalised corresponding states method was used to estimate the saturation vapour pressure 

of the individual components. In this study, 11 discrete chemical compounds were selected to 

represent the pyrolysis vapours composition, together with Nitrogen which represents the 

carrier gas and the non-condensable fraction. The mixture of pyrolysis vapours was treated as 

an ideal gas mixture.  

From the simulations, it was observed that only few components condensed completely in 

this stage of the condenser something that it is in good agreement with the experimental 

observation in the same equipment. According to Fivga’s [47] experimental study, only 30% 

of the water vapour was condensed. This was well in agreement with the CFD model 

predictions about amount of water condensed. Guaiacol, Coniferyl Alcohol and Phenol 

components were completely condensed within the first half of the length of the condenser. 

As observed in the experimental results, the acids were the least condensed especially acetic 

acid. It was also observed that the marginal increase in the pressure at the lower temperature 

towards the outlet of the condenser resulted in a significant increase of the relative saturation 

of water and other acidic components. The reduced temperatures within the condensing 

region for most of the components fall in the range of 1 to 0.5, which is the recommended 

range for using the Pitzer correlation for estimating the enthalpy of condensation. The model 

can be utilised for the design and optimisation of condensers and/or heat exchangers used in 

bio-oil liquid collection systems. More over the understanding of the detailed condensation 

process enable engineers and researchers to design equipment to control the bio-oil quality 

and properties such as viscosity, composition water content and acid numbers to suit to the 

specific applications. 
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6.2.3 Condensation model deployment 

As a final step towards the modelling of the complete quenching column, the optimum design 

obtained from the simulations carried out in step one was used with the condensation model 

developed in step two. It was found that the design of this equipment needs to be consider 

two fundamental factors; the hydrodynamic performance, which will ensure the continuous 

operation of the column and the maximum degree of vapour to liquid conversion. It was 

shown that the lower coolant temperatures and higher pressure build up in the column 

promote the condensation of the higher volatility compounds. However, the limiting factor 

will always be the desired pyrolysis vapours conversion and hydrodynamic stability of the 

column. A species transport model was implemented within the immiscible Eulerian 

multiphase approach to model the pyrolysis vapour condensation in a disc and donut 

quenching column.  

In step 3, it was shown that the lower volatility compounds were rapidly and totally 

condensed in all three different column configurations. However, significant differences in 

the final degree of conversion were observed in the higher volatility compounds. Partial 

condensation was observed for the acidic components except formic acid which was not 

condensed at any configuration. It was shown that the higher the pressure build up in the 

column, due to the increased number of stages, can significantly aid the conversion of the 

compounds with higher volatility, such as butyric acid. The highly volatile compounds such 

as the aldehyde group as well as formic acid were not condensed at any column 

configuration, leading to the conclusion that secondary low temperature condensers will be 

required in the system.  

The presented model can be used for the design and optimisation of any type of heat 

exchanger used for the condensation of fast pyrolysis vapours. However, the fluid dynamic 

and heat transfer characteristics which will eventually affect the equilibrium properties of the 

selected compounds will be specific to the condenser under study. The results presented in 
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this study are specific to the proposed quenching column and cannot be extrapolated to other 

types of condensers.  

 

6.2.4 Future scope of the work 

This thesis demonstrated the condensation modelling capability for the liquid collection 

systems used in pyrolysis technology. There are several areas that can be addressed in future 

while continuing this work or while extending it. 

In the present model, only one type of vapour composition was used. However there is a wide 

range of compositions that are available in the literature. Sensitivity studies focused on 

composition dependent condenser performance can be evaluated in the future. More over this 

should be backed up by the direct experimental results which need to be constructed based on 

the suggested design methods. 

In terms of the condensation model, the bio-oil is considered as single species in this work. 

This will however impose restriction on the species diffusivity due to concentration 

differences. Moreover, a more robust VLE mechanism needs to be accounted by computing 

the vapour and liquid fugacity separately.  

The current study was focused on the development of the computational code for simulating 

the flow behaviour inside the liquid collection system (in this case the quenching column). In 

the future, the spray regime inside the quenching column can be studied which also falls 

under the category of direct contact heat exchangers. This involves Lagrangian and Eulerian 

multiphase equations coupled together with species transport equations. It is also highly 

recommended that the proposed quenching column be constructed for further experimental 

investigation and identification of the operational difficulties. Given a choice on which one is 

implemented first, the construction of the experiments with the modified design needs to be 

addressed on priority. 
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6.3 Contribution to the science 

The work presented in this Thesis has made several contributions to the scientific research. 

The key contributions are 

 The possibility to investigate multiphase flow regimes especially in the liquid 

collection system. 

 To successfully modify the multi-fluid VOF model to capture flooding effects, 

thereby reducing the grid requirements compared to traditional VOF methods. 

 The investigation of the working principles of the heat exchangers those are different 

in the case of pyrolysis technology. The design key areas focus on rapid cooling with 

the minimum residence time. The models addressed these issues elegantly and 

showed the careful balance between the rapid cooling and avoidance of flooding due 

to pressure built-up. 

 The development of the fractional condensation model in accordance with the needs 

of the researchers and engineers who are working in pyrolysis technology. 

