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Objective: Efavirenz (EFZ) has been associated with neuropsychiatric side 41 effects. Recently the 8-hydroxy (8OH)-EFZ metabolite has been shown to be a 42 potent neurotoxin in vitro, inducing neuronal damage at concentrations of 43 3.3ng/ml. EFZ induced similar neuronal damage at concentrations of 31.6ng/ml. 44 We investigated the effect of genotype and blood-brain barrier integrity on EFZ 45 metabolite concentrations in cerebrospinal fluid (CSF).  46 
Methods: We measured CSF drug concentrations from two separate studies: 47 47 subjects with tuberculous meningitis (TBM) co-infection in Vietnam receiving 48 EFZ 800mg with standard anti-tuberculous treatment and 25 subjects from the 49 PARTITION study in the UK without central nervous system infection receiving 50 EFZ 600mg. EFZ and metabolite concentrations were measured in CSF and 51 plasma and compared with estimates of effectiveness and neurotoxicity from 52 available published in vitro and in vivo data. The effect of CYP2B6 c.516G>T 53 genotype (GG=fast; GT=intermediate; TT=slow EFV metaboliser status) was 54 examined. 55 
Results: Mean CSF concentrations of EFZ and 8OH-EFZ in the TBM group were 56 60.3 and 39.3ng/ml respectively, and in the no-TBM group were 15.0 and 57 5.9ng/ml. Plasma EFZ and 8OH-EFZ concentrations were similar between 58 groups. CSF EFZ concentrations were above the in vitro toxic concentration in 59 76% of samples (GG 61%, GT 90% and TT 100%) in the TBM group, and 13% 60 (GG 0%, GT 18% and TT 50%) in the no-TBM group. CSF 8OH-EFZ 61 concentrations were above the in vitro toxic concentration in 98% of the TBM 62 group and 87% of the no-TBM group; levels were independent of genotype but 63 correlated with CSF:plasma albumin ratio.  64 
Conclusion: Potentially neurotoxic concentrations of 8OH-EFZ are frequently 65 



 

observed in CSF, independent of CYP2B6 genotype, particularly in those with 66 impaired blood-brain barrier integrity.  67 



 

Introduction 68 
Despite concerns over central nervous system (CNS) toxicity, efavirenz (EFZ) is 69 widely deployed within first-line combination HIV treatment regimens 70 worldwide because of its effectiveness, established safety record and resilience 71 to hepatic enzyme induction by rifampicin in patients who require concomitant 72 tuberculosis (TB) therapy.(1, 2). EFZ undergoes rapid absorption, with 73 maximum plasma concentrations reached in 3–6 hours and therapeutic levels 74 achieved within a few days of commencing treatment.(3) There is large 75 interindividual variability in EFZ pharmacokinetics,(4-7) placing patients with 76 low plasma concentrations at risk of losing virological control and developing 77 resistance, and those with high plasma concentrations at risk of developing 78 adverse effects.(8, 9) EFZ is primarily metabolised by cytochrome P450 CYP2B6, 79 to yield the most abundant metabolite 8-hydroxy (8OH)-EFZ. Comparatively 80 minor alternative metabolic pathways are through CYP2A6 (leading to the 7OH-81 EFZ metabolite) and CYP3A.(10) 82 
EFZ plasma concentrations relate strongly to genetic polymorphism in CYP2B6 83 metabolism,(11-15) including the most commonly studied CYP2B6 single 84 nucleotide polymorphism c.516G>T (rs3745274), which encodes a Gln172His 85 amino acid substitution. The CYP2B6 c.516G>T GG genotype is associated with 86 fast EFV metaboliser status, GT intermediate and TT slow. Preliminary data 87 suggests that in CYP2B6 slow metabolisers, CYP2A6 represents the dominant 88 route of elimination and may be affected by enzyme inhibition through 89 concomitant isoniazid administration.(16) This may have pharmacogenetic 90 implications as CYP2A6 has considerable copy number variation in Southeast 91 



 

