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ABSTRACT
A framework is developed for determining the stochastic response of linear multi-degree-of-

freedom (MDOF) structural systems with singular mass matrices, potentially arising when utilizing
more than the minimum number of coordinates in modeling the system. Specifically, relying on
the generalized matrix inverse theory and on the Moore-Penrose (M-P) matrix inverse, standard
concepts, relationships and equations of the linear random vibration theory are extended and gen-
eralized herein to account for systems with singular mass matrices. In this regard, adopting a
state-variable formulation, equations governing the system response mean vector and covariance
matrix are formed and solved. Further, it is shown that a complex modal analysis treatment, un-
like the standard system modeling case, does not lead to decoupling of the equations of motion.
Nevertheless, relying on a singular value decomposition of the system transition matrix facilitates
significantly the efficient computation of the impulse response matrix, and ultimately, of the system
response statistics. A linear structural system with a singular mass is considered as a numerical
example for demonstrating the applicability of the methodology and for elucidating certain related
numerical aspects.

Keywords: Structural dynamics, Random vibration, Singular mass matrix, Moore-Penrose in-
verse

INTRODUCTION
Inherent randomness in a wide range of complex and time-evolving natural phenomena has mo-

tivated the modeling and study of systems with stochastic parameters, input, and initial/boundary
conditions (e.g. Grigoriu (2002)). Further, to quantify the uncertain behavior of complex dynam-
ical structural and mechanical systems, several random vibration methodologies have been devel-
oped over the past six decades with varying degree of success; see Lin (1967), Naess and Johnsen
(1993), Newland (1993), Li and Chen (2009), Pirrotta and Santoro (2011), and Kougioumtzoglou
and Spanos (2014) for some indicative references.

Typically, in the field of multibody system dynamics the smallest possible number of coordi-
nates is utilized for various reasons such computational efficiency. Indeed, it can be argued that
forming the multibody system equations of motion in terms of the independent degrees of free-
dom can ideally increase computational performance (e.g. Featherstone (1987); Bae and Haug
(1987); Critchley and Anderson (2003)). Further, utilizing the minimum number of coordinates
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(generalized coordinates) for formulating the equations of motion of a multi-degree-of-freedom
(MDOF) dynamical structural system yields mass matrices that are not only non-singular, but also
symmetric and positive definite (e.g. Pars (1979); Roberts and Spanos (2003)).

However, it can be argued (e.g. Schutte and Udwadia (2011)) that formulating the equations of
motion for general large-scale multibody systems can be a non-trivial task where the complexity of
the equations of motion grows rapidly with increasing the number of constituent bodies and/or the
number of DOFs. In fact, the degree of simplicity and the amount of effort required for deriving
the governing equations are among the factors for assessing the performance of a methodology
for obtaining the system equations of motion (e.g. Schiehlen (1984)). In this regard, several ap-
proaches for generating the equations of motion (e.g. Shabana (1998)), such as the ones relying on
the computation of Lagrange multipliers (e.g. Nikravesh (1988); Pradhan et al. (1997)), require the
application of constraints that are functionally independent. Clearly, verifying the above require-
ment is not a straightforward task, especially for large-scale complex systems. Further, employing
the minimum number of coordinates can lead to limited flexibility regarding the form and nature
of the constraints. Specifically, altering a constraint might require a complete remodeling of the
multibody system.

Thus, it can be argued that modeling utilizing more than the minimum number of DOFs cir-
cumvents some of the above limitations and provides the modeler with enhanced flexibility (e.g.
Schutte and Udwadia (2011)). In this regard, any complex multibody system can be decomposed
into its constituent parts for each of which the equations of motion can be obtained readily (e.g.
Udwadia and Kalaba (2007)). These equations can then be used to form the composite system
equations of motion in a less labor-intensive manner by also incorporating appropriate constraints.
Note in passing that some of the structural systems considered herein are related to the so-called
descriptor systems described, in general, by a set of differential-algebraic equations (e.g. Gashi and
Pantelous (2013), Pantelous et al. (2014), Kalogeropoulos et al. (2014) and Gashi and Pantelous
(2015)). However, due to the fact that the coordinates used are not independent with each other, a
singular mass matrix can arise in the system equations of motion. Thus, determining the system
response by employing standard concepts/techniques, such as recasting the equations of motion in
a state-variable formulation, is not possible.

In this paper, some theoretical and practical elements pertaining to linear random vibration
theory of MDOF systems with singular mass matrices are developed and discussed. Specifically,
based on the generalized matrix inverse theory (e.g. Ben-Israel and Greville (2003)), the Moore-
Penrose (M-P) inverse of a singular mass matrix can be determined and arguably uniquely defined
for systems of engineering interest; see Udwadia and Phohomsiri (2006). Further, it is shown that
relying on the M-P inverse of a matrix, the Lyapunov equation for the system response covariance
matrix can be formed and solved for systems with singular mass matrices. Also, it is shown that
a complex modal analysis treatment, unlike the standard system modeling case, does not lead to
decoupling of the equations of motion. Nevertheless, relying on a singular value decomposition
of the system transition matrix greatly facilitates the efficient computation of the impulse response
matrix and of the system response statistics. A linear structural system modeled by utilizing more
than the minimum number of coordinates (thus, yielding a singular mass matrix) is considered as
a numerical example.

MATHEMATICAL FORMULATION
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Moore-Penrose theory elements
The topic of generalized matrix inverses has received considerable interest in recent years both

from a theoretical and a practical perspective; see Campbell and Meyer (1979) for a detailed pre-
sentation. In this subsection, the basic mathematical elements are discussed briefly.

