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A note on quasiperiodic Green’s functions for arrays
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Abstract We consider a one-dimensional array in two-dimensional space (a grating),
and obtain a new representation for the associated quasiperiodic Green’s function for
the Helmholtz equation, intended for use when the observer is on, or close to, the
axis of the array. This is compared to a formula from existing literature, which was
obtained using Ewald summation. We find that the new representation is easier to
compute, and generalises to account for arrays of higher order singularities in a simple
way.
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1 Introduction

Quasiperiodic Green’s functions (QPGs) for the Helmholtz equation are used exten-
sively in modelling wave interactions with lattices and arrays. This dates back at least
as far as [22], where QPGs are used (without being named as such) in determining the
scattered field induced by a plane electromagnetic wave impinging upon a periodic
grating. Recently, QPGs have been used in modelling interactions of water waves with
ices floes [4], acoustic wave scattering by the ocean surface [1], electromagnetic wave
propagation through photonic crystals [3], and flexural wave scattering by arrays of
pins in thin elastic plates [21]. QPGs were also used in proving the existence of trapped
modes in waveguides [8], and they play a central role in calculating the proportion of
energy that is converted into Bloch waves when a field incident from outside strikes a
periodic medium [23].
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The fundamental (or spatial) representation for a QPG is constructed by adding
together contributions due to a periodic arrangement of phase-shifted sources. We will
consider a generalised QPG for the case of a one-dimensional array in two-dimensional
space. This is obtained by summing phase-shifted singular wavefunctions of the form

Hn(r) = H(1)
n (kr)einθ , (1)

where H(1)
n represents a Hankel function of the first kind, and θ is the anticlockwise

angle between the positive x axis and the vector r. Note the convention that |r| = r
for any vector r, which will be used throughout the paper. Without loss of generality,
we assume that the singularities are located on the x axis, with each consecutive pair
separated by a distance s1, so that our generalised QPG takes the form

Gn(r,βx) =
∞

∑
j=−∞

ei js1βxHn(r− js1x̂), (2)

where x̂ is a unit vector in the positive x direction. We have used notation that can be
extended to QPGs for two-dimensional lattices because it will be necessary to consider
a class of these later. Note that Gn has the quasiperiodicity property

Gn(r+ ps1x̂,βx) = eips1βx G0(r,βx), p ∈ Z, (3)

and the symmetry property

Gn(s1x̂− r,βx) = (−1)neis1βx Gn(r,−βx). (4)

Therefore we may restrict attention to the strip in which

0≤ x≤ s1/2. (5)

The case n = 0 corresponds to the classical QPG, except that a source at the point
r = r0 has the representation H(1)

0 (k|r−r0|)/(4i); we have dispensed with the division
by 4i because this factor rarely plays a useful role in applications of QPGs. When n 6= 0,
we will refer to Gn as a higher order QPG. These are important in situations where the
grating elements do not scatter isotropically, and therefore cannot be modelled as points
(for a detailed discussion of the circumstances under which such an approximation is
valid, see [19]). Higher order QPGs can often be used to efficiently compute the field
scattered by a grating or a lattice. For example, if the time-harmonic plane wave

U i(r, t) = Re
[
eik(xcosψ0+ysinψ0)−iωt] (6)

impinges upon a grating with elements centred at the points r= js1x̂, then the scattered
field takes the form

U s(r, t) = Re
[

e−iωt
∞

∑
n=−∞

An

∞

∑
j=−∞

Gn(r− js1x̂,k cosψ0)

]
. (7)

Here, the wavenumber k is a constant whose relationship to the frequency ω depends
on the physical context. For acoustic or electromagnetic waves, k = ω/c, where c
is the wavespeed. If we consider waves on the surface of water with depth h, then k
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is the positive solution to the dispersion relation k tanh(kh) = ω2/g, where g is the
acceleration due to gravity [11, chapter 1]. In any case, the coefficients An can be
determined using the method set out in [13]. At low to moderate frequencies, the sum
over n converges very rapidly, so an accurate value for the field at a given point can be
computed provided the QPGs in the summand can be evaluated. This approach was
used in [24].