Asian populations.(17) The effect of CYP2A6 copy number on CSF EFZ and 92 metabolite concentrations in those with and without slow CYP2B6 metaboliser 93 status is not known.  94 
In-vitro experiments have reported that 8OH-EFZ is associated with cytotoxicity 95 via stimulation of mitochondrial dysfunction and stress activated signaling 96 pathways.(18) In addition 8OH-EFZ has been shown to be prone to oxidative 97 degradation with potentially toxic quinone-imine derivatives.(19) Recently 8OH-98 EFZ was shown to be neurotoxic in vitro at a concentration similar to those found 99 in cerebrospinal fluid (CSF).(20) This study demonstrated 8OH-EFZ 100 concentrations of just 3.3 ng/ml caused neuronal damage, inducing calcium flux, 101 apoptosis and considerable damage to dendritic spines. These changes were not 102 observed for EFZ or 7OH-EFZ at this level. Concentrations of EFZ and 7OH-EFZ 103 approximately ten times that of 8OH-EFZ were required to induce similar 104 damage. The role of 8OH-EFZ in EFZ-associated CNS toxicity has not been 105 elucidated. 106 
In this study we developed sensitive, accurate and precise assays for measuring 107 EFZ and its metabolites in CSF. We aimed to characterise the disposition of EFZ 108 and its metabolites within CSF in HIV-infected patients with and without TB 109 meningitis (TBM), and to evaluate the impact of phamacogenetic variability on 110 drug disposition. 111 
 112 
Methods 113 
Participants and sampling 114 



 

The CSF pharmacokinetics of EFV was studied in two separate patient 115 populations. Since these cohorts differ in several characteristics, no statistical 116 comparisons between both groups was undertaken. 117 
TBM group: In Vietnam, HIV-infected patients aged over 15 years with newly 118 diagnosed TBM (ISRCTN63659091) were randomised to receive immediate 119 (within 7 days) versus deferred (after 2 months) initiation of antiretroviral 120 therapy as previously described.(21, 22) From this cohort 47 subjects had paired 121 CSF and blood samples available while on EFZ at steady state (>10 days).(23) 122 Sampling was mean 97 days after commencing treatment. EFZ was dosed at 800 123 mg, together with zidovudine plus lamivudine in fixed-dose combination.  Anti-124 tuberculous therapy comprised isoniazid (5mg/kg/day; maximum 300mg), 125 rifampicin (10mg/kg/day; maximum 600mg), pyrazinamide (25mg/kg/day; 126 maximum 2g), and ethambutol (20mg/kg/day; maximum 1.2g) for 3 months 127 followed by isoniazid plus rifampicin for 6 months. Unless contraindicated, all 128 patients received dexamethasone as described elsewhere.(24) Mean age was 30 129 years (SD 5.4) and median CD4 at sampling was 81 cells/mm3 (IQR 46, 159). All 130 were of Southeast Asian ethnicity. Ethics approval was obtained from the Oxford 131 Tropical Research Ethics Committee and the Hospital for Tropical Diseases 132 Scientific and Ethical Committee. 133 
No-TBM group: In the UK, paired plasma and CSF was obtained from a single 134 time point in 25 subjects without CNS infection from the UK PARTITION study 135 (Penetration of AntiRetroviral Therapy InTO the Nervous system).(25) 136 Participants were HIV-1 infected adults (over 16 years) prospectively enrolled 137 from 2 groups: those undergoing lumbar puncture for a clinical indication, or 138 



 

those with a history of unexplained intermittently or persistently detectable 139 plasma HIV-1 RNA within the past 12 months. In all patients the treating 140 clinician felt that CNS infection had been excluded on the basis of CSF testing and 141 clinical findings. All patients received 600mg of EFZ once-daily; in 25 subjects 142 this was with tenofovir and emtricitabine, in one subject with lamivudine and 143 abacavir and in one subject with darunavir and ritonavir. Mean age was 46 years 144 (SD 8.6) and median CD4 at sampling was 432 cells/mm3 (IQR 292, 649). 20 145 (80%) were of white ethnicity, 3 (12%) were of black ethnicity and 2 (8%) were 146 of Asian ethnicity. No subject was receiving antituberculous therapy or other 147 enzyme inducing medication at the time of sampling. The study was approved by 148 the North Wales Research Ethics Committee (Central and East). 149 
EFZ and metabolite measurement 150 
EFZ concentrations were determined in plasma and CSF samples taken from 151 subjects receiving EFZ at steady-state (>10 days),(23) sampled at mid-dosing 152 interval. EFZ metabolite concentrations were determined in a single paired 153 CSF/plasma sample per subject. Measurements were repeated with and without 154 
β-glucuronidase in the TBM group to determine the amount of glucuronidated 155 versus free compound. The ratio between albumin concentration in CSF and 156 plasma/serum was determined as a marker of blood-brain barrier integrity.  157 
EFZ concentrations in plasma and CSF were measured by a validated tandem 158 liquid chromatography-mass spectrometry method as previously described.(26) 159 Freshly prepared standards and quality control samples (prepared in artificial 160 CSF) and clinical samples (100 µL) were transferred into 7mL stoppered glass 161 tube to which 100 µL of acetonitrile was added. The samples were the 162 