Definition. IfA ∈ Cm×n thenA+ is the unique matrix in Cm×n such that

AA+A = A , A+AA+ = A+,

(AA+)∗ = AA+ , (A+A)∗ = A+A. (1)

The matrix A+ is known in the literature as the Moore-Penrose inverse of A. The Moore-
Penrose inverse of a square matrix exists for any arbitrary A ∈ Cn×n. Note that if A is non-
singular, A+ coincides with A−1. Eqs. (1) represent the so-called Moore-Penrose equations.
Further, the Moore-Penrose inverse of any m × n matrix A can be determined by employing
various techniques and methodologies, such as a number of recursive formulae (e.g. see Campbell
and Meyer (1979), Greville (1960)) and provides a tool for solving equations of the form

Ax = b, (2)

whereA is a rectangular m× n matrix, x is an n vector and b is an m vector. For a square matrix
A, the Moore-Penrose inverse can be applied when A is singular, i.e. detA 6= 0. For such cases,
the solution to eq. (2) is given by

x = A+b+ (I −A+A)y, (3)

where y is an arbitrary m vector. A more detailed presentation of the topic can be found in Ben-
Israel and Greville (2003) and Campbell and Meyer (1979).

Stochastic response analysis of multi-degree-of-freedom (MDOF) structural systems
Standard state-variable formulation

Following closely Roberts and Spanos (2003), the general form of the equations of motion of
a lumped-parameter n−degree-of-freedom (n−DOF) system is

Mq̈ +Cq̇ +Kq = Q(t), (4)

where M ,C,K are symmetric n× n matrices, representing the mass, the damping and the stiff-
ness of the system, respectively. The symbol q stands for an n vector containing the n (gener-
alized) displacements of the system, and Q is an n vector containing the n (generalized) forces,
corresponding to q.

Further, the equations of motion for the n−DOF system of eq. (4) can be cast into the state
variable form by defining a 2n vector,

z(t) =

[
q
q̇

]
. (5)

Next, taking into account eq. (5), eq. (4) can be written, equivalently, in the form

ż = Gz + f , (6)

3 authors, Feb. 14, 2013



where

G =

[
0 I

−M−1K −M−1C

]
, (7)

and

f =

[
0

M−1Q

]
. (8)

Note that in deriving eqs. (7) and (8) it is assumed that the mass matrix M is non-singular,
since systems with singular mass matrices are not common in a standard formulation of the system
equations of motion in classical dynamics. In fact, when the minimum number of independent
coordinates is utilized for formulating the equations of motion, the mass matrices are not only
non-singular, but also symmetric and positive definite; see also Pars (1979) and Roberts and Spanos
(2003).

Further, the response of the system of eq. (6) can be determined by utilizing the convolution
integral

q(t) =

∫ t

0

h(τ)Q(t− τ)dτ, (9)

where h(t) represents the impulse response matrix of the system, given by

h(t) = b(t)M−1. (10)

In eq. (10), b(t) is obtained by the relationship

exp(Gt) =

[
a(t) b(t)
c(t) d(t)

]
, (11)

where all the submatrices are n×n; see Roberts and Spanos (2003) for a more detailed presentation.
Furthermore, statistical moments of the response of the linear MDOF system of equation (4)

can be determined readily by direct manipulation of the equation of motion (6). In this regard, by
denoting

mz = E {z(t)} , (12)

and taking expectations on eq. (6), yields

ṁz = Gmz +mf . (13)

The last equation, can be solved to find mz as a function of time. For a zero-mean excitation, the
solution formz is given in the form

mz = exp(Gt)mz(0), (14)

wheremz → 0, as t→∞. Next, considering eq. (6) and (13), the equation

λ̇ = Gλ+ η(t), (15)

is obtained, where
λ(t) = z(t)−mz(t) and η(t) = f(t)−mf (t). (16)
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Further, taking into account the covariance matrix

V = E
{

[z(t)−mz(t)][z(t)−mz(t)]
T
}
, (17)

and considering eqs. (15) to (17), equation

V̇ = GV T + V GT + S (18)

is obtained, where

S(t) =

∫ t

0

exp(G(t− τ))
[
wη(t, τ) +wT

η (t, τ)
]
dτ. (19)

In eq. (19), wη(t, τ) is the covariance matrix for η(t). If the elements of η(t) are modeled as
stationary white-noises, then

wη(t, τ) = Dδ(t− τ), (20)

where D is a real, symmetric, non-negative matrix of constants. Hence, substituting eq. (20) into
eq. (19), eq. (18) becomes

V̇ = GV T + V GT +D. (21)

State-variable formulation based on the Moore-Penrose theory
An inherent assumption for all the equations obtained in the standard state-variable formulation

section, is that the mass matrix M is non-singular. Nevertheless, note that singular mass matrices
can arise in the system equations of motion. This is the case when more than the minimum number
of generalized coordinates are considered. This kind of modeling can be advantageous in cases of
complex, multi-body systems. In this regard, the complex multi-body system can be decomposed
into its constituent parts for each of which the equations of motion can be readily obtained. These
equations can then be used to form the equations of motion of the overall composite system in a less
labor-intensive manner. This is done by also incorporating constraints associated with the fact that
the coordinates are not independent any more; thus, yielding mass-matrices which are singular;
see also Udwadia and Kalaba (2001), Udwadia and Phohomsiri (2006) and references therein. In
this regard, following the standard state-variable formulation section, consider an l−DOF system
of the form

Mxẍ+Cxẋ+Kxx = Qx(t), (22)

where x is the l vector of the coordinates (l > n),Qx is the l vector of external forces, andMx,Cx
andKx are the mass, damping and stiffness matrices, respectively, corresponding to the system of
eq. (22). Next, consider the case where the system of eq. (22) is subjected to m constraints of the
form

A(x, ẋ, t)ẍ = b(x, ẋ, t), (23)

whereA is an m× l matrix and b is an m vector.
In general, while the unconstrained system becomes constrained, additional forces arise to

ensure that the constraints are satisfied (see also Udwadia and Phohomsiri (2006)). Therefore, eq.
(22) becomes

