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An evidence-based framework for predicting the
impact of differing autotroph-heterotroph thermal
sensitivities on consumer–prey dynamics

Zhou Yang1, Lu Zhang1, Xuexia Zhu1, Jun Wang1 and David JS Montagnes2
1Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal
University, Nanjing, Jiangsu, China and 2Institute of Integrative Biology, University of Liverpool, Liverpool, UK

Increased temperature accelerates vital rates, influencing microbial population and wider ecosystem
dynamics, for example, the predicted increases in cyanobacterial blooms associated with global
warming. However, heterotrophic and mixotrophic protists, which are dominant grazers of
microalgae, may be more thermally sensitive than autotrophs, and thus prey could be suppressed
as temperature rises. Theoretical and meta-analyses have begun to address this issue, but an
appropriate framework linking experimental data with theory is lacking. Using ecophysiological data
to develop a novel model structure, we provide the first validation of this thermal sensitivity
hypothesis: increased temperature improves the consumer’s ability to control the autotrophic prey.
Specifically, the model accounts for temperature effects on auto- and mixotrophs and ingestion,
growth and mortality rates, using an ecologically and economically important system (cyanobacteria
grazed by a mixotrophic flagellate). Once established, we show the model to be a good predictor of
temperature impacts on consumer–prey dynamics by comparing simulations with microcosm
observations. Then, through simulations, we indicate our conclusions remain valid, even with large
changes in bottom-up factors (prey growth and carrying capacity). In conclusion, we show that rising
temperature could, counterintuitively, reduce the propensity for microalgal blooms to occur and,
critically, provide a novel model framework for needed, continued assessment.
The ISME Journal advance online publication, 18 December 2015; doi:10.1038/ismej.2015.225

Introduction

Eukaryotic microbial rates (for example, growth,
ingestion and photosynthesis) are expected to
increase with anthropogenic and natural tempera-
ture rise, and critically these responses will also be
altered by available resources (Montagnes et al.,
2003; Allen et al., 2005; Kimmance et al., 2006;
Bissinger, 2008; Montagnes et al., 2008; Knies and
Kingsolver, 2010; Cross et al., 2015). Consequently,
given the key role of these microbes (Kirchman,
2012), interactions between temperature and
resource fluctuations will impact on ecosystem
dynamics, often in unexpected ways. Here we
address a globally important instance of this; the
predicted increase in microalgal blooms with rising

temperature (Kosten et al., 2012; Downing, 2014;
Paerl, 2014) and the potential for eukaryotic
microbes (protists) to prevent or suppress the
development of such blooms.

Protists are major grazers of cyanobacteria and
phytoplankton in aquatic systems (Caron et al.,
2009), and clearly they too will be affected by
temperature rise. In fact, there is a strong indication
that the thermal sensitivity of heterotrophs is greater
than that of autotrophs, and as temperature rises,
microalgal blooms may be controlled by the faster
population-response of these unicellular grazers
(Allen et al., 2005; Rose and Caron, 2007; O'Connor
et al., 2011; Aberle et al., 2012; Chen et al., 2012;
Gilbert et al., 2014). Although, theoretical predic-
tions have begun to explore the impacts of such
disparate producer–consumer thermal responses
(Rose and Caron, 2007; O'Connor et al., 2011), the
argument has not been validated with empirical
evidence. Likewise, temperature effects on protist-
algal dynamics are complicated by two other, poorly
addressed, issues. First, temperature has unique
effects on functional and numerical responses
(predator ingestion and growth rates vs prey
abundance, respectively), which must be assessed
independently to appreciate the impact of temperature
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on consumer–prey dynamics (Kimmance et al.,
2006; Montagnes et al., 2008; Yang et al., 2013).
Second, many, if not most, protistan consumers in
fresh and marine waters are mixotrophic (they both
photosynthesise and ingest prey; see Sanders, 2011;
Flynn et al., 2013; Mitra et al., 2014), and within a
mixotroph the relative role of autotrophy and
heterotrophy can be temperature-sensitive (Heinze
et al., 2013; Wilken et al., 2013). Therefore, tem-
perature effects on the grazing and growth rates of
mixotrophs also require careful evaluation.

