
Size versus truthfulness in the

House Allocation problem∗

Piotr Krysta1, David Manlove2, Baharak Rastegari2 and Jinshan Zhang1

1 Department of Computer Science, University of Liverpool,

Ashton Building, Ashton Street, Liverpool L69 3BX, UK.

Email: {p.krysta,jinshan.zhang}@liverpool.ac.uk.

2 School of Computing Science, University of Glasgow,

Sir Alwyn Williams Building, Glasgow G12 8QQ, Glasgow, UK.

Email: {david.manlove,baharak.rastegari}@glasgow.ac.uk.

Abstract

We study the House Allocation problem (also known as the Assignment problem),
i.e., the problem of allocating a set of objects among a set of agents, where each agent
has ordinal preferences (possibly involving ties) over a subset of the objects. We focus
on truthful mechanisms without monetary transfers for finding large Pareto optimal
matchings. It is straightforward to show that no deterministic truthful mechanism can
approximate a maximum cardinality Pareto optimal matching with ratio better than
2. We thus consider randomized mechanisms. We give a natural and explicit extension
of the classical Random Serial Dictatorship Mechanism (RSDM) specifically for the
House Allocation problem where preference lists can include ties. We thus obtain
a universally truthful randomized mechanism for finding a Pareto optimal matching
and show that it achieves an approximation ratio of e

e−1 . The same bound holds even
when agents have priorities (weights) and our goal is to find a maximum weight (as
opposed to maximum cardinality) Pareto optimal matching. On the other hand we
give a lower bound of 18

13 on the approximation ratio of any universally truthful Pareto
optimal mechanism in settings with strict preferences. In the case that the mechanism
must additionally be non-bossy, an improved lower bound of e

e−1 holds. This lower
bound is tight given that RSDM for strict preference lists is non-bossy. We moreover
interpret our problem in terms of the classical secretary problem and prove that our
mechanism provides the best randomized strategy of the administrator who interviews
the applicants.

Keywords: House allocation problem; Assignment problem; Pareto optimal matching;
Randomized mechanisms; Truthfulness

1 Introduction

We study the problem of allocating a set of indivisible objects among a set of agents. Each
agent has private ordinal preferences over a subset of objects — those they find acceptable,
and each agent may be allocated at most one object. This problem has been studied by
both economists and computer scientists. When monetary transfers are not permitted,
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the problem is referred to as the House Allocation problem (henceforth abbreviated by
HA; see, e.g., [19, 1, 34]) or the Assignment problem (see, e.g., [18, 9]) in the literature.
In this paper we opt for the term House Allocation problem. Most of the work in the
literature assumes that the agents have strict preferences over their acceptable objects.
It often happens though that an agent is indifferent between two or more objects. Here
we let agents express indifference, and hence preferences may involve ties unless explicitly
stated otherwise.

It is often desired that as many objects as possible become allocated among the agents
— i.e., an allocation of maximum size is picked, hence making as many agents happy as
possible. Usually, depending on the application of the problem, we are required to con-
sider some other optimality criteria, sometimes instead of and sometimes in addition to
maximizing the size of the allocation. Several optimality criteria have been considered in
the HA setting, and perhaps the most studied such concept is Pareto optimality (see, e.g.,
[1, 2, 14, 12, 29]), sometimes referred to as Pareto efficiency. Economists, in particular,
regard Pareto optimality as the most fundamental requirement for any “reasonable” so-
lution to a non-cooperative game. Roughly speaking, an allocation µ is Pareto optimal
if there does not exist another allocation µ′ in which no agent is worse off, and at least
one agent is better off, in µ′. In this work we are mainly concerned with Pareto optimal
allocations of maximum size, but will also consider weighted generalisations.

The related Housing Market problem (HM) is the variant of HA in which there is an
initial endowment, i.e., each agent owns a unique object initially (in this case the numbers
of agents and objects are usually defined to be equal). In this setting, the most widely
studied solution concept is that of the core, which is an allocation of agents to objects
satisfying the property that no coalition C of agents can improve (i.e., every agent in
C is better off) by exchanging their own resources (i.e., the objects they brought to the
market). In the case of strict preferences, the core is always non-empty [27], unique, and
indeed Pareto optimal. When preferences may include ties, the notion of core that we
defined is sometimes referred to as the weak core. In this case a core allocation need
not be Pareto optimal. Jaramillo and Manjunath [20], Plaxton [24], and Saban and
Sethuraman [30] provide polynomial-time algorithms for finding a core allocation that
does additionally satisfy Pareto optimality. Our problem differs from HM in that there
is no initial endowment, and hence our focus is on Pareto optimal matchings rather than
outcomes in the core.

For strictly ordered lists, Abraham et al. [2] gave a characterisation of Pareto optimal
matchings that led to an O(m) algorithm for checking an arbitrary matching for Pareto
optimality, where m is the total length of the agents’ preference lists. This characterisa-
tion was extended to the case that preference lists may include ties by Manlove [22, Sec.
6.2.2.1], also leading to an O(m) algorithm for checking a matching for Pareto optimality.
For strictly ordered preference lists, a maximum cardinality Pareto optimal matching can
be found in O(

√
n1m) time, where n1 is the number of agents [2]. The fastest algorithm

currently known for this problem when preference lists may include ties is based on min-
imum cost maximum cardinality matching and has complexity O(

√
nm log n) (see, e.g.,

[22, Sec. 6.2.2.1], where n is the total number of agents and objects.
As stated earlier, agents’ preferences are private knowledge. Hence, unless they find it

in their own best interests, agents may not reveal their preferences truthfully. An alloca-
tion mechanism is truthful if it gives agents no incentive to misrepresent their preferences.
Perhaps unsurprisingly, a mechanism based on constructing a maximum cardinality Pareto
optimal allocation is manipulable by agents misrepresenting their preferences (Theorem 2.1
in Section 2). Hence, we need to make a compromise and weaken at least one of these
requirements. In this work, we relax our quest for finding a maximum cardinality Pareto
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optimal allocation by trading off the size of a Pareto optimal allocation against truthful-
ness; more specifically, we seek truthful mechanisms that provide good approximations to
the maximum size.

Under strict preferences, Pareto optimal matchings can be computed by a classical
algorithm called the Serial Dictatorship Mechanism (SDM) — see, e.g., [1], also referred
to as the Priority Mechanism — see, e.g., [9]. SDM is a straightforward greedy algorithm
that takes each agent in turn and allocates him to the most preferred available object on
his preference list. Precisely due to this greedy approach, SDM is truthful. Furthermore,
SDM is guaranteed to find a Pareto optimal allocation at least half the size of a maximum
one, merely because any Pareto optimal allocation is at least half the size of a maximum
one (see, e.g., [2]). Hence, at least in the case of strict preferences, we are guaranteed an
approximation ratio of 2. Can we do better? It turns out that if we stay in the realm of
deterministic mechanisms, a 2-approximation is the best we can hope for (Theorem 2.1,
Section 2).

Hence we turn to randomized mechanisms in order to achieve a better approximation
ratio. The obvious candidate to consider is the Random Serial Dictatorship Mechanism
(RSDM) (see, e.g., [1]), also known as the Random Priority mechanism (see, e.g., [9]), that
is defined for settings with strict preferences. RSDM randomly generates an ordering of the
agents and then proceeds by running SDM relative to this ordering. It is straightforward
to extend results from [8] in order to show that RSDM has an approximation ratio of e

e−1
(relative to the size of a maximum cardinality Pareto optimal matching).

When indifference is allowed, finding a Pareto optimal allocation is not as straightfor-
ward as for strict preferences. For example, one may consider breaking the ties randomly
and then applying SDM. This approach, unfortunately, may produce an allocation that is
not Pareto optimal (see beginning of Section 3). Few works in the literature considered
extensions of SDM to the case where agents’ preferences may include ties. However Bo-
gomolnaia and Moulin [10] and Svensson [31] provide an implicit extension of SDM (in
the former case for dichotomous preferences1) but do not describe how one may actually
implement the algorithm. Aziz et al. [4] provide an explicit extension for a more general
class of problems, including HA. Pareto optimal matchings in HA can also be found by
reducing to the HM setting [20], which involves creating dummy objects as endowments for
the agents. This enables us to utilize one of the aforementioned algorithms [20, 24, 30] to
find a Pareto optimal matching in the core. However the reduction increases the instance
size, and in particular the number of agents n1 and the maximum length of a tie in any
agent’s preference list. Consequently, even the fastest truthful Pareto optimal mechanism
for HM, that of Saban and Sethuraman [30], has time complexity no better than O(n3

1) in
the worst case.

Contributions of this paper. In this paper we provide a natural and explicit extension
of SDM for the setting in which preferences may exhibit indifference. We argue that our
extension is more intuitive than that of Aziz et al. [4] when considering specifically HA.
Moreover, as the mechanism of Saban and Sethuraman [30] does not consider the agents
sequentially, it is difficult to analyse its approximation guarantee. Our algorithm runs in
time O(n2

1γ), where γ is the maximum length of a tie in any agent’s preference list. This is
faster than the algorithm in [30] when γ < n1. We prove the following results that involve
upper and lower bounds for the approximation ratio (relative to the size of a maximum
cardinality Pareto optimal matching) of randomized truthful mechanisms for computing
a Pareto optimal matching:

1An agent’s preference list is dichotomous if it comprises a single tie containing all acceptable objects.
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1. By extending RSDM to the case of preference lists with ties, we give a universally
truthful randomized mechanism2 for finding a Pareto optimal matching that has an
approximation ratio of e

e−1 with respect to the size of a maximum cardinality Pareto
optimal matching.

2. We give a lower bound of 18
13 on the approximation ratio of any universally truthful

Pareto optimal mechanism in settings with strict preferences. If the mechanism must
additionally be non-bossy 3, we observe that [7] implies an improved lower bound of
e
e−1 . This lower bound is tight given that the classical RSDM mechanism for strict
preferences is non-bossy.

3. We extend RSDM to the setting where agents have priorities (weights) and our
goal is to find a maximum weight (as opposed to maximum cardinality) Pareto
optimal matching. Our mechanism is universally truthful and guarantees a e

e−1 -
approximation with respect to the weight of a maximum weight Pareto optimal
matching.

4. We finally observe that our problem has an “online” or sequential flavour similar to
secretary problems4. Given this interpretation, we prove that our mechanism uses
the best random strategy of interviewing the applicants in the sense that any other
strategy would lead to an approximation ratio worse than e

e−1 (see also below under
related work).

Discussion of technical contributions. Indifferences in agents’ preference lists intro-
duce major technical difficulties. When extending SDM from strict preferences to prefer-
ences with ties, we first present an intuitive mechanism, called SDMT-1, based on the idea
of augmenting paths. It is relatively easy to prove that SDMT-1 is Pareto optimal and
truthful. However, it is difficult to analyse the approximation guarantee of the randomized
version of SDMT-1. For this purpose we build on the primal-dual analysis of Devanur et
al. [15]. They employ a linear programming (LP) relaxation of the bipartite weighted
matching problem. They prove that their dual solution is feasible in expectation for the
dual LP and use it to show the approximation guarantee. Towards this goal they prove
two technical lemmas, a dominance lemma and monotonicity lemma. The randomized
version of SDMT-1 uses random variables Yi for each agent i ∈ N to generate a random
order in which agents are considered. Considering agent i and fixed values of the random
variables Y−i of all other agents, Devanur et al. [15] define a threshold yc which as Yi varies
determines when agent i is matched (to an object) or unmatched (dominance lemma). The
monotonicity lemma shows how values of the dual LP variables change when Yi varies. To
extend the definition of yc, we need to remember the structure of all potential augmenting
paths in SDMT-1, and for this purpose we introduce a second mechanism, SDMT-2. In-
terestingly, SDMT-2 is inspired by the idea of top trading cycle mechanisms, see, e.g., [30],
however it retains the “sequential” nature of SDMT-1. The two mechanisms, SDMT-1

2A randomized mechanism is universally truthful if it is a probability distribution over truthful deter-
ministic mechanisms. This is the strongest known notion of truthfulness for randomized mechanisms.

3A deterministic mechanism in settings with strict preferences is non-bossy if no agent can misreport
his preferences in such a way that his allocation is not changed but the allocation of some other agent is
changed.

4In the secretary problem, an administrator is willing to hire the best secretary out of n rankable
applicants for a position. The applicants are interviewed one-by-one in random order. A decision about
each particular applicant is to be made immediately after the interview. Once rejected, an applicant
cannot be recalled. During the interview, the administrator can rank the applicant among all applicants
interviewed so far, but is unaware of the quality of yet unseen applicants. The question is about the
optimal strategy to maximize the probability of selecting the best applicant.
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and SDMT-2, are equivalent: they match the same agents, giving them objects from the
same ties. This implies that SDMT-2 is also truthful and Pareto optimal. SDMT-2 is the
key to defining the threshold yc: its running time is no worse than that of SDMT-1, but
it implicitly maintains all relevant augmenting paths arising from agents’ ties. We prove
the monotonicity and dominance lemmas for SDMT-2 by carefully analysing the structure
of frozen subgraphs that are generated from the relevant augmenting paths; here frozen
roughly means that they will not change subsequently. This new approach may find fur-
ther applications for primal-dual analysis of mechanisms for assignment problems where
agents have indifferences. Finally, we would like to highlight that our proof of an 18

13 lower
bound on the approximation ratio of any universally truthful and Pareto optimal mecha-
nism uses Yao’s minmax principle and an interesting case analysis to account for all such
possible mechanisms.

