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Abstract 

Experimental modal analysis aims at identifying the modal properties (e.g., natural 

frequencies, damping ratios, mode shapes) of a structure using vibration measurements. 

Two basic questions are encountered when operating in the frequency domain: Is there a 

mode near a particular frequency? If so, how much spectral data near the frequency can be 

included for modal identification without incurring significant modeling error? For data with 

high signal-to-noise (s/n) ratios these questions can be addressed using empirical tools such 

as singular value spectrum. Otherwise they are generally open and can be challenging, e.g., 

for modes with low s/n ratios or close modes. In this work these questions are addressed 

using a Bayesian approach. The focus is on operational modal analysis, i.e., with ‘output-

only’ ambient data, where identification uncertainty and modeling error can be significant 

and their control is most demanding. The approach leads to ‘evidence ratios’ quantifying the 

relative plausibility of competing sets of modeling assumptions. The latter involves modeling 

the ‘what-if-not’ situation, which is non-trivial but is resolved by systematic consideration of 

alternative models and using maximum entropy principle. Synthetic and field data are 

considered to investigate the behavior of evidence ratios and how they should be 

interpreted in practical applications.    

Keywords: Bandwidth, modal identification, maximum entropy, model class selection, 

operational modal analysis 

1 Introduction 

Ambient modal identification, conventionally known as ‘operational modal analysis’ (OMA), 

aims at identifying the modal properties (primarily, natural frequencies, damping ratios, 

mode shapes) of a structure using ‘output-only’ vibration data under ambient conditions 

[1][2][3]. The input excitation is not measured (often impractical to do so) but assumed to 

be ‘broadband random’ so that the statistical characteristics of measured response reflect 

primarily the properties of vibration modes rather than excitation. High economy and 

feasibility in data collection is a major advantage. The approach is promising for response 

and model updating [4]; and more generally health monitoring of civil structures [5][6][7][8]. 

OMA can be performed in the time or frequency domain, Bayesian or non-Bayesian. 
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Conventional methods are mostly non-Bayesian, e.g., stochastic subspace identification [9] 

(time domain) and frequency domain decomposition [10] (frequency domain). Bayesian 

methods have been formulated in the time and frequency domain, e.g., [11][12]. 

Application was limited until computational problems were solved in the frequency domain 

[13][14]. Reported cases are more recent, perhaps because the approach is less intuitive 

and derivation is more mathematically involved; see review in [15].  

 

Identifying modal properties without input information is theoretically more involved. 

Results have much higher variability/uncertainty and sensitivity to algorithmic parameters 

compared to their counterparts identified with free or forced (known input) vibration data. 

Frequency domain methods make use of spectral quantities in a selected frequency band 

for identifying the modes within it. In doing so the identification (ID) model only needs to 

account for the modes dominating the band and so can be significantly simplified. For well-

separated modes the band can be selected to cover only one mode. In general the number 

of close modes rarely exceeds three. ID results are insensitive to activities in other bands 

because their spectral data (e.g., FFT) do not enter into the calculation process (e.g., 

likelihood function in Bayesian approach). This is especially attractive for OMA since 

ambient data contains a variety of activities in different bands which are irrelevant to 

identifying the mode(s) of interest or difficult to model.  

 

1.1 Basic questions in frequency domain modal ID 

Performing modal ID in the frequency domain, among the first few questions is where the 

potential modes are, or equivalently, whether a mode exists near a particular frequency. 

Existing means are empirical. Stabilization diagram [16] observes whether the eigenvalues 

of system matrix consistently appear near a particular frequency as the model order of a 

time-domain state-space model increases. Another common tool is singular value (SV) 

spectrum [17], i.e., a plot of the singular values of sample PSD with frequency. Sample PSD 

matrix is positive semi-definite Hermitian and so its singular values and eigenvalues are the 

same. The number of lines significantly above the remaining ones indicates the dimension of 

the space spanned by the contributing measured mode shapes and their variation with 

frequency is similar to the dynamic amplification factor.  

 

Given that a mode exists near a particular frequency, the next question is to select the band 

whose spectral data shall be used for modal ID. This is a trade-off between ID precision and 

modelling error risk [15]. As the band widens more information in data is included for modal 

ID, hopefully leading to higher ID precision. This however increases the risk that the ID 

model may not hold in the additional band, creating modeling error (bias) in results. For 
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well-separated modes with high modal signal-to-noise (s/n) ratios a reasonable band is not 

difficult to decide based on SV spectrum; ID results are insensitive to the choice. Otherwise, 

a prudent choice currently relies on experience. Examining ID results with different choice of 

band is a straight-forward strategy but involves repeated calculations. The variation of 

results is also subjected to interpretation. For example, even when there is no modeling 

error, results can still fluctuate as more data is used. Although not directly related, see other 

issues on modal estimation [18][19][20][21]; and achievable precision limits [22][23]. 

1.2 Problem statement 

This paper aims at developing quantitative means for addressing the above concerns for 

OMA so that modeling error can be effectively suppressed. The problem is approached in a 

‘Bayesian model class selection’ context [28][32], using the FFT of data for probabilistic 

inference. Bayesian approach provides the basic principle but questions need to be properly 

formulated to yield useful conclusions while admitting a legitimate mathematical analysis. In 

this work, the concerns are addressed via the following two questions: 

Question 1. Is the modal ID model valid in a band near a particular frequency?  

Question 2. If the answer to Question 1 is positive, is the model valid in a wider band? 

These questions are illustrated in Figure 1. Focusing near 0.17Hz, Question 1 asks if there is 

a mode in the grey band. If the answer is positive, Question 2 follows up with how wide the 

band can be expanded to incorporate more FFT data to improve modal ID precision. If one 

includes the FFT data in the yellow band, will it cause significant modeling error, e.g., with 

regard to single mode? To keep the questions well-posed, the band in Question 1 (grey area) 

is assumed to surround a potential natural frequency. Although this band is often narrow, it 

is assumed to be wide enough for modal ID, in the sense that the search algorithm for the 

most probable value (MPV) of Bayesian ID method converges. Otherwise Questions 1 and 2 

are no longer relevant or their answers are trivially negative at least in a practical sense.  

 

Figure 1. Illustration of Questions 1 and 2, showing the sample SV spectrum (averaged for 

visualization) of one hour triaxial ambient acceleration data measured on a tall building roof. 

0.1 0.15 0.2 0.25
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

Frequency [Hz]

[g
/ 

H
z
]

Question 1:
Is there a mode near this 
frequency?

Question 2:
Suppose there is a 
mode. Is it safe to 
include this band for 
modal ID?



4 
 

2 Organization and outline of results 

For the ease of reading, the organization of this paper is outlined with contributions 

highlighted first. Section 3 presents the basic assumptions about the data and statistical 

properties of their FFT in a general OMA setting. Bayesian concepts are reviewed in Section 

4. Difficulties in assessing model validity are discussed. It is concluded that decision making 

is inevitably based on comparing competitive models, which can be quantified by ‘evidence 

ratios’. Section 5 addresses Question 1, where it is found that assessing the validity of modal 

ID model in a band requires statistical modeling of the PSD of data at multiple frequencies 

when it does not hold, i.e., noise model, which is highly non-trivial. Allowing the PSD to be 

independently parameterized at different frequencies leads to an inferior model due to the 

large number of parameters growing with the amount of data. A feasible strategy is to 

consider noise models with constant statistical properties in the band, which is justified for 

narrow band. The ‘band evidence ratio’ assesses the plausibility of modal ID model to that 

of noise model in the subject band: 








 
 f

j
j N

nn
LLR ln

2
)ˆˆ(exp

0
0        (1) 

where fN  (>>1) is the number of FFT points in the band; 0L̂  and jL̂  denote the value of 

the ‘negative log-likelihood function’ (NLLF) of modal ID model (with 0n  parameters) and 

noise model (with jn  parameters), respectively, evaluated at the most probable value (MPV) 

of parameters. The values of NLLF at MPV for modal ID and noise models are given in Table 

1. The MPV of modal ID model can be found by fast Bayesian algorithms [15]. A ratio of 

1R  prefers modal ID model over noise model; and vice-versa. Analytical and numerical 

analysis reveal that, for typically large amount of data, R  is either exponentially large or 

small, a common phenomenon in model class selection with vibration data.    