 

evaporated to dryness at room temperature in a stream of nitrogen. The samples 163 were then incubated at 37oC for 2h with 400 µL of a solution containing 200 164 units of β-glucuronidase from H. pomatia in 0.2 M sodium acetate buffer (pH = 165 5).(27) The samples were subsequently alkalinized with 20 µL of potassium 166 carbonate buffer (0.1 M, pH = 9·4) and extracted with 3 mL of a mixture of 167 organic solvents ethylacetate:hexane (60:40 v/v). After centrifugation, the 168 organic phase was evaporated to dryness, the residue reconstituted in 100 µL of 169 a mobile phase (50/50 v/v ACN/H2O in 1mM ammonium Acetate) and 20 µL of 170 this solution was analysed directly by LC-MS/MS on a Thermo Access Triple 171 Quadrupole mass spectrometer.  Hexobarbital was used as internal standard. 172 Gradient elution was on a reverse-phase C18 column using 1 mM ammonium 173 acetate in water and acetonitrile. Quantification was by selective reaction 174 monitoring in negative ionisation mode. Accuracy and precision were 175 satisfactory with mean bias 4·8% and intra-assay coefficient of variability 6.5%. 176 
Albumin ratio 177 
Albumin concentrations in CSF and blood (plasma/serum) were determined by 178 radial immunodiffusion (BindaridTM). CSF:blood albumin ratio indicative of a 179 breach in integrity of the blood:brain barrier was taken as ≥6.8 for subjects less 180 than 45 years old and ≥10.2 for subjects over 45 years.(28) 181 
Neurotoxic concentrations 182 
Measured plasma and CSF concentrations were compared to the following 183 concentrations associated with neurotoxicity. Plasma EFZ concentrations greater 184 than 4000 ng/mL are associated with an increased risk of CNS side effects.(8)  185 Plasma EFZ concentrations less than 1000 ng/ml have historically been 186 



 

associated with virological failure.(8) Concentrations of EFZ, 8OH-EFZ and 7OH-187 EFZ associated with neuronal damage in vitro were 31.6, 3.3 and 33.2 ng/ml 188 respectively.(20) 189 
Genetic analysis 190 
Genomic DNA was purified from whole blood using standard phenol-chloroform 191 extraction methods. Allelic discrimination by TaqMan real-time PCR was 192 performed for CYP2B6 c.516G>T. and CYP2A6 copy number using validated 193 commercially available assays (Life Technologies, Paisley, UK).  194 
Statistical analysis 195 
The geometric mean of log10 drug/metabolite concentrations were compared 196 using Student’s t test and 1 way ANOVA. Pearson r was used to determine the 197 correlation between continuous variables. CD4 count and CSF:plasma ratio of 198 EFZ were non-parametrically distributed and analysed using Mann Whitney U 199 test. Fishers exact and Chi squared tests were used for categorical demographic 200 data. All analysis was performed using SPSS version 22. 201 
 202 
Results 203 
Plasma EFZ concentrations correlated with CSF EFZ concentrations in both 204 groups, however there was no correlation of plasma EFZ with CSF 8OH-EFZ 205 concentrations (figure 1). The median ratio of CSF:plasma EFZ concentration 206 was 0.027 [IQR 0.013, 0.056] in the TBM group and 0.010 [IQR 0.007, 0.012] in 207 the no-TBM group. 208 
CYP2B6 genotype 209 



 