 The successful demonstration that species transport modelling along with multiphase 

models can capture the individual species condensation phenomena. 

 The successful implementation of the condensation model on direct contact 

condensers. 

Several sections of this work have been published and presented to the academic and 

industrial peers at various international forums. The list of publications and presentations are 

supplied in detail in the List of publications section. 
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Appendix A Multiphase UDF 

A.1 Mass transfer calculation 

#define R_atm 82.05746 /* cm3.atm/ Kmol */ 

#define R_cal 1.9858775 /* cal/molK */ 

#define R 8.314472 /* J/molK*/ 

 

#define acetic_acid 0 /* C2H4O2  */ 

#define butanal  1 /* C4H8O  */ 

#define butyric_acid 2 /* C4H8O2  */ 

#define coniferyl_alcohol 3 /* C10H12O3 */ 

#define formic_acid 4 /* C2H2O2  */ 

#define guaiacol  5 /* C7H7O2  */ 

#define pentanal  6 /* C5H10O  */ 

#define phenol  7 /* C6H6O  */ 

#define propanal  8 /* C3H6O  */ 

#define propionic_acid 9 /* C3H6O2  */ 

#define water vapour 10 /* H2O   */ 

#define Nitrogen  11 /* N2   */ 

 

#define gamma_1 -5.53357241 

#define gamma_2 11.0210515 

#define gamma_3 -0.51243147 



A.1 Mass transfer calculation A-2 

 

 

 

#define gamma_4 -10.6722729 

#define gamma_5 29.4364927 

#define gamma_6 -0.44101891 

#define n_species 12 /* number of species defined in vapour phase */ 

 

#define primary 0 

#define secondary 1 

 

double Mw_i(int i);  /* Molecular weights of the vapor phase species (g/mol) */ 

double Tc_i(int i);  /* Critical temperature (K) */ 

double Pc_i(int i);  /* Critical pressure (atm) */ 

double Af_i(int i);  /* Acentric factor */ 

double Vc_i(int i);  /* Critical volume (cm3/gmol) */ 

double Zc_i(int i);  /* Critical compressibility factor*/ 

 

static int counts=0; 

static real relaxation=1; 

static int last_ts = -1; 

static real RFact=1.0; 

 

DEFINE_ON_DEMAND (set_variables) 

{ 

 counts = 0; 

 RFact = 0.1; 

} 

 

DEFINE_INIT (set_memory,mixture_domain) 



A.1 Mass transfer calculation A-3 

 

 

 

{ 

 cell_t c; 

 Thread *mixture_thread; 

 real xc[ND_ND]; 

 int i; 

 thread_loop_c(mixture_thread,mixture_domain) 

 { 

  begin_c_loop_all(c,mixture_thread) 

  { 

   /*intialise the memory locations here*/ 

   for (i=0; i<=25;i++ ) 

   { 

    C_UDMI(c,mixture_thread,i)=0.0; 

   } 

  } 

  end_c_loop_all(c,mixture_thread) 

 } 

} 

 

DEFINE_EXECUTE_AT_END(execute_at_end) 

{ 

 int i; 

 int zone_ID=2; 

 Domain *mixture_domain=Get_Domain(1); 

 Thread *mixture_thread = Lookup_Thread(mixture_domain,zone_ID); 

 cell_t c; 

 thread_loop_c(mixture_thread,mixture_domain) 



A.1 Mass transfer calculation A-4 

 

 

 

 { 

  begin_c_loop_all(c,mixture_thread) 

  { 

   for (i=0; i<=12;i++ ) 

   { 

    C_UDMI(c,mixture_thread,i+13)=C_UDMI(c,mixture_thread,i); 

   } 

  } 

  end_c_loop_all(c,mixture_thread) 

 } 

} 

 

DEFINE_ADJUST(Initial_calc,mixture_domain) 

{ 

 real vapourFugacity; 

real liquidFugacity, reducedVapourFugacity, reducedLiquidFugacity; 

real lnReducedLiquidFugacity,ReducedTemperature; 

 real tau, f0, f1; 

 real relativeSaturation, liquidMassSource,M_source_total; 

 real operatingPressure, totalPressure, vapourPressure; 

 real vapourEnergySource, deltaH,condensation_enthalpy,sensible_enthalpy; 

 real Mixture_mol_tot; 

 real Molf_i[14],M_source[14],speciesEnergySource[14]; 

 int zone_ID=2; /* zone ID of fluid region (user input)*/ 

 int index; 

 cell_t c; 

 Thread *mixture_thread = Lookup_Thread(mixture_domain,zone_ID); 



A.1 Mass transfer calculation A-5 

 

 

 

 Domain *primary_domain=DOMAIN_SUB_DOMAIN(mixture_domain,primary); 

 Domain *secondary_domain=DOMAIN_SUB_DOMAIN(mixture_domain,secondary); 

 Thread **phase_thread; 

 phase_thread= THREAD_SUB_THREADS(mixture_thread); 

 condensation_enthalpy=0; 

 M_source_total=0; 

 begin_c_loop(c,mixture_thread) 

