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ABSTRACT 

Amyotrophic Lateral Sclerosis (ALS) is one of the most common motor neuron diseases with a 

crude annual incidence rate of ~2 cases per 100,000 in European countries, Japan, United 

States and Canada. The role of Carbonic Anhydrase 1 (CA1) in ALS pathogenesis is completely 

unknown. Previous unpublished results from Dr. Jian Liu have shown in the spinal cords of 

patients with sporadic amyotrophic lateral sclerosis (SALS) there is a significant increased 

expression of CA1 proteins. The purpose of this study is to examine the effect of CA1 expression 

in mammalian cells, specifically, whether CA1 expression will affect cellular viability and induce 

apoptosis. To further understand whether such effect is dependent upon CA1 enzymatic 

activity, three CA1 mutants (Thr199Val, Glu106Ile and Glu106Gln) were generated using two-

step PCR mutagenesis. Also, a fluorescence-based assay using the pH-sensitive fluorophore 

Pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid) to measure the anhydrase activity was 

developed. The assay has been able to circumvent the requirement of the specialized 

equipment by utilizing a sensitive and fast microplate reader and demonstrated that three 

mutants are enzymatically inactive under the physiologically relevant HCO3
- dehydration 

reaction which has not been tested before by others. The data show that transient expression 

of CA1 in Human Embryonic Kidney 293 (HEK293), African Green Monkey Kidney Fibroblast 

(COS7) and Human Breast Adenocarcinoma (MCF7) cell lines did not induce significant changes 

to the cell viability at 36hrs using the Water Soluble Tetrazolium-8 (WST8) assay. Wild-type CA1 

significantly reduced cell viability in HEK293 using a virally transduced inducible stable 

expression system at 96hrs and 144hrs of protein induction whereas out of the two mutants 

used only Thr199Val induced significant toxicity at 144hrs. Wild-type CA1 has also been found 
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to protect COS7 cells against doxycycline-induced toxicity at 96hrs and 144hrs of protein 

induction whereas no protective effect was seen by the mutants. Using flow cytometry analysis 

the results has shown wild-type CA1 expression significantly increased Caspase-3 activation and 

its downstream molecule Poly (ADP-Ribose) Polymerase 1 (PARP-1) cleavage at 96hrs whereas 

Glu106Ile only significantly increased Caspase-3 activation. In conclusion, this study marks the 

first time where CA1 expression has shown to directly cause significant apoptotic toxicity in 

HEK293 cells and protect against doxycycline-induced toxicity in COS7 cells. Although the 

implication of this study in ALS requires further investigation, the results here suggest in 

healthy cells increased levels of CA1 expression may cause onset of toxicity, whereas when cells 

undergo stress, increased CA1 expression can be protective to prevent further loss in cell 

viabilities. Despite numerous previous studies that have examined CA1 as potential diseases 

marker, these results represent for the first time in understanding the effect of CA1 in 

mammalian cells. 
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Theoretical background 

Part One: Background to ALS and the proteins involved 

Etiology of ALS 

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is the most 

common and fatal progressive motor neuron diseases (Bruijn et al., 2004). It affects both the 

upper motor neurons (UMNs) originating from the motor cortex as well as the lower motor 

neurons (LMNs) in the brainstem and spinal cord (Byrne et al., 2012). ALS is different from 

other motor neuron diseases which involve only the UMNs (primary lateral sclerosis, hereditary 

spastic paraplegia) or LMNs (progressive muscular atrophy, spinobulbar muscular atrophy, 

spinal muscular atrophy) (Gordon et al., 2006, Salinas et al., 2008, Parboosingh et al., 1997, 

Rowland, 2010). The functions of the LMNs and UMNs are to relay signals from the central 

nervous system to the skeletal muscles; in humans this is crucial to conduct the everyday 

functions such as speaking, swallowing, walking and breathing.  

Initially, ALS patients show signs of axonal retraction or the denervation of motor 

neurons, and their axons produce re-innervations as a compensatory mechanism (Hardiman et 

al., 2011). However, as the disease progresses, this compensatory mechanism fails due to the 

relentless nature of the disease. At the onset of disease, patients display symptoms of failing to 

relay signals from the motor cortex, brainstem, and spinal cord to the skeletal muscle tissues 

resulting in paralysis (Hardiman et al., 2011).  

Chapter One 
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From clinical observations, there is a large variability in the phenotypic displays of ALS. 

This can be seen from differences in the locations of onset in ALS (Swinnen and Robberecht, 

2014).  ALS can start in the bulbar region (associated nerves in the medulla oblongata of the 

brainstem) in some patients (~20% of patients) affecting swallowing and speech due to 

impairment of the jaw and tongue muscles (Chio et al., 2011). In majority of patients ALS-like 

symptoms can be first seen in the limbs (~75%) characterized by weakness or atrophy in the 

arms or the legs, and in few cases (~5%) patients have respiratory onset characterized by 

shortness of breath affected by atrophy of the intercostal muscles (Rowland and Shneider, 

2001). However, as the disease progresses, most patients will have developed all of the ALS-

related symptoms including inability to speak or use their upper and lower limbs and eventually 

death commonly due to the loss of ability to breath (Rowland and Shneider, 2001).  

Although ALS was long believed to be a neurodegenerative disorder affecting the motor 

neurons in isolation, it has increasingly been recognized that other neurological systems can be 

affected with cognitive impairment being the most common one (Phukan et al., 2007). This 

cognitive impairment can be caused by degeneration of layer V neurons in the frontal-temporal 

lobe which is termed front-temporal lobe dementia (FTLD); however, some patients also exhibit 

cognitive impairment without dementia (Rippon et al., 2006). The clinical manifestation of FTLD 

is most frequently characterized by delusions, apathy, disinhibition, and language abnormalities 

(Strong and Yang, 2011). Approximately 25% of all ALS patients have FTLD and patients with 

ALS-FTLD have worse prognosis than those with pure ALS mainly due to the difficulty in 

therapeutic compliance (Olney et al., 2005). In other instances, 5-15% of ALS patients have mild 

parkinsonism characteristics exhibiting postural instability (Manno et al., 2013) and although 
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rare, some inherited cases of ALS show prominent sensory neurological defect (Andersen et al., 

1996), bladder disturbances (Andersen et al., 1996, Battistini et al., 2005) and neuralgic pain 

syndrome involving severe cramps and joint pains (Andersen et al., 2003) .  

The median survival period for ALS is 3 years (with ~60% patients die within 10 years); 

however, there is a variation in ALS patients’ survival times with 15-20% patients surviving 

between 5 to 10 years after prognosis and a smaller percentage of patients surviving more than 

10 years  (Kiernan et al., 2011). Prediction of the survival time is dependent on the age of onset 

(with older ages having worse prognosis outcomes) as well as the presence of bulbar and 

respiratory onset (Chio et al., 2011, Talbot, 2009). Subjects between ages of 50 to 75 years are 

within the high risk group for developing ALS, and evidence has suggested above the age of 75 

there is reduction in number of patients to develop the disease (Huisman et al., 2011, 

Logroscino et al., 2010, O'Toole et al., 2008). Incidences of ALS cases with patients below the 

age of 40 is low (<1.5 cases/100,000 population), an evidence to suggest having significant 

better prognosis than older patients (Eisen et al., 1993, Sabatelli et al., 2008). 

In the western world, the incidence for ALS amongst countries are fairly consistent with 

a rate of 2-3 cases per 100,000 general population (Mehta et al., 2014, Wolfson et al., 2009, 

Cetin et al., 2015, Chio et al., 2013, Huisman et al., 2011, Logroscino et al., 2010, O'Toole et al., 

2008). Evidence has suggested reduced incidence in mixed race populations with non-European 

descents (Zaldivar et al., 2009, Cronin et al., 2007). There also exist regions of particularly high 

incidences of ALS often in the presence of dementia and Parkinsonism in the Pacific island of 

Guam and the Kii peninsula of Honshu island, Japan (Steele, 2005, Kuzuhara and Kokubo, 2005). 
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However, there is no clear explanation for the pockets of high ALS incidences (Steele and 

McGeer, 2008). 

Currently the only drug that is approved by the US Food and Drug Administration (FDA) 

and the European Medicine Agency (EMA) is Riluzole, which has a slight positive effect on the 

disease prolonging 2-3 months of the patients’ survival (Miller et al., 2012). Despite more than 

50 randomized clinical trials taken place in the past half century and 18 drugs tested in phase II 

and III trials, the main form of ALS management is through symptom control to support patients’ 

quality of life (Mitsumoto et al., 2014). These include ventilation support for patients who 

suffer from respiratory failure as well as nutritional support for patients who are malnourished 

due to difficulties in swallowing and chewing (Hardiman et al., 2011).  

 

ALS genetics 

Superoxide dismutase 1 (SOD1)  

The SOD1 protein is known as an anti-oxidative enzyme, catalyzing the dismutation of 

superoxide to hydrogen peroxide and oxygen as well as acting as a nuclear transcription factor 

activating the expression of anti-oxidative genes (McCord and Fridovich, 1969, Fridovich, 1975, 

Huang et al., 1992, Tsang et al., 2014, Miao and St Clair, 2009). Eleven missense mutations in 

SOD1 were discovered in a linkage study in 1993 in 13 families with ALS (Rosen et al., 1993); so 

far, over a hundred of SOD1 mutations have been discovered. SOD1 mutations are responsible 

for 20% of all FALS cases and 1% of all the SALS cases (Rowland and Shneider, 2001). The 
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discoveries of these mutations led to the development of SOD1 transgenic animal models of 

ALS which has been used to elucidate the molecular mechanisms associated with mutant SOD1 

induced motor neuron degeneration (Bruijn et al., 1997, Wong et al., 1995, Jonsson et al., 2006, 

Wang et al., 2005). Most of the SOD1 mutations destabilize the protein’s conformation through 

structural reconstruction, causing protein instability and increases the likelihood for it to form 

aggregates within the motor neurons (Wright et al., 2013, Hough et al., 2004, Prudencio et al., 

2009).  

Because SOD1 is an anti-oxidative enzyme, one would expect loss of SOD1 function may 

be central to ALS pathology. However, alterations in the SOD1 enzyme activity do not appear to 

correlate with ALS disease (Prudencio et al., 2009). This was first seen by knocking out the wild-

type SOD1 gene in mice that do not display motor neuron disease characteristics (Reaume et al., 

1996). In addition, another study has found both elevating and eliminating the level of wild-

type SOD1 did not have an impact on motor neuron loss (Bruijn et al., 1998). High levels of 

mutant SOD1 proteins in the brain have been found in transgenic mice expressing the G93A 

mutant which developed ALS pathological and clinical patterns similar to human ALS (Gurney et 

al., 1994). These studies suggest mutant SOD1 proteins have a gain-of-function type of toxicity 

in ALS (Gurney et al., 1994).  

The range of toxic mechanisms associated with mutant SOD1 is large and these 

associated pathways affect motor neurons and neighboring glial cells (Boilee et al., 2006, 

Yamanaka et al., 2008). Mutant protein production within the motor neurons appears to be the 

primary factor for inducing the onset of ALS. One of the earliest findings in mutant SOD1 mouse 
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model as well as samples from ALS patients is excessive motor neuron firing due to glutamate 

excitotoxicity. Overstimulation of the motor neurons can lead to depletion of intracellular ATP 

stores and upregulation of calcium influx both of which can potentially lead to downstream 

motor neuron death (Van Den Bosch et al., 2006, Henneberry et al., 1989). Mutant SOD1 also 

generate ER stress by binding to ER luminal polypeptide chain binding protein (BiP) activating 

downstream ER stress transducers as well as inhibiting ER-associated degradation by binding to 

ER luminal protein Derlin-1 (Nishitoh et al., 2008, Kikuchi et al., 2006). Within the mitochondria, 

mutant SOD1 proteins have been found to deposit onto the cytoplasmic surface of the 

mitochondrial outer membrane (Liu et al., 2004, Vande Velde et al., 2008). They associate with 

the mitochondrial protein Bcl-2, turning previously a non-toxic protein into a toxic one and 

compromising mitochondrial structural integrity by releasing cytochrome C (Pedrini et al., 2010, 

Pasinelli et al., 2004). Axonal transport of motor neuron cell body synthesized components to 

axons and synaptic junctions are also compromised by mutant SOD1 expression as it slows both 

retrograde and anterograde transports, but upregulates retrograde transport of cell death 

signaling factors (Williamson and Cleveland, 1999, Perlson et al., 2009). Within motor neurons, 

mutant SOD1 can inhibit the clearance of damaged proteins by “overloading” the proteasome 

degradation pathway in the ER which not only increases the level of mutant SOD1 aggregates 

but also sequesters important cellular components causing further toxicity (Bruijn et al., 1998, 

Kabashi et al., 2004).  Apart from these mentioned pathways, mutant SOD1 have been found to 

interact with the components of motor neuron secretory vesicles causing the extracellular 

release of mutant SOD1 (Urushitani et al., 2006). This consequently activated nearby microglial 

cells, the macrophages responsible for the innate immunity in the spinal cord, releasing pro-
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inflammatory cytokines and free radicals, which ultimately causes neuronal cell death (Zhao et 

al., 2010). 

The damage occurring in motor neurons through these pathways are primarily 

responsible for the onset of the disease; however, toxicity induced by mutant SOD1 in the 

neighboring astrocytes and microglial cells are the culprits for ALS disease progression (Boilee 

et al., 2006, Yamanaka et al., 2008)). Removal or reduction in mutant SOD1 levels in the 

microglial cells greatly improved disease progression in transgenic mice (Beers et al., 2006, 

Boillée et al., 2006). Indeed, it has been found that increased reactive oxygen species 

production as well as activation of unfolded protein response within microglial cells are 

associated with mice expressing mutant SOD1 (Jaronen et al., 2013, Wu et al., 2006a). On the 

other hand, astrocytes expressing mutant SOD1 release reactive oxygen species which promote 

motor neuron death (Nagai et al., 2007, Marchetto et al., 2008). Furthermore, mutant SOD1 

expression significantly reduces glutamate receptor subunit GluR2 expression in astrocytes in 

neighboring motor neurons which protect motor neuron from glutamate toxicity (Van Damme 

et al., 2007). Mutant SOD1 expression in the astrocytes can also disrupt mitochondrial functions 

within the astrocytes themselves as well as the neighboring motor neurons.  There have been 

large advances in research surrounding the pathology of mutant SOD1 protein in ALS since its 

first discovery. The wide multitude of pathological pathways associated with mutant SOD1 in 

ALS has not only implicated motor neuron itself but also the surrounding glial cells which have 

helped the understanding the mechanism of ALS onset and progression.  

 



 
 

Page | 8  
 

TAR-DNA Binding protein (TARDBP) 

TARDBP encodes for TDP-43 expression which localizes primarily in the nucleus but can 

also be found in the cytoplasm, shuttling between the two subcellular compartments (Chen-

Plotkin et al., 2010). Studies have shown TDP-43 predominantly functions as a RNA pathway 

regulator (Lee et al., 2011). Indeed, it has been identified that TDP-43 binds to a large number 

of RNA species in the mouse brain transcriptome (6,304 protein encoding genes) (Polymenidou 

et al., 2011b, Tollervey et al., 2011). TDP-43 mediates the splicing of its RNA targets either by 

itself or interaction with other splicing proteins (Tollervey et al., 2011, Polymenidou et al., 

2011a). Furthermore, TDP-43 has been shown to regulate mRNA stability and turn-over (Strong 

et al., 2007, Volkening et al., 2009), participate in axonal RNA transport (Alami et al., 2014), 

function as a part of the Drosha microRNA processing complex (Ling et al., 2010), and repressed 

transcription via its N-terminal RNA recognition motif (RRM) (Lalmansingh et al., 2011).  

In 2006, it was found that TDP-43 protein aggregates are present in ubiquinated 

cytoplasmic inclusions in motor neurons of sporadic ALS and FTD patients (Neumann et al., 

2006). This led to the discovery of mutations in TARDP in patients with FALS and SALS. Since 

then the current prevalence of ALS patients with TARDBP mutations is found to be ~3% of FALS 

cases and ~1.5% SALS cases (Kabashi et al., 2008, Iida et al., 2012, Daoud et al., 2009, 

Sreedharan et al., 2008).  These breakthrough discoveries gave new ground to ALS research 

outside of mutant-SOD1 related pathogenesis and raised the question what impact RNA 

processing has on ALS disease mechanisms. 
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On the whole, TDP-43 accumulates in the cytoplasm of neurons as cleaved, 

phosphorylated, rounded inclusions and is associated with neurodegeneration (Brettschneider 

et al., 2013). The TDP-43 proteinopathy can be first seen in the brainstem, the spinal cord and 

the motor cortex; then it diffuses throughout the brain and CNS possibly through the axonal 

transport system (Brettschneider et al., 2013). The TDP-43-containing inclusions not only 

accumulated the normal, full length TDP-43, but also the phosphorylated 45kDa species, as well 

as ubiquitylated high molecular weight and C-terminal truncated low molecular fragments. In 

addition, neuronal cells containing these inclusion bodies are prone to degeneration (Neumann 

et al., 2006, Pamphlett and Kum Jew, 2008). However, further studies have shown there is no 

correlation between the numbers of TDP-43 aggregates with in vivo neuronal death (Igaz et al., 

2011, Miguel et al., 2011). On the other hand, it has been postulated that conformation 

changes to TDP-43 within the inclusion bodies causes pathological changes in ALS (Neumann et 

al., 2006). Nonetheless, whether TDP-43 aggregates cause neuronal degeneration or simply a 

marker of neurotoxic stress is unclear.   

Mutations in the TDP-43 nuclear localization signal (NLS) cause mislocalization of TDP-43 

to the cytoplasm, and this has been linked to neurodegeneration in cells and transgenic mice 

(Barmada et al., 2010, Igaz et al., 2011, Winton et al., 2008). Furthermore, mutating the TDP-43 

NLS motif in Drosophila melanogaster worsened the retinal degeneration and reduced the life-

span that was associated accumulation of cytoplasmic TDP-43 aggregates (Miguel et al., 2011). 

Although cytoplasmic accumulation was more toxic in the Drosophila model, nuclear 

accumulation of TDP-43 was also toxic as a recent study has shown overexpression of nuclear 

TDP-43 can be responsible for neurotoxicity (Suzuki et al., 2015). Since TDP-43 normally 
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localizes to euchromatin domains, including perichromatin fibrils and nuclear speckles, some 

nuclear mislocalization could also confer possible neurotoxic effect due to overexpression of 

nuclear TDP-43 (Casafont et al., 2009). Therefore, both cytoplasmic and nuclear accumulation 

of overexpressed TDP-43 proteins can be toxic in animal models; however, the gain of toxic 

function requires further work to elucidate the associated mechanistic importance of 

cytoplasmic versus nuclear TDP-43.  

Loss of TDP-43 function has also been linked to neurodegeneration in several studies. 

Knockdown of TDP-43 has been found to reduce neurite growth and cell viability as well as 

induce apoptosis in neuron-like cell lines (Ayala et al., 2008, Iguchi et al., 2009). Furthermore, 

TDP-43 knockout mice were embryonic lethal and post-natal knockout of TDP-43 resulted in 

rapid death of mice (Chiang et al., 2010, Sephton et al., 2010, Kraemer et al., 2010). In post-

mitotic neurons, partial loss of TDP-43 due to heterozygous knockout and microRNA 

knockdown resulted in neurodegeneration which eventually led to paralysis and death (Yang et 

al., 2014, Kraemer et al., 2010). Due to the fact that TDP-43 binds to the 3’ UTR within its own 

mRNA transcript and is able to downregulate the level of its mRNA transcripts, overexpression 

of TDP-43 in the cytoplasm and nucleus was found to decrease levels of TDP-43 protein in cells 

and transgenic mice (Polymenidou et al., 2011b, Tollervey et al., 2011, Igaz et al., 2011, Winton 

et al., 2008). Whether this contributes to nuclear clearance of TDP-43 in human is not known. 

On the other hand, depletion of nuclear TDP-43 can lead to increased aggregation of TDP-43 

proteins which can further deplete nuclear TDP-43 by sequestering free TDP-43 and 

downregulate TDP-43 mRNA transcript from producing new TDP-43 in the nucleus, leading to a 

cycle of gain and loss of functions in the cell. Mutations in the TDP-43 nucleic acid binding RRM 



 
 

Page | 11  
 

domains has been found to prolong protein half-life and are resistant to both heat-induced 

unfolding and aggregation, and thus represent a more stable protein which lead to faster 

disease progression due to elevated protein longevity (Austin et al., 2014; Kabashi et al., 2008). 

This is in stark contrast with SOD1 mutant aggregates which are thought to arise from increased 

exposure of hydrophobicity regions due to protein instability (Wang et al., 2008; Tiwari et al., 

2005; Münch and Bertolotti, 2010).       

Due to the large number of RNA targets interacting with TDP-43, the possible toxicity 

requires the consideration of its normal function within the cell, and possible abnormal new 

activities from its abnormal mutants as well as its cellular localization. Thus, many pathways 

may be involved in TDP-43 mediated neurotoxicity by both gain and loss of functions. It is likely 

that they are not mutually exclusive.  

      

Fused in sarcoma (FUS) 

Following the discovery of TARDBP mutations in ALS, mutations in the FUS gene were 

identified in FALS patients. The mutated FUS proteins were found in cytoplasmic inclusions in 

lower motor neurons and in spinal cords of FALS patients (Kwiatkowski et al., 2009, Vance et al., 

2009). The FUS proteins have been known to shuttle between the nucleus and cytoplasm; 

however, similar to TDP-43, it resides largely in the nucleus (Lagier-Tourenne et al., 2010). FUS 

plays similar roles as TDP-43 (Sephton et al., 2011), and is responsible for RNA alternative 

splicing (Rogelj et al., 2012), required for efficient mRNA translation (Schwartz et al., 2012) and 

regulates transcription (Yasuda et al., 2013). The gene accounts for 3-5% in FALS cases and 0.7-
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0.9% in SALS (Rademakers et al., 2010, Chio et al., 2009, Ticozzi et al., 2009, Corrado et al., 

2010). Although the percentage of ALS patients associated with FUS mutation may seem 

insignificant, the functional similarities it shares with TDP-43 generated excitement in the field. 

Pathology studies have revealed patients carrying FUS mutations are characterized by 

FUS-positive immune-reactive inclusions within the cytoplasm with no indication of TDP-43-

positive and ubiquitin-positive aggregates that are associated with large percentage of ALS 

cases (Kwiatkowski et al., 2009, Vance et al., 2009). Studies have also suggested that FUS may 

act in the downstream pathway of TDP-43 which may explain the lack of TDP-43 pathology in 

patients with FUS mutations as wild-type FUS proteins could rescue TARDBP knockout but not 

vice versa, supporting the consensus view that FUS plays similar roles as TDP-43  (Kabashi et al., 

2011, Wang et al., 2011b). However, the picture is more complicated than it seems as it has 

been noted that RNA targets of FUS are distinct from TDP-43, suggesting their pathways may 

diverge during RNA process (Lagier-Tourenne et al., 2012).  

Like TDP-43, whether FUS confers toxicity via a gain or loss of function is unclear as 

mutations within the FUS nuclear localization signal (NLS) causing accumulation of FUS proteins 

within the cytoplasm do not always correlate with its corresponding FUS mutations in ALS 

patients (Dormann et al., 2010, Mackenzie et al., 2010). Genome-wide association studies have 

identified thousands of RNA targets have shown large abnormal RNA processing patterns due 

to FUS-knockdown (Lagier-Tourenne et al., 2012, Colombrita et al., 2012). A recent study has 

highlighted a simultaneous gain and loss of RNA processing functions conferred by FUS 

mutations in cells (Sun et al., 2015). It has shown that FUS mutations enhanced its interaction 
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with the SMN (spinal muscular atrophy) protein affecting its localization and function both in 

the nucleus and the cytoplasm. On the other hand, the same corresponding FUS mutations lead 

to reduction in its interaction with the U1-snRNP complex, leading to the reduced RNA 

processing ability (Sun et al., 2015).  

 

Hexanucleotide repeat expansion in C9ORF72  

In 2011, it was discovered a long hexanucleotide repeat (GGGGCC) in the first intron of 

the C9ORF72 (Chromosome 9 Open Reading Frame 72) was linked to both ALS and FTD 

(DeJesus-Hernandez et al., 2011, Renton et al., 2011). The locus was previously linked to ALS-

FTD patients through linkage and genome-wide association studies (GWAS); however, it was 

only when next generation, deep sequencing was used in parallel with the linkage analysis that 

C9ORF72 repeat expansion was discovered responsible (DeJesus-Hernandez et al., 2011). The 

number of repeats in healthy controls ranges between 2 to 19, whereas in the patients there 

can be as few as 20 repeats and as much as 1600 repeats (DeJesus-Hernandez et al., 2011). 

Recently, it appears that small sized expansion (around 70 repeats) may signify a “pre-mutation” 

which can expand in the offspring (Xi et al., 2015). The repeat expansion accounts for ~7% of 

SALS patients with European ancestry and ~40% of FALS patients, the largest percentages in all 

of ALS genetic etiologies (DeJesus-Hernandez et al., 2011, Renton et al., 2011).   

The discovery of the C9ORF72 locus sparked series of new research; however, its 

pathologic mechanism remains unknown. The formation of RNA foci has been found in the 

brain and spinal cord patients with the C9ORF72 repeat expansion (DeJesus-Hernandez et al., 
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2011). One study has suggested the repeat expansion may confer its toxicity through toxic gain 

of functions, as knocking down the C9ORF72 gene has shown improvement in motor neuron 

survival in vitro (Sareen et al., 2013).  A recent study has shown by knocking out the C9ORF72 

gene in mice do not cause motor neuron degeneration suggesting that the loss of protein 

function is not responsible for the toxicity (Koppers et al., 2015b). The formation of RNA foci 

found in ALS patients may cause toxicity through RNA splicing dysregulation (Cooper-Knock et 

al., 2015). 