Mxẍ+Cxẋ+Kxx = Qx(t) +Qc
x(t), (24)
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where Qc
x(t) are the additional aforementioned forces. The presence of constraints yields virtual

displacements, described by the l vector w, which is any non-zero vector satisfying the condition

Aw = 0, (25)

and at any instant of time t can be expressed as

wTQc
x = wTN . (26)

The l vector N describes the nature of the non-ideal constraints and can be obtained by experi-
mentation and/or observation. By employing the Moore-Penrose inverse,A+, of the matrixA, eq.
(25) is rewritten as

w = (I −A+A)y, (27)

where y is an arbitrary l vector. Substituting eq. (27) in (26), yields

(I −A+A)Qc
x = (I −A+A)N . (28)

Next, premultiplying eq. (24) by I −A+A, and considering eq. (28), the equation

(I −A+A)Mxẍ+ (I −A+A)Cxẋ+ (I −A+A)Kxx = (I −A+A)(Qx +N ), (29)

is obtained. Hence, the additional forces that appeared due to the presence of the constraints, are
eliminated. Further, for sake of simplicity, the m vector b of the constrained eq. (23), can be
assumed to be of the form

b = F −Eẋ−Lx. (30)

Subsequently, considering eqs. (23), (30) together with eq. (29), gives

M̄xẍ =

[
(I −A+A)(Qx +N )

F

]
−
[
(I −A+A)Cxẋ

Eẋ

]
−
[
(I −A+A)Kxx

Lx

]
or, equivalently

M̄xẍ =

[
(I −A+A)(Qx +N + S)

b

]
, (31)

where the m vector b and the (m+ l)× l matrix M̄x are given by eq. (30) and

M̄x =

[
(I −A+A)Mx

A

]
, (32)

respectively; and the l vector S is given by

S = −Cxẋ−Kxx. (33)

The solution to eq. (31) is

ẍ = M̄
+
x

[
(I −A+A)(Qx +N + S)

b

]
+ (I − M̄+

xM̄x)y, (34)
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where the l × (l +m) matrix M̄+
x is the Moore-Penrose inverse of M̄x.

Note that for the specific matrix M̄x of eq. (32), the equation

M̄x

[
(Qx +A+z) +N + S

b

]
= M̄x

[
Qx +N + S

b

]
, (35)

holds true for any m vector z (Udwadia and Schutte (2010)). Thus, by setting z = −A(Qx +
N + S), eq. (35) yields

M̄
+
x

[
(I −A+A)(Qx +N + S)

b

]
= M̄

+
x

[
Qx +N + S

b

]
. (36)

Thus, considering eqs. (34) and (36) together, the response acceleration vector is given by

ẍ = M̄
+
x

[
Qx +N + S

b

]
+ (I − M̄+

xM̄x)y. (37)

The preceding analysis is for the general case, where the constraints are considered to be non-
ideal. Nevertheless, assuming in the ensuing analysis that the constraints are ideal, i.e. N = 0, eq.
(37) becomes

ẍ = M̄
+
x

[
Qx + S
b

]
+ (I − M̄+

xM̄x)y (38)

which, considering eq. (33), can be written as

ẍ = M̄
+
x

[
−C̄xẋ− K̄xx+ Q̄x

]
+ (I − M̄+

xM̄x)y; (39)

the (m+ l)× l matrices C̄x, K̄x, as well as the (l +m) vector Q̄x are given by

C̄x =

[
(I −A+A)Cx

E

]
, (40)

K̄x =

[
(I −A+A)Kx

L

]
(41)

and

Q̄x =

[
Qx

F

]
, (42)

respectively.
In a similar manner as in the standard state-variable formulation section, the augmented system

M̄xẍ+ C̄xẋ+ K̄xx = Q̄x (43)

can be cast into the state variable form by defining a 2l vector, p(t) of the form

p(t) =

[
x
ẋ

]
. (44)

Taking into account eqs. (39) and (44), eq. (43) becomes

ṗ = Gxp+ fx, (45)
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where

Gx =

[
0 I

−M̄+
xK̄x −M̄

+
x C̄x

]
, (46)

and

fx =

[
0

M̄
+
xQ̄x + (I − M̄+

xM̄x)y

]
. (47)

Setting fx = 0, eq. (45) becomes homogeneous and its general solution is given by

p(t) = exp(Gxt)p(0), (48)

where the 2l × 2l matrix exp(Gxt) represents the transition matrix for the system.
Next, based on the solution of the homogeneous equation, the response to a non-zero forcing,

fx, is given by

p(t) = exp(Gxt)p(0) +

∫ t

0

exp[Gx(t− τ)]fx(τ)dτ, (49)

which, under the assumption that p(0) = 0, becomes

p(t) =

∫ t

0

exp(Gxτ)fx(t− τ)dτ. (50)

Clearly, eq. (50) is a convolution integral between the input fx(t) and the output p(t). Further,
defining

exp(Gxt) =

[
ax(t) bx(t)
cx(t) dx(t)

]
, (51)

eq. (50) yields [
x(t)
ẋ(t)

]
=

∫ t

0

[
ax(τ) bx(τ)
cx(τ) dx(τ)

] [
0

H(t− τ)

]
dτ, (52)

where
H(t− τ) = M̄+

x Q̄x(t− τ) + (I − M̄+
xM̄x)y(t− τ). (53)

Taking into account eqs. (52)-(53) yields

x(t) =

∫ t

0

bx(τ)H(t− τ)dτ. (54)

