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ABSTRACT

The three generation superstring models in the free fermionic models have had

remarkable success in describing the real–world. The most explored models use the

NAHE set to obtain three generations and to separate the hidden and observable

sectors. It is of course well known that the full NAHE set is not required in order to

construct three generation free fermionic models. I argue that all the semi–realistic

free fermionic models that have been constructed to date correspond to Z2 × Z2

orbifolds. Thus, the successes of the semi–realistic free fermionic models, if taken

seriously, suggest that the true string vacuum is a Z2 ×Z2 orbifold with nontrivial

background fields and quantized Wilson lines.
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1. Introduction

The realistic free fermionic superstring models have had remarkable success

in accounting for the observed low energy physics [1]. Not only do these models

give rise to three chiral generations with the correct quantum numbers under the

Standard Model gauge group, but perhaps more impressive is their success in

providing plausible explanation to various properties of the observed low energy

spectrum, like the stability of the proton [2] and the fermion mass hierarchy [3].

Perhaps the most outstanding success of the realistic free fermionic models is the

correct prediction of the top quark mass [4], that was obtained in the context of

these models several years prior to the experimental observation of the top quark

by the CDF/D0 collaborations.

The successes of the realistic free fermionic superstring models may lead one

to speculate that this indeed may be the path that nature has chosen. It should

be emphasized that it is not claimed that one of the string models that were

constructed to date is the string vacuum that nature has chosen. Indeed, such

a claim will require far more elaborate analysis than has been performed to date.

However, the remarkable successes of the free fermionic superstring models provide

evidence that suggest that the eventually emerging true string vacua will share

some of the basic underlying features of the realistic free fermionic models.

Taking this point of view, it is then of extreme importance to try to extract

what are the basic underlying features of the realistic free fermionic models. One

of the common properties of the realistic free fermionic superstring models is the

fact that they all have three chiral generations.

It is well known that in the bosonic formulation of compactification of the het-

erotic string to four dimensions the number of generations is related to the Euler

characteristic of the compactified manifold [5,6]. The free fermionic formulation

[7], however, is formulated at a fixed point in the compactified space and all the

information on the geometry of the compactified manifold is lost. The bosonic

formulation of the heterotic string has a great advantage over the fermionic for-
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mulation in the sense that we can continuously deform the parameters of the com-

pactified space and connect between string vacua that in the fermionic formulation

would appear as distinct models. Thus, an extremely important task is to try to

determine what is the underlying compactification of the realistic free fermionic

models.

In this talk I argue that the underlying compactification of all the three gen-

eration free fermionic superstring models (that have been constructed to date) is

Z2 × Z2 orbifold compactification. A very simple realization of this underlying

geometry is achieved with the so called “NAHE” set. However, it is well known

that the complete NAHE
∗

set is not required for obtaining three generations free

fermionic models [8]. I argue that also in the case of non-NAHE models, there

is an underlying compactification of a Z2 × Z2 orbifold. I propose that the suc-

cesses of the realistic free fermionic models, if taken seriously, indicate that the

true string vacuum is a Z2 × Z2 orbifold with nontrivial background fields and

quantized Wilson lines.

2. Three generation models with the NAHE set

In the free fermionic formulation of the heterotic string in four dimensions all

the world–sheet degrees of freedom required to cancel the conformal anomaly are

represented in terms of free fermions. For the left–movers one has the usual space–

time fields Xµ, ψµ, (µ = 0, 1, 2, 3), and in addition the following eighteen real free

fermion fields: χI , yI , ωI (I = 1, · · · , 6), transforming as the adjoint representation

of SU(2)6. A model in this construction is defined by a set of boundary condi-

tion basis vectors, which are constrained by the string consistency requirements.

The basis vectors generate a finite additive group Ξ. The physical states in the

Hilbert space, of a given sector αǫΞ, are obtained by acting on the vacuum with

bosonic, and fermionic operators. For a periodic complex fermion f , there are two

degenerate vacua |+〉, |−〉 , annihilated by the zero modes f0 and f0
∗ and with

∗ This set was first constructed by Nanopoulos, Antoniadis, Hagelin and Ellis (NAHE) in the
construction of the flipped SU(5). nahe=pretty, in Hebrew.

