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Abstract

The heterotic–string models in the free fermionic formulation gave rise to
some of the most realistic string models to date, which possess N = 1 spacetime
supersymmetry. Lack of evidence for supersymmetry at the LHC instigated re-
cent interest in non–supersymmetric heterotic–string vacua. We explore what
may be learned in this context from the quasi–realistic free fermionic models.
We show that constructions with a low number of families give rise to prolifera-
tion of a priori tachyon producing sectors, compared to the non–realistic exam-
ples, which typically may contain only one such sector. The reason being that in
the realistic cases the internal six dimensional space is fragmented into smaller
units. We present one example of a quasi–realistic, non–supersymmetric, non–
tachyonic, heterotic–string vacuum and compare the structure of its massless
spectrum to the corresponding supersymmetric vacuum. While in some sec-
tors supersymmetry is broken explicitly, i.e. the bosonic and fermionic sectors
produce massless and massive states, other sectors, and in particular those
leading to the chiral families, continue to exhibit fermi–bose degeneracy. In
these sectors the massless spectrum, as compared to the supersymmetric cases,
will only differ in some local or global U(1) charges. We discuss the conditions
for obtaining nb = nf at the massless level in these models. Our example
model contains an anomalous U(1) symmetry, which generates a tadpole dia-
gram at one loop–order in string perturbation theory. We speculate that this
tadpole diagram may cancel the corresponding diagram generated by the one–
loop non–vanishing vacuum energy and that in this respect the supersymmetric
and non–supersymmetric vacua should be regarded on equal footing. Finally
we discuss vacua that contain two supersymmetry generating sectors.
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1 Introduction

The discovery of the agent of electroweak symmetry breaking at the LHC [1] is a
pivotal moment in particle physics. While confirmation of this agent as the Standard
Model electroweak doublet representation will require experimental scrutiny in the
decades to come, the data to date seems to vindicate this possibility. Substantiation of
this interpretation of the data will reinforce the view that the electroweak symmetry
breaking mechanism is intrinsically perturbative, and that the SM provides a viable
perturbative parameterisation up to the Planck scale. Moreover, the large scale
unification scenario is further motivated by the embedding of the SM matter states in
the chiral SO(10) representation; by the logarithmic evolution of the SM parameters;
by proton longevity; and by the suppression of left–handed neutrino masses. Gaining
further insight into the fundamental origins of the SM parameters can then only be
obtained by incorporating gravity into the picture.

String theory provides the most developed contemporary approach to study how
the Standard Model parameters may arise from a unified theory of the gauge and
gravitational interactions. For this purpose several models that reproduce the spec-
trum of the Minimal Supersymmetric Standard Model have been produced [2, 3].
Amongst them the free fermionic models [2, 4, 5, 6, 7, 8, 9, 10, 11, 12] are the most
studied examples. The heterotic string in particular provides a compelling framework
to study the gauge – gravity synthesis in the large scale unification scenario, as it
reproduces the embedding of the SM chiral spectrum in spinorial SO(10) represen-
tations.

The majority of semi–realistic heterotic string models constructed to date possess
N = 1 spacetime supersymmetry, while non–supersymmetric vacua were investigated
sporadically [13, 14, 15, 16]. In the absence of evidence of supersymmetry at the LHC
recent interest in non–supersymmetric heterotic string vacua has emerged [17, 18, 19,
20, 21]. It is therefore prudent to examine what may be learned in that context from
the quasi–realistic free fermionic models. In this paper this question is considered.
We discuss the different avenues that may be used to break supersymmetry directly
at the string scale and how they compare with the recent analysis [18].

Our paper is organised as follows: in section 2, we review the structure of the
phenomenological free fermionic heterotic string models. In section 3, we discuss the
phases that break supersymmetry in the string models and the different patterns
that they induce. Further discussion on the existence of sectors producing tachyons
in these models and the relation of the abundance of these sectors with the number of
families is given. Moreover, in section 4 a non–supersymmetric tachyon free model is
presented and its relation to the supersymmetric counterpart is inferred. In section
5 we discuss the construction of string vacua with split supersymmetry, in which
supersymmetry is produced by two sectors. Section 6 contains our conclusions.
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2 Phenomenological free fermionic models

In this section, we review the structure of the phenomenological free fermionic
models. It should be stressed that these free fermionic models correspond to Z2×Z2

toroidal orbifolds and their phenomenological characteristics are deeply rooted in the
structure of the Z2×Z2 orbifolds. In this respect, the free fermionic formalism merely
provides an accessible set of tools to extract the spectra of the string vacua and their
properties. Furthermore, the free fermionic machinery extends to the massive string
spectrum via the analysis of the relevant partition function. This provides important
insight into the symmetries that underly the string landscape and eventually may
prove instrumental in understanding how the string vacuum is selected. However, one
should not tie the cart before the horse. The fermionic and bosonic representations
only provide complementary tools that are formally identical in two dimensions.
The physically relevant properties of these free fermionic models are due to their
underlying Z2 × Z2 orbifold structure.

In the free fermionic formulation of the heterotic string in four dimensions, all the
extra degrees of freedom needed to cancel the conformal anomaly are represented as
free fermions propagating on the string worldsheet. It is important to note that the
two dimensional fermions are free only at a special point in the moduli space [22].
However, the models can be deformed away from that point by incorporating the
moduli as worldsheet Thirring interactions [23]. Since the twisted matter spectrum
of the Z2 × Z2 orbifolds, which gives rise to the Standard Model matter states, is
independent of the moduli, working at the free fermionic point is just a convenient
choice. In the light–cone gauge the supersymmetric left–moving sector includes the
two transverse spacetime fermionic coordinates ψµ and 18 internal worldsheet real
fermions χI , whereas the right–moving bosonic sector contains 44 real worldsheet
fermions φa. The worldsheet supersymmetry is realised non–linearly in the left–
moving sector and the worldsheet supercurrent is given by

TF = ψµ∂Xµ + fIJKχ
IχJχK , (2.1)

where fIJK are the structure constants of the 18 dimensional semi–simple Lie group.
The 18 left–moving worldsheet fermions χI transform in the adjoint representation
of the Lie group, which in the case of the fermionic Z2 × Z2 orbifolds with N = 1
SUSY is SU(2)6. Such models provide our starting point and we will discuss in later
sections how supersymmetry is broken. The χI therefore transform in the adjoint
representation of SU(2)6, and are denoted by χI , yI , ωI with I = 1, · · · , 6. Under
parallel transport around a non–contractible loop of the one–loop vacuum to vacuum
amplitude the worldsheet fermions pick up a phase

f → − eiπα(f)f , (2.2)

with α(f) ∈ (−1,+1]. The phases for all worldsheet fermions constitute the spin
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structure of the models and are given in the form of 64 dimensional boundary condi-
tion basis vectors. The partition function

Z(τ) =
∑

α,β∈Ξ

c

(
α

β

)

Tr

(
α

β

)

, (2.3)

is a sum over all spin structures, where c
(
α

β

)
are Generalised GSO (GGSO) projec-

tion coefficients and Tr
(
α

β

)
≡ Tr(eiπβFαeiπτHα) with Hα being the hamiltonian, is the

trace over the mode excitations of the worldsheet fields in the sector α, subject to
the GSO projections induced by the sector β. Requiring invariance under modular
transformations results in a set of constraints on the allowed spin structures and the
GGSO projection coefficients. The Hilbert space of a given sector α in the finite
Abelian additive group α ∈ Ξ =

∑

knibi, where ni = 0, · · · , gzi − 1, is obtained by
acting on the vacuum of the sector α with bosonic, as well as fermionic oscillators
with frequencies νf , νf∗ , and subsequently imposing the GGSO projections

{

eiπ(biFα) − δαc
∗

(
α
bi

)}

|s〉α = 0 (2.4)

with
(biFα) ≡ {

∑

real+complex

left

−
∑

real+complex

right

}(bi(f)Fα(f)), (2.5)

where δα is the spacetime spin statistics index and Fα(f) is a fermion number opera-
tor, counting each mode of f once (and if f is complex, f ∗ minus once). For Ramond
fermions with α(f) = 1 the vacuum is a doubly degenerate spinor |±〉, annihilated by
the zero modes f0 and f ∗

0 , and with fermion numbers F (f) = 0, − 1. The physical
states in the string spectrum satisfy the level matching condition