At this point it is deemed appropriate to make two remarks. First, as noted also in Udwadia and
Phohomsiri (2006) the expression of eq. (39) for the response acceleration vector is not unique.
This is due to the arbitrary vector y involved in the definition of the Moore-Penrose inverse matrix.
Second, the expression for H(t) in eq. (53), which can be construed as a ”generalized” impulse
response matrix is also not unique for the same reason as above. As a result, the response dis-
placement vector x(t) in eq. (54) is not unique. In this regard, due to the fact that, in general, for
systems of the form of eq. (3) a unique response displacement/acceleration vector is experimen-
tally observed, and that the respective impulse response matrix is also unique (depending only on
the system properties/parameters), it is reasonable to apply conditions so that the system impulse
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response matrix is uniquely defined. To this end, as shown in Udwadia and Phohomsiri (2006),
when the (m+ l)× l matrix M̄x has full rank, i.e. rankM̄x = l, yields

M̄
+
x = (M̄

T
xM̄x)−1M̄

T
x , (55)

so that
(I − M̄+

xM̄x) = 0. (56)

Hence, eq. (54) can be equivalently written as

x(t) =

∫ t

0

hx(τ)Q̄x(t− τ)dτ, (57)

where
hx(t) = bx(t)M̄

+
x (58)

can be considered as the uniquely defined ”generalized” impulse response matrix. Considering
next eq. (56), eq. (39) and (47) become

ẍ = M̄
+
x (−C̄xẋ− K̄xx+ Q̄x) (59)

and

fx =

[
0

M̄
+
xQ̄x

]
, (60)

respectively.
Further, for the determination of the system response statistical moments, in a similar manner as

in the previous section, taking expectations on eq. (45) yields an equation for the system response
mean vector in the form

ṁx = Gxmx +mfx . (61)

Furthermore, the corresponding equation for the system response covariance matrix becomes

V̇x = GxVx + VxG
T
x + Sx, (62)

where

Sx =

∫ t

0

exp(Gx(t− τ))
[
wη(t, τ) +wT

η (t, τ)
]
dτ. (63)

For the case where the elements of η are regarded to be stationary white noises, eq. (62)
becomes

V̇x = GxVx + VxG
T
x +Dx, (64)

whereDx is a real, symmetric, non-negative matrix of constants andGx, fx are given by eq. (46)
and (47), respectively. Focusing on the system stationary response, i.e. V̇x = 0, eq. (64) becomes

GxVx + VxG
T
x +Dx = 0. (65)

Clearly, eq. (65) is a Lyapunov equation which is a special case of the Sylvester equation of the
form

AX +XB +Q = 0. (66)
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Eq. (66) has a unique solution if and only if the matricesA and−B have no common eigenvalues.
Thus, eq. (65) has a unique solution if all the eigenvalues of the matrixGx are not equal to zero or,
equivalently, the rows of Gx are linearly independent with each other (for more details see Chen
(1999)). However, due to the fact that more than the minimum number of coordinates are used for
the system modeling, most likely the rows of Gx will not be linearly independent; thus, a special
treatment is needed for solving eq. (65).

In this regard, eq. (65) can be rewritten as

(I2l ⊗Gx +Gx ⊗ I2l)vecVx = vec(−Dx), (67)

where vecVx and vec(−Dx) are (2l)2 vectors formed by stacking all columns of Vx and −Dx

respectively, on top of one another; also, by I2l ⊗ Gx and Gx ⊗ I2l is denoted the Kronecker
product of the pairs of matrices I2l,Gx and Gx, I2l. Equivalently, eq. (67) is expressed in the
form

Wv = d, (68)

where W is a (2l)2 × (2l)2 matrix and v = vec(Vx),d = vec(−Dx). Next, involving eq. (3) for
the M-P inverse of a matrix, the general solution to eq. (68) is

v = W+d+ (I(2l)2 −W+W )y, (69)

where y is an arbitrary (2l)2 vector.

Moore-Penrose state-variable formulation: A numerical example
Consider the system of two rigid massesm1 andm2 in Figure 1. The masses move horizontally

as a result of an applied random force Q2(t). Let the mass m1 be connected to the foundation by
a linear spring and a linear damper with coefficients k1 and c1, respectively. Further, a mass m2 is
connected to m1 by a linear spring and a linear damper with coefficients k2 and c2, respectively.
Furthermore, Q2(t) is a white-noise process with a correlation function wQ2(t) = 2πS0δ(τ), where
S0 is the (constant) power spectrum value for Q2(t). Finally, q1, q2 are the generalized displace-
ments, shown in Figure 1. The equations of motion governing the system in Figure 1 can be written
in the matrix form of eq. (4), where the matricesM ,C andK are given by (see also Roberts and
Spanos (2003))

M =

[
m1 0
0 m2

]
, C =

[
(c1 + c2) −c2

c2 c2

]
, (70)

K =

[
(k1 + k2) −k2

−k2 k2

]
, x =

[
q1

q2

]
and (71)

Q =

[
0

Q2(t)

]
. (72)

Next, eq. (21) is formed; thus, obtaining a system of algebraic equations to be solved for the
16 unknowns of matrix V . Focusing next on the stationary system response, i.e. V̇ = 0, and
considering the parameters values m1 = m2 = m = 1, c1 = c2 = c = 0.1, k1 = k2 = k = 1 and
S0 = 10−3, numerical solution of the Lyapunov eq. (21) yields

V =


0.0438 0.0690 0.0000 −0.0012
0.0690 0.1132 0.0012 0.0000
0.0000 0.0012 0.0188 0.0251
−0.0012 0.0000 0.0251 0.0441

 . (73)
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Consider next the system of two masses m1 and m2 of the above example modeled as a multi-
body one, and consisting of two separate subsystems as shown in Figure 2; see also Udwadia
and Phohomsiri (2006). In this regard, the two sub-systems are related based on the constraint
x2 = x1 + d (where d is the length of mass m1). The ”unconstrained” equations of motion are
derived by treating the three coordinates (x̄1, x2 and x̄3) as independent with each other. Next, the
equation of motion of the composite system is derived by including the constraint

x2 = x1 + d (74)

or, equivalently
x2 = x̄1 + l10 + d, (75)

where l10 is the unstretched length of the spring k1.
The total kinetic and potential energies for the two sub-systems are