 { 

  operatingPressure = RP_Get_Real ("operating-pressure"); 

  totalPressure = operatingPressure + C_P(c,mixture_thread); 

vapourPressure=totalPressure; 

  condensation_enthalpy=0; 

  M_source_total=0; 

  for (index=0,Mixture_mol_tot=0; index <n_species; index++) 

  { 

  Mixture_mol_tot = Mixture_mol_tot + (C_YI(c,phase_thread[primary],index)/Mw_i(index));   

  } 

/* here only '(n_species-1)'used since the nitrogen mass transfer is neglected*/ 

  for (index=0; index <(n_species-1); index++) 

  { 

Molf_i[index]=(C_YI(c,phase_thread[primary],index)/Mw_i(index))/MAX(Mixture_mol_tot,

SMALL); 

   vapourFugacity = Molf_i[index]*vapourPressure;     

   reducedVapourFugacity = vapourFugacity/Pc_i(index);   

   tau = Tc_i(index)/C_T(c,phase_thread[primary]); 

   f0 = gamma_1*(tau - exp(1-tau)) + gamma_2*(pow(tau,gamma_3) - exp(1-tau)); 

   f1 = gamma_4*(tau - exp(1-tau)) + gamma_5*(pow(tau,gamma_6) - exp(1-tau)); 

   lnReducedLiquidFugacity = f0 + Af_i(index)*f1; 



A.1 Mass transfer calculation A-6 

 

 

 

   reducedLiquidFugacity = exp(lnReducedLiquidFugacity); 

   liquidFugacity = reducedLiquidFugacity*Pc_i(index)*totalPressure; 

   relativeSaturation = vapourFugacity/liquidFugacity; 

   if (relativeSaturation <= 1.0) 

    M_source[index] = 0; 

   else if (relativeSaturation>1.0 && relativeSaturation<2.0) 

    M_source[index] = (relativeSaturation-

1)*C_VOF(c,phase_thread[primary])*C_R(c,phase_thread[primary])*C_YI(c,phase_thread[primary],index); 

   else   

    M_source[index] = 

(C_VOF(c,phase_thread[primary])*C_R(c,phase_thread[primary])*C_YI(c,phase_thread[primary],index)); 

 

   M_source[index]=M_source[index]*1.0/CURRENT_TIMESTEP; /*relaxation*/ 

    

   M_source_total=M_source_total+M_source[index]; /* liquid mass source */ 

   ReducedTemperature = C_T(c,phase_thread[primary])/Tc_i(index); 

   if (ReducedTemperature<=0.4) 

   { 

    deltaH = 0.0; 

   } 

   else 

    deltaH = (7.08*pow((1-ReducedTemperature ),0.354) + 

10.95*Af_i(index)*pow((1-ReducedTemperature ),0.456))*R_cal*Tc_i(index)*(4.184/(0.001*Mw_i(index))); 

/* ( J/Kg) */ 

   speciesEnergySource[index] = M_source[index]*deltaH; /* (J/m3-s) */ 

   condensation_enthalpy=condensation_enthalpy+speciesEnergySource[index];/* 

(J/m3-s) */ 

  } 

  C_UDMI(c,mixture_thread,0) = C_UDMI(c,mixture_thread,13)+RFact*(M_source[0]-

C_UDMI(c,mixture_thread,13)); 



A.1 Mass transfer calculation A-7 

 

 

 

  C_UDMI(c,mixture_thread,1) = C_UDMI(c,mixture_thread,14)+RFact*(M_source[1]-

C_UDMI(c,mixture_thread,14)); 

  C_UDMI(c,mixture_thread,2) = C_UDMI(c,mixture_thread,15)+RFact*(M_source[2]-

C_UDMI(c,mixture_thread,15)); 

  C_UDMI(c,mixture_thread,3) = C_UDMI(c,mixture_thread,16)+RFact*(M_source[3]-

C_UDMI(c,mixture_thread,16)); 

  C_UDMI(c,mixture_thread,4) = C_UDMI(c,mixture_thread,17)+RFact*(M_source[4]-

C_UDMI(c,mixture_thread,17)); 

  C_UDMI(c,mixture_thread,5) = C_UDMI(c,mixture_thread,18)+RFact*(M_source[5]-

C_UDMI(c,mixture_thread,18)); 

  C_UDMI(c,mixture_thread,6) = C_UDMI(c,mixture_thread,19)+RFact*(M_source[6]-

C_UDMI(c,mixture_thread,19)); 

  C_UDMI(c,mixture_thread,7) = C_UDMI(c,mixture_thread,20)+RFact*(M_source[7]-

C_UDMI(c,mixture_thread,20)); 

  C_UDMI(c,mixture_thread,8) = C_UDMI(c,mixture_thread,21)+RFact*(M_source[8]-

C_UDMI(c,mixture_thread,21)); 

  C_UDMI(c,mixture_thread,9) = C_UDMI(c,mixture_thread,22)+RFact*(M_source[9]-

C_UDMI(c,mixture_thread,22)); 

  C_UDMI(c,mixture_thread,10) = C_UDMI(c,mixture_thread,23)+RFact*(M_source[10]-

C_UDMI(c,mixture_thread,23)); 