M2
L = −

1

2
+
αL · αL

8
+NL = −1 +

αR · αR
8

+NR =M2
R (2.6)

where α = (αL;αR) ∈ Ξ is a sector in the additive group, and

NL =
∑

f

(νL); NR =
∑

f

(νR); (2.7)

νf =
1 + α(f)

2
; νf∗ =

1− α(f)

2
. (2.8)

The U(1) charges with respect to the Cartan generators of the gauge group in four
dimensions are given by

Q(f) =
1

2
α(f) + F (f), (2.9)

for each complex right–moving fermion f . In the usual notation the 64 world-
sheet fermions in the light–cone gauge are denoted as: ψµ, χ1,...,6, y1,...,6, ω1,...,6

and y1,...,6, ω1,...,6, ψ
1,...,5

, η1,2,3, φ
1,...,8

. Further details on the formalism and no-
tation used in the free fermionic construction can be found in the literature
[24, 4, 5, 6, 7, 8, 9, 25, 26].
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2.1 Construction of phenomenological models

Phenomenological free fermionic heterotic–string models were constructed follow-
ing two main routes. The first are the so–called NAHE–based models. This set of
models utilise a set of eight or nine boundary condition basis vectors. The first five
consist of the so–called NAHE–set [27] and are common in all these models. The
basis vectors underlying the NAHE–based models therefore differ by the additional
three or four basis vectors that extend the NAHE–set.

The second route follows from the classification methodology that was developed
in [28] for the classification of type II free fermionic superstrings and adopted in [9,
25, 10, 12] for the classification of free fermionic heterotic–string vacua with SO(10)
GUT symmetry and its Pati–Salam [10] and flipped SU(5) [12] subgroups. The main
difference between the two classes of models is that while the NAHE–based models
allow for asymmetric boundary conditions with respect to the set of internal fermions
{y, ω|ȳ, ω̄}, the classification method only utilises symmetric boundary conditions.
This distinction affects the moduli spaces of the models [29], which can be entirely
fixed in the former case [30] but not in the later. On the other hand the classification
method enables the systematic scan of spaces of the order of 1012 vacua, and led to
the discovery of spinor–vector duality [25, 31] and exophobic heterotic–string vacua
[10]. In this paper, for reasons that will be clarified below, our discussion is focused
on the NAHE–based models.

2.1.1 The NAHE set

The NAHE set [27] is a set of five boundary condition basis vectors {1, S, b1, b2, b3}.
With ‘1’ indicating Ramond boundary conditions and ‘0’ indicating Neveu–Schwarz
boundary conditions. The NAHE–set basis vectors are given by:

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

1 1 1 1 1 1,...,1 1 1 1 1,...,1
S 1 1 1 1 0,...,0 0 0 0 0,...,0
b1 1 1 0 0 1,...,1 1 0 0 0,...,0
b2 1 0 1 0 1,...,1 0 1 0 0,...,0
b3 1 0 0 1 1,...,1 0 0 1 0,...,0

y3,...,6 ȳ3,...,6 y1,2, ω5,6 ȳ1,2, ω̄5,6 ω1,...,4 ω̄1,...,4

1 1,...,1 1,...,1 1,...,1 1,...,1 1,...,1 1,...,1
S 0,...,0 0,...,0 0,...,0 0,...,0 0,...,0 0,...,0
b1 1,...,1 1,...,1 0,...,0 0,...,0 0,...,0 0,...,0
b2 0,...,0 0,...,0 1,...,1 1,...,1 0,...,0 0,...,0
b3 0,...,0 0,...,0 0,...,0 0,...,0 1,...,1 1,...,1

(2.10)
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A suitable choice of GGSO phases that preserves spacetime supersymmetry is given
by

c

(
bi
bj

)

= c

(
bi
S

)

= c

(
1

1

)

= − 1 , (2.11)

where all other GGSO projection coefficients are determined by modular invariance.
The basis vector S is the generator of spacetime supersymmetry. It merely corre-
sponds to the Ramond vacuum of the worldsheet fermionic superpartners of the ten
dimensional heterotic–string, and acts as a spectral flow operator that mixes between
the spacetime fermionic and bosonic states.

The subset of basis vectors {1, S} produces a string vacuum with N = 4 spacetime
supersymmetry and SO(44) gauge group. Adding the basis vectors b1 and b2 reduces
the N = 4 spacetime supersymmetry to N = 1, where each of these vectors on its
own reduces N = 4 to N = 2, and their combined action reduces N = 4 to N = 1.
The characteristic of these two vectors is that their overlap with the basis vector S
yields S · b1,2 = 2. Thus, any additional vector that satisfies this overlap with the
basis vector S reduces the number of supersymmetries from N = 4 to N = 2. An
example at hand is the basis vector b3 of the NAHE–set. However, the additional
breaking induced by any additional basis vector with this property either preserves
N = 1 supersymmetry or reduces it further to N = 0.

This type of breaking therefore produces a type of non supersymmetric string
vacua that follow the chain N = 4 → N = 2 → N = 1 → N = 0. One characteristic
of this type of spacetime supersymmetry breaking is that the breaking will a priori
not be family universal. The reason being that the chiral families arise in the free
fermionic models from the three sectors b1, b2 and b3, and this type of breaking
necessarily violates the cyclic permutation symmetry among the three sectors b1, b2
and b3.

An example, where this cyclic permutation symmetry is instrumental in producing
a family universal structure, is the supersymmetry breaking with a family universal
anomalous U(1) of [32]. The basis vectors b1, b2 and b3 reduce the SO(44) gauge
symmetry to SO(10) × SO(6)3 × E8. The gauge bosons that produce this gauge
symmetry are obtained from the Neveu–Schwarz (NS) sector and the sector Z =
1+b1+b2+b3, where the NS produces the vector bosons of SO(10)×SO(6)3×SO(16)
and the sector Z complements the SO(16) group factor to E8.

The NAHE set basis vectors b1, b2 and b3 correspond to the three twisted sectors of
the Z2×Z2 toroidal orbifold. Each of these twisted sectors produces sixteen multiplets
in the spinorial 16 representation of SO(10) to give a total of forty eight chiral
generations. The correspondence of the quasi–realistic free fermionic models with
Z2×Z2 orbifold has been amply discussed in the literature [33]. While the dictionary
between specific models in the two approaches may be elusive, it is anticipated that for
every model in one formalism there exist a representation in the alternative formalism
and this should hold, at least for the Z2 × Z2 orbifolds, and higher order orbifolds
may have a fermionic representation as well [34].
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2.1.2 Beyond the NAHE–set

The construction of the semi–realistic free fermionic models proceeds by adding three
or four additional basis vectors to the NAHE–set. The function of the additional basis
vectors is to reduce the forty eight spinorial 16 multiplets to three chiral generations,
and at the same time to reduce the SO(10) GUT symmetry to one of its subgroups:

i SU(5)× U(1) (FSU5) [4];

ii SU(3)× SU(2)× U(1)2 (SLM) [5];

iii SO(6)× SO(4) (PS) [6];

iv SU(3)× U(1)× SU(2)2 (LRS) [7];

v SU(4)× SU(2)× U(1) (SU421) [8].

The first four cases produced viable three generation models, whereas in the last case
it was shown that phenomenologically viable models cannot be constructed [8, 36].
The additional basis vectors may each preserve or break the SO(10) symmetry. Basis
vectors that preserve the SO(10) symmetry are typically denoted by bi with (i =
4, 5, . . . ), whereas those that break the SO(10) symmetry are denoted by {α, β, γ}.
The overlap of the additional basis vectors with the supersymmetry generator basis
vector S determine the type of possible supersymmetry breaking. Thus, in the cases
with S · bi = 2 the pattern of supersymmetry breaking is similar to the spacetime
supersymmetry breaking discussed above, namely it follows the chain N = 4 → N =
2 → N = 1 → N = 0.

An alternative is to use a basis vector with S · ai = 0, where ai may, or may
not, break the SO(10) GUT symmetry. This type of supersymmetry breaking dif-
fers, however, from the one discussed above in that it induces the breaking pattern
N = 4 → N = 0. A general rule to construct vacua that preserve N = 1 spacetime
supersymmetry is to impose c

(
S

vi

)
= −δvi , where vi is any basis vector [35]. Thus,

relaxing this constraint would generically result in broken spacetime supersymme-
try. Breaking spacetime supersymmetry with the additional basis vectors ai would
generically also not affect the spectrum arising from the sectors bi that produce the
chiral generations, but may affect their superpartners as those are obtained from the
sectors S + bi. As we will show with an explicit example model in section 4, in this
case the effect of the projection is to select different components of the underlying
N = 4 multiplets.