Furthermore, in the brain tissues of ALS patients with C9ORF72 repeat expansions  

contain protein inclusions that contains dipeptide proteins produced from C9ORF72 repeat-

associated, non-ATG-mediated translation (RAN mediated, translation of all reading frames of 

the GGGGCC expansion) (Mori et al., 2013). These dipeptides can be toxic, inducing apoptosis in 

the neuronal cells causing neurodegeneration (May et al., 2014). Moreover, it was found that 

specifically the arginine containing peptides caused neurodegeneration as seen in Drosophila 

(poly-GR and poly-PR proteins), not the non-arginine containing dipeptides (poly-GA and poly-

PA) (Mizielinska et al., 2014, Kwon et al., 2014, Wen et al., 2014).  It has also been shown the 

dipeptides expression significantly reduced the levels of soluble Unc19 proteins and the 

amount of insoluble Unc19 proteins in patients with the C9ORF72 repeat expansion increased 

(May et al., 2014). This may lead to loss of Unc19 function which is important in maintaining 

motor neuron integrity (Knobel et al., 2001).  The presence of repeat expansions can also 

sequester RNA binding proteins hindering cellular RNA metabolism. One study showed the 

expression of the repeat expansion induced neurodegeneration in Drosophila, by interacting 
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with the RNA-binding protein Purα forming inclusions which can affect its role in RNA transport 

(Xu et al., 2013). 

The current trending view regarding how C9ORF72 orchestrated pathology in ALS comes 

from the recent reports showing that both C9ORF72 RNA repeat expansions and dipeptide 

repeat proteins might contribute towards ALS pathology through disruption of the 

nucleocytoplasmic transport system. Zhang et al (2015) have shown the C9ORF72 

hexanucleotide RNA repeats preferentially bind to the RanGAP1 proteins in neuronal cells and 

brain tissues derived from C9ORF72 ALS patients, this disrupts RanGAP1 function which are 

required for the efficient nucleocytoplasmic transport leading to impairment in nuclear 

transport of proteins and neurodegeneration in Drosophila (Zhang et al., 2015b). Similar results 

from the Freibaum et al (2015) study identified 18 genetic modifiers  that are components of 

nucleocytoplasmic transport that strongly enhanced C9ORF72 repeat expansion mediated 

neurodegeneration in Drosophila (Freibaum et al., 2015). Furthermore, defect in RNA export 

was identified in Drosophila models expressing the RNA repeat expansions, as well as C9ORF72 

ALS patients. Moreover, this study has identified the dipeptide proteins were also highly toxic in 

the Drosophila models. Study done by Jovicic et al (2015) supports that toxicity induced by 

C9ORF72 expansions do not only come from RNA repeats by showing that arginine-containing 

dipeptide species confer toxicity in yeast models supporting the findings from the previous 

studies (Mizielinska et al., 2014, Jovicic et al., 2015, Wen et al., 2014, Kwon et al., 2014). 

Furthermore, using a yeast genetic screening approach they have identified significant 

enrichment of genes participating in nucleocytoplasmic transport which enhanced C9ORF72-

mediated toxicity in yeast. Similarly to the Zhang et al study, they have identified genes 
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encoding components within the Ran-GTPase-dependent protein trafficking (as does RanGAP1) 

responsible for the marked decrease of protein nuclear import in neurons derived from 

C9ORF72 repeat expansion carriers (Jovicic et al., 2015, Zhang et al., 2015b)    

The aforementioned studies indicate a gain of toxicity conferred by C9ORF72 repeat 

expansions and this has been further supported by the recent transgenic mouse model with 66 

C9ORF72 repeat expansions showing key features of ALS/FTD including TDP-43 pathology, 

motor deficits and behavioral abnormalities (Chew et al., 2015). Loss of C9ORF72 protein 

functions has also been suggested to contribute to ALS. Studies have suggested the C9ORF72 

protein is involved in the endosomal trafficking of proteins particularly in autophagy and 

endocytosis (Farg et al., 2014). It was found that DNA hyper-methylation in the 5’ end of repeat 

expansions can occur which may lead to loss of C9ORF72 protein expression (Xi et al., 2014). As 

the C9ORF72 autophagy function is crucial for cellular functions, its loss may lead to 

disturbances in the protein degradation pathways which can cause aggregation of TDP-43 

proteins (Thomas et al., 2013). As C9ORF72 protein has been detected around the synaptic 

region in C9ORF72 repeat expansion affected ALS brain tissues, its loss of function could affect 

synaptic vesicle transport (Snowden et al., 2012). Conversely, the data from neuronal specific 

C9ORF72 knockout mice has suggested loss of C9ORF72 function on its own do not cause ALS as 

these mice did not display motor defects or other phenotypes associated with ALS (Koppers et 

al., 2015a). Although this suggests ablation of C9ORF72 may not contribute to the onset of the 

disease, its loss of function in ALS disease progression is not known.  
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Other genes associated with ALS 

Several other genes have been implicated in ALS that explain ≤2-3% of FALS and SALS 

cases. In 2010, through exome sequencing it was found that 1-2% of patients have mutations in 

VCP (Valosin containing protein) (Johnson et al., 2010). VCP protein is a chaperone which 

degrades abnormally folded and damaged proteins to ensure optimal protein quality in the cell, 

this in turn has been implicated in cellular pathways such as apoptosis, autophagy, and cell 

membrane fusion (Seguin et al., 2014, Wójcik et al., 2004, Asai et al., 2002, Ju et al., 2009, 

Latterich et al., 1995). Within the same year, mutations in OPTN (Optineurin) were found in 

FALS and SALS patients mainly restricted to Japanese and Italian ethnic groups (Maruyama et al., 

2010). Recent evidence has shown optineurin is important in mitophagy of damaged 

mitochondria through induction of autophagosome formation (Wong and Holzbaur, 2014). 

However, whether this process is associated with ALS pathology remains unclear. 

In 2011,  UBQLN2 (Ubiquilin 2) mutations were identified in X-linked FALS cases, where 

ubiquilin 2 mutants disrupts the ubiquitin-proteasome system leading to accumulation of 

ubiquitinated proteins as a result of the slower protein degradation (Deng et al., 2011). 

Similarly, another gene coding for SQSTM1 (Sequestome 1) also known as ubiquitin-binding 

protein p62 which is also involved in the ubiquitin-proteasome system, has been linked to both 

SALS and FALS cases (Fecto et al., 2011). Sequestome 1 protein directly interacts with important 

mediators in the ubiquitin-proteasome degradation pathway, and inhibition of the sequestome 

1 protein led to accumulation of ubiquitinated proteins (Seibenhener et al., 2004). Both 

ubiquilin 2 and sequestome 1 regulate proteasome degradation of ubiquitinated proteins which 
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shows similarities with the functions of VCP and optineurin proteins, highlighting the 

importance of this pathway in ALS (Seibenhener et al., 2007, Deng et al., 2011). Interestingly, 

like VCP and OPTN, mutations in SQSTM1 have also been associated with Paget’s disease of the 

bone; however, it is unclear whether there is any overlap with ALS (Hocking et al., 2002, 

Albagha et al., 2010, Weihl et al., 2009).  

The discovery of PFN1 (Profilin 1) mutations segregating with several large ALS families 

implicated the cytoskeletal pathway as a novel mechanism in ALS (Wu et al., 2012).   Profilin 1 is 

essential for the monomeric conversion of (G)-actin to the filamentous (F)-actin and the 

expression of Profilin 1 mutants had significantly reduced actin conversion. This led to 

decreased axonal outgrowth and smaller growth cones with abnormal morphology (Wu et al., 

2012). This cytoskeletal defect has also been implicated in mutation in the DCTN1 (Dynactin 1) 

gene through the linkage study (Puls et al., 2003). Dynactin is required to activate and tether 

the motor protein dynein to vesicles, organelles, proteins and RNA for retrograde transporting 

these molecules along the microtubule from the synapses back to the neuronal cell bodies (Gill 

et al., 1991). Disruption of the dynactin-dynein relationship causes motor neuron degeneration 

and ALS characteristics such as muscular weakness, abnormal gait and trembling in transgenic 

mice (LaMonte et al., 2002).  

 

Non-genetic causes of ALS  

Although several clear genetic factors have been identified in ALS, the role which 

environmental risk factors play in ALS-related neurodegeneration is undeniable. Despite a large 
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amount of studies done on this subject, there has not been a clear causal relationship identified 

between environmental risk factors and ALS. However, despite the difficulties associated with 

identifying potential environmental factors (such as variability in their effects, study designs 

that require long-term follow-ups, high financial cost and time required, recall and referral 

biases), research has identified several potential environmental causes for ALS (Al-Chalabi and 

Hardiman, 2013). Among them, high level of fitness is the most discussed risk factor for ALS due 

to the popularity gained from Lou Gehrig – a famous professional baseball who developed ALS 

as well as media reports of professional athletes developing the disease (Brennan, 2012). A 

recent population-based study which recruited 636 SALS patients and 2166 controls shows that 

it is the predisposition to leisure time physical activity not occupational physical activity or 

vigorous physical activity (i.e. marathons and triathlons) is significantly associated with ALS 

(Huisman et al., 2013). Therefore, how significant physical activity is associated with ALS 

required further investigation.  

On the other hand, occupational hazards linked ALS and Gulf War veterans due to the 

higher than expected ALS incidence in the veterans (Haley, 2003). Subsequent compilation of 

the literature shows that there is an association between Gulf War deployment and ALS 

(Medicine, 2006). Other evidence show an increased ALS risk in many branches of the US armed 

forces except the Marine Corps (Weisskopf et al., 2005). 

Several studies have identified smoking as a risk factor for ALS (Nelson et al., 2000, de 

Jong et al., 2012). One case-control study has failed to find any association between smoking 

and ALS (Yu et al., 2014), and a meta-analysis only found an increased risk of ALS in female 
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smokers and weak overall association between smoking and ALS (Alonso et al., 2010). 

Furthermore, a pooled analysis of five population cohorts did not show dose-response 

relationship between smoking duration and amounts with risk of ALS (Wang et al., 2011a). 

Therefore, whether smoking is a true risk factor for ALS needs further studies.  

 

Part Two: Carbonic Anhydrase – its biological function and role in human diseases 

 

The biological functions of the carbonic anhydrases (CA) 

Carbon dioxide (CO2) is a key metabolite in all living organisms. It is generated by 

respiration which needs to be expelled from the lungs in mammals and a key resource for 

plants to produce energy via photosynthesis.  

CO2 is stored as the bicarbonate ion (HCO3
-) during photosynthesis and carbonic acid 

(H2CO3) during respiration; this is due to the characteristic of CO2 being easily diffusible and the 

need for it to be hydrated into H2CO3 or HCO3
- to be trapped inside the cell for transportation 

(Coleman, 2000). Both photosynthesis and respiration processes need to convert HCO3
- or 

H2CO3 back into CO2 to be used either for energy production or to be released as waste. At 25oC, 

the rate constant for the reversible CO2 hydration is 3.5 X 10-2 /s which is relatively slow in the 

absence of a catalyst (Lindskog and Coleman, 1973). The enzyme carbonic anhydrase (CA) 

catalyzes both the hydration and dehydration reactions in the neutral pH range and increases 

the reaction constants to between 105 to 106/s without changing the equilibrium constant for 

the reactions (Lindskog and Coleman, 1973, Koenig and Brown, 1972). This function of CA is 



 
 

Page | 21  
 

crucial in maintaining the physiological metabolic states in organisms involving the processes 

that transport H2CO3 and HCO3
- for energy production, or utilize CO2 and HCO3

- as substrates for 

enzymatic reactions for the generation of fluids to maintain the physiological pH of the 

organism. 

CA was first discovered in 1933 in the red blood cells of cows (Meldrum and Roughton, 

1933). Since then, it has been found to be ubiquitous in all mammalian tissues, algae, plants 

and bacteria (Smith et al., 1999). CA is a large group of zinc-metalloenzymes and catalyzes more 

than one chemical reaction; however, the most important physiological reaction is the 

reversible reaction of CO2 hydration (CO2 + H2O  HCO3
- + H+) as it directly influences the 

cellular pH equilibrium (Imtaiyaz Hassan et al., 2013). Other than the CO2 hydration/HCO3
- 

dehydration reaction that CA carry out, there are several other reactions catalyzed by CA 

(Supuran et al., 2003). However, the CO2 hydration/HCO3
- dehydration reaction is the only one 

that is known to have physiological relevance, therefore it is considered the only physiological 

reaction that CA are involved (Supuran et al., 2003).  

Not only ubiquitous across a vast number of species, CA are abundant and concentrated 

in certain tissues. In mammals there is around 1 to 2g of CA per 1 liter of red blood cells (Keilin 

and Mann, 1940). These enzymes are relatively stable, water soluble, and retain activities over 

a pH range of 6 to 10 (Maren, 1967).   

In mammalian tissues, CA participates in a large variety of biological functions including 

acid-base balance, respiration, calcification, and the formation of aqueous humor, saliva, 

cerebro-spinal fluid and gastric acid (Imtaiyaz Hassan et al., 2013).  Since this enzyme catalyzes 
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the reactions involving HCO3
- ions and H+, it plays a key role in regulating pH in the body of the 

organism (Effros et al., 1978).  

 

Members of the CA family  

There are three evolutionary unrelated CA families designated α-, β-, and γ-CA. These 

families have no significant sequence homologies but all are zinc-bound enzymes carrying out 

the same reactions (Hewett-Emmett and Tashian, 1996). Sixteen genetically distinct α-CA 

isozymes have been discovered in mammals, thirteen of which are enzymatically active (Pan et 

al., 2007). Five of the thirteen isoforms are localized in the cytoplasm (CA1, CA2, CA3, CA7, 

CA13), five are GPI-anchored to plasma membranes of specialized epithelial and endothelial 

cells (CA4, CA9, CA12, CA14, CA15), two are located in the mitochondria (CA5A, CA5B), and one 

is secreted (CA6) (Pan et al., 2007). CA2 (previously known as CA C) is the most studied isoform. 

It is distributed widely across many different organs and cell types. It is one of the fastest acting 

CA isoforms with a CO2 hydration turnover rate of 106/s at 25oC (Sly and Hu, 1995).  

Two major forms of CA are found in humans: CA1 (previously known as CA B) and CA2. 

With a maximal CO2 hydration turnover at 2.2x105/s at 25oC, CA1 is of lower activity than CA2; 

however, CA1 is the major non-hemoglobin protein in the human red blood cells where it was 

estimated to contain six times the amount of CA1 compared to CA2(Ren and Lindskog, 1992). 

CA have been implicated in a wide variety of physiological and pathological processes. They 

contribute to the acid-base balance in renal tubular cells by supporting H+ secretions during 

urinary acidification (Sato et al., 1990), H+ generation in the gastric parietal cells to generate 
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gastric acid (Rangachari, 2007), HCO3
- secretion in the pancreatic juice from the pancreatic duct 

cells (Nishimori and Onishi, 2001, Nishimori et al., 1999) as well as contributing to the HCO3
- 

content in salivary secretions (Parkkila et al., 1997). They also affect the CO2 and HCO3
- 

exchange associated with kidney HCO3
- resorption (Purkerson and Schwartz, 2006), accelerate 

the removal of CO2 in the pulmonary capillaries in the lungs (Crandall and O'Brasky, 1978), 

promote organs such as the heart, brain and skeletal muscles to be rid of CO2 waste from their 

metabolic processes (Ghandour et al., 1992, Geers and Gros, 2000). Furthermore, the 

mitochondrial CA are involved in lipogenesis and gluconeogenesis in the hepatocytes, and 

inhibition of these CA are possible drug targets for obesity (Dodgson and Cherian, 1990, 

Supuran et al., 2008, Lynch et al., 1995).   

Indeed, the wide range of physiological roles that CA play allow them to be potential  

clinical targets for epilepsy, glaucoma, osteoporosis, obesity, cancer as well as  their recent 

implications in infectious diseases and Alzheimer’s disease (Supuran, 2011). At present, CA 

inhibitors are widely used in treating glaucoma, gastric ulcers, and osteoporosis; furthermore, 

they are used as diuretics as well as anti-epileptic agents (Supuran, 2008, Supuran, 2011). On 

the other hand, though CA activators have long been studied, their potential as therapeutic 

agents has yet to be investigated in clinical settings. However, studies have shown their 

possible roles in enhancing synaptic efficiency in Alzheimer’s disease, aging and other diseases 

which require memory and spatial learning (Pastorekova et al., 2004, Sun and Alkon, 2002).  

Although CA inhibitors can be very effective drugs, severe side effects can follow the 

treatment due to inhibition of CA in other tissues such as the kidney, stomach and red blood 
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cells (Tawil et al., 1993, Supuran and Scozzafava, 2002).  However, several advances have been 

made in this field in which effective inhibitors have been developed that can be given at the site 

of affected area (i.e. topically) rather than given systematically (Mincione et al., 1999). Indeed, 

it is worth considering given the ubiquitous presence of CA across the human body the 

importance of using topically active CA inhibitors not just for the treatment of glaucoma but 

also for other diseases to prevent unwanted side-effects. Given the large number of CA 

isoforms in the human body, it is crucial to develop inhibitors that target specific CA isoforms. 

This is possible through better understanding of the similarities and differences between the 

different isoforms and more importantly, their catalytic inhibitory mechanisms.   

 

CA1 gene expression and physiological function 

CA1 is located on chromosome 8q22 with neighboring genes CA2 and CA3, in the order 

of CA1, CA3, and CA2.  These genes cluster together in a stretch of around 180kb of DNA, with 

CA1 situated around 80kb away from the other two CA (Edwards et al., 1986, Andersson et al., 

1972, Lowe et al., 1991). CA1 differs from other CA genes (CA2, CA3, CA4, CA7) in that rather 

than being divided into seven exons, CA1 contains two noncoding exons 1a and 1b, lying 5’ to 

the translation start site (Lowe et al., 1990). The CA1 gene codes for a protein of 261 amino 

acids. CA1-expressing cells show a high level of CA1 gene methylation while non-expressing 

cells exhibit partial methylation. However, the differences in methylation may be coincidental 

and do not directly affect gene expression (Lowe et al., 1990). Polymorphic variants of CA1 gene 

have been identified in populations from Japan, Australia, and Philippines with no abnormal 
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phenotypes reported with these individuals (Goriki et al., 1980, Kageoka et al., 1981, Jones and 

Shaw, 1982, Omoto et al., 1981). 

CA1 is a cytosolic protein and has been found to be distributed ubiquitously in humans; 

however, it is particularly abundant in the red blood cells and the gastrointestinal (GI) tract 

(Supuran, 2008). Along with CA2, CA1 was found to be expressed at high levels in the epithelial 

cells in the human colon, as well as being expressed in the majority of sub-epithelial capillaries 

along the entire GI tract (Lonnerholm et al., 1985).  

In the GI tract CA1 is believed to facilitate the CO2 release from metabolic active cells 

(Christie et al., 1997), as well as play important roles in the alkalization/acidification of the 

luminal content of the colon by secreting HCO3
- through the HCO3

-/Cl- exchanger (Lonnerholm 

et al., 1985, Parkkila et al., 1994). Interestingly, CA1 expression was found to be significantly 

reduced in patients with colorectal cancer, where better prognosis is associated with those with 

more CA1 present (Mori et al., 1993). Also, reduced levels of CA1 have also been found in the 

colons of patients with ulcerative colitis, possibly affecting the Na+/Cl- ion absorption and HCO3
- 

secretions (Fonti et al., 1998). CA1 was also found to be the only CA isoform expressed in the α-

cells of the endocrine Langerhans islets in the pancreas; however, its function in the pancreas 

remains unknown (Parkkila et al., 1994).    

The highest amount of CA1 in humans is found in the red blood cells. Though being 

more than five times the amount of CA2 in these cells (Supuran et al., 2003), CA1 contributes to 

50% of the total CA activity in red blood cells due to being the much less active isoform 

(Supuran et al., 2003). The physiological role of CA1 in red blood cells appears to be uncertain. 
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In the 1970s, individuals with trace amounts of CA1 (inherited deficiency of CA1) were 

identified and they appeared healthy at the time of investigation with no abnormal phenotypes 

(Kendall and Tashian, 1977). Under normal physiological levels of chloride and HCO3
-, the CO2 

hydration activity of CA1 is reduced by 92% (Maren et al., 1976), with CA1 being one of the 

isozymes with comparatively low enzyme activity the importance of CA1 function under 

physiological conditions remains unclear (Sly and Hu, 1995, Supuran et al., 2005). It has been 

presumed that other CA isoforms can compensate for its lack in CA1 deficient cases (Sly and Hy, 

1995, Supuran et al., 2005).   

CA1 and CA2 are the only isoforms known to be present in erythrocytes sharing 62.3% 

sequence identity (Supuran, 2008) (Figure 1.1). It can be presumed that CA1 possible can 

compensate for the loss of CA2 when CA2 are absent. Indeed, in patients with CA2-deficiency, it 

was found that they do not express abnormal erythrocyte functions and expresses a higher 

level of CA1 which can be attributed to CA1 compensating for the absence of CA2 in the red 

blood cells (Sly et al., 1983). However, in tissues where CA1 levels are low and CA2 functions 

are more significant, the absence of CA2 is much more critical to the cellular functions, with 

patients presenting osteoporosis, renal tubular acidosis and brain calcification as the primary 

symptoms in CA2-deficient individuals (Sly et al., 1983).  
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The enzymatic mechanism of CA1 

The crystal structure of CA1 molecule is approximately ellipsoidal, with a dimension of 

41 X 41 X 47 Å measured from the extreme points of the backbone (Kannan et al., 1975). The 

active site comprises a funnel-shaped dead-end cavity about 12 Å deep leading to the center of 

the molecule where the zinc ion is located (Kannan et al., 1975).  

The predominant make-up for the CA1 secondary structure is the large β-pleated sheet, 

consisting of 10 chain-segments which take up about 40% of all the CA1 residues. The core of 

CA1 is formed by 5 chains, with the active site and zinc ligand situated in them (Figure 1.2) 

(Kannan et al., 1984).  

CA1      MASPDWGYDDKNGPEQWSKLYPIANGNNQSPVDIKTSETKHDTSLKPISVSYNPATAKEI 

CA2      -MSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLKPLSVSYDQATSLRI 

           * .*** .:****:* * :***:*:.******.*  :*:* ****:****: **: .* 

 

CA1      INVGHSFHVNFEDNDNRSVLKGGPFSDSYRLFQFHFHWGSTNEHGSEHTVDGVKYSAELH 

CA2      LNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYAAELH 

         :* **:*.*:*:*.::::******:. :***:******** : :*******  **:**** 

 

CA1      VAHWNSAKYSSLAEAASKADGLAVIGVLMKVGEANPKLQKVLDALQAIKTKGKRAPFTNF 

CA2      LVHWNT-KYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTNF 

         :.***: **..:.:*..: *****:*:::***.*:* ****:*.*::****** * **** 

 

CA1      DPSTLLPSSLDFWTYPGSLTHPPLYESVTWIICKESISVSSEQLAQFRSLLSNVEGDNAV 

CA2      DPRGLLPESLDYWTYPGSLTTPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPEE 

         **  ***.***:******** *** *.****: ** *******: :**.*  * **:    

 

CA1      PMQHNNRPTQPLKGRTVRASF- 

CA2      LMVDNWRPAQPLKNRQIKASFK 

          * .* **:**** * ::***  

 
Figure 1.1 Protein sequence alignment between CA1 and CA2. Identity match is at 62.3% between the two 

isoforms. Clustal Omage was used for the alignment. * indicates positions with fully conserved residue. : 

indicates strong conservation between groups. . Indicates weak conservation between groups 
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The zinc is coordinated to the three nitrogen atoms from His94, His96, and His119, with 

the fourth ligand site filled by a water or hydroxide ion (OH-) (Figure 1.3) (Kannan et al., 1984). 

The three histidine residues and the hydroxide ion form a distorted tetrahedral geometry 

around the zinc molecule with the zinc-bound hydroxide ion (Zn2+-OH-) as the eliciting a 

nucleophilic attack on CO2. The histidine ligands are further hydrogen-bonded to the “second 

shell” of residues as the indirect ligands surrounding the protein-metal binding sites (Lesburg 

and Christianson, 1995). These indirect ligands contribute to the protein-metal affinity in the 

Figure 1.2. Schematic drawing of the CA1 protein. Red and yellow colors represent the helices and β-structure, 
respectively. The grey sphere in the middle is the zinc ion essential for CA1 catalytic activity and is coordinated to 
a water molecule represented by the red sphere. Red dashed lines represent co-ordinations around zinc. Image 
drawn from Brookhaven protein data bank file (file name – 3W6I). The figure was generated and rendered using 
Pymol. 
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Figure 1.3. Zinc-bound histidines and water in the CA1 active site. a) The histidines and water form tetrahedral 
geometry around the zinc molecule; b) zoomed out drawing showing centrally placed CA1 active site. Grey and 
red spheres represent zinc and water, respectively. Red dashed lines represent co-ordinations around zinc. Image 
drawn from Brookhaven protein data bank file (file name – 3W6I). The figure was generated and rendered using 
Pymol. 
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tetra-cooridinate metal site. The metal-binding ligands and the “second shell” residues which 

include 10 amino acids are invariant across all α-CA. They either contribute directly to the 

catalytic activity of CA or help to stabilize the protein structure and that of the catalytic core 

(Lindskog, 1997).  

