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ABSTRACT 

The huge demand for energy sources in the human race’s development has 

resulted in a great energy challenge and climate change. The latter issue is mainly 

induced by greenhouse gas emissions (such as CO2) from the burning of fossil fuels - 

the world’s primary energy sources. Investigation and development on the utilisation 

of CO2 (rather than considering it as a waste) are of significant importance not only 

to reduce the emission of greenhouse gases, but also to provide a new approach for 

the use of the derived carbon fuels in an environmental friendly and carbon neutral 

way. This study is performed in dielectric barrier discharge (DBD) reactors to gain a 

better understanding on the plasma processing of CO2, so as to help in the designing 

and optimisation of the plasma-catalytic system for CO2 utilisation.    

 In the plasma-assisted decomposition of CO2 without catalyst, the effects of 

different processing parameters, including frequency, discharge power, feed flow 

rate, discharge length, discharge gap and dielectric thickness have been taken into 

consideration. Empirical expressions are obtained to relate the reaction performance 

(CO2 conversion and energy efficiency) to these different processing parameters. 

Through the sensitivity analysis, frequency is found to have negligible influence on 

both CO2 conversion and energy efficiency in our experimental range; while 

discharge gap and discharge power are the most important factors affecting CO2 

conversion and energy efficiency of the process, respectively, compared with other 

processing parameters. Modified DBD reactors are proposed by using a screw-type 

inner electrode and/or an Al foil outer electrode to improve the CO2 decomposition 

performance. In the modified DBD reactor with the screw-type inner electrode, the 

distortion of the local electric field near the electrode surface intensifies the 

filamentary discharge and generates more energetic electrons and reactive species, 

thereby enhancing the conversion of CO2 with high energy efficiency.  

In the plasma-catalytic decomposition of CO2, the combination of plasma 

with BaTiO3 and TiO2 photocatalysts in the CO2 DBD slightly increases the gas 

temperature of the plasma by 6-11 
o
C compared to the CO2 discharge in the absence 

of a catalyst at a specific energy density (SED) of 28 kJ/l. The synergistic effect from 

the combination of plasma and photocatalysts (BaTiO3 and TiO2) at low 

temperatures contributes to a significant enhancement of both CO2 conversion and 

energy efficiency by up to 250%. The UV intensity generated by the CO2 discharge 

is significantly lower than that emitted from UV lamps used to activate 

photocatalysts in conventional photocatalytic reactions, which suggests that the UV 

emissions generated by the CO2 DBD only play a very minor role in the activation of 

the BaTiO3 and TiO2 catalysts in the plasma-photocatalytic conversion of CO2. The 

synergy of plasma-catalysis for CO2 conversion can be mainly attributed to the 
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physical effect induced by the presence of catalyst pellets in the discharge and the 

dominant photocatalytic surface reaction driven by the plasma.  

 In the packed-bed DBD reactor for CO2 conversion, both the physical and 

chemical effects on reaction performance have been investigated for the addition of 

BaTiO3 and glass beads into the discharge gap. The presence of these packing 

materials in the DBD reactor changes the physical characteristics of the discharge 

and leads to a shift of the discharge mode from a typical filamentary discharge with 

no packing, to a combination of filamentary discharge and surface discharge with 

packing. Highest CO2 conversion and energy efficiency are achieved when the 

BaTiO3 beads are fully packed into the discharge gap. It is found that adding the 

BaTiO3 beads into the plasma system enhances the average electric field and mean 

electron energy of the CO2 discharge by 86.9% and 75.0%, respectively, which 

significantly contributes to the enhancement of CO2 conversion, CO yield and energy 

efficiency of the plasma process. In addition, highly energetic electrons (> 3.0 eV) 

generated by the discharge could activate the BaTiO3 photocatalyst to form electron-

hole pairs on its surface, which contributes to the enhanced conversion of CO2. 

 In the plasma-catalytic dry reforming of CH4, the effect of catalyst support on 

the performance of the plasma-catalytic reaction over the supported Ni catalysts is 

firstly investigated. It is found that due to the higher specific surface area and larger 

amount of basic sites, Ni/γ-Al2O3 shows the higher conversion of reactants, the 

higher yield and selectivity of desired products and the higher carbon resistance 

compared with other catalysts (Ni/MgO, Ni/SiO2 and Ni/TiO2). Based on the Ni/γ-

Al2O3 catalyst, the influence of the processing parameters (discharge power, total 

feed flow rate, CO2/CH4 molar ratio and Ni loading) and their interactions on the 

performance of the plasma-catalytic dry reforming reaction is evaluated using design 

of experiments (DoE). Quadratic polynomial regression models are established to 

reflect the relationships between these plasma processing parameters (different 

factors) and the performance of dry reforming process (different responses), in terms 

of the conversion of CO2 and CH4, the yield of CO and H2 as well as the fuel 

production efficiency (FPE) of the plasma process. The results indicate that the total 

feed flow rate is the most important factor affecting the conversion of CO2 and CH4 

and the yield of CO and H2, while CO2/CH4 molar ratio has the most significant 

impact on FPE of the process. The interaction between discharge power and total 

feed flow rate plays a significant role in all the responses of the plasma-catalytic dry 

reforming process. The optimal process performance - CO2 conversion (31.7%), CH4 

conversion (48.1%), CO yield (21.7%), H2 yield (17.9%) and FPE (7.9%) is achieved 

at a discharge power of 60.0 W, a total feed flow rate of 56.1 ml/min, a CO2/CH4 

molar ratio of 1.03 and a Ni loading of 9.5%, as the highest global desirability of 

0.854 is obtained at these conditions. The reproducibility of the experimental results 
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successfully demonstrates the feasibility and reliability of the DoE approach for the 

optimisation of the plasma CO2 conversion process. 

 Ni-based bimetallic catalysts have been designed and developed to further 

enhance the catalyst performance for plasma-catalytic dry reforming of CH4. The 

10wt.%Ni+3wt.%Co/γ-Al2O3 (10Ni3Co) catalyst shows the highest plasma-catalytic 

activity compared with other bimetallic catalysts (10wt.%Ni+3wt.%Cu/γ-Al2O3 

(10Ni3Cu) and 10wt.%Ni+3wt.%Mn/γ-Al2O3 (10Ni3Mn)). This can be ascribed to 

the high specific surface area and larger amount of strong basic sites resulting from 

the interaction between Ni and Co in the Ni-Co/γ-Al2O3 catalyst. It is suggested that 

the formation of Ni-Co alloy in the Ni-Co/γ-Al2O3 catalysts contributes to the 

enhancement in the plasma-catalytic reforming performance when the Ni-Co/γ-Al2O3 

catalysts are combined with plasma. The specific surface area of the catalyst is 

decreased but the amount of strong basic sites on the catalysts is increased by 

increasing the Co loading in Ni-Co/γ-Al2O3 catalyst. The compromise between the 

catalyst structure and the amount of basic sites on the catalyst favours the maximum 

enhancement in the performance of the plasma-catalytic dry reforming reaction when 

the 10Ni5Co catalyst is integrated with the plasma system. The maximum CH4 

conversion of 50.7% and the maximum CO2 conversion of 30.9% are achieved for 

the plasma-catalytic dry reforming over the 10wt.%Ni+5wt.%Co/γ-Al2O3 (10Ni5Co) 

catalyst at a discharge power of 50 W and a total gas flow rate of 50 ml/min. 

