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Abstract—This paper proposes a novel dynamical model
for linear hierarchical networks. Two evolution processes,
dominance-based and prestige-based, are introduced. The former
provides a formal framework for the study of hierarchies seen
among animal species, while the latter is specific to human-
based societies. Due to the deterministic characteristics of the
proposed models, we are capable of determining equilibria in
closed form. Surprisingly, these stationary points recover the
exponential and power-law degree distributions as the shared
properties of the resulting hierarchal networks, explaining the
prevalence of hierarchies in societies. As another contribution,
the closeness centrality of nodes for each model is also computed
in closed form. Such results shed light on the evolutionary
advantages of hierarchies.

I. INTRODUCTION

Hierarchies, where members are ordered based on their
size, weight, or other physical characteristics, can be seen
across various species. Examples are wide spread including,
but not limited to clownfish size adaptation for conflict pre-
vention [1], chickens’ peking order for feeding activities [2],
et. cetera. Such hierarchies are not limited to animal species,
but can also be seen in human societies. Here, hierarchies
are translated to social status, where research has shown that
human physique (e.g., stature) and body hormones play a
crucial role in enabling dominance [3]. Contrary to animal
societies which base hierarchies on dominance, however, hu-
man societies replace dominance by “prestige” (i.e., theory
of service-for-prestige) to construct reciprocal relationships
between leaders and followers [4].

To analyze the behavior of networks, a variety of mathe-
matical models have been proposed [5]. The earliest dates back
to the 1900’s, where Yule [6] studied the biological evolution
of species based on age and population data. Others, e.g.,
Lotka [7] provided rules required for describing and analyzing
scientific publications. Resulting from these and other studies,
was the emergence of the power-law degree distribution [8] as
a shared common characteristic for a wide-range of networks
including but not limited to, the world wide web, protein-
protein interaction, and airline, and social networks.

Given such a widely-shared characteristic, Barabási and
Albert suggested a linear preferential attachment model for
the generation of scale-free graphs exhibiting a power-law

degree distribution distribution [9]. As noted by Durret [10],
the definition of their process was rather informal. Since then,
different precise forms of the Barabási-Albert (BA) model have
been studied in literature [11], [12].

Though successful at recovering the power-law degree dis-
tribution, these studies impose several restricting assumptions
on the underlying graph generating process. For instance, in
preferential attachment, newly arriving nodes are assumed to
connect to existing nodes with frequency proportional to their
highest degree. Furthermore, such techniques typically adopt
a binary attachment model, in which two nodes are either
connected or not [9], [13], [14], [15], [16].

Evolutionary considerations of real-world networks, how-
ever, show the emergence of scale-free behavior (i.e., networks
exhibiting a power-law degree distribution) in networks as
a resultant of hierarchal attachment processes which are not
reflected through current preferential attachment models [3],
[4]. Apart from these modeling restrictions, another problem
inherent to existing binary models lies in their explanatory
capabilities. For instance, they fail to manifest connection
strengths between individuals; a property being at the core of
behavioral emergence in real networks [17], [18], [19], [20],
[21].

To provide more realistic modeling outcomes, in this
paper, we contribute by proposing two deterministic hierarchal
graph attachment processes for both dominance (i.e., animal)
and prestige-based (human) societies. Contrary to preferential
attachment models, our approach only assumes hierarchal
connections between individuals, thus bridging the modeling
gap to real-world evolutionary networks. Among many advan-
tages, our deterministic setting enables the derivation of the
degree distribution in closed-form. Performing this derivation
recovers, surprisingly, the exponential and power-law degree
distributions as the main properties of the resultant hierarchal
networks, which explains the prevalence of such hierarchies in
societies. In short, our contributions can be summarized as:

1) Deterministic modeling of linear (in the sense that if
node A is superior to node B, and node B is superior
to node C, then node A is also superior to node C)
hierarchal networks as complete weighted graphs;

2) Deriving, for the first time, a closed form of the
skewed distribution among individuals in networks



having hierarchical access to information or power
loads;

3) Explaining the prevalence of hierarchies in societies
as a resultant of the characteristics of derived skewed
distribution (e.g., high robustness and small average
distance [13]); and

4) Understanding the emergence of new behaviors in
both animal and human societies as size of groups
increases, by amplifying distribution differences be-
tween dominance-based hierarchies (i.e., exponential
distribution) and prestige-based networks following a
power-law distribution.