The mechanism of mammalian CA activity has been studied in depth and is believed to 

involve three distinct steps (Silverman and Lindskog, 1988, Lindskog et al., 1984). In the first 

two steps, CO2 bound to the active site and the zinc-bound OH- elicit nucleophilic attacks on the 

CO2 which then forms the metal bound HCO3
- and eventually gets replaced by H2O and released 

into the reaction medium. In the third step, the active site is regenerated by an intramolecular 

proton transfer from zinc-bound H2O to the edge of the protein generating OH-, resuming 

nucleophilicity of the active site (Figure 1.4).   

 

 

 

 

 

 

The proton transfer from the active site to the reaction medium is the rate-limiting step 

of the process (Steiner et al., 1975), though other studies have suggested the rate limiting step 

is when the nucleophilic zinc-bound OH- ion attacks CO2 (Mauksch et al., 2001). The residues 

Figure 1.4. Equations showing the principles of the CA reversible hydration of CO2. Note that the above reactions 

can be reversed in the other direction using protons and HCO3
-
 ions as substrate to generate CO2. “E-Zn

2+
” 

representing the enzyme. 

 

Step 1: E-Zn2+-OH- + CO2 E-Zn2+-HCO3
- 

Step 2: E-Zn2+-HCO3
- + H2O E-Zn2+-H2O + HCO3

- 

Step 3: E-Zn2+-H2O  E-Zn2+-OH- + H+ 
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Glu106, Thr199, Tyr7, His64, His67, His200, and H243 in CA1 play an important role in 

mediating the proton transfer as well as the preceding step by forming a hydrogen-bond 

network (Kumar and Kannan, 1994, Kannan et al., 1977).  

CA1 possesses four histidine residues for the proton transfer process (His64, His67, 

His200 and His243) (Briganti et al., 1997) (Figure 1.5). These four histidine residues are buried 

deep within the active site (unlike CA2 which has a “histidine cluster” that assists the proton 

transfer) which explains it being one of the low-activity CA in the family (Briganti et al., 1997).  

 

 

 

 

 

 

 

 

 

 

Figure 1.5. The four histidines assisting proton transfer in CA1. Schematic drawing of the four histidines are 
colored orange/blue/red alongside the zinc-bound histidines and water. Residues hydrogen bonded to the four 
histidines are colored pink/blue/red. Blue and red spheres represent zinc and water, respectively. Red and black 
dashed lines represent co-ordinations around zinc and hydrogen bonds between residues and a water molecules, 
respectively. Image drawn from Brookhaven protein data bank (file name – 3W6I). The figure was generated and 
rendered using Pymol. 
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As mentioned above, the zinc ion is bound to three histidine residues, and further 

bonded to a water molecule under low pH (pH less than 7) or to a OH- ion in high pH (pH 

greater than 7) (Eriksson et al., 1988a, Eriksson et al., 1988b). The hydrogen bond is formed 

between zinc-bound water (or OH- ion) and Thr199 as well as between Thr199 and Glu106 

(Kannan et al., 1984, Merz, 1990) (Figure 1.6). Studies have shown that Thr199 is known to 

stabilize the correct orientation of the hydrogen atom in the zinc-bound OH- ion to allow CO2 

moving to the active site (Merz, 1990). Glu106 further stabilizes Thr199 which allows CO2 to 

react with the OH- ion.   

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Thr199 and Glu106 residues in CA1. The two residues are colored yellow/blue/red alongside its 
hydrogen bonded waters, zinc-bound histidines and water. Residues hydrogen bonded to the four histidines are 
colored pink/blue/red. Blue and red spheres represent zinc and water molecules, respectively. Red and black 
dashed lines represent co-ordinations around zinc and hydrogen bonds between residues and water molecules, 
respectively. Image drawn from Brookhaven protein data bank (file name – 3W6I). The figure was generated and 
rendered using Pymol. 
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There is evidence demonstrates that Thr199-Glu106 residues are important in the CA 

catalytic function. Both Glu106 and Thr199 residues play important roles in helping the 

transition of the HCO3
- ion into a much more stabilized intermediate while bound to the zinc ion 

after the reaction between CO2 and the OH- ion has occurred (Bottoni et al., 2004). On the 

other hand, Tyr7 does not seem to have a large effect on the activity of CO2 reversible hydration 

(Mikulski et al., 2011, Liang et al., 1993).   

As indicated by the above reactions, HCO3
- ions and the OH-/water bound to the active 

site are interchangeable (Xue et al., 1993b). When HCO3
- replaces OH-/H2O, it accepts a 

hydrogen bond from the Thr199 residue which in turn is hydrogen bonded to Glu106 (Kumar 

and Kannan, 1994, Xue et al., 1993b). In this way, Thr199 and Glu106 act as hydrogen-bond 

donors and select the HCO3
- ions as substrates to bind to the zinc ion. 

 

Role of CA in the nervous system 

The presence of CA activity in the nervous system was found many years ago, where it 

held important physiological roles (Ashby, 1948). These roles include HCO3
- transport and 

metabolism to maintain neuronal extracellular (Shah et al., 2005) and intracellular pHs (Casey 

et al., 2009, Svichar et al., 2009) regulation of extracellular (Fedirko et al., 2007) and 

intracellular ion concentrations (Ghandour et al., 2000), propagation of neuronal activity 

through CO2 metabolism (Sapirstein et al., 1984), and generation of HCO3
- to be utilized for 

fatty acid biosynthesis used for neuronal function (Tansey et al., 1988) (Table 1.1). 
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CA 

isoform 

 

Localization in 

nervous system 

cell types 

 

 

Roles in the nervous 

system 

 

Citations 

 

CA2 

 

Astrocytes, 

oligodendrocytes, 

sensory neurons, 

myelin 

 

Removal of CO2/HCO3
- 

waste, maintenance 

of neuronal chloride 

levels, regulation of 

intracellular pH 

 

Kumpulainen et al., 1983, Langley et al., 

1980, Roussel et al., 1979, Kimelberg et 

al., 1982, Snyder et al., 1983, Neubauer 

et al., 1991, Kazimierczak et al., 1986, 

Peyonnard et al., 1986, Robertson and 

Grant, 1989, Aldskogius et al., 1988, 

Wong et al., 1983 

 

 

CA4 

 

Cerebral capillary 

endothelial cells 

 

Regulate CO2/HCO3
- 

exchange between 

brain and plasma 

 

 

Ghandour et al., 1992 

 

CA5 

 

Astrocytes, 

neurons 

 

Fatty acid synthesize, 

gluconeogenesis, 

calcium homeostasis 

 

 

Ghandour et al., 2000, Panov et al., 

2014, Yu et al., 1983  

 

CA14 

 

Neurons 

 

Modulates excitatory 

synaptic transmissions  

 

 

Parkkila et al., 2001 

 

 

CA2 appears to be the predominant isoform of CA in the central nervous system due to 

its abundancy and presence in various neuronal cell types (Giacobini, 1962). Indeed, when 

individuals with CA2-deficiency were discovered, one of their key characteristics was mental 

Table 1.1 Distribution and role CA in the nervous system 
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retardation due to cerebral calcification (Sly et al., 1983). It was first suggested that the CA2 

enzymes are mainly situated in the glial cells, with very little activity in the neurons, showing 

120 times more CA activity in the glial cells than neurons (Giacobini, 1961, Giacobini, 1962). The 

localization of CA2 in the subtypes of glia cells has been controversial. Subsequent studies have 

shown that CA2 reside exclusively in the oligodendrocyte cells (Kumpulainen et al., 1983, 

Langley et al., 1980), whereas others have shown that CA2 activity can be seen in both 

astrocytes and oligodendrocytes (Roussel et al., 1979, Kimelberg et al., 1982). However, it 

appears that the CA activity in astrocytes is much lower than that of oligodendrocytes (Snyder 

et al., 1983). 

Although it was believed human neuronal cells do not contain CA proteins (Maren, 

1967), studies have shown otherwise (Ghandour et al., 2000, Parkkila et al., 2001, Neubauer et 

al., 1991). Evidences have suggested presence of CA2 in the human, mice and rat sensory 

neurons of the peripheral nervous system and detected overall CA activity in the sensory 

neurons (Neubauer et al., 1991, Kazimierczak et al., 1986, Peyonnard et al., 1986, Robertson 

and Grant, 1989, Aldskogius et al., 1988, Wong et al., 1983). Although the exact 

neurophysiological function of CA2 in the neurons is unknown, it has been postulated that it is 

used for removal of CO2 and HCO3
- produced in the decarboxylation reactions when making 

neurotransmitters (Severinghaus et al., 1969),  maintaining levels of chloride ions in neuronal 

cells for GABA neurotransmission (Pasternack et al., 1993), and more importantly regulation of 

intracellular pH due to changes in high glycolytic activities as well as in calcium influx in the 

neurons (Deitmer et al., 2014, Wong et al., 1983).   
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The mitochondrial isoform CA5 was found in neuronal and astrocytic cells of the 

cerebellum, cerebral cortex, hippocampus, sciatic nerve and the spinal cord (Ghandour et al., 

2000). In the astrocytes, the mitochondrial CA5 provides HCO3
- for the pyruvate carboxylase to 

carry out fatty acid synthesize and gluconeogenesis which are important for energy metabolism 

in the brain (Panov et al., 2014, Supuran et al., 2008, Yu et al., 1983). Similarly, CA2 in the 

oligodendrocytes assists acetyl-CoA carboxylase to synthesize fatty acids used in myelin 

formation which is the primary function of oligodendrocytes (Tansey et al., 1988, Baumann and 

Pham-Dinh, 2001).  Due to the absence of pyruvate carboxylase in the neurons fatty acid 

synthesis and gluconeogenesis might not be its main roles, the function of CA5 in the neurons 

have been postulated (Ghandour et al., 2000). Similar to CA2, CA5 was thought to regulate 

calcium ion concentration in neurons as well as assist GABA transmission through the 

production of HCO3
- (Ghandour et al., 2000). Furthermore, this study has also highlighted that 

the different subcellular localized CA isoforms have their specific roles in the nervous system. 

Indeed, the membrane-associated CA4 was shown to be located in the endothelial cells of the 

cerebral capillaries which is associated with the blood-brain barrier (Ghandour et al., 1992). The 

functional significance of CA4 at this specific site may be to assist exchanges of CO2 and HCO3
- 

between the brain and its circulating blood plasma (Ghandour et al., 1992).  

A more recent study demonstrated the presence of CA14 in the mouse brain and similar 

patterns of expression were seeing in the human brain (Parkkila et al., 2001). This study shows 

strong staining of CA14 in the pons medulla as well as positive staining in the hippocampus, 

cerebellar cortex, pyramidal tract, choroid plexus and corpus callosum, therefore a widespread 

expression pattern is seen. This study has further suggested CA14 modulates the excitatory 
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synaptic transmissions (Parkkila et al., 2001). Interestingly, this study implicates the expression 

of a CA isozyme within the motor system as CA14 is found to express in the midbrain and 

pyramidal tract. Another study has shown administration of sulthiame, a relative CA14-sensitive 

inhibitor, significantly increased the motor cortex motor threshold in humans reducing the 

axonal excitability (Siniatchkin et al., 2006).    

There have been studies focusing on the presence of CA activity in the motor system 

(neurons involved in the innervation of muscle fibers); these studies observed the overall CA 

activity therefore there was no indication which CA isoform was responsible for the observed 

activity. In the spinal nerves as well as nerves of the peripheral nervous system innervating the 

muscle fibers, the majority of these studies using animal tissues (mice, rabbits and rats) show 

CA reside primarily in the sensory neurons rather than the motor neurons, and have shown 

actual immuno-staining of CA in sensory neurons that have been widely used to distinguish 

these nerves from motor neurons (Szabolcs et al., 1991, Riley et al., 1988, Oswald and Riley, 

1987, Sanger et al., 1991, Wilke et al., 1992, Macias et al., 1998). However, these studies also 

show a less degree of the CA presence in the motor neurons. The difference between the 

distribution of CA in motor and sensory neurons varied across studies, with some reporting 

proportionally more CA in the motor neurons (Riley and Lang, 1984, Riley et al., 1988, Sanger et 

al., 1991, Oswald and Riley, 1987) than other studies (Szabolcs et al., 1991, Macias et al., 1998, 

Wilke et al., 1992). In a few studies it has been found that CA primarily reside in the small 

gamma motor neurons (Riley et al., 1984, Peyronnard et al., 1986).  
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Furthermore, CA activities found in the cytoplasm of intramuscular nerves in rat soleus 

muscles (Riley et al., 1982). They also play important roles in skeletal muscle contraction in 

frogs (Scheid and Siffert, 1985). Human subjects treated with the non-competitive CA inhibitor, 

acetazolamide (Verpoorte et al, 1967), were found to display diminished neuromuscular reflex 

(Brechue et al., 1997).  

There have been very few studies that have indicated that CA1 is expressed in the 

nervous system; however, their presence in the mammalian nervous system is clear. It was 

shown that CA1 is present in the nerve fibers of the rat carotid body – a chemoreceptor which 

senses changes in CO2 as well as pH in the environment (Yamamoto et al., 2003). This finding is 

consistent with the previous evidence showing CA activity in the sensory nerves in the 

peripheral nervous system and nerves of the dorsal root ganglia (Riley et al., 1988, Oswald and 

Riley, 1987, Szabolcs et al., 1991, Sanger et al., 1991). Further evidence linking CA1 to neuronal 

sensory functions comes from a study in a family with inactive erythrocyte CA1 (Shapira et al., 

1974). The individuals in the family presented nerve deafness as well as renal tubular acidosis 

which was in contrast with a previous study showing individuals with no erythrocyte CA1 

activity was asymptomatic (Kendall and Tashian, 1977). In addition, it the study also 

demonstrated that inactive CA1 was associated with functional defects of sensory nerves as 

nerve deafness is directly affected by the vestibulocochlear nerve – a cranial nerve within the 

peripheral nervous system (Sanders and Gillig, 2010). 

Direct evidence of the presence of CA1 in the central nervous system comes from a 

study showing an increased expression of CA1 in the frontal cortex of patients with depression 
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using a proteomic approach (Johnston-Wilson et al., 2000). Due to the nature of the techniques 

used it was not possible to highlight the localization of CA1 within the specific cell-types 

(Johnston-Wilson et al., 2000). This result sheds light on the pathway in which the use of CA 

inhibitor acetazolamide significantly improves patients with bipolar disorder in clinical trial 

(Hayes, 1994). This study also highlights the need for determining the presence of CA1 activity 

in other areas of the brain for potential therapeutic targets.  

Furthermore, a recent study has shown an increased expression of CA1 in the cerebral 

astrocytic inclusions from resected tissues of patients with pediatric epileptic seizures (Visanji 

et al., 2012). Thus, it appears that similar to CA2, CA1 could be present among multiple 

subtypes of neuronal and non-neuronal cells within the nervous system.    

 

CA1 and human disease 

CA1 has been implicated in a variety of diseases which include Alzheimer’s disease 

(Korolainen et al., 2006), epilepsy (Visanji et al., 2012), thyroid diseases (Yoshida et al., 1991, 

Mondrup, 1980), colorectal cancer (Bekku et al., 2000, Wang et al., 2012, Mori et al., 1993), 

ulcerative colitis (Fonti et al., 1998), lung cancer (Chiang et al., 2002), ankylosing spondylitis 

(Chang et al., 2012, Chang et al., 2010, Zheng et al., 2012), diabetes (Gambhir et al., 2007, 

Torella et al., 2014), pancreatitis (Kino-Ohsaki et al., 1996, Frulloni et al., 2000), prostate cancer 

(Takakura et al., 2012), and chronic myeloid disorder (Bonapace et al., 2004). Among these 

studies, the levels and activities of CA1 in the affected individuals compared to their 

corresponding healthy individuals vary amongst different diseases (i.e. in some diseases CA1 



 
 

Page | 40  
 

levels are higher and in others lower), therefore it is not known what the role of CA1 is in 

disease pathology as a whole. The variety and number of affected tissue types implicated with 

changes in CA1 expression indicate that it is possible that CA1 plays much more significant roles 

in disease than it appears and therefore deserves closer attention.   

In 2007, a study has shown that there was significant elevated CA1 expression in the 

vitreous fluid samples collected from patients with diabetic related retinopathy (Gao et al., 

2007). Injecting CA1 into rat vitreous fluid increased retinal vascular permeability via activation 

of kallikrein-kinin pathway and the contact pathway (Gao et al., 2007). Furthermore, it was 

found injecting CA1 into the subdural space of the rat brain induced blood-brain barrier 

permeability (Gao et al., 2007). These are significant findings in that: 1) it has implied CA1 and 

its downstream pathway as potential new drug targets for treating diabetic related retinopathy; 

2) it has identified a previously unknown link between CA1 and the contact system which 

suggests there are significant roles of CA1 that are yet to be discovered which will directly 

affect human pathophysiology; 3) it has been suggested the presence of CA1 can be destructive 

to tissue function specifically activating the inflammatory contact system due to CA1-induced 

alkalinization. As indicated by the authors, using CA1-selective inhibitors may be one viable 

therapeutic approach (Supuran et al., 2003).  

 

Potential role of CA1 in motor neuron degeneration in ALS  

The increased level of serum CA3 protein has been reported in many studies in patients 

with ALS and other neuromuscular disorders (Ohta et al., 1991, Osterman et al., 1985, Hibi et al., 
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1984, Vaananen et al., 1988). CA3 has the lowest enzyme activity in the CA family 

(Krishnamurthy et al., 2008) and shares 54.05% and 58.46% sequence identity to CA1 and CA2, 

respectively (Figure 1.7). However, as CA3 is a cytosolic form of CA which resides primarily in 

the type I muscle fibers (Shima et al., 1983), this phenomenon is likely due to muscular damage 

associated with the neuromuscular diseases and thereby leakage of CA3 proteins into the blood 

stream rather than neurodegeneration.  

 

 

 

 

 

 

 

 

 

 

 

Other studies linking CA with motor defects include mice deficient in CA8 or 

alternatively name carbonic anhydrase-related protein (CARP) show motor dysfunctions 

CA3      -MAKEWGYASHNGPDHWHELFPNAKGENQSPVELHTKDIRHDPSLQPWSVSYDGGSAKTI 

CA1      MASPDWGYDDKNGPEQWSKLYPIANGNNQSPVDIKTSETKHDTSLKPISVSYNPATAKEI 

CA2      -MSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTHTAKYDPSLKPLSVSYDQATSLRI 

           : .*** .:***::* : :* *:*:.****::.*   ::* **:* ****: .::  * 

 

CA3      LNNGKTCRVVFDDTYDRSMLRGGPLPGPYRLRQFHLHWGSSDDHGSEHTVDGVKYAAELH 

CA1      INVGHSFHVNFEDNDNRSVLKGGPFSDSYRLFQFHFHWGSTNEHGSEHTVDGVKYSAELH 

CA2      LNNGHAFNVEFDDSQDKAVLKGGPLDGTYRLIQFHFHWGSLDGQGSEHTVDKKKYAAELH 

         :* *:: .* *:*. ::::*:***:   *** ***:**** : :*******  **:**** 

 

CA3      LVHWNP-KYNTFKEALKQRDGIAVIGIFLKIGHENGEFQIFLDALDKIKTKGKEAPFTKF 

CA1      VAHWNSAKYSSLAEAASKADGLAVIGVLMKVGEANPKLQKVLDALQAIKTKGKRAPFTNF 

CA2      LVHWNT-KYGDFGKAVQQPDGLAVLGIFLKVGSAKPGLQKVVDVLDSIKTKGKSADFTNF 

         :.***  **  : :* .: **:**:*:::*:*  :  :* .:*.*: ****** * **:* 

 

CA3      DPSCLFPACRDYWTYQGSFTTPPCEECIVWLLLKEPMTVSSDQMAKLRSLLSSAENEPPV 

CA1      DPSTLLPSSLDFWTYPGSLTHPPLYESVTWIICKESISVSSEQLAQFRSLLSNVEGDNAV 

CA2      DPRGLLPESLDYWTYPGSLTTPPLLECVTWIVLKEPISVSSEQVLKFRKLNFNGEGEPEE 

         **  *:* . *:*** **:* **  *.:.*:: ** ::***:*: ::*.*  . * :    

 

CA3      PLVSNWRPPQPINNRVVRASFK 

CA1      PMQHNNRPTQPLKGRTVRASF- 

CA2      LMVDNWRPAQPLKNRQIKASFK 

          :  * ** **:: * ::***  

 
Figure 1.7 Protein sequence alignment between human CA3 to CA1 and CA2. CA3 shares 54.05% identity with CA1 

and 58.46% with CA2. Clustal Omage was used for the alignment. * indicates positions with fully conserved 

residue. : indicates strong conservation between groups. . indicates weak conservation between groups 
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(Lamont and Weber, 2015) and movement ataxia (Aspatwar et al., 2014). Despite CA8 localize 

to the cytoplasm, it has no CA enzyme activity due to its lacks histidines to coordinate the zinc 

ion (Aspatwar et al., 2014). It shares around 30-40% amino acid sequence identity with other 

mammalian CA (Skaggs et al., 1993) (Figure 1.8). The motor dysfunction associated with CA8 is  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

due to increased intracellular store calcium release as faulty CA8 unable to inhibit inositol 1,4,5-

triphosphate (IP3) binding to its receptor (Lamont and Weber, 2015). Due to the lack of 

CA8      MADLSFIEDTVAFPEKEEDEEEEEEGVEWGYEEG---VEWGLVFPDANGEYQSPINLNSR 

CA3      ------------------------MAKEWGYASHNGPDHWHELFPNAKGENQSPVELHTK 

CA1      -----------------------MASPDWGYDDKNGPEQWSKLYPIANGNNQSPVDIKTS 

CA2      ------------------------MSHHWGYGKHNGPEHWHKDFPIAKGERQSPVDIDTH 

                                  . .*** .     .*   :* *:*: ***:::.:  

 

CA8      EARYDPSLLDVRLSPNYVVCRDCEVTNDGHTIQVILK---SKSVLSGGPLPQGHEFELYE 

CA3      DIRHDPSLQPWSVS--YDGGSAKTILNNGKTCRVVFDDTYDRSMLRGGPLPG--PYRLRQ 

CA1      ETKHDTSLKPISVS--YNPATAKEIINVGHSFHVNFEDNDNRSVLKGGPFSD--SYRLFQ 

CA2      TAKYDPSLKPLSVS--YDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDG--TYRLIQ 

           ::* **    :*  *       : * *:: .* :.   .:::* ***:     :.* : 

 

CA8      VRFHWGRENQRGSEHTVNFKAFPMELHLIHWNSTLFGSIDEAVGKPHGIAIIALFVQIGK 

CA3      FHLHWGSSDDHGSEHTVDGVKYAAELHLVHWNP-KYNTFKEALKQRDGIAVIGIFLKIGH 

CA1      FHFHWGSTNEHGSEHTVDGVKYSAELHVAHWNSAKYSSLAEAASKADGLAVIGVLMKVGE 

CA2      FHFHWGSLDGQGSEHTVDKKKYAAELHLVHWNT-KYGDFGKAVQQPDGLAVLGIFLKVGS 

         .::***  : :******:   :  ***: ***   :  : :*  : .*:*::.:::::*  

 

CA8      EHVGLKAVTEILQDIQYKGKSKTIPCFNPNTLLPDPLLRDYWVYEGSLTIPPCSEGVTWI 

CA3      ENGEFQIFLDALDKIKTKGKEAPFTKFDPSCLFPAC--RDYWTYQGSFTTPPCEECIVWL 

CA1      ANPKLQKVLDALQAIKTKGKRAPFTNFDPSTLLPSS--LDFWTYPGSLTHPPLYESVTWI 

CA2      AKPGLQKVVDVLDSIKTKGKSADFTNFDPRGLLPES--LDYWTYPGSLTTPPLLECVTWI 

          .  :: . : *: *: ***   :  *:*  *:*     *:*.* **:* **  * :.*: 

 

CA8      LFRYPLTISQLQIEEFRRLRTHVKGAELVEGCDGILGDNFRPTQPLSDRVIRAAFQ 

CA3      LLKEPMTVSSDQMAKLRSLLSSAENEPP-----VPLVSNWRPPQPINNRVVRASFK 

CA1      ICKESISVSSEQLAQFRSLLSNVEGDNA-----VPMQHNNRPTQPLKGRTVRASF- 

CA2      VLKEPISVSSEQVLKFRKLNFNGEGEPE-----ELMVDNWRPAQPLKNRQIKASFK 

         : :  :::*. *: ::* *    :           :  * ** **:. * ::*:*  

 

Figure 1.8 Protein sequence alignment between CA8 to CA3, CA1 and CA2. CA8 shares 39.61% identity with CA1, 

41.43% with CA2 and 38.98% with CA3. Clustal Omage was used for the alignment. * indicates positions with fully 

conserved residue. : indicates strong conservation between groups. . indicates weak conservation between groups 
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literature on the activities of CA enzymes in the motor neurons the question of whether the CA 

enzyme has a pathophysiological role in ALS is unknown. 

In an investigation in 2007, Gruzman et al used the biotinylation technique to detect 

structural conformers of SOD1; subsequently, CA1 was identified as the protein recognized by 

the anti-SOD1 antibody after biotinylation (Liu et al, 2010). This study identified the change in 

CA1 in human ALS spinal cords which has not been previously reported.  

Preliminary western blot data shows there is a significantly higher level of CA1 present 

in ALS patients’ spinal cords (Figure 3.1). This indicates that CA1 is possibly involved in the 

pathogenesis of ALS. In addition, expressing human wild-type CA1 in Drosophila melanogaster 

motor neurons showed deficiencies in locomotion as well as reduced lifespan (Liu et al, 

unpublished results).  

