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ABSTRACT4

A generalized statistical linearization technique is developed for determining approximately the5

stochastic response of nonlinear dynamic systems with singular matrices. This system modeling6

can arise when a greater than the minimum number of coordinates is utilized, and can be advanta-7

geous, for instance, in cases of complex multibody systems where the explicit formulation of the8

equations of motion can be a nontrivial task. In such cases, the introduction of additional/redundant9

degrees of freedom can facilitate the formulation of the equations of motion in a less labor intensive10

manner. Specifically, relying on the generalized matrix inverse theory and on the Moore-Penrose11

(M-P) matrix inverse, a family of optimal and response dependent equivalent linear matrices is12

derived. This set of equations in conjunction with a generalized excitation-response relationship13

for linear systems leads to an iterative determination of the system response mean vector and co-14

variance matrix. Further, it is proved that setting the arbitrary element in the M-P solution for the15

equivalent linear matrices equal to zero yields a mean square error at least as low as the error corre-16

sponding to any non-zero value of the arbitrary element. This proof greatly facilitates the practical17

implementation of the technique as it promotes the utilization of the intuitively simplest solution18

among a family of possible solutions. A pertinent numerical example demonstrates the validity of19

the generalized technique.20
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INTRODUCTION23

The dynamic analysis of nonlinear systems subjected to stochastic excitation has received con-24

siderable attention over the last six decades; see Lin (1967), Newland (1993), Grigoriu (2002),25

and Li and Chen (2009) for some indicative books, as well as Naess and Johnsen (1993), Pirrotta26

and Santoro (2011), Kougioumtzoglou and Spanos (2014) and Kougioumtzoglou et al. (2015) for27

some recently developed techniques such as the ones based on path integrals.28

Undoubtedly, a critical role in the study of linear and nonlinear structural dynamic systems29

plays the procedure that is followed for the formulation of the system equations of motion, and30

in particular, the number of coordinates that are utilized. In general, using the minimum number31

of coordinates (generalized coordinates) for formulating the system equations of motion yields32

matrices that are not only non-singular, but also symmetric and positive definite (e.g. Pars 1979,33

Roberts and Spanos 2003). This feature of ”well-behaved” matrices greatly facilitates the analysis34

of such dynamic systems since a number of techniques exist for determining efficiently the system35

response statistics (e.g. Roberts and Spanos 2003).36

Nevertheless, it can be argued that there are cases, especially for large scale multi-body sys-37

tems, where utilizing generalized coordinates for the system modeling is not always the most38

efficient approach. Specifically, the complexity of the equations of motion (and thus, the effort39

for their formulation) may increase rapidly with increasing the number of constituent bodies (e.g.40

Pradhan et al. 1997, Nikravesh et al. 1985, Schiehlen 1984, Schutte and Udwadia 2011, Mariti41

et al. 2011). In fact, in many cases the choice of modeling utilizing the minimum number of42

degrees-of-freedom (DOFs)/coordinates relates to excessive computational cost (e.g. Featherstone43

1987, Bae and Haug 1987, Critchley and Anderson 2003, de Falco et al. 2009). On the other hand,44

employing additional/redundant, not independent, coordinates in the structural system modeling45

yields, typically, equations with singular mass, damping and stiffness matrices (e.g. Laulusa and46

Bauchau 2007, Nikravesh et al. 1985, Udwadia and Wanichanon 2013). Note in passing that uti-47
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lizing redundant coordinates is not the only reason for the appearance of singular matrices in the48

system equations of motion. For instance, singularities may arise in certain applications such as in49

the rotational motion of rigid bodies even if generalized coordinates are employed (Udwadia and50

Wanichanon 2013, Nikravesh et al. 1985, Udwadia and Schutte 2010). Further, besides the case51

where theoretically non-singular, but numerically ill-conditioned matrices may also appear (e.g.52

Kawano et al. 2013), singular matrices are naturally met in the formulation of the equations of mo-53

tion of a certain class of smart structures. In this class of vibrating systems, the system mechanical54

equation of motion is coupled with the electrical equation yielding a differential-algebraic system55

of equations with a singular mass matrix (e.g. Xu and Koko 2004, Kawano et al. 2013, Kamada56

et al. 1997). Note that systems described by a set of differential-algebraic equations belong to57

the wider class of the so-called descriptor systems (e.g. Kalogeropoulos et al. 2014, Gashi and58

Pantelous 2015).59

Although it can be argued that in many cases (in particular when relatively complex systems60

are considered) the latter ”unconventional” modeling can be advantageous from a computational61

efficiency perspective (e.g. Udwadia and Kalaba 2007, Mariti et al. 2011), standard solution62

techniques (e.g. a state-variable formulation in conjunction with a complex modal analysis), that63

inherently assume the existence of non-singular matrices, cannot be applied in a straightforward64

manner. To address this challenge, the authors recently developed a solution framework for deter-65

mining the stochastic response of linear dynamic systems with singular matrices (Fragkoulis et al.66

2016).67

In this paper, the aforementioned solution framework is generalized to account for nonlinear68

systems. Specifically, the popular and versatile statistical linearization approximate methodology69

(e.g. Roberts and Spanos 2003) is generalized herein to account for systems with singular matrices.70

In this regard, relying on the generalized matrix inverse theory and on the Moore-Penrose (M-P)71

matrix inverse, a family of optimal and response dependent equivalent linear matrices is derived.72

This set of equations in conjunction with a recently derived (e.g. Fragkoulis et al. 2016) linear sys-73

tem generalized excitation-response relationship leads to an iterative determination of the system74
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response mean vector and covariance matrix. Further, it is proved that setting the arbitrary element75

in the M-P solution for the equivalent linear matrices equal to zero yields a mean square error at76

least as low as the error corresponding to any non-zero value of the arbitrary element. A pertinent77

numerical example demonstrates the validity of the generalized technique.78

MOORE-PENROSE THEORY ELEMENTS79

In this section, elements of the generalized matrix inverse theory, and in particular of the80