  C_UDMI(c,mixture_thread,11) = C_UDMI(c,mixture_thread,24)+RFact*(M_source_total-

C_UDMI(c,mixture_thread,24)); 

  if (M_source_total<SMALL) 

   C_UDMI(c,mixture_thread,12)=0.0; 

  else 

  { 

   if (C_T(c,phase_thread[secondary])<273.0 && 

C_T(c,phase_thread[secondary])>700.0 ) 

   { 

    C_UDMI(c,mixture_thread,12)=0.0; 

   } 

   else 

    C_UDMI(c,mixture_thread,12)= C_UDMI(c,mixture_thread,25)+ 

RFact*(condensation_enthalpy-C_UDMI(c,mixture_thread,25)); /* latent heat of condensation */ 
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  } 

 } 

 end_c_loop(c,mixture_thread) 

} 

A.2 Mixture property calculation 

DEFINE_PROPERTY(mixture_Viscosity,c,vapour_thread) 

{ 

 real mean_Mw, mixture_Tc, mixture_Pc; 

 real mixture_Af,mixture_Z,mixture_Vc, mixtureViscositySI,mixtureThermalConductivitySI; 

 real mixtureKsi,mixture_TR,Mixture_mol_tot; 

 real mixtureThermalConductivity;  

 real mixtureViscosity=0.0; 

 real Molf_i[14]; 

 int index; 

 Thread **phase_thread; 

 Thread *mixture_thread; 

 mixture_thread= THREAD_SUPER_THREAD(vapour_thread); 

 phase_thread= THREAD_SUB_THREADS(mixture_thread); 

 

 /*Initialisation section*/ 

 Mixture_mol_tot=0; 

 mean_Mw  = 0; 

 mixture_Tc = 0; 

 mixture_Pc = 0; 

 mixture_Af = 0; 

 mixture_Z = 0; 
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 mixture_Vc = 0; 

 for (index=0; index <n_species; index++) 

  { 

   Mixture_mol_tot = Mixture_mol_tot + 

(C_YI(c,phase_thread[primary],index)/Mw_i(index)); 

  } 

 

 for (index=0; index <n_species; index++)    

  { 

  

 Molf_i[index]=(C_YI(c,phase_thread[primary],index)/Mw_i(index))/MAX(Mixture_mol_tot,SMALL)

;  /* converting mass fraction to molfraction with assumption of ideal gas*/ 

   mean_Mw = mean_Mw + Molf_i[index]*Mw_i(index);  /* g/mol */ 

   mixture_Tc = mixture_Tc + Molf_i[index]*Tc_i(index); /* K */ 

   mixture_Af = mixture_Af + Molf_i[index]*Af_i(index); /* dimensionless */ 

   mixture_Z = mixture_Z + Molf_i[index]*Zc_i(index); /* dimensionless */ 

   mixture_Vc= mixture_Vc+ Molf_i[index]*Vc_i(index); /* cm3/gmol */ 

  } 

 mixture_Pc = R_atm*mixture_Tc*mixture_Z/mixture_Vc;     

     /* atm */ 

 mixture_TR = C_T(c,phase_thread[primary])/mixture_Tc; 

 mixtureKsi = pow(mixture_Tc,0.16667)/(pow(mixture_Pc,0.6667)*pow(mean_Mw,0.5)); 

 if (mixture_TR <= 1.5) 

  { 

   mixtureViscosity = 3.40*pow(mixture_TR,0.8889)/mixtureKsi;  

    /*microPoise*/ 

  } 

 else 

  { 
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   mixtureViscosity = 16.68*pow((0.1338*mixture_TR - 0.0932),0.5556)/mixtureKsi;

 /*microPoise*/ 

  } 

 mixtureViscositySI = mixtureViscosity*0.0000001;  /*kg/ms*/ 

 mixtureThermalConductivity = 

(mixtureViscosity*0.000001/mean_Mw)*(C_CP(c,phase_thread[primary])*(0.001*mean_Mw/4.184)-R_cal + 

4.47); /*cal/cm s K*/ 

 mixtureThermalConductivitySI = mixtureThermalConductivity*4.184/0.01; /*W/mK*/ 

 C_UDMI(c,mixture_thread,26)=mixtureViscositySI; 

 C_UDMI(c,mixture_thread,27)=mixtureThermalConductivitySI; 

 return mixtureViscositySI; 

} 

 

DEFINE_PROPERTY(mixture_Thermal_Conductivity,c,mixture_thread) 

{ 

 return C_UDMI(c,mixture_thread,27); 

} 

A.3 Macros for mass transfer 

DEFINE_MASS_TRANSFER(C2H4O2,c,mixture_thread,from_phase_index,from_species_index,to_phase_ind

ex,to_species_index) 

{ 

  return C_UDMI(c,mixture_thread,0); 

} 

DEFINE_MASS_TRANSFER(C4H8O,c,mixture_thread,from_phase_index,from_species_index,to_phase_inde

x,to_species_index) 

{ 

  return C_UDMI(c,mixture_thread,1); 

} 
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DEFINE_MASS_TRANSFER(C4H8O2,c,mixture_thread,from_phase_index,from_species_index,to_phase_ind

ex,to_species_index) 