One study conducted in 2013 has shown mice with familial ALS symptoms have 

progressive acidosis in the CNS tissues during disease development (Dodge et al., 2013). Since 

CA modulates pH levels in the mammalian CNS, the role of CA was investigated through 

acetazolamide (the most widely used CA inhibitor) administration in these mice (Chesler, 2003). 

Acetazolamide significantly decreased limb strength in the ALS mice up to ~75 days from the 

beginning of the experiment; however, the limp strengths were similar between acetazolamide 

administered and untreated group from ~80 days to ~120 days (Dodge et al., 2013). There was 

also a significant earlier onset of paralysis and decrease in rate of survival in acetazolamide 

treated ALS mice (Dodge et al., 2013). Since acetazolamide has been established to be 
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membrane permeable, it likely inhibited intracellular CA including but not limited to CA1 

(Maren, 1967).    

There has been little indication from the literature regarding the role CA1 expression in 

the mammalian nervous system. It has been shown that there was a strong immunostaining for 

CA1 in rat carotid nerve bundles (Yamamoto et al., 2003). However, no evidence has been 

shown whether CA1 proteins are expressed in human motor neurons or its possible roles in the 

nervous system. It has been shown that CA is involved in the formation and flow of 

cerebrospinal fluid and high CO2 hydration activity in the glial cells of mammalian central 

nervous system, but whether CA1 is specifically involved in these processes is unknown (Maren, 

1967, Giacobini, 1962).  

 The aim of this project is to bring further understanding into the effect of CA1 in 

mammalian cells - whether CA1 expression will modify the cellular viability and survival. To 

accomplish this, transient CA1 expression system was used to monitor changes to cell viability 

changes in three mammalian cell lines. The straightforward nature of the transient expression 

system was done to test whether CA1 expression is able to induce significant effect in cell 

survival within a shorter time period in the initial study.  

 Virally transduced inducible stable CA1 expression was also used to observe whether 

CA1 caused changes to cell viability in a longer time period, and the inducible expression 

prevented any potential CA1-associated toxicity during setting up the stable cell lines.   

To observe whether CA1 enzyme activity is involved in any cell viability changes, a 

fluorescence-based enzyme assay was developed utilizing a sensitive and fast micro-plate 
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reader and the pH-sensitive fluorescent dye Pyranine to monitor CA1 activity. This was done to 

avoid the use of specialized equipment needed in other CA activity assays and to monitor the 

activity changes in the previously untested CA1 mutants using this technique.     

The basis for this study comes from a lack of understanding in the role of CA1 in ALS and 

previously unpublished results from Dr. Liu showing increased CA1 expression in the spinal 

cords of ALS patients. By observing whether CA1 expression has an effect on mammalian cell 

viability takes the first step in understanding the role of CA1 in ALS and human.   
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Fluorescence-based assay for measuring CA1 enzyme activity 

Introduction 

Observing the rate of CA1 enzyme activity is imperative to this project as it allows the 

ability to conclude if any effects obtained during later experiments were contributed by CA1 

enzyme activity. Based on several well-established methods which are discussed below; this 

study shows the successful development of a unique and modified fluorescence-based 

technique which allowed measurements of the relative catalytic activities of CA1. 

Establishing enzyme-inactive CA1 mutants was needed to be used in conjunction with 

wild-type CA1 to confirm any effects seen under CA1 protein expression can be attributed to 

CA1 enzyme activity. To accomplish this, mutations in Thr199 and Glu106 within the active site 

were generated for the inactive CA1 mutants.    

 

The catalytic process of CA 

The CA enzymes catalyze the reversible hydration of CO2 giving rise to HCO3
- and H+: 

CO2 + H2O  HCO3
- + H+ 

The catalytic mechanism for this reaction is composed of essentially of three steps 

(Bottoni et al., 2004): 

1) EZn2+-OH- + CO2  EZn2+-HCO3
- 

Chapter Two 
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2) EZn2+-HCO3
- + H2O 

 EZn2+-OH2 + HCO3
-
 

3) EZn2+-OH2   EZn2+-OH- + H+
 

In the first step of the reaction, the zinc OH- ion carries out a nucleophilic attack on the 

CO2 molecule positioned in the CA reactive site – the result of this nucleophilic attack converts 

the OH- ion into HCO3- (Lindskog, 1997, Silverman and Lindskog, 1988, Bottoni et al., 2004). In 

step two, a water molecule substitutes the zinc bound HCO3- releasing it into the reaction 

medium (Lindskog, 1997, Silverman and Lindskog, 1988, Bottoni et al., 2004). In the final step, a 

proton transfer process occurs from the zinc-bound water molecule to the surrounding reaction 

media which will generate the enzymatically active CA reactive site with an OH- ion bound to 

the zinc for the process to repeat (Lindskog, 1997, Silverman and Lindskog, 1988, Bottoni et al., 

2004).  The proton transfer in the last step is believed to the rate-limiting reaction for CA 

catalysis (Briganti et al., 1997, Steiner et al., 1975, Silverman and Lindskog, 1988). 

 

The importance of the Thr199 and Glu106 residues in CA1 catalysis 

 The zinc ion in the CA1 catalytic site is bound to three histidine residues, with its fourth 

coordination site occupied by water at the low pH (pH <7) or a OH- ion at high pH (pH >7) 

(Eriksson et al., 1988). The hydrogen bond between the zinc-bound OH- (or water molecule) 

and an oxygen atom of Thr199 which is further linked to a hydrogen atom of Glu106 (Merz et 

al., 1989) (Figure 2.1) forms the zinc-OH- (water)-Thr199-Glu106 hydrogen-bond network which 
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is crucial in the CA-mediated CO2 hydration. More importantly, this hydrogen-bond network is 

also conserved in CA1 (Merz et al., 1989, Kannan et al., 1977a, Liang et al., 1993). 

There have been many studies on the functional role of the zinc-OH--Thr199-Glu106 

hydrogen-bond network. What is known is that the Thr199 residue is critical for positioning the 

hydrogen atom of hydroxide in the “down” position so as to allow CO2 to gain access to the 

active site and react with the OH- ion (Merz, 1990, Supuran et al., 2003). Also, Thr199 forms 

part of the “deep water pocket” where CO2 binds in the active site, placing it in close proximity 

to the zinc-OH- ion for the nucleophilic attack (Merz, 1990, Merz et al., 1989). The hydrogen 

bond between Thr199 and the hydrogen atom in the zinc-OH- ion prevents the hydrogen atom 

from interacting with the water molecules within the catalytic site and blocks the CO2 

molecules from reaching the “deep water pocket” (Merz, 1990, Supuran and Scozzafava, 2002, 

Supuran et al., 2003). Also, the zinc OH--Thr199 hydrogen bond would expose the oxygen atom 

towards the CO2 molecules, which is a more energetically favorable position for reaction with 

CO2 (Merz et al., 1989).  
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Figure 2.1.Thr199 and Glu106 comparison between CA1 and CA2. The two residues are critical across all stages of the 

enzymatic process in a) CA1 and b) CA2. The two residues are colored yellow/blue/red for CA1 and grey/blue/red for 

CA2, their outer hydrogen bonded residues are labelled pink/red/blue. Also shown are its hydrogen bonded waters, 

the catalytic zinc ion and zinc-bound water. Both residues share great similarities in CA1 and CA2. Grey and red 

spheres represent zinc and water molecules, respectively. Red and black dashed lines represent co-ordination 

between water molecule to the zinc ion and hydrogen bonds between residues and water molecules, respectively, 

with bond lengths labelled in angstroms. The image was generated from the x-ray structures of CA1 and CA2 from 

Brookhaven protein data bank (CA1 – file code 3W6I; CA2 – file code 2CBA). The figure was generated and rendered 

using Pymol. 

b) 

a) 
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Thr199 and Glu106 have also been found important in other stages of the CA catalytic 

process. It has been found that the zinc bound HCO3
- ion undergoes structural rearrangements 

to stabilize itself after CO2 nucleophilic attack (Liang and Lipscomb, 1989). The proposed 

mechanism involves an internal proton transfer within the HCO3
- ion between its two oxygen 

atoms and allows the HCO3
- to stabilize itself while bound to the zinc (Liang and Lipscomb, 

1989). It has been found that this proton shift between the HCO3
- oxygen atoms first requires a 

relay mechanism by transferring double protons to the Thr199 oxygen and then to the Glu106 

oxygen (Miscione et al., 2007, Bottoni et al., 2004). The electrostatic effects of the protonated 

Glu106 on the zinc ion and the HCO3
- oxygen atom stabilizes the structure of the intermediate 

molecules and lowers the energy required for the molecule to move between different 

transitional states during the proton transfer. The loss of Glu106 increases the amount of 

energy needed to carry out the proton transfer and causes weakening of the HCO3
--zinc 

interaction (Bottoni et al., 2004, Miscione et al., 2007). Furthermore, Thr199 also plays an 

important role in the water molecule attacking the zinc bound HCO3
- (Bottoni et al., 2004). As 

Thr199 interacts with the HCO3
-, it stabilizes the intermediate transitional states of the enzyme, 

allowing more energy efficient removal of the HCO3
- ion. These findings show that Thr199-

Glu106 are directly involved in forming the stable zinc bound HCO3
- intermediates as well as 

supporting the later transition from HCO3
- to a water molecule within the active site.  

Thr199-Glu106 are also involved in the deprotonation from the zinc-bound water to the 

reaction medium (Pullman, 1981, Merz et al., 1989, Kannan et al., 1977b). Studies have shown 

that the proton transfer process which produces the zinc-bound OH- ion critical for further 

nucleophilic attack on CO2 requires the existence of the Thr199-Glu106 proton relay network 
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(Pullman, 1981, Merz et al., 1989). In this case, the Thr199-Glu106 proton shuttle acts as the 

proton acceptor for the deprotonation of the zinc-bound water, while Thr199 acts as the 

immediate proton relay for further transfer to Glu106 (the deprotonation process is also 

facilitated by binding to the zinc ion). This process allows the formation of the OH- to react with 

CO2 in the active site without the need to overcome any energy barriers (Pullman, 1981). 

 

Generating CA1 inactive mutants – what the studies have shown 

There have been few reports studying the enzyme activities of CA1 mutants, while the 

majority has studied CA2 mutants. However, these existing CA1 studies which have been 

focusing on mutants generated by point mutations and their subsequent effects on the enzyme 

activity have highlighted a few important key amino acid residues within CA1. Residues that 

participate in the catalysis as well as those that support the catalysis-dependent residues 

structurally were examined to reproduce CA2 enzyme activity in CA1 and vice versa (Behravan 

et al., 1991, Engstrand et al., 1995). However, all of these studies have failed to show a near or 

complete ablation of CO2 hydration/HCO3
- dehydration activity (the reversible reaction that is 

believed to be physiologically important) after substituting the targeted CA1 residues. One 

study has looked at the residue Val62 within the CA1 active site, and His67 and His200, the two 

histidine residues that are important for the proton transfer during CA catalysis by mutating 

them to the corresponding amino acids at the three positions in CA2 (Engstrand et al., 1995). 

The results showed that the single mutation of Val62 or His67 only affected CA1 enzyme 

activity minimally, while mutations involving His200 increased the enzyme activity. 
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Furthermore, the triple mutations (i.e. containing point mutations at all three residues) 

surprisingly doubled the CA1 enzyme activity for CO2 hydration.  

On the other hand, Kockar et al found a mutation in amino acid 91 of CA1 near the 

substrate binding site in CA1 and previously thought non-essential for the catalysis, increases 

the CO2 hydration activity by 16% (Kockar et al., 2010). Another finding made by Ferraroni et al 

in 2002 was the CA1 Michigan 1 variant (Ferraroni et al., 2002) which was first discovered in a 

Caucasian family in Michigan and has a single mutation in reside 67 (from Histidine to Arginine) 

(Shaw et al., 1962). This variant shows small overall conformation deviations from the wild-type 

and its CO2 hydration and ester hydrolysis activities in absence of zinc are unchanged when 

compared to the wild-type.  

Mohanty et al have studied the effects of substituting residues that form the hydrogen-

bond network in CA1 (Tyr7, His107, Glu117, Thr199 and Glu106) on its esterase activity 

(Mohanty et al., 1998). Although these residues are believed to be important in either 

supporting CA1 structural integrity or directly participate in the enzyme reaction, Thr199 and 

Glu106 are conserved across different isozymes of CA in other mammalian species and believed 

to be most critical to CA1 enzyme function (Merz et al., 1989, Liang et al., 1993, Kannan et al., 

1977a). Mohanty et al study also found that Thr199Val, Glu106Gln, and Glu106Ile mutants had 

the lowest esterase activity (5-10% of the wild-type). Although the study focused on the CA1 

esterase activity, these three mutants provided the best candidates for the purpose of 

establishing CA mutants inactive of the reversible CO2 hydration/ HCO3
- dehydration (CA 

anhydrase) activity. As the previous results have shown the esterase activity of CA1 relative to 
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CA2 is of the same ratio as the reversible CA anhydrase activity between CA1 and CA2 (around 

1:7 for both), it is likely that the three mutants would have absent/near-absent CA anhydrase 

activities (Verpoorte et al., 1967, Supuran et al., 2003). 

 

Measuring CA enzyme activity 

The natural reversible hydration of CO2 reaction without the catalyst is fairly slow 

(Koenig and Brown, 1973). The CA-catalyzed reaction greatly enhances the rate of reaction and 

is both pH- and temperature-dependent, with faster reaction seen under the higher pH and 

temperatures for both CA1 and CA2 (Khalifah, 1971, Khalifah and Edsall, 1972). 

CA anhydrase activity is generally measured using the manometric, colorimetric, 

spectrophotometric and electrometric methods (Henry, 1991).  

 

The manometric method 

The first CA activity measurement was developed by Meldrum and Roughton in 1933 

(Meldrum and Roughton, 1933), using the buffer containing the CA enzyme shaken vigorously 

with the HCO3
- solution in a boat-like vessel. The apparatus was connected to a manometer 

which measures the rate of CO2 production at various times when the shaking occurred. Unlike 

the methods later developed which are based upon measuring pH changes, this method is 

more reliable in that it directly measures CO2 production. However, its main disadvantage is the 

limitation factor of its maximal measuring ability due to gas diffusion when the reaction velocity 
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reaches higher levels and with the increased speed of shaking (Roughton, 1941). This in effect 

causes the slow response-rate one may encounter with manometers and it is amplified when 

enzyme activity rises to high levels. The effect which diffusion has on the observed reaction rate 

was later calculated by taking into account of the existence of stationary films in between liquid 

and gas governing the rate of their interchanges (Roughton, 1941). However, this was a 

theoretical correction that was not confirmed by experimental measures. Furthermore, the 

other major disadvantage associated with manometers is the possibility of forming air bubbles 

between the liquid-gas interphase in its pipe which can affect the reliabilities of the results 

(Daood et al., 2007). 

 

The colorimetric method 

The colorimetric and electrometric methods were developed later to measure the pH 

change when CO2-saturated water was injected into the carbonic anhydrase-containing system 

producing protons and HCO3
- ions (Wilbur and Anderson, 1948). These methods utilized a pH 

electrode or a pH indicator (e.g. bromothymol blue and phenol red) measuring the time for 

reaching an end-point pH or following the pH changes. The classic colorimetric method 

described by Maren in 1960 was simple to carry out (Maren, 1960). This method uses phenol 

red as the pH indicator and measures the pH change as CO2 is pumped into the reaction 

medium followed by the addition of an alkali buffer: the time for phenol red to turn from red to 

yellow indicates the CA activity.  
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The colorimetric approach is inexpensive and simple to use; however, its main 

disadvantage comes from the inhibitory effects on the CA activity from the indicators which in 

some cases can inhibit the reaction by 30% (Wilbur and Anderson, 1948). Furthermore, the 

colorimetric methods used in the early developmental stages were relatively crude and unable 

to determine small differences in enzyme activities. Due to the fact that majority of the 

techniques relies upon human identification of the color change; they are sensitive to human 

errors.  

 

The electrometric method 

The electrometric method is similar to the colorimetric method, using a pH electrode is 

quick and simple. The pH electrode forms the basis for the classical Wilbur-Andersen method 

which is used commonly even today (Wilbur and Anderson, 1948). This method uses an 

apparatus which injects CO2-saturated solution into the CA-containing solution. The pH 

electrode measures the time for the pH to drop from an alkaline state (~pH 8) to an acidic state 

(~pH 6.3). This method cannot measure the small changes in enzyme activity and there does 

not seem to be a good linear relationship between the time measured (time to reach the end-

point pH) and the pH range (Wilbur and Anderson, 1948). Furthermore, using a pH electrode 

also comes with its own disadvantages. For example, some suggests pH electrodes are sensitive 

to pH changes in the 0.001 scale; however, taking account into the various layers surrounding 

the electrode its sensitivity is likely to be 0.01 after calibration (Cheng and Zhu, 2005). Due to 

the necessity of using a stir-bar in these experiments, disturbances in the liquid will affect the 
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readings. Furthermore, the thickness, composition, surface area, and electrical property of the 

solution will affect the readings, making the comparisons with data obtained with a different 

brand of electrode to be potentially inaccurate (Cheng and Zhu, 2005).  

The inherent disadvantage of using these earlier techniques is the requirement of 

carrying out the experiments at 0 ˚C, far off the physiological temperature of 37 ˚C in which CA 

normally function. This temperature requirement also reduces the velocity of the reaction so 

that the delay in instrument response time and mixing (which could be problematic) will not be 

shown to be limiting factors in monitoring the enzyme activity.   

 

The spectrophotometric method 

The great improvement of the colorimetric method is the use of spectrophotometric 

measurement combined with a stop-flow rapid-mixing instrument (Khalifah, 1971). The use of 

spectrophotometric dyes allows the quick detection of pH change (within 0.001 pH change), 

and the stop-flow instrument allows monitoring the instantaneous pH change at the initial 

phase of the reaction (less than 0.001 sec) (Khalifah, 1971). The stop-flow instrument functions 

by forcing a small amount of reaction solution (around 80μl) into a mixing chamber, the flow of 

the solution is suddenly stopped within milliseconds (as low as 0.03 milliseconds) initiating the 

monitoring of the enzyme kinetics (Berger, 1978). Due to its ability to measure miniscule 

amounts of reactants in a rapid time-frame, the stop-flow system allows researchers to 

measure CA activity at 25˚C instead of 0˚C, making the experiment more practical to carry out 

(Khalifah, 1971). The stop-flow instrument can be linked to any rapid-responding device such as 
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a spectrophotometer, temperature recorder, nuclear magnetic resonance system which can be 

further connected to a computer designed to handle the large data output (Berger, 1978). 

Despite its advantages, many research laboratories are not equipped with this unusual system 

making it less widely used.  

CA does not only catalyze the CO2-HCO3
- exchange reaction, it also catalyzes a host of 

other reactions (Supuran et al., 2003). One spectrophotometric method is to measure the 

esterase activity of the CA enzyme. This method uses nitrophenyl acetate as the substrate and 

measures the change in light absorbance once the substrate has been hydrolyzed (Verpoorte et 

al., 1967). Although the CO2 hydration and esterase reactions share some similarities (i.e. the 

reaction Km is independent of pH, the zinc ion central to both reactions and that CA2 is faster 

than CA1 for both reactions), there still exist some fundamental differences between the two 

reactions (Khalifah, 1971, Verpoorte et al., 1967). Namely, CA show different reactive behaviors 

under a pH range for both reactions, and the enzyme velocities between CA2 and CA1 are 

different for the two reactions (Verpoorte et al., 1967, Khalifah, 1971). Lastly, the method of 

measuring the esterase activity appears prone to errors as a close observation of the results 

shows the highly active CA2 enzyme the range of error is close to 30% (Verpoorte et al., 1967).     

Other methods that do not measure the pH change as CA activity also exist. These 

include the measure of 18O isotopes to be incorporated in the CO2-HCO3
- exchange using a mass 

spectrometer (Silverman, 1982). Similarly, another method uses the 13C isotope which also 

measures the CO2-HCO3
- exchange using nuclear magnetic resonance (Simonsson et al., 1979). 

These methods have the advantages of being able to be carried out at physiological 
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temperatures, in native cells, without the use of a buffer, and require as little as 10-15 moles of 

CA enzyme for reaction. However, they are time-consuming and require the use of expensive 

equipment maintained by an expert. Furthermore, due to the nature of the output of the 

spectra data, the noise level can be very large. 

Radioactively labelled tracers have also been used to detect CA activity, by incorporating 

14C radioisotopes into HCO3
- (H14CO3

-) and CO2 (14CO2) and measuring radioactive 14CO2 and 

H14CO3
- production respectively (Stemler, 1993). The diffused radioactive gases are further 

trapped and transferred into a scintillation counter where the radioactivity is measured. Unlike 

the other methods, this assay does not require the use of expensive equipment such a mass 

spectrometer or stop-flow equipment and is sensitive in the nano-gram range; however, it 

requires the use of radioactive substances which can difficult to both handle and discard. 

Further, the assay can take a relatively long time (up to 5 hours) to develop strong signals 

(Stemler, 1993).  

Comparing the methods described above and taking into account convenience, 

sensitivity, experimental temperature and pH range, as well as speed, the most convincing 

approach to measure CA activity is through the spectrophotometric methods. One method 

used by Li and Ci but which was first described by Thompson and Jones showed that the 

compound 5-di methylaminonaphthalene-l-sulfonamide (dansylamide) was able to form a 

complex with the zinc ion in CA which increases the emission of fluorescence when excited (Li 

and Ci, 1995, Thompson and Jones, 1993). This method is sensitive in that it can detect trace 

amounts of CA (29ng/ml), and can be carried out at 20 ˚C in a pH range of 7.0-8.5. However, the 
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dansylamide is a CA inhibitor and cannot be directly used to measure the CA activity. In addition, 

it does not directly measure CA activity; rather it measures the degree of dansylamide 

association with the CA active site. 

The method described by Shingle and Moroney used a fluorescence indicator, 8-

hydroxy-pyrene-1,3,6-trisufonate (Pyranine) which can sense the pH changes between pH 6.5 

and pH 8.0. This method measures the pH change when a buffer of pH 6.0 (more protons being 

present) is mixed with another buffer of pH 8.0 (containing HCO3
-) that drives the dehydration 

of bicarbonates, consuming protons in the process forming CO2 and H2O (Shingles and Moroney, 

1997). This is a sensitive method allowing detection of 65ng/ml of CA measured in the pH range 

of pH 6.5-8.0 at 25 ˚C. This method uses a spectrophotometer to measure the fluorescence 

change of Pyranine reflecting the pH changes. It is also equipped with a stop-flow apparatus 

that is able to stop the injection of the alkali solution (containing HCO3
-) rapidly.  The initial rate 

of the CA reaction rate can be determined at a high resolution of 2ms (milliseconds). Unlike the 

dansylamide method which does not measure the CA reaction itself but the concentration of 

zinc ion in the mixture, this method directly measures the physiological CA reaction. However, 

as mentioned previously, the stop-flow apparatus is fairly specialized and not widely available 

which is the apparent disadvantage to this technique.  
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Aim of the study 

All of the methods described above offer their unique blend of advantages and 

disadvantages; however, the early methods (manometric, colorimetric, and electrometric) have 

proven to be fairly inaccurate or require undesirable experimental conditions (i.e. 0 oC). On the 

other hand, using the specialized equipment such as the stop-flow spectrophotometer, nuclear 

magnetic resonance, radio-isotope tracers are cumbersome to handle and require specialized 

techniques. What the study requires is a simplified, efficient, yet accurate method to measure 

the speed of the CA1-catalyzed reaction for comparing the relative activities of wild-type and 

mutant CA1.   

For the purpose of this project, it was decided to develop a method using the 

fluorescence-indicator Pyranine to measure the rate of pH change of HCO3
- hydration during 

the reversible CA anhydrase reaction using the Pherastar microplate reader which can handle 

very rapid and sensitive changes in fluorescent intensities (a modification for the use of the 

stop-flow device). The goal was to use bovine CA2 (bCA2) as the proof of principal test. Once a 

linear relationship between bCA2 concentrations and the rates of the initial pH changes during 

bCA2 catalyzed reaction can be obtained, this method will be valid to measure relative activities 

of wild-type and mutant CA1.   

The objective for the study in this chapter is to develop a modified method for 

measuring CA activity.  The new fluorescence-based technique uses a rapid injection of the 

reactant into the wells of a microplate to initiate the CA-catalyzed reaction and measure the 

changes in fluorescence via the Pherastar microplate reader. Pherastar can detect sensitive 
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fluorescent changes within short enough time intervals (<40ms) which allow the reliable 

measurement of the rate of the initial reaction. The validity of this method will be 

demonstrated by the linear relationship between the concentrations of the CA enzymes and 

the rates of the initial reactions as described by Shingles and Moroney (1997). Furthermore, the 

study will determine whether the two mutations in Thr199 and Glu106 amino acid residues are 

catalytically inactive.  
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Materials and methods 

Mutagenesis to generate site directed CA1 mutants 

Site-specific mutations were introduced into human wild-type CA1 gene at the position 

of Thr199 and Glu106. The Thr199Val, Glu106Ile and Glu106Gln mutations in the CA1 gene 

were made with appropriately designed primers using a two-round PCR method (Figure 2.2, 

and Appendix 1).  

The first round of PCR produces two double-stranded DNA fragments with the mutation 

site near the 3’ end of one fragment and the 5’end of the other fragment. The two fragments 

overlap with each other with the complementary sequences containing the mutation site. The 

F1 and R1 primers contain the 5’ and 3’ end wild-type CA1 sequences and KpnI and NotI 

restriction sites, respectively.  