Moore-Penrose (M-P) inverse, are provided for completeness.81

Definition. IfA ∈ Cm×n thenA+ is the unique matrix in Cn×m so that82

AA+A = A , A+AA+ = A+,83

(AA+)∗ = AA+ , (A+A)∗ = A+A. (1)84

The matrix A+ is known as the M-P inverse of A. The M-P inverse of a square matrix exists85

for any arbitrary A ∈ Cn×n, and if A is non-singular, A+ coincides with A−1. Eq. (1) represents86

the so-called M-P equations. Further, the M-P inverse of any m × n matrix A can be determined87

by employing various techniques and methodologies, such as a number of recursive formulae (e.g.,88

Campbell and Meyer 1979, Greville 1960), and provides a tool for solving equations of the form89

Ax = b, (2)90

whereA is a rectangular m×n matrix, x is an n vector and b is an m vector. For a singular square91

matrixA, i.e. detA 6= 0, utilizing the M-P inverse, Eq. (2) yields92

x = A+b+ (I −A+A)y, (3)93

where y is an arbitrary n vector. A more detailed presentation of the topic can be found in Ben-94

Israel and Greville (2003) and Campbell and Meyer (1979).95
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EQUATIONS OF MOTION OF A NONLINEAR MDOF SYSTEM WITH SINGULAR96

MATRICES97

The equations of motion of a general nonlinear n degree-of-freedom (n−DOF) system are98

given by99

Mq̈ +Cq̇ +Kq + Φ(q, q̇, q̈) = Q(t), (4)100

where M ,C and K are the n × n mass, damping and stiffness matrices, respectively. Further, q101

is the n vector containing the n (generalized) displacements of the system and Q is the n vector102

containing the n (generalized) forces, corresponding to q. Finally, Φ(q, q̇, q̈) is a nonlinear n103

vector of the (generalized) coordinates vector q and its derivatives. Considering next an alternative104

formulation of the equations of motion, where more than the minimum number coordinates are105

employed (e.g. Udwadia and Schutte 2010; Fragkoulis et al. 2016), Eq. (4) can take the form106

Mxẍ+Cxẋ+Kxx+ Φx(x, ẋ, ẍ) = Qx(t), (5)107

where x stands for an l−DOF vector of coordinates (l ≥ n), Qx is the l vector of the external108

forces and Mx,Cx and Kx are the l × l mass, damping and stiffness matrices, respectively. The109

augmented nonlinear vector for the l−DOF system is given by Φx(x, ẋ, ẍ). Further, a number of110

constraint equations of the form111

A(x, ẋ, t)ẍ = b(x, ẋ, t), (6)112

may arise that practically enforce the connection relations between the considered subsystems (e.g.113

Udwadia and Phohomsiri 2006). These arising constraints yield in turn a number of additional114

forces, and thus, Eq. (5) becomes115

Mxẍ+Cxẋ+Kxx+ Φx(x, ẋ, ẍ) = Qx(t) +Qc
x(t), (7)116

where Qc
x(t) are the additional aforementioned forces. Also, the presence of constraints yields117
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virtual displacements described by the l vector w, which is any non-zero vector satisfying the118

condition119

Aw = 0, (8)120

and at any instant of time t can be expressed as121

wTQc
x = wTN . (9)122

The l vector N describes the nature of the non-ideal constraints and can be obtained by experi-123

mentation and/or observation. Taking into consideration Eq. (3), the solution to Eq. (8) becomes124

w = (I −A+A)y, (10)125

or, equivalently,126

w = Ãy, (11)127

where128

Ã = I −A+A, (12)129

and y is an arbitrary l vector; therefore, Eq. (9) takes the form130

ÃQc
x = ÃN . (13)131

Next, multiplying Eq. (7) by Ã and considering Eq. (13) yields132

Ã {Mxẍ+Cxẋ+Kxx+ Φx} = Ã(Qx +N ). (14)133

Further, without loss of generality and for facilitating the ensuing analysis, the m vector b in Eq.134

(6) is assumed to be of the form135

b = F −Eẋ−Lx. (15)136
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Considering next Eqs. (6), (14) and (15) yields137

M̄xẍ =

Ã(Qx +N )

F

−
ÃCxẋ
Eẋ

−
ÃKxx

Lx

−
ÃΦx

0

 , (16)138

or, equivalently,139

M̄xẍ =

Ã(Qx +N + S)

b

 . (17)140

In Eq. (17), the (m+ l)× l matrix M̄x and the l vector S are given by141

M̄x =

ÃMx

A

 , (18)142

and143

S = −Φx −Cxẋ−Kxx, (19)144

respectively. Considering the M-P inverse, M̄+
x , of the (m+ l)× l matrix M̄x, the solution to Eq.145

(17) is given by146

ẍ = M̄
+
x

Ã(Qx +N + S)

b

+ (I − M̄+
xM̄x)y. (20)147

Further, according to Lemma 4 in Udwadia and Shutte (2010), the relationship148

M̄
+
x

(Qx +A+z) +N + S

b

 = M̄
+
x

Qx +N + S

b

 , (21)149

where M̄x is the matrix defined in Eq. (18), holds true for any l vector z. Therefore, by setting150

z = −A(Qx +N + S), Eq. (21) yields151

M̄
+
x

Ã(Qx +N + S)

b

 = M̄
+
x

Qx +N + S

b

 . (22)152
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Taking into consideration Eq. (22), Eq. (20) degenerates to the form153

