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Abstract6

A parameter space search for dark contents of the vacuum utilising atom interferometry7

is motivated. This methodology is potentially sensitive to any dark contents of the8

vacuum that are spatially inhomogeneous on the lab scale, and couple to atoms in9

addition to the gravitational force. A path integral approach to atom interferometry10

is discussed and a parametrisation of the dark contents of the vacuum is presented. A11

magneto-optical trap is detailed, capable of trapping 6.5× 107 atoms, as a cold atomic12

source for the atom interferometer.13

The development of a prototype light pulse Mach-Zehnder atom interferometer,14

currently in the commissioning stages is described, as well as a unique laser system15

capable of running the whole atom interferometer from just two extended cavity diode16

lasers. Using this device 1 × 106 atoms are trapped in a magneto-optical trap and17

further cooled to 96 µK in an optical molasses. This prototype device is now undergoing18

upgrades to create larger, colder sources of atoms for the interferometer.19
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2.4 Figure illustrating a Ramsey-Bordé interferometer [39]. . . . . . . . . . . 20131

v



2.5 Plot of sensitivity to acceleration caused by DCV against frequency.132

Both curves are for Rubidium interferometers, with a 1 m separation,133

momentum transfer of n = 2, moving with respect to the DCV at 369134

km/s and t0 = 0. The red curve is for pair of 1 m devices measuring135

phase differences of 1× 10−3rad, and the green curve is for 10 m devices136

measuring phase differences of 1× 10−6rad . . . . . . . . . . . . . . . . 21137

3.1 Figure summarising the laser cooling cycle. (a) An atom with velocity v138

encounters a photon momentum h̄k: (b) The atom absorbs photon and139

is slowed by h̄k/m: (c) The photon is re-radiated in a random direction,140

which on average, the atoms velocity is less than it’s initial velocity. [48] 23141

3.2 Sketch showing the correct polarisations for the MOT beams with respect142

to the anti-Helmholtz magnetic coils current [52]. . . . . . . . . . . . . 24143

3.3 A sketch demonstrating a one dimensional explanation of how the posi-144

tion dependent force in a MOT arises from the magnetic field and circular145

polarised cooling beams [51]. . . . . . . . . . . . . . . . . . . . . . . . . 25146

3.4 Energy level diagram for 85Rb, with the cooling and pumping transitions147

illustrated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26148

3.5 Sketch of a diode in a Littrow extended cavity. Feedback into the diode149

is provided by the first order diffraction of a grating [56]. . . . . . . . . . 27150

3.6 A current vs power plot for one of the MOGLabs ECDL. The ECDL151

starts lasing at 85 mA. The inset shows a smaller gradient before this152

current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28153

3.7 AC locking circuit for locking the ECDL. [59] . . . . . . . . . . . . . . . 30154

3.8 Plot of Doppler broadened (direct transmission) spectroscopy compared155

with saturated spectroscopy (Doppler-Free transmission) for Rb [60] . . 30156

3.9 An example of the signal when the laser is freely scanning in frequency.157

On the x-axis is a linear scan in frequency, and on the y is the voltage158

generated by the saturated spectroscopy circuit in red, and the error159

signal in green. The hyperfine peaks are labelled. . . . . . . . . . . . . . 32160

3.10 An example of the signal when the laser is freely scanning in frequency161

around the 5S 1
2

F = 3 → 5P 3
2

transitions. On the x-axis is a linear scan162

in frequency, and on the y is the voltage generated by the spectroscopy163

circuit in red, and the errors signal in green. This traces out the 85Rb164

saturated spectroscopy spectrum for the F=3 → F’ transitions in red,165

with the two large peaks in the centre being the (2,4) and (3,4) crossover166

peaks, with the smaller peak to the right being the F = 3 → F’ = 4 peak. 33167

3.11 Photo of the two ECDL and the respective AC locking optical circuits. . 34168

3.12 Drawing of the spherical octagon vacuum component [62]. . . . . . . . . 34169

vi



3.13 Sketch of the portable MOT vacuum chamber, with coils mounted. The170

getter chamber is mounted off the side of the spherical octagon experi-171

mental chamber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35172

3.14 Diagram of the vacuum chamber that the getters were originally tested in. 35173

3.15 Frame from a video of the rubidium getters whilst being tested. The174

getter can be seen in the foreground, with the boat glowing hot. In175

the background laser fluorescence of the rubidium can be seen in the176

background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36177

3.16 Saturated spectroscopy of rubidium in the locking circuits Rb vapour178

cells alongside saturated spectroscopy in the vacuum chamber. . . . . . 36179

3.17 Axial magnetic field along the axial direction of the coils. The two sets180

of data are for forward and a reverse current in the coils. Where they181

cross is the centre of the magnetic field. The vertical line is the geometric182

centre of the coils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37183

3.18 Sketch of the retro-reflected beam MOT optical circuit. . . . . . . . . . 38184

3.19 Illustration of how the laser beams crossed in the vacuum chamber in185

the retro-reflected beam set up. . . . . . . . . . . . . . . . . . . . . . . . 38186

3.20 Photograph of the retro-reflected MOT. . . . . . . . . . . . . . . . . . . 39187

3.21 Schematic of the MOT optics for the balanced beam MOT. The lasers188

are on three different levels, indicated by the colour of the beam path,189

red being at table level, green being at the height of the side windows,190

and purple being above the vacuum chamber. PBS is a polarising beam-191

splitter, λ/2 is a half-wave-plate, and λ/4 a quarter-wave-plate. A pho-192

tograph of this circuit under construction can be seen in figure 3.23 . . . 40193

3.22 Illustration of how the laser beams crossed in the vacuum chamber in194

the balanced beam set up. . . . . . . . . . . . . . . . . . . . . . . . . . . 41195

3.23 A photograph of the optical circuit sketched in figure 3.21 under con-196

struction. The three different levels of optical circuit can be seen. . . . . 41197

3.24 A black and white photograph of one of the first MOTs using the CMOS198

camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42199

3.25 A colour photo of the MOT. . . . . . . . . . . . . . . . . . . . . . . . . . 42200

3.26 2D histograms of the pixel values for the MOT on and off. . . . . . . . . 43201

3.27 Graph of the calibration between optical power increase and pixel sum202

increase. The error on the power increase is the standard deviation of203

20 power measurements taken over 10 s. A quadratic fit was made, to204

f(x) = Ax2 +Bx+ C, with A = -0.0743, B = 0.356 and C = 0.0588. . . 44205

3.28 Graph of number of atoms trapped for different magnetic field gradients. 45206

3.29 Graph of number of atoms trapped for different trap beam intensities. . 45207

4.1 Photograph of the optics table with the prototype atom interferometer. 47208

vii



4.2 Sketch of the vacuum system for the prototype interferometer . . . . . . 49209

4.3 Photograph of vacuum system. . . . . . . . . . . . . . . . . . . . . . . . 49210

4.4 Sketch demonstrating how the combination of circular polarisations adds211

to a rotating linear polarisation [27]. . . . . . . . . . . . . . . . . . . . . 50212

4.5 Relative distribution of stationary atoms between the sub-states for light213

shift for the σ+−σ−. The steady state populations are 4/17, 9/17, 4/17,214

from left to right [27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51215

4.6 Clebsh-Gordon coefficients for a J = 1 ↔ J = 2 [27]. . . . . . . . . . . . 51216

4.7 Graph taken from one of the first studies of optical molasses by Lett et al217

[70]. Demonstrates the effect of magnetic field on the cooling of sodium218

atoms in optical molasses. . . . . . . . . . . . . . . . . . . . . . . . . . . 52219

4.8 Photo of the cancellation coils assembled for testing. . . . . . . . . . . . 53220

4.9 Colour maps of the x, y and z components of the cancellation coils mag-221

netic field, calculated from Biot-Savart’s law. The field from the coils is222

over laid on the Earth’s magnetic field to demonstrate the cancellation.223

For all three plots, the x-axis is the y-position, centred at x = 0.4 m224

showing a range from 0.35-0.45 m in y. The z-axis is the z position from225

0.4-1.2 m. The colour represents the strength of the magnetic field, with226

the scale in mG to the right of each plot. . . . . . . . . . . . . . . . . . 53227

4.10 1-D plots of the x,y, and z components of the cancellation coils magnetic228

field, calculated from Biot-Savart’s law. The field from the coils is over-229

laid onto the Earth’s magnetic field to demonstrate the cancellation. For230

all three plots, the x-axis is the z-position in the range 0.4-1.2 m. The231

y-axis is the magnetic field strength for the three components in mG. . . 54232

4.11 An illustration of the timing sequence for forming molasses. . . . . . . . 55233

4.12 Rubidium energy level diagram with the required frequencies for the234

MOT and the optical molasses. . . . . . . . . . . . . . . . . . . . . . . . 56235

4.13 Schematic of the MOT optics for the prototype atom interferometer. . . 57236

4.14 Photograph of the MOT optics for the prototype atom interferometer. . 57237

4.15 Energy level diagram for optical state selection. Atoms gather in the238

dark state, F = 2, mF = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 58239

4.16 Energy levels for the Raman transitions. . . . . . . . . . . . . . . . . . . 59240

4.17 Photo of the Raman launch platform. . . . . . . . . . . . . . . . . . . . 60241

4.18 Sketch demonstrating the geometry of the alignment tool [73]. . . . . . . 61242

4.19 Photo of the alignment tool. . . . . . . . . . . . . . . . . . . . . . . . . . 61243

4.20 Energy level diagram showing the required frequencies for the 1-D ve-244

locity Raman selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62245

4.21 Raman 1-D velocity selection. Populations of the atoms between the two246

ground states as a function of velocity. . . . . . . . . . . . . . . . . . . . 62247

viii



4.22 Sequence for state selection. . . . . . . . . . . . . . . . . . . . . . . . . . 63248

4.23 Energy level diagram for the state detection. . . . . . . . . . . . . . . . 64249

4.24 Sketch of detection system. . . . . . . . . . . . . . . . . . . . . . . . . . 65250

5.1 Energy level diagram with required transitions for the atom interferom-251

etry with 85Rb. Frequencies derived from the trap laser are illustrated252

with red arrows, and those derived from the pump are blue. . . . . . . . 66253

5.2 An illustration of a Gaussian beam being focused into a beam waist [76].254

Colour represents intensity. Only at narrowest point is the wave-front flat. 67255

5.3 Graph of beam profile for the trap ECDL. The widths were measured256

by fitting a Gaussian to images of the beam taken. The beam-waists257

position on the z axis differ by 23 mm, much larger than AOM the258

beam-waist is supposed to be located in. The lines are fits of a Gaussian259

beam profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69260

5.4 Sketch of an acoustic optical modulator. The angle θ is the Bragg angle,261

and φ is twice that value. In this example the diffracted laser beam is262

increased in frequency. If the AOM was rotated so that incident beam263

is at minus the Bragg angle as this diagram shows, the frequency would264

be decreased. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70265

5.5 Beam profile for the beam at AOM0’s location with a f=500 mm lens,266

in x and y. Both are fit to a Gaussian beam radius. . . . . . . . . . . . . 71267

5.6 Photo of the first and zeroth order diffraction from the AOM. . . . . . . 72268

5.7 Graph of AOM efficiency with angle for a Gooch & Housego 80 MHz269

AOM. The angle of the AOM was rotated and the fraction of the power270

diffracted into the m± 1 orders was measured. At this stage the sign of271

the order was unknown, so they are labelled A and B. . . . . . . . . . . 73272

5.8 Graph of AOM efficiency with RF power for a Gooch & Housego 80 MHz273

AOM. The data is taken for the same diffraction order as order A in 5.7. 74274

5.9 Graph of AOM efficiency with frequency for a Gooch & Housego 80 MHz275

AOM. The data is taken for the same diffraction order as order A in 5.7. 75276

5.10 Sketch of a typical AOM double pass. . . . . . . . . . . . . . . . . . . . 75277

5.11 Sketch of the AOM frequency generation circuit for the trap derived278

frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76279

5.12 Illustration of the lens system that form the beam-waist in AOM3. . . . 76280

5.13 Photo of AOM3. AOM3 is on a precision rotation mount like the other281

AOM’s to get the angle, but also a 2-D precision mount to maximise282

the efficiency of the AOM. This is required because of the small 76 µm283

active aperture of the AOM. The concave mirror is also on a 1-D precision284

translation for similar reasons. . . . . . . . . . . . . . . . . . . . . . . . 77285

5.14 A diagram showing how the Raman beams are launched into a fibre. . . 78286

ix



5.15 Plot of the Raman beams spectra compared with that of the trap beam. 78287

5.16 Sketch of the AOM frequency generation circuit for the pump derived288

frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79289

5.17 Photo of the laser system. All five AOM’s can be seen on rotation290

mounts on the optical table, with the lasers coming in from the laser291

table towards the back of the picture. . . . . . . . . . . . . . . . . . . . 80292

6.1 Optical circuit for correctly aligning circular polarisations. . . . . . . . . 82293

6.2 Intensity of optical molasses over time, as alignment improved. . . . . . 83294

6.3 Frames for the videos of the optical molasses corresponding to those in295

figure 6.2. Each frame is 5.6 mm square. . . . . . . . . . . . . . . . . . . 84296

6.4 Calibration plot between pixel increase and power increase of a power297

meter mounted adjacent to the MOT chamber. . . . . . . . . . . . . . . 84298

6.5 Plot of number of atoms trapped vs magnetic field gradient. . . . . . . . 85299

6.6 Plot of number of atoms trapped vs detuning frequency. . . . . . . . . . 86300

6.7 Plot of number of atoms trapped vs total trap beam intensity. . . . . . . 86301

6.8 Plot of number of atoms trapped vs pump beam intensity as a fraction302

of the maximal value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87303

6.9 An example of a release recapture measurement. Each point represents304

the integrated pixel values in a video frame taken at 400 fps. . . . . . . 89305

6.10 The initial atom cloud size was found by fitting an image of the MOT306

before each release. The cloud was fit with a Gaussian plus a linear307

function to account for background. For this fit σ0 = 0.26 mm. . . . . . 90308

6.11 Graph of temperature measurement using the release recapture technique. 91309

6.12 Plot of temperature of atoms trapped vs magnetic field gradient. . . . . 91310

6.13 Plot of temperature of atoms trapped vs detuning frequency. . . . . . . 92311

6.14 Plot of temperature trapped vs total trap beam intensity. . . . . . . . . 92312

6.15 Plot of temperature trapped vs pump beam intensity as a fraction of the313

maximal value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93314

6.16 Normalised intensity plot for different detunings. . . . . . . . . . . . . . 93315

6.17 Normalised intensity plot for different ∆teddy. . . . . . . . . . . . . . . . 94316

6.18 Normalised intensity plot for different ∆tRamp. . . . . . . . . . . . . . . 94317

6.19 Temperature measurements of the atom cloud after the molasses release318

sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95319

6.20 Stills of the optical molasses. Image marked 0 is the MOT, and each320

image after is 50 ms after. . . . . . . . . . . . . . . . . . . . . . . . . . . 96321

6.21 Beam profile of the trap laser before the beam expander, demonstrating322

it’s astigmatism. The beam is diverging with an angle of 180 mrad in323

the x-axis and 406 mrad in the y-axis. The vertical line marks the point324

at which the beam is equal radius in the x and y-axes. . . . . . . . . . . 96325

x



6.22 Sketch illustrating the position of the three cameras. . . . . . . . . . . . 97326

6.23 Sketch of the optical circuit for the tapered amplifier. . . . . . . . . . . 98327

6.24 Photo of the optical circuit for the tapered amplifier. . . . . . . . . . . . 98328

6.25 Graph of TA optical power as the driving current is varied, for a seeding329

power of 5.2 mW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99330

6.26 Graph of TA optical power launched onto the optical table as the driving331

current is varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100332

7.1 A comparison between the Cockcroft MEIS room laboratory with the333

Oliver Lodge clean room floor, and also an passive vibrationally isolated334

table also at the Oliver Lodge laboratory. . . . . . . . . . . . . . . . . . 105335

7.2 Illustration of a 2-D MOT [88]. . . . . . . . . . . . . . . . . . . . . . . . 107336

7.3 Photograph of the 2-D MOT. . . . . . . . . . . . . . . . . . . . . . . . . 108337

xi



Authors Contribution338

In 2011 I started my PhD working towards an experiment proposed by the Nobel339

Laureate, Martin Perl, to perform a parameter space search for the dark contents of340

the vacuum. My PhD has involved developing a prototype atom interferometer for this341

experiment. I essentially entered an almost empty lab, and built it from a hand-full342

of optical components and a laser to where it is today. Since initially starting work,343

many members have joined the group for which I am deeply grateful for their help and344

collegiality.345

Initially I worked on developing the magneto-optical trap (MOT) apparatus (now in346

the third iteration – the first was an unsuccessful pyramidal MOT and is not included347

in this write-up but provided many valuable lessons), to act as a cold atom source348

for an atom interferometer. This work is presented in chapter 3. The laser sources,349

magnetic coils, warm atom source implemented here are used daily on the experiment.350

I also developed the MOT characterisation software and atom number measurements.351

This was realised in March 2013.352

Chapter 4 presents the design of the prototype atom interferometer. The majority353

of the design was done in the summer of 2013 as a group effort, and the experiment354

was allocated a lab in October 2013. In this section I was responsible for the design355

and implementation of the MOT and molasses sections. This involved designing the356

optical circuit for the MOT and the magnetic field cancellation coils, which I also357

implemented. I also was involved in the preparation of the lab, and the assembling358

the vacuum chamber, I worked alongside colleagues to prepare and commission the359

prototype.360

The laser system described in chapter 5 was designed alongside the prototype atom361

interferometer. I was involved in implementing this laser circuit, transferring the two362

laser sources from the MOT experiments, implementing the optical frequency control363

circuits and commissioning the AOMs. Finally, the measurements, as well as the mo-364

lasses development presented in chapter 6 is also my own work.365

xii



Acknowledgement366

First I must thank Jon Coleman, for giving this opportunity, and his constant support367

throughout my PhD. It amazes me to think that when I started working with Jon,368

there was only a few optics on an optical bench, and through Jon’s determination there369

is a lab full of equipment and a group of people working on it. I must also thank370

Carl Metelko, who has been like a second supervisor since joining the experiment. The371

experiment is a team effort and I thank everyone who has contributed over the years,372

but in particular Joe Heffer and David Morris, who I spent many hours in the lab with373

and share more in-jokes with than I can count.374

I would like to thank the whole of the particle physics group for my time spent in375

Liverpool. It was an exciting time be part of a particle physics group and the their376

support for the experiment was greatly appreciated. The workshop deserve a special377

mention for all the odd jobs they did for me over the years and also their constant378

humour. I must also thank the Cockcroft institute and Swapan for providing the379

funding for my PhD.380

Whilst there are far too many to name, as they span seven or eight years of intake,381

my fellow PhD students were integral to my experience of Liverpool. I moved to382

Liverpool not knowing anyone and there was a really sense of community amongst the383

students. I’m going to look look back fondly on the trips to the AJ and the 5-aside, I384

wish you luck in the future Bubble Chamber football, you can’t lose in the final every385

year forever! Matt Murdoch deserves a special mention for putting up living with me386

for three years, cheers!387

Thanks to my family. Thank you, Mum, Dad, Sam, Edwin, for the support and388

interest in what I’m doing.389

And finally, Martin Perl, is unfortunately no longer with us, came up with the390

concept for the experiment. It was a pleasure meeting you and collaborating.391

xiii



Chapter 1392

Introduction and Motivation393

1.1 Knowledge of Dark Energy in Modern physics394

Current cosmological observations indicate that the universe is spatially flat, consisting395

of 4.9% normal matter (as described by the standard model of particle physics), 26.8%396

dark matter and 68.3% dark energy [1]. These conclusions are arrived at by taking data397

from cosmological observations, such as the cosmic microwave background (CMB) [2],398

baryonic acoustic oscillations (BAO) [3] and type 1A supernovae [4], and fitting them399

to cosmological models.400

The best fitting model to the data is the Λ-CDM model, a universe with a cosmo-401

logical constant and cold dark matter. The model is constructed from general relativity402

using the principle that the universe is homogeneous and isotropic on a cosmological403

scale [5]. In this model, dark energy is treated as the cosmological constant, a constant404

energy density pervading all space, exerting a negative pressure on the universe, caus-405

ing an accelerated expansion. This model is chosen, being the simplest that describes406

the data.407

Other theories attempt to explain dark energy, and are seeking experimental vali-408

dation. Current observations are not precise enough to distinguish them from the cos-409

mological constant [5]. The possibility of a modified gravity theory explaining modern410

cosmological observations has been suggested, but no current model is more convincing411

that general relativity [5]. Little is known about dark energy other than its density,412

and some constraints on the equation of state of dark energy. The term dark energy413

is a label for a lack of knowledge in the area and there is currently no fundamental414

understanding of dark energy.415

More precise and diverse cosmological measurements are planned for the future,416

which aim to shed light on the nature of dark energy [5]. For example, the Polarized417

Radiation Imaging and Spectroscopy Mission (PRISM) is a planned space telescope418

mission by the European Space Agency [6], which will measure the polarisation of419

the CMB across the whole sky. Another planned experiment is the Large Synoptic420

Survey Telescope (LSST), which is a wide-field survey experiment which will observe421
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the available sky every few nights, and will provide data to study dark energy through422

observations of BAO, type 1A supernovae and gravitational lensing [7].423

In addition to increasingly precise measurements, efforts are being made to discover424

new physics in cosmology. Dark matter is known to make up 26.8% of the universe, but425

has yet to be measured through any means other than it’s gravitational effect. There426

are three approaches to discovering more about dark matter: astronomical observation,427

production at a particle collider and direct detection. The first of these is often model428

dependent, and involves detecting the gamma rays emitted from the annihilation of429

dark matter particles [8]. Data analysis from the ATLAS and CMS detectors at the430

large hadron collider search for missing transverse momenta in collisions, where energy431

and momentum are carried away by dark matter particles in high energy collisions [9].432

There is also a large number of experiments attempting to directly detect the recoil433

energy from dark matter particles colliding with detectors [10]. None of these searches434

have yet to have found any convincing signals.435

A recent breakthrough in cosmology has been made by advanced LIGO’s detection436

of gravitational waves from the collapse of a binary black hole system [11]. An event437

with a signal to noise ratio greater than twenty was seen within the first hour of running438

the two interferometers simultaneously, indicating that a new field of gravitational wave439

astronomy may be a powerful tool to observe the universe with [12]. This situation will440

improve in the near future with advanced VIRGO due to be at full sensitivity in 2018441

[13], and a third interferometer in the advanced LIGO network is planned to be located442

India, which will allow sources of gravitational waves to be triangulated. Gravitational443

waves have opened up a new way to view the universe and are likely to provide key444

evidence to understanding cosmology.445

The subject of this thesis is an experiment proposed by Martin Perl, the late Nobel446

laureate, as a terrestrial search for dark energy [14]. Whilst the dark energy density447

is small, it is non-zero at 6.91 ×10−27 kg/m3, and may be detectable. In comparison,448

an electric field with the same energy density would be 12 V/m, which is detectable in449

a lab using a SQUID (super-conducting quantum interference device) [15]. Unlike an450

electric field, the dark energy field cannot be removed, so there is no way to compare451

measurements with and without its presence. However, if dark energy has spatial452

fluctuations, these may be detectable, if they interact with a measurement device in453

some non-gravitational way.454

Whilst the original motivation of the experiment was to detect dark energy ter-455

restrially, anything that meets the criteria above could be detected by the proposed456

experiment, including any dark contents of the vacuum (DCV). Similarly there could457

be spatial inhomogeneities in the DCV on the terrestrial scale, which on the cosmo-458

logical scale would appear homogeneous, much in the way that matter and radiation459

are inhomogeneous on a terrestrial scale but on a large enough cosmic scale appear460
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homogeneous. This is illustrated in figure 1.1, with a smooth DCV distribution on the461

cosmological scale may have fluctuations on the lab scale.462

This gives two requirements on any dark contents of the vacuum (DCV) for it to463

be detectable in the lab:464

• The dark contents of the vacuum must be spatially inhomogeneous on the lab465

scale.466

• The dark contents of the vacuum must interact with matter in some non gravi-467

tational way.468

Figure 1.1: Figure illustrating how inhomogeneities on the terrestrial scale can appear
homogeneous on the cosmological scale.