The F2 and R2 primers contain the Glu106Ile mutation in the 5’ and 3’ end of the primer 

sequences respectively. The F3 and R3 primers contain the Thr199Val mutation in the 5’ and 3’ 

end of the primers respectively. The F4 and R4 primers contain the Glu106Gln mutation in the 5’ 

and 3’ end of the primers, respectively. To produce each mutant, the pair of F1 and R1 primers 

was added along with the F2/R2 primers for making Glu106Ile mutant or the F3/R3 for making 

Thr199Val mutant or the F4/R4 for making Glu106Gln mutant. For the PCR reaction, 500ng of 

the CA1-pcDNA3.1(+)plasmid was used,  1μM of each upstream and downstream primer was 

used, along with 1mM dNTP mixture (#4030, Takara, Japan), 2.5 units of Pwo DNA polymerase 

(#11644947001, Roche Applied Science, Germany) and 1X Pwo PCR buffer with water added to 

a total of 50μl of the reaction volume.  The PCR condition is as follows: 95˚C for 3mins, 30 
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rounds of: 95˚C for 30s 60˚C for 30s 72˚C for 60s 72˚C for 5mins, and placed at 4 ˚C. The PCR 

products were purified using the QIAquick PCR Purification kit (Qiagen, California, USA) and ran 

on a 1% agarose gel. For each mutant, two PCR fragments (for Glu106Ile 5’ fragment size = 

492bp, 3’ fragment size = 979bp; for Thr199Val 5’ fragment size = 771bp, 3’ fragment size = 

700bp; for Glu106Gln 5’ fragment size = 492bp, 3’ fragment size = 979bp) were gel-purified 

using the QIAquick gel extraction kit (Qiagen, California, USA).  

The second round PCR reaction were conducted using the gel-extracted DNAs (two 

fragments per mutant) to anneal and DNA polymerase to fill in the gap DNA sequences. For this 

PCR reaction 500ng of total DNA was used with the two fragment added in a 1:1 molar ratio, 

along with 1mM dNTP mixture (#4030, Takara, Japan), 2.5 units of Pwo DNA polymerase 

(#11644947001, Roche Applied Science, Germany) and 1X Pwo PCR buffer with water added to 

a total reaction volume of 50μl .  The PCR condition is as follows: 95˚C for 3 mins, 30 rounds of: 

95˚C for 30 s 40˚C for 30 s 60˚C for 60 s and then 72 ˚C for 5 mins, and placed at 4 ˚C. 

The PCR products were purified using the QIAquick PCR Purification kit (Qiagen, 

California, USA), and ran on a 1% agarose gel. The CA1 mutant DNAs were gel-purified using the 

QIAquick gel extraction kit (Qiagen, California, USA), with the band sizes of 1471bp. The 

extracted DNA was digested with KpnI (R0142S, NEB, Massachusetts, USA) and NotI (R0189S, 

NEB, Massachusetts, USA). The mutant CA1 inserts were then ligated to the KpnI and NotI-

digested pcDNA3.1 (+) vector using T4 DNA ligase (M020S, NEB, Massachusetts, USA). All 

mutant DNAs were confirmed by s produced commercial sequencing company (Invitrogen 

sequencing services). 
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First round PCR 

Second round PCR 

Two DNA fragments purified, gel extracted, 

and mixed 

Figure 2.2. Schematic diagram of CA1 mutant production via two-round PCR method. The F1, R1, F2, R2, F3, R3, F4, 

R4 primers with their sequences are listed below. The red box depicts the mutant site only and is not drawn to 

scale relative to any of the mutant locations in the CA1 gene. The technique used is based on the previous 

published method by Mohanty et al (Mohanty et al., 1998).  

R2/R3/R4 

F2/F3/F4 F1 

R1 

DNA polymerase 

DNA polymerase 



 
 

Page | 86  
 

The wild-type and mutant CA1 genes were cloned from the pcDNA3.1(+) vector into the 

bacterial expressing pRSET-C vector. The CA1 genes were first replicated using PCR with the 

forward primer containing the NdeI restriction site (and 5’ end of CA1) and the reverse primer 

containing HindIII restriction site sequence, 6X His-tag sequence (and 3’ end of CA1)  using the 

primer sequences as listed in Appendix 2. 

For the PCR reaction, 500ng of each of the CA1-pcDNA3.1(+) DNA (wild-type CA1 or 

mutant Thr199Val CA1 or mutant Glu106Ile CA1 or mutant Glu106Gln CA1)  mutant plasmid 

was used, 1μM of F4 upstream and R4 downstream primer were used, along with 1mM dNTP 

mixture (#4030, Takara, Japan), 2.5 units of Pwo DNA polymerase (#11644947001, Roche 

Applied Science, Germany) and 1X Pwo PCR buffer with water added to a total of 50μl of the 

reaction volume.  The PCR condition is as follows: 95˚C for 3mins, 30 rounds of: 95˚C for 30s 

60˚C for 30s 72˚C for 60s 72˚C for 5mins, and placed at 4˚C.  

The PCR products were purified using the QIAquick PCR Purification kit (Qiagen, 

California, USA) and ran on a 1% agarose gel. The CA1 mutant DNAs were gel purified using the 

QIAquick gel extraction kit (Qiagen, California, USA), with the band sizes of 1476bp. The 

extracted DNA was digested with NdeI (R0142S, NEB, Massachusetts, USA) and HindIII (R0189S, 

NEB, Massachusetts, USA). The wild-type and mutant CA1 inserts were then ligated to the NdeI 

and HindIIII digested pRSET-C vector using T4 DNA ligase (M020S, NEB, Massachusetts, USA). All 

wild-type and mutants CA1-pRSET-C DNAs were confirmed by commercial sequencing company 

(Invitrogen sequencing services). 
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Protein expression and purification 

The expression constructs were transformed into BL 21 (DE3) pLysS cells, plated on LB 

plates containing ampicillin (100μg/ml) and incubated o/n at 37°C. The next day colonies were 

collected and used to inoculate 500ml cultures of 2YT medium containing ampicillin. The 

cultures were grown at 37°C until the OD 600 was 0.5 and then induced by addition of IPTG to a 

final concentration of 0.5mM. Cultures were then grown at 30°C for 4hrs. The cells were 

pelleted by centrifugation at 5100 x g for 5mins at 4oC. Cell pellets were re-suspended in 37.5ml 

of cold extraction buffer (50mM Tris pH 7.8, 20mM Imidazole). The cells were then sonicated 

(while being on ice) in 10x 10s cycles with 20s breaks to keep the cell suspension remains cold 

throughout. The sonicated solution was then centrifuged at 12,000g for 30mins at 4oC. 5ml 

Nickel-Sepharose His-Trap columns (GE Healthcare, UK) were washed with 10 column volume 

of washing buffer (50mM Tris pH 7.8, 500mM NaCl, 20mM Imidazole, and 5% glycerol) before 

loading the protein supernatant to the column at approximately 1ml/1min loading speed using 

a peristaltic pump. After loading all the protein, the unbound protein was washed off from the 

column using washing buffer using approximately 20x column volume. The bound protein was 

eluted using approximately 20x column volume elution buffer (50mM Tris pH 7.8, 100mM NaCl, 

200mM Imidazole, 5% glycerol) from the column. The eluted proteins were then purified and 

desalted by filtering through a centrifugal unit using the Amicon ultra-15 centrifugal unit 

(#UFC901024, Merck Millipore, Germany) and re-suspended in water. Final protein 

concentrations were quantified using the BCA method using bovine serum albumin to generate 

a protein standard curve (#23225, Pierce Biotechnology, USA). To visualize the proteins, 10μl of 
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2.5μM of the protein samples were ran on a SDS-PAGE gel and stained with the Instantblue – a 

coomasie protein stain dye (#ISB1L, Expedeon, San Diego, USA) 

pH vs. fluorescence calibration and UV spectra profile for the enzyme assay  

To select a suitable available optic probe on the Pherastar to measure changes in 

Pyranine fluorescences due to pH changes, increments of 10μl of 0.05M HCl solution were 

added into 8 tubes each containing a mixture of 0.5mM bicine-KOH at pH 6, 1mM KHCO3, 

0.5mM Hepes-KOH at pH 8, 200nm Pyranine dissolved in water (#H-348, Molecular Probes,  

Oregon, USA) in a total volume of 2.5ml. The testing of fluorescent emissions of the 8 samples 

at 480nm, 520nm, 530nm, 620nm, 665nm when excited with a range of excitation wavelengths 

between 250nm and 700nm were carried out on a Perkin Elmer LS 55 Fluorescence 

spectrophotometer (PerkinElmer, Massachusetts, USA) at room temperature.  The emission 

intensities were then plotted as a spectral graph. After the spectra have been collected, the 

end-point pH of all the 8 reaction samples was measured using a PHM 92 Lab pH Meter 

(Radiometer Analytical, France).  

To determine the relationship between pH and Pyranine fluorescence emission intensity 

at 530nm/430nm setting, increments of 1.5μl of 0.05M of HCl were added into 10 sample 

mixtures of 0.5mM bicine-KOH at pH 6, 2mM ZnCl2, 1mM KHCO3, 0.5mM Hepes-KOH at pH 8, 

and 200nM of Pyranine in a total volume of 1ml per sample. The pH was measured using the 

PHM 92 Lab pH Meter (Radiometer Analytical, France) and end-point fluorescence was 

measured using the Pherastar FS microplate reader (BMG Labtech, Germany).  All of the pH and 

fluorescence measurements were taken at 25oC. The relationship between Pyranine end-point 
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fluorescence emissions were plotted against the end-point pH of the solution mixtures for 

observations as well as calculating the formula for this relationship. 

Three independent experiments were done for the calibration, and curves were plotted 

between the end-point pH values (y-axis) and the fluorescence emissions (x-axis). The slopes of 

the three curves were the same (7E-06) and the constants were averaged to give the mean 

value. The pH values were averages and the fluorescence values were calculated based on the 

final calibrated equation (y=7E-06x + 5.5156). 

Fluorescence-based assay for measuring relative CA1 anhydrase activity  

Bovine CA2 (bCA2) (#C3934, Sigma-Aldrich, St Louis) and lysozyme (#L687, Sigma-Aldrich, 

St. Louis) proteins dissolved in sterilized water were used as positive and negative controls 

respectively to test the enzyme assay. Increments of 20nM of the bCA2 and lysozyme proteins 

within a range of 0nM-100nM concentrations were used in the test enzyme assay (i.e 0nM, 

20nM, 40nM, 60nM, 80nM and 100nM). Once the standard curves of the positive and negative 

controls were established, the enzyme assay observing the CA1 enzyme activities were carried 

out. When carrying out the enzyme assay, 2.5μM of wild-type, mutant Thr199Val, Glu106Ile 

and Glu106Gln CA1 proteins were used for the enzyme reaction. 

The proteins were mixed with cold (placed on ice) buffer A at pH 6.0 (0.5mM HEPES-

KOH, 200nM Pyranine, 2mM ZnCl2) and added to black 96 well plate in total volume of 50μl per 

well and 6 replicate wells per protein concentration while on ice. Once the solutions have been 

added to the wells, the plate is placed in the PheraStar FS microplate reader (BMG Labtech, 

Germany) and gently shaken for 5mins at 25˚C. 50μl of buffer B with pH 8.0 (0.5mM Bicine-KOH, 
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1mM KHCO3) was then injected per well into the 96 wells containing the buffer A and enzyme 

mixture at 260μl/s injection speed 1s after the initial start at 25oC using the PheraStar FS 

microplate reader (BMG Labtech, Germany). pH changes when buffer A and B were mixed were 

monitored through fluorescence change using the pH-sensitive fluorescent dye Pyranine. 

Pyranine fluorescence changes were monitored using fluorescent optic probe with 430nm 

excitation wavelength and 530nm emission wavelength (tested as the most suitable optic from 

previous experiments using the fluorescence spectrophotometer). The change of fluorescence 

was monitored at every 0.04s for a total of 30s in duration. The emitted fluorescence was 

converted to pH using the pH vs. fluorescence formula derived from calibration as described 

above using Microsoft Excel.  
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Results 

Establishing a modified method for measuring CA1 anhydrase activity 

CA1-catalyzed dehydration of HCO3
- ions requires protons to produce CO2 and water. By 

mixing the solution containing HCO3
- at an alkaline pH with the solution at an acidic pH will 

allow the reaction to happen naturally. In the presence of CA1, the rate of the reaction will be 

significantly increased due to the catalytic activity of the enzyme. The rate of the reaction can 

be measured by the change of the pH of the mixed solution. The fluorescence of the compound 

8-hydroxy-pyrene-1,3,6-trisufonate (Pyranine) changes with the pH. Specifically, Pyranine is 

sensitive to the near-neutral pH range (between pH 5.5-7) (Verchère et al., 2012) and has 

largely been used to monitor transmembrane pH changes in bacteria (Damiano et al., 1984, 

Verchère et al., 2012, Straubinger et al., 1990) and liposomes (Kano and Fendler, 1978, 

Straubinger et al., 1990). It exhibits greater sensitivity than other popularly used pH probes 

(Zhu et al., 2005). By adding Pyranine in the reaction mix and measure the change of its 

fluorescent intensities, one can determine CA1 anhydrase activity.  

The peak excitation and emission wavelengths of Pyranine are at ~455nm and ~520nm 

respectively (Gelatt, 2014). Using spectrophotometry, others have used emission wavelengths 

at 509nm, 513nm and 520nm for detection while testing the pH sensitive range of Pyranine 

with a range of excitation wavelengths (Aguedo et al., 2001, Verchère et al., 2012, Gan et al., 

1998). These studies have found that Pyranine is sensitive to pH change in the range of 5.5-8 

when excited between 420nm to 480nm.  
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In order to determine an alternative combination of excitation and emission 

wavelengths for Pyranine to be qualified as a pH-sensor, all the available fluorescent optic 

modules (ex430/em480, ex640/em680, ex485/em520, ex430/em530, ex337/em665, and 

ex337/em620) with fixed excitations and emissions wavelength on PherastarFS were tested.   

The goal was to find out which of the optic module will result in the most sensitive and pH-

dependent change in Pyranine fluorescence. It was found that by fixing the emission 

wavelength at 530nm and testing the excitation wavelengths ranging from 250nm to 600nm, 

the excitation wavelength at 430nm was sensitive enough to differentiate the differences in 

Pyranine fluorescence between pH 6.34 to pH 7.47 (Figure 2.3). While fixing the emission 

wavelengths at 480nm, 520nm, 620nm, 665nm, 680nm and testing the same range of 

excitation wavelengths and the same pH levels, the ability to differentiate the fluorescence 

emissions were sub-optimal (results not shown).   
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Figure 2.3. Fluorescent spectra of Pyranine. O.D. excitation wavelength at 430nm shows spectra of Pyranine 

fluorescence at different pH. 200nM of pyranine in eight mixed solutions used during enzyme assay at decreasing 

end-point pH: 1) 7.47 2) 7.31 3) 7.21 4) 7.17 5) 7.08 6) 6.98 7) 6.83 8) 6.34 were excited using fluorescent 

wavelengths between 250nm-600nm while fixing the emission wavelength at 530nm. Black line shows excitation at 

430nm used during the assay. This experiment was repeated for a total of two independent experiments, each 

showing the similar pattern of behavior, results from one of the experiment is shown in this figure. 
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The linear relationship between pH and Pyranine fluorescence 

Once the pH-sensitive excitation and emission wavelengths were determined for 

Pyranine in the experiments, it was required to test whether the relationship between pH levels 

and Pyranine fluorescent intensities is linear. Ten samples containing Pyranine with different pH 

levels in the near-neutral pH range were prepared and their fluorescent intensities were 

obtained. It was found that between pH 5.6 to pH 6.7 and measured with 530/430 the 

relationship between Pyranine fluorescent intensities pH values is linear (Figure 2.4). The data-

derived linear equation shown in the figure was used to convert the fluorescence readings to 

pH values for the data in this study.  

 

 

 

 

 

 

 

 

 

Figure 2.4. Change of pyranine fluorescence is linearly correlated with change in pH. Figure showing pyranine 

emissions at 530nm while excited at 430nm plotted against 10 assay solution mixtures with increasing pH in the 

~pH5.6-~pH6.8 range. A total of three independent experiments were done, with the gradients staying the same 

for all three and the constants were averaged to give the final equation as shown in the figure. The corresponding 

pH values were calculated from the fluorescence data. The error bars show the standard deviation of the pH 

values. 
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bCA2 exhibits in vitro activity linearly correlated with the concentration 

Once the pH-fluorescence relationship has been established, the next stage was to carry 

out the enzyme assay using a protein which has been shown to have CA enzyme activity as the 

positive control and another protein without known CA enzyme activity as the negative control 

for the validity of the modified assay method. For this purpose, the bovine CA2 (bCA2) protein 

was selected as the positive control and the lysozyme protein was selected as the negative 

control.  

Six concentrations from 0nM to 100nM of the proteins were used for the experiment, 

based on the previous experiment done by Shingles and Moroney (Shingles and Moroney, 1997) 

(Figures 2.5 and 2.6). The protein samples were included in the acidic buffer of pH 6, the 

buffered alkaline solution of pH 8 containing the HCO3
- were injected into the acidic-protein 

mixture. This allows the HCO3
- ions to react with the protons in the acidic buffer, generating 

CO2 and water during the process. The injection was then stopped at 1.24s and the changes in 

Pyranine-emitted fluorescence were recorded. The fluorescence data were then converted to 

pH values using the calibrated equation above (Figure 2.4). 

The results showed the pH value steadily increased until it reached a near-plateau at 

later stage of the experiment (Figures 2.5 and 2.6). There are clear differences in rate of pH 

changes between bCA2 and lysozyme. Using same concentrations of bCA2 and lysozyme, the 

time for the reaction mixture to reach its pH equilibrium is more rapid in presence of bCA2 than 

with lysozyme which is not different from without adding any proteins (Figures 2.5 and 2.6).  
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Figure 2.5. bCA2 exhibit enzyme activity in vitro. 0nM-100nM of bCA2 proteins were assayed in measuring the rate of pH 

change during HCO3
-
dehydration. A) Shows the complete reaction time course and b) shows the initial pH change when the 

HCO3
-
 injection is stopped. The color coded curves represent the pH change for each protein concentration. A total of three 

independent experiments were done, the averages are shown in the figure. 
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-
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-
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More importantly, the rate of the reaction is linearly and positively correlated with the 

concentration of bCA2, while it did not change with lysosome (Figure 2.7). The initial pH change 

after the HCO3
- injection is linear from 1.24s to 4s of the experiment (Figure 2.7). In addition, 

the effect of acetazolamide (AAZ), a CA inhibitor was tested using this assay. In two different 

ranges of inhibitor concentrations (0-5 M and 0-100 M, respectively), AAZ inhibited bCA2 

activity in a dose-dependent manner (Figure 2.8). The inhibition appeared to reach a saturation 

point when ≥1μM of AAZ was used as the ΔpH/s did not further decrease even using up 100μM 

of AAZ (Figures 2.8c and 2.8d).  
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Figure 2.7. Linear relationship between bCA2 activity and concentration. Six increasing 

concentrations of bCA2 were used to observe enzyme activity: rate of change in reaction pH 

per second (ΔpH/s) between 1.24s to 4s with lysozyme used as negative control. A good linear 

relationship fit was seen (R
2
>0.99) Total of three independent experiments were done with 

averages shown; error bars indicate the standard deviations between experiments 
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Figure 2.8. Acetazolamide inhibits bCA2 activity. a) 0-100μM and b) 0-5μM of CA1 inhibitor AAZ were added to 

inhibit bCA2 activity c) shows corresponding rate of change in pH per second (ΔpH/s) in a) between 1.24s to 

4s ; d)shows corresponding ΔpH/s at the same interval from b). One independent experiment is done for each 

series of AAZ inhibition study   
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Mutant CA1 proteins do not retain activity in vitro 

Once the assay has shown to be effective in measuring bCA2 activity, the same method 

was used to determine the activities for the three CA1 mutants: Thr199Val, Glu106Ile and 

Glu106Gln. The quality of in vitro expressed and purified CA1 proteins were visualized (Figure 

2.9). The protein samples showed high purity and were of the expected molecular weight.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Protein purification of his-tagged wild-type and mutant CA1s. Coomassie based gel staining of SDS-

PAGE gel of 2.5μM of purified and dialyzed wild-type and mutant his-tagged CA1 proteins, and 2.5μM of chicken 

egg lysozyme protein as a comparative control. Expected protein sizes - wild-type CA1 : 29.69kDa, Glu106Ile CA1 : 

29.68kDa, Thr199Val CA1 : 29.69kDa, Glu106Gln CA1 : 29.69kDa, Lysozyme : 14.3kDa. Expected sizes of the 

purified proteins were generated using the ExPASy ComputPl/Mw software (Swiss institute of bioinformatics, 

Switzerland)  
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Using the same amount of either wild-type or mutant CA1, the obtained reaction curves 

viewed in both shorter and longer time intervals were shown in Figure 2.10a-2.10d. Figure 

2.10a shows the initial reaction pH curve in CA1 after HCO3
- injection as compared to the wild-

type, the curves were zoomed in and overlaid in figure 2.10b.  Figure 2.10c and 2.10d show the 

entire reaction pH curve for each individual CA1 sample.   

Figure 2.10a and 2.10b show the initial reaction pH changes when HCO3
- was injected 

into the reaction media. The figures show there was steady pH increases in all of the reaction 

samples between 1.24s to 4.5s. For wild-type CA1, the rate of initial pH increase is significantly 

higher than the other samples, i.e. reaching a higher pH value within the given period. The 

figures show great similarities in the initial pH change between the CA1 mutants and lysozyme 

negative control. These results suggest wild-type CA1 retained its enzyme activity in catalyzing 

the pH equilibrization reaction whereas mutant CA1 did not retain any enzyme activity as they 

have shown similar pH trends as the negative control.  

Figure 2.10c and 2.10d show the pH changes during the entire course of the reaction.  

While the pH of all the samples reached a similar end-point at 30s, reaction involving wild-type 

CA1 reached its pH equilibrium at a much faster velocity compared to the mutants and the 

negative control.  

Applying the same analysis to calculate the initial rates for all reactions i.e. measuring 

the pH changes between 1.24s (end of HCO3
- injection) to 4s (the linear portion of initial pH 

change) the data have demonstrated that all three CA1 mutants in the experiments retained no 
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higher activities than a known protein without any anhydrase activity (lysozyme) (Figure 2.10e). 

In other words, Thr199Val, Glu106Ile and Glu106Gln are inactive mutants of CA1. 
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Initial enzyme rate 
(ΔpH/s) 

Initial enzyme rate with respect 
to wild-type CA1 (%) 

Wild-type CA1 0.045±0.008 100.00±16.82 

Glu106Ile 0.012±0.004 26.71±8.86 

Thr199Val 0.017±0.002 37.4±3.83 

Glu106Gln 0.012±0.005 26.69±11.16 

Lysozyme 0.019±0.005 41.91±11.65 

 
 
 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

Figure 2.10. Mutant CA1 proteins do not exhibit activity in vitro. Wild-type and mutant CA1 proteins and lysozyme 

negative control were used to observe the rate of pH change during HCO3
-
 dehydration. A) Shows initial reaction 

changes in individual samples in comparison with the wild-type CA1; b) overlays the pH curves from all samples; the 

interval used to calculate the initial enzyme activity was between 1.24s to 4s; c) Shows the complete reaction time 

course in individual samples in comparison with the wild-type; d) overlays the pH curves from all samples,; e) table 

shows the enzyme activity of all samples relative to wild-type CA1, calculated using the pH change from 1.24s to 4s of 

the experiment. Six independent experiments were done for each curve. 

e) 
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Discussion 

Development of a modified fluorescence-based assay of measuring CA activities  

The method in this study utilizes HCO3
- as the CA1 enzyme substrate, which reacts with 

the protons in the acidic reaction environment. As HCO3
- ions are injected into the mixture, the 

reaction pH will increase as the protons get consumed to produce CO2 and water, eventually 

reaching its pH equilibrium. The presence of the wild-type CA1 will accelerate the rate of the pH 

change due to its catalytic activity. On the other hand, it is predicted that using mutant CA1 

proteins with substituted Thr199 and Glu106 (Thr199Val, Glu106Gln and Glu106Ile) should 

have reduced and/or ablated CA1 activity in due to the roles the two residues play in CA1 

enzyme activity (Merz, 1990, Bottoni et al., 2004, Miscione et al., 2007, Lindskog, 1997, Briganti 

et al., 1997, Xue et al., 1993).  

The technique described here is essentially a modified pH-indicator method that follows 

the principles of the previous methods used to measure CA activity (Clark and Perrin, 1951, 

Khalifah, 1971). However, the main advantage of this technique is that it substitutes very 

specialized equipment (i.e. mass spectrometer or stop-flow equipment) with a microplate 

reader which is more widely used in biological research laboratories. The only requirement of 

this microplate reader is that it can measure the fluorescence change in a very fast way. In 

particular, it utilizes a fluorescence based pH-sensitive indicator Pyranine (instead of other dyes 

used in previous studies to measure the changes in absorbance) which has been reported to be 

very sensitive to pH changes in the near neutral range compared to other pH-sensitive 

fluorescent dyes in the near-neutral pH range (Zhu et al., 2005, Verchère et al., 2012).  
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Though this method did not utilize other HCO3
- substrate concentrations to calculate the 

Michaelis-Menten kinetic parameters of wild-type CA1 proteins in the study, this can be done in 

future experiments. With regards to measuring the Pyranine fluorescence changes, probes with 

a more sensitive excitation wavelength (i.e. at 450nm) can be used to identify the pH changes 

instead of the wavelength used here (i.e. at 430nm) (Figure 2.3). Furthermore, the stop-flow 

equipment can be a useful addition as it allows more time-sensitive resolution of the pH change 

which was employed in previous studies (Khalifah, 1971, Clark and Perrin, 1951, Verpoorte et 

al., 1967). Nonetheless, the results presented here show another way to measure CA activity 

which is more convenient and simpler to operate. Its main purpose is not to replace the 

established methods, rather provide an alternative method to measure the CA enzyme activity 

if the specialized equipment was not present.  