ẍ = M̄
+
x

Qx +N + S

b

+ (I − M̄+
xM̄x)y; (23)154

whereas considering ideal constraints, i.e. N = 0, Eq. (23) becomes155

ẍ = M̄
+
x

Qx + S

b

+ (I − M̄+
xM̄x)y. (24)156

Taking into account Eqs. (19) and (24), the acceleration vector of the system takes the form157

ẍ = M̄
+
x

{
−C̃xẋ− K̃xx− Φ̃x + Q̃x

}
+ (I − M̄+

xM̄x)y, (25)158

where the (m+ l)× l matrices C̃x, K̃x, as well as the (m+ l) vector Q̃x are given by159

C̃x =

Cx
E

 , (26)160

161

K̃x =

Kx

L

 , (27)162

and163

Q̃x =

Qx

F

 , (28)164

respectively. Finally, the (m+ l) nonlinear vector Φ̃x is given by165

Φ̃x =

Φx

0

 . (29)166

It is noted that the simplified expression for the response acceleration, Eq. (25), facilitates signifi-167
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cantly (e.g. Fragkoulis et al. 2016) an efficient state variable formulation of the original equations168

of motion. Overall, the augmented system of equations can be concisely written in the alternative169

form170

M̄xẍ+ C̄xẋ+ K̄xx+ Φ̄x(x, ẋ, ẍ) = Q̄x(t) (30)171

where M̄x, C̄x and K̄x denote the (m + l)× l augmented mass, damping and stiffness matrices,172

Φ̄x(x, ẋ, ẍ) is the (m+ l) nonlinear vector of the system and Q̄x denotes the (m+ l) augmented173

excitation vector. The augmented mass matrix is given by Eq. (18), whereas the augmented damp-174

ing and stiffness matrices are given by175

C̄x =

ÃCx
E

 (31)176

and177

K̄x =

ÃKx

L

 , (32)178

respectively. Finally, the (m + l) vector Q̄x as well as the (m + l) nonlinear vector Φ̄x are given179

by180

Q̄x =

ÃQx

F

 (33)181

and182

Φ̄x =

ÃΦx

0

 . (34)183

A GENERALIZED STATISTICAL LINEARIZATION METHODOLOGY184

Statistical linearization has been one of the most versatile approximate methodologies for de-185

termining the stochastic response of nonlinear systems efficiently (e.g. Roberts and Spanos 2003).186

The main objective of the methodology relates to the replacement of the original nonlinear system187

with an ”equivalent linear” one by appropriately minimizing the error vector corresponding to the188
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difference between the two systems. The rationale behind this procedure is that closed form analyt-189

ical expressions exist for the response statistics of a linear system, and thus, the response statistics190

of the equivalent linear system can be used as an approximation for the response statistics of the191

original nonlinear system. According to the standard implementation of the methodology, the min-192

imization criterion relates typically to the mean square error, whereas the Gaussian assumption for193

the system response probability density functions (PDFs) is commonly adopted (e.g. Roberts and194

Spanos 2003). Note, that although more sophisticated implementations of the statistical lineariza-195

tion that relax the aforementioned assumptions and/or employ various other minimization criteria196

(e.g. Socha 2008) exist, these versions typically lack versatility. In this regard, one of the reasons197

for the wide utilization of the standard statistical linearization methodology has been, undoubt-198

edly, its versatility in addressing a wide range of nonlinear behaviors. In particular, the Gaussian199

response assumption in conjunction with the mean square error minimization criterion facilitates200

the derivation of closed form expressions for the equivalent linear elements (e.g. stiffness, damping201

coefficients, etc) as functions of the response statistics. Further, regarding the stochastic response202

determination of linear systems, the authors have recently generalized certain concepts and solu-203

tion techniques of the standard random vibration theory (e.g. Roberts and Spanos 2003, Li and204

Chen 2009) to account for systems with singular matrices (see Fragkoulis et al. 2016). These205

generalized techniques are utilized in the ensuing analysis for developing a generalized statistical206

linearization methodology.207

Next, the statistical linearization approximate methodology is generalized to account for the208

nonlinear system with singular matrices of Eq. (30). To this aim, following closely Roberts and209

Spanos (2003), an equivalent linear system is sought in the form210

(M̄x + M̄ e)ẍ+ (C̄x + C̄e)ẋ+ (K̄x + K̄e)x = Q̄x(t), (35)211

where M̄ e, C̄e and K̄e denote the equivalent linear (m + l) × l mass, damping and stiffness212

matrices, respectively, to account for the nonlinearity of the original system.213
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The error vector, ε, between the nonlinear and the equivalent linear system is defined as214

ε = Φ̄x(x, ẋ, ẍ)− M̄ eẍ− C̄eẋ− K̄ex. (36)215

Further, the mean square error is chosen to be minimized (e.g. Roberts and Spanos 2003), i.e.,216

E[εTε] = minimum, (37)217

for determining the equivalent linear matrices. This yields the equations218

∂

∂mij

E[εTε] = 0, (38)219

∂

∂cij
E[εTε] = 0 (39)220

and221

∂

∂kij
E[εTε] = 0, (40)222

where me
ij, c

e
ij and keij are the (i, j) elements of the matrices M̄ e, C̄e and K̄e, respectively. Fur-223

thermore, combining Eqs. (36) with (37), the minimization criterion can be equivalently written224

as225
m+l∑
i=1

D2
i = minimum, (41)226

where227

D2
i = E


[
Φ̄i,x −

l∑
j=1

(me
ijẍj + ceijẋj + keijxj)

]2
 , i = 1, 2, . . . , (m+ l) (42)228

and229

Φ̄x =
[
Φ̄i,x(x, ẋ, ẍ)

]T
, i = 1, 2, . . . , (m+ l). (43)230

Clearly, due to the form of the expression in Eq. (41), the minimization criterion can be equiva-231
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lently written as232