 

A similar difficulty with PSD modeling recurs in addressing Question 2 in Section 6. To 

bypass this difficulty, ‘point evidence ratio’ is developed to assess model validity at a single 

frequency. This allows the use of maximum entropy principle to determine a representative 

noise model class, which is found to be the complex Wishart distribution. A closed form 

expression for the point evidence ratio has been obtained (see also Figure 2):  
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where n  is the number of measured degrees of freedom; kkkk FF 1* ˆ  E  (real positive 

scalar); kF  ( 1n ) is the FFT of data at the subject frequency (indexed by k ); )(2 niK  



5 
 

denotes the modified Bessel function of the second kind with order 2 ni ; and kÊ  is the 

theoretical PSD matrix of data at MPV when modal ID model holds in the reference band 

(see (13)). By virtue of the maximum entropy principle, the point evidence ratio can be 

practically taken as an ‘absolute’ measure of validity. For its point-wise nature, however, its 

values for different frequencies should be viewed as a group so that interdependence of 

model validity at multiple frequencies can be incorporated in decision making. General 

guidance is given in Section 7 and illustrative examples are given in Section 8.   

 

3 Stochastic stationary OMA data 

Conventionally, the data in OMA is assumed to follow a stochastic stationary process. This is 

justified on a reasonable time scale over which structural properties and statistical 

characteristics of ambient excitation are constant. Let 1
0}ˆ{ 


N
jjy  (each 1n ) be the data 

(acceleration, velocity or displacement) at n  DOFs (degrees of freedom) of the structure. Its 

(scaled) FFT is defined as  


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jk e
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where t  (sec) is the sampling interval. Up to the Nyquist frequency ( t2/1  Hz), kF  

corresponds to frequency tNkk  /f  (Hz). The scaling factor Nt /2  is applied so that 

][ *
kkE FF  (ensemble expectation, ‘*’ denotes complex conjugate) gives the theoretical one-

sided PSD matrix. As a standard result in spectral analysis [24], for long data length, kF s at 

different frequencies are independent. Each has a ‘circularly symmetric complex Gaussian 

distribution’, with PDF (probability density function) given by 

 kkkk
n

kkp FFF 1*1 exp||)|(   QQQ        (4) 

where ][ *
kkk E FFQ . Equivalently, kFRe  and kFIm  are independent zero-mean Gaussian 

with 0Q ]|[ k
T
kkE FF  and kkkkE QQ ]|[ *FF . In modal ID, data is considered sufficiently 

long when the number of FFT points in the resonance band is large compared to 1 [22].  

 

Equation (4) is valid as long as data is long and stationary. Whether a mode exists in the 

band affects only the structure of kQ  and the parameters it involves. Since }{ kF  (collection 

of FFTs in the band) are independent, their joint PDF is the product of marginal PDFs. For 
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convenience in analysis, the PDF is written as L
kk ep }){|}({ QF  where L  is the ‘negative 

log likelihood function’ (NLLF): 

 

k

kkk

k

kfkk nNpL FFF 1*||lnln}){|}({ln QQQ     (5) 

The sums are over all frequencies in the band, whose number is fN .  

 

4 Bayesian system identification and model class selection 

Bayesian approach [25][26][27][28] provides a rational means for making inference based 

on real observations and modeling assumptions. Model class selection aims at assessing the 

validity of a set of modeling assumptions rather than identifying the parameters of a model 

based on such assumptions (as in system ID). Akaike’s Information Criterion (AIC) 

[29][30][31] is a celebrated example providing a simple measure  for comparing regression 

models with different number of parameters and data fitting power. Reference [32] is one 

early work in structural dynamics. Subsequent development can be found in, e.g., [33][34]. 

See also [35] for a tutorial in statistics literature. In this section, basic concepts are reviewed. 

The difficulties of assessing model validity in an absolute sense are then discussed.  

 

A ‘model class’ M  refers to the collection of all models with the same set of assumptions 

but different possible parameter values, collected in a vector θ . Without loss of generality, 

θ  is assumed to be continuous-valued. System ID aims at identifying θ  using data D  within 

M . The ‘likelihood function’ ),|( MDp θ  is the PDF of D  for given θ  derived according to 

the assumptions in M . Given D , the ID results for θ  are encapsulated in the ‘posterior’ 

(i.e., given data) PDF ),|( MDp θ . Using Bayes’ Theorem it can be expressed in terms of 

),|( MDp θ  by swapping the roles of θ  and D : 

)|(),|()|(),|( 1 MpMDpMDpMDp θθθ
       (6) 

As the RHS is viewed as a PDF of θ , )|( MDp  is a normalizing constant of no substance in 

the ID of θ . The term )|( Mp θ  is called the ‘prior PDF’, reflecting the analyst’s state of 

knowledge about θ  in the absence of data. Typically, ),|( MDp θ  is only implicitly known. It 

need not belong to any standard distribution (e.g., normal, exponential) because 

),|( MDp θ  can depend on θ  in a complicated (‘black-box’) manner. Determining the 

posterior statistics of θ  (e.g., mean, covariance) is one major task in Bayesian system ID.  
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Assessing the validity of model class M  is more challenging than identifying θ  assuming M , 

in both modeling and computation. From first principle, the validity of M  in the presence of 

D  is measured by )|( DMP . Using Bayes’ Theorem, 

)(/)()|()|( DpMPMDpDMP          (7) 

Throughout this work upper-case ‘P’ and lower-case ‘p’ denote probability and PDF, 

respectively. The term )|( MDp  is called ‘evidence’. It was immaterial in (6) but is now a 

deciding factor. It can be further expressed using the theorem of total probability as  

 θθθ dMpMDpMDp )|(),|()|(        (8) 

In (7), )(MP  reflects the ‘plausibility’ of the model class being valid based on prior 

knowledge. ‘Plausibility’ is referred instead of ‘probability’ to distinguish from the classical 

probability (frequentist’s, non-Bayesian) notion of relative frequency of occurrence in 

repeated experiments, which is absurd here. The term )(Dp  is an unknown quantity with 

philosophical significance. Using the theorem of total probability,  

)()|()()|()( MPMDpMPMDpDp         (9) 

where M  denotes the ‘complement’ (as set) or ‘negation’ (as logic) of M , meaning ‘all 

model classes other than M ’. The terms )|( MDp , )(MP  and )(1)( MPMP   can be 

determined or assigned. However, )|( MDp  requires quantifying the plausibility of 

obtaining D  when M  does not hold. It can be intractable because possibilities can be vast 

and unimaginable. One may not be able to tell in ‘absolute terms’ the plausibility of a model 

class being valid without specifying/modeling the likelihood of data when it is not valid. 

 

4.1 Comparing model classes 

Determining whether one model class is better than another is a more tractable problem. 

Model class 1M  is more plausible than 2M  if 1)|(/)|( 21 DMPDMP . This ratio does not 

involve )(Dp  because it is cancelled out: 
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One takes )()( 21 MPMP   when there is no prior preference or when the ratio is to reflect 

data effect only. The ratio is then proportional to the ratio of evidence: 

)|(

)|(

)|(

)|(

2

1

2

1

MDp

MDp

DMP

DMP
      ( )()( 21 MPMP  ) (11) 



8 
 

The above discussion reveals that it is difficult (if not impossible) to assess model validity in 

an absolute sense. The validity of modal ID model shall be assessed in a relative sense 

against competing model classes, which must be carefully considered for results to be useful.  

 

5 Model validity in potential resonance band (Question 1) 

In this section the evidence ratio for assessing the validity of modal ID model in a band 

around the potential mode(s) of interest is developed. Difficulties in the general context are 

discussed and legitimate competing model classes in the ‘what-if-not’ situation are 

recommended and analyzed. Here, }{ kD F  comprises the FFTs in the band, i.e., the grey 

band in Figure 1. For each model class, the most probable value (MPV, peak location of 

posterior PDF) and the value of NLLF at MPV will be presented, as they are involved in the 

calculation of evidence (Section 5.3). Results are summarized later in Table 1.  