Forty-six samples in the TBM group and 22 samples in the no-TBM group were 210 successfully genotyped for CYP2B6 c.516G>T (call rates 98% and 88% 211 respectively). Allele frequencies were 50% GG, 43% GT and 7% TT in the TBM 212 group and 43% GG, 48% GT and 9% TT in the no-TBM group (table 1). Only 5 213 patients had the TT (i.e. slow metaboliser) genotype. CYP2B6 c.516G>T was in 214 Hardy-Weinburg equilibrium in both groups (p=0.912 TBM and 0.672 no-TBM 215 group). CYP2B6 c.516G>T genotype related to the concentration of EFZ in CSF 216 and plasma in both groups. This relationship was not present for the 217 concentrations of the 8OH-EFZ metabolite (table 1). Concentrations of 7OH-EFZ 218 in plasma and CSF were also not related to genotype. There was no difference in 219 CSF:plasma EFZ ratio according to genotype. The effect of CYP2B6 genotype on 220 EFZ and 8OH-EFZ concentrations with respect to the estimated therapeutic 221 range in plasma, and the in vitro toxic concentrations in CSF, are shown in figure 222 2. The number and proportion of CSF samples with concentrations above 223 estimated in vitro toxic concentrations are given in table 2.  224 
Plasma EFZ concentrations were similar between the TBM and no-TBM groups 225 and mostly fell within the estimated therapeutic range, regardless of genotype. 226 CSF EFZ concentrations exceeding the estimated in vitro neurotoxic level were 227 observed mainly in the TBM group, particularly in those with one or more 228 
CYP2B6 c.516G>T mutation (i.e. GT or TT genotype corresponding to 229 intermediate or slow EFZ metabolisers). CSF 8OH-EFZ concentrations tended to 230 be above the estimated in vitro neurotoxic level in both groups regardless of 231 genotype. 232 
CYP2A6 copy number variation 233 



 

Forty-six samples in the TBM group were successfully genotyped for CYP2A6 234 copy number (call rate 98%). The CYP2A6 gene deletion occurred in 8 (17%) 235 subjects and was in Hardy-Weinburg equilibrium (p=0.394). There was no 236 association of CYP2A6 copy number with the concentration of EFZ or metabolites 237 in plasma or CSF either singly or in combination with CYP2B6 genotype. A single 238 subject had the CYP2A6 gene deletion in combination with homozygous CYP2B6 239 c.516G>T mutation; in this subject EFZ concentration was 6319.5 ng/ml in 240 plasma and 54.7 ng/ml in CSF.  241 
Addition of β-glucuronidase 242 
In the TBM group the addition on β-glucuronidase did not significantly alter the 243 concentrations of EFZ (not tested in the no-TBM group as levels were much 244 lower). In contrast, concentrations of 8OH-EFZ we much higher following β-245 glucuronidase. The mean free:total ratio of 8OH-EFZ was 0.064 in plasma and 246 0.075 in CSF. Without β-glucuronidase, free 8OH-EFZ concentrations were low; 247 mean 87.3 ng/mL (95% CI 63.8-122.5) in plasma and 3.7 ng/mL (95% CI 2.7-248 5.7) in CSF. 249 
Mean 7OH-EFZ concentrations in the TBM group with β-glucuronidase were 75.3 250 ng/ml in plasma and 3.5 ng/ml in CSF; without β-glucuronidase, 7OH-EFZ levels 251 were below the lower limit of quantification. In the no-TBM group mean 7OH-252 EFZ concentrations were 236.6 ng/ml in plasma and 1.3 ng/ml in CSF.  253 
Albumin ratio 254 
CSF:serum/plasma albumin ratio was abnormal in 35 (90%) subjects in the TBM 255 group and 4 (21%) in the no-TBM group. In the TBM group CSF:plasma albumin 256 



 

ratio was positively correlated with CSF 8OH-EFZ concentration (figure 3c). A 257 non-significant trend was observed with CSF EFZ concentration (figure 3a). In 258 the no-TBM group, no correlation was observed between CSF:serum albumin 259 ratio and CSF EFZ or 8OH-EFZ concentrations (figure 3b and 3d).  260 
 261 
Discussion 262 
We studied the concentration of EFZ and its metabolites in plasma and CSF and 263 observed high CSF EFZ and 8OH-EFZ concentrations in patients with TBM, which 264 were not observed in those without TBM. These differences could not have been 265 explained by the higher doses of EFZ used in the TBM group (800mg vs. 600mg) 266 since plasma exposures were comparable across both studies. We observed a 267 strong correlation between plasma and CSF EFZ concentrations and both were 268 associated with CYP2B6 c.516G>T genotype. In contrast concentrations of the 269 neurotoxic metabolite 8OH-EFZ were not related to plasma EFZ concentrations 270 or CYP2B6 c.516G>T genotype, but correlated with the degree of blood-brain 271 barrier breakdown measured by CSF:plasma albumin ratio. These data confirm 272 the findings of a recent publication from the ENCORE CNS substudy which 273 demonstrated an association of CYP2B6 c.516G>T genotype with plasma and CSF 274 EFZ concentrations, but not with the metabolite 8OH-EFZ at doses of 400mg and 275 600mg.(29) We demonstrate the same relationship at an EFZ dose of 800mg, 276 albeit when prescribed with rifampicin which induces the activity of CYP2B6.  277 
The majority of EFZ metabolites in CSF were present as glucuronide conjugate. 278 This is less likely to be due to CSF trapping of plasma glucuronide (percentage 279 free compound was not significantly higher in CSF) and suggests EFZ metabolites 280 