D2
i = minimum, i = 1, 2, . . . , (m+ l). (44)233

Next, minimizing Eq. (44) yields the equations234

E
[
Φ̄i,xx̂] = E[x̂x̂T

]

keT
i∗

ceTi∗

meT
i∗

 , i = 1, 2, . . . , (m+ l). (45)235

The 3l vector x̂ is defined as x̂ = (x, ẋ, ẍ)T and meT
i∗ , c

eT
i∗ and keT

i∗ correspond to the ith row of236

M̄ e, C̄e and K̄e, respectively. Further, adopting the standard Gaussian response assumption, the237

term on the left hand side of Eq. (45) is given by (Roberts and Spanos 2003)238

E[Φ̄i,xx̂] = E[x̂x̂T ]E[∇Φ̄x(x̂)]. (46)239

Combining next Eqs. (45) with (46) yields240

E[x̂x̂T ]


keT
i∗

ceTi∗

meT
i∗

 = E[x̂x̂T ]E


∂Φ̄i,x

∂x
∂Φ̄i,x

∂ẋ
∂Φ̄i,x

∂ẍ

 , i = 1, 2, . . . , (m+ l). (47)241

Clearly, the determination of the equivalent linear elements in Eq. (47) requires the inversion of242

E[x̂x̂T ]. Thus, the question arises whether this 3l× 3l matrix E[x̂x̂T ], which appears in both sides243

of Eq. (47), is singular or not. As proved in Spanos and Iwan (1978), a necessary and sufficient244

condition for E[x̂x̂T ] to be singular is that at least one of the components of the 3l vector x̂, can245

be expressed as a linear combination of the remaining components. In this regard, note that in246

the formulation herein it is assumed a priori that the elements of the coordinates vector x are not247

independent with each other as more than the minimum coordinates are utilized in forming the248

equations of motion. Thus, it is anticipated that some of the elements of x̂ are linearly dependent.249
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Therefore, the matrix E[x̂x̂T ] in Eq. (47) is singular and its M-P inverse, denoted as E[x̂x̂T ]+,250

is employed next for determining an expression for the elements me
ij, c

e
ij and keij of the equivalent251

linear augmented matrices. Considering Eq. (3), Eq. (47) is written in the form252


keT
i∗

ceTi∗

meT
i∗

 = E[x̂x̂T ]+E[x̂x̂T ]E


∂Φ̄i,x

∂x
∂Φ̄i,x

∂ẋ
∂Φ̄i,x

∂ẍ

+ g(y), i = 1, 2, . . . , (m+ l), (48)253

where the 3l vector254

g(y) = (I − E[x̂x̂T ]+E[x̂x̂T ])y, (49)255

is the arbitrary part of the M-P inverse based general solution of Eq. (47). At this point, it is256

deemed important to note that when the minimum number of coordinates, n, is utilized, E[x̂x̂T ] is257

a non-singular matrix yielding258

E[x̂x̂T ]+ = E[x̂x̂T ]−1. (50)259

In that case, x̂ = (q, q̇, q̈)T and, therefore, combining Eqs. (49) with (50), Eq. (48) takes the260

well-established form261 
keT
i∗

ceTi∗

meT
i∗

 = E


∂Φi,q

∂q
∂Φi,q

∂q̇
∂Φi,q

∂q̈

 , i = 1, 2, . . . , n. (51)262

Specifically, Eq. (51) represents the celebrated expressions for determining the elements of the263

equivalent linear mass, damping and stiffness matrices in the standard formulation of the statistical264

linearization methodology (e.g. Roberts and Spanos 2003). Nevertheless, when formulating the265

system equations of motion by employing additional DOFs, E[x̂x̂T ] is singular and the generalized266

version of Eq. (51) (i.e. Eq. (48)) needs to be considered. Regarding Eq. (48), it can be readily267

seen that a critical step for the practical implementation of the generalized statistical linearization268

methodology is the choice of the arbitrary element y. It is proved in the following Proposition269
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that the solution obtained by setting the arbitrary element y equal to zero is not only intuitively the270

simplest but it is also at least as good (in the sense of minimizing the mean square error, where271

the error ε is defined in Eq. (36)) as any other solution obtained by selecting an arbitrary non-zero272

value for y. Specifically, setting y = 0, Eq. (48) becomes273


keT
i∗

ceTi∗

meT
i∗

 = E[x̂x̂T ]+E[x̂x̂T ]E


∂Φ̄i,x

∂x
∂Φ̄i,x

∂ẋ
∂Φ̄i,x

∂ẍ

 , i = 1, 2, . . . , (m+ l). (52)274

Assume next that (me
ij, c

e
ij, k

e
ij) is the set of parameters arising from solving Eq. (52) and275

corresponding to the equivalent matrices M̄ e, C̄e and K̄e. Also, selecting an arbitrary vector276

y = y0 6= 0 in Eq. (49), a different set of parameters, (m
′e
ij, c

′e
ij, k

′e
ij), corresponding to matrices277

M̄
′

e, C̄
′

e, K̄
′

e, is obtained via Eq. (48); see also Spanos and Iwan (1978).278

Proposition. Let D2
i (m

e
ij, c

e
ij, k

e
ij) and D2

i (m
′e
ij, c

′e
ij, k

′e
ij) denote the errors as defined in Eq. (42)279

corresponding to the parameters values me
ij, c

e
ij, k

e
ij and m

′e
ij, c

′e
ij, k

′e
ij , respectively. Then,280

D2
i (m

e
ij, c

e
ij, k

e
ij) ≤ D2

i (m
′e
ij, c

′e
ij, k

′e
ij), (53)281

for i = 1, 2, . . . , (m+ l) and j = 1, 2, . . . , l .282

Proof. From Eq. (42) it is seen that the quantity D2
i (m

e
ij, c

e
ij, k

e
ij) is a quadratic polynomial with283

respect to the parameters me
ij, c

e
ij and keij . Therefore, its mixed partial derivatives concerning284

me
ij, c

e
ij, k

e
ij of order higher that two vanish. Taking into account Eq. (48), the two sets of pa-285