{ 

  return C_UDMI(c,mixture_thread,2); 

} 

DEFINE_MASS_TRANSFER(C10H12O3,c,mixture_thread,from_phase_index,from_species_index,to_phase_i

ndex,to_species_index) 

{ 

  return C_UDMI(c,mixture_thread,3); 

} 

DEFINE_MASS_TRANSFER(C2H2O2,c,mixture_thread,from_phase_index,from_species_index,to_phase_ind

ex,to_species_index) 

{ 

  return C_UDMI(c,mixture_thread,4); 

} 

DEFINE_MASS_TRANSFER(C7H7O2,c,mixture_thread,from_phase_index,from_species_index,to_phase_ind

ex,to_species_index) 

{ 

  return C_UDMI(c,mixture_thread,5); 

} 

DEFINE_MASS_TRANSFER(C5H10O,c,mixture_thread,from_phase_index,from_species_index,to_phase_ind

ex,to_species_index) 

{ 

  return C_UDMI(c,mixture_thread,6); 

} 

DEFINE_MASS_TRANSFER(C6H6O,c,mixture_thread,from_phase_index,from_species_index,to_phase_inde

x,to_species_index) 

{ 

  return C_UDMI(c,mixture_thread,7); 

} 
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DEFINE_MASS_TRANSFER(C3H6O,c,mixture_thread,from_phase_index,from_species_index,to_phase_inde

x,to_species_index) 

{ 

  return C_UDMI(c,mixture_thread,8); 

} 

DEFINE_MASS_TRANSFER(C3H6O2,c,mixture_thread,from_phase_index,from_species_index,to_phase_ind

ex,to_species_index) 

{ 

  return C_UDMI(c,mixture_thread,9); 

} 

DEFINE_MASS_TRANSFER(watervapour,c,mixture_thread,from_phase_index,from_species_index,to_phase_

index,to_species_index) 

{ 

  return C_UDMI(c,mixture_thread,10); 

} 

DEFINE_SOURCE(bio_oil_liquid_energy_source,c,pt,dS,eqn) 

{ 

 Thread *mixture_thread=THREAD_SUPER_THREAD(pt); 

 dS[eqn]= 0.; 

 return (-(C_UDMI(c,mixture_thread,12))); 

} 

/* Molecular weights of the vapor phase species (g/mol) */ 

A.4 Critical property functions  

double Mw_i(int i) 

{ 

 double mi[20]; 

 mi[0] = 60.05;   /*acetic acid*/ 
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 mi[1]  = 72.11;   /*butanal*/ 

 mi[2] = 88.11;   /*butyric acid*/ 

 mi[3] = 180.2;   /*coniferyl alcohol*/ 

 mi[4] = 46.02;   /*formic acid*/ 

 mi[5] = 124.14;  /*guaiacol*/ 

 mi[6] = 86.13;   /*pentanal*/ 

 mi[7] = 94.11;   /*phenol*/ 

 mi[8] = 58.08;   /*propanal*/ 

 mi[9] = 74.08;   /*propionic acid*/ 

 mi[10] = 18.01528;  /*water*/ 

 mi[11] = 28.0134;  /*Nitrogen*/ 

 return mi[i]; 

} 

/* Critical temperature (K) */ 

double Tc_i(int i) 

{ 

 double Tc[20]; 

 Tc[0] = 594.0;   /*acetic acid*/ 

 Tc[1] = 524.0;   /*butanal*/ 

 Tc[2] = 628.0;   /*butyric acid*/ 

 Tc[3] = 569.9;   /*coniferyl alcohol*/ 

 Tc[4] = 580.0;   /*formic acid*/ 

 Tc[5] = 696.8;   /*guaiacol*/ 

 Tc[6] = 554.0;   /*pentanal*/ 

 Tc[7] = 694.2;   /*phenol*/ 

 Tc[8] = 496.0;   /*propanal*/ 

 Tc[9] = 612.0;   /*propionic acid*/ 
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 Tc[10] = 647.3;   /*water*/ 

 Tc[11] = 126.19;  /*Nitrogen*/ 

  return Tc[i]; 

} 

/* Critical pressure (atm) */ 

double Pc_i(int i) 

{ 

 double Pc[20]; 

 Pc[0] = 57.1;   /*acetic acid*/ 

 Pc[1]  = 40.0;   /*butanal*/ 

 Pc[2] = 52.0;   /*butyric acid*/ 

 Pc[3] = 33.6;   /*coniferyl alcohol*/ 

 Pc[4] = 57.34;   /*formic acid*/ 

 Pc[5] = 46.613;  /*guaiacol*/ 

 Pc[6] = 35.0;   /*pentanal*/ 

 Pc[7] = 60.5;   /*phenol*/ 

 Pc[8] = 47.0;   /*propanal*/ 

 Pc[9] = 53.0;   /*propionic acid*/ 

 Pc[10] = 217.6;   /*water*/ 

 Pc[11] = 33.534;  /*Nitrogen*/ 

  return Pc[i]; 

} 

/* Acentric factor */ 

double Af_i(int i) 

{ 

 double Af[20]; 

 Af[0] = 0.454;  /*acetic acid*/ 
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 Af[1]  = 0.352;  /*butanal*/ 