Interactions of the DCV with a measurement device may produce detectable forces.469

The precision these forces can be measured to sets the threshold limit on the detection470

of the DCV using this method.471

1.2 Atom Interferometry472

Light pulse atom interferometers are precision devices for measuring forces. The first473

such device was developed by Kasevich in 1992 [16], and was used to measure the local474

gravitational force. Since then, atom interferometers have been used in a wide range475

of precision applications, including gravimeters [17], gyroscopes [18], measurements476

of fundamental parameters such as Newton’s gravitational constant [19] and the fine477

structure constant [20]. They are also being developed for practical applications such478

as geophysics [21] and navigation [22].479

An atom interferometer can be described in analogy with a light based interferom-480

eter, illustrated in figure 1.2. In a Mach-Zehnder interferometer a beam is split into481
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two, the two beam parts travel down different paths, mirrors cause their trajectories to482

recombine on another beam-splitter, where the two parts of the beam interfere. The483

beam interference depends on differences between the two beam paths. In a light in-484

terferometer, laser beams are interfered, in an atom interferometer, it is the atoms’485

wave-like behaviour that interferes.486

Figure 1.2: Figure illustrating the analogy between a light and an atom interferometer.
On the left a sketch of an Mach-Zehnder light interferometer and on the right, a sketch
of the paths taken by atoms in an atom interferometer as they interact with lasers
beams. Three laser pulses at T = 0, T and 2T, which ‘splits’ the atomic wave-packet
into a superposition, ‘mirror’ the atomic states, and ‘recombine’ the atoms, where the
interference is detected.[14].

Laser pulses stimulate transitions between two states of the atoms. Pulses that split487

the atoms into a superposition of the two states are ‘beam-splitters’ and pulses that488

reverse the state population are ‘mirrors’ for an atom interferometer. The transition489

from one state to another is accompanied with a momenta transfer, so when atoms are490

put into a super-position of two states, the two parts of the superposition have different491

momentum and begin to spatially separate.492

In this work, stimulated Raman transitions transfer atoms between the two states.493

Raman transitions are two photon transitions via a virtual state [23]. The Raman494

transitions create Rabi cycles in which the atoms are all transferred from one state to495

the other state and back in a full cycle (2π) [24]. The ‘beam-splitter’ Raman transitions496

are a quarter of this cycle (π2 pulses), and the ‘mirror’ pulses are half of this cycle (π497

pulses).498

For an atom interferometer to function, the lifetime of the states used need to be long499

compared to the interferometry time, which can be up to the order of seconds. Ground500

states of atoms with hyperfine splitting are suitable candidates for atom interferometry.501

The steps to an atom interferometer are illustrated in figure 1.3, with red and blue502

denoting atoms in the different hyperfine split ground states, and are as follows:503
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Figure 1.3: The diagram illustrates the steps to an atom interferometer. Blue and red
atoms represent atoms in different atomic states. Arrows represent laser beams. [25]
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1. Prepare cold source of atoms. The interferometer requires cold atoms, so they504

do not escape the confines of the laser beams during the interferometry. With505

beams of order a centimetre, and the time scale of the interferometry being of506

order a second, the atoms must have a thermal velocity of about one centimetre507

per second, which is at the micro-Kelvin temperature scale. This is achieved508

using laser cooling techniques. First a magneto-optical trap (MOT) laser cools509

and traps a cold source of atoms. Using this technique the atoms are lowered510

to approximately hundred micro-Kelvin [26]. Further cooling is implemented511

in an optical molasses stage, utilising polarisation gradient cooling to lower the512

temperature of the atoms to the micro-Kelvin level [27].513

2. Atoms enter free fall. The atoms are released from the optical molasses, and514

start to free fall under gravitational acceleration.515

3. State preparation. All the atoms are in the same ground state after the release516

from the optical molasses, but are distributed amongst the magnetic sub-states.517

The atoms are optically pumped into the magnetically insensitive mF = 0 Zeeman518

sub-state, to minimise the effect that magnetic fields have on the atoms. Addi-519

tionally a 1-D velocity sub-selection is applied in the interferometry axis. The 1-D520

velocity profile of the remaining atoms is of order ten nano-Kelvin [24]. This ve-521

locity selection increases the contrast in the interferometer fringes by minimising522

the Doppler shift effect across the velocity profile.523

4. Raman π
2 ‘beam-splitter’ pulse. This is the first laser pulse of the interferom-524

etry sequence. Counter-propagating laser beams stimulate a Raman π
2 pulse,525

putting the atoms into a super-position of the two ground states. The part of the526

wave-function that is transferred into the other ground state receives a momentum527

kick.528

5. Interrogation time T . The two parts of the wave-function have different mo-529

menta and start to spatially separate for time T .530

6. Raman π ‘mirror’ pulse. A Raman π pulse is applied to the atoms, reversing531

the wave-function, and giving both parts of wave-function a momentum kick in532

opposite directions.533

Since the first Raman pulse, the atoms have accelerated under gravity, increasing534

their speed by gT . As such the frequencies of the Raman beams have to be ad-535

justed so they are in resonance with the atoms. This alteration of the frequencies536

is done continuously throughout the interferometry sequence, linearly increasing537

the frequency at rate, and is called the chirp rate.538

7. Interrogation time T The two parts of the wave-function propagate for a time539

T , where at time 2T they are once again at the same point in space.540
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8. Raman π
2 ‘beam-splitter’ recombination pulse. The final π

2 Raman pulse is541

applied, transferring the atoms into the same state. However the two parts542

of the wave-function have travelled different paths, and experienced different543

phases from the laser beams. The phase difference between the two paths is544

∆φ = keffgT
2 +φlaser. The parameter keff is the momentum transferred by the545

Raman lasers pulses, g is the gravitational acceleration and φlasers a systematic546

controllable phase of the lasers.547

9. Interference detection. The fraction of the atoms in the initial ground state, Pg1 ,548

is now detected, determined by the phase difference between the wave-packets549

that travelled different paths. This is related to the phase on the lasers by Pg1 =550

1
2(1 + Ccos(∆φ)), where C is the contrast of the atomic fringes [25].551

Atomic fringes can be traced out by varying the chirp rate of the Raman beams,552

illustrated in figure 1.4. If the chirp rate does not cancel the Doppler shift, the π553

and π
2 pulses are no longer the correct fraction of the Rabi cycle, giving a periodic554

phase difference. Doing this for multiple times T , fringes of different frequency555

are traced out. For the chirp rate which exactly cancels the Doppler shift due to556

the gravitational acceleration, all of the atomic fringes will have a maximum at557

the same chirp rate. This method allows the chirp rate which cancels the Doppler558

shift to be measured. The gravitational acceleration may be calculated from this559

chirp rate from the Doppler shift df
dt = 2f0

g
c , where f0 is the frequency difference560

required to drive the Raman transitions for stationary atoms.561

S
ta

te
 p

o
p
u
la

ti
o
n

Chirp rate

Expected fringes traced out by varying chirp rate 
 for different interferometry times.

Pulse seperation T
Pulse seperation 0.75 T
Pulse seperation 0.5 T

Figure 1.4: An illustration of the expected fringes from an interferometer, when varying
the chirp rate for different interferometer times T
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Implementing the above techniques demands several technical challenges. A sophis-562

ticated laser system is required to generate all of the frequencies required to manipu-563

late the atoms in the interferometer. In particular, the Raman laser system is required564

to have a controlled phase relationship between the two lasers and low phase noise.565

Laser beams need to be delivered into the experimental chamber, with the precisely566

controlled polarisation and alignment via the experiments optical system. The experi-567

mental chamber itself needs to be at ultra-high vacuum to reduce warm gas molecules568

colliding with the carefully prepared atoms. Whilst reducing background gases in the569

experimental chamber, the atoms required for the interferometer must be introduced570

into the chamber. Finally several techniques used require the generation of magnetic571

fields (via electromagnets). These will be discussed in the contents of this thesis.572

1.3 Proposed Experiment573

Atomic interferometer gravimeters of length one metre have demonstrated a long term574

measurement of g to 10−10 g [17], with single shot measurements demonstrating preci-575

sion of 6.7× 10−12 g [28]. If two atom interferometers were in the same noise envelope,576

but spatially separated, making simultaneous measurements, they should measure the577

same phase difference, ∆φA and ∆φB (if the influence of gravity was the same on both578

devices). In this situation subtracting the two phase differences gives the signal,579

∆Φ = ∆(∆φ) = ∆φA −∆φB. (1.1)

If the two interferometers are truly in the same noise conditions, this value will be580

zero. However, if a force due to DCV is acting on one interferometer and not the other,581

this would effect the difference in phase differences, and ∆Φ 6= 0. This is illustrated in582

figure 1.5. If the DCV is what manifests as dark energy on a cosmological scale, it can583

be expected to be moving with respect to the experiment, as the experiment is not in an584

inertial frame. The Earth is in motion with respect to the cosmic microwave background585

at around 400 km/s. As such, the interferometers are going to be averaging the effect586

of any DCV that it sweeps through in the time it takes to make a measurement, and587

the signal will be noise like in nature. As such the RMS of ∆Φ will be analysed for588

anomalous noise (the RMS will be taken because ∆Φ can be both negative or positive).589

With both interferometer in the same noise envelope, subtracting the measurements590

should cancel common noise. Two main sources of noise on an atom interferometer are591

vibrational noise, and phase noise on the Raman beams [29]. Two interferometers will592

share common vibrations if mounted on the same optical table, and will share common593

phase noise if they employ the same laser beam.594
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Figure 1.5: On the left, two atom interferometers measure the same phase difference,
so ∆Φ = 0. On the right, there is some dark content in interferometer B, resulting in
a non-zero signal. ∆Φ 6= 0.
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Chapter 2595

Atom Interferometry Theory596

This chapter introduces the theory necessary to make a measurement of the local grav-597

itational field strength. The theory presented here is based on a path integral approach598

[30], but there are other methods, such as Bordé’s 5-D optics technique [31], [32]. The599

key points to the method are introduced, applied to a particle in gravitational field.600

Light interactions are introduced and combined with a particle in a gravitational field601

to calculate the interference between particles that travel along different paths in a602

Mach-Zehnder interferometer. The limitations of the theory described are discussed.603

The final section of this chapter is describing a parametrisation of the DCV, and a604

discussion of the proposed experiments sensitivity to this.605

2.1 Path Integral Approach to Atom Interferometry606

The physics of an atomic interferometer is very close to the classical limit; the action607

is much larger than h̄ and small variations from the classical path result in destructive608

interference. In a Mach-Zehnder atom interferometer, the two super-positions of the609

atoms travel along the classical paths to be recombined at the end of the interferom-610

eter. This makes a path integral approach appropriate as the calculation is reduced611

to calculating the integrals along the classical paths. The approach presented here is612

based on the paper by Storey and Cohen-Tannoudji in [30], for systems described by613

quadratic Lagrangians.614

The wave-function of a particle that propagated from position za at time ta to the615

coordinates zbtb is given by616

ψ(zb, tb) =

∫
dzaK(zbtb, zata)ψ(za, ta) (2.1)

where ψ(za, ta) is the initial wave-function, and K(zbtb, zata) is the propagation op-617

erator. The propagation operator comprises of a term F (zb, tb), which is the functional618

integral over all possible paths between point za and zb and a phase factor represent-619

ing the phase accumulated by the atoms whilst propagating. The case of quadratic620
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Lagrangians has a simplified solution, where the functional integral only affects the621

amplitude of the ψ(zb, tb), and does not effect the phase on the atoms [30]. The prop-622

agation operator is given by623

K(zbtb, zata) = F (tb, ta)exp
{ i

h̄
Scl(zbta,zata)}. (2.2)

The phase factor is dependent on the action, Scl, which is calculated along the624

classical trajectory the particle would take,625

Scl =

∫ ta

tb

dtL[z(t), ż)], (2.3)

where L[z(t), ż)] is the Lagrangian. As the action is much larger than h̄, the stationary626

phase approximation means that only the classical trajectories taken by the atoms and627

only the starting position contributes to the integral over za in equation 2.1.628

The phase of the atoms at zb, tb is given by the phase of the initial wave-function629

and the phase accumulated by the atoms due to the action. Typically the atom’s initial630

wave-function will be a plane wave, as they can suitably be modelled as free particles.631

2.2 Applied Path Integrals632

This section applies the path integral formalisation to a particle in a gravitational field,633

introducing light interactions for a two level atom and combines these two results to634

apply it to a Mach Zehnder atom interferometer.635

2.2.1 Classical action for particle in a gravitational field636

In the interferometer, the atoms free fall through the vacuum. Consider a particle637

mass M in a gravitational field strength g, moving in only the vertical axis, z. The638

Lagrangian is639

L(z, ż) =
1

2
Mż2 −Mgz. (2.4)

The classical paths velocity and position is,640

v(t) = va − g(t− ta), (2.5)

and641

z(t) = za + va(t− ta)−
1

2
g(t− ta)2. (2.6)

At the final time, tb, this gives642

va =
zb − za
tb − ta

+
1

2
g(tb − ta), (2.7)

which can be used to show that the action along the classical path is643
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Scl(zbtb, zata) =

∫ tb

ta

dt[
1

2
Mż2 −Mgz]

=
M

2

(zb − za)2

(tb − ta)
− Mg

2
(zb + za)(tb − ta)−

Mg2

24
(tb − ta)3

(2.8)

The phase accumulated along the classical path is given by i
h̄Scl. This result can644

be used to calculate the phase accumulated in the action for a particle in a uniform645

gravitational field, such as the particles in the interferometer.646

2.2.2 A two level atom crossing a travelling laser wave647

In the interferometer, stimulated Raman transitions transfer the atoms between the648

two ground states, labelled here as α and β. This section discusses the phase difference649

accumulated from an interaction at a space-time point of z1t1. The atom is assumed650

to have well defined momentum, and internal state, α or β. There are four possible651

interactions that can occur, summarised in figure 2.1 [33] [34] [35]. The effect of the652

laser interaction changes the atoms wave-function, depending on the initial and final653

states with one of these four factors:654

Uβαexp
{i(kLz1−ωLt1−φ)}(α→ β)

Uαβexp
{−i(kLz1−ωLt1−φ)}(β → α)

Uαα(α→ α)

Uββ(β → β).

(2.9)

These correspond to a photon being absorbed by an atom, which gains momentum655

h̄kL and is transferred from state α to state β, a photon being emitted by an atom,656

which loses momentum h̄kL and is transferred from state β to state α, an atom that657

remains in state α and finally an atom that remains in state β respectively. Parameters658

kL, ωL and φ are the wave-number, frequency and phase respectively of the laser. Uij659

is the transition amplitude from internal state j to state i. The exponential factors660

exp {±ikLz1} correspond with a change of momentum ±h̄kL in the laser propagation661

axis.662

An example can be seen in figure 2.2, where a particle in internal state α was to663

travel from z0t0 to z1t1, where it interacts with a laser, transferring into state β. It664

then propagates to z2t2. At z2t2 the wave-function is φB(z2, t2) is the product of the665

initial wave-function, a phase shift due to the free propagation before the interaction,666

a factor due to the laser interaction, and a phase shift due to free propagation after the667

interaction. The result is668

ψβ(z2, t2) = exp{iScl(z2t2,z1t1)/h̄}Uβαexp
{i(kLz1−ωLt1−φ)}

×exp{iScl(z1t1,z0t0)/h̄}ψα(z0, t0).
(2.10)
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Figure 2.1: The four different possible interactions for a travelling laser wave and a two
level atom: (a) atom absorbs a photon gaining momentum h̄kL and is transferred from
state α to state β, (b) atom emits a photon losing momentum h̄kL and is transferred
from state β to state α, (c) atom remains in state α, (d) atom remains in state β [30].

Figure 2.2: An example of a particle propagation with a laser interaction [30].

These rules are applied in section 2.2.3 to calculate the phase difference from the669

laser interactions in a Mach-Zehnder atom interferometer.670
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2.2.3 Evolution of phase for a particle in an atom interferometer671

Atoms are transferred between the two internal hyperfine ground states of an atom,672

which will be referred to as g1 and g2, using stimulated Raman transitions. Three pulses673

are applied to separate the atomic wave-packet into two coherent parts and recombine674

them. This is achieved with three Raman pulses, delivered by two vertical counter-675

propagating laser beams, with wave-numbers, frequencies and phases ki, ωi and φi.676

The subscript i = 1, 2 to denote the two different beams.677

Contributions to the phase come from the phase accumulated by the action, and678

that imparted to the atoms by the laser interactions. The contribution from the action679

can be calculated along the classical paths of the atoms.680

The first pulse, at t = 0, is a π
2 pulse, which splits the wave-packet into two compo-681

nents with momentum difference h̄(k1−k2). The second pulse, at t = T is a π pulse and682

reverses the momentum and internal states of the two components of the wave-packet.683

Finally, at t = 2T , the two components spatially overlap and another π
2 recombines684

them coherently. The classical space-time paths can be seen in figure 2.3685

Figure 2.3: Classical paths of the atoms in the interferometry sequence. Red paths
represent the first ground state, blue paths represent the second.

The phase due to the action, δφprop is the difference between the actions for the686

two classical paths.687

δφprop = Scl(AC) + Scl(CB)− [Scl(AD) + Scl(DB)] (2.11)

From equation 2.8, the action along one path is (the third term in 2.8 is proportional688

to the time difference cubed, which is constant and therefore cancels),689
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Scl(AC)− Scl(AD) =
M

2T
{(zC − zA)2 − (zD − zA)2 − gT 2[(zC + zA)− (zD + zA)]}

=
M

2T
(zC − zD)(zC + zD − 2zA − gT 2).

(2.12)

Similarly,690

Scl(CB)− Scl(DB) =
M

2T
(zC − zD)(zC + zD − 2zB − gT 2). (2.13)

So691

δφprop =
M

T
(zC − zD)(zC + zD − zA − zB − gT 2). (2.14)

It can be shown using equation 2.6 that692

zC + zD − zA − ZB − gT 2 = 0. (2.15)

This nulls the second parenthesis, thus693

δφprop = 0. (2.16)

The stimulated Raman transitions affect the phase, with the following effective694

parameters:695

keff = k1 − k2, ωeff = ω1 − ω2, φeff = φ1 − φ2. (2.17)

The contribution from path ACB is696

U (3)
g2g2

U (2)
g2g1

exp{i[keffzC−ωeffT−φII ]}U (1)
g1g1

. (2.18)

Along the path ADB the contribution is697

U (3)
g2g1

exp{i[keffzB−2ωeffT−φIII ]}

×U (2)
g1g2

exp{−i[keffzD−ωeffT−φII ]}

×U (1)
g2g1

exp{i[keffzA−φI ]}.

(2.19)

where U (1), U (2) and U (3) are the transition amplitudes at t = 0, T and 2T respec-698

tively, and φI , φII and φIII are the values of φeff at these times.699

The phase difference between the two arms of the interferometer is just the phase700

difference due to the laser interactions, which is701

δφlaser = δφtot = keffgT
2 + φI + φIII − 2φII , (2.20)
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The wave-functions of the two possible routes of the particles will interfere. The702

superposition of the wave-function of the two paths, |ψg1 > is703

|ψg1 >= |ACB > +|ADB >, (2.21)

where |ACB > and |ADB > are the wave-functions for the paths ACB and ADB re-704

spectively. Both paths originate from the wave-function (modelled by a plane wave), so705

the only contribution to phase is from the Raman transitions. Thus the wave functions706

can be summarised to707

|ACB >= N1exp
{i[keffzC−ωeffT−φII ]}

|ADB >= N2exp
{i[keff (zB+zA−zD)−ωeffT−φI−φIII+φII ]} (2.22)

where N1 and N2 are amplitudes. The probability of the particle being measured708

in ground state g1 is709

=< ψg1 |ψg1 >

=< ACB|ACB > + < ADB|ADB > + < ACB|ADB > + < ADB|ACB >

= |N1|2 + |N2|2 +N∗1N2exp
{i[keff (zB+zA−zD−zC)−φI−φIII+2φII ]}

+N1N
∗
2 exp

{−i[keff (zB+zA−zD−zC)−φI−φIII+2φII ]}

= |N1|2(2 + exp{i[keff (zB+zA−zD−zC)−φI−φIII+2φII ]}

+ exp{−i[keff (zB+zA−zD−zC)−φI−φIII+2φII ]}).