Moreover, the 10Ni5Co catalyst possesses the highest carbon resistance in the 

plasma-catalytic reforming process. It is worthy to note that the carbon deposition on 

the catalyst in our plasma-catalytic dry reforming reaction is significantly lower than 

that in the conventional thermal catalytic dry reforming of CH4 using similar Ni-

Co/γ-Al2O3 catalysts at high temperatures. In addition, the maximum FPE of 12.7% 

is obtained in the plasma-catalytic dry reforming of CH4 in this study, which is 

higher than most of the previous results obtained in the atmospheric non-thermal 

plasma reactors.  

The high reaction rate and fast attainment of steady state in plasma processes 

allow rapid start-up and shutdown of the process compared to thermal treatment, 

whilst plasma systems can also work efficiently with a rather small and compact size. 

This offers flexibility for plasma-catalytic processes to be integrated with renewable 

energy sources (such as waste energy from wind power and solar energy), and 

provide a promising approach to store and transport the surplus energy in a chemical 

form. 
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CHAPTER ONE    INTRODUCTION 

1.1 Background and Motivation 

1.1.1 Energy challenge and climate change 

 Energy is a foundation stone of modern society’s development and industrial 

economy. It provides essential ingredients for almost all human activities: cooking 

and space/water heating, lighting, health, food production and storage, education, 

mineral extraction, industrial production and transportation. The world’s primary 

energy sources come from fossil fuels, which are a non-renewable energy source 

formed from the remains of plants and animals buried millions of years ago. Coal, oil 

and natural gas are the three major fossil fuel forms. Figure 1.1(a) shows the global 

energy consumption history and projections given in the International Energy 

Outlook (IEO2013). Clearly, high reliance on fossil fuels can be observed. For 

example, coal, oil and natural gas accounted for 28%, 34% and 22% of global energy 

consumption in 2010 [1]. Part of the dependence on fossil fuels comes from their 

availability. Coal is playing an important role in delivering energy access due to its 

wide availability, safety, and reliability as well as the relatively low cost. More than 

75% of the countries all over the world have coal deposits. Recent data shows that 

the proved coal reserves have increased by 1% and its production by 16% compared 

to the 2010 survey [2]. The majority of the coal-produced energy is used in the 

electric power sector and the current share of coal in global power generation is over 

40% [2]. The future of coal mainly depends on the advance of clean coal 

technologies to mitigate environmental risk factors. For oil, the current global 

reserves are almost 60% larger than that of 20 years ago, and its production has gone 

up by 25%. If the unconventional oil resources, including oil shale, oil sands, extra 

heavy oil and natural bitumen are taken into account, the global oil reserves will be 

four times larger than the current conventional reserves [2]. Oil is the premier energy 

resource with a wide range of possible applications and its main use will be shifted 

towards transport and the petrochemical sector. Natural gas, as the cleanest fossil 

fuel, will continue making significant contributions to the world energy economy. It 

is plentiful and flexible, and is increasingly used in the most efficient power 

generation technologies, such as combined cycle gas turbines with approximate 

conversion efficiencies of 60%. According to statistics, the reserves of conventional 

natural gas have grown by 36% and its production by 61 % over the past two decades 

[2]. Moreover, shale gas as a potentially major energy source has emerged and will 

have a serious strategic influence in geopolitics and the energy industry.  
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(a) (b) 

Figure 1.1 World energy consumption by (a) fuel type and (b) country group (Btu: 

British thermal unit, a traditional unit of energy equal to about 1055 joules; OECD: 

Organisation for Economic Cooperation and Development) [1]. 

 

Though fossil fuels are clearly the dominant energy source, alternative and 

renewable energy sources contribute more and more to overall energy consumption. 

Alternative energy sources have been used for many years, and gradually become the 

focus as one of the ways to lessen the dependence on non-renewable fossil fuels. 

Nuclear power is one of the alternative energy sources. Total nuclear electricity 

production has experienced a rapid development during the past two decades; its 

annual output reached up to about 2600 TWh by the mid-2000s [2]. The U.S., France 

and Japan are the top three countries which have the highest installed nuclear power 

capacity and they occupied 27.2%, 17.3% and 10.4% of the global total installed 

capacity in 2011, respectively. Renewable energy sources have a greater appeal 

because they can be regenerated and sustained nearly indefinitely. The most 

commonly used renewable energy sources are biomass, hydropower, geothermal, 

wind and solar. Figure 1.2 shows the estimated renewable energy share of global 

final energy consumption in 2012 [3]: more than 19% of global final energy 

consumption was provided by renewable energy.   

 

 

Figure 1.2 Estimated renewable energy share of global final energy consumption, 

2012 [3]. 
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 As shown in Figure 1.1(b), the IEO2013 projects that world energy 

consumption will increase by 56% between 2010 and 2040. The OECD countries are 

expected to increase energy use by 17%; while the countries outside OECD, labelled 

as non-OECD, are projected to dramatically increase their energy consumption by 

90% [1]. In particular, China and India are expected to make more than half of the 

global energy consumption growth by 2040. These two countries have been among 

the world’s fastest growing economies during the past two decades. The prediction of 

the strong economic growth, together with the high populations in both countries 

drives an ever increasing energy demand. In order to meet this demand, energy 

production must increase as well. Despite that, renewable energy is predicted to be 

the fastest growing energy sector, as shown in Figure 1.1(a), China, India and other 

non-OECD Asian countries will still have a larger reliance on the fossil fuels, 

especially on coal due to the availability of coal reserves in that region and its 

relative low price. Global coal demand is predicted to grow by 15% by 2040, but 

almost two-thirds of the increase will occur over the next ten years. In the next few 

years, China will be the biggest coal consumer and its coal demand will plateau at 

just over 50% of global consumption before falling back after 2030. India is expected 

to overtake the U.S. as the second biggest coal consumer in the world before 2020, 

and soon after will surpass China as the largest importer [4]. Although the economic 

cost of fossil fuels may be lower than renewable sources, the environmental cost of 

burning fossil fuels is significantly greater. Fossil fuels are made up of hydrogen and 

carbon atoms, therefore named hydrocarbons. Burning the hydrocarbons will lead to 

the release of CO2 (see Equation (1-1)) and other greenhouse gases (GHGs).  