We account for all of the above effects of
temperature on consumer–prey dynamics by using
empirically obtained data to develop and parameter-
ise a novel approach to microbial population
modelling. Specifically, we address the prediction
that rising temperature will lead to increased
top-down control, impeding the development of
algal blooms. To do so, we adopted an experimental
approach, using a highly relevant example: the toxic
freshwater cyanobacterium Microcystis, which is
ubiquitous and forms extensive blooms that disrupt
aquatic ecosystems and poisons livestock, natural
communities and humans (Paerl and Otten, 2013).
In many freshwater systems micro-autotrophs are
controlled by cladoceran grazing (Hessen and
Kaartvedt, 2014), but microcystins, produced by
Microcystis render it inedible/indigestible by many
metazoa (Paerl and Otten, 2013; Ger et al., 2014).
In contrast, hetero- and mixotrophic protists can
ingest and grow on Microcystis (Nishibe et al., 2002;
Kim et al., 2006; Wilken et al., 2010; Van Wichelen
et al., 2012). Critically, protists, with growth rates
similar to, or faster than, their prey may control algal
blooms, even when metazoan grazers are present
(Montagnes et al., 2008, and references within), and
it has even been postulated that protists may control
microcystin producing cyanobacteria. Here, we
extend this prediction by suggesting that rather than
temperature, unequivocally, increasing the preva-
lence of algal blooms (see Kosten et al., 2012;
Downing, 2014; Paerl, 2014), protistan growth and
grazing will disproportionately increase as tempera-
ture rises, and could via top-down control, aid in
preventing the occurrence of blooms before they
reach excessive levels.

More generally, by conducting this analysis, we
provide a robust, novel modelling approach to
consumer–prey dynamics that independently deter-
mines temperature dependence of prey logistic
growth, the functional response and the numerical
response, that is, we do not follow a classical
Rosenzweig–MacArthur approach, where the prey
and consumer population dynamics are coupled by
assuming that consumer population growth is
dependent on ingestion, a defined conversion
efficiency and a defined mortality rate. Rather, we
independently determine the numerical response,
obviating the need to parameterise temperature
effects on conversion efficiency and mortality rate
(that is, the independent response (IR) model, see

Fenton et al., 2010). In this way, we are able to
directly and independently explore the effect of
temperature on consumer ingestion rate, growth rate
and mortality, which is not generally appreciated in
most, more traditional Rosenzweig–MacArthur-
based consumer–prey models that explore tempera-
ture effects (for example, Fussmann et al., 2014).

We then validate the ability of the model to predict
the consumer–prey dynamics, observed indepen-
dently in microcosms. Finally, recognising that
autotrophic growth rate (rP) and carrying capacity
(K) are dependent on environmental factors beyond
temperature (for example, light and nutrients),
and these rates may interact with temperature
(Chen et al., 2012), we explore how the model
responds to altering these two parameters of the
prey, within plausible limits. Ultimately, we indicate
that even within the limits of a wide, realistic
parameter space, the consumer is able to control
the prey over a relatively short time period of days,
and increased temperature reduces this time. Thus,
using model organisms (Van Donk et al., 2009;
Wilken et al., 2010, 2013, 2014) and the IR model
structure, we provide strong inference that as
temperature rises the relative impact of protists as
top-down controllers of autotrophic prey will
increase, potentially controlling, or preventing, algal
blooms. In fact, this seems to be the first empirical
validation of hypotheses associated with the impact
of disparate thermal sensitivities of auto- and
heterotrophic processes.

Materials and methods

Organisms and maintenance of cultures
The prey (a cyanobacterium, Microcystis aeruginosa,
FACHB 927, Institute of Hydrobiology, Chinese
Academy of Sciences) was maintained in axenic
batch culture (BG-11 medium, Rippka et al., 1979) at
25 °C and 40 μmol photons m−2 s−1 (light:dark,
12:12 h). The consumer (a mixotrophic flagellate,
Ochromonas sp., isolated from Lake Taihu, East
China) was maintained under the conditions
described and fed M. aeruginosa.

Prey growth response to temperature
Logistic growth parameters, specific growth rate (rP)
and carrying capacity (K), were determined at 14, 16,
19, 20, 22, 25, 28 and 31 °C. At each temperature,
triplicate cultures were maintained in 250ml flasks,
at 40 μmol photons m−2 s−1 (light:dark, 12:12 h), as
these are typical conditions for the upper water
column of freshwater lakes where the consumer and
prey occur. Cultures were acclimated to tempera-
tures (5 days), and then change in population
abundance was determined daily over 20–90 days,
depending on the temperature. Samples were
Lugol’s fixed (2%) and enumerated microscopically.
The carrying capacity (when cultures remained at a
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maximum constant level for 48 days) and the initial
exponential growth rate over the first 10–20 days
(depending on the temperature) were determined.
Regression analysis was applied to assess the
relation between these two parameters and
temperature.

Consumer ingestion and growth response to prey and
temperature
Consumers were acclimated (5 days) to a range of
prey levels (from near zero up to ~2×106 cellsml−1,
with more measurements at low levels), at 13, 16, 19,
22, 25, 28 and 31 °C, at 40 μmol photons m−2 s−1. The
consumer was added to 150-ml flasks containing
100ml of prey, at an initial predator density
of ~1.0×104ml−1. Then, mixed cultures were
acclimated for a further 24 h at each temperature,
after which prey and consumer numbers were
determined, as initial abundances. Then, during
48 h, incubation cultures were mixed three times
daily, and samples (2ml) were taken after 24 and 48 h
and enumerated as above. Controls (without consu-
mers) for prey growth, alone, were conducted under
conditions identical to the consumer–prey treatments.