(2.23)

With ideal Raman pulses, the chance of the particle travelling either path should710

be equal so N1 = N2. Using this and equation 2.15,711

< ψg1 |ψg1 >= 2N2
1 (1 + cos(keffgT

2 + φI + φIII − 2φII)) (2.24)

If the Raman laser phase is known, the population ratio of atoms in state g1 to712

total particles can be related to the gravitational acceleration along the axis of keff .713

The maximal population ratio is unity, so714

Pg1 =
1

2
(1 + cos(keffgT

2 + φI + φIII − 2φII)). (2.25)

For any population ratio measurement, there are multiple solutions for g. The715

phase difference for a 1 second interferometry sequence is keffgT
2 ' 1.58× 106, which716

is many times 2π. The consequence is that a measurement of the gravitational field717

strength cannot be made from a single population measurement. This ambiguity can718

be resolved as discussed in section 1.2.719

The precision of the phase difference measurement is proportional to T 2, so the720

precision of the device is proportional to the length of the interferometer.721
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2.3 Discussion of limitations722

In the theory presented, simplifications of the physics were made. For example, the723

Lagrangian assumes a constant gravitational acceleration over the height of the inter-724

ferometer, and the laser interactions are assumed to be instantaneous as opposed to725

finite in length. The experiment is also assumed to be in an inertial frame.726

2.3.1 Non uniform gravitational acceleration727

One assumption made was that the gravitational acceleration is constant along the728

length of the interferometer. There would be a gravity gradient over the height of the729

interferometer. Atoms on the higher path experience a smaller gravitational acceler-730

ation than the atoms on a lower path. The result is that the paths do not perfectly731

recombine at the bottom of the interferometer. The atoms still interfere though, as the732

wave-packets are spatially extended. However there is an associated phase difference733

with this separation of734

∆φsep =
1

2h̄
p.(∆xB), (2.26)

where p is the the mean momentum of the two wave-packets and ∆xB is the sepa-735

ration between the two wave-packets [36] [35]. This is of order a thousand radians, and736

is a systematic shift depending on the gravity gradients in the laboratory.737

2.3.2 Finite Length Raman Pulses738

The calculation presented assumed that the Raman light interactions are instantaneous.739

In reality they last a duration of tens of microseconds. A more accurate calculation740

that that presented can be seen in [37]. The correction to the phase is741

∆φ = δφtot = keffgT (T + 2τ) + φI + φIII − 2φII , (2.27)

where 2τ is the length of a π pulse. With Raman pulse of the order a microsecond,742

the phase difference is of order one radian.743

2.3.3 Coriolis Effect744

The experiment is on the Earth’s surface, which is a non-inertial frame. A phase745

difference emerges in the action of a particle free falling in a rotating frame. This can746

be seen in [30] and [38], and is given by747

∆φrot = −2Ω∆vEWkeffT
2cos(θlat), (2.28)

where Ω is the angular velocity of the Earth, which is 7.29 × 10−5rad/s, ∆vEW748

is the velocity difference between the higher and lower paths in the interferometer,749
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going east to west, and latitude θlat, which is 53.40◦ in Liverpool. This will be a very750

small phase difference shift in the prototype, but in a conjugate pair of interferometers751

could be significant, depending on the configuration (i.e. if the two interferometers are752

separated vertically or horizontally).753

2.4 Parametrisation of the DCV754

Martin Perl et al. presented a parametrisation of the DCV based on assumptions that755

terrestrial scale fluctuations in the DCV behave as dark energy on the cosmological756

scale [14]. That parametrisation is as follows. Variations of the dark contents of the757

vacuum can be expressed as a potential written in it’s Fourier components,758

U(X) = Re

∫ ∞
0

mu′(k)eikXdk, (2.29)

where m is the mass of the test particle, u′(k) is amplitude of the Fourier coefficient,759

X is a position and k is the wave-number. The Re denotes it is the real part, which will760

be taken as implied from now on. Also U(X) will be restricted to one Fourier component761

u(k). Whilst it is unknown what the interaction is, it is expected to be proportional to762

mass (e.g. baryon number is proportional to mass). This model can be consistent with763

current cosmology, with a suitable low frequency cut-off (long wavelength), the current764

constant dark energy density on the cosmological scale can be recovered.765

Any dark contents of the vacuum (DCV) are unlikely to be at rest relative to the766

Earth. If there is a rest frame it is likely to that of the CMB, which moves at 369767

km/s relative to Earth. If the Earth moves through this frame with velocity v, then768

X = x− vt, so769

U(x) = mu(k)ei(kx−ωkt) (2.30)

where ωk = kv. An approximation can be made if the apparatus is assumed to be770

much smaller than 1/k to obtain,771

U(x) = mu(k)eikx ≈ mu(k)eikx[1 + ik(x− x0)− 1

2
k2(x− x0)2], (2.31)

where x0 is the lowest point of the interferometer. The constant term has spatial772

dependence and will cancelled out over the two paths the atoms take in the interfer-773

ometer. The classical paths are774

x1(t) =

{
(vi + vr)t− 1

2gt
2 t < T,

vrT + vit− 1
2gt

2 t > T
(2.32)

and775
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x2(t) =

{
vit− 1

2gt
2 t < T,

vr(t− T ) + vit− 1
2gt

2 t > T,
(2.33)

where vi is the initial velocity of the atom and vr is the recoil velocity. For the776

paths, the phase difference is given by the difference in action between the two paths,777

φ =
1

h̄
(

∫
Path1

U(x, t)dt−
∫
Path2

U(x, t)dt). (2.34)

For two interferometers, the difference in the phase differences is778

∆Φ = −4
L

v

vr
v

mu(k)

h̄
sin2(

kvT

2
)cos(ωkt0). (2.35)

In this equation, t0 is the time when the central interferometer pulse is applied. L779

is the separation between the two interferometers. The recoil velocity of the atoms is780

related to the momenta transferred by the Raman pulses, giving vr = nh̄kopt/m, where781

n is the number of photon momenta transferred by the beam-splitter, and kopt is the782

laser wave-number, which can be substituted in783

∆Φ = −4
L

v

nkopt
v

u(k)sin2(
kvT

2
)cos(ωkt0). (2.36)

Note that u(k)k ≡ a(k), which is the acceleration at x0 of the test particle due to784

the DCV, hence785

∆Φ = −4
Lnkopta(k)

vωk
sin2(

kvT

2
)cos(ωkt0). (2.37)

2.4.1 Application to Dark Energy’s Parameters786

The precision to which ∆Φ can be measured to is limited by the precision resolved by787

the two individual interferometers. If the interferometers can reach a precision of σ∆φ,788

then deviations in ∆Φ exceeding this would be indications of DCV interacting with the789

atoms. These deviations would have to pass statistical analysis, passing the traditional790

three standard deviations for an indication of new physics and five standard deviations791

for a discovery.792

Examining equation 2.37 shows that the size of signal from DCV fluctuations can793

be increased by increasing the separation of the two interferometers, L. Initially after794

commissioning one atom interferometer, techniques such as Ramsey-Bordé interferom-795

etry pulse sequences or juggling techniques could be used to create a conjugate pair of796

interferometers. A Ramsey-Bordé interferometer has a pulse sequence of four π
2 pulses797

separated by T , T ′ and then T , and is illustrated in figure 2.4, where two interferometry798

diamonds can be seen. A conjugate pair of interferometers is created, and separations799

of 350 µm on a 1 m device have been shown [39].800
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Figure 2.4: Figure illustrating a Ramsey-Bordé interferometer [39].

Juggling can be used in atomic fountain interferometers, where two clouds of atoms801

launched to different heights, carefully timed so they reach the apex of their trajectories802

at the same time. This makes full use of the interferometry pipe, allowing T to be803

twice as long. A conjugate pair can be created by launching two clouds to different804

heights, and has achieved a separation of 35 cm in a 1 m device [40]. Separations805

larger than this could be achieved by building two interferometers. Keeping them in806

the same mechanical noise envelope would become increasingly difficult, the larger the807

separation. Larger separations would require lower frequency noise control which is808

difficult to isolate from, due to it’s sources being from seismic motion.809

Larger momenta transfer by the interferometry pulses would also increase the size of810

the signal. The Raman pulse interferometer describe in this work transfers two photon811

momenta, but multi-photon Bragg pulses have been used to transfer 102 h̄k in the812

interferometer pulses [41].813

Increasing the precision ∆Φ can be measured to increases the sensitivity to small814

accelerations. The precision ∆φ can be measured to is given by the precision of the815

individual interferometers. Interferometers can operate at the shot noise limit, where816

the error is limited by the counting statistics on the number of atoms [42]. Therefore,817

increasing the number of atoms in the interferometer increases the phase difference818

measurement precision. Techniques such as spin state squeezing uses entanglement to819

allow measurements beyond these limits [43].820

The signal ∆Φ is dependent the length of time T , which changes the periodicity of821

the sine function. The maximum value of T is fixed by the length of the interferometer,822

but short times can be used. Devices with a 1 m height are common [44] [45] with823

T = 260 ms. These devices typically measure with milli-radian precision. 10 m inter-824

ferometers being developed [46] [47] with have a time T = 1.42 s, and have precision825

approaching micro-radians.826

Figure 2.5 is a graph of the acceleration caused by the DCV for a specific Fourier827

component of the fluctuations ωk. The curves are for ∆Φ signal of 1 mrad for a pair of828
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1 m interferometers in the red curve, and for a ∆Φ signal of 1 µrad for a pair of 10 m829

interferometers in the green. Both curves are for rubidium interferometers, separated830

by 1 m, with momenta transfer n = 2, moving with respect to the DCV at 369 km/s.831

The variable t0 is set to zero for maximal signal.832

The area above these curves would create a ∆Φ signal larger than the input precision833

of the devices, and would be detectable. Increasing L, n or decreasing the precision ∆Φ834

measurement would lower these curves. These curves are only an indication of what835

accelerations may be detectable. This treatment has only been for one Fourier mode,836

and sensitivity of the measurement would have to be integrated over all acceleration837

components. Additionally, the DCV may not share an inertial frame with the CMB.838
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Figure 2.5: Plot of sensitivity to acceleration caused by DCV against frequency. Both
curves are for Rubidium interferometers, with a 1 m separation, momentum transfer of
n = 2, moving with respect to the DCV at 369 km/s and t0 = 0. The red curve is for
pair of 1 m devices measuring phase differences of 1× 10−3rad, and the green curve is
for 10 m devices measuring phase differences of 1× 10−6rad
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Chapter 3839

Magneto-Optical Trap840

The development of laser cooling and trapping of neutral atoms 25 years ago [48]841

allowed the creation of ensembles of atoms at the micro-Kelvin level. At these ultra-cold842

temperatures, the thermal velocity of the atoms is small enough (of order a centimetre843

per second) for the atoms to be experimented with on the order of a second.844

A magneto-optical trap (MOT) combines laser cooling with a anti-Helmholtz mag-845

netic field to form a position dependent force on atoms, forcing them into the cen-846

tre of the magnetic field. This creates a cold cloud of atoms which is the starting847

point for the atom interferometer. To commission the first MOT in Liverpool, sev-848

eral components needed to be implemented. A ultra-high vacuum (UHV) chamber849

needed to be constructed, containing a source of rubidium atoms for the MOT to trap.850

The vacuum chamber must also have a suitable geometry for three pairs of orthogo-851

nal counter-propagating laser beams to cross at the centre of a set of anti-Helmholtz852

electro-magnets. The laser beams need specific frequencies and polarisations required853

to laser cool and trap the atoms, and must be guided into the correct alignment using854

an optical circuit.855

3.1 Theory856

3.1.1 Laser Cooling857

Atoms are cooled by laser beams with a frequency negatively detuned to a transition.858

To a stationary atom, photons of this energy do not have enough energy to stimulate the859

transition. Atoms moving towards the source of the photons see them Doppler shifted,860

and will absorb the photon and it’s momentum. This reduces the atoms velocity but861

leaves it in an excited state. When the atom spontaneously de-excites, it emits a photon862

in a random direction, experiencing the recoil momentum associated with the emitted863

photon. The net effect is that the atoms momentum is lowered. This is summarised864

in figure 3.1. When three pairs of counter-propagating orthogonal laser beams are865

crossed, at a laser cooling frequency, atoms are cooled in all directions. This forms866

what is known as an optical molasses [49], which cools the atom, but as the laser867
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cooling forces are not position dependent, it atoms may diffuse from the laser beams.868

Figure 3.1: Figure summarising the laser cooling cycle. (a) An atom with velocity v
encounters a photon momentum h̄k: (b) The atom absorbs photon and is slowed by
h̄k/m: (c) The photon is re-radiated in a random direction, which on average, the
atoms velocity is less than it’s initial velocity. [48]

An equilibrium temperature is reached between the laser cooling and the heating869

effect of randomly absorbing and emitting photons. This limit is known as the the870

Doppler cooling limit, and the temperature T given by871

kBT =
h̄γ

4
(
γ

2δ
+

2δ

γ
), (3.1)

where kB is Boltzmann constant, γ is the linewidth of the excited atomic state,872

and δ is the detuning from the transition [48]. The minimal value for this is given at873

kBT = h̄γ
2 , with an optimal detuning of δ = γ/2, which for Rb is 144 µK [50].874

3.1.2 Magneto-Optical Trap875

Anti-Helmholtz coils create a magnetic field with zero field at the centre, and a field876

that grows linearly away from the centre, given by the equation877

−→
B (x, y, z) = Bgrad(−

x

2
î− y

2
ĵ + zk̂) (3.2)

The centre of this field was aligned to coincide with the point where the counter-878

propagating laser beams cross.879

Atoms have quantised total atomic angular momentum F , and 2F + 1 magnetic880

sub-states mF , ranging from −F to +F . The total atomic angular momentum of the881

atom is comprised of the nuclear angular momentum I, and the total electron angular882

momentum J , which has contributions from the spin angular momentum S and the883

orbital angular momentum L [50]. The degeneracy of the magnetic sub-states is split884

by the magnetic field, and the energy difference increases the further the atoms are885
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from the centre of the magnetic field. To create a MOT, six counter-propagating beams886

are circularly polarised. The counter-propagating beam pairs have oppositely circular887

polarisations, labelled σ±, and stimulate transitions that alter the atoms magnetic888

sub-states by mF ± 1. The polarisation of the beams can be seen in figure 3.2 [51].889

Figure 3.2: Sketch showing the correct polarisations for the MOT beams with respect
to the anti-Helmholtz magnetic coils current [52].

A simplified 1-D example (figure 3.3) demonstrates how the Zeeman splitting from890

the anti-Helmholtz field can be used to create a position dependent force with circularly891

polarised beams. The J = 1,mF = 1 state is lowered by the magnetic field in the892

negative x region. This reduces the energy required of the photon to stimulate the893

transition. A σ− polarised photon travelling from negative to positive x-axis would be894

more likely to stimulate this transition because of the smaller energy gap. This energy895

gap is increased on the positive side of the x-axis, making stimulation of the transition896

less likely. A similar argument applies for a σ− polarised photon travelling from the897

positive to negative x-axis, and the net result is that atoms are more likely to absorb898

photons forcing them towards the centre of the magnetic field. This can be expanded899

to 3-D and for higher angular momentum states.900

3.1.3 Laser Cooling Rubidium Atoms901

Rubidium atoms are a suitable candidate for laser cooling as the D252S 1
2
→ 52P 3

2
902

transition is at 780 nm, which may be stimulated with commercially available extended903

cavity diode lasers. Furthermore rubidium is an alkali metal, with only has one electron904

in the outer shell and hence a simple energy level structure close to the ground state.905

Limited state transitions allow for cooling cycles to be created. Another benefit is at906

UHV pressures, it forms a vapour, which can be used as a source of warm atoms for907

the laser cooling [50]. Naturally occurring rubidium is composed of two isotopes, 72%908

85Rb and 28% 87Rb. As both isotopes have the same electron configuration (5S1), they909

24



Figure 3.3: A sketch demonstrating a one dimensional explanation of how the position
dependent force in a MOT arises from the magnetic field and circular polarised cooling
beams [51].

are both suitable for laser cooling, and also atom interferometry.910

Both isotopes were trapped using the apparatus described in this chapter, but 85Rb911

was chosen for the interferometer. This decision was motivated by the smaller ground912

state splitting of 85Rb (3 GHz compared to 6.8 GHz for 87Rb), as the lower frequency913

RF signal generator, required for the Raman beams, was relatively inexpensive.914

To implement laser cooling on rubidium, cooling and pumping frequencies are re-915

quired. These are marked on an energy level diagram for 85Rb in figure 3.4. The cooling916

frequency creates a cycle where atoms normally decay back into the 52S 1
2

F = 3 state,917

due to the dipole selection rules. High order transitions can cause the atoms to fall back918

into the 52S 1
2

F = 2 state and out of the cooling cycle. This occurs with a branching919

ration of approximately 1:1000, which would pump all the atoms into the F = 2 state920

on the order of ten microseconds.921

To return the atoms in the 52S 1
2

to the cooling cycle a pump laser excites any atoms922

that do fall into the 52S 1
2

F = 2 state into the 52S 3
2

F = 3 state, where they are free923

to spontaneously decay into either the 52S 1
2

F = 2 or 3 states, with atoms decaying to924

52S 1
2

F = 3 state returning to the cooling cycle. The detuning from the 52S 1
2

F = 3 →925

52P 3
2

F’= 4 is typically a few line-widths of the transition (6 MHz for both rubidium926

isotopes) [50].927

3.2 Trapping Apparatus928

The first MOT in Liverpool was constructed in March 2013, and was a portable retro929

reflecting MOT. A retro-reflected MOT is simpler optically, reducing the number of930

independent beams from six to three, which also reduces cost. However it inevitably931

results in an imbalance in the beam intensities, as transmission through the Rb vapour,932
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Figure 3.4: Energy level diagram for 85Rb, with the cooling and pumping transitions
illustrated.

vacuum windows, quarter-wave-plates and reflection off the mirrors all reduce the power933

in the beam. The MOT apparatus is described here, with the optical circuits presented934

for both the retro-reflecting trap and the balanced, six independent beam MOT.935

3.2.1 Laser System936

The laser system for the MOT consisted of two MOGLabs extended cavity diode lasers937

(ECDL’s) [53]. Both lasers are sub 100 kHz linewidth, suitable for manipulating Rb938

hyperfine structure. These were frequency locked to the two required frequencies for939

the MOT, using an AC modulated saturated spectroscopy feedback.940

Extended Cavity Diode Lasers941

Bare laser diodes are not suitable for atom trapping as their linewidth is typically tens942

of mega-Hertz wide, wider than hyperfine transition line-widths. Bare diodes laser943

frequency varies with temperature and driving current at approximately 30 GHz/K944

and 3 MHz/µA [54], which cannot be controlled as accurately as required. They are945

also very sensitive to optical feedback; any laser light reflected back into the diode forms946

an unwanted external cavity in which the laser light can resonate, affecting frequency947

stability.948

ECDL’s use this effect to stabilise the laser frequency. A commonly configuration is949

a Littrow extended cavity [55]. A sketch of this can be seen in figure 3.5. A diffraction950

grating is placed in front of the laser diode, at such an angle that the first order951

diffraction returns into the diode, creating a resonance cavity. The frequency of the952

laser is very sensitive to the length of the cavity. This length may be changed by a953
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piezoelectric transducer, which changes the angle of the grating when voltage is applied954

to it, which also changes the length of the cavity. A repeated scan in frequency can be955

implemented by applying a sawtooth voltage to the piezoelectric transducer.956

Additional unwanted fluctuations in the length of the cavity also cause shifts in fre-957

quency. Hence ECDLs must be vibrationally isolated, mechanically rigid and tempera-958

ture controlled to prevent changes in laser cavity. The ECDL’s used in this experiment959

achieve this by machining the cavity out of a single piece of aluminium [55]. The ECDL960

is housed in a metal box to avoid air currents.961

Figure 3.5: Sketch of a diode in a Littrow extended cavity. Feedback into the diode is
provided by the first order diffraction of a grating [56].

The output of the ECDL is an elliptical beam. This is due the active layer of the962

diode having a rectangular cross-section, resulting in the beam axis’ typically having a963

ratio between 1:2 and 1:4 [57], with the larger axis known as the fast axis. As the beam964

propagates, the shape of the beam will change, as the fast axis has a smaller divergence965

than the other axis, resulting in astigmatism of the beam.966

3.2.2 Alignment of ECDL Grating967

The following procedure was followed from the MOGLabs technical support and their968

ECDL manual [53] [58]. For proper operation the grating must be carefully aligned.969

The gratings are easily misaligned. This can occur during shipping or mechanical970
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creep over time. Therefore the external cavity needs to be optimised on receipt and971

periodically. The steps to do this are as follows.972

First, the diode temperature must be set and stabilised. Typically the diodes973

used are designed to produce 785 nm at 25◦C, and have a temperature dependence974

of −0.3 nm/K. This suggests the diode should be kept at about 12 ◦C to achieve a975

wavelength of 780 nm, but condensation forming in the electronics is risked at this976

temperature in high humidity. Fortunately the frequency of the ECDL is dominated977

by the gratings cavity alignment, and this can be used to ‘pull’ the laser to the correct978

wavelength at above 18 ◦C. The next step is to collimate the diode by focusing the979

beam to a minimum diameter at two metres. Following this the grating cavity needs980

aligning.981

The horizontal alignment of the grating affects the wavelength of the ECDL, whilst982

the vertical alignment affects the cavity efficiency. First the vertical alignment must983

be optimised as this affects the optical power output by the ECDL. Initially, the lasing984

threshold of the diode should be found. At this is the point there is a sharp increase985

in the amount of optical power produced for an increase in current. This can be seen986

at 85 mA in figure 3.6, which is a graph of current against optical power.987
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Figure 3.6: A current vs power plot for one of the MOGLabs ECDL. The ECDL starts
lasing at 85 mA. The inset shows a smaller gradient before this current.