Now the series in (2) is not suitable for use in computations, due to the fact that it
convergences very slowly, which follows from the large argument asymptotics of the
Hankel functions [18, eqn. 10.17.5]. This is a general property of QPGs, and as such, a
large body of literature devoted to obtaining rapidly convergent representations in both
two and three dimensions now exists; see [16], [10] and references therein. One widely
used approach is to convert a QPG into spectral form via Poisson summation. In the
particular case of (2) with n = 0, the spectral form dates back to [22]. For general
n, the spectral representation is given in [24, Appendix A], but in fact it appeared
somewhat earlier in a slightly different guise and with a different derivation in [5]. The
derivation of the spectral form via Poisson summation was used in [12], though the
term QPG was not. The spectral form converges rapidly unless y≈ 0, and when y = 0
it diverges unless n = 0, in which case its convergence properties are no better than
those of (2). To address this problem, a number of alternative representations for G0
were studied in [9]. The most useful of these are the wavefunction expansion (called
the ‘lattice sum approach’ in [9]), which generalises immediately to higher order cases,
and the Ewald formula, which does not. The Ewald formula converges very rapidly
when |y| is small, and so complete coverage of the (x,y) plane can be achieved using
a combination of this and the spectral representation. The wavefunction expansion
can be used to further improve efficiency, because it converges more rapidly than the
Ewald formula if the observer is close to a source point.

In this paper we construct another representation for G0 by subtracting unwanted
terms from the QPG for an infinite two-dimensional lattice. This idea (i.e. representing
a QPG for an n-dimensional lattice in terms of a QPG for an (n+ 1)-dimensional
lattice) was used in a similar context in [20]. To perform the subtraction, we require
QPGs for parallel rows of sources. Rapidly convergent representations for these were
obtained in [23], using a method that originates from [15]. This hinges on the fact that,
following Poisson summation in the x direction, the sum of contributions from the rows
of sources takes the form of a geometric progression, which can easily be evaluated.
To calculate the lattice QPG, we perform Poisson summation in the y direction, so that
the sum of contributions from each column takes the form of a geometric progression.
The resulting formula converges rapidly provided that x 6≈ 0, so in conjunction with
the standard spectral representation it provides complete coverage of the (x,y) plane,
except for the regions close to a source point, where the wavefunction expansion is at
its most effective. In contrast to the Ewald formula from [9], the new representation is
expressed entirely in terms of elementary functions, and the form of these is such that
an arbitrary number of differentiations in both x and y can be applied without difficulty.
This allows us to use the idea from [14, section 2.4] to obtain a new representation for
Gn from G0, with minimal effort.

The plan of the paper is as follows. In §2, we summarise the formulae for the
spectral and Ewald representations, and the wavefunction expansion. The key formulae
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for multirow QPGs from [23] are given in §3. We then show how to obtain the new
representation for G0 in §4, and we compare its computational properties to those
of the Ewald formula in §5. In §6, we consider arrays of higher order singularities.
Finally, some concluding remarks are made in §7.

2 Known representations for G0

To obtain the spectral representation for G0, we require the integral [17, §1.6]

H(1)
0 (kr) = − i

π

∫ ∞

−∞
e−γ(t)|y|−ixt dt

γ(t)
, (8)

where the function γ is given by

γ(t) =

{√
t2− k2 if |t| ≥ k,
−i
√

k2− t2 if |t|< k.
(9)

Substituting (8) into (2) with n = 0, we find that

G0(r,βx) = −
i
π

∞

∑
j=−∞

∫ ∞

−∞
e−γ(t)|y|−ixtei js1(βx+t) dt

γ(t)
. (10)

An application of the Poisson summation formula [7, §9.7] in the form

∞

∑
j=−∞

ei js1X =
2π

s1

∞

∑
j=−∞

δ (X +2 jπ/s1) (11)

yields

G0(r,βx) = −
2i
s1

∞

∑
j=−∞

eiβx jx

γ(βx j)
e−γ(βx j)|y|, (12)

where

βx j = βx +2 jπ/s1. (13)

Evidently this series converges rapidly if |y| is large, but the number of terms needed
to achieve a useful degree of accuracy can be prohibitive if y≈ 0.