Ingestion rate (I, prey consumer−1 day−1) was deter-
mined from measurements of the depletion of prey
in experimental containers, compared with change
in prey in controls, following methods that account
for changes in both consumer and prey abundance
over time (esablished by Heinbokel (1978) and
outlined in detail by Båmstedt et al. (2000)).
Consumer-specific growth rate (r, per day) was
assumed to be exponential and determined as the
slope of ln abundance vs time over 48 h.

Time-series data of consumer–prey dynamics
The consumer and prey were introduced to 250ml
flasks containing 150ml of media at two consumers:
prey density regimes: ~ 500: 105ml−1 and 2×104:
106 ml−1. Incubations were maintained at 14, 16, 19,
22, 25, 28 and 31 °C for the first regime and 15, 20, 25
and 28 °C for the second. All flasks were maintained
at 40 μmol photons m−2 s−1, with three replicates at
each temperature. Over 13 days, flasks were
regularly mixed, sampled daily (2ml) and enumer-
ated as above. Data from these incubations
(and others not shown) were also used to determine
the relation between consumer maximum yield
(consumer carrying capacity) and maximum prey
abundance (see next section).

Developing response equations
For modelling purposes, we established functions
that predict consumer ingestion rate and specific
growth rate in response to temperature and prey
concentrations. Our starting point was to follow
standard practices for data, like ours, that exhibit a
rectangular hyperbolic (Holling Type II) response of

rates to prey abundance (Supplementary Figure S1);
these were then modified to account for a
mixotrophic consumer. First, ingestion rate (I, prey-
consumer−1 day−1) was assumed to vary with prey
concentration (P, ml−1), following the, mechanistic,
Holling Type II response (equation 1), where Imax is
the asymptotic maximum ingestion rate, and k is a
constant describing the shape of the response (k+t is
equivalent to the half-saturation constant); a thresh-
old prey level (t, ml−1) was also included, below
which ingestion ceased, presumably as autotrophy
took precedence. Second, consumer-specific growth
rate (r, d−1) was assumed to follow a similar
rectangular hyperbolic response, with a negative
x-intercept (P′, ml−1) associated with autotrophic
growth rate, where rmax is the maximum asymptotic
growth rate and k1 describes the shape of the
response (equation 2).

I ¼ ImaxðP � tÞ
k þ ðP � tÞ ð1Þ

r ¼ rmax P þ P0ð Þ
k1 þ P þ P0ð Þ ð2Þ

Then, as indicated above, based on these mechan-
istic functions, phenomenological responses were
determined, where Imax, k, rmax and k1 were influ-
enced by temperature (T, °C): consumer ingestion
rate (It) was best predicted by equation 3, and
consumer growth rate (rt) was best predicted by
equation 4, where a to f are constants used to fit
responses, with no underlying mechanistic basis.
Variants of equations 3 and 4 were examined that
included a range of temperature-dependent elements
(for example, power, exponential and polynomial
functions); being the most parsimonious and yield-
ing the best fit (with the highest adjusted R2),
equations 3 and 4 were adopted (functions yielding
poorer fits are not presented here). This exploration
produced responses that reveal trends and reflect
ecophysiological phenomena, which were then used
in the IR model. Note, also, that fits were obtained by
relating consumer growth or ingestion responses to
treatment temperatures and geometric mean prey
concentration (Heinbokel, 1978), and equations 3
and 4 were fit to data using the Marquardt–Leven-
berg algorithm (SigmaPlot 11, Systat Software Inc.,
San Jose, CA, USA). Adjusted R2 values for the
responses and standard errors of the estimates were
used to indicate goodness of fit.

IT ¼ ðaþ b=TÞðP � tÞ
Tcþ ðP � tÞ ð3Þ

rT ¼ ðd þ eTÞðP þ P0Þ
f T þ P þ P0 ð4Þ

Finally, it became clear in the time-series incuba-
tions that final consumer abundance (consumer
maximum yield), when prey were exhausted and
the consumer maintained itself by autotrophy, was
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dependent on the maximum prey abundance during
the incubation (see Results and Discussion). To
incorporate this phenomenon into simulations, the
final carrying capacity of the consumer (averaged
over several days) was regressed against the max-
imum prey abundance during the incubation, to
determine a relationship for predicting the carrying
capacity (yield) of the predator (see Discussion). In
total, 54 time-series incubations were examined,
ranging from 0 to ~ 2× 106 preyml−1 at the maximum
(from data presented in Results and other shorter
incubations not presented here).