Setting the current just below the laser threshold current, and adjusting the vertical988

alignment of the grating causes the laser to ‘flash’, with an increase in optical power989
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output. This is an indication of an improved optimal alignment of the grating. This990

should be iterated, lowering the current each time until optimal. Finally the the current991

should be raised slowly noting the optical power is increasing. Raising the current992

should increase the optical power output if the grating is well aligned. The diode is993

likely to be damaged if raising the current further does not increase the optical power.994

Whilst increasing the current, small vertical adjustments can be made to maximise995

the power output. However, the higher the current, the finer the adjustments need996

to be. Above 200 mA no adjustments were made to alignment, due to the required997

sensitivity needed to safely make them. Instead the current is reduced to below 200 mA998

to make adjustments, and then the current was increased to see the effect. Once the999

vertical alignment of the cavity is achieved, the horizontal alignment, which sets the1000

wavelength must be tuned. To find the wavelength overlapping resonance in Rb, a1001

search can be done by procedurally varying temperature, current and the horizontal1002

grating alignment. Fluorescence is induced in a Rb vapour cell by the laser when1003

the laser is at the correct wavelength. Changes in temperature should be made least1004

frequently, as the diode temperature will take minutes to stabilise. Then the current1005

should be altered in steps, with a scan of the wavelength at each setting done by altering1006

the horizontal alignment. When the cavity is set up to fluoresce Rb atoms in a vapour1007

cell, the ECDL is ready to be frequency locked.1008

Laser Frequency Locking1009

ECDL’s wavelengths drift and therefore need to be locked. Both ECDL beams pass1010

through AC saturated spectroscopy optical circuits, which can be seen in figure 3.7.1011

The circuits photo-diode spectroscopy signals provide feedback to MOGLabs diode laser1012

control boxes, which lock the laser frequency.1013

The AC locking circuits are based on saturated spectroscopy of a Rb vapour cell.1014

With absorption spectroscopy, the laser is passed through the cell and the Rb vapour1015

absorbs the laser photons when they have the correct frequency to stimulate transitions.1016

However the Rb vapour is at room temperature and thus the frequency the Rb atoms1017

absorbed is Doppler broadened due to the thermal motion of the atoms. This frequency1018

broadening is at the giga-Hertz scale and completely masks the 6 MHz line-width1019

hyperfine structure of the atoms. Figure 3.8 compares Doppler broadened Rb spectrum1020

with the Doppler free, where the hyperfine structure can be seen. To see the hyperfine1021

structure saturated spectroscopy is required.1022

In saturated spectroscopy, the laser is reflected back along its path, creating counter-1023

propagating beams in the rubidium vapour. On the first pass the atoms are excited by1024

the laser beam, with an intensity high enough to excite all atoms. The retro-reflected1025

beam will cause stimulated emission of the excited atoms if they have zero velocity with1026

respect to the laser beam. Atoms with non-zero velocity require a Doppler shift to the1027
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Figure 3.7: AC locking circuit for locking the ECDL. [59]

Figure 3.8: Plot of Doppler broadened (direct transmission) spectroscopy compared
with saturated spectroscopy (Doppler-Free transmission) for Rb [60]

laser beam to be excited. For the retro-reflected beam, this Doppler shift is reversed1028

so that the laser is off-resonance so no stimulated emission occurs. The stimulated1029

emission allows the hyperfine states to be seen. Peaks can also occur when atoms are1030

moving with a velocity such that they are Doppler shifted to absorb light from two1031

different transitions from the two different directions. These peaks occur when the1032

laser frequency is half way between two transitions and are called cross-over peaks.1033

The optical locking circuit is shown in figure 3.7. A 40 dB optical isolator protected1034

the the ECDL from back reflections, as feedback of order one hundred nano-Watts1035

would destabilise the lasers frequency. A variable beam-splitter is created with the1036

combination of a half wave-plate (λ2 ) followed by a polarising beam-splitter (PBS).1037

About ten milli-Watts of the beam power is split into the locking circuit. The rest of1038

the power continues for use in the experiment. Light incident on the second PBS is1039

reflected, and sent through a beam expander, quarter wave-plate (λ4 ) and a Rb vapour1040
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cell, which is encased in a solenoid. The beam is then reflected back on itself, completing1041

the saturated spectroscopy circuit. When the beam reaches the PBS, the two passes of1042

the quarter wave-plate ensures the beam is transmitted through the PBS to be detected1043

by the photo-diode.1044

The intensity of the beam is lowered by the beam expander, reducing saturation1045

broadening of the Rb linewidth, whilst maintaining a high amplitude signal on the1046

photo-diode. The frequency of the ECDL’s is changed by a piezoelectric altering the1047

angle of the feedback grating. To create a rubidium spectrum, like in figure 3.8, a1048

sawtooth voltage was applied to the the piezoelectric to frequency sweep the laser.1049

The photo diode signal, Vsig is modified by the control box to generate an error1050

signal in the following way [61]. When the laser is sweeping in frequency, the signal1051

Vsig(ω) is a function of a slowly varying frequency ω. At the same time the solenoid1052

surrounding the Rb vapour cell is driven by a 250 kHz signal, Zeeman shifting the1053

transitions of the Rb. This modulation of the Zeeman energy levels manifests as a1054

modulation of the frequency, ω(t) = ω0 + Ω0cosΩt, where Ω is the solenoid driving1055

frequency. The frequency modulated signal can be written as a Taylor expansion,1056

Vsig(ω) = Vs(ω0) +
dVs
dω

(Ω0cosΩt) + ... (3.3)

The photo-diode signal is multiplied by a reference signal Vref = cos(Ωt+φ), which1057

is the modulation signal with an adjustable phase φ to give1058

VsigVref = Vscos(Ωt+ φ) +
dVs
dω

Ω0cos(Ωt)cos(Ωt+ φ)

= Vscos(Ωt+ φ) +
1

2
Ω0
dVs
dω

cos(2Ωt+ φ) +
1

2
Ω0
dVs
dω

cos(φ).

(3.4)

This signal is then passed through a low pass filter and summed with a DC offset1059

VDC achieve the error signal,1060

Verr =
1

2
Ω0
dVs
dω

cos(φ) + VDC (3.5)

The resulting error signal is proportional the differential of the signal and cos(φ)1061

where φ is the adjustable phase. When there is a sudden change in absorption, such1062

as when the frequency is modulated around a hyperfine transition, the error signal is1063

large. The dependence on the reference phase allows the error signal to be adjusted1064

from positive to negative. The VDC allows for the signal to be shifted up and down,1065

allowing the zero volts crossing point to be controlled.1066

The lock point of the laser is determined where the error signal crosses zero volts1067

with a positive gradient. When the locking feedback is activated, the control box will1068

lock the laser frequency to the point, a non-zero error signal modulates piezoelectric1069

actuator for low frequency corrections (slow lock) and modulates the current for high1070
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frequency corrections (fast lock). The gains on both the slow and fast locks can be1071

individually optimised for stability of the lock. Examples of the 85Rb and 87Rb satu-1072

rated spectroscopy spectrum can be seen in figure 3.9 and a smaller scan in frequency1073

around the 52S 1
2

F=3 → 52S 3
2

levels in figure 3.10.1074
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Figure 3.9: An example of the signal when the laser is freely scanning in frequency.
On the x-axis is a linear scan in frequency, and on the y is the voltage generated by
the saturated spectroscopy circuit in red, and the error signal in green. The hyperfine
peaks are labelled.

An AC locking circuit was chosen because it can be locked in a range around the1075

peak, by manipulating the error signal phase. This allows locking to the side of the1076

peak, which is required for laser cooling. Additionally the AC lock should be free of1077

drift, even if there is fluctuation in the error signals amplitude [61].1078

The two lasers locking circuits were built on 30 cm by 45 cm breadboards. This was1079

done so the lasers could be transferred between apparatus’s if needed, without having1080

to rebuild the optical circuit. Note that in figure 3.11 the two circuits have the Rb1081

cells on opposite sides. This was done because it was found that the fields from the1082

solenoids interfere if placed next to each other.1083

The optical circuits were stable over a long period of time. However, due to me-1084

chanical creep in the ECDL, the grating alignment had to be periodically refined,1085

approximately when there were large temperature changes in the lab.1086
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2
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transitions. On the x-axis is a linear scan in frequency,

and on the y is the voltage generated by the spectroscopy circuit in red, and the errors
signal in green. This traces out the 85Rb saturated spectroscopy spectrum for the F=3
→ F’ transitions in red, with the two large peaks in the centre being the (2,4) and (3,4)
crossover peaks, with the smaller peak to the right being the F = 3 → F’ = 4 peak.

3.2.3 Vacuum Chamber1087

The experimental chamber for the MOT is a 6 inch ‘spherical octagon’ [62]. This can1088

be seen in figure 3.12. This allowed four of the octagonal ports and the two large side1089

ports to be used for the MOT beams. The remaining ports were used to attach the1090

vacuum pumps, and the warm rubidium source. An illustration of the vacuum chamber1091

can be seen in figure 3.13.1092

When assembling the vacuum chamber all parts were cleaned with acetone and then1093

ethanol using lint free cloths. The vacuum was pumped down from atmosphere using1094

first a roughing pump, to 10−2 mbar. The vacuum was further lowered to 10−7mbar by1095

a turbo pump. The vacuum chamber was then baked out over a weekend at 150 ◦C. To1096

bake out, heater tape was wrapped around the vacuum chamber and a thermocouple1097

measured the temperature. The chamber was then wrapped in aluminium foil once,1098

then insulating material, and a further layer of aluminium foil. After the weekend, the1099

warm rubidium source was commissioned and finally the ion pump was used to lower1100

the pressure to a pressure of 3 ×10−10mbar.1101
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Figure 3.11: Photo of the two ECDL and the respective AC locking optical circuits.

Figure 3.12: Drawing of the spherical octagon vacuum component [62].

3.2.4 Rubidium Vapour Source1102

The source of atoms for the MOT was a warm rubidium getter source [63]. The getters1103

have a boat of rubidium chromate along their length. When a current of 3 - 5 A is1104

passed through them, the boat heats up and rubidium vapour is emitted. When initially1105

using the getters, there is a large amount of out-gassing into the vacuum chamber. A1106

commissioning procedure is used to prepare the getters for use [64]. The current to1107

the getters is slowly raised from 0 A to 3 A, not allowing the pressure to rise above1108

10−5 mbar. This is done under the turbo pump. This takes several hours. Then three1109

8 A, 5 s pulses are applied. After this procedure the getters are reported to produce1110

Rb vapour at 3 A for more than a thousand hours [64].1111
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Figure 3.13: Sketch of the portable MOT vacuum chamber, with coils mounted. The
getter chamber is mounted off the side of the spherical octagon experimental chamber.

To confirm that the getters were working a video was taken as current was applied.1112

A laser was passed through the vacuum chamber to fluoresce any rubidium in the1113

chamber. A sketch of this apparatus can be seen in figure 3.14. A frame from a video1114

can be seen in figure 3.15. In the foreground is the getter and the rubidium chromate1115

can be seen glowing. In the background the rubidium vapour can be seen fluorescing1116

on the laser path, and turbulence can be seen near the getter as the gas is produced.1117

Figure 3.14: Diagram of the vacuum chamber that the getters were originally tested
in.

To further prove that rubidium vapour was being produced, saturated spectroscopy1118

was performed on the vacuum chamber, and the same spectroscopy signal was seen1119

in both the locking circuit vapour cell and the vacuum chamber. This can be seen in1120

figure 3.16. The Doppler broadened signal as well as the some of the cross-over peaks1121

can be recognised as in the vacuum spectroscopy.1122
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Figure 3.15: Frame from a video of the rubidium getters whilst being tested. The
getter can be seen in the foreground, with the boat glowing hot. In the background
laser fluorescence of the rubidium can be seen in the background.
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3.2.5 Anti-Helmholtz Magnetic Coils1123

The magnetic field was provided by coils near to the anti-Helmholtz design, with radius1124

of 8 cm. Testing the coils found the magnetic field to be linear in the central region,1125

suitable for creating the MOT magnetic field. Measurements were made of the with a1126

forward and a reverse current in the coils. The magnetic field centre was found to be1127

the geometric centre to within 1 mm, which can be seen in figure 3.17. This accuracy1128

was limited by the dimensions of the Hall-probe. At 3.45 A, a 5.5 G/cm field gradient1129
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is generated. Fits were only applied to the central region, 45-85 mm.1130
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Figure 3.17: Axial magnetic field along the axial direction of the coils. The two sets of
data are for forward and a reverse current in the coils. Where they cross is the centre
of the magnetic field. The vertical line is the geometric centre of the coils.

3.2.6 Optical Circuit1131

Retro-Reflecting Trap1132

The optical circuit for the retro-reflecting trap can be seen in figure 3.18. How the1133

beams cross in the vacuum chamber is further illustrated in figure 3.19. To the left of1134

the diagram, the two ECDL’s and their locking circuits are mounted. The laser beams1135

are combined on PBS 3, and then expanded to 10 mm.1136

The beam is split throughout the circuit using a combination of a half wave-plate1137

and PBS to form a variable beam-splitter. On PBS 4 the trap beam is split in a 2:11138

ratio, with the larger fraction of the power being raised to the MOT chamber level.1139

PBS 5 splits the power in a 1:1.1140

The beams are guided into the MOT chamber, through quarter wave-plates to1141

circularly polarise the beams and cross at the centre of the magnetic field. They are then1142

passed through another quarter wave-plate and are retro-reflected to form the required1143

counter-propagating beam pairs. Similarly the beam that is transmitted through PBS1144

4 is guided to below the MOT chamber, and reflected upwards and retro-reflected at1145

the top by optics suspended over the top of the vacuum chamber. A photograph of the1146

optics can be seen in figure 3.20.1147
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Figure 3.18: Sketch of the retro-reflected beam MOT optical circuit.

Figure 3.19: Illustration of how the laser beams crossed in the vacuum chamber in the
retro-reflected beam set up.

Balanced Beam Trap.1148

The optical circuit overlaps six beams, each with a circular polarisation to make the1149

counter-propagating beams as shown in figure 3.2, in the centre of the magnetic coils.1150

This circuit utilises the same beams sources and combination technique as the retro-1151

reflecting circuit. The combined beam enters at the bottom left of figure 3.21. Two1152
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Figure 3.20: Photograph of the retro-reflected MOT.

sets of beams cross through the vacuum chamber horizontally, and thus are at the same1153

height. The third pair of beams enter the chamber vertically from the bottom and is1154

retro-reflected at the top, requiring two additional heights for the optics. How the1155

beams cross in the vacuum chamber is illustrated further in figure 3.221156

The beams are split into three parts with equal trap power, each of which are1157

subsequently split into two. This is done by splitting the beam in a 1:2 ratio at PBS 11158

and then a 1:1 ratio on PBS 2. Beam expanders increase the beam diameter to 10 mm.1159

The half wave-plates are located before the beam expanders, so a smaller diameter1160

wave-plate could be used for economy.1161

On PBS 3, one half of the beam is reflected upwards 60 cm, where it is reflected1162

to a mirror suspended over the centre of the MOT chamber, and through a quarter1163

wave-plate and into the experimental chamber. Similarly the other half is reflected to1164

a mirror beneath the chamber, through a quarter wave-plate and into the experimental1165

chamber. The other two beams are split in half on PBS 4 and 5. Along both beam1166

paths the beam is expanded to 10 mm. The main difference between these two sets of1167

paths is that to avoid the vacuum chamber pipe to the ion pump, the beam split by1168

PBS 5 is raised to the MOT level twice (about 30 cm high). This results in the beams1169

not being split into counter-propagating pairs on the same PBS in the horizontal plane.1170

To commission the MOT the quarter wave-plate’s fast axis’ angle relative to the1171

polarisation of the incoming beam had to be set, to the correct circular polarisation1172

of the laser beam. This was done by initially forming a retro-reflected trap, to reduce1173

the degrees of freedom of the possible combinations of polarisations whilst initially1174

producing the MOT. This was done to reduce possible issues in the apparatus. After1175

achieving a MOT with retro-reflected beams, the beams were brought back in one by one1176
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Figure 3.21: Schematic of the MOT optics for the balanced beam MOT. The lasers
are on three different levels, indicated by the colour of the beam path, red being at
table level, green being at the height of the side windows, and purple being above the
vacuum chamber. PBS is a polarising beam-splitter, λ/2 is a half-wave-plate, and λ/4
a quarter-wave-plate. A photograph of this circuit under construction can be seen in
figure 3.23

to ensure the correct polarisations for the MOT. The beam powers were balanced using1177

an optical power meter and adjusting the half-wave plates to achieve good splitting on1178

the PBS’s. A photograph of the MOT optics with all but the beam expanders in place1179

can be seen in figure 3.23.1180

3.3 Measurement of Atom Number1181

The bright oval shaped object in figure 3.24 is the trapped atoms. Fluorescence of the1182

background vapour atoms can be seen, particularly in the horizontal plane, as the beam1183

is twice as intense here. The dark circle framing the photo is the vacuum port that the1184

MOT is being observed through, with stray reflections on its edge. This MOT can also1185

been seen in a colour photo in figure 3.25, as the bright white spot in the crossing of1186

the pink laser beams, as they fluoresce the background atoms.1187

Measurements are made from the videos of the MOT, taken with a CMOS camera.1188

An area of interest around the MOT is selected and the pixel values of individual frames1189

are integrated. Figure 3.26 is a comparison of 2D histograms when the MOT coils are1190
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Figure 3.22: Illustration of how the laser beams crossed in the vacuum chamber in the
balanced beam set up.

Figure 3.23: A photograph of the optical circuit sketched in figure 3.21 under construc-
tion. The three different levels of optical circuit can be seen.

on and off. The MOT forms a peak of intensity in the centre. Integrating the pixel1191

values for these two images, and subtracting the MOT off image from the MOT on1192

image finds the increase of fluorescence responsible due to the atoms trapped in the1193

MOT. The MOT was turned off by turning off the field to minimise changes to the1194

background fluorescence which is a standard method [65].1195
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Figure 3.24: A black and white photograph of one of the first MOTs using the CMOS
camera.

Figure 3.25: A colour photo of the MOT.

3.3.1 Atom Number1196

The total integrated fluorescence can be related to the number of atoms trapped. Atoms1197

trapped in a MOT scatter light out homogeneously. If N atoms are trapped, then the1198

power received by a detector with surface area A, and distance D from the trap and1199

scattering rate Γ, is1200

P = NΓEγ
A

4πD2
, (3.6)

where Eγ is the energy carried by each photon. The scattering rate of the atoms1201
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Figure 3.26: 2D histograms of the pixel values for the MOT on and off.

[50], Γ is given by1202

Γ(I, δ) =
γ

2

I/Isat
1 + I/Isat + (2δ/γ)2

. (3.7)

In this equation, γ is the spontaneous decay rate of the transition 52S 1
2
→ 52P 3

2
of1203

38.117(11)×106s−1, I is the intensity of the lasers, Isat is the saturation intensity of1204

the |F = 3,mF = ±3 >→ |F = 4,mF = ±4 > transition (σ± - polarized light), which1205

is 1.669 32(35) mWcm−2, and the δ is the detuning from the transition [50].1206

To measure the power radiated off the atoms, initially simultaneous measurements1207

of the power received by the power meter, and video of the atom trap were taken. The1208

video was split into individual frames using FFMPEG [66], and the pixel values for1209

the individual frames of video were summed over using the CImg library [67]. The1210

videos were taken, selecting a fixed area of interest around the trapped atoms that1211

remained constant throughout the measurements. The power meter was placed at the1212

vacuum chamber window, 8 cm away from the trapping point. The power meter has a1213

9.5 mm diameter, giving it an area of 0.71 cm2 and was placed at the vacuum chamber1214

window, 8 cm away from the trapping point. The energy carried by the photons is 2.561215

×10−19 J .1216

The number of atoms was varied by changing the magnetic field strength, which1217

is a standard method [65]. The power readings and the MOT images compared the1218

atom trap on (magnetic field on) to atom trap off (magnetic field off). A calibration1219
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was done between the absolute power measurements and the sum of the pixel values of1220

stills from the video.1221
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Figure 3.27: Graph of the calibration between optical power increase and pixel sum
increase. The error on the power increase is the standard deviation of 20 power mea-
surements taken over 10 s. A quadratic fit was made, to f(x) = Ax2 + Bx + C, with
A = -0.0743, B = 0.356 and C = 0.0588.

With this calibration performed measurements of the number of atoms were made1222

varying the parameters. The default setting for the magnetic field was 13.6 G/cm.1223

This was extrapolated from knowing the field gradient was 5.5 G/cm at 3.45 A (see1224

figure 3.17), and the error was estimated to be 0.2 G/cm, by how accurate the power1225

supply could be set. Efforts were made to keep the pressure in the vacuum chamber1226

constant. This was done by operating the getters for few minutes, and then waiting1227

half an hour before measurements were made. The pressure was read off the ion pump,1228

which estimates the pressure in the chamber by the current flow. Typically it was1229

6× 10−10 mbar. The trap beam peak intensity was 14.6 mW/cm2 per beam. An error1230

of 2 mW/cm2 was estimated by measuring the power for different sizes of the beam1231

whilst irised. The pump beam was used at maximal power, with approximately 50 mW1232

reaching the MOT.1233

Figures 3.28 and 3.29 show the number of atoms trapped when varying the magnetic1234

field gradient and the trap beam intensity respectively. In both cases the MOT appears1235

to be in a linear proportionality regime; greater magnetic field gradients and greater1236

beam intensity would trap more atoms. The errors on these measurements are from1237

the above error estimations propagated through. The largest number of atoms trapped1238

was (65.7± 4.4)× 106.1239
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Figure 3.28: Graph of number of atoms trapped for different magnetic field gradients.
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Figure 3.29: Graph of number of atoms trapped for different trap beam intensities.