 Af[2] = 0.67;  /*butyric acid*/ 

 Af[3] = 1.155;  /*coniferyl alcohol*/ 

 Af[4] = 0.368;  /*formic acid*/ 

 Af[5] = 0.563;  /*guaiacol*/ 

 Af[6] = 0.4;  /*pentanal*/ 

 Af[7] = 0.44;  /*phenol*/ 

 Af[8] = 0.313;  /*propanal*/ 

 Af[9] = 0.536;  /*propionic acid*/ 

 Af[10] = 0.344;  /*water*/ 

 Af[11] = 0.040;  /*Nitrogen*/ 

  return Af[i]; 

} 

 

/* Critical volume (cm3/gmol) */ 

double Vc_i(int i) 

{ 

 double Vc[20]; 

 Vc[0] = 171.0;   /*acetic acid*/ 

 Vc[1] = 278.0;   /*butanal*/ 

 Vc[2] = 292.0;   /*butyric acid*/ 

 Vc[3] = 482.0;   /*coniferyl alcohol*/ 

 Vc[4] = 120.0;   /*formic acid*/ 

 Vc[5] = 338.0;   /*guaiacol*/ 

 Vc[6] = 333.0;   /*pentanal*/ 

 Vc[7] = 229.0;   /*phenol*/ 

 Vc[8] = 223.0;   /*propanal*/ 
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 Vc[9] = 230.0;   /*propionic acid*/ 

 Vc[10] = 56.0;   /*water*/ 

 Vc[11] = 90.1;   /*Nitrogen*/ 

  return Vc[i]; 

} 

 

/* Critical compressibility factor*/ 

double Zc_i(int i) 

{ 

 double Zc[20]; 

 Zc[0] = 0.2;  /*acetic acid*/ 

 Zc[1] = 0.26;  /*butanal*/ 

 Zc[2] = 0.295;  /*butyric acid*/ 

 Zc[3] = 0.346;  /*coniferyl alcohol*/ 

 Zc[4] = 0.1445; /*formic acid*/ 

 Zc[5] = 0.275;  /*guaiacol*/ 

 Zc[6] = 0.26;  /*pentanal*/ 

 Zc[7] = 0.24;  /*phenol*/ 

 Zc[8] = 0.26;  /*propanal*/ 

 Zc[9] = 0.242;  /*propionic acid*/ 

 Zc[10] = 0.229;  /*water*/ 

 Zc[11] = 0.292;  /*Nitrogen*/ 

  return Zc[i]; 

} 

 



 

 

 

Appendix B Group contribution 

In many instances, engineers and researchers often need mixture and pure component 

properties in order to design efficient equipment. Many property models are intended for the 

whole set of compositions at the pure component level. Pure component property constants 

like critical temperature pressures often used as the basis for corresponding state correlations 

to estimate properties like saturation pressures and viscosity. 

This section shows how the pure component property constants can be estimated in the 

absence of experimental data. There are different estimation methods available in the 

literature namely group, atomic or bond contribution methods. The basis for all these 

methods is that the intermolecular forces that determine the critical constants of the property 

depend mostly on bonds between atoms of the molecules. In the case of group contribution 

method, bonds within and among small group of atoms are considered. 

Vapour – liquid critical temperatures are of greatest interests like critical temperature, 

pressures, and volumes. They are used to estimate many thermodynamic transport properties. 

Finding them experimentally is difficult task especially for larger components present in 

pyrolysis vapours and bio-oils , can chemically degrade  at their very high critical 

temperatures. 

Earliest group contribution method developed to estimate critical properties was by Lydersen. 

With more availability of the experimental values efficient statistical techniques have been 

deployed to get different group contributions with optimized parameters. Out of which, 

methods of Joback, Constantinou and Gani , Wilson and Jasperson, and Marrero and Pardillo 
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are the famous group contribution methods listed by poling et al. In this section method used 

by Marrero and pardillo was described in detail for estimating critical properties. 

B.1 Method of Marrero and Pardillo 

Marrero-Marejo´n and Pardillo-Fontdevila described group interaction contribution technique 

which is a bond contribution method for estimating Tc, Pc, and Vc. They give equations that 

use values from pairs of atoms alone, such as  >C< & —N< , or  with hydrogen attached, 

such as CH3— & —NH2.  

 𝑇𝑐 = 𝑇𝑏 [0.5851 − 0.9286(∑ 𝑁𝑘𝑘 𝑡𝑐𝑏𝑘) − (∑ 𝑁𝑘𝑘 𝑡𝑐𝑏𝑘)2]⁄ . B-1 

 𝑃𝑐 = [0.1285 − 0.0059𝑁𝑎𝑡𝑜𝑚𝑠 − ∑ 𝑁𝑘𝑘 𝑝𝑐𝑏𝑘]−2. B-2 

 𝑉𝑐 = 25.1 + ∑ 𝑁𝑘𝑘 𝑣𝑐𝑏𝑘. B-3 

Table- B-1 Group contributions (sample). 

