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Abstract  

In this paper, we study an EPQ problem for a production line subjects to random shift from the 

in-control state (with high production rate) to out-of-control state (with low production rate). 

Different from previous research, we model the expected shift time as a controllable variable, based 

on the fact that, by investment on the resources, the reliability of the production line can be 

improved. In the mathematical model, we consider three possible scenarios: no shift, shift without 

demand shortage and shift with demand shortage, which are determined by the values of actual shift 

time and shifted production rate. Combining the three possible scenarios, the goal is to minimize the 

expected total cost per unit time by finding the optimal production time, as well as the optimal 

expected shift time. In addition, we extend the model to deterioration products and study the 

influence of product deterioration to the optimal decisions. Numerical examples are presented to 

illustrate the optimal solutions, followed by the sensitive analysis on important parameters. 

Comparing the optimal solutions under no reliability investment, reliability investment can help 

companies save more cost. Some other managerial insights are also proposed based on the numerical 

tests. 
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1. Introduction 

The determination of the economic production quantity (EPQ) has been widely studied in the 

past few decades. By determining the optimal production batch size or production cycle, 
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manufacturers can achieve their maximum profit or minimum cost. In the classical research on EPQ 

models, a common assumption is that the production process is reliable and the product quality is 

perfect. But in reality, it is almost impossible for companies to have a perfect reliable production line 

in a long run production process. The actual production line starts from an in-control state; then after 

running for some time, the production line may shift to an out-of-control state, and produce defective 

items or produce in a dropped production speed. For example, a large earthquake hitting Taiwan in 

the early morning of February 6, 2016, may impact iPhone 7 release. Taiwan Semiconductor 

Manufacturing Company (TSMC) is one of Apple’s Ax processor suppliers. This earthquake may 

have caused far greater damage to TSMC manufacturing facilities than initially believed, which 

would result in more than 1% decrease in production in 2016 (Heisler, 2016).  

In order to help companies deal with the inventory problems subject to production process 

unreliability, a lot of inventory models are studied. In most of studies on EPQ models, people treat 

the production line reliability as an exogenous factor and mainly concern about the scheduling, 

inventory or marketing problems (Ben-Daya et al., 2008; Chung et al., 2011; Jeang, 2012; Sarkar 

and Saren, 2016). However, in real industry, to mitigate the negative effects (e.g., raw material 

shortage, quality defect or productivity losses) on production line unreliability, companies have 

strong incentives to improve their production line reliability by investing in high quality machines, 

high skill workers, or advanced maintenance technologies.1  

In this paper, we study an unreliable production system with endogenous reliability. Following 

Ben-Daya et al. (2008), the unreliability results in the drop of production rate when the system shifts 

from the in-control state to the out-of-control state. Firstly, we assume that the expected shift time 

can be delayed by investment in assets and technologies. And a longer in-control state means higher 

reliability, also results in higher investment cost. Secondly, comparing to the model proposed by 

Ben-Daya et al. (2008), we allow shortages in the model when the shifted production rate is smaller 

than the demand rate. In addition, the production rate is uncertain when the production line shifts to 

the out-of-control state. Finally, we take product deterioration into consideration.   

Our research is closely related to two streams: (1) The inventory models for unreliable 

production line; (2) The inventory models for deterioration products. 

(1) The inventory models for unreliable production line 

In the EPQ models considering unreliable production line, some studies focused on the quality 

drop due to the state shift from in-control to out-of-control. Rosenblatt and Lee (1986) studied an 

inventory model considering that the machine will produce defective items after process breakdown. 

Their goal is to minimize the total average cost by finding the optimal cycle time and production 

quantity. In numerical examples, they also showed that the optimal cycle length is shorter than that 

of the case without process deterioration. Kim et al. (2001) extended their research by 

simultaneously considering the decisions of optimal inspection schedules and production cycle time. 
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Chung and Hou (2003) considered the inventory model with random shifting time, defective 

products and shortages. Rahim and Al-Hajailan (2006) assumed that the defective rate in the out of 

control state is varying over time. Sana et al. (2007) developed an EPQ model with unreliable 

production process and assumed that some of the imperfect quality items can be sold at a lower price. 

Sana (2010a) assumed that the percentage of defective items produced in the out of control state 

follows a non-linearly trend, which is increasing in production rate and time. Defective products are 

restored to the original quality by rework. By setting the optimal production rate and production time 

length, the total cost is minimized. Sana (2010b) assumed that the defective rate of the products can 

be reduced by investing in some factors, e.g., labor, technology or resource. He developed a dynamic 

EMQ model to determine the optimal production path and the optimal investment over a finite 

decision horizon. Following Sana (2010b), Sarkar (2012) studied the simultaneous determination of 

price, production rate and investment when the production line is unreliable and demand is price 

linked. Atan and Snyder (2014) studied the EOQ models considering disruptions. Sarkar and Saren 

(2016) studied a more general model in which the defective rate in the in-control state is non-zero, 

then, in the out-of-control state, the defective rate rises. They also take the inspection errors and 

warranty cost into consideration. Their goal is to find an optimal inspection policy and production 

time to minimize the unit time total cost. 