Related work. This work can be placed in the context of designing truthful approximate
mechanisms for problems in the absence of monetary transfer [25]. Bogomolnaia and
Moulin [9] designed a randomized weakly truthful and envy-free mechanism, called the
Probabilistic Serial mechanism (PS), for HA with complete lists. Very recently the same
authors considered the same approximation problem as ours but in the context of envy-free
rather than truthful mechanisms, and for strict preference lists and unweighted agents [11].
They showed that PS has an approximation ratio of e

e−1 , which is tight for any envy-
free mechanism. Bhalgat et al. [8] investigated the social welfare of PS and RSDM.
Tight deterministic truthful mechanisms for weighted matching markets were proposed
by Dughmi and Ghosh [17] and they also presented an O(log n)-approximate random
truthful mechanism for the Generalized Assignment Problem (GAP) by reducing, with
logarithmic loss in the approximation, to the solution for the value-invariant GAP. Aziz et
al. [5] studied notions of fairness involving the stochastic dominance relation in the context
of HA, and presented various complexity results for problems involving checking whether
a fair assignment exists. Chakrabarty and Swamy [13] proposed rank approximation as a
measure of the quality of an outcome and introduced the concept of lex-truthfulness as a
notion of truthfulness for randomized mechanisms in HA.

RSDM is related to online bipartite matching algorithms. The connection was observed
by Bhalgat et al. [11], who noted the similarity between RSDM and the RANKING al-
gorithm of Karp et al. [21]. Bhalgat et al. [11] drew a conceptual connection between a
result of Karp et al. [21] — that the expected size of the matching obtained by RANKING
is e

e−1 — and their own result, namely that RSDM has approximation ratio e
e−1 .

The weighted version of our problem is related to two widely studied online settings,
known in the literature as the online vertex-weighted bipartite matching problem [3] and
secretary problems [6]. In our problem the administrator holds all the objects (they can
be thought of as available positions), and all agents with unknown preference lists are
applicants for these objects. Each applicant also has a private weight, which can be
thought of as their quality (reflecting the fact that some of an agent’s skills may not be
evident from their CV, for example). However we assume that they cannot overstate
their weights (skills), because they might be checked and punished. This is similar to the
classical assumption of no overbidding (e.g., in sponsored search auctions). Applicants
are interviewed one-by-one in a random order. When an applicant arrives he chooses his
most-preferred available object and the decision as to whether it is allocated to him is
made immediately, and cannot be changed in the future.

Our weighted agents correspond to weighted vertices in the vertex-weighted bipartite
matching context, but our objects do not arrive online as in the setting of [3]. However, if
the preference ordering of each agent in our setting, over his acceptable objects, coincides
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with the arrival order of the objects in [3], then the two problems are the same. In the
transversal matroid secretary problem, see, e.g., [16], objects are known in advance as in
our setting, weighted agents arrive in a (uniform) random order, and the goal is to match
them to previously unmatched objects. The administrator’s goal is the optimal strategy,
which is the random arrival order of agents, to maximize the ratio between the total weight
of matched agents and the maximum weight of a matching if all the applicants’ preference
lists are known in advance. We show that even if the weights of all agents are the same,
our algorithm uses the best possible random strategy; no other such strategy leads to
better than e

e−1 -approximate matching.

Organization of the paper. The remainder of the paper is organized as follows. In
Section 2 we define notation and terminology used in this paper, and show the straight-
forward lower bound for the approximation ratio of deterministic truthful mechanisms.
SDMT-1 and SDMT-2 are presented in Sections 3 and 4 respectively, and in the latter
section it is proved that the two mechanisms are essentially equivalent. The approximation
ratio of e

e−1 for the randomized version of the two mechanisms is established in Section 5,
whilst Section 6 contains our lower bound results. Finally, some concluding remarks are
given in Section 7.

2 Definitions and preliminary observations

Let N = {1, 2, · · · , n1} be a set of n1 agents and A be a set of n2 objects. Let n = n1 +n2.
Let [i] denote the set {1, 2, · · · , i}. We assume that each agent i ∈ N finds a subset of
objects acceptable and has a preference ordering, not necessarily strict, over these objects.
We write at �i as to denote that agent i strictly prefers object at to object as, and write
at 'i as to denote that i is indifferent between at and as. We use at �i as to denote
that agent i either strictly prefers at to as or is indifferent between them, and say that
i weakly prefers at to as. In some cases a weight wi is associated with each agent i,
representing the priority or importance of the agent. Weights need not be distinct. Let
W = (w1, w2, . . . , wn1). To simplify definitions, we assume that all agents are assigned
weight equal to 1 if we are in an unweighted setting.

We assume that the indifference relation is transitive. This implies that each agent
essentially divides his acceptable objects into different bins or indifference classes such
that he is indifferent between the objects in the same indifference class and has a strict
preference ordering over these indifference classes. For each agent i, let Cik, 1 ≤ k ≤ n2,
denote the kth indifference class, or tie, of agent i. We also assume that if there exists
l ∈ [n2], where Cil = ∅, then Ciq = ∅, ∀q, l ≤ q ≤ n2. We let L(i) = (Ci1 �i Ci2 �i · · · �i
Cin2

) and call L(i) the preference list of agent i. We abuse notation and write a ∈ L(i)
if a appears in preference list L(i), i.e., if agent i finds object a acceptable. We say that
i ranks object a kth if a ∈ Cik. We denote by rank(i, a) the rank of object a in agent i’s
preference list and let rank(i, a) = n2 + 1 if a is not acceptable to i. Therefore at �i as if
and only if rank(i, at) < rank(i, as), and at 'i as if and only if rank(i, at) = rank(i, as).

Let L = (L(1), L(2), · · · , L(n1)) denote the joint preference list profile of all agents.
We write L(−i) to denote the joint preference list profile of all agents except agent i; i.e.
L(−i) = (L(1), . . . , L(i− 1), L(i+ 1), . . . , L(n1)). Let L denote the set of all possible joint
preference list profiles. An instance of HA is denoted by I = (N,A,L,W ). We drop W
and write I = (N,A,L) if we are dealing with an instance where agents are not assigned
weights, or equivalently if they all have the same weight. Let I denote the set of all
possible instances of HA.

A matching µ is a subset of N ×A such that each agent and object appears in at most
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one pair of µ. If (i, a) ∈ µ, agent i and object a are said to be matched together. If (i, a) ∈ µ
for some a, we say that i is matched, and unmatched otherwise. The definitions of matched
and unmatched for an object are analogous. If agent i is matched, µ(i) denotes the object
matched to i. Similarly if object a is matched, µ−1(a) denotes the agent matched to
a. In what follows, we will consider the following undirected graph G = (V,E) where
V = (N ∪A) and E = {(i, a), i ∈ N, a ∈ L(i)}. We also use µ to denote a matching (in the
standard graph-theoretic sense) in G. The size of a matching µ is equal to the number of
agents matched under µ. In the presence of weights, the weight of a matching is equal to
the sum of the weights of the matched agents.

For two given matchings µ1, µ2, we will frequently use µ1⊕µ2 to denote the symmetric
difference with respect to their sets of edges. An alternating path in G, given a matching
µ1, is a path that consists of edges that alternately belong to µ1 and do not belong to
µ1. An augmenting path is an alternating path where the first and the last vertices on the
path are unmatched in µ1. To augment along an augmenting path, given matching µ1,
means that a new matching µ2 is created by removing edges on the path that belong to
µ1 and adding edges on the path that do not belong to µ1.

A matching µ is Pareto optimal if there is no other matching under which some agent
is better off while none is worse off. Formally, µ is Pareto optimal if there is no other
matching µ′ such that (i) µ′(i) �i µ(i) for all i ∈ N , and (ii) µ′(i′) �i′ µ(i′) for some agent
i′ ∈ N .

LetM denote the set of all possible matchings. A deterministic mechanism φ maps an
instance of HA to a matching, i.e. φ : I → M. Let R :M→ [0, 1] denote a distribution
over possible matchings (which we also call a random matching); i.e.

∑
µ∈MR(µ) = 1. A

randomized mechanism φ is a mapping from I to a distribution over possible matchings,
i.e., φ : I → Rand(M), where Rand(M) is the set of all random matchings. A determin-
istic mechanism is Pareto optimal if it returns a Pareto optimal matching. A randomized
mechanism is Pareto optimal if it returns a distribution over Pareto optimal matchings.

Agents’ preferences are private knowledge and an agent may prefer not to reveal his
preferences truthfully if it is not in his best interests, for a given mechanism. A de-
terministic mechanism is dominant strategy truthful (or truthful) if agents always find
it in their best interests to declare their preferences truthfully, no matter what other
agents declare, i.e., for every agent i and every possible declared preference list L′(i) for
i, φ(L(i), L(−i)) �i φ(L′(i), L(−i)), ∀L(i),∀L(−i). A randomized mechanism φ is univer-
sally truthful if it is a probability distribution over deterministic truthful mechanisms.

Denote by w(φ(I)) the (expected) weight of the (random) matching generated by
mechanism φ on instance I ∈ I, and by w(I) the weight of a maximum weight Pareto

optimal matching in I. The approximation ratio of φ is then defined as maxI∈I
w(I)

w(φ(I)) .
We give a straightforward lower bound for the approximation ratio of any deterministic
truthful mechanism for HA with strict preferences.

Theorem 2.1. No deterministic truthful Pareto optimal mechanism for HA can achieve
approximation ratio better than 2. The result holds even for strict preferences.

Proof. Consider a setting with two agents, 1 and 2, and two objects, a1 and a2. Assume
that both agents have weight 1 and prefer a1 to a2. This setting admits two Pareto optimal
matchings, both of size (weight) 2. Assume, for a contradiction, that there exists a truthful
Pareto optimal mechanism φ with approximation ratio strictly smaller than 2. Hence, in
the given setting, φ must pick one of the two matchings of size 2. Assume, without loss
of generality, that φ picks µ = {(1, a2), (2, a1)}. Now, assume that 1 misrepresents his
acceptable objects and declares a1 as the only object acceptable to him. As φ is truthful,
it must not assign a1 to 1, or else 1 finds it in his best interests to misrepresent his
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preferences as he prefers his allocated object under the new setting to his allocated object
under the original setting. Hence φ must return a matching of size at most 1 (by assigning
an object to 2). However, the new setting admits a Pareto optimal matching of size 2,
µ′ = {(1, a1), (2, a2)}. Therefore the approximation ratio of φ is 2, a contradiction.

As mentioned in Section 1, the upper bound of 2 is achievable via SDM for HA with
strict preferences. If weights and ties exist, simply ordering the agents in decreasing order
of their weights and running SDMT-1 (see Algorithm 1 in Section 3) or SDMT-2 (see Al-
gorithm 2 in Section 4) gives a deterministic truthful and Pareto optimal mechanism with
approximation ratio 2 (Theorem 3.6 in Section 3). This resolves the problem for determin-
istic mechanisms and motivates looking into relaxing our requirements. In the following
sections we look for randomized truthful mechanisms that construct ‘large’ weight Pareto
optimal matchings.

3 First truthful mechanism: SDMT-1

3.1 Introduction

When preferences are strict, SDM produces a Pareto optimal matching. It turns out
that when indifference is allowed, finding an arbitrary Pareto optimal matching is not as
straightforward as in the case of strict preferences. Take the following straightforward
extension of SDM: given the agents’ preference lists, break the ties arbitrarily and then
feed the resulting strict preferences to SDM. This mechanism unfortunately may fail to
produce a Pareto optimal matching. To see this, consider a setting with two agents, 1
and 2, and two objects, a1 and a2. Assume that 1 finds both objects acceptable and is
indifferent between them, and that 2 finds only a1 acceptable. The only Pareto optimal
matching for this setting is µ = {(1, a2), (2, a1)}. Assume that 1 is served first and that,
after the tie-breaking stage, 1 prefers a1 to a2. SDM then assigns a1 to 1 and leaves 2
unmatched, producing a matching that is not Pareto optimal.

In Section 3.2 we introduce SDMT-1, Serial Dictatorship Mechanism with Ties, a
mechanism that generalizes SDM to the case where agents’ preferences may involve ties.
SDMT-1 is truthful and is guaranteed to produce a Pareto optimal matching. Further,
in Section 3.3 we show that SDMT-1 is capable of generating any given Pareto optimal
matching.

3.2 Mechanism SDMT-1

Let I = (N,A,L) be an instance of HA, and let a fixed order σ of the agents be given.
Assume, w.l.o.g., that σ(i) = i for all agents i ∈ N . The formal description of SDMT-1 is
given in Algorithm 1; an informal description follows. SDMT-1 constructs an undirected
bipartite graph G = (V,E) where V = N ∪ A and the set of edges E changes during the
execution of SDMT-1. The mechanism proceeds in n1 phases and returns a matching µ.
Each phase of the algorithm corresponds to one iteration of the for loop in Algorithm 1.
Let µi denote the matching at the end of phase i. Initially E = ∅ and µ = ∅. In each
phase i, agent i is considered and the objects in agent i’s preference list are examined in
the order of the indifference classes they belong to. When objects a ∈ Ci` are examined,
edges (i, a) are provisionally added to E for all a ∈ Ci`. We then check whether there is
an augmenting path in G that starts from agent i. If such an augmenting path exists,
we augment along that path and modify µ accordingly. This would mean that agent i is
assigned a and every other agent j matched under µi−1 is assigned an object that he ranks

8



Algorithm 1: Serial Dictatorship Mechanism with Ties, version 1 (SDMT-1)

Input: Agents N ; Objects A; Preference list profile L; An order of agents σ
Output: Matching µ
Let G = (N ∪A,E), E ← ∅, µ← ∅.
for each agent i ∈ N in the order of σ do

Let `← 1
Step (*): if Ci` 6= ∅ then

E ← E ∪ {(i, a) : a ∈ Ci`}; // all new edges are non-matching edges
if there is an augmenting path from i in G then

augment along this path and update µ accordingly; // i is provisionally
allocated some a ∈ Ci` and (i, a) is now a matching edge

end
else

E ← E \ {(i, a) : a ∈ Ci`}
`← `+ 1; Go to Step (*)

end

end

end
Return µ; //each matched agent is allocated his matched object

in the same indifference class as µi−1(j). Otherwise—if G admits no augmenting path,
edges (i, a) are removed from E for all a ∈ Ci`.