3.4 Summary1240

The implementation of a magneto-optical trap was the first source of ultra-cold atoms1241

in Liverpool, and a key step towards the prototype atom interferometer. The theory1242

of laser cooling and MOT’s have been presented as well as the development of our1243

trapping apparatus. This apparatus was capable of trapping (65.7± 4.4)× 106 atoms1244

and demonstrated improved quantities of atoms with higher magnetic field and laser1245

intensity.1246

The laser’s and their corresponding frequency locking optical circuits, rubidium1247
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vapour source and anti-Helmholtz coils presented here was directly used on the next1248

iteration of the experiment, the prototype atom interferometer, which is discussed in the1249

next chapter. The image analysis and the measurements developed here provided the1250

foundation for further measurements performed on the prototype atom interferometer,1251

and will be discussed in chapter 6.1252
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Chapter 41253

Requirements and Design of an1254

Atom Interferometer1255

A prototype atom interferometer was designed and constructed at the University of1256

Liverpool. It is currently under the commissioning stages. This chapter describes the1257

design of the interferometer, and the required laser frequencies. Chapter 5 describes1258

how these laser frequencies are generated.1259

Figure 4.1: Photograph of the optics table with the prototype atom interferometer.
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There are two optical tables, the laser sources occupy one as they are sensitive to1260

vibrations, so are isolated from the rest of the experiment. The lasers pass to the other1261

optical table via single mode polarisation maintaining fibres. On this table all the1262

laser frequency generation optics are located and are launched into the experimental1263

chamber, which is also located on the same optical table. This optical table can be seen1264

in figure 4.1. Two equipment racks house the required equipment, one which contains1265

the power supplies for the electro-magnets and getters, FPGA boards and laser control1266

boxes, whilst the other contains the RF signal generators so they located as close as1267

possible to where required.1268

4.1 Vacuum Chamber1269

In an atom interferometer atoms in a quantum super-position freely fall for periods of up1270

to the of order of seconds. Ultra-high vacuum is desirable for a atom interferometry as1271

any collisions with background vapour would destroy the super-position. At 10−9 mbar1272

the mean free path of a Rubidium gas at room temperature is about 1 km [68].1273

A sketch of the experiment can be seen in figure 4.2. The atoms are trapped in the1274

spherical octagonal chamber at the top of the experiment and then dropped through1275

the interferometer tube into the detection chamber. The MOT has undergone a 901276

degree rotation from the apparatus discussed in chapter 3. The MOT beams are in a1277

(1,1,0) configuration, where two of the beam pairs enter at a 45◦ angle from horizontal,1278

with the last beam pair crossing the beams horizontally. This frees the vertical axis1279

so it can be used purely for the Raman interferometry beams, and also the largest1280

windows are vertical for optical access and additional laser beams. For example, these1281

windows are used for the optical state selection method. The warm rubidium source is1282

connected to the side of this chamber. State selection will also be done in the spherical1283

octagonal chamber. A 40 cm pipe connects this to a larger 6-way cross at the bottom1284

of the experiment, which will be used for the detection. This gives the prototype atom1285

interferometer a maximum region of roughly 50 cm, and a maximum interferometry1286

time of 320 ms for a drop.1287

The vacuum is maintained by an ion pump, which is mounted on a stand-off pipe1288

from the detection chamber. This stand-off is to minimise the effect of magnetic field1289

associated with the ion pump on the interferometer. An ion gauge and a valve are also1290

attached to this 6-way cross. A 75 cm by 75 cm optical breadboard with a hole cut out1291

of the centre for the vacuum pipe is mounted so that the optics for the MOT and state1292

selection can be mounted around the spherical octagon. This mount is firmly clamped1293

and has cross beams to prevent flexibility of the structure. On top of this breadboard1294

a further breadboard is supported vertically over the top of the experiment to mount1295

the Raman optics.1296

The vacuum chamber was constructed and commissioned using the techniques out-1297
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Figure 4.2: Sketch of the vacuum system for the prototype interferometer

Figure 4.3: Photograph of vacuum system.

lined in section 3.2.3. The vacuum after baking out was lowered to 10−9 mbar.1298

4.2 Magneto-Optical Trap, Optical Molasses and Atom1299

Dropping1300

The atoms are trapped in a MOT and are then further cooled in an optical molasses,1301

before being released, allowing the atoms to enter free fall. The optical molasses stage1302

further cools the atoms by increasing the effect of polarisation gradient cooling, by1303

reducing the magnetic field and increasing the detuning. The counter-propagating1304

laser beams form a lattice of potential wells which the atoms must be adiabatically1305

released from, to prevent the potential energy being gained as kinetic energy. The1306

optical molasses and the release to drop the atoms are discussed here.1307
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4.2.1 Polarisation Gradient Cooling1308

The first experiments with laser cooling found that the atoms were being cooled below1309

the theoretical expected temperature, the Doppler limit [69]. The cause of this was1310

found to be polarisation gradient cooling, a sub-Doppler mechanism that can lower the1311

temperature to approach the recoil limit, which is the temperature of an atom which1312

spontaneously emits a photon from rest. For 85Rb the temperature has been lowered1313

to 30 µK using optical molasses [46]. The polarisation gradient cooling described here1314

is of the σ+-σ− type, for a transition between a ground state with J = 1 and excited1315

state J = 2.1316

The superposition of σ+-σ− counter-propagating beams creates a linear polarised1317

electric field rotating in space, sketched in figure 4.4. For moving atoms, this can be1318

shown to create unbalanced radiation pressures and consequently a force opposing the1319

motion of moving atoms [27], with a lower temperature cooling limit than Doppler1320

cooling.1321

Figure 4.4: Sketch demonstrating how the combination of circular polarisations adds
to a rotating linear polarisation [27].

The magnetic sub-states are split by the AC Stark effect. Stationary atoms are op-1322

tically pumped by the linear polarisation, and the atoms are distributed symmetrically1323

around the central sub-state. The steady state populations are 4/17, 9/17, 4/17 for the1324

sub-states g−1, g0, g+1, represented by the circles in figure 4.5.1325

However, moving atoms experience an inertial effect due to the rotating polarisa-1326

tion. The optical pumping for moving atoms skews the population of the sub-states,1327

depending on the direction the atom is travelling. For negative frequency detuning, the1328

sub-states of an atom moving towards a σ− beam are skewed towards the g−1 state.1329

The absorption of a σ− photon is six times more likely than absorbing a σ+ photon, so1330

the atom receives momentum resisting it’s motion. This is due to the Clebsch-Gordan1331

coefficients for a J = 1 ↔ J = 2 transition illustrated in figure 4.6.1332

A similar argument can be applied for an atom moving towards a σ+ beam to1333

explain a resistive force slowing the atoms. This cooling mechanism is different to1334

Doppler cooling and works for much lower velocities. The thermal equilibrium energy1335
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Figure 4.5: Relative distribution of stationary atoms between the sub-states for light
shift for the σ+ − σ−. The steady state populations are 4/17, 9/17, 4/17, from left to
right [27].

Figure 4.6: Clebsh-Gordon coefficients for a J = 1 ↔ J = 2 [27].

is given by,1336

kBT =
h̄Ω2

δ

(
29

300
+

254

75

Γ2/4

δ2 + (Γ2/4)

)
, (4.1)

where T is temperature, kB is Boltzmann’s constant, h̄ is the reduced Planck’s con-1337

stant, Ω is the Rabi frequency, δ is the detuning and Γ is the natural width of the1338

excited state [27]. Equation 4.1 shows that colder atoms may be achieved by decreas-1339

ing the laser intensity and increasing the detuning of the laser beams. Sub micro-Kelvin1340

temperatures would be reachable with a pure polarisation gradient cooling technique.1341

4.2.2 Forming Optical Molasses1342

To implement polarisation gradient cooling on the MOT and maximise the effect of1343

this, all magnetic fields must be eliminated. Experimentally, the magnetic field must1344

be below to below 50 mG in magnitude [70]. The MOT coils must be switched off1345

and background magnetic fields must be shielded from or cancelled. To minimise atom1346

cloud expansion before polarisation gradient cooling becomes effective, the MOT coils1347

must be turned off quickly, in around five to ten milliseconds.1348
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Figure 4.7: Graph taken from one of the first studies of optical molasses by Lett et
al [70]. Demonstrates the effect of magnetic field on the cooling of sodium atoms in
optical molasses.

4.2.3 Cancellation Coils1349

Cancellation coils were made to minimise the magnetic field in the laboratory. The1350

earth’s magnetic field is approximately 600 mG, and other sources such as the ion1351

pump and the structure of the building have significant effects on the magnetic field in1352

the experiment. A set of three coil pairs were designed and built to cancel the magnetic1353

field over the path of the falling atom cloud. A secondary is to provide a small magnetic1354

field in the axis the atoms fall in, i.e. a quantisation axis for the atom cloud during the1355

interferometry sequence. Thus the vertical set of coils will be controllable by the timing1356

sequence, with the ability to create a bias field by reducing the vertical cancellation1357

coils current.1358

Helmholtz or Maxwell coils are commonly used produce a uniform magnetic field,1359

but circular coils would be difficult to construct and to implement. Over the whole1360

experiment circular coils would have to be large, and would obstruct access. With the1361

requirement for the field to be uniform to within 10 mG from the MOT location to the1362

detection chamber, using the Biot-Savart law it was calculated that square coils would1363

produce a field with sufficient uniformity. A cuboidal design was made with dimensions1364

80 cm by 80 cm by 180 cm, with the x and y cancellation coils going the full height of1365

the cuboid, and the z coils being placed at 50 cm and 105 cm. These coils can be seen1366

in figure 4.8. This covers the trap region to the bottom of the detection area.1367

Figure 4.9 shows magnetic field maps for the three components of the magnetic1368

field from these computations. Figure 4.10 shows a plot along the experimental axis1369

of the experiment for the three components of the magnetic field. These calculations1370
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Figure 4.8: Photo of the cancellation coils assembled for testing.

are overlaid on the Earth’s magnetic field in Liverpool [71] (which are North/South1371

184 mG, East West −8 mG, Up/Down 456 mG) , so the cancellation can be seen.1372

Figure 4.9: Colour maps of the x, y and z components of the cancellation coils magnetic
field, calculated from Biot-Savart’s law. The field from the coils is over laid on the
Earth’s magnetic field to demonstrate the cancellation. For all three plots, the x-axis is
the y-position, centred at x = 0.4 m showing a range from 0.35-0.45 m in y. The z-axis
is the z position from 0.4-1.2 m. The colour represents the strength of the magnetic
field, with the scale in mG to the right of each plot.

It is important to cancel the magnetic field for the volume which is addressed by the1373

interferometry pulses. Looking at the colour maps figure 4.10, horizontally the field is1374

mostly constant in Bx and Bz components, varies less than 5 mG for the By component.1375

Vertically, in the experimental range of 0.55 − 1 m, the Bx and By components have1376

variations of order 5 mG. In the Bz component there is a 20 mG variation. This can1377

be seen clearer in the plots along the atom paths in figure 4.10. This design would1378
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Figure 4.10: 1-D plots of the x,y, and z components of the cancellation coils magnetic
field, calculated from Biot-Savart’s law. The field from the coils is overlaid onto the
Earth’s magnetic field to demonstrate the cancellation. For all three plots, the x-axis
is the z-position in the range 0.4-1.2 m. The y-axis is the magnetic field strength for
the three components in mG.

lower the field to below 50 mG in the trapping region, and the Earth’s magnetic field1379

has been reduced by an order of magnitude.1380

The current required to cancel the field in the calculations are north/south +16.15A,1381

east/west +0.68 A and up/down −24.69 A. The coils to produce these were constructed1382

from 20 conductor ribbon cable, terminated by IDC connectors with the ribbon cable1383

displaced by one strand along on one of the terminations. One loop was required for1384

east/west with two coils in parallel for the north/south and up/down coils, with the1385

two pairs run in series. Power was supplied with constant current power supplies.1386

The cancellation coils cannot compensate for large anisotropies in the magnetic1387

field. Whilst the Earth’s magnetic field was the main source of field, other sources,1388

such as the ion pump, rebar in the building, steel of the optical table and the vacuum1389

chamber were significant and had variations in field of the order 100 mG. As the1390

vacuum chamber was sealed, measurements along the clouds path was not possible1391

without disassembling the vacuum. It was decided to set the coils to roughly cancel1392

the magnetic field based on magnetic measurements around the MOT region, and they1393

would be fine tuned by varying them to minimise the temperature in the future.1394

4.2.4 Atom Drop1395

To release atoms from the optical molasses, there is a common procedure to achieve1396

this [35] [25]. First the MOT anti-Helmholtz coils must be turned off. The sudden1397

change in magnetic field will induce eddy currents in the vacuum chamber. These will1398

induce magnetic fields of their own, until they have decayed, which takes of order ten1399

milliseconds. Next the MOT laser frequency should be further detuned to the molasses1400

frequency, and a molasses cooling stage should last for a few milliseconds. Increasing1401

the detuning decreases the equilibrium temperature that is reached which is described1402
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by equation 4.1.1403

From the optical molasses, the beam intensity should be ramped down adiabatically1404

over the course of another few milliseconds. Finally the pumping frequency should be1405

left on longer than the molasses frequency to ensure the atoms are in the F=3 state. A1406

provisional sequence for the release of the atoms can be seen in figure 4.11. After this1407

sequence the atoms are free to fall under gravity.1408

Figure 4.11: An illustration of the timing sequence for forming molasses.

4.2.5 Frequency Requirements and Optics1409

The optical molasses requires the trapping frequency to be further detuned, and to1410

release the atoms from the optical molasses, the laser beams need intensity control on1411

the millisecond time scale. These can be seen in figure 4.12.1412

The molasses and MOT frequencies are generated from the same source. Both the1413

MOT/molasses frequency and the pump frequency are collimated to 4 mm diameter1414

beams, and combined on a PBS. After this, the beam is split into three, two making1415

up the horizontal counter-propagating pair, carrying one sixth of the trap beam power1416

each, with the remaining two thirds of the trap beam power for the diagonal beams.1417

These beams are then sent up to the MOT breadboard, where the beam carrying two1418

thirds of the trap beam power is split into four equal parts. The final splitting for each1419

pair of counter-propagating beams is done on one PBS, so the balance along that axis1420

can be altered. It was found necessary to use precision rotation mounts for the half1421

wave-plates to allow fine tuning of the power balance. To minimise differences in the1422

trap beams in the MOT, care was taken to make all of the beam paths pairs the same1423

length, by ‘dog-legging’ the beam where necessary. To achieve this, 90◦ prism’s were1424

mounted on translation stages so the length could be altered with minimal disruption1425

to the MOT alignment. A schematic of the optical circuit can be seen in figure 4.131426
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Figure 4.12: Rubidium energy level diagram with the required frequencies for the MOT
and the optical molasses.

with a photograph of a segment of the optical circuit in figure 4.14.1427

4.3 State Selection1428

The effect of magnetic fields on an interferometer can be reduced by preparing the1429

atoms in the mF = 0 state, which to first order is unaffected by magnetic fields. The1430

released atoms are distributed amongst the magnetic sub-states of the 5S 1
2

F = 3 state.1431

A magnetic field in the vertical direction of order one hundred milli-Gauss is created1432

by the cancellation coils to provide a quantisation axis.1433

To prepare the atoms in the mF = 0 state, an optical pumping method was chosen,1434

as illustrated in figure 4.15. First, the magnetic sub-states are split by the magnetic1435

field. This splitting is 160 kHz/G per mF for the F=2 state [50] with the bias field1436

in the vertical direction having a value of up to 450 mG. A beam stimulating the1437

S 1
2
F = 2 → P 3

2
F = 2 transition is inserted with its polarisation carefully tuned to be1438

perpendicular to the magnetic field. This excites dipole transitions, which are forbidden1439

for the atoms in the S 1
2
F = 2,mF = 0 state. The atoms may then de-excite from1440

P 3
2
F = 2 state into either the S 1

2
F = 2 or 3 states.1441

The hyperfine frequency beam stimulating the S 1
2
F = 3 → P 3

2
F = 2 transition1442

passes along the same path as the the optical pumping frequency, and recycles any1443

atoms that fall into the S 1
2

F = 3 state. These beams are pulsed alternatively for 10 µs1444

several times, and the atoms accumulate in the S 1
2

F = 2, mF = 0 state. These beams1445

are retro-reflected to minimise any momentum imparted on the atoms by this method.1446

Finally a blow-away pulse from the MOT beams will be applied to remove any atoms1447

left in the S 1
2

F = 3 state. This will be achieved by shuttering off all but one of the1448
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Figure 4.13: Schematic of the MOT optics for the prototype atom interferometer.

Figure 4.14: Photograph of the MOT optics for the prototype atom interferometer.
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MOT beams.1449

Figure 4.15: Energy level diagram for optical state selection. Atoms gather in the dark
state, F = 2, mF = 0.

4.4 Raman Pulses1450

The Raman pulses are used in both the 1-D velocity selection and in the interferometry1451

sequence. Two laser frequencies stimulate transitions between the ground states of the1452

rubidium atoms via a virtual state. The required laser frequencies are outlined in a1453

sketch of the energy levels in figure 4.16.1454

The polarisation is important to limit the Raman transition stimulated. As the1455

atoms are already prepared in the mF = 0 state (the bias field first applied in the state1456

selection is still on at this stage to split the Zeeman states), it is also a requirement1457

to keep the atoms in a mF = 0 state. The only two polarisation combinations that1458

achieve this are if Raman 1 and 2 are identically circular polarised and they are counter1459

propagating, or if Raman 1 and 2 are linearly polarised and they are retro-reflected in1460

the orthogonal polarisation as well as the atoms having a non-zero velocity [72]. The1461

former choice of polarisations was selected, due to our combination of Raman beams1462

on a PBS, dictating that they have orthogonal polarisations.1463

After the Raman beams are combined on a PBS, they are delivered to the exper-1464

imental chamber by a 10 m polarising maintaining fibre. This is done to produce the1465

cleanest possible Gaussian laser beam. Some non-Gaussian type behaviour persists1466

due to cladding modes, in which light propagates down the fibre cladding, not the fibre1467

core. This is attenuated by using longer fibres. The beams are expanded to 10.8 mm1468
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Figure 4.16: Energy levels for the Raman transitions.

diameter by the fibre optic collimator, with the two components having orthogonal1469

linear polarisation. The beam travels down through a quarter wave-plate, and then1470

through the vacuum chamber. The beam then passes through a quarter wave-plate1471

and is retro reflected off a mirror. The collimator, quarter wave-plate and mirror were1472

chosen to be as flat as possible to minimise the wave-front aberration of the Raman1473

beam. This is important so that the whole atom cloud has the same phase imparted1474

on them by the laser. However the two window ports on the vacuum system were not1475

chosen for flatness, and will need to be upgraded. The collimator is a Sulkhamburg1476

60FC-L-0-M60L, with a λ
20 wave-front aberration. The mirror is a Newport 10Z40BD.2,1477

with a λ
20 wave-front aberration. The quarter wave-plate is a Edmund Optics 46-410,1478

with a λ
10 wave-front aberration.1479

The launch platform for the Raman launch can be seen in figure 4.17. The fibre is1480

mounted on a x-y micrometer stage in a tip/tilt mount. The x-y micrometer stage can1481

be used to move the beam to coincide with the trapping point of the MOT. The tip/tilt1482

mount is used to align the measurement axis of the interferometer, which to measure1483

gravity should be vertical. Any angle between the Raman axis and vertical will reduce1484

the phase difference measurement as such,1485

∆φ = g.keffT
2 = gkeffT

2cosθ ≈ gkeffT 2(1− θ2) (4.2)

An angular alignment tool is used to minimise the angle to the vertical axis [73].1486

Figure 4.18 illustrates this tool. The alignment tool utilised a beam sampler (Laser 20001487
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Figure 4.17: Photo of the Raman launch platform.

BS4-25.4C03-10-550, parallelism of 24 µrad), and corner cube (Thorlabs PS976M-B,1488

beam deviation of 14 µrad) and a lens to focus a pair of counter propagating beams1489

onto a CCD with pixel size 5 µm. The downwards travelling beam is split by the beam1490

sampler and retro-reflected by the corner cube back through the beam sampler and1491

then focused onto the CCD by the lens.1492

The upward travelling beam is split by onto the CCD by the lens. If both beams1493

are perfectly parallel then they will be focused onto the same point on the CCD.1494

To align the downward propagating beam to the vertical, the mirror at the bottom1495

is replaced by liquid surface of paraffin. This forms a mirror perpendicular to the1496

vertical. The angle of downwards travelling beams may then be optimised to overlap1497

with the beams in the CCD, which aligns the downward travelling beam vertically.1498

Replacing the mirror at the bottom and using the tool to ensure both beams are1499

parallel completes the angular alignment. This gives an estimated angular error of1500

27 µrad and a systematic error in phase of 7.7×10−10, limiting the accuracy of gravity1501

measurements. The constructed tool can be seen in figure 4.19.1502

60



Figure 4.18: Sketch demonstrating the geometry of the alignment tool [73].

Figure 4.19: Photo of the alignment tool.

4.4.1 1-D Velocity Selection1503

The Raman beams will address a smaller velocity profile than that described by atoms1504

at micro-Kelvin temperatures, with a velocity width1505

∆v/c = ∆ν/(ν1 + ν2), (4.3)

where ∆ν is the Raman linewidth, and ν1 and ν2 are the two frequencies of the1506

Raman beam. Thus, a Raman selective pulse sequence will be applied before the1507

interferometry sequence.1508

This increases the contrast of the interferometry fringes. The required laser fre-1509

quencies are shown in figure 4.20.1510

Figure 4.21 summarises the method. First a blow-away pulse, S 1
2
F = 3→ P 3

2
F ′ = 41511

is applied from just one of the six MOT beams, pushing any atoms remaining in S 1
2

1512

F = 3 away from the main cloud. Using just one beam, momentum is applied to the1513

atoms and they are pushed out of the region. Next a Raman π pulse is applied to the1514

cloud, transferring atoms with the limited velocity range into the S 1
2

F = 3 state. A1515

blow-away pulse S 1
2
F = 2→ P 3

2
F ′ = 1 is then applied pushing atoms in the S 1

2
F = 21516

state remaining away from the cloud. At this point the atoms can be used in the S 1
2

1517

F = 3 state, or another Raman π pulse can be applied followed by a blow-away from1518

S 1
2

F = 3, for a better velocity selection. Figure 4.22 summarises the state selection1519

sequence.1520
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Figure 4.20: Energy level diagram showing the required frequencies for the 1-D velocity
Raman selection.

Figure 4.21: Raman 1-D velocity selection. Populations of the atoms between the two
ground states as a function of velocity.