Modelling consumer–prey dynamics
To assess the extent to which temperature impacts
consumer control of prey, a model was constructed
where prey grew following a logistic response, prey
were removed strictly by the consumer and con-
sumer ingestion, growth and mortality rates were
prey-dependent. This is based on the IR model
structure of Fenton et al. (2010), as outlined in the
Introduction, and equations 5 and 6 describe the
model,

dP
dt

¼ rP 1� P
K

� �
P � ITC ð5Þ

dC
dt

¼ rT 1� C
f Pp
� �

 !
C ð6Þ

where: P=prey abundance; rP =prey-specific growth
rate, with temperature-dependent growth rate and a
single temperature-independent carrying capacity
(K, see Results, 'A linear change in maximum
rates with increasing temperature'); C=consumer
abundance; IT and rT are temperature and
prey-dependent consumer grazing (equation 3) and
growth (equation 4) rates, respectively; and f(Pp) is
the consumer carrying capacity, dictated by the peak
abundance of the prey (Pp), achieved over the
simulation (see Results, 'Time-series data of con-
sumer–prey dynamics').

Using the above model, consumer–prey dynamics
were simulated at a range of temperatures and initial
organism abundances, matching empirical incuba-
tions (see Results, 'Observed consumer–prey
dynamics'). The predictive ability of the model was
assessed in two ways: (1) the predicted consumer
and prey abundances were compared to observed
data, that is, residuals were computed as (observed–
predicted)/observed, and the deviation from zero
was assessed; and (2) the predicted time to prey
'extinction' was compared with the observed time to
prey becoming virtually extinct (note that as the
consumer ceased grazing at ~ 4× 103 preyml−1,
complete extinction was not achieved).

Exploring sensitivity to prey-related bottom-up
parameters
Recognising that autotrophic growth rate (rP) and
carrying capacity of the autotroph (K) are dependent
on environmental factors beyond temperature (for
example, light and nutrients), we explore model
predictions by altering these two parameters within
plausible limits. Specifically, we assessed how two
factors varied: (1) the time required for the predator
to drive the prey towards extinction; and (2) the
maximum number of prey at the peak of the bloom.
The IR predator–prey model (equations 5 and 6) was
parameterised as above ('Modelling consumer–prey
dynamics'), but rp was multiplied by values ranging
from 0.2 to 3, and Kwas multiplied by values ranging
from 10−3 to 10; these multipliers relate to plausible,
natural levels for small autotrophs (that is, under
eutrophic conditions, there could potentially be 4–5
doublings in a day at 30 °C, and maximum abun-
dances could be ~ 108ml−1; likewise, under highly
oligotrophic conditions, minimum growth levels
could be close to zero and maximum abundances
could reach only ~ 104ml−1 (Reynolds, 1984). All
simulations were initiated with 105 preyml−1

and 103 consumers ml−1, similar to many of our
microcosm incubations.

Results
A linear change in maximum rates with increasing
temperature
Prey growth rate (rP, day−1) exhibited a significant
(Po0.01) linear increase with increasing temperature,
between 14 and 30 °C, with a slope of 0.041±0.002
(s.e.m.) and an intercept of −0.447±0.03 (Figure 1a);
at 31 °C growth rate dropped to 0.5. Prey carrying
capacity (K, ml−1) was invariant with temperature
(linear regression, P=0.12), with a mean of
1.46×107±1.02×105 (Figure 1b).

Consumer maximum growth (rmax, day−1, obtained
from Supplementary Figure S1) exhibited a signifi-
cant (Po0.01) linear increase with increasing tem-
perature, between 13 and 28 °C, with a slope of
0.115± 0.0065 (s.e.m.) and an intercept of
−1.146± 0.14; at 31 °C growth rate plateaued
(Figure 1c). Maximum ingestion rate (Imax) exhibited
a significant (Po0.01) linear increase with increasing
temperature, between 13 and 25 °C, with a slope of
1.16 ± 0.107 (s.e.m.) and an intercept of − 11.8 ± 2.07;
at 25 °C growth rate plateaued (Figure 1d).

Interaction between temperature and prey abundance
on rates
When all data for growth rate or ingestion rate were
assessed (Figure 2), they provided good predictive
functions, with adjusted R2 for ingestion (Figure 2a)
and growth (Figure 2b) responses to temperature and
prey abundance of 0.79 and 0.89, respectively. The
functions followed equations 3 and 4, with the
parameter values (±s.e.m.): a=29.47±2.21 (prey day−1);
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b=− 356.45 ± 32.0 (prey day−1 °C); c=7526.85 ±
1644.87 (preyml−1 °C−1; t=3615.63 ±7413.23
(preyml−1); d=− 1.47 ±0.09; (day−1); e=0.12± 0.01
(day−1 °C−1); f=272.75 ± 74.59 (preyml−1 °C−1); and
P’=5912.47± 1793.90 (preyml−1).