2.1.3 The classification set

In this paper our focus will be on non–supersymmetric NAHE–based free fermionic
models. For completeness we discuss the construction of such models by using the
classification methods of [9, 10, 12, 25]. In this approach the set of basis vectors is
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fixed and a large number of string models, of the order of 1012 vacua, is spanned
by enumerating the independent GGSO projection coefficients. In this manner large
spaces of string models with SO(10) [9], SO(6)×SO(4) [10], SU(5)×U(1) [12], and
SU(4)×SU(2)×U(1) [36], have been explored. A subset of basis vectors that respect
the SO(10) symmetry is given by the set of 12 basis vectors V = {v1, v2, . . . , v12},
where

v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|

ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},

v2 = S = {ψµ, χ1,...,6},

v2+i = ei = {yi, ωi|ȳi, ω̄i}, i = 1, . . . , 6,

v9 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, η̄1, ψ̄1,...,5}, (2.12)

v10 = b2 = {χ12, χ56, y12, y56|ȳ12, ȳ56, η̄2, ψ̄1,...,5},

v11 = z1 = {φ̄1,...,4},

v12 = z2 = {φ̄5,...,8}.

Additional vectors are added to the set given in (2.12) to construct vacua with SO(10)
subgroups [10, 12]. In the notation of eq. (2.12) the worldsheet fermions appearing in
the curly brackets have periodic boundary conditions, whereas all other worldsheet
fermions are anti–periodic. The entries in the matrix of GGSO phases c

(
vi
vj

)
with

i > j then span the space of string vacua. Additional constraints that are imposed
on the string vacua, like the existence of spacetime supersymmetry leave 40 indepen-
dent phases of the original 66. One can then resort to a complete [25] or statistical
sampling∗ of the total space [9], and classify the models by their twisted matter
spectrum. The classification is facilitated by expressing the GGSO projections in
algebraic form [9, 25]. The analysis of the entire spectrum of the string models is
computerised and vacua with specific phenomenological characteristics can be fished
our from the larger space of models.

In terms of spacetime supersymmetry breaking, as with the NAHE–set based
models the spacetime supersymmetry generator is the basis vector S. The subset
{1, S} gives rise to N = 4 spacetime supersymmetry, which is broken by b1 and b2 to
N = 2 spacetime supersymmetry and their combined action breaks N = 4 → N = 1.
As with the NAHE–based models imposing c

(
S

vi

)
= −δvi ensures the preservation of

N = 1 supersymmetry. Projecting the remaining supersymmetry in this model is
obtained by relaxing this condition. Furthermore, the basis vectors {ei, z1, z2} satisfy
S · ei = 0 and S · zi = 0. These basis vectors therefore act as projectors on the
S–sector. These basis vectors can be used to project all the states from the S–sector
and hence induce the breaking N = 4 → N = 0 spacetime supersymmetry.

∗We note that analysis of large sets of string vacua has also been carried out by other groups
[37].
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3 Tachyons in the free fermionic semi-realistic models

String models, in general, and heterotic–string models in particular, generically
give rise to tachyonic states in their spectra. This can be seen from eq. (2.6). Any
sector that satisfies

M2
L < −

1

2
and M2

R < − 1 (3.1)

may produce tachyonic physical states. Tachyonic states can be obtained by acting on
the vacuum with fermionic oscillators. They satisfy the level matching condition and
survive all the GGSO projections. Their presence in the physical spectrum indicates
the instability of the string vacuum. The existence of spacetime supersymmetry
guarantees that all tachyonic states are projected out. The situation is altered if
supersymmetry is broken to N = 0 spacetime supersymmetry by projecting all the
states from the S–sector. One then has to check in each model whether tachyonic
states exist.

The existence of non–supersymmetric non–tachyonic string vacua has been known
since the mid–eighties [13]. The gauge symmetry of this model is SO(16)× SO(16),
and its non–perturbative extension was considered in [16]. In the free fermionic
formalism the model is constructed by the set of boundary condition basis vectors
{1, S,X, I} where X = {ψ̄1,··· ,5, η̄1,2,3} and I = {φ̄1,··· ,8}. In ten dimensions the
choice of the GGSO phase c

(
X

I

)
= ±1 yields either the supersymmetric E8 × E8,

or the non–supersymmetric SO(16) × SO(16), heterotic–string. This is necessarily
the case in ten dimensions because the supersymmetry generator is given by S =
1 +X + I and therefore the projections on the three sectors are correlated. In the
four dimensional models the same phase can be used to reduce the gauge symmetry
from E8 × E8 to SO(16) × SO(16) without breaking supersymmetry. The same
vacua can be constructed in the orbifold representation and can be connected by
interpolations [14]. Hence, the supersymmetric and non–supersymmetric vacua exist
on the boundary of the same moduli space.

Our interest in this paper is in the tachyonic states arising in the semi–realistic
models. It is instructive to examine the case of the non–supersymmetric SO(16)×
SO(16) model first. In the four dimensional model supersymmetry may be broken
from N = 4 → N = 0 by the I or X projections. The only sector that may produce
tachyons in this model is the NS sector. The tachyonic states arising in this model
are obtained by acting on the non–degenerate vacuum with a right–moving oscillator,
and satisfy the level matching condition with M2

L = M2
R = −1/2. These tachyonic

states are, however, projected out by the S projection, which is given by

eiπS·FNS |t〉NS = δS|t〉NS. (3.2)

As there are no oscillators acting on the left–moving vacuum in the tachyonic un-
twisted state, and the basis vector S is blind to the right–moving oscillators, the
left–hand side of eq. (3.2) is positive. On the other hand δS = −1 because the space-
time fermions ψµ are periodic in S. The mismatch between the two sides of eq. (3.2)
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entails that the untwisted NS tachyons are projected out. This argument extends to
any free fermionic model that contains the basis vector S. We conclude that in any
non–supersymmetric free fermionic that includes the S–sector the untwisted tachyons
are always projected out, irrespective of the choice of the SUSY projecting phases.

The four dimensional SO(16) × SO(16) non–supersymmetric heterotic–string is
therefore tachyon free. However, in this string vacuum the only sector that may
give rise to tachyonic states is the untwisted sector. This is not the case in the
semi–realistic free fermionic models. The three generation free fermionic models
generically give rise to an abundance of sectors that may a priori give rise to tachyonic
states. The reason is that the additional basis vectors that are required to reduce
the number of families, break down the internal degrees of freedom into small units.
This is exemplified by the set of vectors in eq. (2.12), which is used as the basis
for the classification of symmetric fermionic Z2 × Z2 orbifolds. The basis vectors
ei as well as their ei + ej i 6= j and ei + ej + ek i 6= j 6= k combinations may
produce physical tachyonic states by acting on the non degenerate vacuum with a
right–moving NS fermionic oscillator; similarly the sectors zℓ, zℓ+ei, zℓ+ei+ej , i 6= j
zℓ+ ei+ ej + ek, i 6= j 6= k may produce tachyonic states. In total there are therefore
123 sectors, in addition to the NS–sector, that may produce tachyons in these models.

This renders futile a systematic classification of non–supersymmetric non–
tachyonic semi–realistic vacua along the lines of [10, 12]. The situation in NAHE–
based models is similar. Typical models contain an abundance of sectors that may
a priori produce tachyons. Furthermore, models that utilise fractional boundary
conditions may contain additional tachyon producing sectors in which a fermionic
oscillator with rational boundary conditions may act on the non–degenerate vacuum.
A detailed sector by sector analysis is therefore required. A systematic procedure
to extract the tachyon free vacua is provided by performing a q–expansion of the
partition function [19]. However, this method loses the detailed information on the
structure of the string spectrum. The construction of non–supersymmetric vacua
with quasi–realistic features therefore requires a detailed model by model analysis.
One may then envision the existence of models in which the number of tachyonic
producing sectors is restricted.