  

5.1 Modal ID model class (M0) 

When there is at least one mode in the subject band, the FFT of data is assumed to comprise 

the contributions from m  classically damped modes and measurement noise: 

k

m

i

ikikik ph εφ  
1

F         (12) 

where iφ  ( 1n ) is the (partial) mode shape confined to measured DOFs; ikp  (complex 

scalar) and kε  ( 1n  complex) are FFT of the i-th modal force and measurement noise, 

respectively; 12q )]2()1[()f2(   ikiikkikh  i , kiik f f/ , q = 0, 1 or 2 for 

acceleration, velocity or displacement data, respectively; if  (Hz) and i   are the natural 

frequency and damping ratio of the i-th mode, respectively. In the band, modal forces are 

assumed to have constant PSD matrix S  ( mm  positive definite Hermitian), whose ),( ji -

entry is ]|[ *
θjkikij ppES  . Measurement noise is assumed to be independent of modal 

forces and i.i.d. (independent and identically distributed) at different measured DOFs with 

constant PSD eS  in the band, i.e., nekk SE Iθεε ]|[ * , where nI  denotes nn  identity 

matrix. Consequently, the PSD of data is given by 

ne
T

kne

m

i

m

j

T
jijkikijkk SShhS IΦΦHIφφθEQ  

 1 1

*)(  (M0, modal) (13) 
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where ],...,[ 1 mφφΦ   ( mn ) and *),( jkikijk hhSji H . The modal ID model class, where 

kQ  is given by (13), will be referred as M0. The set of parameters is 

 m
iie

m
ii

m
ii Sf 111 }{,,,}{,}{  φSθ  . Recognizing that S  is Hermitian and there are m  scaling 

constraints on mode shapes, the number of free parameters in M0 is 

)1()1( 2
0  nmmn . The above model applies to well-separated modes ( 1m ) and 

close modes ( 1m ). The MPV of θ  can be determined efficiently using fast Bayesian 

algorithms [13][14].  

 

5.2 Competing model classes 

As long as data is long and stationary the PDF of FFT kF  is given by (4), which is fully 

determined by kQ . When M0 does not hold, kQ  is no longer given by (13). Its possible 

form is an open question and affects model validation conclusions [36]. Competing model 

classes must not be too restrictive but at the same time be properly constrained to keep the 

problem well-posed. The least restrictive class allows kQ  to have ‘any distribution’, but this 

renders the likelihood function improper with arbitrarily small PDF and drives the evidence 

ratio to trivially prefer M0. Too much constraint eliminates possibilities that can be plausible, 

undermining the representativeness of results.   

 

Competing model classes are motivated by removing modal contributions in M0 and 

generalizing the form of noise PSD. Taking out the first term in (13), nek S IQ  . This is 

referred as M1. It assumes i.i.d. noise with constant PSD eS  in the band, which is the only 

parameter to identify. Substituting this kQ  into (5) and minimizing with respect to (w.r.t.) 

eS , the MPV is  


n

ie iinS
1

1 ),(
~ˆ Q , where ),(

~
iiQ  denotes the i-th diagonal element of the 

sample PSD matrix averaged over the band, 
k kkfN *1~
FFQ . A slightly more general 

model class allows the measured DOFs to have possibly different noise PSDs, say, n
ieiS 1}{  . 

The PSD matrix is given by },...,{diag 1 enek SSQ  (diagonal matrix with entries n
ieiS 1}{  ). 

This is referred as M2. It has n  free parameters, n
ieiS 1}{  . Substituting this kQ  into (5) and 

minimizing w.r.t. eiS , the MPV is ),(
~ˆ iiSei Q  ( ni ,...,1 ). As long as kQ  is assumed to be 

constant in the band, the most general form is nn  positive definite Hermitian matrix, 

which has 2n  free parameters. This is referred as M3. Substituting QQ k  and considering 

perturbation of (5) w.r.t. Q , it can be shown that the MPV is QQ
~ˆ  .  
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Further generalizing beyond M3 will allow kQ  to depend on frequency kf . This requires 

modeling the variation of PSD w.r.t. frequency. Possibilities are vast. For specific context, 

e.g., wind- or microtremor-driven ambient conditions, modeling may proceed in a (physics-

based) parametric manner, which is out of the present scope. In a non-parametric manner 

the most general form allows kQ s at different frequencies to be individually parameterized, 

involving fNn2  free parameters. Accounting for continuity/differentiability of PSD w.r.t. 

frequency still leads to a number growing with fN . As can be deduced from (15) in the next 

subsection, for large fN  this renders the model class trivially inferior to those whose 

number of parameters does not grow with fN . This observation eliminates many models 

that are otherwise appealing. For example, parameterizing modal force and noise PSD 

individually for different frequencies produces a very general model class for modal ID but it 

will be trivially inferior to M0.  

 

5.3 Bayesian evidence 

Evaluating the evidence )|( iMDp  via the integral in (8) is a computational problem. Let iθ  

contains the parameters of iM . The difficulty depends on the ‘identifiability’ of iθ , i.e., the 

topology of its posterior PDF )|(),|(),|( iiiiii MpMDpMDp θθθ   [37]. In modal ID, the 

amount of data is sufficiently large that )|( ii Mp θ  is slowly varying compared to 

),|( ii MDp θ . Also, the posterior PDF is ‘globally identifiable’, having a unique peak at the 

MPV iθ̂  that minimizes the NLLF ),|(ln iii MDpL θ . It can be approximated by a 

Gaussian PDF with mean iθ̂   and covariance matrix iĈ  equal to the Hessian of NLLF at MPV. 

Noting that ),|( ii MDp θ  is concentrated at iθ̂  and ignoring the variation of )|( ii Mp θ  

near iθ̂ , (8) implies  iiiiii dMDpMpMDp θθθ ),|()|ˆ()|( . The integral can be further 

approximated by writing )exp(),|( iii LMDp θ  and using the second order 

approximation 2/)ˆ(ˆ)ˆ(ˆ 1
ii

T
iii LL θθCθθ   . Substituting yields an integrand 

proportional to Gaussian PDF that can be integrated analytically. Consequently,  

),ˆ|()|( iiii MDpKMDp θ    (globally identifiable)  (14) 

where )|ˆ(|ˆ|)2( 2/12/
iii

in
i MpK θC  is called the ‘Ockham factor’ and is found to have a 

penalizing effect on model complexity in terms of the number of parameters [38][39].  
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Equation (14) was derived previously in [32] and its large data behavior was investigated. In 

the present context, for large fN , ]2/)(lnexp[~ fiii NnCK   where iC  is )1(O  constant 

that depends on the prior PDF. Substituting into (14), the evidence ratio of two model 

classes iM  and jM  is asymptotically of the form  








 
 f

ij
ij

j

i

j

i N
nn

LL
C

C

MDp

MDp
ln

2
)ˆˆ(exp

)|(

)|(
  (large fN )  (15) 

Roughly speaking iL̂  reflects the best model fit with data among all possible values of iθ . It 

can be reasoned that iL̂  generally grows with fN . The same is also true for the magnitude 

of the exponent in (15). The evidence ratio then asymptotically becomes a ‘zero-infinity law’, 

i.e., either zero (exponentially small) when the exponent is negatively large, or infinity 

(exponentially large) when the exponent is positively large. The relative plausibility of model 

class becomes a ‘zero-one law’, implying either ‘No’ (zero) or ‘Yes’ (one) conclusion with 

practically 100% confidence. The factor ji CC /  becomes immaterial and can be omitted in 

calculations, i.e., prior PDF asymptotically plays no role.   

 

Table 1 summarizes the competing model classes. They can be representative of possibilities 

other than M0 for narrow band where the PSD of data is likely to be constant. The last 

column shows the value of NLLF at MPV, obtained by substituting kQ  at MPV into (5). It can 

be shown that 321
ˆˆˆ LLL  . This agrees with the general fact that a lower minimum can be 

achieved under less constraint. The first inequality 21
ˆˆ LL   can be shown by noting that eŜ  

is the arithmetic mean of n
ieiS 1}ˆ{  , which is bounded below by geometric mean. The second 

inequality 32
ˆˆ LL   can be shown using Hadamard’s inequality [40], i.e., the determinant of 

a positive definite matrix is bounded above by the product of its diagonal entries. 

 

For pure noise data the MPV search algorithm for modal ID will not converge and so the 

answer to Question 1 is negative at least in a practical sense. Conceptually this can also be 

seen from (15). In this case the modal ID model M0 will not be able to reduce the value of 

NLLF below that of the pure noise model, i.e., jLL ˆˆ
0   ( j  for noise model). Since M0 

typically has a larger number of parameters than a pure noise model, the evidence ratio will 

be asymptotically small for large fN  and so M0 will be rejected. 
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Table 1. Summary of competing model classes  

Model 
Class 

PSD of data 
( kQ ) 

No. of free 
Parameters 

MPV NLLF at MPV 

( iL̂ ) 

M0 
(modal ID) ne

T
k S IΦΦH   

)1(

)1( 2





nm

m
 

Found by fast 
algorithm [14] 

No simplified 
expression 

M1 
(i.i.d. noise) neS I  1 




n

i

e ii
n

S

1

),(
~1ˆ Q  ]ˆln1[ ef SnN   

M2 
(ind. noise) 

},...,{diag 1 ene SS  n  ),(
~ˆ iiSei Q  














 



n

i

eif S
n

nN

1

ˆln
1

1  

M3 
(corr. noise) 

Positive definite 
Hermitian Q   

2n  QQ
~ˆ   








 |ˆ|ln

1
1 Q

n
nN f  

Note: fk kk N/
~ * FFQ  is the sample PSD averaged over the subject band 

6 Frequency band selection (Question 2) 

This section addresses the second question in Section 1, i.e., the validity of modal ID model 

M0 in a questionable band, given that M0 is valid in a ‘reference band’. Typically the 

reference band is a narrow band near the natural frequency (grey area in Figure 1); while 

the questionable band appears at the tail (yellow area). Recall that the competing model 

classes (i.e., other than M0) in the last section all assumed constant PSD matrix in the 

reference band. Otherwise they are trivially inferior or require modeling the variation of PSD 

with frequency, which is out of the present scope. The same difficulty recurs in this section. 