As another contribution, we have defined and derived the
closeness centrality metric in closed form. This can be used
to assess the importance of nodes in hierarchical networks. In
other words, our centrality measure reflect that in dominance-
based networks the shortest path between every two members
is their direct link, while in prestige-based hierarchies every
shortest path has to pass through the member with highest
“prestige”.

The remainder of this paper is organized as follows.
The notations used in this paper are defined in Section II.
Preliminary information on mathematical series and degree
distributions are provided in Section III. The dominance-
based and prestige-based dynamical models are introduced
in Section IV. Each of these models are studied in detail in
Sections V and VI; their closeness centrality is further studied
in Section VII. Section VIII concludes.

II. NOTATIONS

A network is described via a graph, G = (V,W), con-
sisting of a set of N nodes (or vertices) V = {v1, . . . ,vN}
and an N × N adjacency matrix W = [wij ] where non-
zero entries wij indicate the weighted connection from vj
to vi. In this paper we consider the undirected graphs which
have symmetrical W. The neighborhood N of a node vi
is defined as the set formed by its connected vertices, i.e.,
N(vi) = ∪jvj : wij > 0. The node’s degree, deg(vi), is given
by the cardinality of its neighborhood.

The strength of a node is of major importance in hierar-
chical networks. Next, we define three concepts: (1) relative
strength (2) strength observation and (3) absolute strength.

Relative Node Strength: The relative strength of jth node
with respect to ith node with i > j is denoted by Ψi(vj) and
represents the sum over all edge weights between jth node
and every kth node where k < i. Namely,

Ψi(vj) =

i−1∑
k=1

wjk, i > j. (1)

In other words, when node i is monitoring node j with
j < i, it just observes those connections from other ks to j
which k < i. The importance of this concept will be shown in
Section V.

Strength Observation The Strength observation of the ith
node is denoted by the vector

~Ψi = [Ψi(v1),Ψi(v2), . . . ,Ψi(vi−1)]
T

with cardinality i− 1.

Absolute Node Strength: The absolute strength of jth
node is defined as

Ψ(vj) =

N∑
k=1

wjk. (2)

III. BACKGROUND

A. Mathematical Series

The fraction product and harmonic series are two ingredi-
ents which play a major role in our analysis for determining
closed forms of the strength distributions in hierarchical net-
works. Here, we provide two lemmas presenting the upper and
lower bounds on the values of these summations.

Lemma 1 (Fraction Product Series): Consider the follow-
ing product of fractions

L(i,N) =

N+1∏
k=i+2

2k − 4

2k − 5
,

then γi−
1
2 < L(i,N) < γ(i− 1)−

1
2 , with γ =

√
N − 1

Proof: We use the comparison test to compute the lower
and upper bounds of L(i,N). Firstly, consider

Q(i,N) =

N+1∏
k=i+2

2k − 5

2k − 6
(3)

Clearly, L(i,N) < Q(i,N) and L(i,N)Q(i,N) = 2N−2
2i−2 .

Therefore,

L(i,N) <

√
2N − 2

2i− 2
≤ γ(i− 1)−

1
2 (4)

concluding the upper-bound. To determine the lower bound,
define

Q′(i,N) =

N+1∏
k=i+2

2k − 3

2k − 4
(5)

It can be shown that L(i,N) > Q′(i,N) and
L(i,N)Q′(i,N) = 2N−1

2i−1 . Therefore,

L(i,N) >

√
2N + 1

2i− 1
>

√
2N − 2

2i
≥ γi− 1

2 . (6)

Lemma 2 (Harmonic Series): Consider the harmonic se-
ries

L(i,N) =

N−1∑
k=i

1

k
,

then ln
(
N+1
i

)
< L(i,N) < ln

(
N
i−1

)
Proof: The relatively simple proof of the above lemma

is based on the integration results of harmonic series, where
L(i,N) is lower bounded by

∫ N
x=i−1

1
xdx and upper bounded

by
∫ N+1

x=i
1
xdx.