4.4.2 Raman Pulse Sequence1521

To maximise the contrast of the interferometry fringes, the ideal length of π
2 and π1522

pulses must be determined. By altering the Raman pulse duration and measuring the1523

number of atoms in the S 1
2 F = 3 state, the Rabi cycles may be measured and the Rabi1524

frequency may be determined, giving the length of π
2 and π pulses. Raman pulses of1525

different durations will be applied after state selection and velocity selection, and the1526

proportion of atoms in the F=3 state is measured. Doing this for different times T1527
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Figure 4.22: Sequence for state selection.

traced out the Rabi cycle, for which half of one is the time of a π pulse, and a quarter1528

of a cycle, the duration of π
2 .1529

The interferometry sequence will be applied, of a π
2 pulse, π pulse and then a π

21530

pulse, each separated by time T . The Doppler shift experienced by the atoms as they1531

accelerate under gravity is counteracted by chirping the RF generator, to change the1532

frequency difference of the two Raman beams.1533

4.5 State Detection1534

The state populated by the atoms is measured using fluorescence techniques [74]. The1535

two frequencies required for the state detection are shown in the energy level diagram1536

figure 4.23.1537

The detection and repump frequencies are expanded to 4 mm, combined on a PBS,1538

and inserted through the detection chamber normal to the window, and retro-reflected1539

to increase intensity. A PMT is positioned at an angle (to prevent reflections), with1540

a lens system to focus the fluorescence of the atoms passing through the detection1541

beam. A sketch of this can be seen in figure 4.24. The whole of the optics table will be1542

surrounded by a cage with blackout material attached.1543

Blackout material is necessary as the PMT used is very sensitive (Hammamatsu1544

R943-02). This was chosen because of its low dark photon count of less than 20 photons1545

per second, enabling single photon counting to minimise the statistical error.1546

A detection sequence such as the following will be applied [25]. A detection fre-1547
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Figure 4.23: Energy level diagram for the state detection.

quency pulse fluoresces the atoms for ∼ 400 µs. The integrated PMT signal in this1548

duration is proportional to the number of atoms in F = 3 plus the background vapour1549

fluorescence. Then the repump pulse fluoresces the atoms for 200 µs pumping all the1550

atoms into the F = 3 state. Finally a detection frequency pulse fluoresces the atoms1551

again for 400 µs. The integrated PMT signal in this duration is proportional the total1552

number of atoms plus the background vapour fluorescence. The background count of1553

the PMT can be measured and subtracted from these two signals. The result of the1554

interference is a fraction of atoms in F = 3 after the interferometry pulses. The fraction1555

of atoms left in state F = 3 can be related to the gravitational strength using equation1556

2.25, which has been modified here to account for an non-idealised contrast C,1557

PF=3 =
1

2
(1 + Ccos(keffgT

2 + φ)), (4.4)

and φ is the total phase due to the lasers. The contrast in a real interferometer is1558

limited by imperfect Raman population transfer and fluorescence of background atoms.1559

At the end of the interferometry sequence, the atoms wave-packets are spatially1560

overlapped. However they differ in momentum by h̄keff , so between the last interfer-1561

ometry pulse and the detection pulse, the wave-packets accumulate a spatial separation.1562

The timing of the detection pulse needs to be timed to reach the best possible contrast.1563
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Figure 4.24: Sketch of detection system.

4.6 Summary1564

The design of a prototype atom interferometer has been presented, which has been1565

constructed and is being commissioned. This involved constructing a new vacuum1566

chamber, which had the MOT developed in the previous chapter at the top as a ultra-1567

cold atomic source for a atom drop interferometer. Magnetic coils were designed and1568

implemented to cancel the background magnetic field for the MOT, to allow for polar-1569

isation gradient cooling as a further cooling mechanism for the cold atomic source. An1570

optical state selection method was discussed, as well as a one dimensional velocity selec-1571

tion along the interferometry axis, which will make the atoms magnetically insensitive1572

and improve the contrast from the interferometry pulses respectively. The generation1573

of the Raman interferometry pulses, and a state detection scheme was also discussed.1574

With all of these methods, the laser frequency, polarisation and delivery requirements1575

were discussed. The following chapter will describe how all of these requirements are1576

met with a unique laser frequency generation scheme.1577
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Chapter 51578

Laser System1579

5.1 Laser System1580

The previous chapter outlined all the required frequencies to implement the atom in-1581

terferometer. These are summarised in figure 5.1.1582

Figure 5.1: Energy level diagram with required transitions for the atom interferometry
with 85Rb. Frequencies derived from the trap laser are illustrated with red arrows, and
those derived from the pump are blue.

It was desired for the sake of simplicity to use as few lasers as possible for the1583

laser system. The 85Rb ground state splitting is ∼ 3 GHz, with the difference in1584

frequency between hyperfine states being no more than 200 MHz. AOM’s able to shift1585
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the frequency of the laser beam by 3 GHz have low efficiency and are expensive, AOM’s1586

of up to 200 MHz are more efficient and affordable. Because of this, the laser system1587

requires two ECDL’s, one to start from each of the two ground states of 85Rb. Using1588

AOM’s all the required frequencies can be generated from two ECDL’s, which can be1589

seen in figure 5.1.1590

All of the required frequencies for the atom interferometer are generated in a system1591

based on the two ECDL’s described in section 3.2.2 and five AOMS. The AOMs are1592

three 80 MHz AOM’s (Gooch & Housego 3080-122), one 200 MHz AOM (Crystal Tech1593

3200 124) and one 1.5 GHz AOM (Brimrose 410-472 7070). As well as frequency control,1594

AOM’s allow for timing and intensity control of the beams.1595

5.1.1 Gaussian Optics1596

Geometric optics is not sufficient to describe the properties of lasers. The properties of1597

laser beams are described well by the paraxial approximation of the Helmholtz equation1598

[75]. The lowest order solution gives Gaussian TEM00 beam modes. A consequence of1599

this is that laser beams will always have some divergence or convergence. A laser beam1600

focused with a convex lens does not focus down to a point but to a minimal width.1601

If this minimal width occurs in both x and y at the same position, it can be said to1602

be a beam waist. At a beam waist laser beams have a flat wave-front [57]. Figure 5.21603

illustrates this.1604

Figure 5.2: An illustration of a Gaussian beam being focused into a beam waist [76].
Colour represents intensity. Only at narrowest point is the wave-front flat.

The laser beam emitted from ECDL’s is elliptical and thus astigmatic, diverging at1605

a different rate on its fast and slow axes, as discussed in section 3.2.1. Whilst this was1606

used for the MOT in chapter 3, this was not suitable for the laser system for the atom1607

interferometer, nor many of the techniques used in the interferometer. For example,1608

the AOM’s used in the laser system perform optimally when the beam waist is formed1609

in the active region of the AOM. However, an elliptical beam will not form a beam1610
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waist.1611

This can be seen by taking a beam profile along the beam propagation axis. After1612

reducing the intensity of the laser beam with neutral density filters, a bare CCD camera1613

was inserted into the laser beam to directly image the beam. Typically the beam had1614

to be attenuated by a factor of at least 105, which was done to prevent overexposing the1615

CCD. The images were converted into the pixel values using CImg, and histograms of1616

the sum of columns and sums of the rows were fitted with a Gaussian plus background1617

for the x and y fits respectively. Errors on the Gaussian widths were given by the error1618

on the fit. An example of this can be seen in figure 5.3, which is a beam profile of the1619

trap ECDL after a f = 200 mm lens. The beam minimal in y occurs 23 mm before the1620

beam minima in x.1621

The lines fitted to figure 5.3 is for the equation describing Gaussian beam widths1622

[57], which is1623

w(z) = w0

[
1 +

(
λz

πw2
0

)2
]
, (5.1)

where w(z) is the 1/e2 beam radius at z, z is the axial distance from the laser1624

beam-waist, w0 is the beam-waist radius and λ is the wavelength of the laser.1625

Around the beam waist the beam profile curvature significantly diverges from the1626

description given by geometric optics. This region is called the Rayleigh range, and is1627

characterised by zR and1628

zR =
πw2

0

λ
. (5.2)

This Rayleigh range can extend for significant distances. For example, a beam-waist1629

1/e2 diameter of 1 mm at wavelength of 780 nm, the Rayleigh range extends to 1 m,1630

so Gaussian optics needs to be taken into account.1631

Laser beams are not quite Gaussian TEM00, and have other modes present. To1632

take this into account, equation 5.1 is modified with a beam quality factor M2 as1633

w(z) = w0

[
1 +

(
M2λz

πw2
0

)2
]
. (5.3)

This beam quality factor is a coefficient to take into account the beam higher order1634

modes that occur in laser beams. By definition a M2 = 1 is a perfect Gaussian mode,1635

whilst M2 > 1 describes any differences from this [77]. The further a beam diverges1636

from M2 = 1, the larger divergence and beam waist it has. These higher order modes1637

focus after the TEM00 modes, which can be seen effecting the accuracy of the Gaussian1638

fit after the focal point in figure 5.31639
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Figure 5.3: Graph of beam profile for the trap ECDL. The widths were measured by
fitting a Gaussian to images of the beam taken. The beam-waists position on the z axis
differ by 23 mm, much larger than AOM the beam-waist is supposed to be located in.
The lines are fits of a Gaussian beam profile.

5.1.2 Acousto Optical Modulators1640

An acousto-optical modulator (AOM) is a telecommunications device, containing a bi-1641

refringent crystal, whose refractive index changes with pressure. A constant frequency1642

sound wave created by a piezoelectric electric transducer travels through the crystal1643

creating periodic variations in refractive index and hence a diffraction grating. Light1644

incident on the AOM may be optically diffracted at the Bragg angle by the diffraction1645

grating, which is given by1646
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sinθ =
mλ

Λ
, (5.4)

where θ is the angle of deflection, λ is the wavelength of the laser, Λ is the wavelength1647

of the sound waves and m is the order of diffraction [78]. As the sound wave is travelling1648

through the crystal, the laser is diffracted by a moving diffraction grating. As a result1649

of this, the laser beam is Doppler shifted by the frequency of the sound wave F,1650

f → f +mF. (5.5)

Figure 5.4: Sketch of an acoustic optical modulator. The angle θ is the Bragg angle,
and φ is twice that value. In this example the diffracted laser beam is increased in
frequency. If the AOM was rotated so that incident beam is at minus the Bragg angle
as this diagram shows, the frequency would be decreased.

The efficiency of AOM’s are dependent by the angle the beam passes through the1651

device, the RF power and the RF driving frequency. As well as passing the beam1652

through at the Bragg angle, the AOM have an active area, 500 µm for the Gooch1653

& Housego, 150 µm for the Crystal Tech AOMs, but much smaller at 76 µm for the1654

Brimrose. This requires precision Gaussian optics to match the beam waist size with1655

the active aperture size of the AOM, at the exact location of the active region.1656

5.1.3 Alignment and Characterisation of an 80 MHz AOM1657

For the purpose of the commissioning of the AOM’s, the beam was fibre launched to1658

correct the astigmatism and provide a beam with M2 close to 1. Initially the beam1659

profile of the laser was taken. The beam was aligned to travel directly over the holes on1660

the optical table, at a constant height. A convex lens was inserted into the beam, taking1661

care not to divert the beam from its previous path. The beam was then attenuated1662

several orders of magnitude (4-7), so a CCD camera could be safely inserted image the1663

beams. This CCD was mounted on an optical rail, so that the CCD could be translated1664

along the beam length using the rail. Images were taken along the length of the beam,1665
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as the beam focused the attenuation was increased to account for a more intense beam,1666

to avoid overexposing the images and also damaging the CCD. Each image was fitted1667

with a Gaussian width along the x and y axis, and these data points were used to fit a1668

Gaussian width profile to extract the 1/e2 width. Figure 5.5 shows one of these profiles1669

for one of the AOMs.1670
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Figure 5.5: Beam profile for the beam at AOM0’s location with a f=500 mm lens, in x
and y. Both are fit to a Gaussian beam radius.

The data points are fit with equation 5.3. The beam profile identifies the beam1671

waist position and puts it at between 400-440 µm which matches well with the active1672

region of the AOM.1673

Once the location of the beam waist of the beam was identified, the AOM’s are1674

mounted on micrometer rotation stages. Rotating the beam to the Bragg angle, the1675

beam can be seen to be diffracted at twice the Bragg angle. This can be seen in figure1676
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5.6. It is visible that the centre of the zeroth order is missing intensity, which has been1677

diffracted into the first order. Multiple orders m can be diffracted, and the fraction1678

diffracted into each is dependent on the angle the beam crosses the AOM.1679

Figure 5.6: Photo of the first and zeroth order diffraction from the AOM.

The AOM is most efficient at the Bragg angle and the micrometer rotation stages1680

were used to optimise this angle. This can be seen in figure 5.7, with the ± 1 diffracted1681

orders. This data was acquired at 0.2 W RF power.1682

The power supplied by the RF driver can be varied. Increasing the RF power1683

initially increases the efficiency of the AOM, linearly at first, but the device saturates1684

at high power. Increasing the power past this point will damage the device, with the1685

maximum power of approximately 1 W, which can be seen in figure 5.8. The diffraction1686

efficiency achieved was slightly more than the stated efficiency of 85%.1687

Finally, AOM’s are optimised at a particular design frequency, but will operate1688

within a bandwidth. The effect of this can be seen in figure 5.9. The peak efficiency as1689

expected is at 80 MHz. The efficiency either side of 80 MHz is unsymmetrical, which is1690

particular to the exact alignment. These AOM’s have a quoted bandwidth ± 20 MHz1691

from the central frequency to -3 dB.1692

5.1.4 Double Pass AOMs1693

An AOM can diffract the laser beam on multiple passes to achieve frequency shifts of1694

multiples of the driving frequency. Double passed AOM’s are used, as they eliminate1695

the change in laser beam path when the driving frequency is changed [79]. Figure 5.101696

is a sketch of the basic optical principle. The incoming beam passes through a PBS1697

with a defined linear polarisation. It is then focused to form a beam-waist in the AOM,1698

which diffracts the beam into the first order mode. A second lens then re-collimates the1699

beam, which is retro-reflected through a quarter wave-plate to rotate the polarisation1700

of the beam to be perpendicular to the input beam. This retro-reflected beam retraces1701
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Figure 5.7: Graph of AOM efficiency with angle for a Gooch & Housego 80 MHz AOM.
The angle of the AOM was rotated and the fraction of the power diffracted into the
m± 1 orders was measured. At this stage the sign of the order was unknown, so they
are labelled A and B.

the path and is re-focused into the AOM and is diffracted a second time, shifting the1702

frequency again. The beam is then refocused and reflects off the PBS, with a frequency1703

shift of double of the driving frequency of the AOM.1704

The Gooch & Housego AOMs are driven by a Novatech 409B DDS, outputting1705

up to +4 dBm, which is amplified up to +30 dBm by a Minicircuits amplifier. The1706

Brimrose AOM is driven by a Rohde Schwartz SMA100a signal generator which outputs1707

+10 dBm, and another Minicircuits amplifier is used to raise the power to +30 dBm.1708

Both drivers are controlled by the FPGA system, which allows control of RF power1709

and frequency control. The Crystal Tech 200 MHz AOM was controlled by a fixed1710

frequency VCO, which allows RF power control via the FPGA system.1711

The characteristics of the AOMs are summarised in table 5.1.1712

1713

5.1.5 Trap Derived Frequencies1714

The frequencies required for the two parts of the Raman beams, trapping, molasses,1715

optical pumping, detection and blow-aways are derived from the trap laser. This is1716

done with a series of AOM’s, illustrated in figure 5.11.1717
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Figure 5.8: Graph of AOM efficiency with RF power for a Gooch & Housego 80 MHz
AOM. The data is taken for the same diffraction order as order A in 5.7.

Gooch & Housego Crystal Tech Brimrose

Active aperture (µm) 500 150 76
Bragg angle (◦) 0.83 2.0 15.6
Bandwidth (3 dB) ± 20 MHz N/A 200 MHz
Peak efficiency (%) 85 70 30

Table 5.1: Table summarising AOM characteristics.

First the laser is passed through a second optical isolator, and coupled into a fibre,1718

using two lenses to mode match. The second optical isolator is required as reflections1719

from the fibre face destabilised the ECDL with just one optical isolator. The fibre was1720

used to clean the modes of the laser, producing a spherical beam with an M2 ≈ 1.1.1721

To create the trap beam, the beam is focused into AOM0 via a steering mirror1722

and PBS 1. When AOM0 is activated, the beam is double passed through the AOM1723

and then is transmitted through PBS 1. The beam is collimated by a lens and retro-1724

reflection off a mirror and through a quarter wave-plate. The beam then has the same1725

profile as it did before the double pass of AOM0, but an orthogonal polarisation, so1726

that it is reflected off PBS 1 and PBS 2 to form a beam waist in AOM1. When AOM1 is1727

activated the beam is double passed through the AOM and transmitted through PBS 2.1728
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Figure 5.9: Graph of AOM efficiency with frequency for a Gooch & Housego 80 MHz
AOM. The data is taken for the same diffraction order as order A in 5.7.

Figure 5.10: Sketch of a typical AOM double pass.

The beam collimated and then refocused to form a beam waist in AOM4. When AOM41729

is not activated the beam passes through AOM4 and PBS 3, where it is re-collimated1730

and used as the trap beam. AOM0 provides a nominal down-shift of 160 MHz and1731

AOM1 provides a nominal up-shift of 160 MHz, resulting in no net frequency shift.1732

The trap beam laser intensity may be modulated by these AOMs and the frequency1733

may be adjusted by ±80 MHz, which is used to create the molasses frequency.1734
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Figure 5.11: Sketch of the AOM frequency generation circuit for the trap derived
frequencies.

The detection beam may be created by additionally enabling AOM4, which imple-1735

ments a frequency shift cancelling double pass, in which the first pass is at the Bragg1736

angle down-shifting the beam and the return pass is at the opposite Bragg angle up-1737

shifting the beam. The state selection beam is provided by enabling AOM0, but not1738

AOM1. In this case the beam passes through AOM1 undeflected and a pick off mirror1739

diverts the beam to the state selection system. Driving AOM0 at 85 MHz provides1740

the 170 MHz detuning required for the state selection beam.1741

When AOM0 is not activated, the beam is picked off and sent to the Raman system.1742

A controllable beam waist, in size and position, is formed by a system of four convex1743

lenses, so the position and size of the beam waist can be optimised for maximum1744

efficiency of AOM3. This is illustrated in figure 5.12. Lens 1 and 2 forms a composite1745

lens, adjusting the separation of the lenses alters the beam waist size and position.1746

Lens 3 is positioned to collimate the beam and lens 4 recreates the same beam waist1747

in the centre of AOM3.1748

Figure 5.12: Illustration of the lens system that form the beam-waist in AOM3.
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When AOM3 is activated, on the first pass part of the beam is diffracted and1749

down-shifted in frequency by 1.5 GHz. See figure 5.13. The remaining beam is retro-1750

reflected off a concave mirror reforming the beam waist in the AOM. This beam is1751

diffracted and up-shifted in frequency by 1.5 GHz. These two diffracted beams are the1752

two components of the Raman beams, which can be seen as R1 and R2 in figure 5.1.1753

These beams are collimated with a 50 mm lens and separately passed through a heated1754

Rb cell to reduce any frequency component resonant with Rb. Additionally the beams1755

are passed through an iris to reduce unwanted reflections. Then the two frequencies1756

are combined on a PBS, and launched into a 10 m fibre. The beam’s spatial modes1757

are cleaned by the fibre, and delivers the beam to the experiment. The fibre launch is1758

illustrated in figure 5.14.1759

Figure 5.13: Photo of AOM3. AOM3 is on a precision rotation mount like the other
AOM’s to get the angle, but also a 2-D precision mount to maximise the efficiency of
the AOM. This is required because of the small 76 µm active aperture of the AOM.
The concave mirror is also on a 1-D precision translation for similar reasons.

The combination on a PBS dictates that the polarisations of the two frequencies1760

must be perpendicular. To stimulate Raman transitions the two frequencies must be1761

either identically circularly polarised and propagating in opposite directions, or orthog-1762

onally linearly polarised and the atoms have a non-zero velocity [72]. The constraint1763

of combining on a PBS restricts us to the latter, with the two frequencies being retro-1764

reflected through a quarter wave-plate to form the Raman beam.1765

The combined Raman frequency beam was analysed with a scanning Fabry-Perot1766

interferometer. The frequency spectrum of the Raman beams was compared to the1767

trap beam to confirm the separation in frequency of the Raman beams. Figure 5.151768

shows this spectrum. The two Raman beams can be seen 1.518 GHz either side of1769

the trap frequency. The linewidth of the frequencies is limited by the resolution of the1770

Fabry-Perot, and the true linewidth of the beam is sub 100 kHz, from the ECDL’s.1771
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Figure 5.14: A diagram showing how the Raman beams are launched into a fibre.
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Figure 5.15: Plot of the Raman beams spectra compared with that of the trap beam.

The frequency difference between the Raman beams needs to be chirped at df
dt ≈1772

2g
λ = 25.1MHz/s to maintain resonance with the atoms as they fall. As the AOM1773

frequency is chirped, the angle of deflection alters, and this will change the path length1774

difference of the two beams to the fibre. This change in path-length difference will1775

affect the phase of the Raman pulses. This is expected to be linearly proportional to1776
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angle. The phase shift due to chirping can be measured using a fast photo-diode, and1777

included into the laser phase term in equation 4.4.1778

5.1.6 Pump Derived Frequencies1779

The other frequencies are derived from the pump laser and are shown in figure 5.16.1780

The beam is passed in free space from the ECDL to AOM2, an 80 MHz AOM. Passing1781

the laser in free space was deemed acceptable, as the requirements for the beam quality1782

is less for the pump beams applications, and this avoids the inefficiencies associated1783

with fibre coupling. This AOM is set up in a frequency shift cancelling double pass1784

arrangement like AOM4, with the beam waists being formed by a f = 300 mm lens.1785

This allows the pump beam to be turned on and off with the timing of an AOM. To1786

produce the pump beam AOM2 is operated at 80 MHz, and the desired beam unshifted1787

in frequency is picked off. The beam is split by a 50:50 beams-splitter creating the pump1788

beam for both the MOT and detection.1789

The optical pumping state selection beam requires little power and is split off the1790

first order diffraction by a a 8:92 pelicle beam-splitter when AOM2 is operated at1791

63 MHz If necessary a blow-away beam from F = 2 can be produced in a similar way,1792

by operating AOM2 at 92 MHz.1793

Figure 5.16: Sketch of the AOM frequency generation circuit for the pump derived
frequencies.

5.1.7 Summary of Frequency Generation and Laser Power1794

A photograph of the laser system can be seen in figure 5.17. The trap laser produces 1051795

mW under normal use. The two optical isolators, fibre coupling, transmission through1796

PBS’s and the efficiency of the AOM passes should account for most of the power loss.1797

However further inefficiencies are accumulated particularly on lenses. The pump laser1798

produces 70 mW, which again is reduced to similar inefficiencies to the trap laser.1799

The logic for each frequency generation is summarised in table 5.2.1800

79



Figure 5.17: Photo of the laser system. All five AOM’s can be seen on rotation mounts
on the optical table, with the lasers coming in from the laser table towards the back of
the picture.