While the narrow band assumption was reasonable when addressing Question 1, it is 

unlikely to be so here because the questionable band can contain frequencies far from the 

reference band.  To resolve this, ‘point evidence ratio’ for a particular frequency rather than 

a band is developed. This eliminates the need for modeling the variation of PSD. It also 

allows the competing model class in the ‘what-if-not’ situation to be determined more 

fundamentally using maximum entropy principle. Closed form expression for the point 

evidence ratio shall be obtained, allowing for convenient implementation. Although the 

point evidence ratio does not directly address the ‘band-wise’ question originally posed, it 

shall be seen later that gathering the answers for different frequencies does lead to a 

satisfactory answer.  

 

6.1 General context 

General equations governing model validity in a questionable band for Question 2 shall be 

formulated first. The band shall be later limited to a single frequency to derive the final 

result. Let 1D  and 2D  comprise the FFTs over the reference band and questionable band, 

respectively. Let 1B  and 2B  denote the propositions that M0 is valid on 1D  and 2D , 
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respectively. The total data set for inference is },{ 21 DDD  .  Given that M0 is valid in 1D , 

the validity of M0 in 2D  is determined by  

)|(),|(

)|(),|(

),|(

),|(

1221

1221

12

12

BBPBBDp

BBPBBDp

BDBP

BDBP
r





       (16) 

where 2B  denotes the competing model class representative of all possibilities other than 

M0. Taking )|()|( 1212 BBPBBP  , i.e., the validity of M0 in 1D  provides no information on 

validity in 2D , one obtains ),|(/),|( 2121 BBDpBBDpr  . This can be further simplified by 

recognizing },{ 21 DDD   and conditioning on 1D : 

),|(),,|(

),|(),,|(

),|,(

),|,(

2112112

2112112

2121

2121

BBDpBBDDp

BBDpBBDDp

BBDDp

BBDDp
r





     (17) 

Assuming that the validity of M0 in 2D  has no influence on the distribution of 1D , 

),|(),|( 211211 BBDpBBDp  . Substituting into (17) gives 

),,|(

),,|(

2112

2112

BBDDP

BBDDP
r


         (18) 

 

6.2 Point-wise context 

The numerator in (18) can be obtained using the likelihood function of M0, which was 

presented in Section 5.1. The denominator involves modeling the variation of PSD with 

frequency when M0 does not hold. This is bypassed by limiting 2D  to contain the FFT at a 

single frequency only, which leads to the point evidence ratio: 

),,|(

),,|(

211

211

BBDp

BBDp
r

k

k
k




F

F
        (19) 

The subscript k  indicates explicit dependence on frequency kf  of the FFT kF  under 

question. The next two subsections discuss the determination of the numerator and 

denominator. The treatment is quite different from Sections 5.1 and 5.2 due to the 

difference in conditioning information and now point-wise nature of the evidence. 

 

6.3 Modal ID model class 

The evidence ),,|( 211 BBDp kF  in (19) can be obtained via the likelihood function of M0 

(Section 5.1). Let θ  be the set of parameters associated with M0. Conditioning on θ , 
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 θθθ dBBDpBBDpBBDp kk ),,|(),,,|(),,|( 211211211 FF    (20) 

Given 2B  (i.e., M0 holds in 2D ) and θ , the PDF of kF  is already determined to be 

),|( 0Mp k θF  and the information },{ 11 BD  is redundant. Thus 

),|(),,,|( 0211 MpBBDp kk θθ FF         (21) 

On the other hand, given },{ 11 BD , i.e., 1D  is available and M0 holds in 1D , θ  is distributed 

as the posterior PDF ),|( 01 MDp θ  and the validity of M0 in 2D  (i.e., 2B ) provides no 

further information. Thus,  

),|(),|(),,|( 0111211 MDpBDpBBDp θθθ       (22) 

Substituting (21) and (22) into (20),  

 θθθ dMDpMpBBDp kk ),|(),|(),,|( 010211 FF      (23) 

In the integrand, ),|( 0Mp k θF  is given by (4) with )(θEQ kk   in (13): 

])(exp[|)(|),|( 1*1
0 kkkk

n
k Mp FFF   θEθEθ       (24) 

As mentioned in Section 5.3, the posterior PDF ),|( 01 MDp θ  can be approximated by a 

Gaussian PDF centered at the MPV θ̂ :  









 

)ˆ(ˆ)ˆ(
2

1
exp|ˆ|)2(),|( 12/12/0

01 θθCθθCθ
Tn

MDp     (25) 

where 0n  is the number of parameters in θ ; and Ĉ  is the inverse of Hessian of NLLF 

),|(ln 01 MDpL θ  w.r.t. θ  at MPV.  

 

Having obtained the integrands in (23), the next question is to evaluate the integral. In the 

present case, analytical approximation can be developed by exploiting the slowly varying 

nature of ),|( 0Mp k θF  (w.r.t. θ ) compared to ),|( 01 MDp θ , as the latter is the posterior 

PDF based on a lot more data than the former. The simplest approximation ignores the 

variation of ),|( 0Mp k θF , taking it as a constant over the effective support of ),|( 01 MDp θ  

that gives the main contribution to the integral. This gives, since 1),|( 01  θθ dMDp , 

 kkkk
n

kk MpBBDp FFFF 1*1
0211

ˆexp|ˆ|),ˆ|(),,|(   EEθ   (zeroth order) (26) 
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where kÊ  is given by (13) at MPV. A slightly more sophisticated approximation accounts for 

the (up to) second order variation of ),|(ln 0Mp k θF  near θ̂ . This gives (see Section 11) 

),ˆ|(),,|( 0211 MpABBDp kk θFF      (second order)  (27) 

])(exp[|| 2
1

212
2/1

2
1

1 gHHgHHA T   I      (28) 

),ˆ|(ln 02 Mpg k
T

θF ; ),ˆ|(ln 01
2

1 MDpH θ  and ),ˆ|(ln 0
2

2 MpH k θF ; I  is 

00 nn   identity matrix. This approximation is good when 1)( 2
1

212   gHHgT  and 

I
2

1
1 HH  (in the sense of eigenvalues), for which 1A . Note that if 02g  and 02H , 

then 1A  and (27) reduces to (26), as expected. Since )1(2 Og  , )(1 fNOH   and 

)1(2 OH  , it can be reasoned using (28) that )(1 1 fNOA . Equation (26) is therefore 

asymptotically correct for large fN .  

 

6.4 Competing model class 

Determining ),,|( 211 BBDp k F  in (19) involves modeling when modal ID model does not 

hold. As in Section 5.2, for long stationary data the PDF of kF  is given by (4), which depends 

on kQ  only. Conditioning on kQ ,  

  kkkkk dBBDpBBDpBBDp QQQ ),,|(),,,|(),,|( 211211211 FF    (29) 

Here, kdQ  denotes symbolically the differential element in the space of nn  positive 

definite Hermitian matrices. Given kQ , the PDF of kF  is fixed and other information 

},,{ 211 BBD   is irrelevant. The first term in the integrand of (29) is then given by 

 kkkk
n

kk BBDp FFF 1*1
211 exp||),,,|(   QQQ     (30) 

The PDF ),,|( 211 BBDp k Q  in (29) involves modeling kQ  under the information of 

},,{ 211 BBD  . This shall be investigated next.  