In addition to the research considers quality drop, another direction is the study on production 

rate drop. A common assumption of their research is that when the production line shifts to an out of 

control state, the production rate drops to zero and the production run stops, which is defined as ‘full 

breakdown’ (Glock, 2013). Abboud (1997) established an EMQ model by considering Poisson 

machine failure during production. He also proposed a simple approximation for the solution of the 

model. Then, Abboud et al. (2000) developed an economic lot sizing model with the consideration of 

random machine unavailability time and shortage. Later, Chakraborty et al. (2008) assumed that 

when the machine breaks down, a corrective and preventive repairing is conducted. But the repairing 

time length is a random variable. Chung et al. (2011) extended the model of Chakraborty et al. (2008) 

by considering deteriorating items with stochastic machine unavailability time and shortage. Gharbi 

et al. (2007) considered about the preventive maintenance policies to mitigate the effects of process 

breakdown. Widyadana and Wee (2012), Wee and Widyadana (2012) extended the model to 

deteriorating products. Giri et al. (2005) developed EPQ model with production rate related machine 

failure and random repair time. When the repairing time is long, demand shortage occurs. The goal is 

to minimize the annual expected total cost by determine the optimal production rate and production 

lot size. Jeang (2012) assumed that the process quality is controllable by setting a proper process 

mean. He consider about the optimal process quality design and the optimal production lot size 

under random machine breakdown and process deterioration.  

The above literature studied the ‘full breakdown’ cases. However, in some situations, when 

negative impacts on the production line is not serious, the production line can be at any state 

between the ‘fully-working’ and ‘full-breakdown’ state. Gavish and Graves (1981) studied a 

production system with a single machine which has random production rates. A continuous review 
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policy is conducted to minimize the expected total average cost per unit time. Iravani and Duenyas 

(2002) established a make-to-stock production/inventory system in which the production rate varies 

at several levels because of machine deterioration. They also considered about the maintenance 

policy to recover the production rate. They showed that under process deterioration, the maintenance 

policy is an efficient method to reduce the cost. Ben-Daya et al. (2008) considered about the EPQ 

problem with random shifting time and lower production speed after state shifting.  

(2)The inventory models for deterioration products 

According to Shah et al. (2013), deterioration is defined as decay, change or spoilage through 

which the items are not the same as its initial conditions. After a period of existence in market, the 

items lose the original economical value due to consumer preference, product quality or other 

reasons. Early research on deteriorating items can be dated back to 1963. An EOQ model with 

exponentially decaying inventory was initially proposed by Ghare and Schrader (1963). Based on the 

assumption of Ghare and Schrader (1963), more studies about deterioration inventory are conducted 

based on various realistic situations. Studies on models with different types of deterioration rate have 

been reported. The deterioration rate can be a constant parameter (He and He, 2010; He and Wang, 

2010), exogenous time linked parameter (Balkhi and Tadj, 2008; Roy and Chaudhuri, 2009; Shah et 

al., 2013) or even a controllable parameter determined by preservation investment (Hsu et al., 2010; 

Dye and Hsieh, 2012). Some research assumed different types of demand rate. The demand types 

can be constant (Chung and Lin, 2001), ramp type (Mandal, 1998) price linked (Wee and Law, 1999) 

inventory level dependent (Wu et al., 2006) or the credit period linked (He and Huang, 2013, Jain 

and Aggarwal, 2012). Feng et al. (2015) studied a dynamic problem for perishable products. Also, in 

some research, the deterioration product models were developed under uncertain production process. 

Chung et al. (2011) studied an EPQ model for deteriorating items with random machine breakdown 

and shortage. Widyadana and Wee (2012) for deteriorating items with preventive maintenance policy 

and random machine breakdown .Wee and Widyadana (2012) studied an EPQ model for 

deteriorating items with rework of defective items and stochastic maintenance time. 

The rest of the paper is organized as follows. Section 2 is the introduction of assumptions and 

notation. In Sections 3, we set up the mathematical model. In section 4, we extend the model to 

deterioration items. In section 5, we present numerical examples to illustrate managerial insights. 

Sensitive analysis is conducted and some results are obtained. The last section provides conclusions 

and directions for future research. 

2. Assumptions and notation 

We consider a single product production system in which the production system at any time can 

be either in the in-control state and out-of-control state. The production rate will drop to a lower 

level when the system shifts to the out-of-control state. The reliability can be characterized by the 

expectation of shifting time. When the expectation of the time before shifting to the out-of-control 

state is longer, so called shifting time in this research, the system is more reliable. By investment, the 
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expected shifting time can be prolonged, so as to increase the reliability of the system. The goal is to 

find the optimal expected shifting time and production time length or production cycle to minimize 

the expected total cost per unit time in an infinite decision horizon.  

2.1. The endogenous reliability 

Following the assumption in Ben-Daya et al. (2008), in the in-control state, the production line 

is reliable with a constant production rate P . However, in the out-of-control state, the production rate 

drops to P . The shifting time point s is a random variable, with probability density function ( )f s  

and cumulative distribution function ( )F s . According to previous research, the shifting time point s

follows an exponential distribution (Ben-Daya et al., 2008; Chung et al., 2011; Jeang, 2012; Sarkar 

and Saren, 2016). The probability density function is ( ) sf s e   . The corresponding cumulative 

distribution function is ( ) 1 sF s e   . And, the expectation of the shifting time s is

0
[ ] ( )E s sf s ds 



  . Based on the previous research, people studied the influence of 

distribution parameter1  . When the expected in control time length [ ]E s   is larger, the system 

is more reliable, which leads to more profit or less cost. Figure 1 shows the patterns for the 

probability density function and the cumulative distribution function for different values of  . 