Notice that, at any stage of the mechanism, an edge (i, a) belongs to E if and only if
either agent i is matched in µ and a 'i µ(i) or SDMT-1 is at phase i and examining the
indifference class to which a belongs. Therefore, it is fairly straightforward to observe the
following.

Observation 3.1. At the end of phase i of SDMT-1, if agent i is assigned no object then
he will be assigned no object when SDMT-1 terminates. Otherwise, if i is provisionally
assigned an object a, then he will be allocated an object that he ranks the same as a in the
final matching.

Before proceeding to prove our main claim, that SDMT-1 is truthful and produces a
Pareto optimal matching, let us discuss a relevant concept that is both interesting in its
own right and useful in the proofs that follows. In practice agents may have priorities
and the mechanism designer may wish to ensure that the agents with higher priorities are
served before satisfying those with lower priorities. Roth et al. [28] studied this concept
under the term priority matchings in the case where each agent’s preference list is one
big tie. This work was motivated by the kidney exchange problem in which patients are
assigned priorities based on various criteria; e.g. children and hard-to-match patients have
higher priorities. Prior to Roth et al. [28], Svensson [31] studied a similar concept under
the name queue allocation in a setting similar to ours. We formally define this concept
using the terminology strong priority matching, reflecting both the definition in [28] and
the fact that preference lists are more general than single ties.

Fix an ordering of the agents σ = i1, . . . , in1 . For each matching µ, the signature of
µ, denoted by ρ(µ), is a vector 〈ρ1, . . . , ρn1〉 where for each k ∈ [n1], ρk = rank(ik, µ(ik))
if ik is matched under µ, and ρk = n2 + 1 otherwise. A matching µ is a strong priority
matching (SPM) w.r.t. σ if µ has the lexicographically smallest signature. It is easy to
see that a given setting may admit more than one SPM w.r.t. σ, but all of them have
the same signature. When σ is fixed and known, we simply say that µ is a strong priority
matching.
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Theorem 3.2. The matching produced by SDMT-1 is a strong priority matching w.r.t.
σ.

Proof. Assume, for a contradiction, that the claim does not hold. Hence µ is not a SPM in
I. Let µ∗ be a SPM in I. Let z be the lowest indexed agent (and therefore first in σ) who
prefers his partner under µ∗ to his partner under µ, i.e. µ∗(z) �z µ(z) and µ∗(x) 'x µ(x),
∀x < z (we denote this deduction by D1). Therefore, in phase z of SDMT-1 no augmenting
path has been found starting from (z, a) where a �z µ∗(z) (we denote this deduction by
D2). Also, it follows from D1 and Observation 3.1 that, µ∗(x) 'x µz−1(x), ∀x < z
(we denote this deduction by D3). Let G∗ denote the graph G in phase z during the
examination of the indifference class to which µ∗(z) belongs. By D2, G∗ must admit no
augmenting path w.r.t. µz−1. We show, however, that G∗ admits an augmenting path
starting from z. To see this note that, by D1 and the construction of edges E, edges
(x, µ∗(x)) belong to G∗. If µ∗(z) is unmatched in µz−1 then (z, µ∗(z)) constitutes an
augmenting path of size 1 in G∗. Otherwise, let i1 denote the partner of µ∗(z) under µz−1

(note that i1 < z). It follows, from D3 and the construction of E, that i1 is matched
under µ∗. If µ∗(i1) is unmatched under µz−1 then we have found an augmenting path of
length 3. Otherwise, we continue with this argument. As there are a finite number of
agents and objects, we have to reach an object a who is unmatched under µz−1, hence
exposing an augmenting path in G∗, a contradiction.

Corollary 3.3. The matching produced by SDMT-1 is a Pareto optimal matching.

Proof. By Theorem 3.2, SDMT-1 produces a strong priority matching. It follows from
Theorems 1 and 2 in [31] that any strong priority matching is a Pareto optimal matching.
Hence, the matching produced by SDMT-1 is a Pareto optimal matching.

SDMT-1 is truthful, no matter which augmenting path is selected in each phase of the
mechanism, as the next result shows.

Theorem 3.4. The mechanism SDMT-1 is truthful.

Proof. Assume, for a contradiction, that the claim does not hold. Assume that agent
i benefits from misrepresenting his preferences and reporting L′(i) instead of L(i). Let
L′ = (L′(i), L(−i)). Let µ denote the matching returned by SMDT-1 on instance I =
(N,A,L)—i.e. the instance in which agent i reports truthfully, and µ′ denote the matching
returned on instance I ′ = (N,A,L′). Let µ` and µ′`, ∀` ∈ N , denote the matchings
generated at the end of phase ` given I and I ′ respectively. Let a = µ(i) and a′ = µ′(i). Let
u = rank(i, a) and u′ = rank(i, a′). It follows that a′�ia and u′ < u. By Observation 3.1
and the construction of L′, it must be the case that µ`(z) 'z µ′`(z) ∀`, z, 1 ≤ z ≤ ` < i.
Furthermore, µi(i) 'i a and µ′i(i) 'i a′. Consider the execution of SMDT-1 on I. Let G∗

denote the graph G in phase i during the examination of Ciu′ . As u′ < rank(i, µ(i)), G∗

must not admit an augmenting path w.r.t. µi−1. We show, however, that G∗ admits an
augmenting path. If a′ is unmatched in µi−1 then (i, a′) constitutes an augmenting path of
size 1 in G∗. Otherwise, let i1 denote the partner of a′ under µi−1 (note that i1 < i). The
rest of the argument is similar to that of presented in the proof of Theorem 3.2, leading
to the conclusion that G∗ admits an augmenting path, a contradiction.

We now show a bound on the time complexity of SDMT-1. Let γ denote the size of
the largest indifference class for a given instance I.

Theorem 3.5. SDMT-1 terminates in time O(n2
1γ).
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Proof. For each agent i matched under µ, let `i denote the length of the indifference class
to which µ(i) belongs. Let |L(i)| denote the length of agent i’s preference list, ∀i ∈ N .
Search for an augmenting path in a graph G = (V,E) can be done in time O(|E|) using
Depth First Search (DFS). Hence the search for an augmenting path in each phase i can
be done in time O(`1 + `2 + · · · + `i−1 + |L(i)|). Therefore SDMT-1 terminates in time
O(n1 · `1 + (n1 − 1)`2 + · · · + `n1 +

∑
i∈N |L(i)|). However, `i ≤ γ, ∀i ∈ N , therefore

n1 · `1 + (n1 − 1)`2 + · · · + `n1 +
∑

i∈N |L(i) ≤ n2
1γ + m, where m is the number of

(agent,object) acceptable pairs. Hence SDMT-1 terminates in time O(n2
1γ).

As noted earlier, any Pareto optimal matching is at least half the size of a maximum
size such matching (see, e.g., [2]). Hence SDMT-1 obviously achieves approximation ratio
2 when we are concerned with the cardinality of the matching. We next show that, when
agents are assigned arbitrary weights, SDMT-1 achieves the same approximation ratio
(relative to a maximum weight Pareto optimal matching) if the agents are ordered in σ in
non-increasing order of their weights.

Theorem 3.6. SDMT-1 achieves approximation ratio of 2 relative to the size of a max-
imum weight Pareto optimal matching, if the agents are ordered in σ in non-increasing
order of their weights.

Proof. Given an instance I, let µ be the matching produced by SDMT-1 and let OPT be
a maximum weight Pareto optimal matching in I. List the agents matched under each
of these matchings in non-increasing order of weight. Let i1, . . . , ik denote such an order
under µ, and let i′1, . . . , i

′
l denote such an order under OPT .

Take any agent i′x who is matched under OPT , to say ax, but not matched under µ (if
no such agent exists then µ is itself a maximum weight Pareto optimal matching). Note
that, as µ is Pareto optimal, ax must be matched under µ, for otherwise µ∪{(i′x, ax)} Pareto
dominates µ. As SDMT-1 generates a strong priority matching w.r.t. σ (Theorem 3.2)
and agents are listed in non-increasing order of weight under σ, it follows that ax must
be allocated in µ to an agent iy who has at least as large a weight as i′x (for otherwise
(µ\{(iy, ax)})∪{(i′x, ax)} has a lexicographically smaller signature than µ, a contradiction).

We claim that iy must be matched under OPT as well, as otherwise OPT \{(i′x, ax)}+
{(iy, ax)} has a higher weight than OPT . (Note that a maximum weight Pareto optimal
matching must be a maximum weight matching as well.) Hence we have established that,
for each agent i′x matched under OPT but not matched under µ, there exists a unique
agent iy, with weight at least as large as that of i′x, who is matched under µ. Thus if N1

is the set of agents matched in OPT and N2 is the set of agents matched in µ, it follows
that wt(N2) ≥ wt(N1\N2), where wt(N ′) is the sum of the weights of the agents in N ′, for
N ′ ⊆ N . Also wt(N2) = wt(N2\N1)+wt(N2∩N1) ≥ wt(N2∩N1) = wt(N1)−wt(N1\N2) ≥
wt(N1)− wt(N2), hence the result.

3.3 Enumerating all Pareto optimal matchings

It is known that (see, e.g., [2]), in the case of strict preferences, not only we can find a
Pareto optimal matching using SDM, but we can also generate all Pareto optimal match-
ings by executing SDM on all possible permutations of the agents. In other words, given
any Pareto optimal matching µ, there exists an order of the agents such that executing
SDM on that order returns µ. In this section we seek a similar characterization of Pareto
optimal matchings in the case of preferences with ties.

Theorem 3.7. Any Pareto optimal matching is a strong priority matching for some or-
dering σ of the agents.
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Proof. This proof makes use of the characterization of Pareto optimal matchings in in-
stances of HA (potentially with ties) given in [22] in terms of a number of graph-theoretic
structures. In particular, a given matching µ is Pareto optimal if and only if µ admits no
alternating path coalition, no augmenting path coalition, and no cyclic coalition (see [22]);
we will now define these terms.

An alternating path coalition w.r.t. µ compromises a sequence P = 〈i0, i1, . . . , ir−1, ak〉,
for some r ≥ 1, where ij is a matched agent (0 ≤ j ≤ r − 1) and ak is an unmatched
object. If r = 1 then i0 prefers ak to µ(i0). Otherwise, if r ≥ 2, i0 prefers µ(i1) to µ(i0),
ij weakly prefers µ(ij+1) to µ(ij) (1 ≤ j ≤ r − 2), and ir−1 weakly prefers ak to µ(ir−1).

An augmenting path coalition w.r.t. µ compromises a sequence P = 〈i0, i1, . . . , ir−1, ak〉,
for some r ≥ 1, where i0 is an unmatched agent and ak is an unmatched object. If r = 1
then i0 finds ak acceptable. Otherwise, if r ≥ 2, ij is a matched agent (1 ≤ j ≤ r − 1), i0
finds µ(i1) acceptable, ij weakly prefers µ(ij+1) to µ(ij) (1 ≤ j ≤ r − 2), and ir−1 weakly
prefers ak to µ(ir−1).

A cyclic coalition w.r.t. µ compromises a sequence of applicants P = 〈i0, i1, . . . , ir−1〉,
for some r ≥ 2, all matched in µ, such that ij weakly prefers µ(ij+1) to µ(ij) for each j
(0 ≤ j ≤ r − 1), and ij prefers µ(ij+1) to µ(ij) for some j (0 ≤ j ≤ r − 1) (all subscripts
are taken modulo r when reasoning about cyclic coalitions).

Let a Pareto optimal matching µ be given. Let G = (V,E) be the envy graph for µ,
defined as follows. In the graph, V = N and there is a directed edge from agent i to agent
k iff i weakly prefers µ(k) to µ(i). Every edge is colored. An edge (i, k) is colored green
if µ(k) 'i µ(i), and is colored red otherwise—i.e. if µ(k) �i µ(i). We claim that all the
edges in every strongly connected component (SCC) of G are green (we denote this claim
by C1). To see this, note that by the definition of strongly connected components, there
is a path from every node in a given component to every other node in the component.
Hence, if there is a red edge (i, k) in a SCC, then there must be a cycle with a red
edge in the SCC (as there must be a path from k to i). A cycle with at least one red
edge corresponds to a cyclic coalition and hence µ could have not been a Pareto optimal
matching, a contradiction.

Create graph G′ = (V ′, E′) as follows. There is a vertex in V ′ for each SCC of G, and
there is a directed edge in G′ from vr to vs, vr, vs ∈ V ′ and vr 6= vs, iff there is an edge
in G from i to k for some i and k that belong to the SCCs of vr and vs. It follows from
the definition of strongly connected components that G′ is a DAG. Hence G′ admits a
topological ordering. Let X be a reversed topological ordering of G′. Let σ = i1, . . . , in1

be an ordering of all the agents that is consistent with X. That is, for every two agents
ij and ir, 1 ≤ j < r ≤ n1, the corresponding SCC of ij appears in X no later than the
corresponding SCC of ir. (The order of the agents belonging to the same SCC can be
determined arbitrarily.) We prove that µ is a strong priority matching w.r.t. σ.