The wavefunction expansion for G0 is obtained by separating the term with j = 0
from the remainder of the series in (2) and then using Graf’s addition theorem [14,
thm. 2.12] to expand the other terms about r = 0. For the case in which n = 0, the
details are given in [9], and the result is that

G0(r,β ) = H(1)
0 (kr)+

∞

∑
m=−∞

(−1)m
σm(βx)Jm(r), r < s1, (14)

where the regular wavefunction in the summand is given by

Jm(r) = Jm(kr)eimθ , (15)
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and the Schlömilch series σm is defined as

σm(βx) =
∞

∑
j=1

[
ei js1βx +(−1)me−i js1βx

]
H(1)

m (k js1). (16)

These can be computed using the methods in [10]. As noted in [9], σm grows ex-
ponentially as |m| increases, but the series in (14) converges if r < s1 because then
Jm decays more rapidly. Indeed, using the large order asymptotics of the Bessel and
Hankel functions [18, eqns. 10.19.1–2], we see that∣∣Jm(kr)H(1)

m (k js1)
∣∣∼ 1

π|m|

(
r
| j|s1

)|m|
as |m| → ∞. (17)

In practice, the maximum radius for which (14) can be used is determined by the
availability (or otherwise) of routines for accurately computing σm at high orders.
Typically this maximum radius is much smaller than s1.

The Ewald formula for G0, which was also obtained in [9], is given by

G0(r,βx) =−(S1 +S2)/4, (18)

where

S1 =
1
s1

∞

∑
j=−∞

eiβx jx

γ(βx j)

[
eγ(βx j)y erfc

(
γ(βx j)s1

2µ
+

µy
s1

)
+ e−γ(βx j)y erfc

(
γ(βx j)s1

2µ
− µy

s1

)]
(19)

and

S2 =
1
π

∞

∑
j=−∞

ei jβxs1
∞

∑
n=0

1
n!

(
ks1

2µ

)2n

En+1

(
µ2r2

j

s2
1

)
. (20)

Here, the exponential integral is given by

En(t) =
∫ ∞

1
u−ne−ut du, (21)

and the parameter µ ∈ (0,∞) may be chosen arbitrarily. Increasing µ causes S2 to
converge more rapidly, but slows the rate of convergence of S1.

3 Green’s functions for parallel gratings

The QPG for parallel rows of sources was considered in [23]. Here we construct a
slightly less general form, in which the sources are placed on a rectangular grid with
consecutive rows separated by a distance s2; thus

G(q0,q1)
0 (r,βx,βy) =

q1

∑
q=q0

eiqs2βy
∞

∑
j=−∞

ei js1βx H(1)
0 (k|r− js1x̂−qs2ŷ|) (22)

=
q1

∑
q=q0

eiqs2βyG0(r−qs2ŷ,βx). (23)
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After inserting the spectral form for G0 from (12), the sum over q reduces to a
geometric series, provided that y≤ q0s2 or y≥ q1s2. Evaluating this yields

G(q0,q1)
0 (r,βx,βy) =−

2i
s1

∞

∑
j=−∞

eiβx jx∓γ(βx j)y

γ(βx j)

eq0w
±
j − e(1+q1)w

±
j

1− ew±j
, (24)

where
w
±
j = s2

[
iβy± γ(βx j)

]
. (25)

Here, βx j is given by (13), and the upper and lower signs are to be taken when y≥ q1s2
and y ≤ q0s2, respectively. It was also noted in [23] that the limits can be extended
to infinity, by adding damping to the sources. That is, we write k = Re[k]+ iε where
ε > 0, let q0→−∞ or q1→∞, and then take the limit ε→ 0. In this way, we find that