The best case scenario would be a model in which the only tachyon producing
sector is the NS–sector. In this case we are guaranteed that tachyons do not exist
in the physical spectrum. However, a model with this property has not been found
to date. The next best case scenario is a model that gives rise only to one type of
tachyon producing sectors. Existence of a model with this characteristic may depend
on further detailed phenomenological properties of the string vacua. For example, we
were not able to find such a model in the class of NAHE–based free fermionic models
with reduced Higgs spectrum [30], whereas the class of left–right symmetric models
[7] did produce a model with the desired property. The set of boundary condition
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basis vectors, beyond the NAHE–set, generating the string vacuum is given by

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
γ 0 0 0 0 1

2
1
2

1
2
0 0 1

2
1
2

1
2

0 1
2

1
2

1
2

1
2

1
2

1
2
0

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 1 1 0 1 1 1 0 1 1 1 0
β 0 1 0 1 0 1 0 1 1 0 0 0
γ 0 0 1 1 1 0 0 0 0 1 0 1

(3.3)

This model gives rise only to one type of tachyon producing sectors with

α2
L = 2 & α2

R = 6 ⇒ NR = 0 (3.4)

The supersymmetric version of this model was presented in [7] with the set of GGSO
phases given by



















1 S b1 b2 b3 α β γ

1 1 1 −1 −1 −1 1 1 i
S 1 1 1 1 1 −1 −1 −1

b1 −1 −1 −1 −1 −1 −1 −1 i
b2 −1 −1 −1 −1 −1 −1 −1 i
b3 −1 −1 −1 −1 −1 −1 1 i

α 1 −1 1 1 1 1 1 1
β 1 −1 −1 −1 1 −1 −1 −1
γ 1 −1 1 −1 1 −1 −1 1



















. (3.5)

The full mass spectrum of this model together with the cubic level superpotential
was presented in [7]. The modification

c

(
S

α

)

= −1 → +1 and c

(
S

β

)

= −1 → +1 (3.6)

projects the remaining gravitino and induces N = 1 → N = 0. It can be checked
that all the tachyonic states are projected out in this model. Furthermore, it can be
verified that making the modification

c

(
S

α

)

= −1 → +1 and c

(
S

β

)

= −1 → −1 (3.7)
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i.e. modifying only c
(
S

α

)
but not c

(
S

β

)
results in a model that contains tachyonic

states. The reason is that in this model all the sectors that may produce tachyons
appear with the combination m(α+β), where m = 0, 1. Hence, with the modification
given by eq. (3.6) the S–projection on the tachyonic sectors is the same as in the
corresponding supersymmetry preserving choice given in eq. (3.5), whereas with the
modification given by (3.7) the S–projection in some sectors is modified in comparison
to the supersymmetric model and some tachyonic states are not projected out. We
note that the construction of tachyonic free semi–realistic vacua is highly nontrivial.
In the next section we discuss the tachyon free model in some detail.

4 An explicit tachyon-free model

We consider the model defined by the set of basis vectors

1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},

S = {ψµ, χ1,..,6}

b1 = {ψµ, χ1,2, y3,...,6|y3,...,6, ψ
1,...,5

, η1}

b2 = {ψµ, χ3,4, y1,2, ω5,6|y1,2, ω5,6, ψ
1,...,5

, η2}

b3 = {ψµ, χ5,6, ω1,...,4|ω1,...,4, ψ
1,...,5

, η3}

b4 = α

= {y1,...,6, ω1,...,6|ω1, y2, ω3, y4,5, ω6, ψ
1,2,3

, φ
1,...,4

}

b5 = β

= {y2, ω2, y4, ω4|y1,...,4, ω5, y6, ψ
1,2,3

, φ
1,...,4

}

b6 = γ

= {y1, ω1, y5, ω5|ω1,2, y3, ω4, y5,6, ψ
1,2,3

=
1

2
, η1,2,3 =

1

2
, φ

2,...,7
=

1

2
}

with the set of GGSO phases given by















1 S b1 b2 b3 α β γ

1 1 1 −1 −1 −1 1 1 i
S 1 1 1 1 1 1 1 −1
b1 −1 −1 −1 −1 −1 −1 −1 i
b2 −1 −1 −1 −1 −1 −1 −1 i
b3 −1 −1 −1 −1 −1 −1 1 i
α 1 1 1 1 1 1 1 1
β 1 1 −1 −1 −1 −1 −1 −1
γ 1 −1 1 −1 1 −1 −1 1















.

This is a 3 generation model, with one generation appearing in each of the twisted
sectors b1, b2 and b3. The full spectrum can be found in the table of appendix A, with
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the exception of the gauge bosons which have been omitted in the interest of space.
It is sufficient to state that the gauge group is

SU(3)C × U(1)C × SU(2)L × SU(2)R ×

6∏

i=1

Ui

︸ ︷︷ ︸

observable sector

×SU(3)H1
× SU(3)H2

×

10∏

j=7

Uj

︸ ︷︷ ︸

hidden sector

.

The notation for the table is the following: The first column describes if the states
correspond to spacetime bosons or spacetime fermions and specifically for bi the type
of particle. The second column is the name of the sector. The third column gives the
dimensionality of the states under SU(3)C × SU(2)L × SU(2)R and the fourth the
charges of the observable U(1)s. Columns 5 and 6 describe the hidden sector. The
only charges appearing in the table that do not have a self–evident name are:

QC = Q
ψ
1 +Q

ψ
2 +Q

ψ
3 ,

Q8 = Q
φ
2 +Q

φ
3 +Q

φ
4 ,

Q9 = Q
φ
5 +Q

φ
6 +Q

φ
7 . (4.1)

To avoid writing fractional numbers all the charges in the table have been multiplied
by 4. Finally, for every state the CPT conjugate is also understood to be in the
spectrum and has not been written explicitly. Lastly, we comment that the states
contain discrete charges corresponding to the action of real fermions that are not
shown in the table. For example, the first three states from the Neveu–Schwarz
sector are obtained by acting on the vacuum with two right–moving real fermions
and are neutral under the gauge symmetry of the model. The weak hypecharge in
the model is given by

U(1)Y =
1

3
U(1)C + T3R ,

where T3R is the diagonal generator of SU(2)R. The symmetry breaking to the
Standard Model gauge group may be induced by a VEV for one of the Standard
Model singlet scalar fields in the (1, 1, 2) representation from the sectors S + bj .
This model exhibits many interesting features regarding supersymmetry. Firstly, we
observe that the model is manifestly non-supersymmetric. The gravitino and the
gaugini are projected out and there is a clear mismatch between the number of states
in the 0 and S sectors. Furthermore, there are eight sectors with only scalars and
the sectors that contain the would-be superpartners are massive. These are

β + γ, β + 3γ,
α + γ, α + 3γ,

1 + b1 + b2 + b3 + β + γ, 1 + b1 + b2 + b3 + β + 3γ,
1 + b1 + b2 + b3 + α + γ, 1 + b1 + b2 + b3 + α + 3γ.

(4.2)
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Such sectors would not remain in the spectrum in the supersymmetric choice of
phases. The reason is that the spacetime supersymmetry generator in the supersym-
metric model is the basis vector S, i.e. for a given sector ρ ∈ Ξ, the supersymmetric
superpartners are obtained from the sector S + ρ. All the sectors in eq. (4.2) have
(ρ)2L = 4, whereas (S + ρ)2L = 8, i.e. in these sectors the would-be superpartners
are massive. In the supersymmetric vacua the states from the sectors in eq. (4.2)
are necessarily projected out, as they break supersymmetry explicitly. However, once
supersymmetry is broken they may appear in the spectrum, as is seen in our model.
It is a highly non-trivial task to find a model with 3 generations in which sectors of
these type, that only appear when supersymmetry is broken, contain no tachyons,
but this model provides exactly such an example. We collectively refer to all the
sectors mentioned in this paragraph as sectors in which supersymmetry is “badly
broken”.

On the other hand, there are (pairs of) sectors that are completely supersymmet-
ric. This is due to the modification (3.6) not affecting the GGSO projections in any
sectors where none of the vectors S, α or β appear. Therefore such sectors will be
identical to the corresponding sectors of the supersymmetric model. Nonetheless, for
some of these sectors to remain supersymmetric as claimed above, the superpartners
should be unchanged as well, or at least the effect must be (at most) a change in the
R–charges of the superpartners. Sectors bi and 1 + bi + bj + 2γ are of this type.