B. Power-Law & Exponential Degree Distributions

In analysis of weighted networks, typically the Distribution
Function (DF) is defined as

P (k) =

∣∣∣∣{vi|∀i, k ≤ Ψ(vi) < k + 1

}∣∣∣∣ (7)

where Ψ(vi) defined in (2) denotes the strength of node vi
and | · | being the cardinality of the set.

To ease the analysis, in this work we make use of the Com-
plementary Cumulative Distribution Function (CCDF) defined
as:

Pc(k) =

∣∣∣∣{vi|∀i,Ψ(vi) ≤ k
}∣∣∣∣ (8)

The following two lemmas clarify the relation between the
DF and CCDF for networks with power-law and Exponential
Distributions.

Lemma 3 (Power-law Distribution): Consider a power-
law distribution in form of P (k) = ck−α, where c is the
power-law coefficient, and α is the power-law exponent. The
CCDF Pc(k) also follows a power-law but with an exponent
α− 1.

Proof: Can be easily seen by simple integration.

Lemma 4 (Exponential Distribution): Consider an expo-
nential distribution in form of P (k) = ce−αk. Its CCDF can
be written as Pc(k) = c

αe
−αk.

Proof: Can be easily seen by simple integration.

Having laid out our notation and providing the required
background knowledge, next we present and analyze two
dynamical models that reflect the networks constructed by
dominance-based and prestige-based attachment models. Not
only we provide such iteration schemes, but also present a set
of theorems studying their stationary points, which interest-
ingly relate to the exponential and power-law distributions.

IV. NETWORK DYNAMICS

Here, we propose a dynamical process which captures the
edge dynamics of a complete network. Let ω = {wij |∀i, j =
1, 2, ..., N, i > j} denote the state vector of the process, where
each state variable wij corresponds to the weight of the link
between the jth and ith node. In the very general case, one
considers the rate of changes in wij as a function of all state
variables

ẇij = f(ω) (9)

In this paper, however, the focus is on hierarchical networks
in which for any i > j, ẇij is a function of wij itself and the
strength observation of the ith node ~Ψi

ẇij = fΨ(wij , ~Ψi), i > j (10)

In other words, the dynamics of the linking strength between
i and j is independent of any other node l where l is higher
than i or j in the hierarchy.

Using fΨ from Equation 10, and sorting the state variables
wij increasingly (based on Ni+j), the overall dynamic process

can be written as

ω̇ =
d

dt

[
w21, . . . , wN(N−1)

]T
=
[
fΨ(w21, ~Ψ2), . . . , fΨ(wN(N−1), ~ΨN )

]T
Next, we introduce two possible strategies for fΨ(.),

namely f
(D)
Ψ (·) and f

(P)
Ψ (·) which represent the Dominance-

based attachment (DA) and Prestige-based attachment (PA)
models, respectively.

V. DOMINANCE-BASED ATTACHMENT MODEL

In the dominance-based attachment model (DA), the
weighted links between the ith and every other jth node, where
j < i, follow a simple dynamical rule defined as

ẇij = f
(D)
Ψ

(
wij ,

∣∣~Ψi

∣∣) (11)

where | · | denotes the size of the vector and

f
(D)
Ψ (wij ,

∣∣~Ψi

∣∣) =
1∣∣~Ψi

∣∣ − wij
=

1

i− 1
− wij (12)

In Equation 12 the difference between 1
i−1 and wij deter-

mines the direction of changes of wij (i.e., ẇij).

For computing the equilibrium point of this system, con-
sider an energy function for wij in form of

Vij =

(
1

i− 1
− wij

)2

(13)

The derivative of this energy function, for a fixed i, can be
computed as

V̇ij = −2
(

1

i− 1
− wij

)
ẇij (14)

= −2
(

1

i− 1
− wij

)2

(15)

Therefore, based on Invariant Set theorem [22] we can show
that the overall dynamical process has a stable equilibrium
point, in which the link between the ith and jth node, j < i,
converges to wi?

w
(D)
i? =

1

i− 1
. (16)

The equilibrium point (16) explains that the links of node
i to all nodes with lower order (i.e., j < i) depends on i, and
the higher this order is the lower the strength of those links
are. To illustrate, imagine N agents who are all connected to
each other, and continuously each agent shares her available
resources with the agents with lower order. The strength of
connection between i and j shows the amount of resources
which are transmitted from i to j. According to (16) the
2nd individual shares all her resources with 1st individual
(i.e., w21 = 1

2−1 = 1). The 3rd individual shares half of
her resources with the 2nd individual and other half with
1st individual (i.e., w32 = w31 = 1

3−1 = 1
2 ). With the



same respect, ith individual shares 1
i−1 units of her resources

with each of the j individuals where j < i. Therefore, one
can see that this model directly captures the dominance of
individuals in a linear hierarchical network: Every individual
is sharing her resources between dominated individuals. Next,
we study the amount of resources each individual receives in
such dominance-based network (captured by node’s strengths),
and also compute the distribution of node strengths.