rameters are connected via the expressions286

m
′e
ij = me

ij + gm,i(y0), (54)287

c
′e
ij = ceij + gc,i(y0), (55)288

k
′e
ij = keij + gk,i(y0), (56)289
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where the terms gm,i(y0), gc,i(y0), gk,i(y0), i = 1, 2, . . . ,m + l, represent the arbitrary elements as290

defined in Eq. (49). Next, considering a Taylor’s expansion around (me
ij, c

e
ij, k

e
ij), yields291

D2
i (m

′e
ij, c

′e
ij, k

′e
ij) = D2

i (m
e
ij, c

e
ij, k

e
ij) +

l∑
j=1

(
∂D2

i

∂me
ij

gm,i(y0) +
∂D2

i

∂ceij
gc,i(y0) +

∂D2
i

∂keij
gk,i(y0))292

+
1

2
E


[

l∑
j=1

(gm,i(y0)ẍj + gc,i(y0)ẋj + gk,i(y0)xj)

]2
 , (57)293

for i = 1, 2, . . . ,m+ l, where the terms gm,i(y0), gc,i(y0) and gk,i(y0) denote the distance between294

the two sets of parameters.295

Also, taking into account Eqs. (38)-(40), the necessary conditions for minimizing Eq. (44) are296

∂D2
i

∂me
ij

= 0, (58)297

∂D2
i

∂ceij
= 0 (59)298

and299

∂D2
i

∂keij
= 0. (60)300

Utilizing then Eqs. (58)-(60), the first sum on the right hand side of Eq. (57) is zero and Eq. (57)301

takes the form302

D2
i (m

′e
ij, c

′e
ij, k

′e
ij) = D2

i (m
e
ij, c

e
ij, k

e
ij) +

1

2
E
{
J2
i

}
, i = 1, 2, . . . ,m+ l, (61)303

where304

Ji =
l∑

j=1

(gm,i(y0)ẍj + gc,i(y0)ẋj + gk,i(y0)xj). (62)305

Finally, taking into account that E {J2
i } ≥ 0, for all i = 1, 2, . . . ,m + l, Eq. (61) proves the306

argument stated in Eq. (53).307

Clearly, based on Eq. (53), utilizing Eq. (52) yields equivalent linear elements corresponding308
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to an error that is at least as small (in a mean square sense) as any other obtained by utilizing a309

non-zero y vector in Eq. (48).310

At this point, it is noted that comparing the standard Eq. (51) with its generalized counter-311

part Eq. (52) the equivalent linear matrices in Eq. (52) have typically a more complex structure312

than their counterparts in Eq. (51). Specifically, due to the fact that in Eq. (52) the product313

E[x̂x̂T ]+E[x̂x̂T ] does not yield a unitary matrix, the equivalent linear matrices are anticipated to314

have many more non-zero components than in the case of utilizing Eq. (51). This observation is315

further highlighted in the numerical example section. Additionally, the determination of the equiv-316

alent linear matrices in Eq. (52) requires the knowledge of the response covariance matrix E[x̂x̂T ].317

Obviously, an additional system of equations is needed that relates the two sets of unknowns, i.e.318

the response covariance matrix and the equivalent linear elements. In this regard, focusing on the319

linearized system of Eq. (35), generalized excitation-response relationships recently derived by320

the authors can be employed. Specifically, the standard state-variable formulation and the complex321

modal analysis were generalized for treating systems with singular matrices and for determining322

the augmented system response covariance matrix (see Fragkoulis et al. 2016). In the following323

subsections, the basic elements of these approaches are included for completeness.324

State variable formulation and analysis325

Considering the M-P inverse of the M̄x + M̄e matrix, the augmented equivalent linear system326

of Eq. (35) can be cast in the form327

ṗ = Gxp+ fx, (63)328

where p =

[
x ẋ

]T
; and the 2l × 2l matrixGx and the 2l vector fx, are given by329

Gx =

 0 I

−(M̄x + M̄ e)
+(K̄x + K̄e) −(M̄x + M̄ e)

+(C̄x + C̄e)

 (64)330

16



and331

fx =

 0

(M̄x + M̄ e)
+Q̄x

 , (65)332

respectively. Further, for zero initial conditions, i.e. p(0) = 0, the solution of Eq. (63) is given by333

p(t) =

∫ t

0

exp(Gxτ)fx(t− τ)dτ, (66)334

where the 2l × 2l transition matrix exp(Gxt) has the block matrix form335

exp(Gxt) =

ax(t) bx(t)

cx(t) dx(t)

 . (67)336

Combining next Eqs. (66)-(67), the response displacement vector x is given by337

x(t) =

∫ t

0

hx(τ)Q̄x(t− τ)dτ, (68)338

where339

hx(t) = bx(t)(M̄x + M̄ e)
+ (69)340

can be construed as the uniquely defined ”generalized” impulse response matrix.341

Note that in deriving Eq. (68) arguments for neglecting the arbitrary term associated with the342

M-P inverse of the M̄x + M̄ e matrix have been employed. These relate to uniquely defining a343

response acceleration vector (see also Eq. (25)) as suggested by experimental observations; see344

Udwadia and Phohomsiri (2006) and Fragkoulis et al. (2016) for a detailed discussion.345

Next, manipulating Eq. (63) and taking expectations yields the equation for the system re-346

sponse covariance matrix in the form347

V̇x = GxVx + VxG
T
x + Sx, (70)348
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where349