When is smaller, the production system may shift from the in-control state to the out-of-control 

state at an earlier time. So here we use   to denote the reliability of the production system, a larger

  indicates a more reliable system. We call the parameter   as the reliability index. 

 

Figure 1. ( )f s  and ( )F s  w.r.t.  . 

A company can enhance the reliability of their production system by investing in technology, 

recruiting highly educated workers or cooperating with more reliable raw material suppliers. 
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Therefore we assume that the reliability index   is controllable by investment. If the initial 

production system reliability is
0 , the reliability index can be increased to

1 1 0( )   with a unit 

time investment
1( )IC  . The pattern of the investment cost function is increasing and convex in

1 , 

i.e., '

1( ) 0IC    and ''

1( ) 0IC   , which follows the law of diminishing marginal utility (DMU) 

and with condition
1 1 0( | ) 0IC     . We denote the probability density function and the 

cumulative probability function under investment as ( )If s  and ( )IF s , respectively. 

2.2. The randomness of   

  denotes the proportion of the remaining production ability during the out-of-control state. 

According to previous research of inventory models on production reliability, when the production 

line shifts from in-control to out-of-control state, the production rate either drops to zero, i.e., 

0  (Jeang, 2012), or drops to a priori known lower production rate, i.e., 0 1  (Ben-Daya et 

al., 2008). However, in reality, the damage to the production line is affected by numerous factors, 

and the drop of the production rate cannot be known before the out-of-control state comes. Firms can 

only make predictions about the distribution of  based on previous data. To make the study more 

realistic, we set as a random variable in interval [ , ]  with probability density function ( )g   

and cumulative probability function ( )G  .  

2.3. Other assumptions 

(1) Demand rate D  is constant. 

(2) Initial production rate P  is constant and greater than the demand rate. 

(3) Shortage is allowed and unfilled demand is totally lost with penalty cost. 

(4) During the production run, production line cannot be restored.  

(5) When production run ends, a fixed cost is paid to restore the production system.  

(6) The restoration time is zero so that the damage of the production line has no effect to the 

production of the next period. 

(7)The random variables   and s  are not correlated. 

There are two reasons that we study the unrecoverable system. Firstly, for some manufacturers, 

when the production period is relatively short, it is uneconomical to recover the production system 

with large amount of cost. Secondly, to recover the production system, workers have to stop the 

production line. For products produced by deteriorating raw materials, stopping the production line 

causes deterioration cost. So it is better to go on producing instead of stopping the production line. 
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2.4. Notation 

We define the following notation: 

Decision variables  

T :      Production time. 

1 :      The reliability index of shift time after investment, which equals to the expected 

shift time. 

Parameters 

P :      Initial production rate. 

D :      Demand rate. 

mT :      The time when inventory level drops to zero. 

 :      Proportion of the remaining production rate when shift to the out-of-control state, 

which is a random parameter. 

( )g  :   Probability density function of  .  

( )G  :   Cumulative probability function of  . 

s :       Shifting time point, a random variable follows exponential distribution. 

( )f s :    Probability density function of s . 

( )F s :    Cumulative probability function of s . 

0 :      The initial reliability parameter. 

A :      Fixed starting cost. 

M :     Restoration cost to transfer the out of control state to the in control state, which is 

linearly related to , i.e., 
0(1 )M M   . When the damage of the production 

line is low ( is large), the restoration cost is low; however, when the damage is high 

( is small), the restoration cost is high. 

0M :     The maximum restoration cost.  
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h :       Inventory holding cost per unit item per unit time. 

 :       Deterioration rate. 

dc :      Per unit deterioration cost. 

pc :      Per unit penalty cost for lost sales. 

j

iTC :    The total cost for scenario i  in case j . 

j

iT :      The cycle length for scenario i  in case j . 

jETC :   Expected total cost for a production cycle under case j . 

jET :    Expected time length for a production cycle under case j . 

jATC :  Expected unit time cost cycle under case j . 

0T :      The optimal production time without reliability investment. 

0

jATC :  The unit time total profit without reliability investment. 

j :       Superscript  ,j d nd to denote the case with and without product deterioration. 

i :       Superscript  1,2,3i  to denote the without state shift ( 1i  ), with state shift and 

no shortage ( 2i  ), with state shift and shortage ( 3i  ). 

3. Model without product deterioration 

In this section, based on the assumptions described above, we build the mathematical model 

without product deterioration.  

3.1. Inventory patterns under different scenarios 

In Ben-Daya et al. (2008), they assumed that the condition P D   always holds, which 

avoids demand shortage during each production cycle. However, when the production rate in the 

out-of-control state is lower than the demand, shortage may occur. In addition to the two scenarios 

analyzed in Ben-Daya et al. (2008), when   is smaller than D P , there is a third scenario in 
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which shift occurs and demand shortage happens. In this scenario, companies will have penalty cost 

for the demand shortage. The inventory patterns for the three scenarios are shown in Figure 2. 
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(a)Scenario 1

(b)Scenario 2

(c)Scenario 3

 

Figure 2. Inventory patterns for Scenarios 1-3 for non-deterioration products. 

The three scenarios with different values of s  and   can be summarized as follows: 

Scenario 1: ( ,s T      ). No shift during the production run.  