2



fermion numbers F (f) = 0,−1, respectively. The physical spectrum is obtained

by applying the generalized GSO projections.

The basis vectors of the NAHE set are {1, S, b1, b2, b3} with a choice of gener-

alized GSO projections [11]. The sector S generates N = 4 space–time supersym-

metry, which is broken to N = 2 and N = 1 space–time supersymmetry by b1 and

b2, respectively. The gauge group after the NAHE set is SO(10) × E8 × SO(6)3.

At the level of the NAHE set, each sector b1, b2 and b3 give rise to 16 spinorial 16

of SO(10). The Neveu-Schwarz sector produces massless states that transform as

(5 ⊕ 5̄) of SO(10) and as singlets of SO(10) × E8.

The NAHE set divides the internal world–sheet fermions into several groups.

The internal 44 right–moving fermionic states are divided in the following way:

ψ̄1,···,5 are complex and produce the observable SO(10) symmetry; φ̄1,···,8 are

complex and produce the hidden E8 gauge group; {η̄1, ȳ3,···,6}, {η̄2, ȳ1,2, ω̄5,6},

{η̄3, ω̄1,···,4} give rise to the three horizontal SO(6) symmetries. The left–moving

{y, ω} states are divided to, {y3,···,6}, {y1,2, ω5,6}, {ω1,···,4}. The left–moving

χ12, χ34, χ56 states carry the supersymmetry charges.

An important consequence of the NAHE set is observed by extending the

SO(10) symmetry to E6. Adding to the NAHE set a vector X with periodic

boundary conditions for the set {ψ̄1,···,5, η̄1,2,3}, extends the gauge symmetry to

E6 × U(1)2 × SO(4)3. The sectors (bj ; bj +X), (j = 1, 2, 3) each give eight 27 of

E6. The (NS;NS +X) sector gives in addition to the vector bosons and spin two

states, three copies of scalar representations in 27 + 2̄7 of E6.

In this model the fermionic states which count the multiplets of E6 are the

internal fermions {y, w|ȳ, ω̄}. The vacuum of the sectors bj contains twelve periodic

fermions. Each periodic fermion gives rise to a two dimensional degenerate vacuum

|+〉 and |−〉 with fermion numbers 0 and −1, respectively. After applying the GSO

projections, we can write the vacuum of the sector b1 in combinatorial form
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(1)

where 4 = {y3y4, y5y6, ȳ3ȳ4, ȳ5ȳ6}, 2 = {ψµ, χ12}, 5 = {ψ̄1,···,5} and 1 = {η̄1}. The

combinatorial factor counts the number of |−〉 in a given state. The two terms

in the curly brackets correspond to the two components of a Weyl spinor. The

10 + 1 in the 27 of E6 are obtained from the sector bj + X. The states which

count the multiplicities of E6 are the internal fermionic states {y3,···,6|ȳ3,···,6}. A

similar result is obtained for the sectors b2 and b3 with {y1,2, ω5,6|ȳ1,2, ω̄5,6} and

{ω1,···,4|ω̄1,···,4} respectively, which suggests that these twelve states correspond to

a six dimensional compactified orbifold with Euler characteristic equal to 48.

The same model is generated in the orbifold language by moding out an SO(12)

lattice by a Z2 ×Z2 discrete symmetry with standard embedding [9]. The SO(12)

lattice is obtained for special values of the metric and antisymmetric tensor and

at a fixed point in compactification space. The metric is the Cartan matrix of

SO(12) and the antisymmetric tensor is given by bij = gij for i > j. The sectors

b1, b2 and b3 correspond to the three twisted sectors in the orbifold models and the

Neveu–Schwarz sector corresponds to the untwisted sector.