2 2 2C H O CO H O heat
4 2

x y

y y
x x

 
     
 

  (1-1) 

Figure 1.3 shows the global annual anthropogenic GHG emissions between 

1970 and 2010 [5]. Clearly, annual anthropogenic GHG emissions were increased by 

81.5% from 1970 to 2010, and the annual increasing rate of GHG emissions in the 

latter ten years was much higher than that in the former thirty years during that 

period. In addition, energy-related CO2 emissions accounted for 85.5% of the total 

anthropogenic carbon emissions in 2010. On a global scale, other key GHGs resulted 

from human activities include methane (CH4), nitrous oxide (N2O) and fluorinated 

gases (F-Gases).  CH4 is formed in the process of agricultural activities, waste 

management and energy use including oil and natural gas operations as well as coal 

mines. N2O mainly comes from hydrocarbon combustion, nitrogen-containing 

fertiliser and other industrial processes. F-Gases, including hydrofluorocarbons 

(HFCs), perfluorocarbons (PFCs) and sulfur hexafluoride (SF6), are mainly generated 

as by-products and emitted as leakage in industrial processes. All of these gases 

contribute to the warming of the planet, but CO2 has the greatest effect because it is 
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produced in such a large amount due to the strong dependence of the human race’s 

development on fossil fuel. 

 

 

Figure 1.3 Global anthropogenic greenhouse gas emissions by gases from 1970 to 

2010 (GtCO2-eq/yr: gigatonne of CO2-equivalent per year; FOLU: forestry and other 

land use) [5]. 

  

Increasing the concentration of GHGs by human activities has resulted in an 

imbalance in the natural carbon-cycle: more carbon is being emitted into the 

atmosphere than that can be absorbed by nature. This imbalance leads to significant 

changes in the local weather system, named climate change. which can be evidenced 

by the measurement of various climate parameters, such as surface temperature, sea 

level, ocean acidification, et al. Figure 1.4 shows the estimated historical trend of the 

atmospheric CO2 concentration and global temperature change [6]. The 

concentration of CO2 is observed to correlate very well with the average global 

temperature change. The Intergovernmental Panel on Climate Change (IPCC) 

reported in 2015 that the globally averaged combined land and ocean surface 

temperature had risen about 0.85 
o
C over the period from 1880 to 2012 [5]. The 

warming of the climate system is considered unequivocal and many of the observed 

changes are unprecedented since the 1950s. Rising global temperatures resulted in 

the expansion of ocean water and melting of glaciers, ice caps as well as ice sheets, 

all of which definitely caused the sea level to climb. In the IPCC 2015 report, the 

global mean sea level rose by 0.19 m over the period between 1901 and 2010, and 

the rising rate since the mid-19th century was larger than the mean rate during the 

previous two millennia [5]. In addition, the excess CO2 released by human activities 

breaks the balance of CO2 exchange between the atmosphere and ocean. More CO2 is 

absorbed in the ocean and reacts with water to produce a weak acid called carbonic 
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acid, resulting in the acidification of the oceans. The Global Biodiversity Outlook 

Report reported that the sea water is about 30% more acidic than that in pre-

industrial times [7]. Moreover, as announced by the World Meteorological 

Organisation, extreme weather patterns occur more frequently than before, such as 

hurricanes, drought or intense rain, desertification, extreme cold weather, and super-

storms [8]; therefore, agriculture has poor harvests and the population in hunger is 

increasing. In addition, the temperature changes around the world also have 

significant negative effects on the ecosystem. The extinction rates of animal and 

plant species have behaved significantly differently to normal expectations since the 

industrial revolution. The outbreaks and epidemics of diseases show an alarming 

increase rate throughout land and ocean based wildlife. For human beings, it was 

found that 40% of deaths in the world could be attributed to environmental factors 

[8]. 

 

 

Figure 1.4 Historical trends of atmospheric CO2 concentration and global 

temperature change in the past 400 thousand years [6]. 

1.1.2 CO2 remediation and utilisation 

 The effects of the climate change are being widely investigated by individual 

governments and intergovernmental organisations. CO2 emissions from the 

combustion of fossil fuels are believed to be the most significant contributor to 

global climate change. International Energy Agency (IEA) has projected that energy 

- related CO2 emissions will grow by 20% by 2040, which will put the world on a 

path consistent with a long term global average temperature increase of 3.6 
o
C [4]. 

Therefore, it is necessary and urgent to take measures to reduce CO2 emissions, 

helping lessen the threat of climate change. During the last three decades, efforts 

both on policy and technology have been taken to pursue possible solutions to this 

problem. 
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1.1.2.1 Policy efforts 

 The United Nations Framework Convention on Climate Change (UNFCCC) 

was open for signatures on 4 June 1992 at the United Nations Conference on 

Environment and Development (UNCED) and entered into force on 21 March 1994, 

aiming to stabilise GHG concentrations in the atmosphere at a level to prevent 

dangerous anthropogenic interference with the climate [9]. As an internal 

environmental treaty, UNFCCC itself set no binding limits on GHG emissions for 

individual countries and contained no enforcement mechanisms; therefore it was 

considered not legally binding. However, the treaty provided framework for 

negotiating specific international protocols which may be used to set binding limits 

on GHG emissions. As of 2015, UNFCCC had 197 parties [9]. Since the 

Conferences of the Parties in 1995, the parties of the convention have meetings every 

year to evaluate the progress in dealing with climate change issues. In 1997, the 

Kyoto Protocol was established and spelled out legally binding obligations for 

developed countries to reduce their GHG emissions [10]. Besides the Kyoto 

Protocol, further commitments have been agreed, including the Bali Action Plan 

(2007) [11], the Copenhagen Accord (2009) [12], the Cancún agreements (2010) 

[13], and the Durban Platform (2011) [14]. In the Copenhagen Accord, it was stated 

that global warming should be limited to below 2.0 
o
C compared to pre-industrial 

temperatures [12]. Developing countries such as China and India are included in the 

Durban platform for the first time in the 2011 United Nations Climate Change 

Conference (UNCCC) [14]. In the 2012 UNCCC, an agreement in principle that 

richer countries could be financially responsible to other countries for their failure to 

reduce carbon emissions was established [15]. The 2015 UNCCC has been held in 

Paris, France from 30 November to 11 December 2015. Binding and universal 

agreements on climate from all the nations of the world were established [16].  