5.2 Timing System1801

The experiment is controlled by an FPGA board. The use of a FPGA allows the1802

sequence to be preloaded into the RAM of the board and commands are implemented1803

without latency. The board sequences together the RF signal generators, power supplies1804

controlling the magnetic coils and optical shutters.1805

The AOM’s are controlled by driving them with RF signals. All three of the 801806

MHz AOM’s are driven by a Novatech 409B, which is implemented to drive the AOM’s1807

independently at different voltages and frequencies between 60-100 MHz. The voltage1808

can continuously ramped. Similarly the 1.5 GHz AOM is driven by a Rohde & Schwartz1809

SMA 100A. This was implemented to drive the AOM with a chirped frequency, with a1810

specific phase. The shutters and the magnetic field power supplies were controlled by1811

the FPGA via digital to analog converters.1812

The communication between the FPGA and the hardware was programmed in xml.1813

Sequences could be flexibly programmed by calling on these files.1814

5.3 Summary1815

In this chapter, a unique laser system, consisting of two ECDL’s and five AOM’s, capa-1816

ble of generating all of the required frequencies for the prototype atom interferometer1817
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AOM0 AOM1 AOM2 AOM3 AOM4

Trap 80 MHz 80 MHz N/A Off N/A

Molasses Up to 100 MHz 80 MHz N/A Off N/A

HP 87 MHz Off N/A N/A N/A

Detection /
F = 3 Blow-away 80 MHz 85 MHz N/A N/A 200 MHz

Raman 1 Off N/A 1.518 GHz N/A N/A
+ Chirp

Raman 2 Off N/A 1.518 GHz N/A N/A
+ Chirp

Pump N/A N/A 80 MHz N/A N/A

OP N/A N/A 63 MHz N/A N/A

F = 2 Blow-away N/A N/A 92 MHz N/A N/A

Table 5.2: Summary of the AOM logic, the frequencies they operate at, to produce
different beams, and the output power of the laser system.

was presented. The need to view the laser beams using Gaussian optics was presented1818

and the characterisation of an AOM was discussed. The optical circuit and it’s corre-1819

sponding logic was described, detailing how each of the required laser beams required,1820

as described in the previous chapter, is generated.1821
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Chapter 61822

Optical Molasses, Temperature1823

Measurements and Releasing1824

Atoms1825

This chapter describes the work done on the atom interferometer MOT, and the devel-1826

opment of the optical molasses cooling and release of the atoms. The apparatus used1827

for this was described in chapter 4 using the laser system from chapter 5.1828

The quality of the optical molasses is a diagnostic of the MOT alignment [65]. When1829

a cloud of atoms are released from a MOT by switching off the anti-Helmholtz coils,1830

the atom cloud should expand uniformly, with a slower expansion indicating a more1831

optimal molasses. Poor alignment, remaining magnetic fields, incorrect polarisations1832

or a beam intensity imbalance may also cause the atom cloud to move in one direction.1833

The first step to creating a well aligned MOT is balancing the intensity and polar-1834

isation of the counter-propagating laser beams. Two optical power meters were used1835

to balance the beam power by simultaneously measuring the beams and using the half1836

wave-plates to control the splitting at the PBS’s. Secondly to correctly set the circu-1837

lar polarisations, a PBS was temporarily inserted and the beams were retro-reflected1838

through the quarter wave-plate. When the quarter wave-plate was creating circularly1839

polarised beam without ellipticity the laser beams, the reflection off the PBS is maxi-1840

mal, as measured by a power meter.1841

Figure 6.1: Optical circuit for correctly aligning circular polarisations.

To align the beams, plastic discs with a 1 mm hole in the centre were designed to1842
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fit over the vacuum windows. These were used to guide the beams to be geometrically1843

centred on the vacuum chamber within 1 mm. The anti-Helmholtz coils were moved1844

to create a uniform expansion of the cloud. Adjustments were then made to the beam1845

alignment to optimise the cloud expansion. The magnetic coils position and beam1846

alignment were adjusted to first create a uniformly expanding atom cloud by eye, and1847

then to create the longest living molasses. This was measured by analysing video of1848

the MOT expanding, plotting the integrated pixel intensity of each frame over time. A1849

plot of the intensity over time for the optical molasses can be seen in figure 6.2, with1850

three different examples of the molasses as the alignment improved.1851

As the alignment was further improved the duration of the optical molasses improves1852

from about 100 ms to 300 ms. Figure 6.3 shows frames from the videos used for figure1853

6.2. The first example of molasses can be seen to decay quickly, no longer visible after1854

100 ms. Example two lasts much longer, but the atom cloud move in bulk to the top1855

right of the image. The third example improves on this with a more uniform expansion.1856
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Figure 6.2: Intensity of optical molasses over time, as alignment improved.

6.1 MOT Measurements1857

With the new MOT apparatus, quantitative measurements were made. The laser sys-1858

tem described in section 5 allowed for more measurements to be made, in particular with1859

finer frequency control, and timing control of the laser beams made release/recapture1860

temperature measurements possible.1861
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Figure 6.3: Frames for the videos of the optical molasses corresponding to those in
figure 6.2. Each frame is 5.6 mm square.

6.1.1 Atom Number1862

The number of atoms was measured for the MOT, with characterisation plots made for1863

trap and pump beam intensities, trap beam detuning and magnetic field gradient. The1864

first step was to produce a power calibration plot of the camera, as seen in figure 6.4.1865

It is fit with a quadratic, f(x) = Ax2 +Bx+C, with A = −5.74×10−10, B = 0.0001541866

and C = −0.2901867
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Figure 6.4: Calibration plot between pixel increase and power increase of a power meter
mounted adjacent to the MOT chamber.
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For these measurements, the standard magnetic field gradient was 16.3 G/cm with1868

an estimated accuracy of ±0.2 G/cm from the initial measurement of the coils gradient.1869

The trap laser was locked with a detuning of 10.8 ± 0.4 MHz, which was determined1870

from an oscilloscope readout of the locking point. The power in each beam was mea-1871

sured at 0.96 mW per beam, giving a total maximum intensity of 27 ± 1.7 Isat. The1872

pump beam was typically used on maximal power.1873

The number of atoms increases with magnetic field gradient, as in the first MOT1874

set up, although the gradient seems to have started to flatten. This can be seen in1875

figure 6.5.1876
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Figure 6.5: Plot of number of atoms trapped vs magnetic field gradient.

Figure 6.6 shows a slightly larger detuning of 12.8 MHz would be preferential for1877

trapping more atoms in this configuration. The number of atoms increases with trap1878

beam intensity, which can be seen in figure 6.7. The pump intensity could be decreased1879

to 40 % of the maximum power without affecting the number of trapped atoms, as seen1880

in figure 6.8.1881

6.1.2 Release and Recapture Temperature Method1882

Temperature measurements were made using the release recapture method [80]. These1883

measurements required the ability to turn the lasers on and off at the millisecond level,1884

made possible by the laser system described in chapter 5.1885

The MOT was observed with a CMOS camera focused on a 2 mm square region1886

of interest with the MOT in the centre. The pixel values for each frame were summed1887
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Figure 6.6: Plot of number of atoms trapped vs detuning frequency.
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Figure 6.7: Plot of number of atoms trapped vs total trap beam intensity.

as they were in the atom number measurements, to give an intensity value for each1888

frame of the video. The lasers are turned off at t = 0, the atoms thermally expand,1889

and are observed by turning the pump and trap beams back on. This was observed1890

by recording a video of the atoms at 400 fps. The fraction of atoms remaining in the1891
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Figure 6.8: Plot of number of atoms trapped vs pump beam intensity as a fraction of
the maximal value.

observed region was measured for different times of thermal expansion.1892

The density distribution of the atom cloud as observed by a camera can be modelled1893

as a Gaussian in the horizontal component x and vertical component y, and has a width1894

σ(t) which is a function of time. The normalised density is1895

ρ(x, y, t) =
1

2πσ2(t)
exp[
−
(
x2 + y2(t)

)
2σ2(t)

] (6.1)

where x is the radial position of the cloud and t is time. The cloud will fall under1896

gravity so y(t) = y + 1
2gt

2 , where (x, y) is the position of the cloud at time t = 0 and1897

g is the gravitational acceleration. The cloud width expands thermally depending on1898

the temperature T , σ(t) =
√

(σ2
0 + 2kBT

m t2). The parameter σ0 is the clouds width at1899

t = 0, kB is the Boltzmann constant and m is the atomic mass of 85Rb.1900

The fraction of atoms left in an area viewed by the camera at time t is given by1901

f(t) =

∫
ρ(x, y, t)dxdy =

∫ L

−L
dx

∫ L

−L
dyρ(x, y, t), (6.2)

where the area of integration is a square field of view, centred on the atom cloud at1902

time t=0, side length 2L. This can be written1903
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f(t) = 2

∫ L

0
dx(

∫ L

0
dy −

∫ −L
0

dy)ρ(x, y, t)

=
1

2
erf(

L+√
2σ(t)

)

(
erf(

L+ 1
2gt

2

√
2σ(t)

)− erf(
−L+ 1

2gt
2

√
2σ(t)

)

)
,

(6.3)

where erf is the error function. Observing the proportion of atoms left in the frame1904

after time t, the fractions of atoms as a function of t can be plotted and fitted to obtain1905

the cloud temperature.1906

An example of turning off the lasers for time 10 ms and observing the recapture can1907

be seen in figure 6.9. The point before observing a large drop in intensity was taken1908

to be the initial number of atoms. The recaptured atoms were probed by a 5 ms laser1909

pulse; the second frame of the pulse was taken as the recapture intensity because the1910

video and the script controlling the lasers were not synchronised, so the first point may1911

not have a full exposure of the recaptured atoms. These two values were compared to1912

the background fluorescence rate, also marked on the graph. The error on the initial1913

number of atoms was taken to be the standard deviation of the 10 previous points1914

before the release of the MOT, which was also assumed to be the error on the atoms1915

recaptured. The background fluorescence error was taken from the standard deviation1916

of a 25 ms laser pulse at the end of the sequence.1917

The initial size of the atom cloud was taken from the image of the atom cloud before1918

the lasers were turned off. The rows in the image were integrated and fitted with a1919

Gaussian plus a linear function as background to obtain the input value of the fit. An1920

example fit can be seen in figure 6.10.1921

The data points were taken and fit with the function in equation 6.3. An example1922

fit can be seen in figure 6.11.1923

6.1.3 Temperature Measurements1924

From the plot in figure 6.12, no evidence the magnetic field gradient effecting the MOT1925

temperature can be concluded. The relationship between frequency and temperature in1926

figure 6.13 shows a decrease in temperature with an increase in the trap beam detuning.1927

This relationship follows equation 4.1 in that high detunings reach a lower equilibrium1928

temperature from polarisation gradient cooling.1929

Figure 6.14 show the MOT temperature shows a linear relationship with trap beam1930

intensity. This shows that a colder MOT is achieved at lower intensity, at the price of1931

lower atom number. As the pump intensity is high, it is shown to have little effect on1932

MOT temperature, as shown in figure 6.141933

Therefore magnetic field gradient, trap intensity and detuning all have to be opti-1934

mised for optimal atom number and cloud temperature.1935
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Figure 6.9: An example of a release recapture measurement. Each point represents the
integrated pixel values in a video frame taken at 400 fps.

Increasing the magnetic field gradient would increase the number of atoms, at a1936

slight cost in temperature. There is a 23% increase in atom number from operating the1937

MOT at 22.2 G/cm instead of the standard 16.3 G/cm. However a continuous current1938

safety limit of 10 A was placed on the coils restricting them to 16.3 G/cm.1939

A more significant decrease in temperature would be found by decreasing the in-1940

tensity of the trap beam, which could lower the temperature from 231 µK to 102 µK1941

in the extreme case. This would decrease this number of atoms by 52%.1942

Increasing the detuning to the extreme would further cool the atoms by approxi-1943

mately 50 µK from the standard settings, reducing the number of atoms by 71%. The1944

pump laser intensity needs to be kept above 40% of the initial value to maintain high1945

atom number. Given that the MOT is followed by an optical molasses stage to further1946

cool the atoms, the settings will be set to maximise atom number.1947

6.1.4 Optical Molasses and Releasing atoms1948

The release of the atoms from the MOT into free fall is accompanied an optical molasses1949

stage. This is standard procedure in atom interferometry, with the steps being broadly1950

the same across different apparatus [25] [72] [46]. With a fully filled MOT, the anti-1951

Helmholtz coils are turned off. This rapid change in magnetic field stimulates eddy1952

currents in the vacuum chamber, which must decay before the next step. This depends1953
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Figure 6.10: The initial atom cloud size was found by fitting an image of the MOT
before each release. The cloud was fit with a Gaussian plus a linear function to account
for background. For this fit σ0 = 0.26 mm.

on the the amount and the type of material the vacuum chamber is constructed from,1954

and is of order ten milliseconds. This length of time given for the eddy currents to1955

decay is defined as ∆teddy. Next the detuning is increased, to increase the effect of1956

polarisation gradient cooling. The magnitude of the detuning for 85Rb is limited to1957

less than 60 MHz to not excite transitions to the 52P 3
2
F = 3 state, which decays to1958

the 52S 1
2
F = 2 by a dipole transition. Atoms in this state would not be cooled. This1959

increase in the detuning frequency is defined as ∆fdet1960

This detuned optical molasses is allowed to cool the atoms on order of one millisec-1961

ond. This length of time is defined as ∆tcool. The trap beam intensity must be ramped1962

down to zero, on the order of a millisecond, in time ∆tramp. The pump beam is left on1963

for some time of order a millisecond pump all atoms into the 52S 1
2
F = 3 state. This1964

length of time is defined as ∆tpump.1965

Optical molasses with differing detunings were investigated. When the detuning1966

is increased there is a large drop in fluorescence intensity. These drops in intensity1967

were used to sync the measurements for comparison. The anti-Helmholtz coils were1968

turned off and after a 20 ms delay the detuning of the trap laser beam was increased.1969

Figure 6.16 shows the intensity of molasses for different sizes of detuning. Increasing1970
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Figure 6.11: Graph of temperature measurement using the release recapture technique.
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Figure 6.12: Plot of temperature of atoms trapped vs magnetic field gradient.

the detuning creates a longer lived molasses. The fluorescence intensity became too1971

dim to measure for detuning greater than 25 MHz.1972
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Figure 6.13: Plot of temperature of atoms trapped vs detuning frequency.
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Figure 6.14: Plot of temperature trapped vs total trap beam intensity.

Different ∆teddy times were tested. These can be seen in figure 6.17. For ∆teddy =1973

10, 20 ms the molasses decay are the same. Waiting 40 ms however does have a negative1974

effect, as the molasses decays quicker.1975

The effect of different ∆tramp was investigated, with ∆teddy = 10ms, ∆fdet = 201976
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Figure 6.15: Plot of temperature trapped vs pump beam intensity as a fraction of the
maximal value.
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Figure 6.16: Normalised intensity plot for different detunings.

MHz, ∆tcool = 2 ms and ∆tcool = 1 ms. The trap beam was ramped down in intensity1977

using AOM1. The trap beam was turned back on 10 ms later to observe the remaining1978

atoms. This time was chosen so approximately half the atoms remained. The frequency1979

of the trap beam was reset to the MOT detuning so a direct comparison could be made.1980

Figure 6.18 is an intensity plot for different ramping times. There is a slight increase1981

in the fraction of atoms recaptured with longer ramp times.1982

93



0

0.2

0.4

0.6

0.8

1

0.8 0.9 1 1.1 1.2 1.3

A
to

m
s
 r

e
m

a
in

in
g
 (

n
o
rm

a
lis

e
d
)

Time (s)

10 ms

 off the magnet and increasing the detuning.
Optical molasses varying the time between turning 

20 ms
40 ms

Figure 6.17: Normalised intensity plot for different ∆teddy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.87  0.88  0.89  0.9  0.91  0.92

A
to

m
s 

re
m

ai
ni

ng
 (

no
rm

al
is

ed
)

Time (s)

Optical molasses for increasing the detuning by different values.

2.3 ms
500 us

50 us

Figure 6.18: Normalised intensity plot for different ∆tRamp.

6.1.5 Molasses Temperature Measurement1983

The temperature of the atom cloud after a molasses is released was measured. The1984

time differences were taken from when the trap beam is extinguished at the end of1985

the ramp, after this point the atoms are no longer under any laser forces and are in1986

free fall. At this stage, due to the atoms not being fluoresced, the size of the cloud1987

could not be measured. To account for this the cloud size was used as a second fitting1988

parameter, using the size before the molasses sequence as an input value. The trap1989

beam was initially detuned 10.8 MHz at full intensity. The magnetic field gradient1990

was 16.3 G/cm.1991
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∆teddy 5 ms

∆fdet 20 MHz

∆tcool 2 ms

∆tramp 2.3 ms

∆tpump 1 ms

Table 6.1: Molasses sequence settings for the temperature measurement

The resulting temperature measurement can be seen in figure 6.19. The fit gives a1992

temperature of 96 ± 5 µK. At this temperature the atoms have an RMS velocity of1993

9.6 cms−1. These techniques have been used to produce temperatures of 30 µK with1994

85Rb [46].1995
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Figure 6.19: Temperature measurements of the atom cloud after the molasses release
sequence.

When observing a well aligned molasses for a long time, the atom cloud appeared to1996

be experiencing a torque causing the cloud to spiral, and not expand uniformly. This1997

can be seen in figure 6.20. By frame 6, the atom cloud can be seen to have entered a1998

spiral.1999

This was attributed to the MOT beams not being spatially uniform. The beam2000

was found to suffer from astigmatism, which can be seen in figure 6.21. The beam2001

divergence is 2.25 times more in the y-axis than the x-axis. As the beams propagate2002

to the trap, the laser will diverge, and the beam intensities in the MOT will not be2003

balanced.2004

Whilst beam intensities may be balanced at the MOT trapping location, as the2005

cloud expands the ratio of counter-propagating beam intensities becomes unbalanced,2006

due to the spatial inhomogeneities in the beam intensity.2007
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Figure 6.20: Stills of the optical molasses. Image marked 0 is the MOT, and each image
after is 50 ms after.

Beam profile: Trap beam pre beam expander
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Figure 6.21: Beam profile of the trap laser before the beam expander, demonstrating
it’s astigmatism. The beam is diverging with an angle of 180 mrad in the x-axis and
406 mrad in the y-axis. The vertical line marks the point at which the beam is equal
radius in the x and y-axes.

6.2 Current Status2008

At this stage, modifications to the MOT circuit were made. The trap beam is mode2009

cleaned through an optical fibre, producing a Gaussian beam. The efficiency of the2010
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fibre coupling is 70%, reducing the trapping power to 670 mW per beam. Initially a2011

4 mm collimator was used to create a similar MOT as before.2012

Two additional cameras were introduced to observe the MOT chamber to aid align-2013

ment. One was placed on the above the horizontal beam axis (camera 2), and another2014

was displaced horizontally to the side (camera 3), as to observe the trap region. With2015

these and the initial camera (camera 1), which observed the MOT through the free2016

smaller window of the spherical octagon, the fluorescence created by the beams was2017

used to align the beams. The positions of these three cameras are illustrated in figure2018

6.22.2019

Figure 6.22: Sketch illustrating the position of the three cameras.

To align the beams, images of the beam fluorescing the background vapour are2020

taken. The beam width was fit in the central trapping region, with a Gaussian plus a2021

linear background, for the columns of the image. The central position of these Gaussians2022

were used to fit a linear function to the beam, which was used to describe it’s vector.2023

From an initial alignment of the beams using the plastic discs, the beams vectors were2024

determined and used to geometrically align them. Initially one of each beam pair was2025

aligned using these beam vectors, and the remain three beams were brought into to2026

match their vectors. From the fits to the images, it was estimated that the beams could2027

be placed with an accuracy of 10 µm in position and 10 mrad in angle2028

6.2.1 Optical Amplification with a Tapered Amplifier2029

Another upgrade to improve the prototype interferometer is the introduction of a ta-2030

pered amplifier (TA). TA’s amplify the input laser beam to powers that surpasses that2031

of normal laser diodes and outputs a beam with the same spectral properties. The2032

tapered amplifier is seeded by a laser beam input through a facet of order 5 µm to2033

ensure single mode behaviour [81]. As the beam passes through the gain medium of2034

the diode, it tapers towards the output facet of about 200 µm to reduce the intensity2035

as not to damage the facet [82]. With an input beam of 10 mW , an output beam of2036

up to 2 W can be produced.2037

A TPA780P20 TA was purchased from Thorlabs, with associated LDC2500B TA2038
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controller. The TA controller maintains the temperature of the TA through peltier2039

coolers and delivers the driving current for the TA. The TA input is fibre coupled2040

which eases alignment. The trap laser was coupled into a fibre after the locking circuit,2041

and used as the input beam for the TA.2042

The output of the TA is elliptical due to the cubic shape of the diode facet. The2043

beam is focused in y with a cylindrical mirror, and then a spherical mirror focuses the2044

beam in both x and y. An optical isolator prevents reflections back into the TA.2045

Further optics shape the the beam for fibre coupling, where it is taken to the2046

experimental table. This circuit is illustrated in figure 6.23, and a photograph of it can2047

be seen in figure 6.24. The camera in the photo is temporarily in place to implement2048

beam profiling for efficient fibre coupling.2049

Figure 6.23: Sketch of the optical circuit for the tapered amplifier.

Figure 6.24: Photo of the optical circuit for the tapered amplifier.