In this scenario, as depicted in Figure 2 (a) during the production time, the shift does not 

happen. Production rate is P during the production run. The total cost consists of inventory holding 



 

10 

 

cost, starting cost and reliability investment cost. By calculation, we obtain the total cost for a cycle 

of scenario 1 as 

 1

2

1

( ) Inventory holding cost+Starting cost+Reliability investment 

( 1) ( )
2

nd

I

TC T

h P
PT A C PT D

D




   
       (1) 

Then, the cycle length of scenario 1 as 

1 ( )ndT T PT D                                                             (2)  

Scenario 2: ( max ,0 ,
(1 )

D P
T s T

P


  



 
    

 
). Shift occurs without demand shortage. 

In this scenario, as shown in Figure 2 (b), during the production run, shift happens at time s . 

Production rate in time interval [0, ]s  is P , and in time interval [ , ]s T  is P . All the demands 

in a cycle can be satisfied.  

The threshold 
(1 )

D P
s T

P









 can be obtained by equaling 

mT  in (A.8) or (A.11) to T , 

which means when 
(1 )

D P
s T

P









, no demand shortage happens and all the products are 

consumed at the end of the production run. To make sure there is no demand shortage, the shift time 

should satisfy
(1 )

D P
s T

P









. Recall that 0s  , so when max ,0

(1 )

D P
T s T

P





 
  

 
, there is 

no shortage. On the contrary, when max ,0
(1 )

D P
s T

P





 
  

 
 in scenario 3, demand shortage 

happens.  

The total cost for scenario 2 consists of inventory holding cost, starting cost, restoration cost, 

and the reliability investment cost.  

By calculation, we obtain the total cost in a cycle for scenario 2: 
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 2

2 2

0

1

( , ) Inventory holding cost+Starting cost+Restoration cost+Reliability cost

( ) ( ) ( )
( ) ( ) (1 )

2 2

(1 )
( )

nd

I

TC T s

h P D P h P D P h P D P
s T s T s s A M

D D D

Ps PT
C

D D

  


 




   
        
 

 
  

 

   

(3) 

As well as the cycle length 

2

(1 )
( , )nd Ps PT

T T s
D D

 
  .                                                 (4) 

Scenario 3:  ( max ,0 ,
(1 )

D P
s T

P


  



 
   

 
). Shift occurs with demand shortage. 

As shown in Figure 2 (c), production rate in time interval [0, ]s is P , and for time[ , ]s T is P . 

Comparing to scenario 2, when max ,0
(1 )

D P
s T

P





 
  

 
, quantity of the produced products can 

not satisfy all the demands even in the production run. In this scenario, the total cost consists of 

inventory holding cost, starting cost, restoration cost, reliability investment cost, as well as the 

shortage penalty cost.  

The total cost for a cycle of scenario 3 can be expressed as 

3

2

0 1

Inventory holding cost+Starting cost+Restoration cost
( , )

+Shortage cost+Reliability investment

( )(1 ) (1 )
(1 ) ( ) ( )

2( )

nd

p I

TC T s

h P D P Ps
s A M c D P T C T

D P D P

 
  

 

 
  
 

   
          

 

 (5)  

The cycle length for scenario 3 is 

3 ( )ndT T T .                                                                 (6) 

Calculations of the inventory level, total cost and cycle length for scenarios 1-3 are presented in 

Appendix A. 

3.2. Expected unit time total cost for the production system 

After obtaining the cost functions and cycle length functions under the three scenarios, we can 
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get the expected unit time total cost based on the probability theories.   

The corresponding expected profit function for a cycle and the expected production cycle 

length are as follows 

 (1 )

max ,0
(1 )

1 1 2
max ,0

3
0

( , ) ( ) ( ) ( )d d ( , ) ( ) ( )d d

( , ) ( ) ( )d d

D P
T

P

D P
T

P

T
nd nd nd

I I
T

nd

I

ETC T TC T f s g s TC T s f s g s

TC T s f s g s









 

 





    

 





  
 

  



 



   

 

  (7) 

 (1 )

max ,0
(1 )

1 1 2
max ,0

3
0

( , ) ( ) ( ) ( )d d ( , ) ( ) ( )d d

( , ) ( ) ( )d d

D P
T

P

D P
T

P

T
nd nd nd

I I
T

nd

I

ET T T T f s g s T T s f s g s

T T s f s g s









 

 





    

 





  
 

  



 



   

 

   (8) 

So, following the approach in Jeang (2012), we derive the expected unit time total cost function 

as 

1
1

1

( , )
( , )

( , )

nd
nd

nd

ETC T
ATC T

ET T





 .                                                 (9) 

The final optimization problem is to minimize the function 1( , )ndATC T  . 

P1:      
1

1
,

( , )nd

T
Min ATC T


 ,         

1 0. . 0,S T T    .                                                    (10) 

Lemma 1. In the model without deterioration, for the distribution interval [ , ]   of  , when the 

lower bound D P  , there is no possibility of scenario 3; otherwise, scenario 3 exists. 

Proof: When D P  , max ,0 0
(1 )

D P
T

P





 
 

 
, then 

max ,0
(1 )

0

3 3
0 0

( , ) ( ) ( )d d ( , ) ( ) ( )d d 0
D P

T
P nd nd

I ITC T s f s g s TC T s f s g s



 

 
   

  
 

         

and 

max ,0
(1 )

0

3 3
0 0

( , ) ( ) ( )d d ( , ) ( ) ( )d d 0
D P

T
P nd nd

I IT T s f s g s T T s f s g s



 

 
   

  
 

        . 