 For the major individual government and organisation, the White House of 

the United States announced on 25 November 2009 that President Obama is offering 

a U.S. target for reducing GHG emissions in the range of 17% below 2005 level by 

2020 [17]. They further promised to cut net GHG emissions by 26-28% below 2005 

levels by 2025 in a U.S.-China Joint Announcement on Climate Change and Clean 

Energy Cooperation established during the APEC 2014 held in Beijing, China [18]. 

As another particular major emitter, the European Union (EU) has committed to 

three targets of reducing emissions for 2020. The first one is to reduce emissions by 

20% on 1990 levels, the second one is to increase the renewables’ share of its total 

energy to 20%, and the third one is to increase energy efficiency by 20% from 2007 

levels. They also have endorsed an emission reduction of 80-95% by 2050 [19]. The 

United Kingdom participates in the EU action to tackle climate change as a member 

of the EU. They declared to reduce its GHG emissions by at least 80% of the 1990 

baseline by 2050 in the 2008 Climate Change Act [20]. China, as the largest 
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developing country, positively takes part in international actions tackling climate 

change. They declared targets to peak CO2 emissions around 2030, with the intention 

to peak early and to increase the non-fossil fuel share in total energy to around 20% 

by 2030 [18]. They submitted a carbon-curbing plan to the United Nations ahead of 

the Paris climate change summit, saying that they will cut their GHG emissions per 

unit of gross domestic product by 60-65% from 2005 levels and will work harder to 

peak emissions earlier than 2030 target [21].  

1.1.2.2 Technological efforts 

 The technological efforts on reducing CO2 emissions involve reducing fossil 

fuel consumption by boosting clean and renewable energy use, carbon capture and 

storage (CCS) as well as carbon capture and utilisation (CCU). The utilisation of 

renewable energy sources has experienced rapid development in the last two 

decades. They totally accounted for 11% of the global energy consumption in 2010, 

and this percentage has been predicted to be 15% in 2040 [1]. However, the 

existence of the barriers to the advancement of renewable energy from technology, 

market, finance and social acceptance makes it hard for it to be the main driving 

force in controlling and reducing CO2 emission in the short term. This situation is 

especially obvious in developing countries [22].  

 In efforts to manage CO2 emissions with CCS processes, captured CO2 is 

designed to be stored in geological and oceanic reservoirs. Methods have been 

proposed to inject CO2 into depleted oil reservoirs for enhanced oil recovery, to store 

CO2 in deep underground saline formations, and to inject liquid CO2 into the ocean at 

intermediate depths. Although the technologies are available for these methods, the 

financial cost is rather high when the energy needed to compress the captured CO2, 

transport it to the storage reservoirs and pump it into the ground or ocean are taken 

into consideration. Moreover, there are great concerns over the potential 

environmental impacts of the CCS approach, associated with leakages, slow 

migration and accumulation, induced seismicity and ocean acidification [23]. 

 In the CCU approaches, rather than being considered as a waste, CO2 is 

regarded as a raw chemical for the production of value-added fuels and chemicals. It 

can be directly decomposed into CO, or can be transformed into other useful 

chemical in C1 chemistry. C1 chemistry refers to the conversion of simple carbon-

containing materials that contain one carbon atom per molecule into valuable 

products. The feedstock for C1 chemistry includes natural gas, CO2, CO, methanol 

and syngas. The traditional feedstock for the chemical industry mainly comes from 

coal, oil and natural gas as well as their products. Using CO2 as the raw materials of 

C1 chemistry will not only reduce the dependence on the traditional fossil fuels, but 

also consume a large amount of CO2, removing the negative effects of the 

greenhouse effect. Common CO2 conversion approaches include photocatalytic 
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reduction, electrochemical reduction, thermal-catalytic conversion and plasma-

assisted conversion. 

(1) Photocatalytic reduction of CO2 

The photocatalytic reduction of CO2 is completed by the radicals or electrons 

generated on the photocatalysts irradiated with UV and/or visible light radiations. In 

photocatalytic processes, light radiations which have energy equal to or greater than 

the band gap energy of a semiconductor strikes its surface, electrons are excited from 

the valence band to the conduction band and an equal numbers of holes are generated 

in the conduction band simultaneously. The generated electron-hole pairs separate 

from each other and move to catalytically active sites on the surface of the 

semiconductor, where CO2 is reduced by the electrons into carbon-containing fuels 

such as CO, CH3OH and/or CH4 with the presence of H2O; meanwhile, the oxidation 

of H2O occurs due to the oxidation ability of holes, as shown in Figure 1.5 [24]. 

 

 

Figure 1.5 Schematic illustration of the photocatalytic reduction process of CO2 at 

semiconductor surface [24]. 

 

 The first study related to the photcatalytic reduction of CO2 was reported by 

Inoue et al. in 1979. They used both oxide and non-oxide photocatalytsts, such as 

TiO2, WO3, ZnO, GaP, CdS and SiC. In their work, CO2 was photoreduced into 

various organic compounds, such as CH3OH, HCOOH, CH4 and HCHO with H2O as 

the reducing agent [25]. Subsequently, many researches on the photocatalytic CO2 

reduction to fuels have been performed under UV and/or visible light irradiations.  It 

has been found that CH4, CH3OH and CO are the major products and TiO2 based 

photocatalysts are more efficient than other photocatalysts [26]. In order to enhance 

the response of TiO2 to visible light, a variety of strategies have been proposed, 

including doping TiO2 with metals and non-metals, sensitisation and using 

nanocarbons, graphene, and enzymes [26]. Currently, the efficiency of CO2 

photocatalytic reduction is very low and far from practical application. More efforts 

should be made to improve the efficiency of the photoreduction process, including 

the development of the novel heterostructured photocatalysts with considerable 
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activity, high reaction selectivity for CO2 reduction and stability, further 

understanding of the mechanism in the photochemical process and establishing 

efficient photoreactor and reaction systems [27]. Detailed information about the 

research status and the future recommendation can be found in the recently published 

reviews [24, 26, 27].  

(2) Electrochemical reduction of CO2 

The electrochemical reduction of CO2 has a long history dating from the 19
th

 

century and has attracted interest in the last three decades [28]. One common device 

for the electrochemical reduction of CO2 is H-type cells with metal plate electrodes. 

CO2 can be converted into various products directly at the surface of solid electrodes. 