T =
1

2
m1 ˙̄x

2
1 +

1

2
m2(ẋ2 + ˙̄x3)2 (76)

and
V =

1

2
k1x̄

2
1 +

1

2
k2x̄

2
3, (77)

respectively. Next, by forming the Lagrangian function L(x̄1, x2, x̄3, ˙̄x1, ẋ2, ˙̄x3) = T − V , and
utilizing the Euler-Lagrange equations (e.g. Mestdag et al. (2011)), yields

d

dt

(
∂L

∂ẋi

)
− ∂L

∂xi
− ∂F

∂ẋi
= Q, (78)

where F (x̄i, ˙̄xi) = −1
2
ci ˙̄x2

i is the damping force (i = 1, 3) and Q the external excitation. Manipu-
lating eq. (78) yields

m1 ¨̄x1 + c1 ˙̄x1 + k1x̄1 = 0 (79)
m2ẍ2 +m2 ¨̄x3 = 0 (80)

m2ẍ2 +m2 ¨̄x3 + c2 ˙̄x3 + k2x̄3 = Q3 (81)

where x̄1 = x1 − l10, x̄3 = x3 − l20 and l10, l20 are the unstretched lengths of the springs k1, k2

respectively.
The matrix form for the equations of motion becomes

Mxẍ+Cxẋ+Kxx = Qx, (82)

where

Mx =

m1 0 0
0 m2 m2

0 m2 m2

 , Cx =

c1 0 0
0 0 0
0 0 c2

 , Kx =

k1 0 0
0 0 0
0 0 k2

 (83)

and

Qx =

 0
0
Q3

 , x =

x̄1

x2

x̄3

 . (84)
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Differentiating the constraint of eq. (75) the two sub-systems are subject to, yields

[
1 −1 0

] x̄1

x2

x̄3

 = 0. (85)

Thus, eq. (23) takes the form
A =

[
1 −1 0

]
and b = 0. (86)

As in the previous example, assume that m1 = m2 = m = 1, c1 = c2 = c = 0.1, k1 = k2 = k = 1
and Q3 is a white noise excitation with power spectrum amplitude S0 = 10−3. Next, note that
rankM̄x = 3, i.e. the 4× 3 matrix M̄x has full rank. Hence, eqs. (32), (40) and (42), become

M̄x =


0.5 0.5 0.5
0.5 0.5 0.5
0 1 1
1 −1 0

 , C̄x =


0.05 0 0
0.05 0 0

0 0 0.1
0 0 0

 , K̄x =


0.5 0 0
0.5 0 0
0 0 1
0 0 0

 (87)

and

Q̄x =


0
0

w(t)
0

 . (88)

Further, the Moore-Penrose inverse of the matrix M̄x, yields

M̄+
x =

 1 1 −1 0
1 1 −1 −1
−1 −1 2 1

 . (89)

Thus, substituting eq. (89) into eq. (46), yields

Gx =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 0 1 −0.1 0 0.1
−1 0 1 −0.1 0 0.1
1 0 −2 0.1 0 −0.2

 . (90)

Focusing next on the stationary system response, i.e. V̇x = 0, and considering that Q3 is a white-
noise excitation, the matrixDx in eq. (65), takes the form

Dx =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2π10−3

 , (91)
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whereas the Lyapunov eq. (65) becomes

GxVx + VxG
T
x = −Dx. (92)

Note that due to the fact that not all rows ofGx are linearly independent with each other (compare
fourth and fifth row), the solution of (92) is not unique. Hence, following eq. (67), eq. (69) yields

Vx =


0.0438 0.0438 0.0252 0 0 −0.0012
0.0438 y1 0.0252 0 0 −0.0012
0.0252 0.0252 0.0190 0.0012 0.0012 0

0 0 0.0012 0.0188 0.0188 0.0063
0 0 0.0012 0.0188 0.0188 0.0063

−0.0012 −0.0012 0 0.0063 0.0063 0.0127

 . (93)

Note also that almost all the elements of the matrix (I(2l)2−W+W ) in eq. (69) are zero. Interest-
ingly, the non-zero one is the element in the diagonal in position corresponding to the additional
auxiliary DOFs; in this case it is the element Vx(2,2) = E(x2

2). Hence, the presence of the arbitrary
vector y does not affect, in essence, the calculated Vx.

Indicatively, comparing eq. (73) and (93), the variance E[q2
1] as well as E[q̇2

1] obtained in the
first example, coincide with the respective ones in the second one, i.e E[x̄2

1] and E[ ˙̄x2
1]. Further,

taking expectations in the equation that connects the two reference systems, that is x̄3 = q2 − q1,
and utilizing eq. (73) yields

E[x̄2
3] = E[q2

2] + E[q2
1]− 2E[q1q2] = 0.0190 (94)

and

E[ ˙̄x2
3] = E[q̇2

2] + E[q̇2
1]− 2E[q̇1q̇2] = 0.0127, (95)

which are indeed in agreement with the corresponding values in eq. (93). It can be readily verified
that the rest of the elements of matrix (93) are also in agreement with the respective ones of eq.
(73).

Complex modal analysis
In the standard formulation of the linear random vibration theory, computing the ”complex

modal matrix” whose columns are the eigenvectors, or ”complex modes” of matrix G of eq. (7)
facilitates not only the efficient evaluation of exp(Gt) in eq. (11), and thus, of the system impulse
response matrix of eq. (10), but also plays an instrumental role in decoupling the original coupled
system of equations (eq. (4)); see for example Roberts and Spanos (2003). In this section it is
shown that a similar treatment of the system of eq. (43) does not lead in general in a decoupling of
the equations of motion. Further insights are provided regarding the efficient computation of the
impulse response matrix hx(t) of eq. (58).