Pair # Atom/Group Pairs tcbk pcbk vcbk tbbk 

1 CH3 — & CH3— -0.0213 -0.0618 123.2 113.12 

2 CH3 — & —CH2— -0.0227 -0.0430 88.6 194.25 

3 CH3 — & —CH— -0.0223 -0.0376 78.4 194.27 

4 CH3 — & —C -0.0189 -0.0354 69.8 186.41 

5 CH3 — &CH— 0.8526 0.0654 81.5 137.18 

 

A) Acetic acid (C2H4O2):  

Number of atoms ( N atoms) : 8 
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Fig. B.1 Skeletal representation of Acetic acid. 

 

Table- B-2 Group contributions for Acetic acid. 

Pair # Atom/Group Pairs tcbk pcbk vcbk tbbk Nk 

19 CH3— & —COOH -0.0890 -0.0499 145.9 1228.84 1 

Estimated Values: 

1. Boiling point temperature :390.9503 K   (391.2 ± 0.6 from NIST) 

2. Critical Temperature  :592.5066 K   (593. ± 3 from NIST) 

3. Critical Pressure  :58.09414 bar  (57.81 bar  from NIST) 

 

B) Pentanal (C5H10O):  

Number of atoms ( N atoms) : 16 

 

Fig. B.2 Skeletal representation of Pentanal. 
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Table- B-3 Group contributions for Pentanal. 

Pair # Atom/Group Pairs tcbk pcbk vcbk tbbk Nk 

2 CH3 — & —CH2— -0.0227 -0.043 88.6 194.25 1 

29 —CH2— & —CH2 — -0.0206 -0.0272 56.6 244.88 2 

45 —CH2— & —CHO -0.0267 -0.021 106.1 648.7 1 

Estimated Values: 

1. Boiling point temperature :376.2588 K  (376. ± 2.) 

2. Critical Temperature  :569.207 K  (568.3) 

3. Critical Pressure  :42.99919 bar  (39.18) 

 

C) Phenol(C6H6O):  

Number of atoms ( N atoms) : 13 

 

Fig. B.3 Skeletal representation of Phenol. 

 

Table- B-4 Group contributions for Phenol 

Pair # Atom/Group Pairs tcbk pcbk vcbk tbbk Nk 

149 =C< [r] & —OH 0.0931 -0.0388 8.5 456.25 1 

134 =CH— [r] &=C<[r] 0.219 -0.1324 29.8 237.22 1 

130 —CH[=] [r] & —CH[=] [r] -0.2246 0.1542 36.5 112 2 
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133 =CH— [r] &=CH— [r] 0.2089 -0.1822 39.3 285.07 2 

131 —CH[=] [r] & >C[=] [r] -0.3586 0.149 34.4 291.15 1 

 

Estimated Values: 

1. Boiling point temperature :439.6407 K  (455.0 ± 0.6) 

2. Critical Temperature  :674.9482 K   (694.3) 

3. Critical Pressure  :59.1716 bar   (59.30) 

 



 

 

 

Appendix C Fugacity calculation 

C.1 Transformed equation of state 

The general equation of state, which was given by Lawal et al., is shown in equation (4-1). 

 
𝑃 =

𝑅𝑇

𝜐 − 𝑏
− 

𝑎(𝑇)

𝜐2 + 𝛼𝑏𝜐 −  𝛽𝑏2
  

The real gas equation can be expressed in terms of Z as shown in equation C-1. 

 
𝑍 =

𝑃𝑣

𝑅𝑇
 C-1 

By multiplying both sides of equation (4-1) with 
𝑣

𝑅𝑇
 will give equation C-2. 

 
𝑃
𝑣

𝑅𝑇
=

𝑣

𝑅𝑇
(
𝑅𝑇

𝜐 − 𝑏
− 

𝑎(𝑇)

𝜐2 + 𝛼𝑏𝜐 −  𝛽𝑏2
) C-2 

Re arranging the equation C-2 with Z form for  , equation C-3 can be obtained.  

 

𝑍 = 

𝑍𝑅𝑇
𝑃

𝑍𝑅𝑇
𝑃

− 𝑏
−

𝑎(𝑇)
𝑅𝑇

𝑍𝑅𝑇
𝑃

(
𝑍𝑅𝑇
𝑃
)
2

+ 𝛼𝑏
𝑍𝑅𝑇
𝑃

− 𝛽𝑏2
  C-3 

By multiplying denominator and numerator of the with  
𝑃

𝑅𝑇
   the equation C-3  becomes 

equation C-4. 
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𝑍 = 
𝑍

𝑍 −
𝑏𝑃
𝑅𝑇

−

𝑎(𝑇)𝑃
(𝑅𝑇)2

𝑍

𝑍2 + 𝛼
𝑏𝑃
𝑅𝑇 𝑍 − 𝛽 (

𝑏𝑃
𝑅𝑇)

2  C-4 

Equation C-4 can be expressed in more compact form as shown in equation C-5. 

 
𝑍 =  

𝑍

𝑍 − 𝐵
−

𝐴𝑍

𝑍2 + 𝛼𝐵𝑍 − 𝛽𝐵2
  C-5 

Where, the terms A and B can be expressed as shown in equations  

 
𝐴 =  

𝑎(𝑇)𝑃

(𝑅𝑇)2
  C-6 

 
𝐵 =  

𝑏𝑃

𝑅𝑇
  C-7 

By dividing each side of the equation C-5 with Z and multiplying with (𝑍 − 𝐵)(𝑍2 + 𝛼𝐵𝑍 −

𝛽𝐵2) yields equation C-8. 