 

6.4.1 Maximum entropy distribution 

If M0 holds at kf  (i.e., 2B ) and θ  is given then kQ  is simply )(θEk  in (13). Under 

},,{ 211 BBD  , however, M0 does not hold at kf  and so knowing θ  does not fix kQ . The 
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matrix kQ  need not even be equal to )(θEk  for some θ . Since M0 holds in 1D , 2D  can still 

contain modal contributions from M0, although it can as well contain contributions from 

other unmodeled dynamics. The FFT of data at kf  in 2D  can be viewed as 

dynamics unmodelednoise meas.

1

 


m

i

iikikk ph φF     (31) 

Correspondingly, its PSD can be viewed as 

 dynamics  unmodeled

of  PSDUnknown  

noise  meas. of

PSDUnknown  
   

1 1

yuncertaint
small relatively

,on  depends

*

 &  of
PSD crossUnknown 


 

m

i

m

j

T
jijkik

jkpikp

ijkk hhS


θ

φφQ  

           (32) 

The cross PSD of modal forces, ijkS , can depend on kf , though in an unknown manner that 

can be difficult to model. Balancing the generality of competing model class and the well-

posedness of problem, the influence of 1D  on kQ  is modeled through an expectation: 

kk BBDE EQ ˆ],,|[ 211           (33) 

where )ˆ(ˆ θEE kk   is defined for convenience. This corresponds to 1) ignoring the posterior 

uncertainty of θ  compared to other sources; 2) assuming ijijk SBBDSE ˆ],,|[ 211   (MPV of 

modal force PSD in 1D ) and 3) assuming the expectation of PSD due to measurement noise 

and unmodeled dynamics to be equal to neS Iˆ  (MPV of noise PSD in 1D ). 

 

Under the expectation constraint (33), the distribution of kQ  is determined as the one that 

maximizes its information entropy. That is, ),,|( 211 BBDp k Q  is the stationary point of the 

following functional of PDF p : 

























  QQQEΛQQQQQΛ dptrdpdpppJ k )(ˆ)(1)(ln)(),,(   

           (34) 

where )(tr  denotes the trace of argument matrix (sum of diagonal elements);   (scalar) 

and Λ  ( nn ) are Lagrange multipliers that enforce normalization of PDF and expectation 

constraint, respectively. This functional optimization problem has been investigated in 

details in [41][42], where the objective was to obtain the distribution of wireless data 
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channels under various forms of information; see [43] for a similar mathematical problem in 

uncertainty modeling in structural dynamics. It can be shown that kQ  has a complex 

Wishart distribution with n  DOFs and covariance matrix nk /Ê , i.e.,  

 









n

i
nnn

k

kk
k

in

ntr
BBDp

1
2/)1(

1

211
)!1(|/ˆ|

]})/ˆ[(exp{
),,|(

E

QE
Q     (35) 

The proof follows standard arguments in calculus of variation; see Section 12.  

 

6.5 Bayesian evidence 

The point evidence of the modal ID model class M0 has been derived in (26). Computing the 

point evidence ),,|( 211 BBDp k F  in (29) for the competing model class involves evaluating 

the integral where the two terms in the integrand are given by (30) and (35). The integral 

appears intractable but analytical expression can be obtained using the results in [41] 

(details omitted): 













n

i

kni

in
k

k
n

k
nk nK

ini

n

n

n
BBDp

1

22211 )2(
)!(])!1[(

)(

|ˆ|)(

!2
),,|( 



 E
F   (36) 

where )(2 niK  denotes the modified Bessel function of the second kind with order 

2 ni ; and kkkk FF 1* ˆ  E  is a real positive scalar, since 1ˆ 
kE  is positive definite Hermitian. 

Substituting (26) and (36)  into (19), the point evidence ratio at frequency kf  reads 

1

1

22
211

211 )2(
)!(])!1[(

)(

!2

)(

),,|(

),,|(
)(






























 

n

i

kni

in
k

n
kk

k

k
kk nK

ini

n

n

n
e

BBDp

BBDp
r 


 

F

F
(37) 

Deriving (36) in the general case is quite technical, requiring special techniques. The case for 

1n  is presented in Section 13 to offer some insights.  

    

7 Interpretation of point evidence ratio 

The point evidence ratio kr  in (37) is a function of kkkk FF 1* ˆ  E  only and the number of 

measured DOFs n . Figure 2(a) shows its numerator ),,|( 211 BBDp kF  and denominator  

),,|( 211 BBDp k F  w.r.t. k . It is seen that ),,|( 211 BBDp k F  has a wider spread and heavier 

tail than ),,|( 211 BBDp kF , the extend of which increases with n . Figure 2(b) shows kr . A 

value above 1 indicates that M0 is more likely to hold at kf than otherwise. The higher the 
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value, the stronger the evidence. There is a bounded interval of k  where 1kr , whose 

extent increases with n . A value of k  too low or too high will reject M0. The ratio kr  has a 

bounded maximum (which increases with n ) but its minimum can approach zero. For a 

given n  it is thus possible to reject M0 with 100% confidence. It is not possible to accept 

with 100% confidence, however, especially when n  is small. For example, the maximum 

value of kr  for 2n  is about 3 at 46.2k  (3 digits). Ignoring other possibilities, the ‘most 

optimistic’ plausibility of M0 being valid at kf  is about 3/(3+1)=0.75 (when k  happens to 

be 2.46). This feature agrees with the intuition that it requires an infinite amount of 

information to confirm the validity of a model, but only a finite amount to reject it.  

 

Figure 2. (a) ),,|( 211 BBDp k F  (dashed line) and ),,|( 211 BBDp kF  (solid line); (b) Point 

evidence ratio ),,|(/),,|( 211211 BBDpBBDpr kkk  FF  

Strictly speaking, kr  in (37) is not applicable when kF  belongs to 1D  because the derivation 

assumed that kF  does not come from 1D . To use the formula one should exclude kF  from 

1D  when calculating kr . Effectively, )ˆ(ˆ θEE kk   should be evaluated with the MPV θ̂  

calculated based on a slightly reduced data set, i.e., 1D  with kF  excluded. The resulting 

value of MPV, however, is similar to that based on 1D  because their data sets only differ by 

one FFT point, negligible compared to the total fN  points in 1D . For this reason, practically 

kr  can be used for frequencies not in 1D  as well as those in 1D , i.e., all frequencies.     

 

Potential fallacy is worth-noting. Ideally, Question 2 in Section 1 should be answered using 

the band evidence ratio ),,|(/),,|( 21122112 BBDDpBBDDp   where }{2 kD F  contains 

the FFTs in the questionable band. This band-wise ratio is not available; only point-wise ratio 

has been developed. Note that  



k

kk BBDpBBDpBBDDp ),,|(),,|}({),,|( 2112112112 FF    (38) 
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because kF s are only independent when conditional on θ . The product of point evidence 

ratios kr s does not give the evidence ratio for the band either:  

),,|(

),,|(

),,|}({

),,|}({

),,|(

),,|(

2112

2112

211

211

211

211

BBDDP

BBDDP

BBDP

BBDP

BBDP

BBDP
r

k

k

k k

k

k

k






F

F

F

F
  (39) 

 

Just evaluating kr s for different frequencies does not allow one to directly assess the 

validity of M0 in 2D . However, they can be viewed collectively to detect bands of significant 

modeling error risk. A band dominated by high kr s (e.g., >100) suggests a valid band; a band 

dominated by low kr s (e.g., <0.01) suggests an invalid band. A band with a mix of high and 

low kr s still suggests an invalid band when taking continuity of spectrum with frequency 

into account. More discussion on interpreting the point evidence ratio shall be given 

through examples in the next section. 

 

Increasing data length has little systematic effect on the point evidence ratio because it only 

depends on the FFT at the subject frequency through the term kkkk FF 1* ˆ  E . The plot of 

the ratio with frequency, however, will contain more information for making decision 

because there will be more FFT points in the band under investigation. The number 

increases linearly because the frequency resolution is 1/T, where T (sec) is the data duration. 

 

8 Illustrative examples 

In this section synthetic and field data examples are presented to illustrate the behavior of 

evidence ratios and how they can be used for decision making. In all cases, the posterior 

statistics (posterior MPV and variance) of modal parameters are calculated using fast 

Bayesian algorithms [15].     