Sx =

∫ t

0

exp(Gx(t− τ))
[
wηx(t, τ) +wT

ηx(t, τ)
]
dτ ; (71)350

and wηx denotes the covariance matrix of the vector351

ηx = fx(t)− E[fx(t)]. (72)352

Further, for the case where the elements of ηx are regarded to be stationary white noises, Eq. (70)353

degenerates to354

V̇x = GxVx + VxG
T
x +Dx, (73)355

where Dx is a real, symmetric, non-negative matrix of constants. Focusing next on the system356

stationary response, i.e. V̇x = 0, Eq. (73) becomes a Lyapunov equation of the form357

GxVx + VxG
T
x +Dx = 0 (74)358

that, notably, does not have a unique solution due to the form of the augmented matrix Gx as359

highlighted in Fragkoulis et al. (2016). Nevertheless, recasting the Lyapunov equation in a form360

that utilizes the Kronecker product, it has been shown that a solution for the response covariance361

matrix can be provided.362

Complex modal analysis363

Focusing next on a complex modal analysis treatment, due to the form of matrixGx, its eigen-364

vectors that correspond to its zero eigenvalues are linearly dependent. Thus, a standard eigende-365

composition analysis cannot be performed as is the case for modeling using generalized coordi-366

nates. In this regard, the singular value decomposition (SVD) method can be applied for matrix367

Gx yielding368

Gx = UηxΨ
∗, (75)369
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where the diagonal 2l × 2l matrix ηx is given by370

ηx = diag(σ1, σ2, . . . , σr, 0, 0, . . . , 0). (76)371

In Eq. (76), σj =
√
λj, j = 1, 2, . . . , 2l denote the singular values ofGx, whereas the 2l×2l matri-372

cesU =

[
u1,u2, . . . ,u2l

]
and Ψ =

[
ψ1,ψ2, . . . ,ψ2l

]
are unitary. Further, ψj is the eigenvector373

corresponding to the singular value σj (j = 1, 2, . . . , 2l) whereas uj is equal to uj =
Gxψj

σj
.374

Utilizing next the SVD of Eq. (75), Eq. (63) can be alternatively written as375

żx = Ψ∗Uηxzx + gx, (77)376

where377

gx = Ψ∗fx (78)378

and379

p = Ψzx. (79)380

Thus, Eq. (66) becomes381

zx(t) =

∫ t

0

Hx(s)gx(t− s)ds, (80)382

where383

Hx(t) = exp(Ψ∗Uηxt). (81)384

As pointed out in Fragkoulis et al. (2016), a complex modal analysis does not result in uncou-385

pling the coupled system of Eq. (77). Specifically, the product Ψ∗U does not yield a unitary matrix386

as in the case of utilizing the minimum number of coordinates, and thus, Hx(t) is not diagonal.387

Nevertheless, relying on a SVD of matrix Gx facilitates significantly the numerical computation388

of the system response statistics. In particular, considering Eq. (80) and manipulating yields the389
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covariance matrix wzx of the response vector zx in the form390

wzx(τ) =

∫ ∞
0

∫ ∞
0

Hx(s1)wgx(τ + s1 − s2)H∗x(s2) ds1ds2. (82)391

Of course, the relationship p = Ψzx can be used for determining the covariance matrix of the392

response vector p in the form393

wp(τ) = Ψwzx(τ)Ψ∗. (83)394

Mechanization of the generalized statistical linearization methodology395

Clearly, based on a modeling utilizing more than the minimum number degrees-of-freedom396

Eqs. (52) and (70) (or alternatively Eqs. (52) and (82)-(83) if a complex modal analysis is em-397

ployed) constitute a coupled nonlinear system of equations to be solved for determining the system398

response covariance matrix and the equivalent linear elements. This can be solved by utilizing any399

appropriate standard numerical optimization scheme (e.g. Nocedal and Wright 2006), or even the400

following simple iterative procedure. Specifically,401

(i) Assume zero initial (starting) values for the equivalent linear matrices M̄ e, C̄e, and K̄e.402

403

(ii) Determine the system response covariance matrix via Eq. (70) (or alternatively via Eqs.404

(82)-(83)).405

406

(iii) Utilize the system response covariance matrix values calculated in (ii) to determine the407

equivalent linear elements via Eq. (52).408

409

(iv) Repeat steps (ii) and (iii) until convergence.410
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NUMERICAL EXAMPLE411

As a numerical example the system of two rigid masses m1 and m2 shown in Figure 1 is412

considered. It is assumed that the mass m1 is connected to the ground by a nonlinear spring413

of the linear-plus-cubic type and by a linear damper with coefficient c1. Further, a mass m2 is414

connected to m1 by a linear spring and a linear damper with coefficients k2 and c2, respectively.415

The applied random force Q2(t) is modeled as a white-noise process with a correlation function416

wQ2(t) = 2πS0δ(t), where S0 is the (constant) power spectrum value of Q2(t). Finally, q1, q2 are417

the generalized displacements, as shown in Figure 1. Further, utilizing generalized coordinates the418

equations of motion governing the system in Figure 1 can be written in the matrix form of Eq. (4),419

where the matricesM ,C andK are given by (see also Roberts and Spanos 2003)420

M =

m1 0

0 m2

 , C =

(c1 + c2) −c2

−c2 c2

 , K =

(k1 + k2) −k2

−k2 k2

 ; (84)421

the coordinate vector q and the excitation vectorQ(t) are given by422

q =

q1

q2

 (85)423

and424

Q =

 0

Q2(t)

 , (86)425

respectively. Finally, the nonlinear function Φ takes the form426

Φ(q, q̇, q̈) =

ε1k1q
3
1

0

 . (87)427
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Next, taking into account Eqs. (51) and (87) yields the equivalent linear stiffness matrix428

Ke =

3ε1k1σ
2
q1

0

0 0

 . (88)429

Focusing next on the stationary system response, i.e. V̇ = 0, a standard statistical lineariza-430

tion procedure in conjunction with a complex modal analysis treatment (e.g. Roberts and Spanos431