A homogeneous catalyst is incorporated into the system to participate in the electron 

transfer reaction from solid electrodes. The cells consist of two compartments 

connected through a diaphragm. The diaphragm ensures ionic conductivity through 

the cell parts, but prevents the oxidation of the CO2 cathodic products on the anode 

electrocatalyst and the oxygen contamination (from anodic water oxidation) in the 

cathodic compartment [29]. The over-voltages are required to provide the electrons 

for the direct electrochemical reduction of CO2. This is one of the major differences 

between electrochemical and photocatalytic reduction; in the latter case, the electrons 

come from the interaction between the semiconductor and exposed light radiation 

[30]. Figure 1.6 shows a representative example of an H-type cell described by Lee 

et al. in 2001, in which the anodic and cathodic cell compartments were separated by 

an anion-exchange polymer membrane [31]. The electrochemical reduction can 

proceed in gaseous, aqueous and non-aqueous phases at both low and high 

temperatures, and the major reduction products include CO, formic acid (HCOOH) 

or formate (HCOO )̄ in basic solution, oxalic acid (H2C2O4) or oxalate (C2O4
2

)̄ in 

basic solution, formaldehyde (HCHO), methanol, CH4, C2H4, ethanol, as well as 

others [30]. 

The research topics related to the electrochemical reduction of CO2 mainly 

focus on the development of the electrocatalysts and the prototype systems. The most 

commonly studied electrocatalysts are transition metal elements and their associated 

compounds - metal alloys, metal oxides and metal complexes. Other metals, such as 

aluminium, gallium, indium, thallium, tin and lead, as well as alkaline metals and 

alkaline earth metals, are considered as well. Besides these metals and metal 

complexes, organic catalysts are also investigated, including conducting polymers, 

aromatic amine catalysts, radical anion catalysts, ionic liquid, enzyme catalysts and 

others [30]. The effects of the electrode potential, solution-electrolyte type and 

composition, temperature, pressure and other conditions on the performance of the 

catalysts have also been widely explored. However, challenges still remain, such as 

the slow kinetics of CO2 electrochemical reduction, even when the high electrode 
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Figure 1.6 Schematic diagram of H-type cell for the electrochemical reduction of 

CO2 [31].  

 

reduction potentials are applied in the presence of the electrocatalysts; the low 

process energy efficiency due to the parasitic energy consumption or decomposition 

of the solvent at high reduction potential; the low product selectivity due to the 

complicated reactions involved in the electrochemical reduction; the short life-time 

of the metal-based catalyst compared with the requirements for practical 

commercialisation, and high energy consumption [29, 30]. Therefore, substantial 

advances in the electrode, electrolyte, system stability, electrocatalysts and the 

overall process costs are required for the development of the commercial processes 

[28, 29].  

(3) Thermal catalytic conversion of CO2 

Thermal catalytic conversion of CO2 mainly refers to the CO2 conversion into 

chemicals driven by homogeneous, heterogenised, heterogeneous and enzymatic 

catalytic systems [32]. Several reviews have reported the research progress in this 

field [32-34]. Here, only the thermal catalytic decomposition of CO2 and syngas 

production from CO2 reforming of CH4 in the heterogeneous catalytic system will be 

described.  

Since Tamaura et al. reported that CO2 could be reduced to carbon with an 

efficiency of nearly 100% at 290 
o
C on the oxygen-deficient magnetite (Fe3O4) in 

1990 [35], different catalysts have been studied in the thermally direct decomposition 

of CO2, such as binary oxygen-deficient ferrites, expressed as M(II)Fe(III)2O4-δ (M = 
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Ni, Zn, Co, Cu, Fe, Mn, etc.), where δ is the degree of the oxygen-deficiency. A high 

δ in the ferrites results in increased Fe(II) reduction potential and enhanced 

decomposition efficiencies [36]. The ferrites have stable spinel structures, which can 

accommodate interchanges between stoichiometry and non-stoichiometry. The 

reactions with the spinel ferrites involve lattice oxygen in two different ways: 

oxidation reactions, in which oxygen atoms are transferred from the ferrites to the 

gas, and reduction reactions, in which the oxygen vacancies on the ferrites are 

replenished by oxygen from the gas. In the CO2 decomposition process, the non-

stoichiometric forms are required, which can be obtained with a reducing agent such 

as H2 [37]. Later, ternary ferrites, such as (Ni-Zn)Fe2O4, (Ni-Cu)Fe2O4, (Mn-

Zn)Fe2O4, and (Mn-Ni)Fe2O4 were proposed for the decomposition of CO2 [38]. In 

these reactions, CO2 is decomposed into CO, carbon, or both.  

In the thermal-catalytic conversion of CO2, the Boudouard reaction has also 

been used to activate CO2 through the reaction with carbon to produce CO, as shown 

in Equation (1-2), which is usually involved in the gasification of coal and other 

carbon-rich sources. However, it is highly endothermic and a high temperature (> 

700 
o
C) is favourable for CO formation. This reaction only plays an important role in 

high temperature (> 900 
o
C) gasification and melting processes [39]. Hunt et al. 

reported that the utilisation of microwave radiation could result in a dramatic change 

in the thermodynamics of the reaction and shift the temperature favouring CO 

production to around 400 
o
C, lower than that in the conventional heating effect [39].  

0

2C CO 2CO 172 kJ molH    (1-2) 

Another form of thermal catalytic decomposition of CO2 is that using 

concentrated solar radiation energy. Chueh et al. proposed a two-step 

thermochemical cycle to dissociate CO2 using metal oxide redox reaction in a solar 

cavity-receiver reactor, as shown in Figure 1.7. The entire cycle include the oxygen 

evolution and CO2 decomposition processes, as described in Equations (1-3) and (1-

4), respectively, where A is Ce or a combination of Ce and a dopant element. The 

cerium oxide was partially reduced at higher temperatures (around 1600 
o
C), 

releasing O2 under concentrated solar radiation, and then re-oxidised again by 

reacting with CO2 at a lower temperature of about 900 
o
C. The temperature in the 

reactor was controlled by adjusting the solar radiation concentrated in the reactor. 

Their results indicated that a near 100% selectivity towards CO was achieved 

without appreciable amount of carbonaceous species being deposited on ceria [40].  

2 2 2

1 1 1
AO AO O

2


 
   (1-3) 

2 2 2

1 1
CO AO AO CO

 
    (1-4) 

 

 



 Chapter one 

12 

 

 

Figure 1.7 Schematic diagram of the solar reactor for the two-step, solar-driven 

thermochemical production of fuels (CPC: compound parabolic concentrator) [40].  

 

CO2 conversions in the above thermocatatytic reduction processes are usually 

higher than those in the photocatalytic and electrocatalytic processes discussed 

before, but the requirement of high temperatures will incur high operation costs. 