 

8.1 Synthetic data 

Consider synthetic data }ˆ{ jy  comprising two modes generated at 100Hz ( t =0.01sec) for 

1200sec according to )()()(ˆ 2211 jjjj ttt εφφy     where tjt j   ( ,...2,1,0j ); )(ti  

( 2,1i ) is modal acceleration satisfying )()()(2)( 2 tpttt iiiiiii     with ii f 2  

(rad/sec); 1f 1Hz and 2f 1.5Hz (natural frequencies);  21  1% (damping ratios); 

  3/2211
T

φ  and   3/2122
T

φ  (mode shapes); and )(tpi s are modal 
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excitations, stationary Gaussian with PSDs Hz/)μg(1 2
21  SS ; )(tε  ( 13 ) is 

measurement noise, i.i.d. Gaussian white with PSD Hz/)μg(1 2eS . Figure 3 shows the root 

PSD and root SV spectrum of data, averaged for visualization. The two modes are well-

separated and they can be identified separately based on M0 with a single mode (m=1) and 

FFT data on a band around the peak. The question is how the contribution from the other 

mode affects the validity of M0; and how wide the band could be expanded for modal ID 

without incurring significant modeling error with regard to single mode assumption.   

 

Figure 3. (a) Root PSD and (b) SV spectrum of synthetic data, well-separated modes. In (a), 
blue, green, red = measured DOF 1, 2, 3. In (b), blue, green, red = largest, second largest and 
smallest eigenvalue. 

Band evidence ratio 

Figure 4 shows a series of plots that investigate the use of evidence ratios to address the 

two questions above. Part (a) shows the root SV spectra zoomed around the spectral peaks. 

The shaded region indicates the reference band, i.e., 1D  (Section 6), taken to be [0.97,1.03], 

where it looks reasonable that M0 with a single mode is valid. The choice of the reference 

band does not affect qualitatively the results presented here. For this band, the log band 

evidence ratios of M0 to other competing models in Section 5.2 are shown at the left and 

right boundary of the shaded region in Part (b). The band evidence ratio is calculated using 

(1). The values of log evidence ratios for M0/M1 (dot), M0/M2 (circle) and M0/M3 (cross) 

are 750, 718 and 26, respectively. Addressing the first question, these values indicate that 

M0 is more plausible than all competing models M1, M2 and M3, with a plausibility of 

practically 1; although M3 is the most competing one among the non-modal models.  
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Figure 4. Results for synthetic data with 3 measured DOFs, well-separated modes. In (b), dot, 
circle, cross = log evidence ratio (band) of M0 to M1, M2 and M3, respectively. In (c), point 
evidence ratios are plotted at each frequency, assuming that M0 holds in the shaded 
reference band. In (b) and (c), negative values are colored red. In (c), values smaller than -2 
are plotted at -2. (d) and (e) show the natural frequency and damping ratio identified using 

different bands; dot = MPV, error bar = 2 posterior standard deviations. 

Suppose now the band [0.97,1.03] is expanded and the validity of M0 is re-investigated for 

the new band. If one keeps the upper frequency to be the same but reduces the lower 

frequency to 0.95Hz, the new band is [0.95,1.03]Hz. Using the FFTs in this band the modal 

properties are identified (i.e., posterior MPV and covariance matrix calculated), from which 

the band evidence ratio can be calculated. The evidence ratios of M0 to M1-M3 are plotted 

at 0.95Hz in Part (b). Similarly, if one keeps the lower frequency to be the same but 

increases the upper frequency to be 1.05Hz, the new band is [0.97,1.05]Hz and its evidence 

ratio is plotted at 1.05Hz. The two figures of Part (b) indicate that as the band widens on 

either side the evidence ratio of M0 increases over all competing models.  

 

The band evidence ratios in Figure 4(b) was originally intended for narrow band, as M1-M3 

all assumed constant spectral properties. They are shown here for wider bands to illustrate 

issues with their behavior. As the band widens, M1-M3 become less plausible compared to 
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those model classes that allow the PSD to vary with frequency. The latter are not considered 

here and hence their effect is not reflected in the results. One implication is that when the 

band is wide the band evidence ratios become less indicative of the validity of M0 compared 

to ‘all other possibilities’. In absolute terms the validity of M0 need not increase with 

bandwidth.   

 

In Figure 4(b), the band evidence ratios M0/M1 and M0/M2 look very similar but they are in 

fact different. They are similar because the data was generated with noise assumption 

consistent with M1 and M2, giving similar values of NLLF at MPV. Their difference is mainly 

attributed to the difference in the number of parameters, whose effect is relatively small in 

this example (M2 has 3 parameters and M1 has 1 parameter). 

 

Point evidence ratio 

Figure 4(c) shows the log point evidence ratio in (2). It gives the plausibility of M0 at a single 

frequency, assuming that M0 holds in the shaded reference band. Negative values are 

shown in red. The values are mostly above zero, consistent with intuition. For both modes 

there are some negative values, which correctly indicate the lowering validity of M0 near 

the natural frequency of the other (unmodeled) mode. This is in contrast with the increasing 

trend of the band evidence ratios in Figure 4(b).    

 

Identified modal properties 

Figure 4(d) and (e) show the identified natural frequencies and damping ratios as the band 

for modal ID expands on either side. The results are presented with the same convention as 

Figure 4(b), i.e., the value plotted at 0.95Hz indicates the result when the band is 

[0.95,1.03]Hz. The dot shows the MPV and the error bar shows 2 posterior standard 

deviations. The ID results are relatively insensitive to the band, which generally agrees with 

the validity of M0. In practice Figure 4(d) and (e) are usually not produced as they involve 

repeated applications of modal ID algorithm, which is unnecessary when the band is 

reasonable. These figures are presented to counter-check the behavior of the evidence 

ratios with the identified modal properties.   

 

8.1.1 Effect of measured DOFs 

The ability to assess model validity depends on the amount of available information. To 

investigate the effect of measured DOFs, Figure 5 shows the results analogous to Figure 4 

but now only DOFs 1 and 2 are measured. In Figure 6 only DOF 1 is measured. The values in 
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Figure 5(b) are still above zero, advocating M0 over M1-M3 with a plausibility of practically 

1, although their values are less than those in Figure 4(b). The values in Figure 6(b) are 

further reduced. For the log point evidence ratios in Figure 5(c), although most values are 

still above zero, compared to Figure 4(c) there are more values below zero. Figure 6(c) sees 

even more. This results directly from the reduction in the amount of information for making 

inference. Further results (omitted here) with a larger number of measured DOFs show a 

similar picture in Figure 5(b) for the band ratios with proportionally larger values and a 

similar picture in Figure 5(c) for the point ratios. In Figure 6(b) the ratios of M0 to M1-M3 

are all the same because for one measured DOF M1-M3 are identical. 

    

Figure 5. Results for synthetic data when only DOFs 1 and 2 are measured, well-separated 
modes. Same convention as Figure 4 

 

Figure 6. Results for synthetic data when only DOF 1 is measured, well-separated modes. 
Same convention as Figure 4 
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8.1.2 Effect of unmodeled mode 

The behavior of evidence ratios in detecting model violation due to unmodeled modes is 

next investigated. Keeping everything else the same, synthetic data is now generated with a 

second mode frequency of 1.1Hz. The root PSD and root SV spectrum are shown in Figure 7. 

The two modes are now visually much closer. Although there is still a band around each 

peak where M0 with a single mode can be considered valid, the band is narrower than 

before. The question here is how the interaction of the two modes affects the validity of M0 

near the natural frequency; and how wide the band can be expanded.  

 

Figure 7. (a) Root PSD and (b) SV spectrum of synthetic data, close modes. Same convention 
as Figure 3. 

Figure 8 shows results analogous to Figure 4. In (b), the band ratios tend to reduce as the 

band extends towards the other mode. This agrees with intuition because the FFT data in 

the expanding band is ‘contaminated’ to an increasing extent by unmodeled contribution 

from the other mode. Nevertheless, log M0/M1 and log M0/M2 are still above zero, even 

when the band is so wide that covers the spectral peak of the other mode. This indicates 

that M0/M1 and M0/M2 are insensitive to the presence of unmodeled modes. On the other 

hand, log M0/M3 is below zero even for the narrowest band taken (grey area), suggesting 

that it may be too sensitive. For mode 1, when the upper frequency of the band is 1.11, 1.13 

or 1.15 Hz, the MPV search algorithm converges to a value outside the band. Such MPV is 

clearly unreasonable. A similar issue occurs with mode 2 when the lower frequency of the 

band is 0.96 or 0.98Hz. These results are not plotted in (b).    

 

Figure 8(c) shows the log point evidence ratios. For both modes the negative values 

correctly detect the existence of unmodeled contribution from the other mode. Even for 

bands where M0 is clearly invalid, the point evidence ratio can still be above zero. This 

stems from the stochastic nature of the point-wise definition. The point evidence ratios for 

different frequencies should be viewed together rather than individually. Figure 8(d) and (e) 

show the identified natural frequencies and damping ratios. They are generally insensitive 

to the band except when it extends significantly into the resonance band of the other mode. 
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Similar to Figure 8(b), results are not plotted for mode 1 when the upper frequency is 1.11, 

1.13 or 1.15Hz; and for mode 2 when the upper frequency is 0.96 or 0.98Hz.    