The reduction to three generations is illustrated in table 1. In the realis-

tic free fermionic models the vector X is replaced by the vector 2γ in which

{ψ̄1,···,5, η̄1, η̄2, η̄3, φ̄1,···,4} are periodic. This reflects the fact that these models

have (2,0) rather than (2,2) world-sheet supersymmetry. At the level of the NAHE

set we have 48 generations. One half of the generations is projected because of the

vector 2γ. Each of the three vectors in table 1 acts nontrivially on the degenerate

vacuum of the fermionic states {y, ω|ȳ, ω̄} that are periodic in the sectors b1, b2

and b3 and reduces the combinatorial factor of Eq. (1) by a half. Thus, we obtain

one generation from each sector b1, b2 and b3.

2. Three generation models without the NAHE set
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In the previous section we saw how three generation free fermionic models are

obtained if the basis contains the full NAHE set, {1, S, b1, b2, b3}. In these models

the connection with the Z2×Z2 orbifold is readily established. The basis vector b3

is replaced with the basis vector ξ1 = 1 + b1 + b2 + b3. The set {1, S, ξ1} generates

a toroidal compactified model with N = 4 supersymmetry and SO(28)×E8 gauge

group. The boundary condition vectors b1 and b2 the correspond to the Z2 × Z2

orbifold twist. The three sectors b1, b2 and b3 = 1 + b1 + b2 + ξ1 then correspond

to three twisted sectors of the Z2 × Z2 orbifold model. The reduction to three

generations is achieved by reducing the number of fixed points from each twisted

sector to one, by adding three additional boundary condition basis vectors. Each

subsequent boundary condition basis vector reduce the number of fixed points

from each sector b1, b2 and b3 by a factor of two. At the same time the gauge

group is broken to one of the maximal subgroups of SO(10). Many other desirable

phenomenological properties, like doublet–triplet splitting, can be achieved for

appropriate assignment of the boundary conditions in the additional boundary

condition basis vectors.

The free fermionic formulation is formulated at a point in the moduli space

that may be prefered from a dynamical point of view. The reason being that

the free fermionic formulation is formulated near the self–dual point in the com-

pactification space. Studies of the effective moduli potential within the context of

dynamical supersymmetry breaking by gaugino condensates, indeed suggest that

moduli VEVS of the order of the self–dual radius minimize the effective moduli

potential [10]. The structure exhibited by the NAHE set is then seen to be very

robust in getting three generation models with very desirable phenomenological

properties.

These properties of the realistic free fermionic models suggest that it may be

that the true string vacuum is in the close vicinity of these models. An extremely

important question is then to ask what are the properties of these models that are

truly model independent. While it may be naive to expect that one specific string

model will turn out to be the true string vacuum, it is reasonable to expect that
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perhaps we will be able to guess the correct string compactification, or the correct

neighborhood of the true string vacuum.

In the language of the free fermionic models the low energy phenomenological

properties are related to the choices of boundary condition basis vectors and gen-

eralized GSO phases. We can then ask which choices of basis vectors and GSO

phases, in this limited class of models, are necessary to obtain certain desirable phe-

nomenological properties. One such phenomenological criteria is the requirement

of three chiral generations.

While the NAHE set provides an elegant way for obtaining three chiral gen-

erations, it is of course well known that the full NAHE set is not required for

constructing three generation free fermionic models. The first published example

of such a model was published in Ref. [8]. This model is shown in table 3 (with

a slight change of notation). In this model the sectors that may produce chiral

generations are the sectors b1, b2 and b3. The degenerate vacuum of the fermionic

zero modes can be represented similar to Eq. (1). The internal fermionic states

can also be divided into the same groups as with the NAHE set. Each sector bj

then gives rise to 16 generations. This number is then reduced by the choices of

boundary conditions in the remaining boundary condition basis vectors. It is easy

to see from table 2 that in this model the sector b1 and b2 give rise to one and

two generations respectively. From the table we observe that the degeneracy of the

vacuum due to the real fermions in the sector b1 is removed completely, while in

the sector b2 a double degeneracy remains. The sector b3 does not obey the chiral-

ity condition of Ref. [11] and therefore gives rise only to non-chiral matter. The

chirality condition of Ref. [11] states that to obtain from a given sector, bj , chiral