In the thermal catalytic conversion of CO2, CO2 reforming of CH4 (also 

named dry reforming of CH4) to produce syngas (CO + H2) has been considered as 

one of the most promising technologies as well. CH4, on the one hand, is the second 

major greenhouse gas (see Figure 1.3); while on the other hand, it is also the main 

constituent of natural gas, biogas, coal bed gas and shale gas. Up to now, the 

conversion of CH4 to useful products is mainly involved in indirect processes, where 

CH4 is firstly to be converted to syngas. Syngas can be directly used as a fuel: 

combustion in a gas turbine, internal combustion engine or boiler, in the same way as 

natural gas. As shown in Figure 1.8, a wide range of other applications of syngas 

have been found in synthetic chemical industries [41]. H2 and CO in the syngas can 

be separated and applied individually for synthesis of various chemicals, such as 

ammonia (NH3) in the case of H2, or acids and other carbonylation products with the 

presence of CO. Syngas gas can be directly used to reduce iron oxides in industrial 

steel manufacture. In addition, the mixture of H2 and CO can be used directly in the 

synthesis processes with a suitable catalyst and an elevated temperature, such as 

Fischer-Tropsch (F-T) process, oxy-synthesis, methanol synthesis, etc.  
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Figure 1.8 Schematic diagram of the main applications of syngas [41]. 

 

The principal routes for the conversion of CH4 to syngas include steam 

reforming (Equation (1-5)), partial oxidation (Equation (1-6)) and dry reforming 

(Equation (1-7)). Steam reforming is a mature conventional process for syngas 

production. It is a highly endothermic reaction, which results in a relatively energy-

intensive generation of syngas with a high cost. The main challenge to the steam 

reforming process is to reduce the cost for syngas production and coke formation. 

Although using a large excess of steam could help prevent the deposition of carbon 

on the catalyst, it would decrease the thermal efficiency and negatively affect the 

economics of the process. Moreover, the resulting H2/CO molar ratio in the syngas 

would be in the range of 3.4-5.0, much higher than the ratio required for many 

synthesis processes [42]. Adjustment of the H2/CO molar ratio is therefore needed, 

which would lead to a high capital cost. Partial oxidation of CH4 can be achieved 

both with and without the catalysts. In the absence of a catalyst, CH4 is mixed with 

excess O2 and ignited. High temperatures (1200 -1500 
o
C) are required for the higher 

conversion of CH4 [43]. Catalysts including supported transition and noble metal 

oxides as well as various transition metal carbides have been investigated for partial 

oxidation of CH4, which lower the operating temperature to 727-927 
o
C [41]. The 

major advantage of this process is less external heating is required due to its slightly 

exothermic characteristics. In addition, this process produces syngas with a CO/H2 

molar ratio close to 2, which is suitable for the F-T synthesis and methanol synthesis 

[42]. However, the cost to separate O2 from air results in a high operating cost [41]. 

In addition, the fast reaction of CH4 with O2 leads to complete oxidation of the 

reactants, producing H2O and CO2, which is not desirable because valuable H2 is 

converted to water [44].  
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0

4 2 2CH H O CO 3H 206 kJ molH     (1-5) 

0

4 2 2CH 0.5O CO 2H 36 kJ molH      (1-6) 

0

4 2 2CH CO 2CO 2H 247 kJ molH     (1-7) 

The dry reforming of CH4 is also strongly endothermic, like the steam 

reforming process. However, the dry reforming process stoichiometrically produces 

syngas with a H2/CO molar ratio close to 1. The H2/CO molar ratio in the syngas can 

also be easily controlled by adjusting CO2/CH4 molar ratio in the feed gas to meet the 

requirements of different end use. Most importantly, this process has received 

considerable attention as it involves the conversion of two major GHGs from the 

view point of environmental protection. Moreover, from the perspective of resource 

utilisation, the successful realisation of the process would enable the direct use of the 

low-grade biogas, natural gas, coal bed gas and/or shale gas containing different 

amounts of CO2 and CH4. Both of these two factors make it an applicable route to 

control CO2 emission.  

As dry reforming of CH4 is a highly endothermic reaction, a temperature 

higher than 640 
o
C is required to achieve reasonable reactant conversions [45]. 

However, two side reactions: CH4 decomposition (Equation (1-8)) and CO 

disproportionation (Equation (1-9)) favour the formation of carbon at a temperature 

range of 560 to 700 
o
C. Therefore, dry reforming of CH4 is usually performed at 

temperatures higher than 750 
o
C to minimise the effect of these side reactions, 

including the catalyst deactivation and reactor blockages due to the carbon deposition 

and sintering under the severe reaction conditions [45]. Several reviews have been 

conducted to discuss the catalytic aspects of CO2 reforming of CH4 [46-48].  

  0

4 2CH C s 2H 75 kJ molH    (1-8) 

  0

22CO C s CO 172 kJ molH     (1-9) 

(4) Plasma-assisted conversion of CO2 

 Due to the non-equilibrium property and the capacity to induce physical and 

chemical reactions at relatively low temperatures, non-thermal plasmas provide an 

alternative approach to convert CO2 into high grade gas products, as the highly 

energetic electrons in the plasma have the ability to efficiently active the gas 

molecules. Several reviews have discussed the applications of plasma processing in 

CO2 conversion [49-52]. The basic principle of plasma and the current state of the 

plasma-assisted CO2 conversion will be given in the following sections.   
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1.2 Plasma Systems 

1.2.1 Basic principle and classification of plasma technology 

 Plasma is a term used to describe an ionised gas containing a mixture of 

particles: electrons, ions, radicals as well as neutral gas atoms and molecules. It was 

firstly introduced by Irving Langmuir in 1928 to describe the inner region of a 

glowing ionised gas phase produced through electric discharge in a tube. Actually, 

Sir Williams Crooks was the first person to identify plasma in a so called Crooks 

tube in 1879 and named it ‘radiant matter’. He also referred to it as the ‘fourth sate of 

matter’. As shown in Figure 1.9 [53], when heat or another energy is exerted, the 

temperature of a substance will increase, and molecules will become more energetic; 

consequently, the matter is transformed in the sequence of solid, liquid, gas and 

finally plasma, which exactly justifies the concept "fourth sate of matter". Compared 

with other states of matter, on one hand, plasma is like gas, which does not have a 

definite shape or a definite volume unless it is enclosed in a container; on the other 

hand, it is not like the normal neutral gas, as it is strongly influenced by 

electromagnetic fields due to the presence of a non-negligible number of charge 

carriers. This is the main property to distinguish plasma from neutral gas.  