Observed consumer–prey dynamics
The consumer drove the prey to, or towards,
extinction in all incubations, except for one replicate

at 14 ° C (Figure 3, Supplementary Figures S2). The
time to extinction decreased from ~9 to 3 days with
increasing temperature (Figure 4a). There was a
strong relation between the final consumer carrying
capacity (KC) and the peak in prey PP abundance
(ml−1), providing the predictive equation (Figure 5):
KC =PP0.7058 + 12330 (Po0.001, R2 = 0.98).

Comparison of observed and simulated consumer–prey
dynamics
Simulations, following the modified IR model
structure (see Materials and Methods) provided good
estimates of consumer–prey dynamics, except at 14 °C
where they were very poor (Figures 3 and 6,
Supplementary Figures S2 and S3); the residuals
((observed–predicted)/observed) for the prey were
marginally, significantly greater than zero (0.287,
α=0.05, Wilcoxon one sample test, SPSS, V 21, IBM,
Portsmouth, UK), while the residuals for the con-
sumer did not significantly differ from zero
(Figure 6). Likewise, simulations supported observa-
tions that as temperature increased the time for the

Figure 1 The response of the prey and consumer to temperature.
(a) The linear relation between prey growth rate and temperature
between 14 and 28 °C (solid points) and the decrease at 31 °C
(open point); see Results for parameters of the linear regression. (b)
The lack of effect of temperature on prey carrying capacity. (c) The
relation between consumer maximum growth rate and tempera-
ture. (d) The relation between consumer maximum ingestion rate
and temperature.

Figure 2 Responses of consumer ingestion (a) and growth (b)
rates to prey abundance and temperature. Points are measure-
ments and response planes are the fit of equation 3 (ingestion) and
equation 4 (growth) to the data. See Results for parameters, error
estimates and adjusted R2 for the fits to the data. Note, black points
are above the response plain, while grey points are below it.
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consumer to drive prey towards extinction decreased
(Figure 4a). There was a significant relation between
observed and predicted times to virtual prey extinc-
tion (Po0.001, R2 = 0.89), with a slope not signifi-
cantly differring from 1 (α=0.05), although on
average, the model predicted the time to extinction
to be ~ 1 day earlier than that observed (t-test,
α=0.05) (Figure 4b).

Exploring the impact of prey-related parameters
Altering the temperature-dependent prey growth
rate, by multiplying it by a factor of 0.2 to 3, affected
the time (4–16 days) for the predator to reduce the
prey to ~ 4× 103 preyml−1 (that is, the threshold
feeding level of the consumer, t) and the peak
abundance (105–107ml−1) of the prey bloom
(Figures 7a and c). Likewise, altering the
temperature-dependent prey carrying capacity, by
multiplying it by a factor of 10−3–10, affected the
time (3–9 days) for the consumer to reduce the prey
to ~4× 103 preyml−1 and the peak abundance (105–

2.2 × 105ml−1) of the prey bloom (Figures 7b and d).
In all cases the consumer was still capable of driving
the prey close to extinction in fewer than 20 days,
indicating the ability of the consumer to prevent prey
blooms occurring.

Figure 3 Time-series data for prey (open points and dotted line) and
consumer (solid points and solid line) at temperatures ranging from
14 to 31 °C. Points are data collected in incubations; lines are model
simulations (see Materials and Methods for details of the model). For
the 19 °C panel, the fine lines are simulated when initial consumer
abundance was reduced by 50%, to illustrate the sensitivity of initial
level estimates (see text for details). Note, see Supplementary Figures
S2 and S3 for other incubations and model simulations.

Figure 4 Estimates on the time required for the consumer to drive
the prey to extinction. (a) The effect of temperature on the
extinction time from empirical data (open circles) and model
simulations (solid circles). (b) The relation between the extinction
time predicted by the model and the observed (empirical)
estimate; the solid thin line represents the 1:1 predictions; the
solid thick line is the least squares regression though the data, with
its 95% confidence interval (dashed lines).
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Discussion

Over the past decade, meta-analyses and theoretical
explorations have argued that photoautotrophs
exhibit lower thermal responses than their consu-
mers, potentially destabilising producer–consumer

dynamics with increasing temperature (Allen et al.,
2005; Rose and Caron, 2007; O'Connor et al., 2011;
Chen et al., 2012; Gilbert et al., 2014). Few studies
have explored these predictions, but those that do
are supportive (Aberle et al., 2012). Here, using a
model system that has the virtue of being a global
component of freshwater food webs with substantial
economic importance, we adopt a new approach to
modelling that provides the first empirical test of the
above prediction. In doing so we: (1) generate
empirical evidence to validate arguments that
consumers are more temperature-sensitive than their
autotrophic prey; (2) challenge predictions that
temperature rise will unequivocally lead to
increased occurrence of toxic algal blooms (O’Neil
et al., 2012; see Newcombe et al., 2012; Paerl and
Otten, 2013), by indicating that increased tempera-
ture enhances top-down control; and (3) explore, and
question, predictions that with increasing tempera-
ture, conditions that reduce producer growth rate
and abundance (for example, reduced light or
nutrients) may interact to lessen the impact of the
consumer (Chen et al., 2012).