With regards to the reliability of the technique, the results obtained at present shows 

consistency with the CA2 and CA1 mutagenesis studies using the same mutants during CO2- 

HCO3
- interconversion reaction (Krebs et al., 1993, Liang et al., 1993, Mohanty et al., 1998).  The 

results show dramatic decrease in the rate of initial pH change when using the CA1 mutants in 

the HCO3
- dehydration reaction as compared to the wild-type CA1 protein, as well as the 

similarities in the initial pH change found between the CA1 mutants with the negative control 

sample. This is consistent with previous studies where the Thr199Val and Glu106Ile mutants 

show significant loss of enzyme activity as compared to the wild-type in CA2 and CA1.  
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Mutant CA1 are enzymatically inactive in vitro 

As mentioned above, results from this study introduces a modified fluorescence based 

for measuring the enzyme activity of wild-type, Thr199Val, Glu106Ile, Glu106Gln mutant CA1 

proteins. Using lysozyme as the negative control, the results demonstrate that wild-type CA1 

protein significantly accelerates the rate of HCO3
- dehydration seen by the rate of pH changes in 

the reaction; whereas mutant CA1 and lysozyme did not alter the rate of reaction compared 

with that in absence of any catalyst, suggesting the mutants do not retain CA1 enzyme activity 

in vitro.  

Due to the overall lack of CA1 mutagenesis studies, evidence supporting how 

substituting Thr199 and Glu106 will specifically affect CA1 enzyme activity require inference 

from studies done in CA2 at these residues  (Krebs and Fierke, 1993, Liang et al., 1993, Mohanty 

et al., 1998, Xue et al., 1993, Krebs et al., 1993). Results of these studies show: firstly, 

substitutions at Thr199 or Glu106 resulted in significant loss of CA2 and CA1 enzyme activity; 

secondly, patterns observed with regards to CA2 Thr199/Glu106 substituted mutants are 

consistent with results found in CA1. This is likely due to the zinc-OH- (or water)-Thr199-Glu106 

hydrogen bond network sequence being conserved and sharing similar orientations for both 

CA1 and CA2 (Figure 2.1). For instance, in CA2, the substitution Thr199Val caused the HCO3
- 

dehydration activity to drop to ~1/2900th of the wild-type CA2 activity, which is similar to the 

near-ablation of activity in the CA1 mutant Thr199Val applied in this study, carried out in the 

similar reaction environment and approach as the method develop in this investigation (at pH 

6.1, 25˚C using a pH indicator assay) (Krebs et al., 1993). Furthermore, mutations of the Glu106 
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residue in CA2 have shown similar results, where it was observed the Glu106Gln mutant 

retained only ~1/3000th of the original CA2 activity similar to the findings with CA1 in this study 

(Liang et al., 1993). Other studies that substituted Thr199 and Glu106 using other amino acids 

supports these observations highlighting their importance in CA catalysis (Liang et al., 1993, 

Krebs and Fierke, 1993, Xue et al., 1993).   

On the other hand, the Thr199 and Glu106 residues have been substituted in the CA1 

enzyme to study the effects of these mutations on the CA1 enzyme activity (Mohanty et al., 

1998). To date, this is the only study reported on CA1 mutants with substituted amino acids at 

the Thr199 and Glu106 residues in studying the esterase activity CA1. This study has found 

Thr199Val mutant only retained 5-8% of wild-type CA1 esterase activity, the lowest out of all 

eight CA1 mutants studied.  The same Thr199Val mutant in CA2 retained around 18% of its 

wild-type esterase activity (Krebs et al., 1993, Mohanty et al., 1998). The reported esterase 

activity for the CA2 mutant Glu106Gln was around 1/187th of the wild-type activity (Liang et al., 

1993); whereas, in CA1 the Glu106Gln mutant appears to retain around 7% of the wild-type 

CA1 activity (Mohanty et al., 1998).  Although the Mohanty et al study examines the esterase 

activity of the wild-type and mutant CA1, previous data have shown the results from the 

esterase assay done in CA1 and CA2 share great similarity in the enzyme kinetics and velocity as 

the reversible CO2 hydration reaction (Khalifah, 1971, Verpoorte et al., 1967). Therefore, it 

appears the data are consistent with the same mutations from previous studies causing 

dramatic loss of enzyme activity in both CA1 and CA2 (Liang et al., 1993, Krebs and Fierke, 1993, 

Xue et al., 1993). 
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Crystallography studies of mutants at Thr199 and Glu106 have provided mechanistic 

changes as to how these mutations affect CA2 catalysis, which can be used to infer how they 

may affect CA1. Due to the Thr199Val substitution, the mutant has lost its hydrogen bonding 

between Glu106 and Val199 (Figure 2.11). It appears that there is also loss of hydrogen bonding 

between Val199 and the zinc-bound water if it was present (structure showing the Thr199Val 

mutant with the active site water present without displacement by an inhibitor is currently 

unavailable). Furthermore, the Val199 residue causes conformation changes in the Glu106 

residue, though its position is held relatively similar to the Thr199 residue in the wild-type CA2 

(Krebs et al., 1993, Krishnamurthy et al., 2008). The conformational change of Glu106 results in 

stabilization of the zinc-HCO3
- complex requiring additional energy during the HCO3

- 

dehydration reaction causing a significant drop in reaction velocity (Liang et al., 1993, Krebs et 

al., 1993).  
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Figure 2.12 shows the comparison between wild-type and Glu106Gln CA2 structures 

complexed with an acetate ligand (Glu106Gln structure without inhibitor present is unavailable). 

The figure shows a hydrogen bond is maintained between Gln106 and Thr199 (Figure 2.12). 

However, directionality of the hydrogen bonding in the Thr199-Glu106 interaction is reversed in 

the Glu106Gln mutant from the wild-type CA2 as the Gln106 amide NH2 group now acts as the 

hydrogen bond donor to Thr199 (Liang et al., 1993, Xue et al., 1993). In the mutant, Thr199 acts 

 

Figure 2.11. Comparison between wild-type and Thr199Val mutant CA2. A) shows the wild-type structure and b) 

shows the Thr199Val structure. The Thr199/Val199 and Glu106 residues are colored grey/blue/red, their outer 

hydrogen bonded residues are labelled pink/red/blue. Grey and red spheres represent zinc and water molecules, 

respectively. The dark blue spheres represent an azide ion inhibitor bound to the active site. Red and black dashed 

lines represent co-ordination between water molecule to the zinc ion and hydrogen bonds between residues and 

water molecules, respectively, with bond lengths labelled in angstroms. The image was generated from the x-ray 

structures from Brookhaven protein data bank (wild-type CA2 – file code 1RAY; Thr199Val CA2 – file code 1CVA). 

The figure was generated and rendered using Pymol. 

 

b) 



 
 

Page | 112  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. Comparison between wild-type and Glu106Gln mutant CA2. A) shows the wild-type structure and b) 

shows the Glu106Gln structure. The Thr199 and Glu106/Gln106 residues are colored grey/blue/red, their outer 

hydrogen bonded residues are labelled pink/red/blue. Grey and red spheres represent zinc and water molecules, 

respectively. The green/red sticks represent the acetate inhibitor bound to the active site. Red and black dashed 

lines represent co-ordination between water molecule to the zinc ion and hydrogen bonds between residues and 

water molecules, respectively, with bond lengths labelled in angstroms. The image was generated from the x-ray 

structures from Brookhaven protein data bank (wild-type CA2 – file code 1CAY; Glu106Gln CA2 – file code 1CAZ). 

The figure was generated and rendered using Pymol. 
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as the hydrogen bond donor to the acetate ligand which has displaced the zinc-bound water 

molecule (Hakansson et al., 1994). In the absence of inhibitors, it is likely that the zinc-bound 

water will remain hydrogen bonded to Thr199 with Thr199 acting as the hydrogen bond 

acceptor to Gln106 and donor to the zinc-bound water (Figure 2.12) (Hakansson et al., 1994, 

Xue et al., 1993). This reversed hydrogen bonding pattern is likely to alter the Thr199 

interaction with the OH- ion (Xue et al., 1993). The loss of activity could be due to decrease in 

the HCO3
- dissociation efficiency from the zinc ion and a less efficient proton transfer process 

from the active site to the surrounding medium (Xue et al., 1993, Liang et al., 1993).  

Currently, with regards to how the Glu106Ile mutant causes reduced activity in CA1 is 

unclear. However, the Glu106 mutant has been studied and as both Alanine and Isoleucine are 

hydrophobic amino acids, insights from Glu106Ala may shed light on the matter (Liang et al., 

1993, Xue et al., 1993). First of all, the Glu106Gln and the Glu106Ala mutants share many 

similarities in the structure of their active site (Xue et al., 1993, Liang et al., 1993). The 

substitution of Glu106 with a hydrophobic amino acid such as Alanine will remove the negative 

charge previously present with the Glu106 residue. This loss of negative charge is partly 

responsible for the substantial increase in affinity for HCO3
- ions by the zinc ion (Liang et al., 

1993). This increase in affinity for HCO3
- reduces the dissociation between the HCO3

- and zinc, 

thus likely to inhibit the transition stage during 1) HCO3
- dehydration reaction to produce the 

CO2; and 2) to regenerate the active free enzyme during the proton transfer from the enzyme 

active site to the reaction medium.    
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The results from this study have shown that the three mutant CA1 proteins used 

(Thr199Val, Glu106Ile and Glu106Gln) share overlapping reaction pH changes with the lysozyme 

protein used as the negative control in the experiment suggesting an ablation of CA activity in 

the mutants. This technique has shown to be sensitive to 20ng increments of bCA2 enzyme 

activity, whereas using the lysozyme protein at the same concentrations no change in enzyme 

activity was seen using incremental concentrations of the protein. Lysozyme hydrolyzes the 

β(1–4) glycosidic linkage between N-acetylmuramic acid and N-acetylglucosamine in the 

bacterial cell wall peptidoglycan layer causing bacterial cell lysis (Li-Chan and Kim, 2007). 

Although the lysozyme hydrolysis activity was found to be increased in the presence of HCO3
-, 

lysozyme do not participate in the HCO3
- dehydration related reactions (Banerjee et al., 2011).  

Results presented in this chapter represent for the first time the effect of substituting 

the Thr199 and Glu106 residues on the CA1 HCO3
- dehydration enzyme activities. Although 

these residues are conserved across the CA family and have been shown to be critical during 

the CA catalytic process, they have not being studied within CA1 during the physiologically 

relevant CO2-HCO3
- interconversion reaction (Mohanty et al., 1998). The technique presented 

here offers a convenient alternative to quickly assess CA enzyme activity without the need for 

specialized equipment. Furthermore, these results indicate mutation at Thr199 or Glu106 is 

sufficient to cause an ablation of CA1 activity that can be applied as enzyme-inactive controls in 

future studies to assess CA1 function in cells and animals.  
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Investigating the effect of CA1 in mammalian cells by transient expression 

Introduction 

Effect of CA1 expression on cell survival  

The physiological role of CA has been investigated for the past 80 years since its 

discovery in 1932 (Maren, 1967, Supuran et al., 2003, Chegwidden and Carter, 2000, Supuran, 

2011). Its low activity relative to CA2  as well as it being strongly inhibited under physiological 

levels of chloride ions have cast questions regarding CA1’s physiological importance in human 

(Chapman and Maren, 1978, Kendall and Tashian, 1977, Maren et al., 1976). CA1 is mainly 

expressed in the erythrocytes, kidney tubule cells, colon epithelial cells and sub-epithelail 

capillaries along the gastrointestinal tract (Supuran et al., 2003, Chegwidden and Carter, 2000, 

Parkkila et al., 1994, Lonnerholm et al., 1985). Although the role of CA1 in erythrocytes is 

unknown, it has been suggested that CA1 is involved in the ion change involving H+ and HCO3
- 

and luminal acidification and alkalinization in the kidney and colon cells, respectively (Parkkila 

etal., 1994, Chegwidden and Carter, 2000, Lonnerholm et al., 1985). However, the physiological 

role of CA1 has not been investigated in-depth with only a few expression studies at present 

which do not definitively address the physiological role of CA1 in cells.  

CA1 has been implicated in a range of pathological diseases involving various tissues in 

human other than the cells mentioned above that has shown to express CA1 (Parkkila et al., 

1994, Maren, 1967, Lonnerholm et al., 1985, Nigro et al., 2015, Peng et al., 2012, Takakura et al., 

2012, Zheng et al., 2012, Torella et al., 2014). Most of the studies used proteomic and 

immunohistochemical approaches that have found irregular CA1 expression levels in diseased 
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tissues; however, these studies have not addressed how changes in CA1 expression levels affect 

cell survival. Due to the observations show that CA1 expression can be significantly elevated in 

one disease and reduced in another as well as a lack of cell and animal studies make it difficult 

to conclude whether CA1 is protective or toxic in cells.  

 

Measuring CA1-induced cell viability changes 

Effects of expression of other CA isoforms on cell viability have been studied using the 

tetrozolium salt MTT (monotetrozolium salts) assay as well as its more updated version – the 

WST (water soluble tetrozolium salt) assay (Kaluzová et al., 2004, Cianchi et al., 2010, Marques 

et al., 2010, Chang et al., 2012). These studies have been used to determine the effects of 

carbonic anhydrase inhibitors in cells expressing CA proteins (CA1, CA7, CA9, and CA12). The 

tetrazolium assays are colorimetric measurement of the activities of cellular metabolic enzymes 

such as NAD(P)H-dependent oxidoreductases and dehydrogenases (Mosmann, 1983, Berridge 

et al., 2005). These enzymes (along with other reported oxidases, peroxidases and 

dehydrogenases in the cell) reduce the weakly colored tetrozolium salts into the brightly 

colored formazan products which can be detected spectrophotometrically.  

Microplate tetrazolium assays have been used widely to measure cell viability since they 

were first used in 1983 (Mosmann, 1983). The assays are able to measure both acute (hours) 

and long-term (days) effects on cell viability by the application of a chemical agent or protein 

expression. Previously, MTT formazan crystals needed to be solubilized prior to the 

spectrophotometric analysis on microplate readers. However, the development of water 
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soluble tetrazolium salts such as the most widely used WST8 eliminates this problem. In 

addition WST8 is more stable in the presence of its intermediate electron acceptors that 

facilitate the dye reduction (Berridge et al., 2005).  

 

Aim of the study 

There is an overall lack of studies observing the effects of CA expression in cells which 

either express endogenous CA or not despite numerous associations between changes in CA 

expression and disease. Moreover, many proteomic and histochemical studies showed elevated 

or reduced levels of CA1 expression in diseased tissues, but there have been few studies 

focusing on the effect of CA1 expression in tissues, which partly can be attributed to its relative 

slow enzyme activity and less ubiquitous tissue expression than the more studied CA2 isoform.  

Recent preliminary results (Figure 3.1, via personal communication with Dr. Liu and 

unpublished data) have demonstrated that in the spinal cord protein extracts from sporadic ALS 

patients the expression of CA1 is higher than that of the controls using western blotting analysis; 

on the other hand, expression of SOD1 protein is unchanged, which is anticipated as SOD1 

expression has not been linked to sporadic ALS. However, the physiological importance of this 

finding is not clear: whether the increase of CA1 indicates itself being the cause of motor 

neuron damage or acts as a compensatory protection to the damaged neurons, or it is an 

epiphenomenon from other pathways associated with the motor neuron damage. The purpose 

of this study is to observe whether CA1 expression has any beneficial or toxic effect on cellular 

viability using the WST8 assay.  
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Figure 3.1. The CA1 protein levels are significantly increased in ALS spinal cord. Spinal cord proteins from normal 
and ALS subjects were prepared as previously described (Gruzman et al., 2007). Two sets of SDS/PAGE gels were 
prepared. In one set, a total of 5mg of proteins were loaded for each lane for Western analyses using antibodies 

towards CA1 (Rockland), actin (Sigma, A2066), and SOD1 (Stressgen, SOD-100). In another set, a total of 1g of 
proteins were loaded for each lane for SYPRO-staining for quantification of the total amount of proteins loaded for 
each sample. For quantitative Western analysis, the ECF substrate (GE Healthcare) was used to generate a 
fluorescent signal that can be captured using the Typhoon phosphoImager (Amersham). (A) Images of SYPRO-
stained gels for total protein and Western blots for CA1, actin, and SOD1 proteins. Blue and red dots above the 
SYPRO image indicate normal and ALS samples, respectively. (B) ImageQuan software was used to quantify the 
intensities of antibody-generated signals for actin, SOD1 and CA1 as well as the total amount of proteins. (C) CA1 
protein levels are presented after normalizations to either the total amount of proteins or the SOD1 Western 
signal. The results shown in this figure is through personal communication with Dr. Jian Liu and is unpublished data 
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Materials and Methods 

Cell culture 

COS7 (African green monkey kidney fibroblast-like cells), MCF-7 (human breast cancer 

cells), HEK293 (human embryonic kidney cells) were maintained at 37oC and 5% carbon dioxide 

in 75cm2 flasks. The cells were grown in Dulbecco’s Modified Medium containing 1% L-

Glutamine, 1% Penicillin-Streptomycin (100U/ml and 100mg/ml, respectively) and 10% heat-

inactivated fetal bovine serum. For passaging, the cells were detached from the cell culture 

flask by washing with phosphate-buffered saline (PBS) and brief incubation with trypsine 

(0.5g/L)/EDTA (0.2g/L) (Invitrogen). The cells were passaged every 3-4 days.  

Transient transfection of human CA1 into mammalian cells 

Transient transfection experiments were done using Lipofectamine 2000 (Invitrogen). 

0.5x104 cells were seeded per well in 96 well plates 36-40hrs prior transfection. Lipofectamine 

was incubated with Opti-Mem I reduced serum media (Invitrogen) for 5 minutes at room 

temperature.  0.2g of plasmid DNA were incubated with the Lipofectamine/Opti-Mem mixture 

for 20mins at room temperature before adding to the seeded cells in 100μl of growth media 

per well of cells in 96 well plates. Cell medium containing the transfection reagents were 

replaced with fresh medium 4hrs post transfection. 

Cell viability via WST8 assay 

Water Soluble Tetraolium-8 (WST8) assay was used for analyzing cell viability. Thirty six 

hours post transfection, the WST8 reagent are added to the cells according to the 
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manufacturer’s instructions by using a multi-channel pipette to add 10μl of the WST8 reagent 

per well of cells in a 96 well plate containing 100μl of media per well (Dojindo Laboratories, 

Japan). After 2hrs incubation at 37oC and 5% CO2, absorbance readings at 450nm wavelength 

were read on a microplate reader (Biotek, Canada).  

Western blot analysis 

Immediately after WST8 experiments were done, COS7, HEK293 and MCF7 cells were 

lysed using 1X loading dye containing 5% beta-mercaptoethanol. Proteins were collected by 

centrifuging the lysed cell samples at 10,000G for 30mins at 4oC and removing the supernatant. 

30ul of the protein supernatants were loaded onto 12% SDS-Polyacrylamide for gel 

electrophoresis, which ran at 100 Volts for 120mins, and then the proteins were transferred 

onto nitrocellulose membranes. Membranes were blocked with 5% milk solution (skimmed milk 

powder in PBS solution with 0.05% Tween-20 added (Sigma)). Membranes were then incubated 

with primary antibodies: rabbit monoclonal anti-human/mouse CA1 antibody (#3567-1, 

Epitomics) for detecting CA1 expression. Membranes were then incubated with donkey anti-

rabbit fluorescent secondary antibody (#9263223, Li-Cor Bioscience, Nebraska). Membranes 

were developed using the Odyssey Infra-red imager (Li-Cor Bioscience, Nebraska). 
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Results 

Effect of transient CA1 expression in COS7 cell line 

Wild-type CA1 and Glu106Ile mutant were transiently transfected in COS7 cells and cell 

viabilities was examined using the WST8 assay 36hrs post CA1 transfection and compared to 

cells transfected with the vector-only control. In three independent experiments, the CA1-

transfected cells have shown CA1 protein expression (and no endogenous expression of CA1) 

36hrs post transfection (Figure 3.2a). There was a ~5% decrease in the WST8 reading in the 

samples expressing wild-type CA1 and ~4% decrease in the Glu106Ile samples compared to the 

vector control; however, these changes are not statically significant ( Figure 3.2b).  
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Figure 3.2.Transient expression of CA1 does not change cell viability in COS7 cells. 36hrs post human wild-type and 

Glu106Ile CA1 transfection in COS7 cells, (a) whole cell proteins were extracted and the cells show wild-type (WT)CA1 

protein expression in western blot analysis after WST8 analysis have been carried out in the cells (b) WST8 results 

showing percentage cell viabilities relative to the vector control 36 hrs post transfection. Vec = Vector control, protein 

expression of all three independent experiments are shown. Six replicates per sample in each experiment were used. 

Ws8 results comes from the averages combined three experiments, error bars are the standard deviation of the 

sample data.  
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Effect of transient CA1 expression in HEK293 cell line 

Human wild-type CA1 was transfected in HEK293 cells and its cell viability was examined 

using the WST8 assay 36hrs post CA1 transfection. In all of the three independent experiments, 

the CA1 transfected cells have shown CA1 protein expression (and no endogenous expression 

of CA1) 36hrs post transfection (Figure 3.3a). There was a ~6% decrease in the WST8 reading in 

the samples expressing CA1; however, this change is not statically significant (Figure 3.3b).  
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Figure 3.3.Transient expression of CA1 does not change cell viability in HEK293 cells. 36hrs post human wild-type 

CA1 transfection in COS7 cells, (a) whole cell proteins were extracted and the cells show CA1 protein expression 

in western blot analysis after WST8 analysis have been carried out in the cells (b) WST8 results showing 

percentage cell viabilities relative to the vector control 36hrs post transfection. Vec = Vector control, protein 

expression of all three independent experiments are shown. Six replicates per sample in each experiment were 

used. WST8 results comes from the averages combined three experiments, error bars are the standard deviation 

of the sample data.  
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Effect of transient CA1 expression in MCF7 cell line 

Human wild-type CA1 was transfected in MCF7 cells and its cell viability was examined 

using the WST8 assay 36hrs post CA1 transfection. The CA1 transfected cells have shown CA1 

protein expression (and no endogenous expression of CA1) 36hrs post transfection (Figure 3.4a) 

There was a ~4.5% decrease in the WST8 reading in the samples expressing CA1; however, this 

change is not statically significant (Figure 3.4b).  

 

 

 

  

 

 

 

 

 

 

 

 

Vec Vec Vec WT WT WT 

Actin 

CA1 

Exp1 Exp2 Exp3 a) 

b) 

Figure 3.4.Transient expression of CA1 does not change cell viability in MCF7 cells. 36hrs post human wild-type CA1 

transfection in COS7 cells, (a) whole cell proteins were extracted and the cells show CA1 protein expression in 

western blot analysis after WST8 analysis have been carried out in the cells (b) WST8 results showing percentage cell 

viabilities relative to the vector control 36 hrs post transfection. Vec = Vector control, protein expression of all three 

independent experiments are shown. Six replicates per sample in each experiment were used.  WST8 results comes 

from the averages combined three experiments, error bars are the standard deviation of the sample data.  
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Discussion 

Possible explanations for non-significant changes due to CA1 expression    

The results here have shown that while overall the cell viabilities have all decreased in 

the cells expressing CA1, the changes were not statistically significant. The possible 

explanations for this result can include: (but not exclusive to) 1) CA1 expression does not cause 

cell viability changes; 2) the levels of CA1 expressions in the cell lines are insufficient to cause 

cell viability changes; 3) 36hr time point is not optimal to see changes in cell viability. 

Regarding the first possibility, it is certainly possible that increase in transient CA1 

expression do not cause cellular viability changes. This is consistent with the observation from 

another study using a human osteosarcoma cell line (Chang et al., 2012). But on addition of a 

high level of concentration of acetazolamide (with the addition of the osteogenic media), a CA 

inhibitor which CA1 is relatively sensitive to, reduced the cell viabilities (Chang et al., 2012, 

Supuran et al., 2003). However, the addition of acetazolamide can inhibit other CA isoforms in 

the Saos-2 osteosarcoma cell line (which also endogenously expresses CA2 and CA9) (Müller et 

al., 2013). Furthermore, this study used the osteogenic media to induce bio-mineralization. 

With its extraneous effects that could increase CA2 and CA9 expressions may dampen CA1-

associated changes in the cells. Currently, there is no data using the same approach as this 

study here.  

With regards to the second and the third possibilities, they are the obvious limitations of 

the transient protein expression approach. Using cell line which has the CA1 gene stably 

integrated into its genome and its protein expression is induced with the application of 
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doxycycline allows prolonged expression of CA1 to observe its effects on cellular viability within 

a longer time frame (Gossen and Bujard, 1992, Pluta et al., 2005, Freundlieb et al., 1999). 

Furthermore, the levels of CA1 expression should not decrease over time as is the case with 

transient expressions; with the addition of using virus particles to transduce cell lines with 

vectors containing CA1 allows a higher percentage of cells to express CA1 proteins, thereby 

potentially increasing the amount of CA1 in the cells. However, even with higher and prolonged 

CA1 expressions they may not have any significant effect in cells. As results demonstrated from 

the Chang et al study mentioned above, the application of the osteogenic media increased CA1 

protein expression by approximately 5-fold compared to the endogenous expression. In 

addition, the study observed the cell viability changes in these cells for 9 days, there was still no 

significant changes in the elevated CA1 expressing cells. On the other hand, the study differs 

from a pure CA1 expression study as they did not examine whether the expression of other CA 

isoforms have also been increased along with CA1 which may modify any CA1 associated effects 

as well as the additional cellular effects of the osteogenic media may have other than on CA 

expressions which included upregulation of other bio-mineralization genes (Chang et al., 2012). 