 

may be conjugated within the CNS. A number of UDP-glucuronosyltransferases 281 have been demonstrated to be present in human brain tissue.(30, 31) EFZ 282 metabolites may have entered the CNS by crossing the blood-brain barrier, or 283 resulted from the CNS metabolism of EFZ. Functional CYP2B6 and CYP2A6 are 284 present in the CNS and expression has been shown to be inducible and subject to 285 genetic variation.(32-34) The significance of the fact that most 8OH-EFZ in CSF 286 exists as glucuronide conjugate is unclear, in particular it is not known whether 287 glucuronidated 8OH-EFZ induces the same neurotoxic effects as free compound 288 or whether glucuronidation is in some way protective. We did not measure 289 glucuronidation in the no-TBM group, however a recent study in patients 290 without TBM found similar high levels of 8OH-EFZ glucuronidation in CSF.(35) 291 
This is the first report of EFZ metabolites in CSF of patients with TBM. CSF 292 concentrations of EFZ and metabolites were higher in those with loss of blood-293 brain barrier integrity due to TBM infection and concentrations were highest in 294 TBM patients with the greatest loss of blood-brain barrier integrity as measured 295 by CSF:plasma albumin ratio. As EFZ is >99.75% protein bound in blood,(36, 37) 296 higher CSF EFZ concentrations may be due to leakage of free fraction from 297 plasma in those with loss of integrity of the blood-brain barrier, or due to 298 increased trapping of EFZ in those with higher albumin concentration in CSF.  299 
CSF EFZ concentrations consistently exceeded in vitro neurotoxic concentrations 300 in patients with a combination of TBM infection and CYP2B6 c.516G>T mutation 301 (i.e. GT or TT genotype corresponding to intermediate or slow EFZ 302 metabolisers). In contrast CSF total 8OH-EFZ concentrations exceeded the in 303 
vitro neurotoxic concentration in the majority of subjects with and without TBM 304 



 

regardless of genotype. This has implications for neuronal damage in TBM which 305 could contribute to the overall neurological sequelae from this disease. Data 306 from the recent ENCORE CNS substudy demonstrated an association of CSF 8OH-307 EFZ concentrations with symptoms at 1 year.(29) The main limitation of our 308 study is that we could not examine whether potentially neurotoxic CSF 309 concentrations corresponded to clinical evidence of neurological dysfunction. 310 There are several reasons why this was he case. In the TBM group adverse 311 neurological outcomes were attributed to TBM rather than drug neurotoxicity. 312 Higher albumin ratios may reflect more severe TBM infection and hence 313 confound any association of CSF 8OH-EFZ with clinical outcomes. Albumin ratio 314 would be expected to decrease over time, which may coincide with clinical 315 improvements. In the no-TBM group detailed cognitive testing was not 316 performed and most had clinical indication for lumbar puncture which may 317 confound associations with clinical outcomes. Further work is needed to 318 determine the short and long-term clinical consequences related to CSF 8OH-EFZ 319 concentrations far exceeding in vitro neurotoxic levels as this has important 320 clinical implications. One question is whether EFZ should be avoided in those 321 with impaired blood-brain barrier integrity, in particular those with neurological 322 infection such as TBM. However as discussed above, such studies will be limited 323 by difficulties in separating EFZ neurotoxicity from the effects of neurological 324 infection. Another question is whether CYP2B6 c.516G>T genotyping in clinical 325 practice would lower the incidence of neurocognitive side effects. Our data 326 suggest that avoiding EFZ in those with the GT or TT genotype would not alter 327 CSF 8OH-EFZ concentrations and hence may not be an effective strategy. 328 
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Table and figure legends: 512 
 513 
Table 1. CYP2B6 c.516G>T allele frequency and EFZ/8OH-EFZ concentrations in 514 CSF and plasma.  515 