So scenario 3 doesn’t exist. 
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When D P  ,  for  [ ,min , ]D P   max ,0 0
(1 )

D P
T

P





 
 

 
, then 

max ,0
(1 )

3
0

( , ) ( ) ( )d d 0
D P

T
P nd

ITC T s f s g s






 

  
 

      and 

max ,0
(1 )

3
0

( , ) ( ) ( )d d 0
D P

T
P nd

IT T s f s g s






 

  
 

     . 

So, the possibility of scenario 3 is positive and scenario 3 exists.     □ 

4. Extension to deterioration products 

In this section, we extend the model to products with deterioration. 

4.1. Inventory patterns under different scenarios 

The inventory patterns for Scenarios 1-3 are shown in Figure 3. 
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(a) Scenario 1

(c)  Scenario 3

(b) Scenario 2

 

Figure 3. Inventory patterns of Scenarios 1-3 for deterioration products. 

 

Also, following the approach in section 3, we summarize the three scenarios as follows w.r.t. 

different values of s and .  

Scenario 1:  ( ,s T      ). No shift during the production run.  

Production rate during the whole production run is P (See Figure 3 (a)). 

The total cost during a production cycle for scenario 1 is 
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 1

( )

12 2

( ) Inventory holding cost+Starting cost+Deterioration cost+Reliability investment

1 ( ) 1 ( ) ( )m

d

T TT

m d m I m

TC T

P D D
h T e e T T A c pT dT C T

  
 





 
                

 

  (11) 

The total cycle length for scenario1 is 

1

1
( ) ln[ (1 ) 1]+d T

m

P D
T T T e T

D






    .                                      (12) 

Scenario 2: (
1 ( )

max ln ,0 ,
(1 )

TD P e P D
s T

P


  

 

   
    

 
). Shift occurs without 

shortage. 

Shift occurs during the production run and all the demand during the production run can be 

satisfied. Production rate in time interval [0, ]s  is P , and for time [ , ]s T  is P  (See Figure 3 

(b)). The threshold value 
1 ( )

ln
(1 )

TD P e P D

P



 

  


 can be obtained by equaling

mT  in (B.8) to

T . When 1 ( )
max 0, ln

(1 )

TD P e P D
s

P



 

   
  

 

,
mT T , which implies that there is no 

shortage during the production run. On the contrary, when

1 ( )
max 0, ln

(1 )

TD P e P D
s

P



 

   
  

 

, shortage happens. 

The total cost during a production cycle for scenario 2 is 

2

2

( )

2 2

Inventory holding cost+Starting cost+Restoration cost
( , )

+Deterioration cost+Reliability investment

( 1) ( )

(1 )
( ) ( ) 1m

d

s

s
T TT s

m

TC T s

P D P D
s e T s

h
Pe P D D

e e e T T




 




 




 



 

 
  
 

 
   

 
          

0 (1 ) ( ( ) ) ( )d m I mA M c Ps P T s DT C T  







       

    (13) 

The total cycle length for scenario 2 is 

 
( )

2

1 (1 )
( , ) ln[ 1]+d s T T

m

P D P P D
T T s T e e T

D D D

  



   
     .                (14) 
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Scenario 3: (
1 ( )

0 max ln ,0 ,
(1 )

TD P e P D
s

P


  

 

   
    

 
). Shift occurs with 

shortage. 

In this scenario, shift occurs during the production run and the produced products can not 

satisfy the order in the production run (See Figure 3 (c)). Shortage will occur with shortage penalty 

cost. Production rate in time interval [0, ]s is P , and for time [ , ]s T  is P .  

The total cost during a production cycle for scenario 3 is 

3

2 2

0

Inventory holding cost+Starting cost+Restoration cost
( , )

+Deterioration cost+Shortage cost+Reliability investment

(1 )
( 1) ( ) ( )

(1 )

m

d

s
Ts s

m

TC T s

P D P D Pe P D
h s e T s e e

A M


  


  



 

 
  
 

     
       

 

      1( ) ( )( ) ( )d m m p m I mc Ps P T s DT c D P T T C T        

   (15) 

The cycle length for scenario 3 is  

3 ( )dT T T .                                                                  (16) 

The calculations of the total cost and cycle length for scenarios 1-3 for deterioration products 

are presented in Appendix B. 

4.2. Expected unit time total cost for the production system 

After obtaining the cost functions under different scenarios, we model the expected unit time 

total cost based on the probability theories. The corresponding expected profit function and the 

expected production cycle length are:  

1 ( )
max ln ,0

(1 )

1 ( )
max ln ,0

(1 )

1 1 2

3
0

( , ) ( ) ( ) ( )d d ( , ) ( ) ( )d d

( , ) ( ) ( )d d

TD P e P D

P

TD P e P D

P

T
d d d

I I
T

d

I

ETC T TC T f s g s TC T s f s g s

TC T s f s g s



 



 

 

 





    

 

    
 

  

    
 

  



 



   

 

(17) 

1 ( )
max ln ,0

(1 )

1 ( )
max ln ,0

(1 )

1 1 2

3
0

( , ) ( ) ( ) ( )d d ( , ) ( ) ( )d d

( , ) ( ) ( )d d

TD P e P D

P

TD P e P D

P

T
d d d

I I
T

d

I

ET T T T f s g s T T s f s g s

T T s f s g s



 



 

 

 





    

 

    
 

  

    
 

  



 



   

 

  (18) 

The expected total average cost is 

1
1

1

( , )
( , )

( , )

d
d

d

ETC T
ATC T

ET T





 .                                                  (19) 
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The optimization problem is to minimize the function 
1( , )dATC T  . 