A. Analysis of Node’s Strength

Building on w
(D)
i? ’s definition in Equation 16, one can

calculate the absolute strength of the ith node, Ψ(vi). The
node strength Ψ(vi) for an arbitrary node i > 1 can be
calculated as

Ψ(vi) =

N∑
j=1

w
(D)
ij =

i−1∑
j=1

w
(D)
ij +

N∑
j=i+1

w
(D)
ij

= (i− 1)w
(D)
i? +

N∑
j=i+1

w
(D)
j?

= 1 +

N∑
j=i+1

1

j − 1
= 1 +

N−1∑
j=i

1

j
(17)

By using Lemma 2, it’s straightforward to show that

1 + ln

(
N + 1

i

)
< Ψ(vi) < 1 + ln

(
N

i− 1

)
(18)

B. Analysis of Node’s Strength Distribution

The distribution of strengths in the DA model can be
directly computed from the bounds provided in Equation 18.
The following theorem shows how the CCDF and consequently
the DF of strengths in this model follow an exponential
distribution.

Theorem 1 (Strength Distribution in DA Model): For the
weighted network G, generated using the DA model, the DF
of the global strength k follows an exponential distribution of
the form:

P (k) ∝ e−k

Proof:

Using Equation 18 we have

Ψ(vi) ≥ k, for i ∈ {1, 2, 3, . . . ,
⌊
N + 1

e−(k−1)

⌋
}

Pc(k) =

∣∣∣∣{1, 2, 3, . . . ,⌊ N + 1

e−(k−1)

⌋}∣∣∣∣ ' (N +1)e · e−k (19)

Therefore,
Pc(k) ∝ e−k (20)

Using Lemma 4, it’s straightforward to see that the DF
corresponding to (20) is exponential:

P (k) ∝ e−k.

VI. PRESTIGE-BASED ATTACHMENT MODEL

Here we introduce a more sophisticated form of attachment
model which is called prestige-based attachment model.

Firstly, we note that the overall strength of node i in
establishing connection with every other jth node is assumed
to be limited and sums-up to 1. The prestige-based attachment
model can be formally derived as follows. Let

ẇij = f
(P)
Ψ (wij ,Ψi(vj),

∣∣∣∣~Ψi

∣∣∣∣
1
)

and

f
(P)
Ψ (wij ,Ψi(vj),

∣∣∣∣~Ψi

∣∣∣∣
1
) =

Ψi(vj)∣∣∣∣~Ψi

∣∣∣∣
1

− wij , i > j (21)

where ||.||1 denotes the first norm.

By studying the dynamic process proposed in Equation 21,
it can be easily seen that ẇij , i > j is a function of every wkl
for k, l < i. Withough loss of generality we assume w(P)

11 = 1,
such that

Ψ2(v1) = 1 (22)

and w(P)
ii = 0 for every i > 1. Using a similar energy function

as in previous section it is straightforward to compute the
equilibrium point of this system

w
(P)
ij =

Ψi(vj)∣∣∣∣~Ψi

∣∣∣∣
1

(23)

The equilibrium point (23) explains that the connection
strength between node i and node j with lower order (i.e.,
j < i) depends on i and j. To illustrate, imagine N agents who
are all connected to each other, and continuously the agents
with higher order share their available resources with agents
with lower order. The strength of link between i and j shows
the amount of resources which are transmitted from i to j.
According to (23) the 2nd individual shares all her resources
with 1st individual (i.e., w21 = 1

1 = 1). The 3rd individual
shares one third of her resources with the 2nd individual and
two third of it with 1st individual (i.e., w32 = 1

1+2 = 1
3 and

w31 = 2
1+2 = 2

3 ). With the same respect, ith individual shares
portions of her resources with each of the j individuals where
j < i, while those with lower order receive more. We call this
model prestige-based model as the lower orders reflect a kind
of prestige in the group and high prestige agents receive more
than agents with lower prestige. Next, we study the amount
of resources each individual receives in such prestige-based
network (captured by node’s strengths), and also compute the
distribution of node strengths.