Assume, for a contradiction, that our claim does not hold. That is, µ is not a strong
priority matching w.r.t. σ. Hence there must exist another matching µ′ which has a
lexicographically smaller signature than µ; i.e. ρ(µ′) < ρ(µ) (we denote this deduction
by A1). Let ij be the highest priority agent, w.r.t σ, such that ij prefers his partner
under µ′ to his partner under µ; i.e. µ′(ij) �ij µ(ij) (we denote this assumption by A2).
Note that µ′(ij) must be matched in µ or else µ admits an alternating coalition, namely
P = 〈ij , µ′(ij)〉—as ij prefers unmatched object µ′(ij) to its partner µ(ij)—and hence not
Pareto optimal. So µ′(ij) is matched under µ to, say, ik. Following A2, there must be
a red edge from ij to ik in the envy graph G. Therefore, ik must have a higher priority
than ij according to σ (note that, by C1, ij and ik cannot belong to the same SCC). It
then follows from A1 and A2 that ik is matched under µ′ and ranks its partners under
µ and µ′ the same; i.e. µ(ik) 'ik µ′(ik). Now, µ′(ik) must be matched in µ or else
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there is an alternating path coalition in µ, namely P = 〈ij , ik, µ′(ik)〉, and hence µ is not
Pareto optimal. Also, ik cannot be matched to µ(ij) or else there is a cyclic coalition in
µ, namely P = 〈ij , ik〉, and hence µ is not Pareto optimal. So µ′(ik) is matched under µ
to, say, ir, ir 6= ij . Also, there is a green edge from ik to ir in G, since µ′(ik) = µ(ir) and
µ(ik) 'ik µ′(ik) . We claim that ir must have a higher priority than ij (we denote this
claim by C2). To see this, first of all note that there cannot exist a path between ir and
ij in G or else G admits a cycle with at least one red edge, namely (ij , ik), and hence µ
admits a cyclic coalition and is not Pareto optimal. Now, to complete the proof of C2,
we consider two cases regarding whether there is a path from ir to ik or not.

• Case 1: There is a path from ir to ik in G. Since there is an path from ik to ir, then
ir and ik must belong to the same strongly connected component. Therefore since
ik has a higher priority than ij under σ, so must ir.

• Case 2: There is no path from ir to ik in G. Therefore ir and ik belong to two
different SCCs. Since there is an path from ik to ir in G, there is an edge in G′ from
the SCC corresponding to ik to the SCC corresponding to ir. Therefore ir must have
a higher priority than ik under X and thus under σ as well. Hence, by transitivity,
ir has a higher priority than ij under σ.

So far we have established that ir has a higher priority than ij . Now, using a similar
argument as for ik, we can show that ir must be matched under µ′ and must rank his
partners under µ and µ′ the same. Also, again using a similar argument as for ik, µ

′(ir) is
not the same object as µ(ij) and µ′(ir) must be matched in µ or else there is an alternating
path coalition in µ contradicting the Pareto optimality of µ. So µ′(ir) is matched under
µ, to say iq. Using exactly the same argument as we used for ir we can show that iq also
has a higher priority than ij . We can keep repeating this argument and every time we
have to reach a new agent with a higher priority than ij . However, there are a bounded
number of agents and hence a bounded number of agents with higher priority than ij , a
contradiction.

Following Theorem 3.7, enumerating all Pareto optimal matchings is equivalent to
enumerating all matchings µ such that µ is a strong priority matching w.r.t. some ordering
of the agents. Let µ∗ be a matching returned by SDMT-1 for a given priority ordering
of the agents σ = i1, . . . , in1 . Recall that all strong priority matchings w.r.t. σ have the
same signature as ρ(µ∗). It hence follows that,

Proposition 3.8. A matching µ is a SPM w.r.t. σ if and only if

• the same set of agents are matched under both µ and µ∗, and

• each matched agent i is matched under µ to an object that he ranks the same as
µ∗(i); i.e., rank(i, µ(i)) = rank(i, µ∗(i)).

Let G(σ) = (V,E) be a graph where V = N∗ ∪ A where N∗ is the set of agents that
are matched under µ∗. There is an edge between an agent i ∈ N∗ and an object a ∈ A if
and only if i ranks a the same as µ(i). It is then easy to see that,

Proposition 3.9. A matching µ is a strong priority matching w.r.t. σ if and only if it is
a maximum cardinality matching in G(σ).

Thus to enumerate all strong priority matchigns w.r.t. σ we need only to enumerate
all maximum cardinality matchings w.r.t. G(σ). The latter can be achieved in O(|V |)
time per matching (see [32]).

Finally, we show that SDMT-1 is capable of producing any given Pareto optimal match-
ing.
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Theorem 3.10. Any Pareto optimal matching can be generated by some execution of
SDMT-1.

Proof. Let µ be a Pareto optimal matching for an instance I of HA. By Theorem 3.7 µ is
a strong priority matching for some ordering σ of the agents. Execute SDMT-1 given σ as
follows. At each phase i, choose (i, µ(i)) as the augmenting path. Notice that since µ is a
matching, both i and µ(i) must be unmatched at the beginning of phase i. Futhermore,
since µ is a SPM w.r.t σ, there cannot be an augmenting path from i to an object that i
prefers to µ(i).

4 Randomized mechanism with weights and ties

4.1 Online interpretation of our problem

In this section we will analyse our mechanism for the weighted version of our problem.
We can interpret it as having an “online” flavour in the following way. An administrator
holds all the objects, and all agents with unknown preference lists are applicants for
these objects. We assume that weights are private information of each agent, but that
they cannot overstate their weights. Applicants are interviewed one-by-one in a random
order. A decision about each particular applicant is to be made immediately after the
interview. During the interview, the applicant selects his favorite (because we only consider
truthful mechanisms) object among the available remaining objects if there exists one in
his preference list and is allocated (matched to) that object.5 This applicant will not
be interviewed again. The administrator can know the number of matched applicants
interviewed so far, but is unaware whether yet unseen applicants will be matched or not.
Our goal is to find the optimal strategy, which is the random arrival order of agents, that
maximizes the ratio between the total weight of matched agents and the maximum weight
Pareto optimal matching if all the applicants’ preference lists are known in advance.

Our algorithm in the next section is truthful with respect to agents’ preferences and
weights (under no-overbidding assumption) and provides an e

e−1 -approximate Pareto op-
timal matching. We will show in Section 6 that, even if the weights of all agents are the
same our algorithm uses the best possible random strategy – no other such strategy leads
to better than e

e−1 -approximate matching.

4.2 Second truthful mechanism: SDMT-2

The approximation ratio analysis of the randomized version of SDMT-1 is complex, be-
cause it requires additional information which is not maintained by SDMT-1. For the
sake of the analysis, we introduce a variant of SDMT-1, called SDMT-2. After introduc-
ing some terminology we present SDMT-2, and then establish the equivalence between
SDMT-1 and SDMT-2. Pareto optimality and truthfulness of SDMT-2 will then follow
from this equivalence and these same two properties of SDMT-1. We will prove that
the randomized version of SDMT-2 is e

e−1 -approximate. By the equivalence of the two
algorithms, a randomized version of SDMT-1 has the same approximation ratio.

Let a1 � a2 � · · · � an2 be a common order of all the objects; it will be used to break
possible ties in SDMT-2). In the course of our algorithm agents will be (temporarily)

5We can extend this setting to the case where the administrator can decide whether to let the applicant
select his favorite object or to reject this applicant, meaning that the applicant gets nothing. In this more
general problem, it is not difficult to prove that for any fixed order of the applicants, the decision that the
administrator does not reject any applicant will maximize the number of matched applicants. Therefore,
this more general problem is reduced to the setting where the administrator lets each applicant select his
favorite object, and therefore our lower bound from Section 6 also applies to this setting.
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Agent 6
(d, e, g, h)

Unlabeled 4
(b, c, e, g)

Unlabeled 2
(d, h, f, i)

Unlabeled 5
(a, h, i)

Unlabeled 3
(e)

labeled 1
(a, b, c, d, e, f)

Figure 1: The trading graph TG(6, {g, h}, [5]), h denotes h is owned currently by the
agent. The common order is a � b � c � d � e � f � g � h � i.

allocated subsets of objects from their preference list. When an agent is allocated a subset
of objects we say that he owns these objects. Let S ⊆ N and suppose that some of the
agents in S have been allocated some objects and the allocated objects to each agent
appear in the same indifference class of this agent. At any time during the execution
of the algorithm, each agent who is allocated more than one object is called labeled and
unlabeled otherwise. Let i ∈ N , and let B ⊆ L(i) be such that i is not allocated any
object in B. The trading graph (TG) is a directed graph TG(i, B, S) with {i} ∪ S as the
set of nodes, and arcs defined as follows: Let agent i point to any agent in S who owns
any object in B. For each unlabeled agent, e.g., j ∈ S, to which i points, suppose the
current object allocated to j is in j’s kth indifference class Cjk. Then let j point to any

agent in S who currently owns any object in Cjk not owned by j. Continue this process for
the new pointed-to and unlabeled agents until no agent in S needs to point to the other
agents. See Figure 1 for how TG(6, {g, h}, [5]) is constructed: agent 6 points to agent 4
and 5 since currently agent 4 owns g and agent 5 owns h; then, as agent 4 is unlabeled,
agent 4 points to agents 3 and 1 since agent 3 owns e and agent 1 owns b and c; similarly,
agent 5 points to agents 1 and 2; agent 1 is labeled so only agent 2 points to agents 1 and
5.

LetH = {a ∈ L(i) | there is a (directed) path from i to a labeled agent in TG(i, a, S)} .
Note that, as labeled agents do not point to any agents, no intermediate agent on a di-
rected path is labeled. Note that H may be empty, and it can be found by breadth first
search (BFS). If H 6= ∅, let ` be the highest indifference class of i with H ∩ Ci` 6= ∅.
Define maxTG(i, L(i), S) to be the highest order object in H ∩ Ci` (e.g., in Fig. 1,
maxTG(6, {d, e, g, h}, [5]) = {g}). If maxTG(i, L(i), S) 6= ∅, then there is a path from
i to a labeled agent in TG(i, a, S), which can be found by BFS. Suppose the path is
(i0, i1, i2, · · · , ik), where i0 = i and only ik is labeled. Now denote Trading(i, a, S) to be a
procedure that allocates the object owned by is+1 to is, for s = 0, 1, · · · , k− 1. Note that
ik may own more than one object for which ik−1 has pointed to ik. In this case, the highest
order object among such objects is allocated to ik−1. After trading, if ik still owns more
than one object, keep ik labeled and unlabel ik otherwise. In Fig. 1, Trading(6, g, [5])
allocates g to agent 6 and b to agent 4, since b � c, and keeps agent 1 labeled. Note
that Cin2+1 = ∅, ∀i ∈ [n1]. With these preliminaries, we present our algorithm SDMT-2
(Algorithm 2). In the following, we will refer to kth iteration of the “for loop” in SDMT-2
as kth loop. Observe that in the kth loop, j1 is the highest indifference class of i where
i can obtain unallocated objects, and j2 is the highest indifference class of i where i can
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Algorithm 2: Serial Dictatorship Mechanism with Ties, version 2 (SDMT-2)

Input: Agents N ; Objects A; Preference list profile L; An order of agents σ,
w.l.o.g. let σ(i) = i, ∀i ∈ N

Output: Matching
Let A1 ← A.
for each agent i ∈ N in the order of σ do

Define j1 =

{
min{j : Ai ∩ Cij 6= ∅} ifAi ∩ L(i) 6= ∅;
n2 + 1 otherwise.

j2 =

{
min{j : maxTG(i, L(i), [i− 1]) ∈ Cij} if maxTG(i, L(i), [i− 1]) 6= ∅;
n2 + 1 otherwise.

if j1 ≤ j2 then
Allocate all the objects in Ai ∩ Cij1 to i; Label i if |Ai ∩ Cij1 | ≥ 2;

Ai+1 ← Ai\(Ai ∩ Cij1)

end
else

Trading(i,maxTG(i, L(i), [i− 1]), [i− 1]); Ai+1 ← Ai
end

end
For each labeled agent, allocate to him the highest order object he currently owns.
For each unlabeled agent, if he currently owns an object, allocate it to him.
Output the matching.

obtain objects from the allocated objects without hurting the agents prior to i.

Observation 4.1. For each agent i, after i’s turn in “for loop” of SDMT-2, if i is allocated
no object, then he will be allocated no object when SDMT-2 terminates. Otherwise, if i
is provisionally allocated some objects in his turn, then in the final matching he will be
allocated an object in the same indifference class as his initially allocated objects.

Observation 4.2. For each agent i, after i’s turn, if i is allocated an object a ∈ Cij, then

all the objects in ∪jk=1C
i
k have been allocated to either i or to some agents prior to i. Once

an object is allocated, it remains allocated until the end of the for loop.

Now we establish the equivalence of SDMT-1 and SDMT-2.

Theorem 4.3. Given the same input, SDMT-1 and SDMT-2 match the same set of
agents. Furthermore, for each matched agent i, the object allocated to i in SDMT-1 is in
the same indifference class of i as the object allocated to him in SDMT-2.

Proof. We will prove the following two facts inductively which simply implies the conclu-
sion of Theorem 4.3. W.l.o.g. suppose the order of agents is σ(i) = i, ∀i ∈ N . Until the
step i,

1. for each agent k ≤ i− 1, the allocated objects of SDMT-1 and SDMT-2 to k are in
the same indifference class, (if one of them is empty, the other is empty as well)

2. for each ` ≤ n2, and a ∈ Ci`, there is an augmenting path starting from (i, a) in
SDMT-1 if and only if a is unallocated in SDMT-2 or there is a path from i to a
labeled agent in TG(i, a, [i− 1]) in SDMT-2.