16 representation of SO(10) we need a second vector, bk, with {ψµ, ψ̄1···5} periodic

in both vectors and the intersection between the remaining boundary conditions is

empty. If this condition is not satisfied then, as long as the SO(10) symmetry is

not broken, a given vector bj will give an equal number of 16 and 1̄6 and thus will

not contribute to the net number of generations. The vector bk is not necessarily

a basis vectors but must exist as a combination of basis vectors. Therefore in this
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model the sector b3 produces one 16 and one 16 representation of SO(10).

This model is an example how three generation can be obtained with-

out the full NAHE set. Of course, there may exist many other possibilities.

For example, as shown in Ref. [8] it is possible to add the vector α with

{y5, ω5, y6, ω6, |ȳ5, ω̄5, ȳ6, ω̄6, η̄1, φ̄6,···,8} periodic and the remaining boundary con-

ditions antiperiodic to the basis of table 3. With this basis vector, the combination

b1 +α projects the 16 from the sector b3 and reduces the double degeneracy of the

generations from the sector b2. Thus, with basis vector α this model contains one

generation from each sector b1, b2 and b3.

The important question, however, is whether all these three generation models

possess some common structure.

The answer, of course, is that all these models are related to Z2×Z2 orbifolds.

The orbifold moding however does not act on a torodially compactified model with

N = 4 space–time supersymmetry and SO(12) × E8 × E8 or SO(12) × SO(16) ×

SO(16) gauge group, as in the case of the models that contain the full NAHE

set. In the non–NAHE models, the sectors ξ1 and ξ2 that produce the spinorial

of SO(16) in the observable and hidden E8s are not present, therefore the space–

time gauge group of the torodially compactified model is SO(44). This gauge

symmetry is obtained in the bosonic formulation for appropriate choices of the

metric, antisymmetric tensor and Wilson lines [12].

In the Kagan–Samuel model above the basis vectors {1, S} generates a toro-

dially compactified model with N = 4 and SO(44) gauge group. The basis vectors

b1 and b2 correspond to the Z2 × Z2 orbifold twisting. The third twisted sector

of the orbifold model is still present, and is the combination 1 + b1 + b2. In this

model the vector ξ2 which generates the spinorial representation of SO(16) in the

adjoint representation of the hidden E8 gauge group is absent. Consequently, the

states from the third twisted sector, 1 + b1 + b2, are not massless states.

All the three generation free fermionic models that have been constructed to

date contain the basis vectors {1, S}. The basis vector S produces N = 4 space–
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time supersymmetry. The only way to reduce the number of supersymmetry gen-

erators that are produced by this basis vector, is by moding by a Z2 × Z2 twist.

Therefore, the connection between the three generation free fermionic models and

Z2 × Z2 orbifold compactification is in fact expected. By free fermions we confine

ourselves to conformal field theory blocks that are either complex fermions or Ising

model operators. Recently, it was found that three generation models can also

be obtained if one relaxes this constraint [13]. In the models of Ref. [13], the

vector S is used to generate the space–time supersymmetry. Consequently, in this

models, the Z2 × Z2 structure is preserved in the supersymmetric sector, while

it is relaxed in the bosonic sector. These models make use of more complicated

conformal solutions that do not correspond to free fermions.

4. Conclusion

In this talk, I discussed the correspondence between three generation free

fermionic models and orbifold compactification. All the three generation free

fermionic models that have been constructed to date correspond to Z2 × Z2 orb-

ifold compactifications. Other compactifications may be constructed in the free

fermionic formulation by using different supersymmetry generators [14] (It is of

course possible that these SUSY generators can also lead to three generation mod-

els). If the successes of the realistic free fermionic models are to be taken seriously,

then they indicate that the true string vacuum is related to a Z2 × Z2 orbifold

compactification with nontrivial background fields. Out of the plethora of orbifold

compactifications [15], Z2 × Z2 orbifolds, therefore, deserve special attention.
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ψµ {χ12;χ34;χ56} ψ̄1, ψ̄2, ψ̄3, ψ̄4, ψ̄5, η̄1, η̄2, η̄3 φ̄1, φ̄2, φ̄3, φ̄4, φ̄5, φ̄6, φ̄7, φ̄8