G(q0,∞)
0 (r,βx,βy) =−

2i
s1

∞

∑
j=−∞

eq0w
−
j

eiβx jx+γ(βx j)y

γ(βx j)
(
1− ew−j

) , y≤ q0s2, (26)

and

G(−∞,q1)
0 (r,βx,βy) =

2i
s1

∞

∑
j=−∞

e(1+q1)w
+
j

eiβx jx−γ(βx j)y

γ(βx j)
(
1− ew+

j
) , y≥ q1s2. (27)

For the full lattice, we may set q1 = 0 and q0 = 1 (or use any other consecutive pair of
values) to obtain

G(−∞,∞)
0 (r,βx,βy) =

2i
s1

∞

∑
j=−∞

eiβx jx

γ(βx j)

(
e−γ(βx j)y

e−w+
j −1

− eγ(βx j)y

e−w−j −1

)
, 0≤ y≤ s2. (28)

4 New representation for G0

The first step in obtaining a new representation for the array Green’s function is to
obtain a representation for the lattice Green’s function, with convergence properties
different from those of (28). To this end, we observe that we can interchange x and y
on the right-hand side of (8) without affecting the value of the integral, which does not
depend on θ . We can then apply Poisson summation in the y direction, followed by
geometric summation in the x direction. The effect of this is to reproduce the results
of §§2 and 3, but with the roles played by x, s1 and βx interchanged with those of y, s2
and βy, respectively. Hence

G(−∞,∞)
0 (r,βx,βy) =

2i
s2

∞

∑
j=−∞

eiβy jy

γ(βy j)

(
e−γ(βy j)x

e−u+j −1
− eγ(βy j)x

e−u−j −1

)
, 0≤ x≤ s1, (29)

where
βy j = βy +2 jπ/s2 and u

±
j = s1

[
iβx± γ(βy j)

]
. (30)

We may now retrieve the Green’s function for the array by subtracting unwanted
contributions using (26) with q0 = 1 and (27) with q1 =−1; hence

G0(r,βx) = G(−∞,∞)
0 (r,βx,βy)−G(1,∞)

0 (r,βx,βy)−G(−∞,−1)
0 (r,βx,βy). (31)
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Fig. 1 Computation times for the Ewald formula (18), with s1 = 1, βx = 1.2, and r = [0.1,0.01].

Here, the first term on the right-hand side must be computed using (29), so that
convergence is rapid unless x≈ 0 (by symmetry and periodicity we need only consider
x ∈ [0,s1/2]; see §1). If x is close to zero, then we may simply use (12) unless |y| is
also small, in which case (14) may be used.

Now the parameters s2 and βy do not appear on the left-hand side of (31), so they
can be chosen arbitrarily. We choose s2 to match the rate of exponential decay in the
summand of (29) to that of either (26) or (27), whichever is slower. In view of (5), the
terms we must consider are e−γ(βy j)x from (29), and eγ(βx j)(|y|−s2), which comes from
(26) if y > 0 and from (27) if y < 0. Letting | j| → ∞ and equating the leading order
terms, we find that

− x
s2

=
|y|− s2

s1
, (32)

which means the correct choice for s2 is given by

s2 = |y/2|+
√

(y/2)2 + xs1. (33)

On the other hand, βy cannot be used to substantially affect convergence. Instead we
use it to avoid the removable singularities in (31), which are caused by the use of
two-dimensional QPGs in constructing G0. Finding the correct value is somewhat
involved; this matter is addressed in appendix A.