Consider the base case, for agent 1, obviously property 1 is true since they are all empty
sets. if L(1) 6= ∅, then there is an augmenting path from (i, a) in SDMT-1 and a is

16



unallocated.
Suppose property 1 and 2 is true for all the steps k ≤ i− 1, we now prove that it is true
for step i. For property 1, by inductive hypothesis, property 1 holds for any k ≤ i − 2,
since property 2 holds for agent i − 1 by inductive hypothesis, the objects allocated to
agent i− 1 in SDMT-1 and SDMT-2 will be in the same indifference class, thus, property
1 holds for step i. Now property 2 will be proved true for agent i, for each ` ≤ n2, and
a ∈ Ci`:

For ⇒ direction, if there is an augmenting path starting from (i, a) in SDMT-1, and
if a is allocated previously in SDMT-2, suppose the new matching generated in SDMT-1
due to the augmenting path is (k, µ(k)), k ≤ i, where µ(i) = a. By property 1 of inductive
hypothesis and Observation 4.2, all the objects in {µ(k), k ≤ i} have been allocated to
some agents k ≤ i− 1 in SDMT-2. For object b, we use ν−1(b) to denote the agent whom
b is allocated to in SDMT-2. Now consider the following path in TG(i, a, [i − 1]): let
i1 = ν−1(µ(i)), if i1 is labeled then we are done, otherwise, let i2 = ν−1(µ(i1)). If i2
is labeled, then we are done, otherwise continue this process. Finally, we either reach a
labeled agent or the path has passed through all the agents in [i − 1]. In the latter case,
note that there are i objects ({µ(k), k ≤ i}) allocated to i− 1 agents ([i− 1]) in SDMT-2
and the last agent must therefore be allocated to at least two objects, which becomes the
former case.

For ⇐ direction, now suppose a is unallocated or there is a path from i to a labeled
agent in TG(i, a, [i − 1]) in SDMT-2. Suppose a is allocated and there is a path from i
to a labeled agent in TG(i, a, [i− 1]). Then by Trading(i, a, [i− 1]), we can make all the
agents k ≤ i allocated at least one object and i is allocated a. Let us select any matching,
e.g., M = {(k, ν(k)), k ≤ i}, where ν(i) = a (we can also select such a matching if a is
unallocated in SDMT-2). Suppose the matching generated after step i − 1 in SDMT-1
is M ′ = {(k, µ(k)), k ≤ i − 1}. By property 1 of inductive hypothesis, we know µ(k)
and ν(k) are in the same indifference class of agent k, for any k ∈ [i − 1]. Now consider
M ⊕M ′, which consists of alternating paths and cycles. Then a connected component of
M⊕M ′ that contains (i, ν(i)) must be an odd length alternating path in M⊕M ′ w.r.t. M ′,
implying an augmenting path starting from (i, a) in SDMT-1. The argument showing that
the connected component that contains (i, ν(i)) must be an odd length alternating path is
as follows. If ν(i) = a is unallocated in SDMT-1, then (i, ν(i)) is an odd length alternating
path, otherwise suppose i1 = µ−1(ν(i)), then consider whether ν(i1) is allocated or not
in SDMT-1. If not we get an odd path (i, ν(i), i1, ν(i1)). Otherwise continue the search,
and let i2 = µ−1(ν(i1)), then consider whether ν(i2) is allocated or not in SDMT-1. If
not we get an odd length path (i, ν(i), i1, ν(i1), i2, ν(i2)), and so on. Finally, we will get
an odd length alternating path starting from (i, ν(i)) = (i, a) w.r.t. M ′, which is indeed
an augmenting path starting from (i, a) in SDMT-1. This concludes the induction.

It is easy to see that both SDMT-1 and SDMT-2 reduce to SDM if all agents have
strict preference over objects. We say an agent (respectively, an object) is frozen if the
allocation of this agent (respectively, object) remains the same until the end of SDMT-2.

Theorem 4.4. SDMT-2 is truthful, Pareto optimal, and terminates in O(n2
1γ) running

time.

Proof. The first two properties follow from the equivalence between SDMT-1 and SDMT-2
(Theorem 4.3) and the Pareto optimality (Corollary 3.3) and truthfulness (Theorem 3.4)
of SDMT-1. We provide a direct proof here.

Denote φ as the mechanism of SDMT-2, and φi(L(i), L(−i)) denotes the allocation of
agent i under preference lists (L(i), L(−i)). First, we show φ is truthful. For any agent i,
suppose i’s preference list is L(i). Given preference lists L, suppose i changes his preference
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list to L′(i). If φi(L(i), L(−i)) = ∅, then for any a ∈ L(i), a must have been allocated to an
agent k ≤ i−1 (otherwise, Ai∩L(i) 6= ∅, i will be allocated to at least one object by SDMT-
2, a contradiction). maxTG(i, L(i), [i− 1]) must also be empty set by SDMT-2. In other
words, the objects of L(i) are frozen at the beginning of ith loop. Now consider SDMT-2
running on (L′(i), L(−i)) and note Observation 4.1, the objects of L(i) are frozen at the
beginning of ith loop. Thus, either φi(L

′(i), L(−i)) is empty or an object not in L(i), in
either case, φi(L(i), L(−i)) �i φi(L′(i), L(−i)). Now suppose φi(L(i), L(−i)) 6= ∅ and let
a = φi(L(i), L(−i)) ∈ Cij . Obviously, if j = 1, we have φi(L(i), L(−i)) �i φi(L′(i), L(−i)).
Now suppose j > 1, then by SDMT-2, we know that Ai ∩ (∪j−1

k=1C
i
k) = ∅ and for any

a ∈ ∪j−1
k=1C

i
k, there is no path from a to a labeled agent in TG(i, a, [i − 1]) (otherwise,

agent i will be allocated to an object in ∪j−1
k=1C

i
k). The objects in ∪j−1

k=1C
i
k have been frozen

at the beginning of ith loop. Hence, by SDMT-2 and Observation 4.1, φi(L
′(i), L(−i))

will not be an object in ∪j−1
k=1C

i
k. Therefore, φi(L(i), L(−i)) �i φi(L′(i), L(−i)). This

completes the proof of truthfulness.
Now we proceed to prove the Pareto optimality of φ. Suppose there exists another allo-

cation φ′ such that φ′ is a Pareto improvement of φ, e.g. φ′i(L(i), L(−i)) �i φi(L(i), L(−i)),
∀i ∈ [n] and there exists k ∈ [n] such that φ′k(L(k), L(−k)) �k φi(L(k), L(−k)). Let u =
min{k : φ′k(L(k), L(−k)) �k φi(L(k), L(−k))}. We know φ′i(L(i), L(−i)) 'i φi(L(i), L(−i)),
∀i < u. Suppose a = φ′u(L(u), L(−u)) and b = φu(L(u), L(−u)) and a �u b, we have the
following claim:

Claim 4.5. There is a path from a to a labeled agent in TG(u, a, [u− 1]) or a ∈ Au at the
beginning of uth loop of for loop.

Proof. Suppose a /∈ Au, which means that a has been allocated to some agent i ≤ u
in SDMT-2. Consider the graph TG(u, a, [u − 1]), Suppose, a is allocated to u1 <
u, then a ' φu1(L(u1), L(−u1)) ' φ′u1(L(u1), L(−u1)), if u1 owns more than one ob-
ject, e.g. owning a and φ′u1(L(u1), L(−u1)), then we are done. Otherwise, by Observa-
tion 4.2, φ′u1(L(u1), L(−u1)) must be allocated to some agent u2 < u in TG(u, a, [u −
1]), different from u1 (if not different, we are done), by the same argument that check
whether u2 simultaneously owns φ′u1(L(u1), L(−u1)) and φ′u2(L(u2), L(−u2)), if not then
φ′u2(L(u2), L(−u2)) must be allocated to to some agent u3 < u, different from u1, u2,
(otherwise we are done). Continue this procedure, since there are only finite agents (u− 1
agents), we must finally arrive at an agent who owns more than one object and get a path
from a to this agent.

Clearly, by Claim 4.5, we know agent u will be allocated to an object no inferior to a,
e.g. b �u a, contradiction.

We finally establish the running time of SDMT-2. By previous analysis, in each loop
i, the running time is O(|L(i)| + (i − 1)γ), sum i over [n1], we obtain that the run-
ning time of SDMT-2 is O(mn + n2γ). However, we can reduce the running time of
Trading(i,maxTG(i, L(i), [i−1]), [i−1]) to O(i+γ+ (i−1)γ) by analysing process care-
fully. When constructing TG(i, L(i), [i − 1]), we need only to consider all the objects in
∪jk=1C

i
k such that |∪jk=1C

i
k| ≥ i, that is only constructing TG(i,∪jk=1C

i
k, [i−1]). This also

reduces the complexity of finding j2 to O(i + γ + (i − 1)γ). Similarly, when defining j1,
we need only to consider whether Ai ∩ (∪jk=1C

i
k) is empty set or not, where | ∪jk=1C

i
k| ≥ i.

This is modified SDMT-2. The reason is as follows: If i is allocated some objects in
SDMT-2, then all these objects must be in ∪jk=1C

i
k. This is because we will have either

Ai ∩ (∪jk=1C
i
k) 6= ∅ or there is a path from an object in ∪jk=1C

i
k to a labeled agent, where

| ∪jk=1 C
i
k| ≥ i (if Ai ∩ (∪jk=1C

i
k) = ∅, then all elements in ∪jk=1C

i
k are allocated to [i− 1],

since | ∪jk=1 C
i
k| ≥ i, then there exists an agent owning more than one object, hence, there
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Algorithm 3: Random SDMT-2 for Weighted Agents with Ties

Input: Agents N ; Objects A; Preference list profile L; Weights W
Output: Matching
for each agent i ∈ N do

Pick Yi ∈ [0, 1] uniformly at random;
end
Sort agents in decreasing order of wi(1− g(Yi)) (break ties in favor of smaller
index);
Run SDMT-2 according to above order;
Return the matching;

is a path (edge) from an object in ∪jk=1C
i
k to this labeled agent). If i is allocated nothing

in SDMT-2, then we know the modified SDMT-2 will allocate i nothing. Hence, the total
running time of modified SDMT-2 is

∑
iO(i+ γ + (i− 1)γ) = O(n2γ).

4.3 Randomized mechanism

We now present a universally truthful and Pareto optimal mechanism with approximation
ratio of e

e−1 , where agents may have weights and their preferences may involve ties (see

Algorithm 3, where g(y) = ey−1). When preferences are strict, Algorithm 3 reduces
to a variant of RSDM that has been used in weighted online bipartite matching with
approximation ratio e

e−1 (see [3] and [15]). Our analysis of Algorithm 3 is a non-trivial
extension of the primal-dual analysis from [15] to the case where agents’ preferences may
involve ties.

To gain some high-level intuition behind this extension, we highlight here the simi-
larities and differences between our problem and that of online bipartite matching. Our
problem with strict preferences and without weights is closely related to online bipartite
matching.6 If each agent in our problem ranks his desired objects in the order that pre-
cisely follows the arrival order of objects in the online bipartite matching, the two problems
are equivalent. Therefore, we extend the analysis of this particular setting, where each
agent’s preference list is a sublist of a global preference list, to the general case where
agents preferences are not constrained and may involve ties, and furthermore agents may
have weights.

If the weights are public, Algorithm 3 is universally truthful and Pareto optimal. This
is because it chooses a random order of the agents, given the weights, and then runs
SDMT-2 according to this order. It follows from SDMT-2 that, if the order of the other
agents is given, an agent can get a better object if he appears earlier in this order. Then
it is not difficult to see that if the weights are private, and under the assumption that no
agent is allowed to bid over his private weight, Algorithm 3 is still universally truthful in
the sense that no agent will lie about his preferences or weight.

Theorem 4.6. Algorithm 3 is universally truthful, even if the weights and preference lists
of the agents are their private knowledge, assuming that no agent can over-bid his weight.

6In the online bipartite matching problem [8], vertices of one partition (think of them as agents) are
given and fixed, while vertices of the other partition (think of them as objects) arrive in an adversarial
order. When an item arrives, we get to see the incident edges on agents. These edges indicate the set of
agents that desire this object. The algorithm must immediately match this object to one of the unmatched
agents desiring it (or choose to throw it away). In the end, the size of the obtained matching is compared
with the optimum matching in the realized graph.
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max
∑

(i,a)∈E

wixia s.t. ∀i ∈ N :
∑

a:(i,a)∈E

xia ≤ 1; ∀a ∈ A :
∑

i:(i,a)∈E

xia ≤ 1;

∀(i, a) ∈ E : xia ≥ 0.

min
∑
i∈N

αi +
∑
a∈A

βa s.t. ∀(i, a) ∈ E : αi + βa ≥ wi; ∀i ∈ N, a ∈ A : αi, βa ≥ 0.

Figure 2: The primal and dual LP relaxation. G = (V,E), where V = N ∪ A and
E = {(i, a), i ∈ N, a ∈ A}

Proof. Algorithm 3 is a distribution of deterministic mechanisms due to the selection of
random variables Yi. For each deterministic mechanism (i.e. SDMT-2 when Yi, i ∈ N is
fixed), we prove it is truthful w.r.t. weights and preference lists. Denote by φ the mecha-
nism of SDMT-2 when Yi, i ∈ N is fixed. If is not difficult to see that for any (W,L), w′i ≤
wi and L′(−i), i ∈ N , we have φi(W,L) �i φi((w′i, w−i), L) �i φi((w′i, w−i), (L′(i), L(−i))).
The first preferred order in this chain follows from the fact that the order of i when i bids
wi is better than or equal to his order when he bids w′i. The second preferred order in this
chain follows by the truthfulness of SDMT-2 when weights are public.