α 0 {0, 0, 0} 1, 1, 1, 0, 0, 0 , 0, 0 1, 1, 1, 1, 0, 0, 0, 0

β 0 {0, 0, 0} 1, 1, 1, 0, 0, 0, 0, 0 1, 1, 1, 1, 0, 0, 0, 0

γ 0 {0, 0, 0} 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

1

2
, 0, 1, 1, 1

2
, 1

2
, 1

2
, 0

y3y6, y4ȳ4, y5ȳ5, ȳ3ȳ6 y1ω6, y2ȳ2, ω5ω̄5, ȳ1ω̄6 ω1ω3, ω2ω̄2, ω4ω̄4, ω̄1ω̄3

α 1, 0, 0, 0 0, 0, 1, 1 0, 0, 1, 1

β 0, 0, 1, 1 1, 0, 0, 0 0, 1, 0, 1

γ 0, 1, 0, 1 0, 1, 0, 1 1, 0, 0, 0

Table 1. A three generations model with the NAHE set. The choice of generalized GSO co-

efficients is: c

(

bj

α, β, γ

)

= −c

(

α

1

)

= c

(

α

β

)

= −c

(

β

1

)

= c

(

γ

1, α

)

= −c

(

γ

β

)

= −1

(j=1,2,3), with the others specified by modular invariance and space–time supersymmetry.



ψµ {χ12;χ34;χ56} ψ̄1, ψ̄2, ψ̄3, ψ̄4, ψ̄5, η̄1, η̄2, η̄3 φ̄1, φ̄2, φ̄3, φ̄4, φ̄5, φ̄6, φ̄7, φ̄8

1 1 {1, 1, 1} 1, 1, 1, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1

S 1 {1, 1, 1} 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0

b1 1 {1, 0, 0} 1, 1, 1, 1, 1, 1, 0, 0 0, 0, 0, 0, 0, 0, 0, 0

b2 1 {0, 1, 0} 1, 1, 1, 1, 1, 0, 1, 0 0, 0, 0, 0, 0, 0, 0, 0

b3 1 {0, 1, 0} 1, 1, 1, 1, 1, 0, 1, 0 0, 0, 0, 0, 0, 0, 0, 0

P 0 {0, 0, 0} 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 1, 1, 1, 1

α 0 {0, 0, 0} 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2

1

2
, 1

2
, 1

2
, 1

2
, 0, 0, 1, 1

y3y4, y5ȳ5, y6ȳ6, ȳ3ȳ4 y1ȳ6, y2ȳ2, ω5ω̄5, ω̄6ω̄6 ω1ω̄1, ω2ω̄2, ω3ω̄3, ω4ω̄4

1 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1

S 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0

b1 1, 1, 1, 1 0, 0, 0, 0 0, 0, 0, 0

b2 0, 0, 0, 0 1, 1, 1, 1 0, 0, 0, 0

b3 0, 1, 1, 0 0, 0, 0, 0 1, 1, 0, 0

P 0, 1, 0, 0 0, 0, 1, 0 0, 0, 0, 0

α 0, 0, 0, 1 1, 0, 0, 0 1, 0, 0, 0

Table 2. The three generations SU(5) × U(1) Kagan–Samuel model. The choice of GSO

phases is: c

(

S

1, bj

)

= −c

(

S

P, α

)

= c

(

b1

b2, b3

)

= c

(

b2

b3

)

= −c

(

bj

P

)

= −c

(

b1

α

)

= 1

(j=1,2,3) and c

(

b2, b3

α

)

= i, with the others specified by modular invariance and space–

time supersymmetry (The notation and GSO phases may be different from KS). This model

does not contain the full NAHE set.