P2:       
1

1
,

( , )d

T
Min ATC T


 , 

1 0. . 0,S T T     .                                              (20) 

For the distribution interval [ , ]   of  , when the lower bound D P  , there is no 

possibility of scenario 3; otherwise, scenario 3 exists.  

Lemma 2. In the model with deterioration, for the distribution interval [ , ]   of  , when the 

lower bound D P  , there is no possibility of scenario 3; otherwise, scenario 3 exists.  

Proof. When D P  , for all [ , ]   , 
1 ( )

max ln ,0 0
(1 )

TD P e P D

P



 

   
 

 
, then 

1 ( )
max ln ,0 0

(1 )

3 3
0 0

( , ) ( ) ( )d d ( , ) ( ) ( )d d 0

TD P e P D

P d d

I ITC T s f s g s TC T s f s g s



 
 

 
   

    
 

         and

1 ( )
max ln ,0 0

(1 )

3 3
0 0

( , ) ( ) ( )d d ( , ) ( ) ( )d d 0

TD P e P D

P d d

I IT T s f s g s T T s f s g s



 
 

 
   

    
 

        . 

So scenario 3 doesn’t exist. 

When D P  , for all  [ ,min , ]D P  
1 ( )

max ln ,0 0
(1 )

TD P e P D

P



 

   
 

 
, then 

1 ( )
max ln ,0

(1 )

3
0

( , ) ( ) ( )d d 0

TD P e P D

P d

ITC T s f s g s



 



 

    
 

      and

1 ( )
max ln ,0

(1 )

3
0

( , ) ( ) ( )d d 0

TD P e P D

P d

IT T s f s g s



 



 

    
 

     . 

So, the possibility of scenario 3 is positive and scenario 3 exists.   □ 

5. Numerical examples and sensitive analysis 

Due to the complexity of the function, it is hard to obtain the explicit mathematical solutions. 

So we use the software Matlab R2015a as a tool to obtain the optimal solutions in the numerical 

examples. We set the unit time investment cost function as 
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2

1 1 0( ) ( ) 2IC k    ,
1 0[ , )   ,                                            (21) 

which is an increasing and convex function of 
1 . k  is the investment cost coefficient parameter. 

The parameter follows a uniform distribution with density function 

1 ( ) , 0 1
( )

0, Otherwise
g

    


    
 


. 

The values of related parameters are listed in Table 1. 

 

Table 1. Values of system parameters. 

600P  units per time $500A per cycle 

300D  units per time $1.0h  per unit time per item 

$200pc  per unit 
0 3  months 

0 $5000M  per cycle 10k   

 

5.1. Illustrative examples 

Example 1:    , 0.6,0.8   , no deterioration. 

Substitute the data into the equation (7), (8) and (9), we have 

 

   

1 1

1 1

2 2 2/ /
0.8 0.8

2

20.6 0.6 0
1 1 1

1 / /
0.8 0.8

0.6 0.6 0
1 1

15 (60 30 )( )5 5
15 500 d d d d

60 ( ) 500 5000(1 ) ( 3)
( , )

5 5 200
2 d d 2(1 ) 2 d d

s s
T

T
nd

s s
T

T

s T se e
T s s

T s s
ATC T

e e
T s s T s

 

 

 
 

   


   
 

 


 


    
   

     
 

  

   

   

   In this example, the lower bound of   is larger than 0.5D P  . So there is no possibility of 

demand shortage. As is shown in Figure 4 (a), the unit time profit function is jointly convex inT and

1 . The optimal decision is * 1.42ndT months , *

1 5.21nd  , and * $540.791ndATC  .  

Example 2:    , 0.4,0.6   , no deterioration. 
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Substitute the values of parameters into equation (7), (8) and (9).  

   

 

1 1

1 2

2(1 )

1

2 2 2/ /
0.6 0.6

2

0.4 0.4 max ,0
1 1

/
2

0
1

15 (60 30 )( )5 5
15 500 d d d d

60 ( ) 500 5000(1 )

30(1 ) 5
6000 (1 2 ) 2(1 ) 500 5000(1 )

1 2
( , )

T

s s
T

T

s

nd

s T se e
T s s

T s s

e
s T s dsd

ATC T





 



 
 

  


   

 






 




    
   

    

 
        

 


   

   
 

 

1 2

2(1 )

1 21 1 1
2(1 )

1 2

2(1 )

0.5

20.4
1

/ / /
0.6 0.6 0.5

0.4 0.4 max ,0 0.4 0
1 1 1

( 3)

5 5 5 200
2 d d 2(1 ) 2 d d

T

T

T

s s s
T

T

e e e
T s s T s T dsd













  



    
  













  


 
 
 
 
 
   



   

 

     

 

In this example, the lower bound of is less than 0.5D P  . So there is possibility of 

demand shortage. As is shown in Figure 4 (b), the unit time profit function is jointly convex inT

and
1 . The optimal production time

* 1.35ndT month , *

1 6.28nd  , and 
* $656.361ndATC  . 

Example 3:    , 0.6,0.8   , 0.02  , $20dc  . 

Similar to example 1, when the lower bound of  is higher than 0.5D P  , no shortage 

occurs. Substitute the data into equation (17), (18) and (19). As shown in Figure 4 (c), the cost 

function is jointly convex in production time and reliability increment. And the optimal decision is 

* 1.13dT month , *

1 5.40d  , and 
* $626.669dATC  . 

Example 4:    , 0.4,0.6   , 0.02  , $20dc  . 