Finally, there are sectors that do not fit any of the above categories. In these
sectors the number of bosons and fermions is the same, but on the other hand some
of the gauge charges of these states are different which in principle prevents us from
grouping them together into supermultiplets. Most of the sectors are of this type.
We use the term sectors in which supersymmetry is “nicely broken” when referring
to this case.

Thus, while supersymmetry is broken, some segments of the string vacuum still
respect the underlying supersymmetric degeneracy. This is in accordance with the
findings in [18], which showed that the partition function of string vacua with spon-
taneously broken supersymmetry can be divided into several orbits, some of which
preserve the original supersymmetry.

Furthermore, we would like to comment in our model the fermionic states from
the sectors b1, b2 and b3, as well as the bosonic states from the NS–sector, are not
affected by the GGSO phases that project the gravitino and gaugini from the S–
sector, and therefore break spacetime supersymmetry. Therefore, the untwisted scalar
states of our non–supersymmetric model as well as the fermionic states from the
sectors b1, b2 and b3 are identical to those in the corresponding supersymmetric
model. Consequently, the leading twisted–twisted–untwisted couplings in the non–
supersymmetric model, which are obtained by using the methods developed in [38],
are identical to those of the supersymmetric model. The model generated by eqs.
(3.3,3.5) contains electroweak doublet scalar representations from the twisted sectors
that may be used as Higgs doublets. However, in this model the untwisted Higgs
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bi–doublets, which couple at leading order to the twisted sector states, are projected
out and consequently the leading mass term which is identified with the top mass is
absent. Other LRS [7] models, as well as the FSU5 [4], PS [6] and SLM [2, 5] models,
do contain the untwisted Higgs doublets and in those cases a leading top mass term
is obtained.

It is also worth noting that even for non-supersymmetric models the cosmological
constant can be exponentially suppressed. As discussed in [19], this can be achieved
if the massless spectrum has an equal number of bosons and fermions (irrespectively
of their charges). Even though our model is not of this type and will therefore
have an unsuppressed vacuum energy, our construction hints at how one might go
about achieving such a goal. It is clear for example, that we do not have to worry
about sectors that either respect supersymmetry or in which supersymmetry is nicely
broken.

On the other hand, sectors that badly break supersymmetry will have to be care-
fully engineered. There are a few ways one might go about such a task. For example,
one might entertain the idea that the addition of further basis vectors could project
such sectors out of the spectrum. The biggest problem with this approach is that
the removal of the gaugini from the S sector, even if some fermions transforming in
a different than the adjoint representation are preserved, will create a mismatch of
states in the S and NS sectors turning them into sectors that break supersymmetry
badly; and it is impossible to project out the NS sector no matter what basis vectors
are added. It is a priori possible that further basis vectors will remove exactly the
correct number of bosons from the NS sector to match the remaining fermionic states
in the S sector, but this method seems unnecessarily restricting.

An approach providing more freedom is to aim for an equality in the number of
bosons and fermions not in each sector, but among different sectors. To cancel the
surplus of bosons from the NS sector this would imply the existence of surviving
fermionic states in different sectors, the bosonic counterpart of which has been pro-
jected out. The model presented in this section has an overall mismatch of bosonic
and fermionic degrees of freedom and therefore does not satisfy this condition. Find-
ing a semi-realistic model of suppressed cosmological constant appears to be very
challenging, but it is of great interest as well and we hope to report on such construc-
tions in a future publication.

5 Split SUSY models

In this section we briefly discuss string models with a split supersymmetry struc-
ture. The basic idea is to use two basis vectors to generate space–time supersymmetry.
We recall from section 2 that in the semi–realistic free fermionic models the super-
symmetry generators arise from the basis vector S. The aim in split supersymmetry
string models is to construct two basis vectors that produce supersymmetry gener-
ators. A particular aim is then to construct models in which gaugini are obtained
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from one generator, whereas those of the second generator are projected out, as well
as the scalar superpartners of the twisted matter fermionic states. Our construction
proceeds by keeping our previous basis vector S = {ψ1,2, χ1,...,6} ≡ S1. A second
supersymmetry generator is given by

S2 = {ψ1,2, χ1,2, ω3,4, ω5,6}. (5.1)

The basis vectors b1 and b2 of the NAHE–set eq. (2.10) are added as well as the
basis vectors 1 and X , which is used to project the supersymmetric generators from
S1, as discussed in section 3. Shift basis vectors similar to the ei basis vectors of eq.
2.12 can be added, and variations that include the basis vector I of section 2. We
consider the set of six basis vectors given by

v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|

ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},

v2 = S1 = {ψµ, χ1,...,6},

v3 = S2 = {ψµ, χ1,2, ω3,...,6}, (5.2)

v4 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, η̄1, ψ̄1,...,5},

v5 = X = {η̄1,2,3, ψ̄1,...,5},

v6 = I = {φ̄1,...,8}.

with the set of GGSO phases given by











1 S1 S2 b1 X I

1 −1 −1 −1 −1 −1 −1
S1 −1 −1 −1 1 1 1
S2 −1 1 −1 1 −1 −1
b1 −1 −1 −1 −1 1 −1
X −1 1 −1 −1 1 −1
I −1 1 −1 −1 −1 1











. (5.3)

In this model the NS–sector is the only sector that produces spacetime vector bosons.
Hence the gauge symmetry in four dimensions is SO(8)×SO(4)×SO(4)×SO(12)×
SO(16). The sector b1 gives rise to spacetime fermions in the spinor and anti–spinor
representations of SO(12). The supersymmetry generators of S1 are projected out,
whereas the gaugini from S2 are retained. The model retains the scalar superpartners
from the sector S2 + b1, and projects those from the sector S1 + b1. Our general aim
in the construction of models with split supersymmetry is to construct models that
retain the gaugini and spacetime fermions from S2 and b1, while projecting the gaugini
(and hence the gravitini) from S1, as well as the superpartners from the sectors S1+b1
and S2 + b1. However, variations of the model in eqs. (5.2,5.3), including adding the
ei projectors of eq. (2.12) did not yield the desired result. The models in which
supersymmetry is entirely broken, i.e. those in which the supersymmetry generators
from S1 as well as S2 are projected out, typically contain tachyons. We then face
similar situation to the one discussed in section 2.1.3.
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6 Conclusions

The observation of a scalar resonance compatible with the electroweak Higgs
doublet reinforces the hypothesis that the Standard Model provides a viable param-
eterisation of all sub–atomic data up to the Planck scale. Synthesis of gravity with
the sub–atomic interactions necessitates a departure from the local point particle
idealisation of quantum field theories, which underly the Standard Model. The most
developed framework to explore the gauge–gravity augmentation is offered by string
theory. Detailed phenomenological models that incorporate the salient feature of the
Standard Model have been constructed. These detailed phenomenological construc-
tions contain a new symmetry, i.e. N = 1 spacetime supersymmetry, which has not
been observed to date in experiments.

A vital question is therefore to explore the consequences of breaking spacetime
supersymmetry directly at the string scale. A generic feature of non–supersymmetric
string vacua is the existence of tachyonic states in the physical spectrum. Non–
supersymmetric string vacua, such as the SO(16) × SO(16) heterotic–string in ten
dimensions, do not contain tachyonic states, but are typically connected in the moduli
space to supersymmetric vacua, and tend to have large moduli states and group
factors. More realistic constructions on the other hand, typically have reduced moduli
spaces and contain more sectors that may a priori give rise to tachyons.

It is therefore important to examine the structure of non–supersymmetric string
vacua in more realistic setting. In this paper we undertook this task. We have
shown that while generically the quasi–realistic non–supersymmetric vacua do contain
tachyons, there also exist examples in which all the tachyonic states are projected
out by the GGSO projections. Furthermore, given that the moduli spaces of the
quasi–realistic constructions may be much reduced [29, 30], one may entertain the
possibility that the tachyon free non–supersymmetric quasi–realistic vacua may not
be connected to supersymmetric solutions.

We have shown with a concrete example that the non–supersymmetric quasi–
realistic vacuum may retain some of the structure of the corresponding supersym-
metric solution. This demonstrates that even though supersymmetry may be broken
directly at the string level, the effective spectrum of the string vacuum, as well as
its low energy effective field theory, may still exhibit properties that are similar to
those of the corresponding supersymmetric solutions, e.g. the existence of scalar
replications of the chiral generations.