CYP2B6 c.516G>T genotype 

    Group All genotypes GG GT TT ANOVA

Allele frequency, n (%) 
TBM 46 (100) 23 (50.0) 20 (43.5) 3 (6.5) 

No-TBM 23 (100) 10 (43.5) 11 (47.8) 2 (8.7)  

Plasma concentration, geometric mean (95% confidence interval) 

 

[EFZ] 
TBM 2355,0 (1836.5-3047.9) 1694.3 (1297.2-2233.6) 3140.5 (1995.3-5081.6) 4852.9 (2716.4-9036.5) 0.015

No-TBM 1766.0 (1383.6-2280.3) 1264.7 (963.8-1674.9) 2202.9 (1482.5-3342.0) 3435.6 (1625.5-7834.3) 0.013

[8OH-EFZ] 
TBM 1199.5 (706.3-2128.1) 1901.1 (1396.4-2630.3) 779.8 (269.8-2766.9) 666.8 (18.9-1.8x106) NS

No-TBM 1194.0 (883.1-1636.8) 1559.6 (1002.3-2494.6) 1032.8 (632.4-1749.8) 687.1 (15.8-5.2x106) NS

CSF concentration, geometric mean (95% confidence interval) 

 

[EFZ] 
TBM 60.3 (46.6-79.4) 40.4 (29.4-57.0) 89.3 (61.5-134.0) 136.1 (23.6-2084.5) 0.004

No-TBM 15.0 (11.7-19.7) 11.5 (8.5-16.3) 17.0 (11.5-26.6) 34.8 (5.0-2546.8) 0.037

[8OH-EFZ] 
TBM 39.3 (25.7-63.4) 35.5 (19.1-74.8) 39.8 (21.6-82.8) 82.8 (3.5-5.7x106) NS

No-TBM 5.9 (4.4-8.2) 7.8 (6.0-10.5) 5.3 (3.5-9.2) 3.3 (1.0->10x106) NS

 516 
All concentrations are with β-glucuronidase. EFZ; efavirenz.  517 
 518 
Table 2. Proportion of CSF samples with EFZ and 8OH-EFZ concentrations above 519 
in vitro toxic concentrations (i.e 31.6 ng/ml for EFZ and 3.3 ng/ml for 8OH-EFZ).  520 

CYP2B6 c.516G>T genotype 

    All, n (%) GG, n (%) GT, n (%) TT, n (%) 

CSF [EFZ] 
TBM 35 (76%) 14 (61%) 18 (90%) 3 (100%) 

No-TBM 3 (13%) 0 (0%) 2 (18%) 1 (50%) 

CSF [8OH-EFZ] 
TBM 45 (98%) 22 (96%) 20 (100%) 3 (100%) 

No-TBM 20 (87%) 10 (100%) 9 (82%) 1 (50%)  521   522 



 

Figure 1. Relationship between concentrations of EFZ in plasma (a readily 523 accessible and more easily measured parameter) and concentrations of EFZ and 524 8OH-EFZ in CSF 525 

 526  527 
CSF and plasma EFZ concentrations were correlated in the TBM group (fig 1a) 528 and the no-TBM group (fig 1b). No relationship was seen for 8OH-EFZ in either 529 the TBM group (fig 1c) or no-TBM group (fig 1d). 530 
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Figure 2. Affect of CYP2B6 genotype on estimated effective and toxic 533 concentrations of EFZ in plasma (fig 1a and b), EFZ in CSF (fig 1c and d) and total 534 8OH-EFZ in CSF (fig e and f).  535 

 536  537 
Error bars are geometric mean and 95% confidence interval for GG/GT 538 genotype, and geometric mean, range for TT genotype. MTC – minimum toxic 539 concentration, MIC – minimum inhibitory concentration, ITC – in vitro toxic 540 concentration. 541 



 

Figure 3: Relationship between degree of blood-brain barrier breakdown, as 542 measured by CSF:blood albumin ratio, and CSF concentrations of EFZ and 8OH-543 EFZ.   544 
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