5 Analysis of the approximation ratio

To analyze the approximation ratio of Algorithm 3, we first write the LP formulation of the
(relaxed) problem and its dual LP formulation. Given random variables Yi, we will define
a primal solution and a dual solution obtained by Algorithm 3, which are both random
variables, such that the objective value of the primal solution is always at least a faction
F of the objective value of the dual solution, and that the expectation of duals is feasible.
Hence, the expectation of the primal solution is at least F times the expectation of duals,
which by weak LP duality, is at least optimal value of the primal LP. The standard LP
and its dual of our problem are given in Figure 2.

By Lemma 5.1, proved in [15], the inverse of approximation ratio is F ∈ [0, 1].

Lemma 5.1 ([15]). Suppose that a randomized primal-dual algorithm has a primal feasible
solution with value P (which is a random variable) and a dual solution which is not
necessarily feasible, with value D (which is also a random variable) such that

1. for some universal constant F , P ≥ F ·D, always, and

2. the expectation of the randomized dual variables form a feasible dual solution.

The expectation of P is then at least F · OPT where OPT is the value of the optimum
solution.

Proof. Since P ≥ F ·D, taking expectations, E(P ) ≥ F ·E(D). The cost of the dual solution
obtained by taking the expectations of the randomized dual variables is E(D) and they
form a feasible dual solution, therefore E(D) ≥OPT. Hence, E(P ) ≥ F ·OPT.

Note that in Lemma 5.1, OPT is the value of maximum weighted matching, which is no
less than the value of maximum weighted Pareto optimal matching. Hence, if the condition
of Lemma 5.1 holds, the approximation ratio of the mechanism is 1

F . The construction of
the duals depends on function g. Let F = (1− 1

e ). It is not difficult to see that

∀θ ∈ [0, 1]

∫ θ

0
g(y)dy + 1− g(θ) ≥ F (1)
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For any random selection of Yi, i ∈ N , let ~Y = (Y1, Y2, · · · , Yn1) = (Yi, Y−i). Following
the procedure of Algorithm 3, whenever agent i is matched to object a, let

xia(~Y ) = 1, αi(~Y ) = wig(Yi)/F, βa(~Y ) = wi(1− g(Yi))/F.

For all unmatched i and a, set xia(~Y ) = αi(~Y ) = βa(~Y ) = 0. By this definition, it follows
that for any Yi, i ∈ N , the random value P of primal solution {xia(~Y ), i ∈ N, a ∈ A} is
always at least F ·D, whereD is random value of the dual solution {αi(~Y ), i ∈ N, βa(~Y ), a ∈
A}.

Hence, to satisfy the conditions of Lemma 5.1, we need to show that the expectation
of dual solution {αi(~Y ), i ∈ N, βa(~Y ), a ∈ A} is feasible for the dual LP, implying that
the approximation ratio of Algorithm 3 is at most 1

F = e
e−1 . The main technical difficulty

lies in proving the dominance lemma and the monotonicity lemma (see Lemma 5.3 and
5.4). To prove these two lemmas, we define a threshold which specifies whether an agent
still gets matched if he is put back into the order after he is first removed from it. For an
agent with strict preferences, such a threshold is the same as that of defined in the online
bipartite matching problem. However, in the presence of ties, the same defined threshold
does not work. We show how to define such a threshold for our algorithm.

Fix an agent i ∈ [n1] and object a ∈ A, such that (i, a) ∈ E. Fix Y−i, the random
variables Yi′ for all other agents i′ 6= i. We use σ to denote the order of agents under Y−i,
e.g., σ(1) is the first agent, etc, and σ([i]) = {σ(1), σ(2), · · · , σ(i)}. Consider Algorithm
3 running on the instance without agent i and let us denote this procedure by ALG−i,
where σ is the order of agents under ALG−i. The threshold yc is then defined as follows:

1. If a is unmatched in ALG−i, let yc = 1.

2. Otherwise, suppose that a is matched in ALG−i to some agent i′. Then consider the
allocations just after the for loop in ALG−i terminated.
If i′ is labeled, set yc = 1.

3. Otherwise, suppose a ∈ Ci′j and construct the trading graph TG(i′, Ci
′
j \{a}, [n1]\{i})

from all the objects in Ci
′
j other than a (note that σ([n1 − 1]) = [n1]\{i}).

If there is a path in TG(i′, Ci
′
j \{a}, [n1]\{i}) from i′ to a labeled agent, set yc = 1.

4. Otherwise, define
i′′ = argmin{wl(1− g(Yl))| there is a path from i′ to l inTG(i′, Ci

′
j \{a}, [n1]\{i})}.

If wi(1−g(y)) = wi′′(1−g(Yi′′)) has a solution y ∈ [0, 1] define yc to be this solution.
(g(y) is strictly increasing so if there is a solution, it is unique)

5. Otherwise define yc to be 0.

Now consider Algorithm 3 running on the original instance (denote such procedure as
ALG), with (Yi, Y−i) fixed. Suppose that τ is the order of agents under this execution
of ALG. The intuition behind the definition of yc is the following. Having Y−i fixed, we
want to define yc such that if we run ALG with (Yi, Y−i) where Yi < yc, then agent i gets
matched (to any of his objects). If (1) holds, then Yi < 1 and i will be matched because
at least object a is his available candidate. If (2) happens, then Yi < 1 and i will also be
matched because object a can be re-allocated from the labeled agent i′ to i. Case (3) is
analogous to (2) with the only difference that we now have a trading path from i′ to a
labeled agent. Case (4) will be discussed just after Observation 5.2.

Observation 5.2. Assume that agent i is unmatched in his turn in the “for loop” of
ALG. Suppose τ(u) = i, which means i selects his object in uth iteration of the “for loop”.
Then at end of kth iteration of the “for loop”, k ≥ u, there is no path from i to a labeled
agent in TG(i, L(i), τ([k])) (meaning this graph is frozen).
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Proof. By SDMT-2, we know Au ∩ L(τ(u)) = Au ∩ L(i) = ∅, which means all the objects
in L(i) have been allocated to agents τ([u − 1]). Since τ(u) is unmatched, there is no
path from τ(u) to any labeled agent in TG(τ(u), L(τ(u)), τ([u − 1])). Let S ⊆ τ([u − 1])
be the set reachable from τ(u) in TG(τ(u), L(τ(u)), τ([u − 1])), clearly, each agent in S
is unlabeled. Actually any agent in S is frozen. Therefore, any path through i after uth
iteration will reach an unlabeled agent.

The following two properties (dominance and monotonicity) are well known for agents
with strict preference orderings. We generalize them to agents with indifference. The
difficulty of proving both dominance and monotonicity lemmas (Lemma 5.3 and 5.4) lies
in case (4). This is our main technical contribution as compared to the analysis in [15].

Recall that τ (σ, resp.) is the order of agents under the execution of ALG (ALG−i,
resp.). We first deal with the case (4) of the dominance lemma. Note that in this case
there is a path from i′ to i′′ in TG(i′, Ci

′
j \{a}, [n1]\{i}) and agent i′′ is unlabeled. We will

prove dominance by contradiction, using the following two main steps. Suppose σ(u) = i′′

in ALG−i, then τ(u + 1) = i′′ in ALG under case (4). Suppose that Yi < yc and i is
not matched in ALG, then the outcome of ALG is the same as that of ALG−i for all the
other agents except i. Based on this fact, first, we prove that either i′ is labeled or there
is a path, call it P1, from i′ to a labeled agent in TG(i′, Ci

′
j , τ([u])) at the end of the uth

iteration of the for loop in ALG. Second, due to the above property, we argue that there is
a path, say P2, from i to a labeled agent in TG(i, a, τ([u])) at the end of the uth iteration
of the for loop in ALG, contradicting Observation 5.2; thus i will be matched. Path P2

is constructed by the concatenation of arc (i, i′) and path P1, or the concatenation of arc
(i, i′′′), for some i′′′ on path P1, and the rest of path P1. The existence of P1 is proved by a
careful analysis of the structure of frozen subgraphs of the trading graph as the algorithm
proceeds; the details can be found in the proof of Lemma 5.3.

Lemma 5.3 (DOMINANCE LEMMA). Given Y−i, i gets matched if Yi < yc.

Proof. Case 1: If a is unmatched in ALG−i, then yc = 1. Suppose agent i is unmatched
in ALG, and procedure ALG is the same as ALG−i for all the other agents except i.
Then a is always available to agent i, meaning a will be matched to agent i by process of
SDMT-2, contradiction.
Case 2: If a is matched to i′ in ALG−i:
(i): If i′ is labeled or if there is a path from i′ to a labeled agent in TG(i′, Ci

′
j \{a}, [n1]\{i}),

if i is unmatched, then there is a path from i to a labeled agent in TG(i, a, [n1]), then by
Trading(i, a, [n1]), we get a Pareto improvement, contradicting that SDMT-2 is Pareto
optimal.
(ii): The case yc = 0 is trivial, so we consider that wi(1 − g(y)) = wi′′(1 − g(Yi′′)) has
a solution. Suppose that σ(u) = i′′ in ALG−i, then if Yi < yc, we know wi(1 − g(Yi)) >
wi′′(1 − g(Yi′′)) meaning the agent i is prior to agent i′′ in ALG. Then τ(u + 1) = i′′ in
ALG. If i is unmatched in ALG, then procedure ALG is the same as ALG−i for all the
other agents except i.

Suppose i′′ is allocated an object b in ALG. If i′′ = i′, then b = a, and if in addition
a ∈ Au+1, this means a is always available to all the agents prior to τ(u + 1) = i′′ = i′.
Therefore, a will be available to i when i initially selects objects, implying that i must be
allocated to some objects in his turn, contradiction.

The case a /∈ Au+1 is same as the case i′′ 6= i′, so we consider that i′′ 6= i′. Since there
is a path from i′ to i′′ after the for loop in ALG terminates, due to our assumption i is
still unmatched. Suppose in this path τ(k) points to τ(u+ 1) = i′′, for some k ≤ u, then
b is available to τ(k) or b has been allocated before kth iteration of the for loop in ALG.
Since finally τ(k) gets an object in the same indifference class as b by Observation 4.1,
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before (u+ 1)st iteration of the for loop in ALG, b has been allocated by Observation 4.2.
Hence, in the (u + 1)st iteration of for loop in ALG, τ(u + 1) gets object b through the
trading graph. Observe that the trading graph TG(i′, Ci

′
j \{a}, [n1]) after the for loop in

ALG terminates is exactly the same as TG(i′, Ci
′
j \{a}, τ([u+ 1])) at the end of (u+ 1)st

iteration (otherwise, some agent τ(`) may be reachable from i′, where ` > u+1, by process
of SDMT-2, contradicting to the definition of i′′).

Therefore, at the end of uth iteration of the for loop of ALG, suppose that B is the
set of objects allocated to i′. Then we have the following three cases (noting ALG is the
same as ALG−i) for all the other agents except i:

Case (ii-1): i′ is labeled, then a ∈ B. Otherwise, if a 6∈ B, then in (u+1)st for loop
iteration of ALG, a will not be allocated to i′ at the end this (u+1)st iteration by the
process of SDMT-2. Thus a ∈ B, and since the trading graph TG(i′, Ci

′
j \{a}, [n1])

after the for loop in ALG terminates is exactly the same as TG(i′, Ci
′
j \{a}, τ([u+1]))

at the end of (u + 1)st iteration, then i′ will not be matched to a at the end of for
loop of ALG, contradiction.

Case (ii-2): i′ is unlabeled and B = {a}, then there is a path from i′ to a labeled
agent in TG(i′, Ci

′
j \{a}, τ([u])). Otherwise, all the agents reachable from i′ are

frozen after uth iteration of the for loop, meaning their allocations are fixed, since
all the objects in their indifference class where they are allocated to some objects
have been allocated by Observation 4.2. Thus, TG(i′, Ci

′
j \{a}, τ([u])) should be the

same as TG(i′, Ci
′
j \{a}, τ([u + 1])), however, since τ(u + 1) is reachable from i′ in

TG(i′, Ci
′
j \{a}, τ([u+ 1])) while τ(u+ 1) does not appear in TG(i′, Ci

′
j \{a}, τ([u])),

contradiction.

Case (ii-3): i′ is unlabeled and B = {c}, where c 6= a. Then there is a path from i′

to a labeled agent in TG(i′, {a}, τ([u])). Otherwise a and the agent matched to a is
frozen at the end of uth for loop iteration in ALG, which means a will not matched
to i′ at the end of for loop of ALG, contradiction.

As a result, in either of the above three cases, there is a path from i to a labeled agent in
TG(i, a, τ([u])) at the end of uth for loop iteration in ALG (for case (ii-1), i points to i′,
which is labeled in TG(i, a, τ([u])); for case (ii-2), i points to i′ in TG(i, a, τ([u])) and there
is a path from i′ to a labeled agent in TG(i′, Ci

′
j \{a}, τ([u])) ⊆ TG(i, a, τ([u])); finally, for

case (ii-3), suppose a is assigned to i′′′ at the end of uth for loop iteration, then there is a
path from i′′′ to a labeled agent in TG(i, a, τ([u])) and i points to i′′′ in TG(i, a, τ([u]))).
This contradicts Observation 5.2. Hence, i must be matched.

Let βa(~Y ) be βsa when ALG is the procedure of Algorithm 3 running on the original
instance when Y−i is fixed and Yi = s, i.e., βsa = βa((s, Y−i)). Let βca = βy

c

a = wi(1 −
g(yc))/F .