Another interesting point to note is the existence of an anomalous U(1) symmetry
in the model. The anomalous U(1) is cancelled by the Green–Schwarz–Dine–Seiberg–
Witten mechanism [39, 40], but gives rise to a tadpole diagram at one–loop order
in string perturbation theory [41], which reflects the instability of the string vac-
uum. The mismatch between the fermionic and bosonic states at different mass
levels gives rise to a non–vanishing vacuum energy, which similarly gives rise to a
tadpole diagram, indicating the instability of the string vacuum. We may contem-
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plate the possibility of employing one against the other so that they conspire to
cancel. The anomalous U(1) contribution is proportional to the trace over the mass-
less fermionic states and the sign can be altered by the GGSO projections [41, 42]. It
is proportional to the gauge coupling and consequently only depends on the dilaton
moduli. On the other hand, the vacuum amplitude contribution depends on other
moduli [19], and may be tuned to obtain cancellation of the two contributions. In
general, other background fields will be affected by the shift of the vacuum, and to
demonstrate the existence of a stable vacuum one would need to solve the set of
equations affecting those fields in the shifted vacuum. However, in this regard the
same constraints would apply in the case of the supersymmetric vacua, where the
Fayet–Iliopoulos term [43, 40], which is generated from the anomalous U(1) tadpole
diagram [40, 41], is cancelled by assigning VEVs to some massless scalar fields, along
flat supersymmetric directions. It would appear therefore that this shift of the vac-
uum is either legitimate, or illegitimate, in both cases. We therefore propose that
the non–supersymmetric non–tachyonic string vacua should be considered on equal
footing to the supersymmetric examples.
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A The spectrum of the model in section 4

F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

b NS (1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 -4 4 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 4 -4 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 -4 4 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 4 -4 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 -4 0 4 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 4 0 -4 0 0 0 (1, 1) 0 0 0 0

Table 1: The untwisted Neveu-Schwarz sector matter states and charges.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S (1, 1, 1) 0 0 0 0 0 0 0 (3, 3) 0 -4 4 0
(1, 1, 1) 0 0 0 0 0 0 0 (3, 3) 0 4 -4 0
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 4 0 0 4
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 4 0 0 -4
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) -4 0 0 4
(1, 1, 1) 0 0 0 0 0 0 0 (1, 1) -4 0 0 -4
(3, 1, 1) -4 4 0 0 0 0 0 (1, 1) 0 0 0 0
(3̄, 1, 1) 4 -4 0 0 0 0 0 (1, 1) 0 0 0 0
(3, 1, 1) -4 0 4 0 0 0 0 (1, 1) 0 0 0 0
(3̄, 1, 1) 4 0 -4 0 0 0 0 (1, 1) 0 0 0 0
(3, 1, 1) -4 0 0 4 0 0 0 (1, 1) 0 0 0 0
(3̄, 1, 1) 4 0 0 -4 0 0 0 (1, 1) 0 0 0 0
(1, 2, 2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
(1, 2, 2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 4 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 -4 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 4 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 -4 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 4 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 -4 0 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 4 0 (1, 1) 0 0 0 0
(1, 1, 1) 0 0 0 0 0 -4 0 (1, 1) 0 0 0 0

Table 2: The untwisted S–sector matter states and charges.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

QL1
b1 (3, 2, 1) 2 2 0 0 -2 0 0 (1, 1) 0 0 0 0

QR1
(3, 1, 2) -2 -2 0 0 -2 0 0 (1, 1) 0 0 0 0

LL1
(1, 2, 1) -6 2 0 0 -2 0 0 (1, 1) 0 0 0 0

LR1
(1, 1, 2) 6 -2 0 0 -2 0 0 (1, 1) 0 0 0 0

b S + b1 (3, 1, 2) 2 2 0 0 -2 0 0 (1, 1) 0 0 0 0
(3, 2, 1) -2 -2 0 0 -2 0 0 (1, 1) 0 0 0 0
(1, 2, 1) 6 -2 0 0 -2 0 0 (1, 1) 0 0 0 0
(1, 1, 2) -6 2 0 0 -2 0 0 (1, 1) 0 0 0 0

QL2
b2 (3, 2, 1) 2 0 2 0 0 -2 0 (1, 1) 0 0 0 0

QR2
(3, 1, 2) -2 0 -2 0 0 -2 0 (1, 1) 0 0 0 0

LL2
(1, 2, 1) -6 0 2 0 0 -2 0 (1, 1) 0 0 0 0

LR2
(1, 1, 2) 6 0 -2 0 0 -2 0 (1, 1) 0 0 0 0

b S + b2 (3, 1, 2) 2 0 2 0 0 -2 0 (1, 1) 0 0 0 0
(3, 2, 1) -2 0 -2 0 0 -2 0 (1, 1) 0 0 0 0
(1, 2, 1) 6 0 -2 0 0 -2 0 (1, 1) 0 0 0 0
(1, 1, 2) -6 0 2 0 0 -2 0 (1, 1) 0 0 0 0

QL3
b3 (3, 2, 1) 2 0 0 2 0 0 -2 (1, 1) 0 0 0 0

QR3
(3, 1, 2) -2 0 0 -2 0 0 -2 (1, 1) 0 0 0 0

LL3
(1, 2, 1) -6 0 0 2 0 0 -2 (1, 1) 0 0 0 0

LR3
(1, 1, 2) 6 0 0 -2 0 0 -2 (1, 1) 0 0 0 0

b S + b3 (3, 1, 2) 2 0 0 2 0 0 -2 (1, 1) 0 0 0 0
(3, 2, 1) -2 0 0 -2 0 0 -2 (1, 1) 0 0 0 0
(1, 2, 1) 6 0 0 -2 0 0 -2 (1, 1) 0 0 0 0
(1, 1, 2) -6 0 0 2 0 0 -2 (1, 1) 0 0 0 0

Table 3: The observable matter sectors. All sectors, fermionic and bosonic, have
CPT conjugates which are not displayed.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S+ (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) 0 0 0 4
b1 + b2 (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) 0 0 0 -4
+α + β (1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) 0 0 0 4

(1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) 0 0 0 -4
(1, 1, 1) 0 2 2 0 0 0 0 (3, 1) 0 4 0 0
(1, 1, 1) 0 -2 -2 0 0 0 0 (3, 1) 0 4 0 0
(1, 1, 1) 0 2 2 0 0 0 0 (3, 1) 0 -4 0 0
(1, 1, 1) 0 -2 -2 0 0 0 0 (3, 1) 0 -4 0 0

b b1 + b2 (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) 4 0 0 0
+α + β (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) -4 0 0 0

(1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) 4 0 0 0
(1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) -4 0 0 0
(1, 1, 1) 0 2 2 0 0 0 0 (1, 3) 0 0 4 0
(1, 1, 1) 0 -2 -2 0 0 0 0 (1, 3) 0 0 4 0
(1, 1, 1) 0 2 2 0 0 0 0 (1, 3) 0 0 -4 0
(1, 1, 1) 0 -2 -2 0 0 0 0 (1, 3) 0 0 -4 0

Table 4: Vector-like SO(10) singlet states. All sectors, fermionic and bosonic, have
CPT conjugates which are not displayed.