Let λ1, λ2, . . . , λ2l be the eigenvalues of the 2l×2l matrixGx given by eq. (46), so that the first
r of them are non zero and the remaining 2l − r are equal to zero. Then, the eigen-decomposition
ofGx yields

GxT = Tηx, (96)
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where ηx is the diagonal matrix given by

ηx = diag(λ1, λ2, . . . , λr, 0, 0, . . . , 0), (97)

and
T = [v1 v2 . . .v2l] (98)

is the 2l ”complex modal matrix” formed by the eigenvectors of Gx. Due to the presence of
zero eigenvalues, the eigenvectors are not linearly independent, which means that the matrix T is
singular. Next, the singular value decomposition (SVD) ofGx, yields

Gx = UηxΦ
∗, (99)

where the matrix ηx is 2l × 2l diagonal of the form

ηx = diag(σ1, σ2, . . . , σr, 0, 0, . . . , 0). (100)

In eq. (100), σj =
√
λj, j = 1, 2, . . . , 2l are the singular values of Gx. The 2l × 2l matrix

Φ =
[
φ1,φ2, . . . ,φ2l

]
is a unitary matrix (i.e. ΦΦ∗ = Φ∗Φ = I), where φj is an eigenvector

corresponding to each singular value σj for j = 1, 2, . . . , 2l. Finally, U =
[
u1,u2, . . . ,u2l

]
is a

2l × 2l unitary matrix (i.e. UU ∗ = U ∗U = I) and each one of the 2l−vectors uj is equal to

uj =
Gxφj
σj

, j = 1, 2, . . . , 2l. (101)

Further, to determine the impulse response matrix, hx(t), of eq. (58) the matrix exp(Gx) of
eq. (51) has to be evaluated first.

In this regard, the transformation
p = Φzx, (102)

is used and the state variable form of eq. (45), becomes

żx = Φ∗GxΦzx + Φ∗fx. (103)

Next, taking into consideration eq. (99), eq. (103) can be rewritten as

żx = Φ∗Uηxzx + gx, (104)

where
gx = Φ∗fx. (105)

At this point, it is critical to note that due to the form of eq.(104) the equations of motion
cannot be decoupled. Unlike a standard complex modal analysis (e.g. Roberts and Spanos (2003))
utilizing the minimum number degrees of freedom, the formulation herein yields a matrixGx with
some of its eigenvalues being zero. As a result, not all the eigenvectors forming the ”complex
modal matrix” T are linearly independent with each other; thus, leading to inability to perform
a standard eigenvalue decomposition of Gx (see eq. (96)). In other words, the matrix Φ∗U in
eq. (104) cannot be the unitary matrix, and thus, rendering the system of coupled equations of
eq. (104) an uncoupled one. Overall, in contrast to a standard analysis modeling when a complex
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modal analysis yields an uncoupled system of equations, this is not possible when utilizing more
than the minimum number of degrees of freedom. Nevertheless, it is shown in the ensuing analysis
that relying on an SVD of the matrixGx greatly facilitates the numerical computation of the system
response statistics.

Proceeding with the analysis, eq. (45) has been cast into eq. (104), which has the general
solution

zx(t) = exp(Φ∗Uηxt)zx(0) +

∫ t

0

exp(Φ∗Uηx(t− τ))gx(τ)dτ. (106)

Under the assumption that the system is initially at rest, eq. (106) becomes

zx(t) =

∫ t

0

exp(Φ∗Uηxs)gx(t− s)ds. (107)

Notably, the impulse response function hx(t) is given by

hx(t) = exp(Φ∗Uηxt). (108)

Further, once zx is computed, the 2l vector p can be determined by using the transformation given
in eq. (102).

Next, taking expectation on eq. (104), taking into account eq.(105), and considering the sta-
tionary response (i.e. ṁzx = 0) and assuming that ṁzx = 0, the equation

ηxmzx = −U∗mfx , (109)

arises, which has the general solution

mzx = −η+
xU

∗mfx + (I2l − η+
xηx)y. (110)

In eq. (110), η+
x is the Moore-Penrose inverse of ηx and y is an arbitrary 2l vector. Also, using eq.

(102), the formula
mp = −Φη+

xU
∗mfx + Φ(I2l − η+

xηx)y, (111)

is obtained, whereU ,Φ are the SVD unitary matrices. Regarding the determination of the Moore-
Penrose inverse of the 2l × 2l matrix ηx, this is given by

σj =

{
σ−1
j , if σj 6= 0

0 , if σj = 0
. (112)

Next, the covariance matrices of the transformed state vector zx and the 2l vector gx given by
eqs. (107) and (105), respectively, can be easily related as follows. In this regard, defining the
covariance matrix of zx as

wzx(τ) = E [(zx(τ)−mzx)(zx(t+ τ)−mzx)∗] (113)

and the covariance matrix of gx as

wgx(τ) = E [(gx(τ)−mgx)(gx(t+ τ)−mgx)∗] , (114)
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and considering eq. (107), the covariance input-output relationship is given by

wzx(τ) =

∫ ∞
0

∫ ∞
0

hx(s1)wgx(τ + s1 − s2)h∗x(s2) ds1ds2, (115)

where hx(t) is the impulse response function determined by eq. (108).
As far as the determination of the elements of the impulse response function is concerned, the

Cayley-Hamilton Theorem can be employed yielding

hx(t) = exp(Φ∗Uηxt) =
r−1∑
k=0

αk(Φ
∗Uηx)k. (116)

The coefficients αk, k = 1, 2, . . . , r − 1 can be found by solving the following system of linear
equations

exp(λi) =
r−1∑
k=0

αkλ
k
i , (117)

where i = 1, 2, . . . , r and λi are the eigenvalues of the matrix Φ∗Uηx. Next, using the obtained
formula for the determination of the elements of the impulse response matrix, the elements of the
covariance matrix wzx , can be determined.