5 Numerical results

The computational efficiency of the new representation for G0 (31) was compared to
that of the Ewald formula (18), using an implementation written in Fortran 2003 and
executed on a machine with a 3.3GHz processor. All summations were truncated at
the point where |tn+1|< ε|Sn|, where Sn is the nth partial sum, tn+1 is the next term
and ε represents machine epsilon (approximately 10−16 in double precision). It should
be noted that a truly ‘fair’ comparison is difficult to achieve because (18) requires two
special functions, and different algorithms for computing these may lead to different
results. In our computations, NAG routines s15adf and s15ddf are used to evaluate
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Fig. 2 Computation times for (31), with s1 = 1, βx = 1.2, k = 2.5 and r = [x,0.01]. The black squares show
the optimal value for s2 predicted by (33).

complementary error functions, and a Fortran 2003 implementation of the algorithm
from [2] is used for the exponential integrals, alongside the recurrence relation

nEn+1(t)+ tEn(t) = e−t . (34)

This is numerically stable provided that recurrence is directed away from the integer n
which is closest to t [6].

Figure 1 shows the effect of varying the parameter µ on the Ewald formula (18).
Results are shown for four different values of k, since this parameter seems to affect
the performance of the Ewald formula more strongly than βx and r. It was noted in
[9] that attempting to balance the convergence rates of the series in (18) leads to the
value µ =

√
π , but this is an underestimate. Indeed, computations reported in [9]

suggest an optimal value in the range 6≤ µ ≤ 7, and this is borne out in our results
as well. Similarly, figure 2 shows the effect of varying s2 on the new representation
(31). It follows from (29) that the performance of this formula is strongly dependent
on x, and so results are shown for four different values of this parameter. The black
squares indicate the predicted optimal value for s2 from (33), and it is clear that this is
approximately correct in all four cases.

Finally, figure 3 shows two direct comparisons between the Ewald formula and
the new representation. In the case where x = 0.4, the Ewald formula is slightly more
efficient at low frequencies, whereas the new representation is computed more rapidly
for k & 5. On the other hand, when x = 0.1, the Ewald formula performs better, but
since r ≈ 0.1, the wavefunction expansion (14) is the preferred method at this point.

6 Higher order QPGs

A simple way to obtain representations for Gn is to use the operator

D = − 1
k

(
∂

∂x
+ i

∂

∂y

)
, (35)
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value for s2 is obtained using (33).

which has the property that [14, §2.4]

D
[
Hn(r)

]
= Hn+1(r). (36)

Negative indices can be accounted for using the fact that

G−n(r,βx) = (−1)nGn(r0,βx), (37)

where r0 = [x,−y]. By repeatedly applying the operator D to (12), we obtain

Gn(r,βx) =
2(−i)n+1

kns1

∞

∑
j=−∞

[
βx j− (sgny)n

γ(βx j)
]n eiβx jx

γ(βx j)
e−γ(βx j)|y|, n = 0,1, . . .

(38)
This representation is not valid if y = 0 and n 6= 0. The operator D may also be applied
to regular wavefunctions of the form (15) and its effect is the same as in (36). Hence,
from (14), we obtain

Gn(r,β ) = Hn(r)+
∞

∑
m=−∞

(−1)m
σm(βx)Jm+n(r), r < s1. (39)

Note that this can also be obtained directly by applying the method from [9] to (2)
without first setting n = 0. The mismatch in the indices for the wavefunction and the
Schlömilch series slows down convergence as m→−∞. For large n, (39) should only
be used in cases where r� s1. Finally, we find that (31) generalises to yield

Gn(r,βx) = G(−∞,∞)
n (r,βx,βy)−G(1,∞)

n (r,βx,βy)−G(−∞,−1)
n (r,βx,βy), (40)
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where

G(−∞,∞)
n (r,βx,βy) =

2i
s2kn

∞

∑
j=−∞

eiβy jy

γ(βy j)

( [
βy j + γ(βy j)

]n
(e−u+j −1)eγ(βy j)x

−
[
βy j− γ(βy j)

]n
(e−u−j −1)e−γ(βy j)x

)
,

(41)

G(1,∞)
n (r,βx,βy) =

2(−i)n+1

s1kn

∞

∑
j=−∞

[
βx j + γ(βx j)

]n eiβx jx+γ(βx j)y

γ(βx j)
(
e−w−j −1

) (42)

and

G(−∞,−1)
n (r,βx,βy) =

2(−i)n+1

s1kn

∞

∑
j=−∞

[
βx j− γ(βx j)

]n eiβx jx−γ(βx j)y

γ(βx j)
(
ew+

j −1
) . (43)

The optimal values for s2 and βy used in computing (31) (see (33) and appendix A)
should also be used in these formulae.