A. Analysis of Node’s Strength

Analogous to the DA model, here we can determine a
closed form solution for the sum over the strength of every
jth node from the perspective of ith node, where j < i.

Lemma 5: According to the prestige-based attachment
model, the overall strength of every jth node from perspective
of ith node, where j < i is derived as following

Ψ†(i) :

i−1∑
j=1

Ψi(vj) = 2i− 3.



Proof: The above lemma can be proved by using induc-
tion:

Initial Step: According to Equation (22), Ψ2(v1) = 1.
This is equivalent to

∑i−1
j=1 Ψi(vj) = 2i − 3 for i = 2.

Therefore, Ψ†(2) holds for i = 2.

Inductive Step: Let

Ψ†(i− 1) :

i−2∑
j=1

Ψi−1(vj) = 2i− 5,

and also consider Ψi(vj) = Ψi−1(vj) +w
(P)
(i−1)j . Therefore,

i−1∑
j=1

Ψi(vj) =Ψi(vi−1) +

i−2∑
j=1

(
Ψi−1(vj) +w

(P)
(i−1)j

)

=Ψi(vi−1) +

i−2∑
j=1

(
Ψi−1(vj)

)
+

i−2∑
j=1

(
w

(P)
(i−1)j

)
Clearly, it can be seen that the strength of the ith node from
the i+ 1th perspective equates to 1, since

Ψi+1(vi) =

i−1∑
j=1

w
(P)
ij = 1 (24)

By using Equation 24, we’ll get

i−1∑
j=1

Ψi(vj) = 1 + 2i− 5 + 1 = 2i− 3 (25)

Therefore, Ψ†(i) holds for every i concluding the proof.

B. Analysis of Edge Weights

We can compute the edge weight between ith node and
jth node as follows.

Lemma 6 (Edge Weight): For the weighted graph G,
evolved with PA model, ith node is connected to jth node
with an edge of weight

γ(i) : w
(P)
ij =

1

2i− 2

i−j∏
k=1

2i− 2k

2i− 2k − 1
,∀j < i. (26)

Proof:

The validity of Equation 26 can be proved for each i and
for every j < i using induction.

Initial Step: The second node is connected to the first node
with w(P)

21 = 1, meaning that γ(2) holds.

Inductive Step: Now assume that

γ(i− 1) : w
(P)
(i−1)j =

1

2i− 4

i−j−1∏
k=1

2i− 2k − 2

2i− 2k − 3

holds for every j < i − 1. For computing the edge weight
between ith and jth node, recall that Ψi(vj) = Ψi−1(vj) +

w
(P)
(i−1)j . By using Equation 23 and Lemma 5, it can be seen

that:

Ψi(vj) = Ψi−1(vj) +w
(P)
(i−1)j

= (2i− 5)w(i−1)j +w
(P)
(i−1)j

= (2i− 4)w(i−1)j (27)

Using Equations 23, 27 and Lemma 5, the edge weight
between ith and jth nodes can be written as

w
(P)
ij =

Ψi(vj)∑i−1
k=1 Ψi(vk)

=
1

2i− 2

i−j∏
k=1

2i− 2k

2i− 2k − 1

for j < i− 1. Therefore, γ(i) holds ∀i, concluding the proof.

Before, computing the distribution of strengths for the PA
model, we present the following proposition providing the
relative strength of the jth node from the perspective of the
ith for every i > j (i.e., Ψi(vj)) in closed form.

Proposition 1 (Relative Node Strength): For the weighted
graph G, evolved according to the PA model, the strength of
jth node from perspective of the ith is given by

Ψ†(P)(i) :

{
Ψi(vj) =

∏i
k=j+2

2k−4
2k−5 for j < i− 1

Ψi(vj) = 1 for j = i− 1.
(28)

Proof: Again, induction can be used to prove the validity
of Equation 28. Starting with the initial step we get

Initial Step: From Equation 22, the strength of the first
node from the perspective of the second is Ψ2(v1) = 1.
Besides, using Lemma 6 we can deduce that

Ψ3(v1) =
w

(P)
11 +w

(P)
21

3
=

2

3
.