The optical power output as a function of current can be seen in figure 6.25. An2050

output power of 1.1 W is delivered by the TA for a driving current of 1.8 A. This is2051

for an seeding power of 5.2 mW.2052

The TA beam passes through an optical isolator, and is coupled into a single mode2053
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Figure 6.25: Graph of TA optical power as the driving current is varied, for a seeding
power of 5.2 mW .

fibre to be taken to the experimental table. Figure 6.26 is the power fibre delivered2054

onto the optical table as a function of current. The graph is not linear and the TA2055

output beam changes shape as the current is varied, with the major axis of the ellipse2056

reducing at higher currents. Therefore the fibre coupling can only be optimal at one2057

current for ideal mode matching (optimised for 1.5 W here).2058

Currently the TA provides a trap beam with 300 mW of usable power on the2059

experimental table. With the spatial mode output of the TA a function of both the2060

seed power and the driving current, improvements in this power output likely can be2061

made.2062

With the increased power available, the fibre collimator used to launch the MOT2063

beam has been increased from a 4 mm diameter beam to 7.8 mm. This will make the2064

MOT less sensitive to alignment, and increase the amount of atoms trapped.2065

6.3 Summary2066

In this chapter, characterisation of the prototype atom interferometers MOT is pre-2067

sented, with atom number measurements of one million, and release recapture tem-2068

perature measurements, made capable by the new laser system. The development of a2069

release sequence, which further cooling the atoms in an optical molasses, before turning2070

off all the lasers to allow the atoms to enter free fall is discussed. This resulted in an2071

atomic source at 96 /muK. Whilst below the Doppler cooling limit, it is still too large2072

a temperature for the interferometer. Upgrades to the beam quality and intensity are2073

described and are currently being implemented.2074
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Chapter 72075

Next Steps to Commissioning the2076

Interferometer and Future2077

Improvements.2078

The apparatus presented is currently in the commissioning stages. A MOT has been2079

implemented, and further cooled in an optical molasses. The upcoming milestones are2080

discussed here.2081

Demonstrate Dropping the Atom Cloud. Before any further techniques can be2082

tested, the optical molasses must be released without reheating the atoms and2083

dropped without any initial momenta. Optimisation of the release procedure2084

will allow for colder atoms to be dropped and improved beam alignment and2085

balancing will facilitate a release without initial velocity. The recently introduced2086

fibre cleaning of the MOT beams will provided well balanced beam profiles. The2087

introduction of a TA allows the use of larger beam diameter, which will make the2088

MOT less sensitive to the beam alignment.2089

Another upgrade currently being implemented is an additional set of coils. Three2090

pairs of square Helmholtz like coils are being built to enable shifting the zero point2091

of the MOT magnetic field by up to 2 mm. Currently the anti-Helmholtz coils2092

have been placed by eye to be geometrically centred to the vacuum chamber and2093

then adjusted to move the MOT to the centre of the beams. The additional coils2094

will enable the centre of the magnetic field to be translated with more precision.2095

With these upgrades, the MOT should be recommissioned and re-characterised,2096

including temperature measurements for a molasses cooled MOT. The parameters2097

likely to be most significant to the molasses released atoms are the trap intensity,2098

the ramping down time of the trap beams and the optimisation of the magnetic2099

field cancellation coils. Whilst increasing the trap beam intensity will trap more2100

atoms, but has been shown to be detrimental to the temperature of the atoms (see2101

6.14. Some experiments use multiple staged intensity ramping in their molasses2102
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stage, which may need investigating [40]. The cancellation of the magnetic fields2103

is only down to 100 mG, and further optimisation will lead to colder atoms [70].2104

When the temperature has been lowered sufficiently, it will be possible to im-2105

age that atoms have entered free fall. Temperatures as low as 30 µK have been2106

achieved with 85Rb [46]. This could be done initially in the MOT chamber much2107

like a temperature measurement, pulsing the lasers back on to observe the mo-2108

lasses for varying time t, up to 28 ms where the atoms will have left the trap2109

beam. Using the three cameras available, the cloud could be fit for each frame,2110

and the trajectory could be determined from the centre of the cloud over time.2111

Detection of the atoms in the bottom chamber would be a more significant mile-2112

stone, and would allow a time of flight temperature measurement to be done2113

using the detection beam [83]. Another camera installed here would allow first2114

measurement without commissioning the PMT.2115

State Detection and Rabi cycle. Once there is a cloud of freely falling atoms, Ra-2116

man beams may be used to manipulate the state populations. Raman pulses on2117

the tens of microseconds time scale should transfer the atoms between the two2118

ground states, and the Rabi cycles may be traced out [25]. Initially this could2119

be done immediately after the molasses stage, and the MOT beams and cameras2120

could be used for detection. The MOT trap beam would behave as the detection2121

beam and the MOT pump beam as the pump beam, as described in section 4.5.2122

State preparation. Applying a bias field to free falling atoms will split the magnetic2123

sub-states of the atoms by 160 kHz/G [50]. Individual magnetic sub-states will be2124

addressed by the Raman beams. If the Rabi frequency of the Raman transitions2125

is determined, π pulses can be applied to the individual sub-states, transferring2126

them to the other ground-state. If a detection pulse was then applied, their2127

absence would be detected, and the fraction of atoms in each state could be2128

measured. This may be used to test and optimise the state selection method via2129

optical pumping as describe in section 4.3.2130

Similarly the Raman beams may be used to implement the 1-D velocity selection2131

on the atoms. This will reduce their velocity profile along the interferometer beam2132

axis. The slower expansion of the atom cloud in this direction may be imaged.2133

Interferometer Fringes. After applying the state preparation to free falling atoms,2134

the interferometry sequence can be applied, and the state ratios can be detected.2135

This will initially be easier to do in the upper chamber, using a time between the2136

pulses of the order milliseconds. When the atoms are being successfully interfered,2137

the blackout cage for the PMT should be installed, and precise measurements of2138

the atoms in the detection chamber with the PMT should be attempted.2139
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Local Gravitational Acceleration Measurement. With successful interference de-2140

tected, the device should be benchmarked, with a measurement of the gravita-2141

tional acceleration of the atoms. Measuring the fraction of atoms in 5S 1
2

F =2142

3, as a function of chirp rate of the Raman beams will trace out interferometer2143

fringes. Repeating this for different time periods between pulses T will trace out2144

more fringes. For the chirp rate that exactly cancels out the Doppler affect due to2145

the gravitational acceleration of the atoms, all of the fringes will have a maxima2146

that coincide.2147

Tidal Measurements of Local Gravitational Acceleration Measurement Once2148

gravity measurements can be made, a demonstration of the device running re-2149

peatedly for a long time would be good milestone. Typically these types of devices2150

are not operated continuously for more than a period of a week. The proposed2151

parameter space search for DCV would need continuous running for maximal2152

statistics.2153

The gravitation strength varies due to various parameters, such as the position of2154

the Moon and tides, atmospheric pressure and the amount of ground water. If the2155

gravitational measurements can be automated, these variations in gravitational2156

accelerations could be tracked as a benchmark of the device.2157

7.1 Future Upgrades.2158

Several improvements are planned for the device but were not implemented in this2159

iteration of the apparatus. These included launching the atoms into a fountain, a 2-D2160

MOT as a cold atom source for the interferometer, state selection using microwaves,2161

active vibration isolation and magnetic shielding. Optical amplification of the trap2162

beam is also discussed, which is currently being implemented2163

7.1.1 Optical Amplification.2164

The trap beam has been amplified using a TA, producing 300 mW of usable optical2165

power in the frequency generating circuit from a previous value of 40 mW. More power2166

is believed possible with further optimisation. The power amplification is done imme-2167

diately after the locking circuit, so that the increase of power benefits all of the trap2168

derived intensities.2169

The MOT and the Raman beams would both be improved by an increase in optical2170

power. The MOT would benefit from higher beam intensity, as the number of atoms2171

trapped is proportional to the intensity of the trap beams, at least in the current regime2172

(where trap beam intensity and saturation intensity are approximately the same) see2173

figure 6.7. A better way to increase the number of atoms would be to increase the beam2174

diameter, whilst maintaining maximum beam intensity. It is discussed in [84] that the2175

103



trapping rate is proportional the trapping beam diameter to the 4th power, d4. This is2176

by increasing the trapping volume, which increases the capture velocity, which is also a2177

function of beam diameter. Increasing the trapping rate increases the number of atoms2178

trapped by a MOT, which is N = R
Γc

, where Γc is the MOT atom loss by collision.2179

Assuming a linear relationship between intensity and atom number, increasing the2180

diameter should increase the number of atoms with a d2 relationship. This can be used2181

to speculate about improvements in the number of atoms trapped.2182

It is estimated with larger beams and more beam power, atom numbers as high as2183

108 may be realised, commensurate with existing atom interferometers.2184

High transfer efficiency of the Raman beams is achieved with high Raman Rabi2185

frequency. The effective Rabi frequency of the two photon transitions is2186

Ωeff ≡
Ω1Ω2

2∆
≈ Γ2I

4Isat∆
, (7.1)

where Ωi is the Rabi frequency of the individual beams for both beams, Γ is the2187

natural linewidth, I is the intensity, ∆ is the detuning from the higher energy ground2188

state, in 85Rb, F = 3 [36] [25]. Higher Rabi frequency could be achieved by decreasing2189

the detuning, however this would increase spontaneous emission. This leaves increasing2190

the intensity of the beams as the best solution to increase the frequency, which would2191

require an increase in trap laser power.2192

7.1.2 Active Vibration Isolation.2193

The Raman beam is comprised of two frequencies, and the beam is counter-propagating.2194

Both frequencies originate from the fibre and launched down where the beam is retro-2195

reflected on a mirror. Vibrations on this mirror changes the path length of the reflected2196

beam, changing the phase imprinted on the atoms. Vibrations on the fibre length2197

changes the path length of both the Raman beams equally, so no phase shift is seen2198

by the atoms. The optics generating the Raman frequencies are much less sensitive to2199

vibration as they are closely spaced on the optical table and to first order unaffected2200

to vibrations in the vertical direction. The interferometer would therefore benefit from2201

vibration isolation of the retro-reflecting Raman beam mirror.2202

Vibrations below the 1/T frequency effect the interferometer the most. Higher2203

frequency vibrations than this average out, and frequencies above 1 Hz are also more2204

easily passively absorbed. Frequencies below 1 Hz are usually seismic in nature and2205

are harder to passively remove. The amplitude of these vibrations are dictated by2206

the choice of experiment. Currently the experiment is located on the second floor of2207

the Oliver Lodge laboratory. Moving to the ground floor would minimise any building2208

vibrations. A better site for the experiment would be at the Cockcroft institute, which2209

is built directly onto the ground rock, which is some of the most stable in the country. A2210

comparison between the Cockcroft MEIS room laboratory with the Oliver Lodge clean2211
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room floor, and also an passive vibrationally isolated table also at the Oliver Lodge2212

laboratory, can be seen in figure 7.1. In the sub-Hertz regime, vibrations sourced from2213

micro-seismic events can be seen as a peak. These would be a significant noise source2214

for atom interferometers with time scales longer than a second.2215

Figure 7.1: A comparison between the Cockcroft MEIS room laboratory with the Oliver
Lodge clean room floor, and also an passive vibrationally isolated table also at the Oliver
Lodge laboratory.

The vibrations are likely to be cause fluctuations larger than the phase shift due2216

to the tidal variations [73]. Work on vibration isolation has been done by a Masters2217

student. Vibrations are measured by a seismometer, which provided proportional feed-2218

back to a Minus-K vibration isolation platform modified with actuators to minimise2219

vibrations, and an active vibration isolation platform has been tested. However the2220

footprint of the isolation device is too large to be placed under our experiment, so it’s2221

integration into the interferometer will have to wait until the next vacuum restructure.2222

7.1.3 Microwave State Selection2223

The planned method of state selection is an optical pumping method. Alternative state2224

selection methods using microwave pulse are possible. These operate by transferring2225

atoms from one ground state to the other using microwave pulses, at the frequency of2226

the splitting of the states.2227

The simplest of these uses microwaves in the following way [25]. As in the optical2228

state selection, a bias field is applied to split the magnetic sub-states. Then all atoms2229

in 5S 1
2

F = 2 are blown away using an optical beam. Then a microwave pulse with2230

a duration of a π pulse transfers the atoms from 5S 1
2

F = 3 → 5S 1
2

F = 2. Finally,2231

another optical blow away pulse removes atoms left in the F = 3 pulse. The advantage2232

of this technique is that is doesn’t incur any heating of the atoms, which the optical2233
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method might. The disadvantage of the technique is that only atoms from the 5S 1
2

F2234

= 3,mF = 0 state are transferred to the 5S 1
2

F = 2, mF = 0 state. This means that 6
72235

of the atoms are discarded (atoms in mF = ±1,±2,±3 will be blown away by the final2236

pulse), not factoring in the efficiency of the microwave π pulse.2237

More complex microwave comb techniques can be used to transfer atoms from all2238

of the magnetic sub-states [85] [86].2239

7.1.4 Atomic Fountain2240

The accuracy of the interferometer is proportional to T 2 ∝ Z. Increasing the height2241

of the experiment means increasing the height of the interferometry tube, which is2242

constrained by the size of the vacuum chamber and eventually the laboratory. The2243

laboratory in Liverpool can accommodate an experiment of height about one metre.2244

As the experiment is associated with the Cockcroft Institute at Daresbury, there may2245

be opportunity to use the old MEIS experiment room, approximately ten metres, and2246

the Daresbury tower which is one hundred metres 1, both located at the Cockcroft2247

Institute. Atom interferometers built to full height in these room would improve the2248

sensitivity of the experiment by one or two orders of magnitude respectively.2249

Moving to either of these sites would involve a large rebuild of the experiment, and2250

continuous running a ten metre atom interferometer has yet to be demonstrated. A2251

smaller upgrade, would be to turn the experiment into an atomic fountain instead of a2252

drop. By trapping atoms at the base of the experiment, launching them upwards at the2253

correct velocity so they enter a parabolic flight making the most of the experimental2254

chamber, the time of flight T can effectively be doubled, increasing the sensitivity by a2255

factor of 4.2256

To implement a fountain, the atom cloud must be launched vertically. This means2257

locating the cold atom source at the bottom of the vacuum chamber and a modifying2258

the diagonal molasses beams. The two downward propagating beams would be detuned2259

an extra δlaunch and the upward beams would be blue tuned by the same amount.2260

Effectively this shifts the inertial frame where the laser beams have the same frequency2261

to one that is moving upwards. This launches the atoms in a moving optical molasses,2262

and this skewed detuning is normally done after the initial molasses detuning step. In2263

a 1,1,0 beam geometry, the velocity achieved by an asymmetric detuning of δlaunch is2264

v =
√

2δlaunchλ, (7.2)

where λ is the wavelength. For a 1 m launch, a velocity of 4.4 m/s is reached with a2265

δlaunch = 4 MHz. This could be achieved by modifying the frequency generation circuit2266

by splitting the beam into three after the double pass of AOM0 and introducing two2267

1There is currently one functioning 10 m interferometer in the world, functioning in single shot
mode, a 100 m interferometer would be far in the future.
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further 80 MHz AOM’s. These AOM’s would perform the same function as AOM1,2268

but would allow three different frequencies for the MOT beams. The spherical octagon2269

would have to be mounted at the base of the vacuum chamber, with the associated2270

MOT optics to implement a fountain.2271

7.1.5 2-D MOT2272

It is desirable for the parameter search of the vacuum to have a high repetition rate,2273

to acquire high statistics. Currently the MOT is loaded from a diffuse background2274

vapour, and only the low velocity end of the Boltzmann velocity distributed atoms are2275

captured in the MOT. To increase the repetition rate of the experiment, the MOT2276

loading time needs to be decreased. Without changing the current apparatus, the only2277

way to decrease the loading time would be to increase the background vapour pressure.2278

This would be undesirable, as it would increase the background fluorescence, decreasing2279

the contrast of the interferometer.2280

One way to load the trap faster without increasing the background vapour pressure2281

is a 2D-MOT [87]. This is like a regular 3D-MOT, but the topology of the magnetic field2282

has a line of zero magnetic field, and there are only two cooling beams, orthogonal to2283

the zero of magnetic field. This creates a line of laser cooled atoms, which can be pushed2284

into the 3-D MOT. An illustration can be seen in figure 7.2. It is planned that this2285

occurs in a side chamber attached to the main chamber by a differential pumping tube.2286

The pressure in the main chamber can be 10−11 mbar whilst in the 2D-MOT chamber2287

it is 10−8 mbar. When atoms are required in the main chamber, they are trapped in2288

the 2D-MOT and a beam pushes the atoms through the differential pumping tube, into2289

the main chamber, to be trapped by the 3D-MOT. These cold atoms are rapidly loaded2290

into the 3D-MOT.2291

Figure 7.2: Illustration of a 2-D MOT [88].

A 2-D MOT has been developed in Liverpool using a glass pyrex square cell. Per-2292

manent magnets were used to simplify the sub-system. The rubidium is loaded into2293
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the cell using the same getters used in the 3-D MOT. A photograph can been seen in2294

figure 7.3. To integrate the sub-system into the interferometer, the vacuum chamber2295

needs to replace the current getter source in the MOT and the frequency requirements2296

need addressing in the laser system.2297

Figure 7.3: Photograph of the 2-D MOT.

7.1.6 Magnetic Shielding2298

Whilst the atoms are in the magnetically insensitive state mF = 0, they are still effected2299

by the second order Zeeman effect. Also any magnetic gradients will accelerate the2300

atoms. To minimise this, the interferometry region can be magnetically shielded. This2301

would consist of several layers of µ-metal around the interferometry region. This would2302

typically be done with concentric cylinders [89]. Each cylinder will shield the region one2303

radius from the end of the cylinder. The bias coil needs to be wound on the inside of this2304

shielding. Currently this has not been implemented, but in a future implementation a2305

1 m titanium vacuum tube 4” diameter is ready to act as the interferometry region,2306

and a design for the magnetic shielding is in place.2307

7.2 Systematic Sensitivity Limits to a Measurement of ∆φ2308

Once a working prototype has been developed, and measurements have been made, the2309

next step is to investigate the sensitivity limits of the device. These systematic errors2310

come in through the detection method, phase and frequency fluctuations on the Raman2311

beams, and vibrations. A detailed study into the noise limitations to the sensitivity of2312

gravity measurements with atomic interferometers is presented by Gouet et al [29].2313
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The noise on the detection signal at low atom number will be dominated by in-2314

strumentation noise in the detector. With higher atom number this is limited by2315

fluctuations on the laser beams frequency and intensity. This can be minimised by2316

using more sophisticated detection schemes, which detect both states simultaneously2317

and for longer durations [90]. Schemes such as this can be used to reach the shot noise2318

limit.2319

The noise from the detection is measured with atoms prepared in a 50:50 population2320

ratio with a microwave π/2 pulse. The error on the population measurements, σP is2321

the Allan standard deviation. This gives an error on phase of σφ = 2σP
C , where C is2322

the contrast. With a detection scheme limited by the shot noise, σP = 1
2
√
N

.2323

Noise on the RF generator, fluctuations in the Raman fibre length, fluctuations in2324

path difference of the Raman beams before combination, fluctuations in laser intensity,2325

magnetic fields and vibrations in the retro-reflecting mirror can all impart phase noise2326

onto the atoms. The phase noise can be calculated using the following prescription.2327

The Allan variance of the interferometric phase is given by2328

σ2
φ(τ) =

1

τ

∞∑
n=1

|H(2πnfc)|2Sφ(2πnfc), (7.3)

where τ is a multiple of the time an interferometry sequence takes, Tc. The frequency2329

fc is the repetition rate of the interferometer. The values Sφ is the noise power spectral2330

density of the noise source the contribution is being calculated for, which would be2331

experimentally measured. The function H(2πnfc) is the transfer function, given by2332

ωG(ω), where G(ω) is the Fourier transform of the sensitivity function,2333

G(ω) =

∫ ∞
−∞

eiωtg(t)dt, (7.4)

where the sensitivity function g(t) for a π/2− π− π/2 sequence is an odd function,2334

g(t) =


sinΩRt 0 < t < τR

1 τR < t < T + τR

−sinΩR(T − t) T + τR < t < T + 2τR,

(7.5)

where ΩR is the Rabi frequency of the Raman pulses, τR is the duration of a π/22335

pulse, and T is the time between pulses. For the range t > |T + 2τR|, g(t) = 0.2336

The noise power spectral density for the RF generator, fluctuations in the fibre2337

length and path differences before the Raman beam combination can all be measured2338

using a fast photo-diode. Measuring the beat frequency between the two Raman beams2339

as they’re launched from the fibre measures the effect of these three sources in one. From2340

this the noise power spectral density can be measured using a spectrum analyser, and2341

the effect of phase noise on the Raman beams is given by equation 7.3. The power2342
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spectral densities for phase shifts imparted by the mirror vibration can be measured2343

using a seismometer and the phase noise can be calculated in a similar way.2344

The relative intensity of the Raman beams is set to cancel the AC Stark shift.2345

The two parts of the Raman beam should have an intensity ratio of 1:3.67 to cancel2346

the AC Stark effect for 85Rb atoms with a 1.5 GHz detuning [91]. Fluctuations in2347

the intensity balance of the Raman beams can causes fluctuating AC Stark shifts,2348

which in turn causes small phase shifts on the atoms. Measuring the intensity power2349

spectral densities for the two parts of the Raman beams the noise on the phase can2350

then determined, again is described in [29]. These shifts only effect the interferometer2351

during the interferometry pulses.2352

Magnetic fields will produce a quadratic Zeeman shift in the atoms. Measuring the2353

magnetic field along the path of the atoms allows the phase shift to be calculated. It2354

can also be measured by reversing the keff vector, where the phase shift will be the2355

opposite sign. If the short term fluctuations in the magnetic field can be determined,2356

the effect on the phase can be calculated.2357

With a full systematic study of the interferometer, the weakest component in the2358

experiment can be identified and improved.2359
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Chapter 82360

Summary2361

This work has been the development of a 85Rb atom interferometer for a parameter2362

space search for Dark Contents of the Vacuum. Magneto-optical trap apparatus was2363

designed and implemented. This involved constructing an ultra-high vacuum chamber2364

with an integrated warm atom source, suitable for implementing laser cooling. The2365

required electro-magnets were commissioned and frequency controlled ECDL sources2366

were implemented. This apparatus was used with two optical circuits, initially a retro-2367

reflecting trap, which was later developed into a six beam power balanced trap. Atom2368

number measurements were made on this system, trapping 6.6× 106 atoms.2369

The group designed a prototype atom interferometer, and my contribution was to2370

the magneto-optical trap and optical molasses system, which involved creating cancel-2371

lation coils to minimise the background magnetic fields. A laser frequency generation2372

scheme was implemented to create all of the required laser frequencies for the interfer-2373

ometer.2374

Using the timing and frequency control of the laser system, I characterised the MOT,2375

performed initial optimisation of the optical molasses stage, creating optical molasses2376

with lifetimes of order half a second and developed a molasses release sequence. Cold2377

atom sources of with 106 atoms at 96 µK have been created in the interferometer MOT2378

apparatus.2379

From starting on the experiment as the first PhD student, the team has grown,2380

and we have progressed from a nearly empty lab, to a prototype atom interferome-2381

ter, creating optical molasses cooled atom sources. Upgrades to the laser system and2382

MOT beam delivery system are expected to increase the number of atoms to order 108
2383

atoms at lower temperatures. This will be achieved by optically amplifying the trap2384

beams with a TA, and fibre cleaning the trap beams to improve intensity balancing in2385

optical molasses 1. With these atomic samples, the state selection, interferometry Ra-2386

man pulses and state detection can be developed into an working atom interferometer,2387

and benchmarking measurements of gravity and systematic limitations studies can be2388

1108 atoms has been achieved during the writing of this document
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performed.2389

Beyond this, future upgrades are planned to upgrade the device to a 1 m precision2390

device, equivalent similar international research devices. The next step from here would2391

be a two atom interferometer system, capable of performing a parameter space search2392

for dark contents of the vacuum.2393
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