7 Conclusions

We have derived a new representation for the quasiperiodic Green’s function corre-
sponding to an array of sources, intended for use when the observer is located close
to, or on, the axis of the array. At such locations, the standard spectral representation
converges very slowly. An earlier attempt to address the same problem was made using
Ewald summation in [9], and we have compared the properties of the two approaches.
The new representation is expressed purely in terms of elementary functions, so it
is somewhat simpler to compute than the Ewald formula, which involves special
functions. Both formulae can be computed accurately and efficiently. Our numerical
experiments favour the new representation, but only slightly. The Ewald formula is
slightly more efficient if the observer is close to a source, but this is precisely the region
in which the wavefunction expansion (14) is the best method. The new representation
is easily generalised to cases involving arrays of higher order singularities. Whilst it is
possible to extend the Ewald formula in this way, the result is much more complicated.

A The parameter βy

Viewed as a function of βy, the representation (29) has removable singularities (RSs) at points where
γ(βy j) = 0 for some j ∈ Z, and also at points where is1βx± s1γ(βy j) = 2pπi for integers j and p. Thus, an
RS occurs when either

(βy +2 jπ/s2)
2 = k2 (A1)

or

(βx +2pπ/s1)
2 +(βy +2 jπ/s2)

2 = k2 (A2)

can be solved exactly using integers j and p. In general, none of these correspond to actual singularities
of G0, and we aim to choose βy in such a way that the distance to the nearest RS is maximised. We need
only consider values such that |βy| ≤ π/s2 since larger values represent periodic repetitions. Moreover,
the RSs are symmetric about βy = 0, so nothing is gained by allowing negative values. Points where
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(βx + 2pπ/s1)
2 = k2 has an integer solution for p are actual singularities of G0 (see §1). We are not

concerned with these here.
For (A1), we have ∣∣∣∣βys2

2π
+ j
∣∣∣∣= α (A3)

where we have written
α = ks2/(2π). (A4)

Since 0≤ βys2 ≤ π , we find that

βy =


2π

s2

(
α−bαc

)
if α−bαc ≤ 1

2
2π

s2

(
bα +1c−α

)
if α−bαc> 1

2
,

(A5)

where b·c indicates rounding toward −∞.
For (A2), we begin by noting that the minimum and maximum values for p such that real solutions are

possible are given by

pmin =
⌈
− s1

2π
(k+βx)

⌉
and pmax =

⌊ s1

2π
(k−βx)

⌋
, (A6)

where d·e indicates rounding toward infinity. Rearranging (A2), we obtain∣∣∣∣βys2

2π
+ j
∣∣∣∣= s2∆(p)

2π
, (A7)

where

∆(p) =
√

k2− (βx +2pπ/s1)2. (A8)

Solutions are therefore given by (A5), with k replaced by ∆(p) in (A4).
To select a value for βy, we arrange the values that allow integer solutions to either (A1) or (A2) in

ascending order, and denote these by r1, . . . ,rn, say. By periodicity and symmetry, the next RS occurs at
rn+1 = 2π/s2− rn, so if we ultimately choose βy such that βy > rn then the distance to the closest RS is
βy− rn. We do not use a similar argument at the left-hand end of the interval, because the solutions to (A2)
with j = 0 and p = pmin−1 or p = pmax +1 may lie close to the origin on the imaginary axis. To safely
neglect these, we set r0 = 0. Finally, we find the natural number m≤ n+1 which maximises rm− rm−1,
and choose βy = (rm + rm−1)/2.
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