Therefore, Ψ†(2) and Ψ†(2) hold. For the inductive step we
proceed as follows

Inductive Step: Assume that

Ψ† (i− 1) :

{
Ψi−1(vj) =

∏i−1
k=j+2

2k−4
2k−5 for j < i− 2

Ψi−1(vj) = 1 for j = i− 2.

holds.

For computing Ψi(vj), consider Ψi(vj) = Ψi−1(vj) +

w
(P)
(i−1)j . Using Equation 23 and Lemma 5, it can show that

for every j < i− 1

Ψi(vj) = Ψi−1(vj) +w
(P)
(i−1)j =

i∏
k=j+2

2k − 4

2k − 5

Besides using Equation (24), Ψj(vi) = 1 for j = i − 1.
Therefore, Ψ†(i) holds ∀i and the proof is concluded.

Lemma 7 (Global Strength): For the weighted graph G,
evolved with the PA model, the global strength of the ith node
is

Ψ†(i) :

{
Ψ(vi) =

∏N+1
k=i+2

2k−4
2k−5 for i < N

Ψ(vj) = 1 for j = N.
(29)



Proof: It can be easily seen that

Ψ(vi) = ΨN (vi) +w
(P)
iN . (30)

Using Equation 26 and Proposition 1, we have

Ψ(vi) = ΨN (vi) +w
(P)
iN

= ΨN (vi) +
ΨN (vi)

2N − 3
=

N+1∏
k=i+2

2k − 4

2k − 5

Based on Equation (24), Ψ(vN ) = 1, concluding the proof.

Finally, we can also compute the strength distribution in
a closed form. We define the degree distribution Pr(k) as
the number of nodes with strength k. The following theorem
provides the strength distribution of a PA model.

Theorem 2 (Strength Distribution): For the weighted
graph G evolved with the PA model, the distribution of the
global strength k follows a power-law of degree −3

P (k) ∝ k−3.

Proof:

Using results of Lemma 1 and Lemma 7, the following
lower and upper bounds can be computed for the strength of
the ith node

γi−
1
2 < Ψ(vi) < γ(i− 1)−

1
2 (31)

where γ =
√
N − 1.

From Equation (31), we have

Ψ(vi) ≥ k, for i ∈ {1, 2, 3, . . . ,
⌊
γ2

k2

⌋
} (32)

Pc(k) =

∣∣∣∣{1, 2, 3, . . . , γ2

k2

}∣∣∣∣ ' γ2k−2 (33)

Therefore,
Pc(k) ∝ k−2 (34)

Using Lemma 4, the exponent of degree distribution in the
proposed model is −3, i.e.,

P (k) ∝ k−3 (35)

To validate the analytical results on strength distribution
of DA and PA models, we initiate a complete graph with
104 nodes and random weights. This network is evolved
under dynamical processes for the DA and PA models. The
strengths of nodes in the equilibrium point of the evolved
networks are extracted and their distribution are illustrated
in Figure 1. As can be seen, the DA model is generating
an exponential strength distribution (i.e., a straight line in
semilogarithmic plot) while PA model produces a power-law
strength distribution (i.e., a straight line in log-log plot).
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Fig. 1: The DF and CCDF of strengths in DA model and PA
models.

VII. CLOSENESS CENTRALITY

The closeness centrality measure is the inverse of sum of
distance of an individual to the others (i.e., in turn its farness).
For this, a measure of distance needs first to be introduced.
We define the distance between two individuals as the inverse
of link weight between the corresponding nodes:

dij = 1/wij

if i 6= j and dii = 0 for every i.

The closeness centrality of the ith node ci is then defined
as the inverse of the sum of its distances to other nodes

ci =

 N∑
j=1

dsij

−1

(36)

where dsij is the shortest distance between ith and jth nodes.

A. Closeness Centrality Measure for DA Model

In order to compute the closeness centrality of the ith

individual in DA model c(D)
i , we start with the following

theorem which computes the shortest distance dsij between the
ith and jth individuals.