 

 

Figure 1.9 The four states of matter [53].  

 

 Just like the other states of matter, plasmas occur naturally as well. Much of 

the visible matter in the universe is in the state of plasma, such as stars and the 

visible interstellar matter. Due to the continuous cosmic radiation, there exist 

electron-ion pairs even in ambient air at normal temperature and pressure. The 

ionisation rate in the air is in the order of 10
6
 m

-3
s

-1
 ion-electron pairs (1 ion per cm

-

3
s

-1
) when only the cosmic radiation is considered [54]. Thus, dry air is electrically 

insulating. Lightning and Auroras are the two typical examples of naturally occurring 
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plasma. In a laboratory setting, plasma can be generated for practical application. As 

shown in Figure 1.10, various types of energy can be applied to generate plasma: 

thermal energy , magnetic fields or electric fields [55]. The most common approach 

to generate and sustain plasma is exerting an external electric field to the neutral gas, 

which results in the formation of a variety of new species, such as electrons, ions, 

radicals, excited atoms and molecules, as well as the UV photons. The newly formed 

free charged particles are accelerated by the electric field and collide with other 

atoms, molecules and/or the electrode surfaces, and then new charged particles are 

created. This leads to an avalanche of the charged particles; meanwhile, annihilation 

of part of the charge carriers also occurs, and eventually a balance is created to 

develop the steady-state plasma. This man-made plasma is often referred to as 

‘discharges’. The electrical discharges in gases are obtained with high applied 

voltage and the typical U vs i plot is independent of the gas types (shown in Figure 

1.11) [55]. Townsend discharge is a self-sustained discharge created at low discharge 

current. The transition to a sub-normal glow discharge and to a normal glow 

discharge is characterised by a decrease in the voltage and an increase in the current. 

Further increasing the current develops an abnormal glow discharge. Finally, at very 

high currents, the discharge undergoes an irreversible glow-to-arc transition [55].  

 

 

Figure 1.10 Principles of plasma generation [55]. 
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Figure 1.11 The dependence of voltage upon current for various kinds of discharges 

[55]. 

 

Plasmas possess various configurations and characteristics, depending on the 

approaches used for plasma generation, as presented in Figure 1.12 [56]. The 

differences in plasma appearance mainly result from the differences in plasma 

characteristics, including gas temperature, discharging gas species as well as degree 

of ionisation. The diverse characteristics of plasmas can be related to the parameters 

such as electron temperature and density, and ion temperature, which can be altered 

by discharge types, power supply and/or operating temperature and pressure. In 

general, different electric fields are used to form direct current (DC) or alternating 

current (AC) discharges. The DC discharges can be maintained with a constant 

current (e.g. arc and glow) or be sustained in a pulsed-periodic regime (e.g. pulsed 

corona). In DC discharges, external ballast is usually applied in series with plasma to 

restrict the current through the circuit, which will significantly limit the electron 

density, and thus effectively restrict excessive neutral heating by electrons. The AC 

discharges can be generated with both low and high frequency. AC dielectric barrier 

discharge (DBD) is typical example of low frequency AC discharge operated at kHz 

frequency ranges; while the electrodeless induced radiofrequency (RF) discharges 

between 1-100 MHz and microwave (MW) discharges commonly generated at 24.5 

GHz are classified as high frequency AC discharges.  
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Figure 1.12 Diverse plasma configurations: (a) Microwave (MW); (b) DC torch; (c) 

dielectric barrier discharge (DBD); (d) pulsed corona discharge (PCD); (e) rotating 

gliding arc (RGA); (f) Spark discharge [56]. 

 

 Depending on the required applications, plasmas can be generated over a 

wide range of pressures and temperatures. Gas pressure is one of the most important 

characteristic parameters. At a given gas temperature, the pressure defines the total 

density of gas particles and consequently the probability of mutual collisions among 

particles, namely, the collision frequency. In low pressure plasmas (10
-4

 to 10
-2

 kPa), 

the inelastic collisions between electrons and the heavy particles are excitative or 

ionising. These collisions do not raise the temperature of heavy particles, leaving it 

lower than those electronic ones. By increasing the pressure, more collisions take 

place, and therefore a more efficient energy transfer is achieved, leading to the 

increase in the temperature of the heavy particles and the formation of the steady-

state of energy equilibrium in the plasma [57]. Figure 1.13 shows the variation of the 

electron temperature (Te) and the gas temperature (Tg) in a mercury-vapour discharge 

as a function of the mercury-vapour pressure at a constant current. Clearly, the gas 

temperature is only 300 K at 1 mtorr, while the corresponding electron temperature is 

up to 10,000 K (1 eV = 11,600 K); these two temperatures tend to be an average 

value of 5000 K when the pressure is above 5 torr [58].  

 

 

Figure 1.13 Schematic of the electron temperature (Te) and gas temperature (Tg) as a 

function of pressure in a plasma discharge at a constant current [58]. 
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 In general, plasma can be categorised as thermal or non-thermal plasma based 

on the relationship between different particle temperatures. In the electric discharges, 

electrons firstly gain energy from the electric field and then transfer it to the heavy 

particles during collisions, losing only a small fraction of their own energy. At this 

stage, electron temperatures are higher than that of heavy particles. If sufficient time 

and energy is provided, subsequent collisions of electrons with the other heavy 

particles can equilibrate their temperature [59]. The kinetic energy (temperature) of 

the charged particles and the kinetic energy (temperature) of the background gas are 

similar under these conditions. This plasma is called thermal plasma and may be 

characterised by a single temperature at each point in space. Since all the particles 

are in a state of thermal equilibrium, thermal plasma is also known as equilibrium 

plasma [59]. By contrast, in non-thermal plasmas, also called non-equilibrium 

plasmas, plasma species have different temperatures; electrons generally have a 

kinetic energy in the range between 10
4
 K and 10

5
 K, 2-3 orders of magnitude greater 

than that corresponding to the background gas molecules [60]. Table 1.1 compares 

the properties of thermal and non-thermal plasma [61, 62]. Basically, the temperature 

in the thermal plasma can reach up to 10
4
 ~ 10

5
 K; this high temperature makes it 

more powerful and can achieve high specific productivity. Thermal plasma is 

suitable for the pyrolysis processes and has applications in metallurgy, high 

temperature chemistry, solid waste treatment, thermal spraying, etc. The first plasma-

assisted reformer with thermal plasma was the DC plasma torch; however, such 

devices are not effective in terms of energy consumption [63]. Moreover, due to the 

extremely high temperatures attained in the thermal plasma reactors, much more 

energy is required to cool the electrodes.  