Other isoforms of CA other than CA1 are also expressed in some of the cell lines used in 

this study. With regards to the MCF7 cell line, it expresses the CA2 and CA9 isoforms (Shareef et 

al., 2013, Kaluzová et al., 2004, Mallory et al., 2005).  The HEK293 cell line has found to only 

expressing the CA2 isoform (Lankat-Buttgereit et al., 2004). No report in the literature was 

found that indicated COS7 cells endogenously express any CA isoforms. Expression of CA2 was 

tested in COS7 cells in this study using a human blood sample positive control, results show that 

as expected CA2 was detected strongly in human blood, however, it was not present in COS7 
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cells (the CA2 in the monkey species shares homology with the human CA2 epitope recognized 

by the antibody used (#EPR5195, Abcam, Cambridge, UK) (Supplementary figure). Due to its 

high levels of activity, the CA2 isoform may be the functioning CA in the cell lines maintaining 

the cellular pH and viabilities (Maren, 1967, Supuran et al, 2003). When a relatively low activity 

form of CA such as CA1 is transiently expressed in the cells, any effect associated with CA1 

expression may not be as pronounced in CA2 expressing cells due to most of the functional 

activity has been taken over by CA2 (i.e. the HEK293 and MCF7 cell lines) as opposed to the 

non-CA2 expressing cells (i.e. the COS7 cell line). Although there are no significant differences in 

the cell viability changes between the three cell lines with increased CA1 expression, the 

reasons outlined above (i.e. prolonged expression CA1, increase in level of CA1 expression) calls 

for further investigation.  

 

Discussion of the study approach 

This study has applied the tetrazolium assay to examine the cell viabilities. It is the most 

widely used assay with high sensitivity for measuring cell viability changes (Berridge et al., 

2005). Although using WST8 tetrazolium as opposed to the insoluble MTT salts has eliminated 

the limitations of solubilizing the formazan salts in the assay, there are some fundamental 

differences in the reduction process of these salts. Where the water soluble salts (including 

WST8) are reduced via NADH derived from the mitochondria, the MTT salts can be reduced in 

the cytoplasm, in the endosome/lysosome as well as in the mitochondria through other 

enzymes other than NADH (Liu et al., 1997). However, this is unlikely to mean that MTT assays 
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are more accurate than its water soluble derivatives; in fact, the opposite may be true. One 

reason is that monitoring cell viabilities using both MTT and WST salts are dependent on NADH 

being the responsible factor during reduction; therefore any additional factors may be 

irrelevant (Berridge and Tan, 1993). Furthermore, it has been found using the WST salts are 

more sensitive compared to the MTT assay (including other popularly used tetrazolium salts) 

tested in a variety of cell lines (Tominaga et al., 1999, Tiwari et al., 2015, Ginouves et al., 2014). 

Readings from the MTT assay has reported to be unstable causing it to be not as precise and 

accurate as using WST salts, possibly due to differences in the extent of solubilizing in the MTT 

assay during experimental handling and differences in the reagents used for solubilizing in 

different studies (Ginouves et al., 2014, van Tonder et al., 2015). The use of WST salts will 

eliminate these problems due to the lack of need for dissolving.  

In summary, due to various factors as discussed above, these could diminish CA1-

associated effects in this study such as insufficient levels and duration in CA1 expression leading 

to an absence of cell viabilities being observed. By using inducible CA1 stable cell lines and using 

different approaches in addition to WST8 to measure cell viability changes, it is possible any 

CA1-associated changes will be detected in a further study.      
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Investigating the effect of CA1 in mammalian cells by induced stable expression 

Introduction 

CA isoforms and cell viability  

Studying the role of CA in cellular apoptosis and proliferation has incorporated the use 

of cancer cells, where CA9 and CA12 have been the focus to develop prognostic markers and 

therapeutic agents for cancer (Chiche et al., 2009, Pastorekova et al., 2008, Gondi et al., 2013, 

Cianchi et al., 2010a). Other CA members have also been investigated including the role of CA3 

in hydrogen peroxide-induced apoptosis, CA7 during oxidative stress damage, the 

mitochondrion CA5 during glucose mediated toxicity (Del Giudice et al., 2013, Raisanen et al., 

1999, Patrick et al., 2015, Roy et al., 2010).  

 

CA and optimization of intracellular pH 

CA are important enzymes in the reversible hydration of CO2 being converted into HCO3
- 

and protons. Since this reaction involves the powerful CO2/HCO3
- buffer system in cells, CA 

enzymes play a critical role in maintaining the optimal pH and to dissipate clusters of 

concentrated pH gradients (Swietach et al., 2010, Boron, 2004). The protons are important 

signaling molecules in regulating cellular processes, however their levels need to be regulated 

(Highstein et al., 2014, Isom et al., 2013, Chiche et al., 2009). Since the physiological 

intracellular pH is slightly alkaline (around 7.3-7.4), cells have to deal with excessive protons 

produced from metabolic activities such as generation of ATP, oxidative phosphorylation, and 

Chapter Four 
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the uptake of protons via the transmembrane transporters (Swietach et al., 2010, Boron, 2004). 

pH regulation is crucial in maintaining cellular viability as cellular growth is dependent on 

slightly alkaline environments (Matsuyama et al., 2000, Gillies et al., 1990, Gillies et al., 1992). 

To maintain the optimal intracellular pH levels, buffers are required to resist the 

intracellular pH changes (Boron, 2004, Roos and Boron, 1981). The CO2/HCO3
- buffer system 

forms the basis for the cellular buffering capacity to resist intracellular acidosis (Swietach et al., 

2010, Swietach et al., 2007). As HCO3
- are not permeable across the cell, this system is 

dependent upon the membrane transporters including the HCO3
-/Na+ and Cl-/HCO3

- co-

transporters for HCO3
- flux across the membrane barrier. The influx of HCO3

- can react with 

intracellular protons forming CO2 and H2O thereby lowering intracellular pH; the reverse 

happens when the freely permeable CO2 enters cells reacting with H2O producing protons 

which decrease intracellular pH (Swietach et al., 2010, Boron, 2004). Without the catalysis of CA 

enzymes, the speed of buffering capacity will be limited by the slow kinetics of reversible CO2 

hydration hindering the pH regulatory mechanism.  

 

CA1 and cell toxicity 

One recent study showed that the increased CA1 protein level significantly induced 

apoptosis in human coronary endothelial cells, potentially exacerbating pathology seen in 

patients with diabetic cardiomyopathy (Torella et al., 2014). Another study has shown CA1 

protein increased cerebral vessel leakage possibly due to vascular endothelial cell death by 

activating inflammatory pathways associated with CA1-induced alkalization (Gao et al., 2007). 
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One other study shows overexpression of CA1 causes significant tissue destruction of cartilage 

and joint tissues in joints of CA1 transgenic mice (Zheng et al., 2012). Although the number of 

available studies is limited, the consensus is that CA1 proteins can directly or indirectly cause 

cell death.      

Data presented in chapter three have shown transient expression of wild-type CA1 

proteins did not affect cell viability at 36hrs post-transfection. Due to the probable limitations 

of using transient expression systems significant effects were not observed. Using an 

unregulated stable cell line with the CA1 gene integrated into its genome to observe effects of 

longer period of CA1 expression was not feasible as no stable cell lines can be obtained 

probably due to the fact that cells eventually died because of  CA1-related toxicity (data not 

shown). To circumvent the problem, an inducible expression system was used in which the CA1 

expression can be switched “off” to bypass the toxicity to allow the establishment of the stable 

cell line. Conversely, CA1 expression can be switched “on” to observe its effects in cells. The 

inducible expression was achieved by a lentiviral expression vector in this study. 

 

Using the lentiviral inducible expression system for studying CA1 

The inducible lentiviral expression vector system contains two components required for 

gene expression. The first is the trans-activator rtTA3 (reverse tetracycline trans-activator 3) 

which binds to the second component, the tetracycline response element (TRE) (Shin et al., 

2006, Takiguchi et al., 2013). The TRE is essentially a string of operators that are fused to the 

vector promoter which regulates gene expression. However, without rtTA3 binding to the TRE, 
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the promoter cannot be activated to turn “on” gene expression. This binding action requires 

the presence of a tetracycline-based antibiotic (such as doxycycline used in this study) to first 

activate rtTA3, this then allows rtTA3 to bind to TRE activating gene expression.  

Based on previous studies, the hypothesis is that expression of CA1 is toxic to cells 

activating apoptotic pathways, therefore reducing cell viabilities (Torella et al., 2014, Guo et al., 

2012). Thus, with the ability of the inducible lentiviral expression system to temporarily switch 

off protein expression to avoid CA1-associated toxicity during the setting up stage and allow the 

observation into the effects of CA1 expression on cell viability and apoptosis. To test this 

hypothesis, two mammalian cell lines (HEK293 and COS7) were used to stably integrate the CA1 

gene (wild-type as well as Glu106Ile and Thr199Val mutants CA1) into the genomes to observe 

changes to their cellular viabilities using the WST8 method and apoptotic markers of both 

cleaved PARP-1 and activated Caspase3. 
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Materials and methods 

Cell culture 

COS7 (African green monkey kidney fibroblast-like cells), HEK293 (human embryonic 

kidney cells) were maintained at 37oC and 5% CO2. The cells were grown in Dulbecco’s Modified 

Medium containing 1% L-Glutamine, 1% Penicillin-Streptomycin (100U/ml and 100mg/ml, 

respectively) and 10% heat-inactivated fetal bovine serum.  

Lentiviral stable cell line production 

Lentiviral particles were first produced in HEK293T cells. The cells were seeded 16hrs in 

6cm2 dishes prior to transfection in DMEM, 10% heat-inactivated FBS, 0.1% Penicillin-

streptomycin at 37oC and 5% CO2. At approximately 50% to 70% cell confluency 900ng of 

pSPAX2 (lentivirus packaging vector) and 100ng of VSV-g (lentivirus envelope vector) and 1μg of 

pTRIPZ-CA1 or pTRIPZ spez eGFP expression vectors (the lentivirus packaging/envelop as well as 

the expression vectors were kindly provided by Dr. Ferdinand Kappes) were transfected into the 

HEK293T cells using 6μl of Lipofectamine 2000 transfection reagent (#11668019, Life 

technologies, USA) under the manufacturer’s instructions. 18hrs post-transfection, the cell 

media was replaced with media containing 30% heat-inactivated FBS (DMEM, 30% heated 

inactivated FBS, 1% Penicillin-streptomycin). Forty hours post-transfection media containing the 

lentiviral particles were harvested and filter through .45μm filter for collect viral supernatant.  

Cells were replenished with fresh media containing 30% heat-inactivated FBS.  
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COS7 and HEK293 cells were seeded 24hrs prior to virus transduction in 10cm dishes, 

when they reached 10% to 30% cell confluency the cells were transduced with the viral 

supernatant for 6hrs with 8μl/ml of Polybrene (#H9268, Sigma, USA) and then was changed to 

normal cell growth media after transduction and incubated at 37oC and 5% CO2. At 12hr time-

point, the viral media from the HEK293T cells was harvested and filtered again and used to 

transduce HEK293 and COS7 cells for another 6hrs. At the 18hr time-point, the viral media was 

replaced with normal cell media and incubated for another 6hrs.  At the 24hrs time-point, the 

transduced cells were selected with Puromycin Dihydrochloride (Bio Basic, Canada) using 

1μg/ml for transduced HEK293 cells and 2μg/ml for transduced COS7 cells.  After 2 weeks, pure 

stable cell lines were obtained from transduced cell surviving from the puromycin selection. 

After the stable cell lines have been obtained, the cells were maintained in the growth media 

containing 0.25μg/ml and 0.5μg/ml of puromycin for HEK293 and COS7 cells respectively.  

To induce protein expression in the stable cell lines, 0.25μg/ml of doxycycline (#D9891, 

Sigma, St Louis, USA) (powder diluted in sterilized water) was added to the cellular media. eGFP 

protein expression in cells transduced with lentiviruses containing the eGFP expression vector 

were induced at 48hrs, 96hrs and 144hrs of protein expression, expression levels were checked 

using a Nikon Eclipse Ti fluorescence imaging microscope under the blue fluorescence light at 

200x magnification using 20x objective with 10x ocular magnifications. Media containing 

doxycycline were replenished every 48hrs.  
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Immunofluorescence 

 The following steps were carried out at room temperature. Cells were washed once 

with PBS and then fixed in 4% paraformaldehyde for 15mins. Cells were blocked in PBS buffer 

containing 1% Bovine Serum Albumin/ 0.3% Triton X-100 for 30mins before incubation with 

primary rabbit anti-CA1 antibody (#ab124976, Abcam, Cambridge, Massachusetts) diluted at 

1:200 dilution in the blocking buffer for 1hr and Alexa Fluor 488 fluorophore (#ab150077, 

Abcam, Cambridge, Massachusetts) diluted in 1:200 in the blocking solution for 1hr. The cells 

were then washed with 1XPBS 3 times with 3-5mins incubation gently shaken on a plate shaker 

during each wash. The images were then taken using a Nikon Eclipse Ti imaging microscope 

under the blue fluorescence light at 200x magnification using 20x objective with 10x ocular 

magnifications.  

Western blot analysis 

 Cells were lysed using 1X loading buffer (61.3mM Tris pH 8.0, 2% SDS, 10% glycerol, 

0.0025% bromophenol blue, 2.5% β-mercaptoethanol) in 12 well plates. Proteins were 

collected in the supernatant by centrifuging the lysed cell samples at 10,000g for 30mins at 4oC. 

Equal volumes of the protein were loaded onto 12% SDS-Polyacrylamide for gel electrophoresis. 

Proteins were transferred onto nitrocellulose membranes blocked with 5% milk solution 

(skimmed milk powder in PBS solution with 0.05% Tween-20) and then incubated with primary 

antibodies: rabbit monoclonal anti-human/mouse CA1 antibody (#ab124976, Abcam, 

Cambridge, Massachusetts) and human CA2 antibody (#EPR5195, Abcam, Cambridge, UK) and 
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anti-rabbit fluorescent secondary antibody (#9263223, Li-Cor Bioscience, Nebraska). Signals 

were visualized using the Odyssey Infra-red imager (Li-Cor Bioscience, Nebraska) 

Cell viability assay 

Cells were seeded in 96 well plates to carry out the assay for measuring cell viability 

using WST8 (Dojindo Laboratories, Japan). A total of 10μl of the WST8 reagent was added to 

each well with 100μl of the medium. After 2hrs incubation at 37oC and 5% CO2, absorbance 

readings at 450nm wavelength were read on a microplate reader (Biotek, Canada).  

Flow cytometry analysis 

Cells were trypsinized and pelleted by centrifugation at 500xG for 5mins. Cells were 

then re-suspended with PBS buffer containing 4% Paraformaldehyde at room temperature for 

15mins. Cells were then pelleted and re-suspended in 90% methanol and 10% PBS solution and 

incubated at -20 oC for 30mins for cell permeabilization. Cells were then washed twice with 

freshly made PBS buffer containing 1% BSA. Cells were then blocked in the 1% BSA/PBS solution 

for 20mins at room temperature. After blocking, cells were washed with 1% BSA/PBS and then 

incubated with anti-Caspase-3-Alexa Fluor 647 (#560626, BD, San Diego, CA) or anti-PARP-1-

Alexa Fluor 647 antibodies (#558710, BD, San Diego, CA). Fluorescence signals were collected in 

log mode using a FACSCalibur (BD, San Diego, CA) and data acquisition was done using the 

CellQuest Pro software (BD, San Diego, CA). Analysis of cell populations were performed on 

events gated according to forward light scatter/side scatter parameters. 
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Results 

COS7 and HEK293 cells stably express eGFP and CA1 upon induction 

COS7 and HEK293 cells stably expressing eGFP were made first by transducing the cells 

with lentiviruses which package the eGFP expression vector. 0.25μM of doxycycline was applied 

to the growth media to virus-transduced cells showing visible induced eGFP expression under 

fluorescent light. Figures 4.1 and 4.2 show eGFP expression can be seen in COS7 and HEK293 

cells from 48hrs to 144hrs of protein expression (eGFP expression can be detected as early as 

10-12 hours, data not shown). On the other hand, transduced cells without doxycycline 

induction showed no eGFP expression in the two figures shown.   

Figure 4.3 shows wild-type, Glu106Ile and Thr199Val CA1 expressions were observed in 

both COS7 and HEK293 using 0.25μM of doxycycline to induce protein expressions for 96hrs. 

The figures show cells untransduced with lentiviruses (labelled as “untransduced”) had no 

endogenous expression of CA1. Figure 4.3 also shows immunofluorescence assay results which 

confirm CA1 protein expression in HEK293 cells at 96hrs. In figure 4.3a, western analysis results 

showed a minor degree of leaky expression of Glu106Ile and Thr199Val CA1 in HEK293 cells, 

which was absent in COS7 in Figure 4.3b. Both Figure 4.3a and 4.3b show the levels of 

expression of wild-type and mutants CA1 were similar for both COS7 and HEK293 cells. Figure 

4.3c shows similar degree of wild-type and mutants CA1 expressions in HEK293 cells at 96hrs 

were seen by immunofluorescent staining. 
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Figure 4.1. Transduced COS7 cells stably express eGFP. Green fluorescence showing eGFP expression was detected 

under white light blue fluorescence light in the presence of doxycycline for a) 48hrs, b) 96hrs and c) 144hrs. Cells 

transduced with eGFP vector lentivirus without doxycycline induction were used as comparative controls. 

Magnification = 200x. Scale bars = 50μm. 

96hrs induction Uninduced 48hrs induction Uninduced 

Uninduced 144hrs induction 

a) b) 

c) 
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Figure 4.2. Transduced HEK293 cells stably express eGFP. Green fluorescence showing eGFP expression was 

detected under while light and blue fluorescence light in the presence of doxycycline for a) 48hrs, b) 96hrs and c) 

144hrs. Cells transduced with eGFP vector lentivirus without doxycycline induction were used as comparative 

controls. Magnification = 200x. Scale bars = 50μm. 

a) 
Uninduced 48hrs induction Uninduced 96hrs induction 

Uninduced 144hrs induction 

b) 

c) 
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Figure 4.3. Transduced HEK293 and COS7 cells stably express CA1. CA1 protein expressions detected using western blotting in a) 

HEK293 and b) COS7 cells transduced with wild-type, Glu106Ile and Thr199Valal CA1 lentiviruses induced using doxycycline for 

96hrs, Immunofluorescence confirmed CA1 expressions c), d), e) in HEK293 cells induced with doxycycline for 96hrs in green 

fluorescence. Untransduced cells with doxycycline and cells transduced with CA1 lentivirus without doxycycline induction were 

used as comparative controls as indicated. Magnification = 200x. Scale bars = 50μm. 
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Wild-type and mutant CA1 proteins induce toxicity in HEK293 cells 

Cell viabilities in HEK293 induced by wild-type and Glu106Ile/Thr199Val mutant CA1 

proteins were examined. Figures 4.4a, 4.4b and 4.4c show all three CA1 proteins caused 

moderate reductions in cell viabilities when compared to the un-induced cells. The levels of 

reduction were similar between the wild-type and the mutants as shown in Figures 4.4a, 4.4b 

and 4.4c (25% reduction for wild-type and 26%/19% reductions for Glu106Ile and Thr199Val, 

respectively at 96hrs; 28% reduction for wild-type and 24%/25% for Glu106Ile and Thr199Val 

respectively at 144hrs). However, only wild-type CA1 caused statistically significant reductions 

at both 96hrs and 144hrs compared to the un-induced cells in Figure 4.4a; whereas only 

Thr199Val mutant CA1-induced significant reduction at 144hrs in Figure 4.4c.    

Figure 4.4d and 4.4e show neither general protein expression or addition of doxycycline 

were responsible for the reductions as no significant differences were observed in cells induced 

with eGFP expression or untransduced cells treated with doxycycline compared to cells with no 

doxycycline added.  

Figure 4.4f shows when cell viabilities were compared between eGFP-induced sample 

and wild-type or mutants CA1, there were no statistical significant differences.   
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Figure 4.4. CA1 expression causes cell toxicity in HEK293 cells. Cell viabilities (WST8 assay) were examined in HEK293 cells 

induced with a) wild-type, b) Thr199Val c) Glu106Ile mutants CA1 and e) eGFP expression using 0.25μg/ml of doxycycline at 

48hrs, 96hrs and 144hrs of induction. e) HEK293 cells untransduced with lentiviruses treated/not treated with doxycycline F) 

comparison between induced samples, relative to eGFP. All experiments were repeated as 3 independent experiments with 

each experiment having 6 independent sample replicates; the figure shows the averages of the 3 experiments, with error bars 

indicating standard deviations. All percentages were normalized relative to uninduced cell samples. Student’s t-tests were done 

using Microsoft Excel; statistical significant results (with P value <0.05) are labeled with asterisks.       
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Doxycycline induced significant toxicity in COS7 cells     

Figures 4.5d and 4.5e show that in eGFP and untransduced-COS7 cells, the added 

doxycycline had significantly reduced cell viabilities compared to non-doxycycline-treated cells. 

There were no significant differences between eGFP and untransduced cells (data analysis not 

shown); therefore, addition of doxycycline but not eGFP expression caused this toxicity.   

Figures 4.5a, 4.5b and 4.5c show noticeable differences in cell viabilities between wild-

type CA1 and Glu106Ile/Thr199Val data sets. Cell viabilities were reduced for all three CA1 

proteins in induced vs. uninduced cells in the three figures at 144hrs of induction and only 

mutant CA1 protein induction caused significant loss in cell viabilities at 96hrs.  

When normalized to cell viability in eGFP induced cells, figure 4.5f shows viability in 

wild-type CA1 induced cells was significantly higher at 96hrs; however, no changes were seen 

between eGFP and CA1 induced cells at 48hrs or 144hrs.  
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Figure 5.5. Doxycycline induced significant toxicity in COS7 cells. Cell viabilities in COS7 cells induced with a) wild-type, b) 

Thr199Val c) Glu106Ile mutants CA1 and d) eGFP using 0.25μg/ml of doxycycline at 48hrs, 96hrs and 144hrs of induction e) 

untransduced with treated/untreated with doxycycline. f) cell viability comparison  between induced samples relative to eGFP. All 

experiments were repeated as 3 independent experiments with each experiment having 6 sample replicates wells; the figure 

shows the averages of the 3 experiments. All percentages were normalized relative to uninduced cell samples, with error bars 

indicate standard deviations. Student’s t-tests were done using Microsoft Excel; statistical significant results (with P value <0.05) 

are labeled with asterisks.       
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Expression of CA1 proteins induces apoptosis in HEK293 cells 

Cleavage of PARP-1 (Poly (ADP-Ribose) Polymerase 1) by caspases (cysteinyl-aspartate 

proteases) is one of the widely recognized hallmarks of apoptosis. It is carried out by Caspase-3 

and Caspase-7 (which are activated via cleavage) under in vivo conditions and almost all 

members of caspase family under in vitro conditions (Chaitanya et al., 2010, D’Amours et al., 

2001). Under low levels of stress, PARP-1 acts as a DNA damage repair protein to maintain 

genome integrity. However, when there is a high level of cell toxicity, PARP-1 is cleaved. PARP-1 

is regulated this way to prevent it from rescuing cells and therefore to allow cells to enter 

apoptosis when there is a high level of stress; b) to prevent it from being “over-active” which 

consumes ATP and may activate necrotic processes (Chaitanya et al., 2010). Levels of cleaved 

Caspase-3 and cleaved PARP-1 were measured to observe apoptosis in HEK293 cells with 

induced CA1 expression.  

As shown in Figure 4.4f, when protein expressions were induced in HEK293 cells, there 

were noticeable reduced cell viabilities in all CA1-induced cells (wild-type and the 

Glu106Ile/Thr199Val mutants) compared to eGFP-induced cells at all three time points of 

induction. Within the figure, it can be seen that the reduction was most obvious at 96hrs with 

between 20-24% of reductions seen in WST8 assay. Figure 4.6 shows the changes in activation 

of apoptosis when examined in wild-type and Glu106Ile CA1-induced HEK293 cells using eGFP 

as control.  

Figures 4.6a and 4.6b show wild-type CA1-induced statistically significant increase in 

both Caspase-3 PARP-1 cleavage (cleaved Caspase-3 - 18% increase, P value = 0.0097; cleaved 
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PARP-1 - 16% increase, P value = 0.0149). In these two figures, for the Glu106Ile sample, there 

was statistically significant increase in cleaved Caspase-3 in the induced sample from the 

uninduced (8% increase, P value = 0.047), whereas the difference in cleaved PARP-1 was not 

statistically significant (8% increase, P value = 0.089). No noticeable differences were seen for 

either cleaved Caspase-3 or cleaved PARP-1 levels in eGFP-induced sample. 
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Figure 4.6. CA1 expression increases apoptosis activation in HEK293 cells. Expression of a) cleaved Caspase-3 and b) 

PARP-1 (flow cytometry assay) in HEK293 cells induced with wild-type, Glu106Ile mutants CA1 and eGFP expression. 

The histogram is plotted with the cleaved Caspase-3/PARP-1 fluorescence intensity (x-axis) against cell count (y-axis). 
M1 and M2 gates mark the cell population used to observe fluorescence shift across the x-axis. Bar graphs show 

percentages increase in induced samples relative to uninduced. All experiments were repeated as 3 independent 

experiments with each experiment having 3 independent sample replicates; the figure shows the averages of the 3 

experiments, with error bars indicating standard deviations. Student’s t-tests were done using Microsoft Excel; 

statistical significant results (with P value <0.05) are labeled with *. 
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Discussion 

The main findings from the study in this chapter are (a) inducing CA1 expression (wild-

type and Glu106Ile/Thr199Val mutants) caused reduction in HEK293 cell viabilities; b) wild-type 

CA1 expression protects COS7 from doxycycline induced cell toxicity; c) both wild-type and 

Glu106Ile CA1 increase activation of apoptosis in HEK293.  