A new model framework
Reaching the above conclusions required a new
approach to population modelling. By evaluating
temperature-dependent growth and grazing responses
(that is, our work and that of others: Figures 1 and 2,
Supplementary Figure S1; Kimmance et al., 2006;
Montagnes et al., 2008; Wilken et al., 2013; Yang
et al., 2013), we have recognised the need to
significantly modify the traditional modelling of
consumer (and specifically mixotroph) and prey
dynamics. Below we defend these changes and argue
for their general adoption.

First, the metabolic theory of ecology contends
that auto- and heterotrophic rates increase exponen-
tially, with photosynthesis being less temperature-
dependent than respiration (for example, Allen et al.,
2005). We support the latter part of the above
expectation: the autotrophic prey had a lower
thermal sensitivity than its consumer (Figures 1a, c
and d). However, supporting previous meta-analyses
(Montagnes et al., 2003; Bissinger, 2008), we found
that maximal rates of auto- and heterotrophic growth
and heterotrophic grazing, when examined at the
species level, were approximated by a linear increase
with temperature (Figure 1), rather than applying an
exponential response. This does not reject the well-
founded observations that, across taxa, metabolic
rates increase exponentially with temperature and
that many species-based metabolic rates also
increase exponentially (for example, Allen et al.,
2005). It does, however, suggest that the response of
species-specific maximum growth and ingestion
rates (both being the combination of several meta-
bolic processes, with potentially different thermal
sensitivities) may be better represented by a linear
model. Recognising this distinction may improve

Figure 5 The relation between peak prey abundance (PP) and the
final constant abundance of consumers (the carrying capacity KC),
after prey were exhausted. See the Materials and Methods for a
description of the data. The line is the least squares regression
though the data; see the Results for the parameters.

Figure 6 The residuals of a comparison between empirical
incubations and model simulations (for example, Figure 3) for
the consumer (a) and the prey (b). Solid dots are data from 14 °C
incubations and are not included in the statistical analysis. The
solid line indicates zero. The dashed line (b) is the median value of
the residuals; the median values of the residuals for the consumer
was not significantly different from zero.

Thermal sensitivity impact on population dynamics
Z Yang et al

7

The ISME Journal



model predictability, especially in systems where
key taxa rather than communities drive dynamics
(for example, algal blooms). Furthermore, although
they do not conform to the expected Arrhenius
relationship, it may also be important to consider
linear rather than exponential functions when
evaluating mechanistic temperature-dependencies,
such as those impacting searching rate and handling
time in the functional response (for example,
Dell et al., 2014; Vasseur and McCann, 2005).

Second, and more critically, consumer grazing and
growth rates of our consumer exhibit a clear
interaction between temperature and prey abun-
dance (Figure 2). Such nonlinear interactions
between resource, temperature, and vital rates are
likely the norm (Kimmance et al., 2006; Chen et al.,
2012; Yang et al., 2013; Cross et al., 2015). Thus,
rather than focusing on thermal sensitivities of
maximal rates (Figure 1), as others have done
(for example, Rose and Caron, 2007), we argue that
it is essential for studies that address temperature
impacts on population dynamics to consider
temperature-prey interactions. Consequently,
we have adopted the IR approach to modelling
(equations 5 and 6, Fenton et al., 2010). Rather than
using the well-established and typically applied
Rosenzweig–MacArthur structure (or variants of it;
Turchin, 2003) where consumer growth is a function
of ingested prey, the IR structure independently
parameterises consumer ingestion and growth
(for example, Figure 2). In doing so, it allows for
the effect of prey abundance on conversion
efficiency and predator mortality rate (Fenton et al.,
2010; Minter et al., 2011; Montagnes and Fenton,
2012; Li and Montagnes, 2015), and critically when

assessing climate change scenarios, it provides a
mechanism to include temperature effects on inges-
tion and growth parameters, independently
(Kimmance et al., 2006; Yang et al., 2013). Again,
we argue that when exploring the impact of
temperature on producer–consumer dynamics, here
and elsewhere, it is appropriate to take this
approach, as functional and numerical responses
exhibit distinct temperature sensitivities.