Similar to example 2, we substitute the data into equations (17), (18) and (19). When the lower 

bound of  is lower than 0.5D P  , shortage occurs. As shown in Figure 4 (d), the cost function 

is jointly convex in production time and reliability increment. And the optimal decision is 

* 1.10dT month , *

1 6.30d  , and 
* $728.987dATC  . 

 

(a) Example 1: [0.6,0.8]U , 0           (b) Example 2: [0.4,0.6]U , 0   
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(c) Example 3: [0.6,0.8]U , 0.02            (d) Example 4: [0.4,0.6]U , 0.02   

Figure 4. Unit profit function w.r.t.T and 1  for Examples 1-4. 

5.2. Sensitive analysis  

In this subsection, we conduct sensitive analysis based on the examples. We also compare the 

optimal decisions and costs in the proposed model to that in the model without reliability investment. 

The following finding can be drawn from the analysis results in Tables 2 and 3 for both 

non-deterioration and deterioration products. 

(1) Sensitive results of inventory holding cost h . 

The optimal production cycle time, and minimum cost are decreasing in inventory holding cost. 

However, the optimal reliability index is increasing in inventory holding cost. This implies that, for a 

higher inventory holding cost, companies should set a shorter production cycle time, and increase the 

reliability of the production line.  

(2) Sensitive results of restoration cost 
0M . 

The optimal reliability index, production cycle time and minimum cost are increasing in 

restoration cost. Because the restoration cost is fixed in a cycle, when the cycle time is longer, the 

unit time restoration cost is lower. Also, to lower down the possibility of production process 

breakdown, company should make the production system more reliable. So, when the restoration 

cost increases, to achieve a lower unit time total cost, company should set a longer production time 

and increase the reliability of the production line. 

(3) Sensitive results of investment cost coefficient k . 

When the cost coefficient of the investment increases, the optimal expected shifting time 

decreases while the production cycle time and minimum cost increases. Because a higher k means 

that company should invest more cost to achieve the same reliability. To balance the operational cost 
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with the investment cost, the company may set a reasonable reliability and a longer production cycle 

time. 

Table 2. Sensitive results for parameters 0 0, , , , ph M k c when [0.4,0.6]U .  

   0    0.02   

   
*

1

nd  
*ndT

 

*ndATC   

*

0

ndT

 

*

0

ndATC   
*

1

d  *dT  
*dATC   

*

0

dT  *

0

dATC  

h  

0.6 
 6.2

2 
1.72 

572.05

2 

 
1.92 730.104  

6.2

9 

1.3

0 

658.27

9 

 1.3

4 
820.235 

0.8 
 6.2

6 
1.50 

616.64

6 

 
1.65 775.578  

6.3

0 

1.1

9 

695.13

4 

 1.2

2 
858.675 

1 
 6.2

8 
1.35 

656.36

1 

 
1.47 816.085  

6.3

0 

1.1

0 

728.98

7 

 1.1

2 
893.715 

1.2 
 6.2

9 
1.23 

692.46

6 

 
1.33 852.890  

6.3

1 

1.0

3 

760.49

5 
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(4) Sensitive results of initial expected shift time 0 . 

When the initial expected shift time increases, the production cycle time and minimum cost 

decreases while the optimal reliability index increases. This implies that, when the initial reliability 

is high, it may be much easier for the company to achieve a higher reliability. So the company 

should set a higher reliability index when initial reliability increases.  

(5) Sensitive results of shortage penalty cost pc . 
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When the remaining proportion of production rate is large, i.e., [0.6,0.8]U , company does 

not need to consider about the shortage penalty cost. However, when the proportion is relatively 

small, i.e., [0.4,0.6]U , shortage penalty is an important factor that affects the optimal decisions. 

From Table 2, it can be seen that the expected shifting time and total cost are increasing, while the 

optimal production time is decreasing with the penalty cost. This is because company can mitigate 

the possibility of shortage by increasing the reliability of the production line and set a shorter 

production cycle. 

Table 3. Sensitive results for parameters 0 0, , , , ph M k c when [0.6,0.8]U . 
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5.3. Value of reliability investment 

To study the value of the reliability investment, we define 
0 0% 100%k k kATC ATC ATC     

as the cost saving rate, in which  ,k d nd , 
0

kATC  is the minimum cost without investment (i.e., 

1 0  ). We presented our results in Figures 5-9. 
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(a) [0.4,0.6]U                  (b) [0.6,0.8]U  

Figure 5. Cost saving rate (%) w.r.t. h . 

 

(a) [0.4,0.6]U                  (b) [0.6,0.8]U  

Figure 6. Cost saving rate (%) w.r.t. k . 

 

 

(a) [0.4,0.6]U                  (b) [0.6,0.8]U  
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Figure 7. Cost saving rate (%) w.r.t. 
0 . 

 

(a) [0.4,0.6]U                  (b) [0.6,0.8]U  

Figure 8. Cost saving rate (%) w.r.t. 
0M . 

 

Figure 9. Cost saving rate (%) w.r.t. pc . 

From Figure 5, we can see that, when the inventory holding cost increases, the cost saving rate 

for deterioration products is decreasing. However, for the non-deterioration products, when

[0.6,0.8]U , the cost saving rate is concave in inventory holding cost. As shown in Figures 5-7, 

the cost saving rate is decreasing in the initial shifting time 
0  and the investment cost coefficient

k . This implies that lower initial reliability index and investment cost can offer more incentives for 

companies to improve the production reliability. However, as shown in Figures 8-9, the cost saving 

rate is increasing in the restoration cost
0M  and penalty cost pc . So, for companies with unreliable 

production line, when the restoration cost is high, or shortage penalty cost is high, it is more 

beneficial to improve the reliability of the production line. 
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5.4. Sensitive results of  ’s randomness 

  

 

(a)                                      (b) 

Figure 10. Unit time total cost change w.r.t.  ’s (a) mean and (b) variance. 