The difficulty of the proof of the monotonicity lemma (Lemma 5.4) still lies in case
(4). We prove it in three steps. Recall that τ (σ, respectively) is the order of agents under
the execution of ALG (ALG−i, respectively). Let σ(u) = i′′ in ALG−i. Observe that the
monotonicity lemma means that a is allocated to an agent prior to i′′ or i′′. The proof of
this is easy in the case where Yi > yc. To see this, note that ALG and ALG−i result in
the same tentative allocation at the end of their uth loop, since i is inserted back after i′′.
Hence, we only need to consider the case where Yi < yc, which implies that i is inserted
back prior to i′′. First, we prove that no agent, except i, is allocated a better object in
ALG compared to ALG−i. The argument is by contradiction: suppose there exists an
agent i′′′ who receives a better object in ALG than in ALG−i. Then i must be inserted
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before i′′′. Consequently, there exists an agent s prior to i′′′ who will get a worse object in
ALG than in ALG−i. Based on this fact, and using an alternating path argument, it is
proved that there exists a path from s to i′′′ in s’s trading graph constructed from a higher
indifference class of s (than s’s allocated indifference class in ALG) after i′′′ is allocated in
ALG. This contradicts the fact that this path should not exist since the graph from that
higher indifference class is frozen. Secondly, if i′ gets a worse object in ALG compared to
ALG−i, we prove that a must be allocated to an agent prior to i′, which is in turn prior
to i′′. The reason is as follows: by Observation 4.2, a must be allocated and frozen before
i′ is considered in ALG. Thirdly, if i′ gets an object in ALG in the same indifference class
as a, then we prove that there exists an agent s∗ prior to i′′, and suppose τ(u∗) = s∗, such
that there is a path from s∗ to i′ in TG(s∗, Cs

∗
j∗ , τ([u∗])) at the end of the u∗th loop of

ALG, where Cs
∗
j∗ is the indifference class in which s∗ is allocated an object in ALG−i. As

a consequence, by Observation 4.2, a is allocated to an agent prior to s∗ and all the agents
reachable from s∗ in TG(s∗, Cs

∗
j∗ , τ([u∗])) are frozen, then a will be finally allocated to an

agent prior to s∗ in ALG. This means that a is allocated to an agent prior to i′′. This
gives the monotonicity lemma, which together with dominance is used to prove Lemma
5.7.

Lemma 5.4 (MONOTONICITY LEMMA). Given Y−i, for all choices of Yi, β
Yi
a ≥ βca.

Proof. Case 1: If a is unmatched in ALG−i, or if a is matched to i′ in ALG−i and i′ is
labeled, or a is matched to i′ in ALG−i and there is a path from i′ to a labeled agent in
TG(i′, Ci

′
j \{a}, [n1]), then yc = 1 and βca = wi(1− g(yc))/F = 0, so βYia ≥ βca = 0.

Case 2: If a is matched to i′ in ALG−i, there is no path from i′ to a labeled agent in
TG(i′, Ci

′
j \{a}, [n1]\{i}). Suppose σ(u) = i′′ in ALG−i. By previous analysis, the trading

graph TG(i′, Ci
′
j \{a}, σ([u])) at the end of uth loop is the same as TG(i′, Ci

′
j \{a}, [n1]\{i})

at the end of for loop in ALG−i (otherwise, the TG(i′, Ci
′
j \{a}, σ([u])) is not frozen after

uth loop of ALG−i, meaning there is a path from i′ to a labeled agent in TG(i′, Ci
′
j \{a},

σ([u])). Therefore, either i′ will reach an agent inferior to i′′ or a labeled agent in
TG(i′, Ci

′
j \{a}, [n1]\{i}) by SDMT-2. This contradicts the definition of i′′).

Suppose that equation wi(1− g(y)) = wi′′(1− g(Yi′′)) does not have a solution, which
means that yc = 0 and wi(1−g(Yi))/F < wi′′(1−g(Yi′′))/F , for any Yi ∈ [0, 1]. This shows
that the process is the same for agents prior to agent i′′ until the end of uth loop in ALG
and ALG−i. Since there is no path from i′ to a labeled agent in TG(i′, Ci

′
j \{a}, σ([u])),

the agents reachable from i′ are frozen. Hence, a will be finally still allocated to i′ in ALG,
implying βYia = wi′(1− g(Yi′))/F ≥ wi′′(1− g(Yi′′))/F > βca = wi(1− g(0))/F .

Now consider the last case that equation wi(1− g(y)) = wi′′(1− g(Yi′′)) has a solution,
then βca = wi(1− g(yc))/F = wi′′(1− g(Yi′′))/F . Consider the following three cases:
Case (2-i): If Yi > yc, this means wi(1−g(Yi))/F < wi′′(1−g(Yi′′))/F , the analysis of this
case is the same as above (the case that equation wi(1− g(y)) = wi′′(1− g(Yi′′)) does not
have a solution) since i will select objects after i′′. Thus, we have βYia = wi′(1−g(Yi′))/F ≥
βy

c

a = βca.
Case (2-ii): If Yi < yc, then wi(1− g(Yi))/F > wi′′(1− g(Yi′′))/F , which means that i is
prior to i′′ in ALG. We have the following claim:

Claim 5.5. No agent can get a better object in ALG than in ALG−i after inserting i into
some position from 1 to u.

Proof. Suppose otherwise suppose there exists an agent getting a better object, let k be
the smallest position where such agents are placed in ALG. Then i must be inserted in a
position before k (otherwise, the process is the same for the first k agents in ALG−i and
ALG, so agent τ(k) can not get a better object). Let i′′′ = τ(k). Suppose i′′′ gets object b
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in ALG and c in ALG−i, where b �i′′′ c. Observe that σ(k − 1) = i′′′ in ALG−i. Suppose
b ∈ Ci′′′j . Consider the trading graph TG(i′′′, Ci

′′′
j , σ([k − 1])) at the end of (k − 1)st loop

of ALG−i.
Let S be the agents reachable from i′′′ in TG(i′′′, Ci

′′′
j , σ([k−1])) at the end of (k−1)st

loop of ALG−i. Note that any agent in S is prior to i′′′. Any agent in S is allocated only
one object and frozen in ALG−i. Since in ALG, b is allocated to i′′′, then in kth loop of
ALG, i′′′ will be allocated some objects in Ci

′′′
j , which means some agent in S will get

worse compared to the allocation in ALG−i.
The reason is as follows: No one can get better by the definition of k. If all the agents

in S can remain the same in ALG compared with ALG−i (i.e., get the objects in the
same indifference class in ALG and in ALG−i). The only possible allocation of S in ALG
is reallocating all the objects matched to S in ALG−i to S again such that each agent
gets exactly one object. If there is some extra object e in ALG allocated to agent S in
ALG, then e must be allocated to some agent j in ALG−i, since e in ALG allocated to
some agent in S, thus, j can be reached by some agent in S in ALG−i. Thus, j ∈ S, a
contradiction. All the objects in Ci

′′′
j has been allocated to some agents in S. In ALG,

we will need to allocate |S| objects to S ∪ {i′′′} agents because some objects owned by S
in ALG−i will be allocated to agent i′′′. This is not possible, a contradiction.

Let s be an agent in S who gets worse and there is a path from s to i′′′ in trading
graph TG(s, d, τ [k]) at the end of kth loop in ALG, where d is the allocated object of s in
ALG−i. (Such an agent must exist: it can be found by the following procedure. Suppose
d1 's1 b owned by s1 in ALG−i is allocated to i′′′ in ALG at the end of kth loop in
ALG. If s1 gets worse in ALG compared to ALG−i, then s1 is an agent we are looking
for. Otherwise, s1 will be allocated d2 owned by s2 ∈ S in ALG−i at the end of kth loop
of ALG. If s2 gets a worse object, then s2 is an agent we are looking for. Otherwise,
continue this procedure. By finiteness of S and the fact that agents in S own |S| objects
in ALG−i, these objects will be allocated to agents in S ∪ {i′′′} in ALG, and one of these
objects will be allocated to i′′′. Thus, we can find such an agent. The path from s to i′′′

in trading graph TG(s, d, τ [k]) at the end of kth loop in ALG is just the reverse path by
the above procedure). Suppose τ(`) = s in ALG and d ∈ Csh, consider `th loop in ALG,
all the agents reachable from s in TG(s, Csh, σ([`])) are frozen and prior to agent s since s
does not obtain any object in the indifference class Csh.

This contradicts the fact that there is a path from s to i′′′ (which is inferior to s) in
trading graph TG(s, d, τ [k]) at the end of kth loop in ALG.

Claim 5.6. a must be allocated to an agent prior to i′′ or to i′′.

Proof. Suppose σ(u1) = i′ and σ(u) = i′′ in ALG−i. The following two cases are consid-
ered:

Case (1). If i′ gets worse, meaning he gets worse object in ALG than a in ALG−i,
then τ(u1 + 1) = i′ in ALG (i is inserted back prior to i′). Thus, all the agents reachable
from i′ in TG(i′, a, τ([u1 + 1])) are frozen and the agent who owns a will finally get a, this
agent is prior to i′, giving that βYia ≥ wi′(1− g(Yi′)) ≥ wi′′(1− g(Yi′′)) = βca.

Case (2). If i′ gets a in ALG, then we are done. Otherwise, suppose i′ gets an
object a′ 'i′ a, a′, a ∈ Ci

′
j in ALG. Denote by S∗ the set of agents reachable from i′

in TG(i′, Ci
′
j \{a}, σ([n1 − 1])) at the end of for loop of ALG−i (note that σ([n1 − 1]) =

[n1]\{i}). If no one in S∗ gets worse in ALG than in ALG−i, then a must be allocated
to some agent in S∗. The reason is similar to the above argument. All agents in S∗ get
exactly one object, if a is not allocated in S∗, no one gets worse in S∗, there must be an
extra object b allocate to some agent j in S∗. No matter whom b is allocated to in ALG−i,
there is a path from j to this agent , hence this agent belongs to S∗, a contradiction.
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Note that, by the definition of i′′, for any s ∈ S∗, σ−1(s) > σ−1(i′′) (σ−1(s) denotes the
order of s in σ or in ALG−i) implies that ws(1 − g(Ys)) ≥ wi′′(1 − g(Yi′′)). Therefore
βYia ≥ wi′′(1− g(Yi′′)) = βca.

Otherwise, by the previous argument, there exists s∗ ∈ S∗ who gets worse in ALG
compared to ALG−i, and there is a path from s∗ ∈ S∗ to i′ in TG(s∗, d∗, [n1]) at the end
of ALG, where d∗ is the allocation of s∗ in ALG−i. If s∗ is prior to i′, then by similar
argument as above, there should be no path from s∗ to an agent inferior to s∗ (constructed
from the objects in L(s∗) no worse than d∗) at the end of ALG, a contradiction. Hence,
s∗ can only be inferior to i′. Suppose τ(u∗) = s∗ and d∗ ∈ Cs∗j∗ , then we know there is a

path from s∗ to i′ in TG(s∗, Cs
∗
j∗ , [n1]) at the end of for loop of ALG. Next we will prove

the following:

There is a path from s∗ to i′ inTG(s∗, Cs
∗
j∗ , τ([u∗])) at the end ofu∗th loop ofALG. (∗)

If (*) is true, then all the agents reachable from s∗ in TG(s∗, Cs
∗
j∗ , τ([u∗])) are frozen,

and a is allocated to an agent prior to s∗ due to Observation 4.2. Then, we have βYia ≥
ws∗(1− g(Ys∗)) ≥ wi′′(1− g(Yi′′)) = βca since s∗ ∈ S∗. Suppose (*) is not true, then all the
agents U∗ reachable from s∗ in TG(s∗, d∗, τ([u∗])) have been frozen. U∗ will remain the
same until the end of ALG and i′ /∈ U∗. However, by the definition of S∗ and by s∗ ∈ S∗,
there is a path from s∗ to i′ in TG(s∗, d∗, [n1]) at the end of ALG, meaning i′ ∈ U∗, a
contradiction.

By Claim 5.6, we know that if Yi < yc, βYia ≥ wi′′(1− g(Yi′′))/F = βca.
Case (2-iii): If Yi = yc, this means wi(1 − g(Yi))/F = wi′′(1 − g(Yi′′))/F . If i′′ < i, the
case is same as Yi > yc. Otherwise, it falls into the case Yi < yc.

In all, for all choices of Yi, β
Yi
a ≥ βca. 2

Lemma 5.7 ([15]). ∀(i, a) ∈ E, E~Y (αi(~Y ) + βa(~Y )) ≥ wi.

Proof. Fixed choices of Y−i, by Dominance Lemma (Lemma 5.3), i is matched whenever
Yi < yc. Hence,

EYi(αi(~Y )) ≥ wi
∫ yc

0
g(y)dy/F.

By the Monotonicity Lemma (Lemma 5.4), βa(~Y ) = βYia ≥ βca = wi(1− g(yc))/F , for any
Yi ∈ [0, 1], then

EYi(βa(~Y )) ≥ wi(1− g(yc))/F.

Therefore, note that by formula (1), we have

EYi(αi(~Y ) + βa(~Y )) ≥ wi
∫ yc

0
g(y)dy/F + wi(1− g(yc))/F ≥ wi.

As a result, E~Y (αi(~Y ) + βa(~Y )) ≥ wi.

From Lemma 5.1 and Lemma 5.7, we have the following theorem.

Theorem 5.8. Algorithm 3 achieves approximation ratio of e
e−1 for weighted agents with

indifference.

26



6 Lower bounds

Preliminaries. We will use Yao’s minmax principle [33] to obtain a non-trivial lower
bound for universally truthful and Pareto optimal mechanisms and another lower bound
for an “online” version of our problem. We first need some preliminaries.