 

Figure 8. Results for synthetic data with 3 DOFs, close modes. Same convention as Figure 4 

8.2 Field data 

Consider a set of field data with three DOFs (x, y, z) measured for one hour at 50Hz from a 

triaxial servo-accelerometer placed at one corner on the roof of a tall building (50m x 50m x 

300m) under ambient condition. The horizontal DOFs (x and y) align with the two sides of 

the building plan. The identified modal properties and modal forces of the building under 

normal and strong wind conditions were studied in [45]. Figure 9 shows the root PSD and 

root SV spectrum. The peaks in (b) indicate six modes below 1Hz. The mode numbers are 

marked next to the peaks. Modes 1 and 4 are translational along the x direction; 2 and 5 are 

translational along the y direction; 3 and 6 are rotational. Modes 1 and 2 appear close but 

zooming in their band indicates a reasonable separation. Modes 4 and 5 are well-separated.   
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Figure 9. (a) Root PSD and (b) SV spectrum of tall building data. In (a), blue, green, red = x, y, 

z. In (b), blue, green, red = largest, second largest and smallest eigenvalue. 

8.2.1 Modes 1 and 2 (close)  

Figure 10 shows the results for modes 1 and 2, with the same convention in Figure 4. The SV 

spectra in (a) indicate some separation between the two modes, although their dominating 

band (shaded, hand-picked) can be narrow. In (b), log M0/M3 (cross) is always below zero, 

rejecting M0. Log M0/M1 (dot) is always above zero. Log M0/M2 (circle) is negative as the 

band extends towards the other mode. Similar to Section 8.1.2, M0/M1 appears to be 

insensitive while M0/M3 is too sensitive. M0/M2 lies in between, but its conclusion is still a 

zero-one law. For mode 1, as the upper frequency increases from 0.157Hz to 0.181Hz, log 

M0/M2 decreases from -5 to -248. For mode 2, as the lower frequency reduces from 

0.155Hz to 0.138Hz, log M0/M2 decreases from -2 to -277. These values all reject M0 with a 

plausibility of practically 1, although intuition may expect a graduate change depending on 

how wide the band expands.  

 

Similar to Figure 8(c) in Section 8.1.2, the point evidence ratio in Figure 10(c) correctly 

detects the region where unmodeled contribution from the other mode is significant. It 

indicates that for mode 1 the lower frequency may be reduced to, say, 0.14Hz, without 

incurring much modeling error. This is reinforced by the fact that the identified natural 

frequency and damping ratio in (d) and (e) are insensitive to the choice of band as the lower 

frequency is reduced. Reducing the lower frequency has a marginal effect on improving 

modal ID precision, as evidenced by the similar size of error bars. Figure 10(c) also advises 

for mode 1 not to increase the upper frequency beyond 0.16Hz (where the red dots start 

appearing). Doing so may significantly bias the results. As seen in (d), for mode 1 when the 

upper frequency is 0.172 to 0.181Hz (rightmost four values) the MPV search algorithm 

converges to the natural frequency of the other mode (value is out of scale). The damping 

ratios in (e) are significantly biased low as they reflect rather the damping of the unmodeled 

mode. For mode 2, it is not advised to reduce the lower frequency below 0.163Hz. The 

0 0.2 0.4 0.6 0.8 1
10

-7

10
-6

10
-5

10
-4

10
-3

Frequency [Hz]

[g
/ 

H
z
]

(a) Root PSD

0 0.2 0.4 0.6 0.8 1
10

-7

10
-6

10
-5

10
-4

10
-3

Frequency [Hz]

[g
/ 

H
z
]

(b) Root SV

1
2

3 4 5

6



27 
 

upper frequency may be increased to (say) 0.185Hz, although the improvement in ID 

precision is only marginal, as evidence in (d) and (e).                 

 

Figure 10. Results for field data, close modes (1 and 2). Same convention as Figure 4 

The example presented here corresponds to the scenario relevant and demanding in 

practice, i.e., where one desires to identify the modes separately (because of simplicity and 

speed in single mode algorithms) but is not sure how wide the band should be. While the 

proposed method is applicable to very close modes, they demand less decision making than 

moderately close modes (as in this example) because the answer is apparent – based on the 

SV spectrum they should be identified by a multi-mode algorithm. 

8.2.2 Mode 4 and 5 (well-separated) 

Figure 11 shows the results for mode 4 and 5, which appeared as well-separated in Figure 

9(b). In Figure 11(b), log M0/M1 and log M0/M2 are always positive, advocating M0 over 

M1 and M2 for relatively wide frequency bands. Log M0/M3 detects problems for the 

narrowest band but becomes positive as the band expands. The log point evidence ratios in 

Figure 11(c) are mostly above zero for mode 4 and 5 even when the band extends towards 

one another. This reflects the non-interactive nature of the two separated modes. On the 

other hand, many values are below zero, for mode 4 when the lower frequency of the band 

is reduced; and for mode 5 when the upper frequency is increased. While problems with 
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these bands may not be apparent from the SV spectra in Figure 11(a), the identified modal 

properties in Figure 11(d) and (e) do confirm their existence. For mode 4 the identified 

frequencies and damping ratios are significantly biased high as the lower frequency is 

reduced. For mode 5, as the upper frequency increases the identified modal properties are 

not as severely affected. 

    

Figure 11. Results for field data, well-separated modes (4 and 5). Same convention as Figure 
4 

8.2.3 Modes with low s/n ratio 

Finally, modes with low s/n ratios are investigated, focusing on two modes near 3.3Hz and 

4.1Hz (not shown in Figure 9). For reference, the root modal s/n ratios (= ratio of root PSD of 

modal response to prediction error) of modes 1, 2, 4 and 5 are, respectively, 23, 66, 46 and 

90. The modal s/n ratios of the two modes (referred as 6 and 7) studied here are 

respectively 4.7 and 2.4, which are substantially lower than the ones studied before and are 

reaching the lower limit where the modes can be identified. Figure 12 shows the results. As 

seen in (a), the spectral peaks are less pronounced compared to the modes studied in the 

previous sections, a reflection of low s/n ratio. Their shape is also less obvious to identify 

with the variation of dynamic amplification factor. The band evidence ratio in (b) exhibits a 

zero-one law as before, with M0/M1 and M0/M2 preferring M0 while M0/M3 rejecting it. 

The point evidence ratio in (c) indicates that it is safe to widen the band by reducing the 
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lower frequency, say, down to 3.2Hz. It is not advised to increase the upper frequency, 

however, indicated by the few red dots on the right side of the reference band. For mode 7, 

(c) indicates that one may increase slightly the upper frequency. These interpretations are 

consistent with the behavior of the ID results in (d) and (e).           

 

Figure 12. Results for field data, low s/n modes (6 and 7). Same convention as Figure 4 

8.3 Discussion 

A number of observations and comments can be made from the examples. The band 

evidence ratios typically lead to zero-one law in the plausibility of the modal model M0, i.e., 

either ‘Yes’ or ‘No’ with practically 100% confidence. This need not reflect reality because 

their conclusions depend on the competing model class being compared. The model classes 

considered are not exhaustive. They may not be representative of possibilities other than 

the modal model when the band is wide, because they all assume constant spectral 

properties in the subject band. M1 (i.i.d. noise) and M2 (independent noise) are insensitive 

to unmodeled dynamics, while M3 (correlated noise) can be too sensitive. Using M1 or M2 

for validation may fail to detect problems, while using M3 can be too conservative. These 

characteristics stem from their assumption on constant PSD with frequency. Competing 

models that account for PSD variation may have better characteristics but they are non-

trivial to develop and are out of the present scope. 



30 
 

The point evidence ratio has been found to detect problems correctly. Of course it does not 

give directly the plausibility of ID model class M0 in a band. Arising from its stochastic 

nature, the values at different frequencies fluctuate. They should be viewed together rather 

than individually. The examples provided some benchmarking experience for this. 

Interpretation based on the point evidence ratio is generally consistent with the bias in the 

identified modal properties.   

 

Computationally, evaluating the band evidence ratio for a given band requires determining 

the MPV of modal properties using FFTs of the band. Producing the ratio for a series of 

expanding bands involves repeated determination of MPVs. Evaluating the point evidence 

ratio for different frequencies involves determining the MPV only once, for the reference 

band where the modal model is assumed to be valid. 