 

Novel discovery of intracellular CA1-induced toxicity in HEK293 cells 

It is apparent that CA1–induced toxicity is not due to general protein expression or 

addition of doxycycline as eGFP expression as untransduced cells (with addition of doxycycline) 

did not significantly reduce cell viability at all three time-points (Figure 4.4d, 4.4e). On the other 

hand, CA1-induced toxicities were within ~25% and the cell viability reductions appeared to 

level out after 96hrs (Figure 4.4a, 4.4b, 4.4c). However, the effects were significant enough to 

induce apoptosis in HEK293 for both wild-type and Glu106Ile (Figure 4.6). This finding 

corroborates with a previous study showing increasing extracellular CA1 protein level elevates 

cellular apoptosis in human endothelial cells (Torella et al., 2014). Results from Torella et al 

were intriguing as (a) expression of transmembrane CA proteins (CA9 and CA12) functioning at 

the extracellular surface were believed to be protective (Supuran, 2008, Chiche et al., 2009, 

Swietach et al., 2007, Cianchi et al., 2010b); (b) this is the only study linking CA1 to apoptosis in 

a cellular environment as opposed to animal models (Zheng et al., 2012, Gao et al., 2007). 

However, the main difference between the Torella et al study and this study is the method of 

CA1 expression: the approach in this chapter expressed CA1 protein intracellularly as opposed 
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to adding CA1 protein directly to the extracellular media. Another previous study has found 

transmembrane CA4 which acts at the extracellular surface reduces cell viability in human colon 

epithelial and human colon cancer cells (Zhang et al., 2015a, Supuran, 2008). This difference 

between the intra- and extra- cellular milieu in which CA1 functions marks these results being 

the first time showing that intracellularly expressing CA1 is able to cause significant toxicity in 

mammalian cells.   

 

Wild-type CA1 expression briefly mitigated doxycycline induced toxicity in COS7 cells 

The used concentration of doxycycline in COS7 cells caused a significant level of toxicity 

cell viability (Figure 4.5). This toxicity was not due to general protein expression as cell viability 

changes in eGFP and untransduced cells were not significantly different (Figure 4.5d, 4.5e, data 

analysis not shown). Previous studies have demonstrated doxycycline is toxicity in human cell 

lines causing cell cycle arrest, decreasing cell viabilities and increasing cellular apoptosis; 

furthermore, the toxicity appears to be cell type-specific (Wu et al., 2006b, Sourdeval et al., 

2006, Fife et al., 1997, Xie et al., 2008).  Although wild-type CA1 expression mitigated the 

toxicity at 96hrs, it did not completely restore cells to their healthy states or did it have 

significant effect on cell viability loss at 144hrs suggesting that the effect was transient and not 

stable. On the other hand, Glu106Ile/Thr199Val mutants did not protect cells from doxycycline-

induced toxicities suggesting that the effect seen at 96hrs could be CA1 activity dependent 

(Figure 4.5b, 4.5c, 4.5d). 
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Different response to CA1 may be due to differences in cell-environment 

The difference in cellular response to wild-type CA1 expression in HEK293 and COS7 (i.e. 

CA1 is toxic to HEK293 cells versus being protective in COS7 cells) could be due to effects from 

CA1 being cell-type specific. However, due to the unwanted doxycycline-induced toxicity in 

COS7, differences in their CA expression profile (see discussions below and supplementary 

figure) and the absence of further observations into CA1 activity in the cells, they make 

speculations whether effects of CA1 are different in different cell lines difficult to consider. 

Another explanation is the different cellular environments in the two experiments (i.e. COS7 

cells under severe toxicity from addition of doxycycline whereas HEK293 cells were not). As CA1 

catalyzes the reversible hydration of CO2 producing bicarbonates and protons, the main 

outcome of the reaction is the change in cellular pH. The CO2 released by cell during respiration 

reaching the cellular membrane is restricted by its diffusion rate; when there is a large amount 

of CA activity CO2 can be hydrated yielding protons and lowering intracellular pH (Swietach et 

al., 2007, Swietach et al., 2009). Therefore, it could be said that both accumulation of CO2 

and/or increase in intracellular CA activity could lower intracellular pH.  

It was observed that wild-type CA1 was toxic in HEK293 at 96hrs but not 48hrs (nor at 

36hrs of transient expression in chapter three). It is possible there was a rise in intracellular CO2 

from increased respiration due to increased cell densities (eGFP cells density increase in Figure 

4.1 was comparable with CA1 sample sets, data not shown). Furthermore, it has been shown 

that HEK293 cells endogenously express CA2 proteins (Sterling et al., 2001, Lankat-Buttgereit et 

al., 2004). When a relatively high level of CA1 is also expressed (Figure 4.3) a potentially high 
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level of CA activity may amplify CO2 hydration driving intracellular pH to become more acidic 

and activating apoptosis-associated with intracellular acidification (Barry and Eastman, 1992, 

Matsuyama et al., 2000).  

On the other hand, in COS7 cells undergoing significant toxicity from doxycycline, its 

respiration level may decrease as previous studies have shown cells undergoing apoptosis have 

reduced respiration levels (Berghella and Ferraro, 2012, Zhu et al., 2012). The reduced CO2 

production would limit potential intracellular acidification associated with increased CA1 

expression. As COS7 do not express the highly active CA2 (Supplementary figure), it would have 

a relatively lower level of intracellular CA activity to begin with thus further limiting any 

possible CA associated-acidification from CO2. Whether the differences seen between the two 

cell lines are due to differences in cellular environment require further investigation in 

additional cell types and/or lowering doxycycline concentration to a non-toxic level in COS7 

cells. However, lowering doxycycline may compromise its CA1 expression thus possibly limit the 

effect of CA1 expression.  

 

CA1 mutants causing cellular toxicity and its implications 

The speculation that increased CA activity is associated with HEK293 apoptosis is not 

completely without evidence as only in wild-type CA1 sample set was there significant 

reduction in cell viability in induced cells at 96hrs (Figure 4.4). However, the large degree of 

similarity between cell viabilities in wild-type and mutant CA1 sample sets makes it apparent 

that the mutants could cause a certain degree of toxicity. 
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Results showing CA1 mutant proteins decreasing HEK293 cell viability (as well as the 

Glu106Ile mutant increasing HEK293 apoptosis) was unexpected. Results from studies that have 

identified CA-induced apoptosis (either directly or indirectly) showed the effects were CA 

activity-dependent – the effects were either associated with CA-induced extracellular 

alkalinization or was mitigated by inhibition of CA activity (Gao et al., 2007, Shah et al., 2013, 

Zhang et al., 2015a). But the in vitro measurement of mutant CA1 clearly demonstrated that 

they do not possess catalytic activities as would have predicted from the literature (Figure 2.10). 

In addition, the data do suggest the mutants did not retain (or at least had reduced) enzyme 

activities as there were clear distinctions in cell viability between wild-type and mutant CA1-

induced COS7 cells (wild-type CA1 protected cells against doxycycline-associated toxicity 

whereas the mutants did not). How much activity was reduced was not known; and 

subsequently how much CA1 activity was needed to induce HEK293 toxicity is not known. Due 

to the lack of previous studies on association with mutant CA and apoptosis, there is no clear 

indication of the relationship between CA activity and cell death.  

Toxicity has been observed in CA mutants. Mis-folded missense mutants of CA4 induced 

apoptosis by upregulating endoplasmic reticulum (ER) stress in HEK293 cells (Datta et al., 2009). 

Furthermore, mutation at the 107 residue in CA2 has been found to mis-fold and prone to 

aggregation in marble brain syndrome (Almstedt et al., 2004). Whether the CA1 mutants used 

in this study are able to cause toxicity through aggregation and related ER stress is unknown as 

mutants at the Thr199 and Glu106 residues do not appear to significantly affect CA2 or CA1 

protein folding (Xue et al., 1993a, Mohanty et al., 1998). Speculations on whether the 

Glu106Ile/Thr199Val CA1 mutants induce cell toxicity through mis-folding and subsequently 
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upregulated ER stress or the toxicity was enzyme activity-dependent requires further 

investigation.  

To conclude, this study has shown wild-type and mutant CA1 expressions are toxic to 

HEK293 cells by reducing cell viabilities and inducing apoptosis. Conversely, wild-type not 

mutant CA1 proteins transiently stabilized doxycycline-induced toxicity in COS7 cells at one 

time-point and could be CA activity-dependent. However, whether the differences seen 

between the two cell lines were cellular environment-specific and whether CA1-induced toxicity 

seen HEK293 cells is CA activity-dependent require further investigation in other cell types and 

monitoring intracellular CA1 activity levels and ER stress.  
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Study objective and experimental approach 

The investigation began with previously unpublished results showing around two-fold 

increase of CA1 protein in spinal cords of sporadic ALS patients (Figure 3.1). Whether the 

increase in expression was regulated or unregulated was unknown; and more importantly, how 

the increased level of CA1 protein will affect cells was unknown. If regulated, it implies the 

protein expression was “programmed”, therefore likely to be protective under toxic conditions; 

whereas if unregulated i.e. not inherent and not controlled within the cellular response 

mechanism, it can escalate disease pathology and can be toxic. Due to the lack of studies that 

have directly examined the effect of increased CA1 expression in cells, the objective for this 

study was to examine whether increased CA1 expression will improve cell survival or is toxic 

leading to cellular death.  

To investigate this, mammalian cell cultures were used in this study as they are easily 

maintained in laboratory conditions and they have high proliferative efficiency. As to the cell 

lines used, to investigate the role of elevated CA1 protein in cells, one can use cells that 

endogenously express CA1 and under conditions that may or may not mimic ALS pathology to 

observe changes to the cellular CA1 expressions. Another is to knock-down endogenous CA1 

expression (or using inhibitors and activators to modify CA1 activity) and observe how cells 

respond to stress. Lastly, one can express CA1 exogenously in cells with the absence of 

endogenous CA1 expression to monitor changes to cell viability. In reality, all three paradigms 

Chapter Five 

Concluding Remarks: Improved understanding for the role of CA1 in human 

disease and ALS 
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would be complimentary to one another to support this investigation. However, the exogenous 

expression route was chosen here due to available endogenous CA1 expressing cell lines being 

limited in number; furthermore, extensive testing has to be done to test numerous cell lines for 

endogenous CA1 expression dramatically limiting time and financial resources. 

 

Brief summary of results presented in previous chapters 

The data presented in chapter two to chapter four have centered around the effect of 

CA1 on cellular viability and apoptosis. Transient CA1 expression caused minor and non-

significant reduction in cell viabilities in three different mammalian cell lines. However, longer 

time CA1 expression had more noticeable effects. Whereas expression of both wild-type and 

inactive mutant CA1 significantly reduced HEK293 cell viability, wild-type CA1 expression 

protected COS7 cells from doxycycline-induced cell toxicity and this protective effect was 

activity-dependent. Furthermore, the establishment of a simple yet effective 

immunofluorescence-based technique to measure CA anhydrase activity was also shown, 

getting around the need for more specialized equipment. 

  

Increased CA1 expression can be toxic to healthy mammalian cells  

 Results from chapter four show CA1 expression reduced cell viability in HEK293 cells 

(Figure 4.4). This marks the results being the first time showing that intracellular expression of 

CA1 is able to cause significant toxicity in mammalian cells. As the physiological role of CA is pH 
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regulation, within chapter four it was speculated that CA1 hydrolyzed the accumulated 

intracellular CO2 generating protons which caused the increase in apoptosis. Indeed, the rate of 

CO2-induced intracellular acidification is dependent on CA hydration and the rate of 

intracellular acidification has been used to measure intracellular CA activity (Klier et al., 2014, 

Srinivas et al., 2002).  Injections of both cytosolic CA2 and membrane-bound CA4 proteins have 

caused rapid increases in rates of CO2-induced acidification in oocytes (Klier et al., 2014, Lu et 

al., 2006). From these results it has been shown that there was no significant CA1-induced 

toxicity at 36hrs using the transient expression system (Figures 3.2, 3.3 and 3.4). Using the 

inducible stable cell line system CA1 did not induce significant toxicity at 48hrs but at 96hrs and 

beyond (Figure 4.4). It appears that prolonged CA1 expression caused the toxicity. However, 

whether this is associated with CO2-induced intracellular acidification requires further 

investigations into the intracellular pH changes under prolonged CA1 expression.  

Mutant CA1 generated similar degrees of cell viability reductions in HEK293 as the wild-

type (Figure 4.4), suggesting CA activity was not responsible for the toxicity. Indeed, in chapter 

two the results have shown both Thr199Val and Glu106Ile mutants do not retain any CA activity 

in vitro (Figure 2.10). However, it is possible that mutant CA1 proteins still retained intracellular 

enzyme activity. When observing CA activity in intact oocyte cells, CA2 His64Ala mutant 

retained most of its activity whereas the mutant has shown more than 10-fold decrease in 

turnover number in vitro (Tu et al., 1989, Schueler et al., 2011). Furthermore, both CA3 and CA1 

have shown significant higher activity in proportion to CA2 in intact cells as compared to in vitro 

data (Becker and Deitmer, 2008, Becker et al., 2011). The possibility that protein expression 

itself unspecific to CA1 caused the toxicity is unlikely as eGFP expression did not cause changes 
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to the cell viability (Figure 4.4d). The similarity in the pattern of cell viability reductions in 

HEK293 cells between wild-type and mutant CA1 expressions suggest the toxicities were caused 

by the same mechanism (Figure 4.4). These results do suggest the mutants had reduced 

enzyme activities as wild-type CA1 protected COS7 cells against doxycycline induced toxicity 

whereas the mutants did not (Figure 4.5). The difference in enzyme activity may explain only 

wild-type CA1 significantly induced toxicity in HEK293 cells and not the mutants at 96hrs of 

induction (Figure 4.4).  

As the cleavage of PARP-1 by activated Caspase-3 is one of the hallmarks of apoptosis,  

whether CA1 expression will affect this cellular pathway and if increased activation of apoptosis 

is associated with the reduced cell viabilities was observed next in the study (D'Amours et al., 

2001, Chaitanya et al., 2010). Results from chapter four have shown CA1 expression increased 

apoptosis activation in HEK293 cells, increasing both Caspase-3 and PARP-1 cleavage at 96hrs of 

protein induction (Figure 4.6). Although evidence has shown CA inhibitors reduce cellular 

Caspase-3 activation after exposure to apoptotic agents, the results mark the first time showing 

CA1 expression is able to directly increase Caspase-3 activation and downstream PARP-1 

cleavage (Wang et al., 2009, Fossati et al., 2016, Kniep et al., 2006). The levels of Caspase-3 

activation and PARP-1 cleavage are consistently higher in wild-type CA1 compared to the 

Glu106Ile mutant (Figure 4.6c). However, the increases were modest and were not significant 

when compared between wild-type and Glu106Ile (data analysis not shown). Therefore, there is 

no strong evidence to suggest CA1-induced toxicity is activity dependent.  
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Previous studies have found CA-induced apoptosis activations that were independent of 

CA activity. Mutant CA4 proteins induced apoptosis in HEK293 and COS7 cells by increased ER 

stress activation (Datta et al., 2009, Rebello et al., 2004). Wild-type CA4 has shown to induce 

apoptosis in colon cancer cells by inhibition of the Wnt pathway through protein-protein 

interactions (Zhang et al., 2015a). To understand whether CA1-induced toxicity is dependent 

upon CA1 enzyme activity, further experiments that monitor intracellular CA1 activity will help 

to elucidate the mechanism behind this finding.  

 

Increased CA1 expression can transiently mitigate doxycycline-induced  stress 

Several reports have demonstrated apoptosis activation in tumor cells exposed to 

doxycycline through activation of pro-apoptotic genes in the mitochondria (Son et al., 2009, 

Iwasaki et al., 2002, Wu et al., 2006). Doxycycline inhibits mitochondrial gene expression which 

disturbs mitochondria function in different eukaryotic cells (Moullan et al., 2015). This may lead 

to shift in energy production from oxidative phosphorylation to glycolysis, producing more 

lactate and consuming more glucose and less oxygen which slows proliferation in mammalian 

cells (Ahler et al., 2013). The lactate produced from increased glycolysis can dissociate into 

lactate anions and protons that accumulate within the cell to cause intracellular acidosis (Hertz 

and Dienel, 2005).  

Results from chapter four has shown wild-type CA1 expression reduced doxycycline 

associated toxicity in COS7 cells whereas mutant CA1 expression did not at 96hrs of induction 
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(Figure 4.5). This suggests the protection is dependent upon CA1 enzyme activity – by 

eliminating the intracellular protons by speeding up its reaction with HCO3
- to generate CO2. 

Previous study has shown COS7 express NBCe1 endogenously which responsible for 

HCO3
- influx (Shirakabe et al., 2006). CA1 has been found to enhance the activity of the 

electrogenic Na+-HCO3
- cotransporter NBCe1 in the transmembrane of intact Xenopus oocytes 

(Schueler et al., 2011). NBCe1 is one of the main transporters in the cell transmembrane 

responsible for influx of HCO3
- thus responsible for cellular alkalinization acting as acid 

extruders (Casey et al., 2010). With increased CA1 expression enhancing the action of NBCe1, it 

is possible that the exogenously expressed CA1 in the experiments mitigated the potential 

intracellular acidosis associated with doxycycline protecting the cells from toxicity (Figure 4.4) 

(Schueler et al., 2011). However, without endogenously expressing the highly active CA2 

(Supplementary figure) the cells may not be restored to full viability. As glycolysis only 

generates 2 ATPs per glucose molecule, whereas oxidative phosphorylation generates up to 30 

ATPs per glucose molecule, the inefficiency in ATP production may further hinder cells to 

restore to their healthy state (Berg et al., 2012). However, due to the results showing wild-type 

CA1 only stabilized cell viability at one time-point suggests the any effect associated with wild-

type CA1 was transient.  
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Summary 

In summary, the above has discussed the speculations as to how CA1 may protect COS7 

cells from doxycycline induced toxicity and how CA1 may cause toxicity and increase apoptosis 

in HEK293 cells.  

Within HEK293 cells, it was found for the first time induced CA1 expressions cause 

significantly reduced cell viability and cause significant increased activation of the Caspase-3 

cascade which also led to significant increase in downstream PARP-1 cleavage. Within this 

chapter it was discussed whether the toxicity was CA1 catalytic activity dependent. From one 

perspective, the toxicity may be due to increased intracellular CO2 from accumulated cell 

density producing protons at a faster rate.  However, as the cell viability changes were similar 

between wild-type and mutant CA1-induced cells, there is no strong evidence to conclude 

whether the toxicities seen in HEK293 cells were CA1 catalytic activity dependent.   

Within COS7 cells, CA1 expression may optimize cellular pH from possible doxycycline 

induced intracellular acidosis by increasing the rate of intracellular proton elimination as it 

speeds up the protons reacting with HCO3
-. Furthermore, it may enhance the activity of NBCe1 

bicarbonate co-transporters to increase cellular HCO3
- influx. However, due to inefficient energy 

production via possible increased reliance upon glycolysis the cells were not able to restore 

their full viability.   

Although the study has identified the mutant CA1 being catalytically inactive using the in 

vitro approach, by monitoring the intracellular CA1 activity would help to answer whether CA1 

enzyme activity is associated with the toxic effects seen in HEK293 and will confirm the findings 
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in COS7 cells. To conclude, this study has highlighted the CA1 expression could transiently 

stabilize cell viability loss in mammalian cells from doxycycline-induced toxicity. In particular, 

the study for the first time shows intracellular CA1 expression is able to inflict significant 

toxicity in mammalian cells through increased activation of the Caspase-3 apoptosis cascade.   

 CA has been long been established to be central players in the nervous system, playing 

important roles in the maintenance of intracellular and extracellular neuronal pH and ion 

concentrations, propagation of neuron activities and central nervous system energy 

metabolism (Chesler and Kaila, 1992, Chesler, 2003, see “Role of CA in the nervous system” on 

Page 32). However, how CA affects the human neuro-muscular activities are not well 

documented and there is a general lack of understanding of the role of CA play in ALS. 

Preliminary data from Dr. Liu (Figure 3.1) showing increased CA1 expression in the spinal cords 

of ALS patients, and the lack of clear answers to the basic question of how CA1 can affect cell 

survival in cellular expression systems formed the basis for this study. Results presented here 

suggest when healthy cells express increased levels of CA1 it can lead to upregulation of 

downstream apoptosis; alternatively, when cells undergo stress CA1 can be protective to 

prevent further loss in cell viabilities. How these data will translate into ALS will require further 

investigation into the effect of CA1 in ALS-related cell types and disease environment.  However, 

the results presented in this study calls for better understanding of CA1 in ALS, and its pH 

regulatory enzyme function in the disease.        
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SUPPLEMENTARY FIGURE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Supplementary figure. COS7 cells do not express detectable amount of endogenous CA2 proteins. Western 

blot analysis of COS7 cells transfected with empty pcDNA3.1 (+) vector (empty vector) and pcDNA3.1(+)-CA1 

(human wild-type CA1) plasmid. CA1-transfected COS7 cells previously shown to express CA1 proteins were 

used as control for any cross-reactions between CA1 and CA2 antibodies. Bio-Rad molecular weight ladder 

containing bovine CA2 was used as the positive control for CA2 (0.04mg and 0.1mg indicate total amount of 

ladder protein loaded to the SDS gel, expected CA2 protein size is ~26kDa) (#161-0317, Bio-RaD, California, 

USA). 5μl of lysed human blood was loaded to the gel as the positive control for CA2 expression  
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APPENDICES 

Primer names Primer sequences 

F1 5’-TACTGGCTTATCGAAATTAATACGACTCACTATAGGG-3’  

R1 5’- TGGCAACTAGAAGGCACAGTCGAGG-3’ 

F2 5'-GAGCATGGTTCAatcCATACAGTGGATGG-3' 

R2 5'-ATCCACTGTATGgatTGAACCATGCTCATT-3' 

F3 5’-CCTGGCTCTCTGgtTCATCCTCCTC-3’ 

R3 5’-AAGAGGAGGATGAacCAGAGAGCCAGG-3’ 

F4 5’-TGAGCATGGTTCAcaaCATACAGTGG-3’ 

R4 5’-TCCACTGTATGttgTGAACCATGCTCA-3’ 

 

 

 

 

Primer name Primer sequences 

F5 5’-TGACCATATGGTGAGCAAGGGCGAG-3’  

R5 5'TGACAAGCTTTCAATGATGATGATGATGATGAAATGAAGCTCTCACTG-3' 

   

 

 

 

 

 

Appendix 1. Primer sequences for generating mutant CA1 plasmids. The mutants DNA sequences were 

generated CA1 pcDNA3.1+ plasmid using the two round PCR approach shown above. The lower case letters 

show where the mutation is, and the primer sequences used are from Mohanty et al (Mohanty et al., 1998) 

Appendix 2. Primer sequences for generating his-tagged wild-type and mutant CA1 proteins.  
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Plasmid name Vector 
source 

Insert  Size 
(bp)  

Resistance 

pcDNA3.1-CA1 Invitrogen Human wild-type CA1 6810 Ampicillin 

pcDNA3.1-CA1-Glu106Ile Invitrogen Human Glu106Ile CA1 6810 Ampicillin 

pcDNA3.1-CA1-Thr199Val Invitrogen Human Thr199Val CA1 6810 Ampicillin 

pcDNA3.1-CA1-Glu106Gln Invitrogen Human Glu106Gln CA1 6810 Ampicillin 

pRSETC-CA1-His Dr. Meng-
Hue Lee 

Human wild-type CA1-
6xHistag 

3717 Ampicillin 

pRSETC-CA1-Glu106Ile Dr. Meng-
Hue Lee 

Human Glu106Ile CA1-
6xHistag 

3717 Ampicillin 

pRSETC-CA1-Thr199Val Dr. Meng-
Hue Lee 

Human Thr199Val CA1-
6xHistag 

3717 Ampicillin 

pRSETC-CA1-Glu106Gln Dr. Meng-
Hue Lee 

Human Glu106Gln CA1-
6xHistag 

3717 Ampicillin 

 €885pTRIPZ spezial CA1 WT  Dr. 
Ferdinand 
Kappes 

Human wild-type CA1 13800 Ampicillin 

 €885pTRIPZ spezial CA1 Glu106Ile  Dr. 
Ferdinand 
Kappes 

Human Glu106Ile CA1 13800 Ampicillin 

 €885pTRIPZ spezial CA1 
Thr199Val  

Dr. 
Ferdinand 
Kappes 

Human Thr199Val CA1 13800 Ampicillin 

 pTRIPZ spez eGFP CA1 WT  Dr. 
Ferdinand 
Kappes 

Human wild-type CA1 13800 Ampicillin 

 pTRIPZ spez eGFP CA1 Glu106Ile  Dr. 
Ferdinand 
Kappes 

Human Glu106Ile CA1 13800 Ampicillin 

 pTRIPZ spez eGFP CA1 Thr199Val  Dr. 
Ferdinand 
Kappes 

Human Thr199Val CA1 13800 Ampicillin 

psPAX2 – Lentiviral packaging 
plasmid 

Dr. 
Ferdinand 
Kappes 

N/A 10703 Ampicillin 

VSV-G – Lentiviral envelope 
plasmid 

Dr. 
Ferdinand 
Kappes 

N/A 5824 Ampicillin 

 

 
Appendix 3. Summary of plasmids. 