Thus, after determiningwzx , by utilizing the transformation given in eq. (102), the covariance
matrix wp can be determined as well. In this regard,

wp(τ) = Φwzx(τ)Φ∗. (118)

Similarly, using eq. (105), the matrices of gx(t) and f(t) are related via the formula

wgx(τ) = Φ∗wfx(τ)Φ. (119)

Finally, assuming that fx is a white noise vector process with correlation function

wfx(t, τ) = Dxδ(t− τ), (120)

where Dx is a real, symmetric, non-negative matrix of constants, the covariance matrix of gx is
given by

wgx(τ) = Φ∗DxΦδ(t− τ). (121)

Note, however, that the impulse response function hx(t) can be determined by other alternative
more elegant methods than by using the Cayley-Hamilton theorem (see Cheng and Yau (1997)).
In this regard, setting

R = Φ∗Uηx, (122)

the determination of the impulse response function is equivalent to the determination of the matrix
exp(Rt), which can be determined as a finite polynomial in R, with analytic functions of t as
coefficients. Moreover, once the eigenvalues ofR are known, i.e. µ1, µ2, . . . , µs, it might be more
convenient to express exp(Rt) in terms of polynomials in (R − µiI). In the following analysis,
the arising systems that have to be solved for determining the coefficient functions, are proven to
be triangular, and thus, can be readily solved (for more details see Cheng and Yau (1997)).
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As a first step for the determination of exp(Rt), assume that the matrixR is in its Jordan form,
µ1, µ2, . . . , µs are its s distinct eigenvalues and mi, i = 1, 2, . . . , s the algebraic multiplicity of
each eigenvalue µi. Finally, assume that

MR(x) =
s∏
j=1

(x− µj)mj , (123)

is the minimal polynomial ofR (i.e. the monic polynomialP of least degree such thatP (R) = 0).
Next, for r ≥ 0, s ≥ 1 and 1 ≤ k ≤ s, let

Hs(r) =

{
(a1, a2, . . . , as) ∈ Ns : ai ≥ 0 and

s∑
i=1

ai = r

}
and (124)

H(k)
s (r) = {(a1, a2, . . . , as) ∈ Hs(r) : ak = 0} . (125)

Then, the exponential of matrixRt is equal to

exp(Rt) =
s∑

k=1

[
mk−1∑
r=0

fk,r(t)(R− µkI)r

]
s∏

j=1,j 6=k

(R− µkI)mj , (126)

where the coefficient functions fk,0(t), fk,1(t), . . . , fk,mk−1(t) satisfy the equation

i∑
r=0

fk,r(t)
∑

a∈H(k)
s (i−r)

s∏
j=1,j 6=k

(
mj

aj

)
(µk − µj)mj−aj = exp(µkt)

ti

i!
, (127)

for i = 0, 1, . . . ,mk − 1 and each k = 1, 2, . . . , s.

Complex modal analysis: A numerical example
Consider once again the multi-body system presented as an example in the Moore-Penrose

state-variable formulation section, where the matrix Gx is given by eq. (90). The system consists
of two separate subsystems of masses m1 and m2, respectively, related based on the constraint
given in eq. (74).

Next, determining its SVD, the unitary matrices U ,Φ as well as the diagonal matrix of the
singular values ηx, are found to be equal to

U =


−0.0214 0.8204 0 −0.5692 −0.0507 0

0 0 1 0 0 0
0.0309 0.5685 0 0.8213 −0.0351 0
0.4695 −0.0326 0 −0.0177 −0.5274 0.7071
0.4695 −0.0326 0 −0.0177 −0.5274 −0.7071
−0.7468 −0.0410 0 0.0281 −0.6632 0

 , (128)

Φ =


−0.5660 0.0242 0 0.0638 0.8216 0

0 0 0 0 0 −1
0.8168 0.0168 0 −0.0921 0.5693 0
−0.0638 0.8216 0 −0.5660 −0.0242 0

0 0 1 0 0 0
0.0921 0.5693 0 0.8168 −0.0168 0

 (129)

17 authors, Feb. 14, 2013



and

ηx =


2.9784 0 0 0 0 0

0 1.0015 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 0.9944 0 0
0 0 0 0 0.4768 0
0 0 0 0 0 0

 , (130)

respectively.
Further, utilizing eq. (122), the matrixR is given by

R =


−0.1827 −0.0017 0 0.9912 −0.0131 0
−0.1176 −0.0208 0 0.0015 −0.3875 0
1.3984 −0.0326 0 −0.0176 −0.2515 0
−2.6207 −0.0150 0 −0.0785 −0.1159 0
0.0035 1.0006 0 0 −0.0180 0

0 0 −1 0 0 0

 , (131)

which has the following six eigenvalues; that is,

λ1 = −0.1309 + 1.6127i , λ2 = −0.1309− 1.6127i , λ3 = −0.0191 + 0.6177i,

λ4 = −0.0191− 0.6177i , λ5 = 0 , λ6 = 0 (132)

and its minimal polynomial has the form

MR(x) = (x− λ1)(x− λ2)(x− λ3)(x− λ4)x2. (133)

Taking into consideration the analysis provided in eqs. (124) to (127), the exponential matrix
exp(tR) is decomposed in the form

exp(tR) = p1exp(λ1t) + p2exp(λ2t) + p3exp(λ3t) + p4exp(λ4t) + p5t+ p6, (134)

where the coefficients pi are given by

p1 =
b2b3b4

a12a13a14λ2
1

R2, p2 =
b1b3b4

a21a23a24λ2
2

R2, p3 =
b1b2b4

a31a32a34λ2
3

R2,

p4 =
b1b2b3

a41a42a43λ2
4

R2, p5 =
b1b2b3b4

a51a52a53a54

R (135)

and

p6 =

{
I − (a52a53a54 + a51a53a54 + a51a52a54 + a51a52a53)

a51a52a53a54

R

}
. (136)

The expressions aij for i, j = 1, 2, . . . , 5 and bk for k = 1, 2, 3, 4 are defined, in turn, by

aij = λi − λj, i, j = 1, 2, . . . , 5 (137)

and
bk = R− λkI, k = 1, 2, 3, 4. (138)
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Clearly, the impulse response function hx(t) (see eq. (108)) is expressed in terms of its eigen-
values and, thus, as a result it can be easily determined. Further, following closely the example
presented in the Moore-Penrose state-variable formulation section, assuming that the excitation is
modeled as white noise, and employing eqs. (115) and (121), the covariance matrix wzx , can be
determined.