2003) for the values m1 = m2 = m = 1, c1 = c2 = c = 0.1, k1 = k2 = k = 1 and432

S0 = 10−3, is applied. Regarding the numerical implementation, convergence based on the crite-433

rion
∣∣∣∣Kj+1

e −Kj
e

Kj
e

∣∣∣∣ > 10−5, where the j index denotes the j − th iteration, is satisfied after eight434

iterations. The initial value K0
e has been set equal to zero. Further, by applying a complex modal435

analysis treatment, the eigenvalues of the system after the last iteration are436

λ1 = −0.1308− 1.6389i , λ2 = −0.1308 + 1.6389i,437

λ3 = −0.0192− 0.6422i , λ4 = −0.0192 + 0.6422i, (89)438

whereas the corresponding eigenvectors are439

vT1 =

[
−0.0357− 0.4466i 0.0188 + 0.2626i 0.7366 −0.4328− 0.0036i

]
,440

vT2 =

[
−0.0357 + 0.4466i 0.0188− 0.2626i 0.7366 −0.4328 + 0.0036i

]
,441

vT3 =

[
−0.4260− 0.0014i −0.7255 0.0090− 0.2736i 0.0139− 0.4659i

]
,442

vT4 =

[
−0.4260 + 0.0014i −0.7255 0.0090 + 0.2736i 0.0139 + 0.4659i

]
. (90)443
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Finally, the obtained covariance matrix of the system response is given by444

V =



0.0386 0.0639 0 −0.0010

0.0639 0.1102 0.0010 0

0 0.0010 0.0178 0.0252

−0.0010 0 0.0252 0.0462


. (91)445

Consider next the system of two masses m1 and m2 of the above example modeled as a multi-446

body one, and consisting of two separate subsystems as shown in Figure 2; see also Fragkoulis447

et al. (2016). In this regard, the two subsystems are related based on the constraint x2 = x1 + d448

(where d is the length of mass m1). The ”unconstrained” equations of motion are derived by449

treating the three coordinates (x̄1, x2 and x̄3) as independent with each other. Next, the equation of450

motion of the composite system is derived by including the constraint451

x2 = x1 + d (92)452

or, equivalently,453

x2 = x̄1 + l1,0 + d, (93)454

where l1,0 is the unstretched length of the spring k1. Further, based on a Lagrangian formulation of455

the equations of motion, Eq. (5) becomes (Fragkoulis et al. 2016)456

Mx =


m1 0 0

0 m2 m2

0 m2 m2

 , Cx =


c1 0 0

0 0 0

0 0 c2

 , Kx =


k1 0 0

0 0 0

0 0 k2

 (94)457

and458

Φx(x, ẋ, ẍ) =


ε1k1x̄

3
1

0

0

 , Qx =


0

Q3

Q3

 , x =


x̄1

x2

x̄3

 , (95)459
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where the variables x̄1 and x̄3 are defined as460

x̄1 = x1 − l1,0 and x̄3 = x3 − l2,0. (96)461

In Eq. (96), l2,0 is the unstretched length of the spring k2. Further, differentiating the constraint of462

Eq. (93), the two sub-systems are subject to, yields463

[
1 −1 0

]
¨̄x1

ẍ2

¨̄x3

 = 0. (97)464

Thus, the matrixA and the vector b of Eq. (6) take the form465

A =

[
1 −1 0

]
and b = 0. (98)466

Furthermore, utilizing Eqs. (30), (94), (95) and (98), the new augmented equation of motion can467

be determined. The matrices M̄x, C̄x, K̄x, as well as the vectors Q̄x and Φ̄x are given by468

M̄x =



0.5 0.5 0.5

0.5 0.5 0.5

0 1 1

1 −1 0


, C̄x =



0.05 0 0

0.05 0 0

0 0 0.1

0 0 0


, K̄x =



0.5 0 0

0.5 0 0

0 0 1

0 0 0


(99)469

and470

Q̄x =



0.5w(t)

0.5w(t)

w(t)

0


, Φ̄x =



0.5ε1k1x̄
3
1

0.5ε1k1x̄
3
1

0

0


. (100)471
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Applying next Eq. (52) for determining the equivalent linear stiffness matrix K̄e yields472

keT
1∗ =


r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3




3
2
ε1k1σ

2
x̄1

0

0

 , keT
2∗ =


r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3




3
2
ε1k1σ

2
x̄1

0

0

473

keT
3∗ =


r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

E


0

0

0

 = 0 , keT
4∗ =


r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

E


0

0

0

 = 0, (101)474

where ri,j, i, j = 1, 2, . . . , 9 denotes the element of the matrix r = E[x̂x̂T ]+E[x̂x̂T ] in position475

(i, j). Hence, considering Eq. (101) the equivalent linear matrix K̄e can be concisely written as476

K̄e =
3

2
ε1k1σ

2
x̄1



r1,1 r2,1 r3,1

r1,1 r2,1 r3,1

0 0 0

0 0 0


. (102)477

At this point, comparing Eqs. (88) and (102) it is noted that although the general form of the478

equivalent linear stiffness matrices is similar, the equivalent linear matrix of Eq. (102) has more479

non-zero elements. Clearly, this is due to the presence of matrix r which, unlike the generalized480

coordinates modeling case, is not unitary. Next, employing Eq. (64), the matrixGx takes the form481

Gx =

 0 I

−M̄+
x (K̄x + K̄e) −M̄

+
x C̄x

 , (103)482
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where the M-P inverse of M̄x is found by Eq. (18) to be equal to483