 

The parameter   indicates the extent of damage of the production line. In Figure 10 (a), We 

fix the variance of  ( [ ] 1/ 300D   ) and test the impacts of different mean values 

(  [ ] 0.3,0.4,0.5,0.6,0.7E   ) to the minimum cost. We find that for models with and without 

deterioration, the minimum cost is decreasing in the mean value of .  

Then we fix the mean value of ( [ ] 0.5E   ) and test the impacts of variance values 

(  [ ] 4,9,16,25,36 /1200D   ). It is shown in Figure 10 (b) that higher variance of   leads 

to higher cost for products with or without deterioration.  

6. Conclusions and future research 

In this paper, we studied the economic production quantity problem for an imperfect supply 

chain subject to random shift from the in-control state to the out-of-control state. The shift of state 

results in the production speed drop in the out-of-control state. Different from previous research of 

Ben-Daya et al. (2008), we treat the reliability index of the production line as a decision variable, 

which corresponds to the facts that, by investing in some assets and resources (e.g. high quality 

machine or highly educated workers, etc.), the reliability of the production line can be improved. 

Also we extend the model to deterioration products.  

The numerical results show that, comparing to the case without reliability investment, investing 
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in reliability can help companies save more cost. And, for the different values of system parameters, 

e.g., higher restoration cost, penalty cost and lower inventory holding cost, investment cost 

coefficient, initial shifting time, companies may have more willingness to invest in production line 

reliability.  

For companies with higher deterioration rate, when the inventory holding cost increases, the 

cost saving rate for deterioration products is decreasing. Also, for companies with lower initial 

reliability index and investment cost, companies are more willing to improve the production line 

reliability index. However, the cost saving rate is increasing in the restoration cost and penalty cost. 

And, for companies with unreliable production line, when the restoration cost is high, or shortage 

penalty cost is high, it is more beneficial to improve the reliability of the production line. 

Also, from the numerical tests, we can see that the mean and variance of production line 

damage rate has a significant impact on companies’ profitability. When the mean value is large, the 

damage of the production line is small and the total average cost is low. However, when the variance 

value is large, companies have to deal with the uncertainty with a higher cost. 

The model can be extended in three ways in future research. Firstly, we can consider marketing 

strategies and inventory decisions simultaneously to maximize the total profit. In this paper, we 

assume the demand of the product is a constant. However, in real markets, demand is linked to price, 

promotion efforts, product quality (Pal et al., 2015) or freshness. In addition to the inventory 

decisions, considering the variable demand is more realistic. Secondly, we can extend the model to a 

multiple level supply chains, and study gaming problems among supply chain members. Supply 

chain always consists of multi-stages. As part of the supply chain, the manufacturer’s decision is not 

only determined by the internal factors, but also affected by the upstream supplier and the 

downstream retailer. Studying the interactions between different members in a supply chain is more 

realistic (Wang et al., 2016). Lastly, we can also study the assortment planning problem for a 

manufacturer producing multiple products. As customers’ preference are changing rapidly, 

companies should offer varies kinds of products to attract more customers. How to set its assortment 

under unreliable production line is another interesting problem. 
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Appendix A 

Scenario 1: According to Figure2 (a), the inventory level ( )I t  satisfies 
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,0
( )

, m

P D t T
I t

D T t T

  
 

  
,                                                  (A.1) 

and continuous at t T with boundary conditions (0) ( ) 0mI I T  .  

We can derive the inventory level as 
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P D t t T
I t

D T t T t T
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 
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                                              (A.2) 

The total cost and cycle time for scenario 1 can be calculated as 
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P
T T T T

D
                                                           (A.4) 

Scenario 2: According to Figure 2 (b), the inventory level ( )I t satisfies 
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,                                                 (A.5) 

and continuous at t s , t T with boundary conditions (0) ( ) 0mI I T  .  

We can derive the inventory level as 
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The total cost and cycle time for scenario 1 can be calculated as 
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Scenario 3: According to Figure 2 (c), the inventory level ( )I t satisfies 
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and continuous at t s with boundary conditions (0) ( ) 0mI I T  .  

We can derive the inventory level as 
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The total cost and cycle time for scenario 1 can be calculated as 
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Appendix B 

Scenario 1: According to Figure 5 (a), the inventory level ( )I t satisfies 
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and continuous at t T with boundary conditions (0) ( ) 0mI I T  .  



 

31 

 

We can derive the inventory level as 
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The total cost and cycle time for scenario 1 can be calculated as 
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Scenario 2: According to Figure 2 (b), the inventory level ( )I t satisfies 
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 and continuous at t s , t T with boundary conditions (0) ( ) 0mI I T  .  

We can derive the inventory level as 
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The total cost and cycle time for scenario 1 can be calculated as 
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Scenario 3: According to Figure 5 (c), the inventory level ( )I t satisfies 
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and continuous at t s ,
mt T with boundary conditions (0) ( ) 0mI I T  .  

We can derive the inventory level as 
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The total cost and cycle time for scenario 1 can be calculated as 
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