Let us fix the number of agents n1 and the number of objects n2. The number of distinct
instances and the number of deterministic truthful and Pareto optimal mechanisms are
finite. Denote by T the set of deterministic truthful and Pareto optimal mechanisms with
input size n1 and n2, and I the set of instances with input size n1 and n2. Let P and Q
denote the set of probability distributions on T and I, respectively. Denote Ep,q(r(Tp, Iq))
as the inverse of approximation ratio when the input distribution is q ∈ Q on I and
a universally truthful mechanism and Pareto optimal mechanism Tp taken from T with
probability p ∈ P. Then the minmax theorem [33] states the following:

min
q∈Q

max
p∈P

Ep,q(r(Tp, Iq)) = max
p∈P

min
q∈Q

Ep,q(r(Tp, Iq))

and
min
q∈Q

max
T∈T

Eq(r(T, Iq)) = max
p∈P

min
I∈I

Ep(r(Tp, I)).

As a consequence, for any q ∈ Q and p ∈ P, we have

max
T∈T

Eq(r(T, Iq)) ≥ min
I∈I

Ep(r(Tp, I)).

This inequality states that an upper bound on the inverse of the approximation ratio
of the best universally truthful and Pareto optimal mechanism Tp on the worst instance
is upper bounded by the inverse of the approximation ratio of the best deterministic
truthful and Pareto optimal mechanism on any random instances. Hence, in order to
bound minI∈I Ep(r(Tp, I)), we only need to construct an appropriate random instance and
show the upper bound of the best deterministic truthful and Pareto optimal mechanism
on this random instance. Consider the triangle instance where N = {1, 2, · · · , n1} and
A = {a1, a2, · · · , an1}, and an agent i’s preference ordering is a1 �i a2 �i · · · �i ai, for
any i ∈ N .

Let S be the set of all the permutations of agents’ preference lists of the triangle in-
stance. Consider now a random instance Suni as the uniform distribution of S. It is obvious
that the output of any serial dictatorship mechanism (which is deterministic truthful and
Pareto optimal) running on S is the same. Hence, for any serial dictatorship mechanism
(SDM), Euni(r(SDM,Suni)) is equal to the inverse of the approximation ratio of RSDM
(which is just SDM with uniformly random order of agents) when running on the triangle
instance.

Online lower bound. We now apply these preliminaries to the online version of our
problem. Recall that applicants in this online problem are truthful due to truthfulness
of serial dictatorship mechanism. The strategy of the administrator is a random order
in which the applicants are interviewed. More precisely, let Π denote the set of all the
permutations of applicants and P be the set of probability distributions on Π. Let Πp be a
random order of applicants, where the order is selected according to the distribution p ∈ P
on Π, and then the strategy set of the administrator is {Πp, p ∈ P}. We will show that
the best strategy for the administrator is to select applicants’ order uniformly at random.

Theorem 6.1. The best strategy for the administrator in the online problem is to select
applicants’ order uniformly at random. Thus, any other randomized strategy, than the one
used in Algorithm 3, would lead to an approximation guarantee worse than e

e−1 .
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Proof. Let Ep,q(r(Πp, Iq)) be the inverse of the approximation ratio when the random
order is Πp and the random instance is Iq, and Πuni denotes the uniform order. By
the approximation ratio of RSDM, for any I, Euni(r(Πuni, I)) ≥ e−1

e . Now for upper
bound of Ep,q(r(Πp, Iq)), by Yao’s principle, maxT∈Π Eq(r(T, Iq)) ≥ minI∈I Ep(r(Tp, I)).
Recall that Suni is the uniform distribution over S. Then we need to upper bound
maxT∈Π Eq(r(T, Suni)), which in fact is equal to the inverse of the approximation ratio
obtained by running RSDM on the triangle instance, which is e−1

e . The argument is as
follows. Suppose object ak is allocated by RSDM with probability pk ≤ 1 on the triangle
instance. Then, because there are n1 − k + 1 agents with ak in their preference lists,
each such agent obtains ak with equal probability pk

n1−k+1 . Therefore, agent i is allocated

an object with probability
∑i

j=1
pj

n1−j+1 , which is at most min{1,
∑i

j=1
1

n1−j+1}. Now,
summing over all the agents, by a simple calculation we get that the expected cardinality
of allocated agents is at most n1(1 − 1

e ), for large enough n1. Hence, the approximation
ratio is tight.

Lower bound for randomized mechanisms. If we can prove that the output of any
deterministic truthful and Pareto optimal mechanism running on S is the same as that of a
serial dictatorship mechanism, then maxT∈T Eq(r(T, I)) = 1− 1

e . To show our lower bound
it suffices to show that the sum of the sizes of all the matchings output by any deterministic
truthful and Pareto optimal mechanism that runs on S is smaller than that of any serial
dictatorship run on S. Then maxT∈T Eq(r(T, I)) = 1 − 1

e . We use #φ(S) to denote the
sum of sizes of all the matchings output by mechanism φ when run on S. Recall that SDM
denotes a serial dictatorship, then we would like to prove that #φ(S) ≤ #SDM (S), for
any n1 and n2 and for any universally truthful and Pareto optimal mechanism φ. Until
now, we can prove this inequality assuming n1 = n2 = 3, which gives the lower bound of
18
13 for any universally truthful and Pareto optimal mechanism.

Theorem 6.2. For any deterministic truthful and Pareto optimal mechanism φ, #φ(S) ≤
13, when n1 = 3. Thus, any universally truthful and Pareto optimal mechanism for this
problem has an approximation ratio of at least 18

13 .

Proof. Suppose the agents are 1, 2, 3 and objects are a, b, c. We use the notation a b c
a b
a b c

 to denote assignments that allocate a to agent 1, b to agent 2 and c to agent

3, where row i denotes agent i’s preference list and preference ordering is the increasing
order of column indices, i = 1, 2, 3. If there are no underlines of the objects, then this

notation denotes the input of mechanism. Note that in this setting, S =


 a

a b
a b c

 , a
a b c
a b

,

 a b
a
a b c

,

 a b
a b c
a

,

 a b c
a
a b

,

 a b c
a b
a

. We would

like to show that for any deterministic truthful and Pareto optimal mechanism φ, #φ(S) ≤

13. W.l.o.g. suppose

 a b c
a b c
a b c

, and we will consider the following two cases:

Case (i): If

 a b c
a b
a b c

, then we will show that

 a b
a b c
a b c

. (Observe that the

first agent must get a because otherwise we have contradiction with truthfulness by
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 a b c
a b c
a b c

.)

Now, if

 a b
a b c
a b c

 would not hold then

 a b
a b c
a b c

. Then we obtain

 a b
a b
a b c

.

The reason is as follows:

 a b c
a b
a b c

 implies that the first agent in the input

 a b
a b
a b c


cannot get any object by truthfulness. Similarly, from

 a b
a b c
a b c

, the second agent in a b
a b
a b c

 cannot get any object by truthfulness. Thus we have that

 a b
a b
a b c

,

which is a contradiction to Pareto optimality.

By a similar argument, we have

 a b
a b
a b c

,

 a
a b c
a b c

 and

 a
a b
a b c

. From a b
a b
a b c

, we know the size of the matching output from

 a b
a
a b c

 is 2. From a b c
a b
a b c

, we know the size of the matching output from

 a b c
a
a b

 is 2. From a b
a b c
a b c

, we know the size of the matching output from

 a b
a b c
a

 is 2. From a
a b c
a b c

, we know the size of the matching output from

 a
a b c
a b

 is at most 2.

Thus, if the current mechanism is φ1 then #φ1(S) ≤ 13.

Case (ii): If

 a b c
a b
a b c

, we consider the following two cases:

Case (ii-a): If

 a b
a b c
a b c

, then

 a b
a b
a b c

, and we conclude that

 a b c
a b c
a b

,

otherwise suppose

 a b c
a b c
a b

 (since

 a b c
a b c
a b c

), then b is allocated to agent 1 in a b
a b c
a b

. From

 a b
a b c
a b c

, we know b is allocated to agent 3 in

 a b
a b c
a b

,

a contradiction. Hence,

 a b c
a b c
a b

, then we know

 a b c
a b
a b

 (from

 a b c
a b c
a b


and

 a b c
a b
a b c

 ), and

 a b
a b c
a b

 (From

 a b c
a b c
a b

 and

 a b
a b c
a b c

). Now the
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matching size of assignment of

 a b c
a
a b

 and

 a b c
a b
a

 is both 2 (from

 a b c
a b
a b

).

The matching size of assignment of

 a b
a b c
a

 is 2 since

 a b
a b c
a b

. The matching

size of assignment of

 a b
a
a b c

 is 2 following from

 a b
a b
a b c

. Consider the assign-

ment of

 a
a b c
a b c

, no matter what the assignment is, at most one matching size of

assignment of

 a
a b
a b c

 and

 a
a b c
a b

 is 3. Denote the mechanism in this case by

φ2, then #φ2(S) ≤ 13.

Case (ii-b): If

 a b
a b c
a b c

, recall that

 a b c
a b
a b c

 and

 a b c
a b c
a b c

, consider the

following two cases:

Case (ii-b-1): If

 a b c
a b c
a b

, then

 a b c
a b
a b

 since

 a b c
a b
a b c

. We know the

matching sizes of assignment of

 a b c
a b
a

 and

 a b c
a
a b

 are both 2. Since

 a b
a b
a b c


due to

 a b c
a b
a b c

 and

 a b c
a b c
a b

, the matching size of assignment of

 a b
a
a b c


is 2. Since

 a b
a b c
a b

 due to

 a b c
a b c
a b

 and

 a b
a b c
a b c

, then the matching size

of assignment of

 a b
a b c
a

 is 2. Similar as the above argument, consider the assign-

ment of

 a
a b c
a b c

, no matter what the assignment is, at most one matching size of

assignment of

 a
a b
a b c

 and

 a
a b c
a b

 is 3. Denote the mechanism in this case by

φ3, then #φ3(S) ≤ 13.

Case (ii-b-2): If

 a b c
a b c
a b

, recall that we have

 a b
a b c
a b c

,

 a b c
a b
a b c

 and a b c
a b c
a b c

. From

 a b c
a b c
a b

 and

 a b
a b c
a b c

, we get

 a b
a b c
a b

, then the

30



matching sizes of assignment of

 a
a b c
a b

 and

 a b
a b c
a

 are both 2. From

 a b c
a b
a b c


and

 a b
a b c
a b c

, we get

 a b
a b
a b c

, then the matching size of assignment of

 a b
a
a b c


is 2. From

 a b c
a b
a b c

 and

 a b c
a b c
a b

, we get

 a b c
a b
a b

, then the matching size

of assignment of

 a b c
a b
a

 is 2. From

 a b c
a b
a b

 and

 a b
a b
a b c

, it follows that a b
a b
a b

, we conclude

 a
a b
a b c

 is not true. Otherwise from

 a
a b
a b c

 and a b
a b
a b

, it follows that

 a
a b
a b

, which contradicts to the Pareto optimality of

the mechanism. Hence, the matching size of assignment of

 a
a b
a b c

 is 2. It is obvi-

ous to see that the matching size of assignment of

 a b c
a
a b

 is at most 3. Denote the

current mechanism as φ4, we know that #φ4(S) ≤ 13.

Note that Theorem 6.2 shows that minI∈I Ep(r(Tp, I)) ≤ maxT∈T Eq(r(T, Suni)) ≤ 13
18 ,

for any p ∈ P, and Suni is the uniform distribution over S. Hence, the approximation ratio
is at least 18

13 .

Lower bound for non-bossy mechanisms. We first briefly define the concept of non-
bossiness for a deterministic mechanism (see, e.g.,[23]). A deterministic mechanism φ is
non bossy, if for any strict preference list L(i), L′(i), L(−i) and i ∈ N , if φi(L(i), L(−i)) =
φi(L

′(i), L(−i)) then φ(L(i), L(−i)) = φ(L′(i), L(−i)). Pápai [23] proved that non-
bossiness with truthfulness is equivalent to group truthfulness. Pycia and Ünver [26]
characterized all the mechanisms which are group strategy-proof (note, strategy-proofness
is a synonym with truthfulness) and Pareto optimal by trading cycle with owners and
brokers mechanisms. Bade [7] showed that any mechanism which is group strategy-proof
and Pareto optimal is r-equivalent to serial dictatorship, in the sense that if the order
of agents is generated uniformly at random, the resulting random matching from serial
dictatorship mechanism is the same as that from any group strategy-proof and Pareto
optimal mechanism. Hence, by arguments in the preliminaries that use Yao’s principle,
we have the following tight lower bound for any group strategy-proof and Pareto optimal
mechanism.

Theorem 6.3. No universally truthful, non-bossy and Pareto optimal mechanism can
achieve the approximation ratio better than e

e−1 .

Note that our mechanism with strict preference list and weights is universally truthful,
nonbossy and Pareto optimal.
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7 Conclusion

Whilst this paper has focused on Pareto optimality in the HA context, stronger forms of
optimality are possible. For example, minimum cost (or maximum utility), rank-maximal
and popular matchings can also be studied in the HA context, and a matching of each of
these types is Pareto optimal (see, e.g., [22, Sec. 1.5] for definitions). As Pareto optimality
is a unifying feature of all of these other forms of optimality, we chose to concentrate
on this concept in our search for randomized truthful mechanisms that can provide good
approximations to maximum matchings with desirable properties. Note that the lower
bound on the performance of deterministic truthful mechanisms that produce Pareto op-
timal matchigns extends to those producing matchings that satisfy these stronger opti-
mality criteria. It will thus be the focus of future work to consider the performance of
randomized truthful mechanisms for these problems.
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