Finally, as indicated in the Introduction, mixo-
trophic grazers are now being recognised as the norm
in aquatic systems, and modelling their responses
provides new challenges. These may be accommo-
dated within a modified Rosenzweig–MacArthur
structure (Cropp and Norbury, 2015) but can equally
and possibly more parsimoniously (that is, fewer
parameters) be embedded in the IR model structure.
Our model consumer, which is mixotrophic, both
increases its photosynthetic capacities at lower prey
abundances and reduces its grazing efforts (Wilken
et al., 2013); similar strategies are undoubtedly
common to other mixotrophs and need to be
accounted for. Furthermore, mixotroph mortality
does not occur when the prey are exhausted, as
these consumers can sustain themselves autotrophi-
cally (Sanders, 2011). These characteristics can be
embedded within the IR structure: 1) the temperature-
influenced functional response (Figure 2a) included a
low but apparent threshold level, below which prey
consumption ceased; 2) the temperature-influenced
numerical response (Figure 2b) included positive
growth when prey were absent, and this varied with
temperature; and 3) the final abundance of the
consumer, after prey were exhausted, was dependent
on the maximum prey abundance, as final yield was

Figure 7 The effect of altering prey growth rate (rp) and carrying capacity (K) on the time required for the predator to drive the prey to
near extinction (that is, ~ 4x103 cells ml−1) and the peak abundance of prey.
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dependent on this proxy of the total available resource
(Figure 5), that is, the consumer did not die due to
starvation when prey were exhausted as is the case for
strict heterotrophs, rather it maintained zero net growth
at its maximum abundance through autotrophy. These
modifications, representing ecophysiological phenom-
ena associated with mixotrophy, were included in the
model structure (equations 5 and 6), providing simula-
tions that reflected observed population dynamics
(Figures 3, 4 and 6, Supplementary Figures S2).
However, some clear exceptions occurred. At the lowest
temperatures, near the thermal tolerance of the prey
where dynamics are unstable, the model was a poor
predictor. Likewise, in some simulations (for example,
Figure 3, 19 °C), the maximum prey and final consumer
abundances were poorly estimated. We suggest that in
some cases these poor fits are related to the abundances
estimates in the microcosms, used to initiate simula-
tions; the model can be sensitive to small errors in
initial abundance; for example, at 19 °C if the initial
consumer density was 1×103 rather than 2×103 ml−1

(a conceivable measurement error at such low levels),
the model provides a much better match with the
microcosm data (see Figure 3, thin lines at 19 °C).
Regardless, it is apparent that, on average (Figures 4
and 6), our revised IR framework (equations 5 and 6)
provides a useful model for exploring trends, with
reasonable predictive ability.

Impacts of differing thermal sensitivities to microbial
consumer–prey dynamics
Once tested, the model was used to address a key
aspect of global climate change on ecosystem
dynamics: the impact of temperature on top-down
control of bloom forming micro-autotrophs. We
clearly indicate that increased temperature favours
the protistan consumer and the demise of the
primary producer, offering the first validation
of predictions from a growing body of theory
(Allen et al., 2005; Rose and Caron, 2007; O'Connor
et al., 2011; Chen et al., 2012; Gilbert et al., 2014).
This has implications for dynamics, across ecosys-
tems and communities. Here we focus on protistan
grazers, as they are a dominant component of many
aquatic ecosystems (Kirchman, 2012), but also
because protists are good ecological models, that
provide strong guidance on how future work can be
directed when examining less tractable systems
(Montagnes et al., 2012). Critically, our model
simulations agree with observed population
dynamics and indicate the increased ability of the
consumer to control the producer with rising
temperature. This provides the first rigorous test of
the prediction that greater thermal sensitivity of
heterotrophs, relative to autotrophs, could reduce
the impact of algal blooms, and it appears to be the
first specific test of the general auto-heterotroph
thermal sensitivity hypothesis.

We then explored the impact of bottom-up effects
on the predator–prey dynamics. Chen et al. (2012)

suggest, through meta-analysis and modelling, that
trophic status of the water (that is, bottom-up
nutrient control of microalgae) alters the predictions
that top-down control of prey will increase with
rising temperature (Rose and Caron, 2007). Chen
et al. (2012) proposed that for oligotrophic waters
where phytoplankton growth and biomass are
reduced, temperature has an opposite effect, releas-
ing prey from top-down control. Under a wide range
of increased and reduced growth rates and carrying
capacities, our analysis does not support a shift in
the general response: the consumer always controls
the prey, albeit over slightly different time-scales
depending on the prey attributes (Figure 7). The
predictions of Chen et al. (2012) may apply more
appropriately at a community level where shifts in
taxonomic composition affect outcomes, and as they
admit the inclusion of secondary consumers may
have further complicated their analysis. We also
emphasise that our simulations, which were based
on measurements under nutrient replete conditions,
did not allow for nutrient competition between the
auto- and mixotroph. Wilken et al. (2014) found that
when nutrients were high and there was competition
for them: Ochromonas (mixotroph) was the
poorer competitor and unable to drive Microcystis
(autotroph) towards extinction, but when nutrients
were low, it could. Surprisingly, our simulations
which were based on nutrient replete cultures of the
same taxa, do not support this argument, nor do our
time-series data (Figure 3,Supplementary Figures
S2). Clearly, assessing the interactions of tempera-
ture and other factors that affect prey dynamics
requires continued attention, at both consumer–prey
and community levels. Furthermore, there is a need
to assess how temperature influences higher trophic
levels, potentially influencing trophic cascades
(Montagnes et al., 2008; Seifert et al., 2015).