 

9 Conclusions 

This paper has investigated how to quantify the validity of modal ID model in a narrow 

frequency band and whether it is safe to expand the band to include more spectral data for 

operational modal analysis. Band evidence ratio (1) was developed for the former (assuming 

narrow band) and point evidence ratio (2) for the latter (point-wise but applicable for wide 

band). Modeling possible model classes when the modal ID model does not hold is an open 

question that has recurred in limiting what the evidence ratios can tell. Competing model 

classes and long data behavior of their evidence have been discussed. Trivially inferior ones 

have been eliminated. For the band evidence ratio, three (non-trivially) competing model 

classes have been considered for band evidence ratio, which were found to give zero-one 

law (i.e., ‘No’ or ‘Yes’) for model plausibility and were either insensitive or too conservative 

in detecting unmodeled dynamics. Point evidence ratio was found to strike the middle way, 

although it does not give a direct quantitative measure for the band in question and still 

requires human intelligence to interpret. The ratio has a clear Bayesian probabilistic context, 

allowing for a rigorous development of future decision making tools.   

 

Balancing theoretical rigor and pragmatism, it is advocated that the existence of mode(s) on 

a narrow band (Question 1) be still judged based on SV spectrum, but the band where 

spectral data can be safely incorporated (Question 2) can be determined using point 

evidence ratio (2). The band evidence ratio (1) currently is of limited use. After all, one finds 

from the examples that the correct conclusions the band evidence ratios were able to give 

could have been arrived more intuitively and directly from SV spectrum. 
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Admittedly, the paper does not provide the ‘ultimate’ solution to the thematic questions. 

The following discoveries/remarks are however worth-mentioning and contribute to 

advancing the state-of-the-art. Questions 1 and 2 have been posed in a legitimate way to 

address model validity and bandwidth selection while admitting a formal mathematical 

analysis using Bayesian probability logic. Addressing model validity in an absolute sense is 

conceptually challenging even within the framework of Bayesian model class selection 

because a representative competing model class is highly non-trivial to construct in the 

‘what-if-not’ situation. It is doubtful whether it is possible to assess model validity in an 

absolute sense. Properly posing the model validity problem becomes critical for scientific 

development. Assessing model validity in a band is difficult because it requires modeling the 

variation of the unknown spectral characteristics of data in the ‘what-if-not’ situation. In this 

work this difficulty is bypassed by considering validity at a single frequency. This point-wise 

consideration also allows the use of maximum entropy principle to determine a 

representative competitive model class, so that the resulting point evidence ratio can be 

practically interpreted in an ‘absolute sense’ for model validity assessment. A closed form 

expression for the point evidence ratio has been obtained in (2), which allows convenient 

implementation. Equation (18) provides the general form of the evidence ratio for 

addressing Question 2, on which future work (in band-wise context) can build.   

 

The proposed method applies to both well-separated and closed modes, whose MPV should 

be determined by fast algorithms accordingly [13][14]. Although the point evidence ratio is 

developed in a Bayesian context, it can be directly applied without any Bayesian concept. 

The ratio can be calculated with the theoretical PSD matrix kE  in (13) evaluated at the ‘best 

estimate’ (non-Bayesian) of modal parameters identified from data or reasonable value 

determined by other means. As long as the substituted value does not differ significantly 

from the MPV, results are expected to be qualitatively the same. 
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11 Appendix A. Derivation of (27)  

Let ),|(ln)( 0MpF k θθ F  so that )](exp[),|( 0 θθ FMp k F . Approximating )(θF  by a 

second order Taylor series at θ̂ , 2/)ˆ()ˆ()ˆ()ˆ()( 22 θθθθθθθθ  HgFF TT  where 
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)ˆ(2 θFg T  and )ˆ(2
2 θFH   are the (transposed) gradient and Hessian of F  at θ̂ . 

Substituting this and (25) into (23), ),ˆ|(),,|( 0211 MpABBDp kk θFF   where 




 θ
θ deHA qn )(2/1

1
2/0 ||)2(  , 1

1
ˆ CH , 0n  is the dimension of θ ; and  

)ˆ)(()ˆ(
2

1
)ˆ()( 212 θθθθθθθ  HHgq TT      (40) 

It remains to show that A  is given by (28). Writing )(θq  in complete square form, 

2
1

21221 )(
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1
))(()(

2

1
)( gHHgHHq TT  μθμθθ     (41) 

where 2
1

21 )(ˆ gHH  θμ . Substituting gives, 
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1)21(

2
2/1

21

2/1
1



  (42) 

The integrand is a Gaussian PDF with mean μ  and covariance matrix 1
21 )(  HH  and so it 

integrates to 1. Equation (28) then follows by noting that 

2
1

1
2/1

21
2/1

1 /1||/|| HHHHH  I . 

 

12 Appendix B. Proof of maximum entropy distribution in (35) 

This appendix shows that the maximum entropy distribution of positive definite Hermitian 

matrix Q  with expectation kÊ  is given by the complex Wishart PDF with n DOFs and 

covariance matrix nk /Ê , as in (35). The solution is the stationary point of the functional 

)( pJ  in (34) under the constraint in (33). Taking perturbation of J  w.r.t. p , 

   QΛQ dptrpJ  )(1ln       (43) 

Setting 0J  to hold for arbitrary p  requires the bracketed term to be identically zero. 

This gives )](exp[)1exp()( ΛQQ trp   . Enforcing 1)(  QQ dp  gives  

 












n

i
nn

n

i
dtr

1
2/)1(

1

)!1(

||
)](exp[)1exp(




Λ
QΛQ    (44) 
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The integral in (44) was obtained by noting that a complex Wishart PDF with n  DOFs and 

covariance matrix 1
Λ  is  

 
n

i
nnn itr

1
2/)1( )!1(/||)](exp[ ΛΛQ  and it integrates w.r.t. 

Q  to 1. Substituting (44) shows that p  is a complex Wishart PSD with n  DOFs and 

covariance matrix 1
Λ . A matrix variate with this PDF has expectation 1

Λn , and so 

enforcing the expectation constraint (33) gives nk /ÊΛ  .  

  

13 Appendix C. Derivation of (35) and (36) for the case of one measured DOF 

To develop intuition into the derivation of (35) and (36), consider the case of one measured 

DOF ( 1n ). Then kF  is a circularly symmetric complex Gaussian scalar with zero mean and 

some (unknown) variance 0kQ . That is, kkX FRe  and kkY FIm  are independent 

Gaussian with zero mean and variance 2/kQ , so that 

k
kk

kkkkkkk

kk
kkkkkkkk

T
kk

Q
QQ

QYEQXEQE

QQ
QYXEQYEQXEQE
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 (45) 

The PDF of kF  is the joint PDF of kX  and kY : 

kQk

kk

kQ
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QQ

e
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e
BBDQp

/2|
)2/(2/2)2/(2/2
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)2/(2)2/(2
),,,|(

F|
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

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

  (46) 

This agrees with (30). When M0 does not hold at kf  the PDF of kQ  is modeled as the 

maximum entropy distribution with its mean is equal to kÊ . It is obtained by minimizing the 

following functional of PDF p  with Lagrange multipliers   and  : 















 



000
)(ˆ)(1)(ln)(),,( dQQpQEdQQpdQQpQppJ k  (47) 

Setting 0J  (perturbation w.r.t. variation in p ) gives 

  01ln
0

 


dQpQp         (48) 

This is satisfied for arbitrary p  when 01ln  Qp  , i.e., QeQp  1)( . 

Enforcing 1)(
0




dQQp  gives   
 

0

1 /1 dQee Q  and so QeQp  )( , i.e., 

exponential PDF with mean /1 . Further enforcing kEdQQQp ˆ)(
0




 gives kÊ/1 . Thus, 
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This agrees with (35). The evidence ),,|( 211 BBDp k F  is obtained by marginalizing out kQ : 
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For 0, ba , )/2(020
//1 baKdxbxxaex 

 
 . Applying this result, 
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2(
ˆ

2
),,|(

2

0211
k

k

k
k

E
K

E
BBDp

|F|
F


    ( 1n )   (51) 

This agrees with (36) where kkk Ê/2|F| .  

For general 1n , the derivation is much more complicated because kQ , being positive 

definite Hermitian, is a ‘structured’ matrix (i.e., entries are related). The associated Jacobian 

in the integration over kQ  needs to be evaluated using special techniques [44]. 

Demarginalizing kQ  is not trivial either; details are referred to [41]. 
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