In this regard, using the decomposition of the impulse response function obtained in eq. (134),
the double integral of eq. (115), can be decomposed, and simplified in the form

hxwgxh
∗
x =

4∑
i=1

eλit


4∑
j=1

eλ̄jspiΦ
∗DxΦp∗j + spiΦ

∗DxΦp∗5 + piΦ
∗DxΦp∗6

 δ

+
2∑
i=1

t2−k


4∑
j=1

eλ̄jsp4+kΦ
∗DxΦp∗j + sp4+kΦ

∗DxΦp∗5 + p4+kΦ
∗DxΦp∗6

 δ, (139)

where Φ is the SVD unitary matrix. The matrices pr, r = 1, 2, . . . , 6 are given by eqs. (135), (136)
and the matrixDx by

Dx =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2π10−3

 , (140)

respectively; see also eq. (91).
Next, evaluating the matrices pi(Φ

∗DxΦ)p∗j , i, j = 1, 2, . . . , 6, it is noted that

pi(Φ
∗DxΦ)p∗5 = pi(Φ

∗DxΦ)p∗6 = 0 for i = 1, 2, 3, 4 (141)

and
p5(Φ∗DxΦ)p∗j = p6(Φ∗DxΦ)p∗j = 0 for j = 1, 2, . . . , 6. (142)

Hence, taking into consideration (141) and (142), eq. (139) takes a much simpler form, which
being substituted in eq. (115), yields

wzx =
4∑
i=1

4∑
j=1

I i,j, (143)

where

I i,j(τ) =

∫ ∞
0

∫ ∞
0

eλiteλ̄jspi(Φ
∗DxΦ)p∗jδ(τ + t− s)dtds, (144)

or, equivalently,

I i,j(τ) = −pi(Φ∗DxΦ)p∗j
eλ̄jτ

λi + λ̄j
, (145)

for i, j = 1, 2, 3, 4. Therefore, eq. (143), yields

wzx(τ) = −
4∑
i=1

4∑
j=1

eλ̄jτ

λi + λ̄j
pi(Φ

∗DxΦ)p∗j (146)
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and for τ = 0, eq.(146) becomes

wzx(0) = −
4∑
i=1

4∑
j=1

pi(Φ
∗DxΦ)p∗j
λi + λ̄j

=


0.0035 0.0011 0.0004 0.0006 −0.0029 0.0043
0.0011 0.0227 0.0190 −0.0008 0.0011 −0.0008
0.0004 0.0190 0.0188 −0.0056 0.0001 0
0.0006 −0.0008 −0.0056 0.0086 −0.0009 0.0005
−0.0029 0.0011 0.0001 −0.0009 0.0593 −0.0504
0.0043 −0.0008 0 0.0005 −0.0504 0.0438

 . (147)

Finally, using eq. (118), the covariance matrix of p becomes

wp(0) =


0.0438 0.0438 0.0252 0 0 −0.0012
0.0438 0.0438 0.0252 0 0 −0.0012
0.0252 0.0252 0.0190 0.0012 0.0012 0

0 0 0.0012 0.0188 0.0188 0.0063
0 0 0.0012 0.0188 0.0188 0.0063

−0.0012 −0.0012 0 0.0063 0.0063 0.0127

 , (148)

which is in total agreement with the respective results determined in section 2.2.3 (see eq. (93))
via the solution of the Lyapunov equation. At this point, it is deemed necessary to mention that in
contrast to the matrix calculated in eq. (93), the covariance matrix obtained by eq. (148) does not
have any arbitrary elements y. This is due to the fact that for the solution of eq. (92), from which
Vx is derived, eq. (3) is involved, whereas the M-P inverse notion is not utilized in any part of the
procedure followed to determine eq. (148).

CONCLUSION
In this paper, certain concepts and relationships of the linear random vibration theory have been

modified and generalized to account for structural systems with singular mass matrices, potentially
arising when utilizing more than the minimum number of coordinates in modeling the system.

Specifically, relying on the generalized matrix inverse theory the Moore-Penrose (M-P) in-
verse of a singular mass matrix can be determined and arguably uniquely defined for engineering
dynamical systems. Further, relying on the aforementioned convenient result, and adopting a state-
variable formulation, equations governing the system response mean vector and covariance matrix
have been formed and solved. Also, it has been shown that a complex modal analysis treatment,
unlike the standard system modeling case, does not lead to decoupling of the equations of motion.
Nevertheless, relying on a singular value decomposition of the system transition matrix facilitates
significantly the efficient computation of the impulse response matrix, and ultimately, of the system
response statistics. A 2-DOF linear structural system modeled by utilizing more than the minimum
number of coordinates (thus, yielding a singular mass matrix) has been considered as a numerical
example for demonstrating the applicability of the methodology as well as for elucidating certain
related numerical aspects.
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FIG. 1. A two degree-of-freedom linear structural system under stochastic excita-
tion.

24 authors, Feb. 14, 2013



FIG. 2. Modeling of the system shown in Figure 1. using more than two coordi-
nates.
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