21



F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S+ (1, 1, 1) 0 -2 0 0 0 -2 -2 (1, 1) 0 6 0 2
1 + b1 (1, 1, 1) 0 2 0 0 0 -2 -2 (1, 1) 0 -6 0 -2

+α + 2γ (1, 1, 1) 0 2 0 0 0 -2 -2 (3, 1) 0 2 0 -2
(1, 1, 1) 0 -2 0 0 0 -2 -2 (3, 1) 0 -2 0 2

b 1 + b1 (1, 1, 1) 0 -2 0 0 0 2 -2 (1, 1) 0 6 0 2
+α + 2γ (1, 1, 1) 0 2 0 0 0 2 -2 (1, 1) 0 -6 0 -2

(1, 1, 1) 0 2 0 0 0 2 -2 (3, 1) 0 2 0 -2
(1, 1, 1) 0 -2 0 0 0 2 -2 (3, 1) 0 -2 0 2

f S+ (1, 1, 1) 0 0 -2 0 -2 0 -2 (1, 1) 0 6 0 2
1 + b2 (1, 1, 1) 0 0 2 0 -2 0 -2 (1, 1) 0 -6 0 -2

+α + 2γ (1, 1, 1) 0 0 2 0 -2 0 -2 (3, 1) 0 2 0 -2
(1, 1, 1) 0 0 -2 0 -2 0 -2 (3, 1) 0 -2 0 2

b 1 + b2 (1, 1, 1) 0 0 -2 0 2 0 -2 (1, 1) 0 6 0 2
+α + 2γ (1, 1, 1) 0 0 2 0 2 0 -2 (1, 1) 0 -6 0 -2

(1, 1, 1) 0 0 2 0 2 0 -2 (3, 1) 0 2 0 -2
(1, 1, 1) 0 0 -2 0 2 0 -2 (3, 1) 0 -2 0 2

f S+ (1, 1, 1) 0 0 -2 0 -2 0 -2 (1, 1) -2 0 6 0
b1 + b3 (1, 1, 1) 0 0 2 0 -2 0 -2 (1, 1) 2 0 -6 0
+α + 2γ (1, 1, 1) 0 0 2 0 -2 0 -2 (1, 3) 2 0 2 0

(1, 1, 1) 0 0 -2 0 -2 0 -2 (1, 3) -2 0 -2 0
b b1 + b3 (1, 1, 1) 0 0 -2 0 2 0 -2 (1, 1) -2 0 6 0

+α + 2γ (1, 1, 1) 0 0 2 0 2 0 -2 (1, 1) 2 0 -6 0
(1, 1, 1) 0 0 2 0 2 0 -2 (1, 3) 2 0 2 0
(1, 1, 1) 0 0 -2 0 2 0 -2 (1, 3) -2 0 -2 0

f S+ (1, 1, 1) 0 0 0 -2 -2 -2 0 (1, 1) -2 0 6 0
b1 + b2 (1, 1, 1) 0 0 0 2 -2 -2 0 (1, 1) 2 0 -6 0
+α + 2γ (1, 1, 1) 0 0 0 2 -2 -2 0 (1, 3) 2 0 2 0

(1, 1, 1) 0 0 0 -2 -2 -2 0 (1, 3) -2 0 -2 0
b b1 + b2 (1, 1, 1) 0 0 0 -2 2 -2 0 (1, 1) -2 0 6 0

+α + 2γ (1, 1, 1) 0 0 0 2 2 -2 0 (1, 1) 2 0 -6 0
(1, 1, 1) 0 0 0 2 2 -2 0 (1, 3) 2 0 2 0
(1, 1, 1) 0 0 0 -2 2 -2 0 (1, 3) -2 0 -2 0

Table 5: Vector-like SO(10) singlet states. All sectors, fermionic and bosonic, have
CPT conjugates which are not displayed.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S+ (1, 1, 1) 0 -2 0 0 0 -2 -2 (1, 1) -2 0 6 0
b2 + b3 (1, 1, 1) 0 2 0 0 0 -2 -2 (1, 1) 2 0 -6 0
+α + 2γ (1, 1, 1) 0 2 0 0 0 -2 -2 (1, 3) 2 0 2 0

(1, 1, 1) 0 -2 0 0 0 -2 -2 (1, 3) -2 0 -2 0
b b2 + b3 (1, 1, 1) 0 -2 0 0 0 2 -2 (1, 1) -2 0 6 0

+α + 2γ (1, 1, 1) 0 2 0 0 0 2 -2 (1, 1) 2 0 -6 0
(1, 1, 1) 0 2 0 0 0 2 -2 (1, 3) 2 0 2 0
(1, 1, 1) 0 -2 0 0 0 2 -2 (1, 3) -2 0 -2 0

f S+ (1, 1, 1) 0 0 0 -2 -2 -2 0 (1, 1) 0 6 0 2
1 + b3 (1, 1, 1) 0 0 0 2 -2 -2 0 (1, 1) 0 -6 0 -2

+α + 2γ (1, 1, 1) 0 0 0 2 -2 -2 0 (3, 1) 0 2 0 -2
(1, 1, 1) 0 0 0 -2 -2 -2 0 (3, 1) 0 -2 0 2

b 1 + b3 (1, 1, 1) 0 0 0 -2 2 -2 0 (1, 1) 0 6 0 2
+α + 2γ (1, 1, 1) 0 0 0 2 2 -2 0 (1, 1) 0 -6 0 -2

(1, 1, 1) 0 0 0 2 2 -2 0 (3, 1) 0 2 0 -2
(1, 1, 1) 0 0 0 -2 2 -2 0 (3, 1) 0 -2 0 2

Table 6: Table 5 continued.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

b α± γ (1, 1, 1) -3 1 1 1 -2 0 -2 (1, 1) 2 -3 3 0
(1, 1, 1) -3 1 1 1 2 0 2 (1, 1) 2 -3 3 0
(1, 1, 1) -3 1 1 1 2 0 2 (1, 1) 2 -3 3 0
(1, 1, 1) -3 1 1 1 -2 0 -2 (1, 1) 2 -3 3 0
(1, 1, 1) 3 -1 -1 -1 -2 0 -2 (1, 1) -2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 2 0 2 (1, 1) -2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 2 0 2 (1, 1) -2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 -2 0 -2 (1, 1) -2 3 -3 0

b β ± γ (1, 1, 1) -3 1 1 1 0 2 2 (1, 1) -2 -3 3 0
(1, 1, 1) -3 1 1 1 0 -2 -2 (1, 1) -2 -3 3 0
(1, 1, 1) -3 1 1 1 0 -2 -2 (1, 1) -2 -3 3 0
(1, 1, 1) -3 1 1 1 0 2 2 (1, 1) -2 -3 3 0
(1, 1, 1) 3 -1 -1 -1 0 2 2 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 0 -2 -2 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 0 -2 -2 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 -1 -1 0 2 2 (1, 1) 2 3 -3 0

b 1 + b1 (1, 1, 1) -3 1 1 1 0 2 2 (1, 1) 0 3 -3 2
+b2 + b3 (1, 1, 1) -3 1 1 1 0 -2 -2 (1, 1) 0 3 -3 2
+β ± γ (1, 1, 1) -3 1 1 1 0 -2 -2 (1, 1) 0 3 -3 2

(1, 1, 1) -3 1 1 1 0 2 2 (1, 1) 0 3 -3 2
(1, 1, 1) 3 -1 -1 -1 0 2 2 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 -1 -1 0 -2 -2 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 -1 -1 0 -2 -2 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 -1 -1 0 2 2 (1, 1) 0 -3 3 -2

b 1 + b1 (1, 1, 1) -3 1 1 1 2 0 -2 (1, 1) 0 3 -3 -2
+b2 + b3 (1, 1, 1) -3 1 1 1 -2 0 2 (1, 1) 0 3 -3 -2
+α± γ (1, 1, 1) -3 1 1 1 2 0 -2 (1, 1) 0 3 -3 -2

(1, 1, 1) -3 1 1 1 -2 0 2 (1, 1) 0 3 -3 -2
(1, 1, 1) 3 -1 -1 -1 2 0 -2 (1, 1) 0 -3 3 2
(1, 1, 1) 3 -1 -1 -1 -2 0 2 (1, 1) 0 -3 3 2
(1, 1, 1) 3 -1 -1 -1 2 0 -2 (1, 1) 0 -3 3 2
(1, 1, 1) 3 -1 -1 -1 -2 0 2 (1, 1) 0 -3 3 2

Table 7: The table displays all the massless sectors for which the “would-be super-
partners” are massive and do not form part of the massless spectrum. The “would-be
superpartners” arise from the sectors that are obtained by adding the basis vector S
to a given sector and are the fermionic counterparts.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S+ (1, 1, 1) -3 -3 -1 -1 0 0 0 (1, 1) -2 -3 3 0
b2 + b3 (1, 1, 1) -3 1 3 -1 0 0 0 (1, 1) -2 -3 3 0
+β ± γ (1, 1, 1) -3 1 -1 3 0 0 0 (1, 1) -2 -3 3 0

(1, 1, 1) 3 -1 1 1 0 0 0 (1, 3) -2 3 1 0
(1, 1, 1) 3 3 1 1 0 0 0 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 -3 1 0 0 0 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 1 -3 0 0 0 (1, 1) 2 3 -3 0
(1, 1, 1) -3 1 -1 -1 0 0 0 (1, 3) 2 -3 -1 0

b b2 + b3 (3, 1, 1) 1 1 -1 -1 0 0 0 (1, 1) -2 -3 3 0
+β ± γ (1, 1, 1) -3 1 -1 -1 0 0 0 (3, 1) 2 1 3 0

