CURVES OF MARGINAL STABILITY IN N=2 SUPER-QCD*

Philip C. Argyres and Alon E. Faraggi Institute for Advanced Study Princeton, NJ 08540, USA E-mail: argyres@guinness.ias.edu, faraggi@sns.ias.edu

and

Alfred D. Shapere

Department of Physics and Astronomy, University of Kentucky Lexington, KY 40506, USA E-mail: shapere@amoeba.pa.uky.edu

Seiberg and Witten's solution¹ to N=2 SU(2) Yang-Mills with $N_f=0$ flavors has a one-complex-dimensional Coulomb branch of degenerate vacua labeled by a coordinate u. The effective U(1) theory is described in terms of two functions a(u)and $a_D(u)$. The gauge coupling, $\tau \equiv (\theta/2\pi) + i(4\pi^2/g^2)$ is given by $\tau = da_D/da$; it must satisfy $\text{Im}(\tau) > 0$. The theory is governed by a dynamically generated strong-coupling scale which we set to 1.

The mass of a dyon hypermultiplet with electric and magnetic charges n_e and n_m is given by $M = \sqrt{2}|n_m a_D(u) + n_e a(u)|$. Whenever $\text{Im}(a_D/a) = 0$, any dyon becomes marginally unstable to decay into two or more other dyons (conserving electric and magnetic charges). This note presents a simple argument that determines the shape of the curve of marginal stability $\text{Im}(a_D/a) = 0$.

The effective theory has a duality group that acts on $\binom{a_D}{a}$ as a vector under $SL(2, \mathbb{Z})$, and on τ in the usual way. Note that $f(u) \equiv a_D/a$ transforms like τ .

The U(1) effective theory breaks down at $u = \pm 1$ and ∞ , where a dyon hypermultiplet becomes massless. The SL(2, Z) monodromies around these points are ST^2S^{-1} , $(TS)T^2(TS)^{-1}$, and $-T^2$. These matrices generate the group $\Gamma(2) \subset SL(2, Z)$. $u(\tau)$ is a one-to-one map of a single fundamental domain of $\Gamma(2)$ onto the complex plane, which has cusp points at $\tau = 0, 1$, and $i\infty$. These cusp points correspond to the three singularities in the *u*-plane, and are fixed points of the corresponding SL(2, Z) monodromies—see Fig. 1.

The range of the function f(u) is a subset of the complex plane with similar properties to the fundamental domain of τ . $\Gamma(2)$ acts identically on both the fplane and the τ -plane, and its generators fix the same 3 points. However, since Im f is not necessarily positive the range of f may extend below the real axis, unlike τ . Indeed, since we know (from expanding the explicit expressions¹ for a and a_D around $u = \pm 1$) that there are whole lines where f is real, it follows that f^{-1} must map an infinite number of $\Gamma(2)$ domains, both above and below the real axis, onto the u-plane.

There is only one possibility for the shape of the range of f(u), due to the fact that the generators ST^2S^{-1} and $(TS)T^2(TS)^{-1}$ are of infinite order, which implies that the opening angles of the corresponding cusps must also be of infinite order, *i.e.*, 0 or 2π . An opening angle of 0 would correspond to a single fundamental domain of $\Gamma(2)$, which we have ruled out. Opening angles of 2π correspond to the domain shown in Fig. 1, a full strip in the *f*-plane with one $\Gamma(2)$ domain removed. It is easy to see that the monodromies for this region are correct. As a check, it is easily verified using the explicit expressions¹ that $f(0) = -(i \pm 1)/2$.

The curve of marginal stability is the image under f^{-1} of the interval [-1,1], which is a simple closed curve in the *u*-plane (with $f(-1) = \pm 1$ and f(+1) = 0) as conjectured in Ref. 1. Outside of this curve are the images of the infinite number of $\Gamma(2)$ domains between $\operatorname{Re}(f) = +1$ and -1 and with $\operatorname{Im}(f) \ge 0$. Inside the curve are the images of all but one of the $\Gamma(2)$ domains with $\operatorname{Im}(f) < 0$.

The curve Im f = 0 has been shown by independent methods to be simple and closed.² Also, we have numerically computed it to be the curve shown in Fig. 1.

The methods presented here are easily extended to the massless $N_f = 1, 2$, and 3 cases.³ For nonzero masses, as well as for $N_c > 2$, the curves of marginal stability become dense in moduli space.

Fig. 1: The shaded regions are the images of the *u*-plane in the τ and *f*-planes. The dashed lines are the images of Im f = 0.

It is a pleasure to thank M. Douglas, M. Matone, R. Plesser, K. Ranganathan, N. Seiberg, and E. Witten for useful discussions. P.C.A. is supported by NSF grant PHY92-45317 and by the Ambrose Monell Foundation, A.E.F. by DOE grant DE-FG02-90ER40542, and A.D.S. by DOE grant DE-FC02-91ER75661 and by an A.P. Sloan Fellowship.

- *. Talk given by P.C.A. at Strings '95, U.S.C, March 1995.
- 1. N. Seiberg and E. Witten, Nucl. Phys. $\mathbf{B426}$ (1994) 19.
- 2. A. Fayyazuddin, hep-th/9504120.
- 3. N. Seiberg and E. Witten, Nucl. Phys. B431 (1994) 484.