 
(𝑍 − 𝐵)(𝑍2 + 𝛼𝐵𝑍 − 𝛽𝐵2) =  𝑍2 + 𝛼𝐵𝑍 − 𝛽𝐵2 − 𝐴𝑍 − 𝐴𝐵  C-8 

In simplified cubic form, the equation of state can be written as shown in equation C-9. 

 
 𝑍3 + Κ1𝑍

2 + Κ2𝑍 + Κ3 = 0  C-9 

Where, the coefficients are expressed as shown in the equations C-10 to C-12. 

  Κ1 = [1 + (1 − 𝛼)𝐵]  C-10 

  Κ2 = [𝐴 − 𝛼𝐵 − (𝛼 + 𝛽)𝐵2]  C-11 
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 Κ3 = [𝐴𝐵 − 𝛽(𝐵3 − 𝐵2)]  C-12 

C.2 Calculating roots for EOS 

Equation C-9 contains three roots and they can be computed in different ways. 

In the first step, parameters Q and R calculated as follows, 

 

 𝑄 =  
Κ1

2 − 3Κ2
9

  C-13 

 

 𝑆 =  
2Κ1

3 − 9Κ1Κ2 + 27Κ3
54

  C-14 

 

By considering 𝐷 = 𝑆2 − 𝑄3 be the discriminant, following cases are considered,  

a) If D <0, the polynomial equation have three real roots shown in the equations C-15 to 

C-17. 

 

 
 Z1 = −(2√𝑄 𝑐𝑜𝑠

𝜃

3
) − 

Κ1
3

 C-15 

 
 Z2 == −(2√𝑄 𝑐𝑜𝑠

𝜃 + 2𝜋

3
) − 

Κ1
3
  C-16 

 
Z3 == −(2√𝑄 𝑐𝑜𝑠

𝜃 − 2𝜋

3
) − 

Κ1
3
  C-17 

 

Here, the 𝜃 needs to be calculated in radians as shown in equation C-18. 
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 𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑆

√𝑄3
) C-18 

b) If D > 0, the polynomial equation have one single root shown in the equation C-19. 

 

Z1 = √−𝑆 + √𝐷
3

+ √−𝑆 − √𝐷
3

− 
Κ1
3
  C-19 

C.3 Fugacity for pure component 

The fugacity equation for General EOS can be shown in equation 

 
ln
𝑓

𝑃
= ∫ (

𝑣

𝑅𝑇
−
1

𝑃
)𝑑𝑃

𝑝

𝑝∗
 C-20 

By doing the separation of the integration, equation C-20 can be written as 

 
ln
𝑓

𝑃
= ∫

𝑣

𝑅𝑇
𝑑𝑃 − ∫

𝑑𝑃

𝑃

𝑝

𝑝∗

𝑝

𝑝∗
 C-21 

By doing integration by parts on the first part of the integral in equation C-21, 

 
ln
𝑓

𝑃
=

1

𝑅𝑇
[𝑣𝑃|𝑃∗ 

𝑃 −∫ 𝑃𝑑𝑣
𝑣

𝑣∗
] − ln

𝑃

𝑃∗
 C-22 

 

 
ln
𝑓

𝑃
=
𝑣𝑃

𝑅𝑇
−
𝑣∗𝑃∗

𝑅𝑇
 − 

1

𝑅𝑇
∫ 𝑃𝑑𝑣
𝑣

𝑣∗
− ln

𝑃

𝑃∗
 C-23 

At 𝑃∗ = 0 condition, Z is equal to 0. Therefore the equation C-23 becomes 
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ln
𝑓

𝑃
= 𝑍 − 1 − 

1

𝑅𝑇
∫ 𝑃𝑑𝑣
𝑣

𝑣∗
− ln

𝑃

𝑃∗
 C-24 

By substituting P using equation 4.1, equation C-24 expressed as 

 
ln
𝑓

𝑃
= 𝑍 − 1 − 

1

𝑅𝑇
∫ (

𝑅𝑇

𝜐 − 𝑏
− 

𝑎(𝑇)

𝜐2 + 𝛼𝑏𝜐 −  𝛽𝑏2
)𝑑𝑣

𝑣

𝑣∗
− ln

𝑃

𝑃∗
 C-25 

 

 
ln
𝑓

𝑃
= 𝑍 − 1 − 

1

𝑅𝑇
∫

𝑅𝑇

𝜐 − 𝑏
𝑑𝑣

𝑣

𝑣∗
+
1

𝑅𝑇
∫ ( 

𝑎(𝑇)

𝜐2 + 𝛼𝑏𝜐 −  𝛽𝑏2
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Where M and N are defined as  
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By simplifying the equation C-29 further, 
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Assuming 𝑣∗ is lot bigger than b, we get  
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By using real gas equation, the fugacity relation can be expressed in terms of compressibility 

factor as shown in the equation C-37. 
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