M̄+
x =


1 1 −1 0

1 1 −1 −1

−1 −1 2 1

 . (104)484

Further, as in the case of the covariance matrix obtained in Eq. (91) for the 2−DOF system,485

a complex modal analysis treatment is utilized for deriving the covariance matrix of the system486

response. Also, to be consistent with the previously obtained result, the convergence criterion and487

error are the same as those utilized for deriving Eq. (91). In this regard, convergence is reached488

after eight iterations. Employing Eqs. (75)-(81), the eigenvalues of the matrix Ψ∗Uηx, where489

Ψ,U ,ηx are defined in Eq. (75), after the last iteration are490

λ1 = −0.1308− 1.6389i , λ2 = −0.1308 + 1.6389i , λ3 = −0.0192− 0.6422i,491

λ4 = −0.0192 + 0.6422i , λ5 = 0 , λ6 = 0, (105)492
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whereas the corresponding eigenvectors are493

vT1 =



−0.0145− 0.4629i

−0.0432− 0.0020i

0.4009 + 0.0278i

0.7540

0.0051− 0.0227i

−0.0343 + 0.2281i


,vT2 =



−0.0145 + 0.4629i

−0.0432 + 0.0020i

0.4009− 0.0278i

0.7540

0.0051 + 0.0227i

−0.0343− 0.2281i


,vT3 =



−0.0308 + 0.0028i

0.0006− 0.4181i

−0.0177− 0.3418i

−0.0060− 0.0025i

0.6740

0.5027− 0.0111i


,494

vT4 =



−0.0308− 0.0028i

0.0006 + 0.4181i

−0.0177 + 0.3418i

−0.0060 + 0.0025i

0.6740

0.5027 + 0.0111i


,vT5 =



0

0

0

0

0

1


,vT6 =



0

0

0

0

0

1


. (106)495

After determining the eigenvalues and eigenvectors of the matrix Ψ∗Uηx, Eq. (82) evaluated496

at τ = 0 takes the form497

wzx(0) = −
4∑

i=1

4∑
j=1

pi(Ψ
∗DxΨ)p∗j
λi + λ̄j

, (107)498

where λi, i = 1, 2, 3, 4 are given by Eq. (105) andDx is a real, symmetric, non-negative matrix of499

constants given by500

Dx =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 2π10−3


. (108)501
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In Eq. (107), the expressions pi, i = 1, 2, 3, 4 denote 6× 6 matrices defined in terms of the matrix502

Ψ∗Uηx, as well as the eigenvalues calculated in Eq. (105). For example, p1 is defined as (see503

Fragkoulis et al. 2016 for more details)504

p1 =
(Ψ∗Uηx − λ2I)(Ψ∗Uηx − λ3I)(Ψ∗Uηx − λ4I)(Ψ∗Uηx)2

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4)λ2
1

. (109)505

Finally, employing Eq. (83), the covariance matrix of the system response is given by506

wp(0) =



0.0386 0.0386 0.0253 0 0 −0.0010

0.0386 0.0386 0.0253 0 0 −0.0010

0.0253 0.0253 0.0210 0.0010 0.0010 0

0 0 0.0010 0.0178 0.0178 0.0074

0 0 0.0010 0.0178 0.0178 0.0074

−0.0010 −0.0010 0 0.0074 0.0074 0.0136


. (110)507

Indicatively, comparing Eqs. (91) and (110), the variance E[q2
1] as well as E[q̇2

1] obtained in the508

first example, coincide with the respective ones in the second one, i.e E[x̄2
1] and E[ ˙̄x2

1]. Further,509

taking expectations in the equation that connects the two reference systems, that is x̄3 = q2 − q1,510

and utilizing Eq. (91) yields511

E[x̄2
3] = E[q2

2] + E[q2
1]− 2E[q1q2] = 0.0210 (111)512

and513

E[ ˙̄x2
3] = E[q̇2

2] + E[q̇2
1]− 2E[q̇1q̇2] = 0.0136, (112)514

which are indeed in agreement with the corresponding values in Eq. (110). It can be readily515

verified that the rest of the elements of the matrix given in Eq. (110) are also in agreement with the516

respective ones of Eq. (91). It is noted that, alternatively, the response covariance matrix Vx can517
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be obtained by utilizing a state variable formulation in conjunction with the Lyapunov equation of518

Eq. (74); see Fragkoulis et al. (2016) for more details.519

CONCLUSION520

In this paper the standard and popular statistical linearization methodology for determining ap-521

proximately the stochastic response of nonlinear dynamic systems (Roberts and Spanos 2003) has522

been generalized to account for systems with singular matrices. This kind of modeling can appear523

for various reasons, among which is the utilization of additional/redundant coordinates. This can524

be advantageous for cases of complex multi-body systems, for instance, where formulating the525

equations of motion in terms of the independent/generalized coordinates can be a non-trivial task.526

Specifically, relying on the generalized matrix inverse theory and on the M-P inverse of a singu-527

lar matrix, a family of optimal and response dependent equivalent linear matrices has been derived.528

Next, this set of equations has been combined with a recently developed by the authors generalized529

linear system input-output (excitation-response) relationship to yield a coupled system of nonlin-530

ear algebraic equations. This can be readily solved via an iterative procedure for determining the531

system response mean vector and covariance matrix. A significant additional contribution of the532

paper relates to the proof that the solution obtained by setting the arbitrary element in the M-P533

expression for the equivalent linear matrices equal to zero is at least as good (in a mean square534

error minimization sense) as any other solution corresponding to a non-zero value for the arbitrary535

element. This proof greatly facilitates the practical implementation of the technique as it promotes536

the utilization of the intuitively simplest solution among a family of possible solutions. Finally, a537

2−DOF nonlinear system modeled by utilizing redundant coordinates is employed in the numer-538

ical examples section to demonstrate the validity of the herein developed generalized statistical539

linearization methodology.540
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FIG. 1. A two degree-of-freedom nonlinear structural system under stochastic ex-
citation.

34



 

FIG. 2. Modeling of the system shown in Figure 1 using more than two coordinates.
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