Possible impacts on cyanobacteria
Finally, we briefly relate our findings directly to
cyanobacteria. Evidence indicates that temperature
rise will increase the proportion of cyanobacteria in
lakes, with laboratory-, field-, modelling-, and meta-
analyses revealing that blooms will increase with
increasing temperature (see the special issue edited
by Newcombe et al., 2012; but also see O’Neil et al.,
2012; Paerl and Otten, 2013). The underlying mechan-
isms driving blooms are complex, including change in
metabolic rates, competition, prey escape behaviours,
formation of surface aggregates, shifts in water column
stratification, and trophic cascades. Here we have
focused on an additional key aspect of this complex
system: top-down control by protist grazing.

Globally, many toxic bloom forming cyanobacteria
are thought to be poorly controlled by metazoan
grazing (Paerl and Otten, 2013), although there are
predictions that as blooms become more frequent,
zooplankton may adapt to exploit this resource
(Ger et al., 2014). Recently, though, it has been
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proposed that protistan grazers affect toxic cyano-
bacteria populations, potentially even controlling
short term blooms (Wilken et al., 2010; Kobayashi
et al., 2013, and references within). As indicated
above, protists are major grazers in pelagic systems,
with small flagellates being important consumers of
cyanobacteria. More specifically Ochromonas
appears to be ubiquitous in shallow lakes where
cyanobacteria bloom (Van Donk et al., 2009),
suggesting it could be important. However, the
recent reviews that assess the fate of cyanobacteria
fail to consider the role of these grazers.

Our data support predictions that mixotrophic
flagellates can be important grazers of cyanobacteria,
with Ochromonas potentially even being a means of
biocontrol (Wilken et al., 2010; Combes et al., 2013;
Kobayashi et al., 2013; Mohamed and Al-Shehri,
2013; Wilken et al., 2014). But to what extent do our
findings directly apply to Microcystis blooms in the
field? As with several other cyanobacteria, when its
densities are high Microcystis may escape predation
by forming aggregates and ultimately producing
large surface masses that are inaccessible to con-
sumers (Yang and Kong, 2012; Paerl and Otten,
2013). In our experiments, as has been the case for
other experimental studies that argue for the impor-
tance of Ochromonas as a grazer (Wilken et al.,
2014), Microcystis remained as single cells. There-
fore, in this study, we have not accounted for
aggregates as a prey refuge. However, our microcosm
incubations and simulations (Supplementary Figure
S3) were initiated at levels where cyanobacteria, and
specifically Microcystis, can be a hazard, even in the
single cell state (Paerl and Otten, 2013). We, there-
fore, suggest that the potential for blooms to form,
rather than demise of toxic blooms composed of
large aggregates, may be controlled by protistan
grazing, that is, this control of blooms would never
be observed, as blooms would be suppressed before
they occurred! Notably, our analysis predicts that the
strength of such control will increase with tempera-
ture rise (Figures 3 and 4).

Thus, although an increase in temperature may
stimulate cyanobacterial blooms for a range of reasons,
protistan top-down control should be enhanced by
increasing temperature, counteracting, to some extent,
bloom stimulating factors. It, therefore, seems an
oversight that models that assess temperature effects
on blooms have not included grazing by protists. For
instance, simulations that assess trophic cascades,
such as Daphnia removal by introduction of fish,
may need to recognise the ensuing release of pressure
on protists and the subsequent increase in mixotrophic
predation on cyanobacteria.

Conclusion

It is clear that a revised approach to modelling and data
collection is required to adequately assess the ecolo-
gical impact of the disparate thermal sensitivities of

auto- and mixotrophic microbes. We offer the IR
approach, as an ecophysiologically based framework
to do so and justify its application. We also recognise
the need to continue to improve this structure, by
adding such complexity as the effects of predator
nutritional history (Li et al., 2013), predator inter-
ference competition (Delong and Vasseur, 2013), and
ultimately a more mechanistic approach to modelling
temperature on growth and grazing parameters (Dell
et al., 2014; Vasseur and McCann, 2005).

More specifically, we suggest that careful assess-
ment of the role of protists, especially mixotrophs, is
required to determine potential for microalgae,
including cyanobacteria, to bloom. Finally, we
recognise the need to add further, essential,
complexity to models that assess temperature
impacts on protist-algal dynamics, including: the
effect of top-down control on the protists; the
potential for temperature-nutrient interactions on
bottom-up control of autotrophic prey; and the
potential for prey to escape predation by forming
large, inedible aggregates. These provide some of the
main directions for experimental ecology and com-
mensurate modification of our revised IR model.
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