Theorem 3: In the DA model, the shortest distance dsij
between the ith and jth individual is equal to the distance
associated with their link:

dsij = dij =
1

wij
.

Proof: The proof of the above theorem can be attained by
contradiction. Without loss of generality, assume i > j (i.e.,
dij = i − 1). Suppose that the shortest path starts from ith

individual and then passes the kth individual where k 6= i, j.
The distance dij can be determined as

dik =

{
i− 1 i > k
k − 1 k > i

(37)



Since dsij > dik and by using Equation 37, it can be easily
seen that dsij > dij . Hence, the supposition is false and the
shortest path can not pass any third individual. The proof is
complete.

Therefore, the closeness centrality for ith individual is

c
(D)
i =

 N∑
j=1

dsij

−1

=

 N∑
j=1

dij

−1

=

i−1∑
j=1

dij +

N∑
j=i+1

dij

−1

=
2

i2 − 3i+ (N2 −N + 2)

B. Closeness Centrality Measure for PA Model

In contrast to the DA model, in which the shortest path
between two individuals is the direct link connecting them,
the following theorem shows that in the PA model, the shortest
path always passes through the first individual.

Theorem 4: In the PA model, the shortest distance dsij
between the ith and jth individual is

dsij = di1 + dj1 (38)

Before giving the proof of this theorem, we use Equation 26
to derive the distance between node i and j

dij = (2i− 2)

i−j∏
k=1

2i− 2k − 1

2i− 2k
(39)

Proof: The proof follows by contradiction. Without loss
of generality we assume that i > j. If there exists a dsij =
dij =

1
wP

ij
, then

dsij = dij = (2i− 2)

i−j∏
k=1

2i− 2k − 1

2i− 2k
(40)

thus,

dsij =

i−1∏
k=i−j+1

2i− 2k

2i− 2k − 1
·
i−1∏
k=1

2i− 2k − 1

2i− 2k

=

i−1∏
k=i−j+1

2i− 2k

2i− 2k − 1
· di1

= 2

i−2∏
k=i−j+1

2i− 2k

2i− 2k − 1
· di1

≥ 2di1 (41)

It can be easily seen from Equation 39 that di1 > dj1,∀i > j
and thus

dsij > di1 + dj1. (42)

Therefore, every direct link between two individuals can be
replaced via a path that passes through the first individual.
Hence, the supposition is false completing the proof.

As a result of this theorem, the shortest distance dsij be-
tween two individuals is given by Equation 38. The closeness
centrality for the ith individual is then

c
(P)
i =

 N∑
j=1
j 6=i

dsij


−1

=

 N∑
j=1
j 6=i

(
di1 + dj1

)
−1

=

(N − 1)di1 +

N∑
j=1
6=i

dj1


−1

(43)

By replacing di1 and dj1 from Equation 39 into Equation 43,
the closeness centrality for the PA model can be attained in
closed form. The closeness centrality of individuals in DA and
PA models for a network of 104 nodes (as studied in Figure 1)
is illustrated in Figure 2. This centrality measure is normalized
in a way that the maximum closeness becomes equal to 1. As
can be seen, in DA model the individuals centrality decreases
much slower compared to the PA model.
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Fig. 2: The normalized closeness centrality of DA and PA
networks.

VIII. CONCLUSION

In this paper we proposed two dynamical models for
dominance-based and prestige-based hierarchical systems. Al-
though, each dynamical system is described using simple
hierarchical rules, derived stationary points have been shown
to recover the exponential (Theorem 1) and power-law (Theo-
rem 2) degree distributions. Emergence of such degree distri-
butions despite the simple hierarchical structure explains how
hierarchical social structures have survived among different
species.

As another contribution, we have defined and derived the
closeness centrality metric in closed form. This can be used
to assess the importance of nodes in hierarchical networks. In
other words, our centrality measure reflects that in dominance-
based networks the shortest path between every two members
is their direct link (Theorem 3), while in prestige-based hierar-
chies every shortest path has to pass through the member with
highest “prestige” (Theorem 4).

There are various interesting future directions of this work.
We plan to validate the attained results through data gathered



from real-world networks. Moreover, our model is proposed in
form of a dynamical process, which makes it possible for the
development of control strategies. The overall idea would be
the control of the evolution of the network to arrive at specific
network forms.
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