(3, 1, 1) -1 -1 1 1 0 0 0 (1, 1) 2 3 -3 0
(1, 1, 1) 3 -1 1 1 0 0 0 (3, 1) -2 -1 -3 0

f S+ (1, 1, 1) -3 3 1 -1 0 0 0 (1, 1) 2 -3 3 0
b1 + b3 (1, 1, 1) -3 -1 -3 -1 0 0 0 (1, 1) 2 -3 3 0
+α± γ (1, 1, 1) -3 -1 1 3 0 0 0 (1, 1) 2 -3 3 0

(1, 1, 1) 3 1 -1 1 0 0 0 (1, 3) 2 3 1 0
(1, 1, 1) 3 -3 -1 1 0 0 0 (1, 1) -2 3 -3 0
(1, 1, 1) 3 1 3 1 0 0 0 (1, 1) -2 3 -3 0
(1, 1, 1) 3 1 -1 -3 0 0 0 (1, 1) -2 3 -3 0
(1, 1, 1) -3 -1 1 -1 0 0 0 (1, 3) -2 -3 -1 0

b b1 + b3 (3, 1, 1) 1 -1 1 -1 0 0 0 (1, 1) 2 -3 3 0
+α± γ (1, 1, 1) -3 -1 1 -1 0 0 0 (3, 1) -2 1 3 0

(3, 1, 1) -1 1 -1 1 0 0 0 (1, 1) -2 3 -3 0
(1, 1, 1) 3 1 -1 1 0 0 0 (3, 1) 2 -1 -3 0

Table 8: Vector-like exotic states. All sectors, fermionic and bosonic, have CPT
conjugates which are not displayed.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f S+ (3, 1, 1) -3 -1 1 -1 0 0 0 (1, 1) 0 3 -3 -2
1 + b2 (1, 1, 1) 3 -1 1 -1 0 0 0 (1, 3) 0 3 3 2
+α± γ (3, 1, 1) 3 1 -1 1 0 0 0 (1, 1) 0 -3 3 2

(1, 1, 1) -3 1 -1 1 0 0 0 (1, 3) 0 -3 -3 -2
b 1 + b2 (1, 1, 1) -3 3 1 -1 0 0 0 (1, 1) 0 3 -3 -2

+α± γ (1, 1, 1) -3 -1 -3 -1 0 0 0 (1, 1) 0 3 -3 -2
(1, 1, 1) -3 -1 1 3 0 0 0 (1, 1) 0 3 -3 -2
(1, 1, 1) -3 -1 1 -1 0 0 0 (3, 1) 0 -3 -3 2
(1, 1, 1) 3 -3 -1 1 0 0 0 (1, 1) 0 -3 3 2
(1, 1, 1) 3 1 3 1 0 0 0 (1, 1) 0 -3 3 2
(1, 1, 1) 3 1 -1 -3 0 0 0 (1, 1) 0 -3 3 2
(1, 1, 1) 3 1 -1 1 0 0 0 (3, 1) 0 3 3 -2

f S+ (1, 1, 1) -3 -3 -1 -1 0 0 0 (1, 1) 0 3 -3 2
1 + b1 (1, 1, 1) -3 1 3 -1 0 0 0 (1, 1) 0 3 -3 2
+β ± γ (1, 1, 1) -3 1 -1 3 0 0 0 (1, 1) 0 3 -3 2

(1, 1, 1) -3 1 -1 -1 0 0 0 (3, 1) 0 -3 -3 -2
(1, 1, 1) 3 3 1 1 0 0 0 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 -3 1 0 0 0 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 1 -3 0 0 0 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 1 1 0 0 0 (3, 1) 0 3 3 2

b 1 + b1 (3, 1, 1) 3 1 -1 -1 0 0 0 (1, 1) 0 3 -3 2
+β ± γ (1, 1, 1) -3 1 -1 -1 0 0 0 (1, 3) 0 3 3 -2

(3, 1, 1) -3 -1 1 1 0 0 0 (1, 1) 0 -3 3 -2
(1, 1, 1) 3 -1 1 1 0 0 0 (1, 3) 0 -3 -3 2

Table 9: Vector-like exotic states. All sectors, fermionic and bosonic, have CPT
conjugates which are not displayed.
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F SEC (C;L;R) QC Qη̄1 Qη̄2 Qη̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SU(3)H1,2
QΦ̄1 Q8 Q9 QΦ̄8

f 1 + b2 (1, 2, 1) 0 0 -2 -2 2 0 0 (1, 1) -2 0 0 2
+b3 + 2γ (1, 2, 1) 0 0 -2 -2 -2 0 0 (1, 1) 2 0 0 -2

(1, 1, 2) 0 0 2 2 2 0 0 (1, 1) 2 0 0 -2
(1, 1, 2) 0 0 2 2 -2 0 0 (1, 1) -2 0 0 2

b S+ (1, 2, 1) 0 0 2 2 -2 0 0 (1, 1) -2 0 0 2
1 + b2 (1, 2, 1) 0 0 2 2 2 0 0 (1, 1) 2 0 0 -2

+b3 + 2γ (1, 1, 2) 0 0 -2 -2 -2 0 0 (1, 1) 2 0 0 -2
(1, 1, 2) 0 0 -2 -2 2 0 0 (1, 1) -2 0 0 2

f 1 + b1 (1, 2, 1) 0 -2 0 -2 0 2 0 (1, 1) -2 0 0 2
+b3 + 2γ (1, 2, 1) 0 -2 0 -2 0 -2 0 (1, 1) 2 0 0 -2

(1, 1, 2) 0 2 0 2 0 2 0 (1, 1) 2 0 0 -2
(1, 1, 2) 0 2 0 2 0 -2 0 (1, 1) -2 0 0 2

b S+ (1, 2, 1) 0 2 0 2 0 -2 0 (1, 1) -2 0 0 2
1 + b1 (1, 2, 1) 0 2 0 2 0 2 0 (1, 1) 2 0 0 -2

+b3 + 2γ (1, 1, 2) 0 -2 0 -2 0 -2 0 (1, 1) 2 0 0 -2
(1, 1, 2) 0 -2 0 -2 0 2 0 (1, 1) -2 0 0 2

f 1 + b1 (1, 2, 1) 0 -2 -2 0 0 0 2 (1, 1) -2 0 0 2
+b2 + 2γ (1, 2, 1) 0 -2 -2 0 0 0 -2 (1, 1) 2 0 0 -2

(1, 1, 2) 0 2 2 0 0 0 2 (1, 1) 2 0 0 -2
(1, 1, 2) 0 2 2 0 0 0 -2 (1, 1) -2 0 0 2

b S+ (1, 2, 1) 0 2 2 0 0 0 -2 (1, 1) -2 0 0 2
1 + b1 (1, 2, 1) 0 2 2 0 0 0 2 (1, 1) 2 0 0 -2

+b2 + 2γ (1, 1, 2) 0 -2 -2 0 0 0 -2 (1, 1) 2 0 0 -2
(1, 1, 2) 0 -2 -2 0 0 0 2 (1, 1) -2 0 0 2

f S+ (1, 1, 1) -6 0 0 -2 0 0 0 (1, 1) 2 0 0 2
1 + b3 (3, 1, 1) -2 0 0 2 0 0 0 (1, 1) -2 0 0 -2
+α + β (1, 1, 1) 6 0 0 2 0 0 0 (1, 1) -2 0 0 -2
+2γ (3, 1, 1) 2 0 0 -2 0 0 0 (1, 1) 2 0 0 2

b 1 + b3 (1, 1, 1) 6 0 0 2 0 0 0 (1, 1) -2 0 0 -2
+α + β (1, 1, 1) -6 0 0 -2 0 0 0 (1, 1) 2 0 0 2
+2γ (3, 1, 1) 2 0 0 -2 0 0 0 (1, 1) 2 0 0 2

(3, 1, 1) -2 0 0 2 0 0 0 (1, 1) -2 0 0 -2

Table 10: Vector-like exotic states. All sectors, fermionic and bosonic, have CPT
conjugates which are not displayed.
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