 

Table 1.1 Comparison of the general properties of thermal and non-thermal plasma 

[61, 62].  

Properties Thermal plasma Non-thermal plasma 

Gas temperature (K) (1-5)×10
4
 300-1000 

Ionisation degree (ne/n) >10
-3

 < 10
-6

 

Electron temperature (eV) 1-5 (Te≈Tn) 1-10 (Te ≫Tn) 

Ionisation mechanism Step-wise Direct 

Cathode current density (A/cm
2
) 10

4
-10

7
 10-10

2
 

 

 Figure 1.14 shows the comparison of the energy cost for H2 production from 

CH4 and diesel using thermal and non-thermal plasmas, in which new plasmatron 

and old plasmatron refer to the non-thermal plasma and thermal plasma assisted 

reformers, respectively [64]. Clearly, comparable H2 yields can be achieved is both 

kinds of plasma reactors, but significantly lower energy consumption is observed in 

the case of non-thermal plasma.  
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Figure 1.14 Comparison of energy costs for H2 yield by thermal and non-thermal 

plasma [64]. 

1.2.2 Non-thermal plasma and its generation methods 

 Non-thermal plasmas present some advantages on the high selectivity and 

energy efficiency in plasma chemical reactions along with effective operation at 

relatively low temperatures, compared with thermal plasma. This basic feature is 

mainly due to the fact that most of the input power is used to produce the energetic 

electrons, rather than heating the bulk gas. As mentioned in Section 1.2.1, the most 

common method of plasma generation is by using an external electric field. Electrical 

breakdown will occur when the electric field exceeds a certain value at which a 

conductive gas channel is formed. In non-thermal plasma, most of the breakdown 

mechanisms start with an electron avalanche, which is a multiplication of primary 
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electrons in cascade ionisation. Compared with thermal plasma, the ionisation degree 

is rather lower, usually ne/n ≤ 10
-6

 and the electron density is relatively low (see 

Table 1.1). This restriction in the electron density enables the electrons to gain more 

energy from the electric field between successive collisions and decreases the 

probability of electron-neutral interaction, thereby reducing the gas heating effect. 

The temperatures of the background gas in non-thermal plasma are often at or near 

room temperature. However, they can become excited and/or store energy in their 

thermodynamic energy modes by the collisions between energetic electrons and 

neutral particles, which will produce electronic, vibrational and rotational excitation 

of the neutral gas, ionisation, fragmentation of molecules, and lead to the formation 

of active chemical species that act as aggressive oxidising and reducing agents. In 

addition to the non-equilibrium property, non-thermal plasma technology is 

characterised by lower energy consumption and electrode erosion, significant 

reduction of the electrode cooling problems as well as compactness and low weight 

with relatively simple power supplies, which makes them potentially applicable for a 

wide range of purposes [63]. The first investigation on non-thermal plasma can be 

traced back to Simens’ experiment for ozone generation using DBD in the 1850’s 

[65]. Later, non-thermal plasma is being widely used in the volatile organic 

compounds (VOCs) abatement [66], NOx treatment [67], water purification [68], 

hydrogen production [69], surface treatment as well as the catalysts preparation and 

activation [70, 71]. 

 In non-thermal plasma, in addition to the highly energetic electrons, highly 

reactive species are produced, including free radicals, excited atoms, ions and 

molecules, etc., the plasma chemistry is rather complex. Table 1.2 lists the main 

reactions occurring in the non-thermal plasma [65]. In the plasma gas processing, 

each of the plasma species plays different roles in the plasma chemistry. Electrons 

firstly obtain energy from the external electric field, and then distribute the energy 

through collisions and generate other new reactive species. Excited molecular states 

from vibrational excitation can transfer a significant proportion of energy into gas 

heating, which would accelerate the chemical reaction in the plasma. Ions and 

radicals contribute significantly to the plasma chemical synthesis because they have 

the ability to react in the plasma at lower temperatures than those required in thermal 

reactions [41]. By selecting the appropriate gases, plasma types and operating 

conditions, the complex chemical processes in the plasma can be controlled, which 

would favour the selective synthesis of the desired end products [59].  
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Table 1.2 Main reactions in the non-thermal plasma (A, B stand for atoms, A2, B2 for 

molecules; e represents an electron; M is a temporary collision partner; * marks the 

excited species and the species marked by + or – are ions) [65]. 

 Reaction Type Reaction Formula 

Electron/ Molecular 

Reactions 

Excitation (rotational, vibrational, 

electronic) 2 2e A A e    

Dissociation 2e A 2A e    

Attachment 2 2e A A    

Dissociation attachment 2e A A A    

Ionisation 2 2e A A 2e    

Dissociation ionisation 2e A A A 2e     

Recombination 2 2e A A   

Detachment 2 2e A A e    

Atomic/Molecular 

Reactions 

Penning dissociation 2M A 2A M     

Penning ionisation 2 2M A A M e      

Charge transfer A B B A     

Ion recombination A B AB    

Neutral recombination A B M AB M     

Decomposition 

Electronic e AB A B e     

Atomic 2A B AB B     

Synthesis 
Electronic 

2 2e A A e    

A B AB    

Atomic A B AB   

 

Until now, several different types of plasma have been used for CO2 

utilisation, including corona discharge, microwave discharge, gliding arc, DBD, and 

packed-bed reactors. In the following sections, a brief introduction of each discharge 

as well as their characteristics will be presented. Although the non-thermal plasma 

can also be generated at low gas pressures, expensive vacuum systems and pumps 

are required in these plasma technologies. Over the last two decades, a growing 

interest has been aroused to replace these low pressure systems with atmospheric 

non-thermal plasmas [54]. Therefore, the discussions on the non-thermal plasma 

generated under low gas pressure are not considered in this study.  
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1.2.2.1 Corona discharge 

 The corona discharge is a relatively low power electrical discharge that takes 

place in regions of high electric field strength near sharp edges, points, or thin wires 

near atmospheric pressure. It can be frequently observed at high voltage transmission 

lines, lightning rods, and its name ‘crown’ was taken from the mariner’s observation 

of discharges from their ships’ masts during electrical storms [72]. Figure 1.15 (a) 

shows an example of corona discharge. Man-made corona discharge can be 

generated by either continuous or pulsed DC voltage between two electrodes. The 

electrodes are generally arranged as a grounded cylindrical outer electrode with a 

concentric high voltage wire or rod inner electrode, or as point-to-point, or point-to 

plate electrode configurations. The volume between the electrodes is occupied by a 

static or continuous flow gas. The non-uniform electric field is formed in the vicinity 

of the sharps edges or points of its electrodes where the radius of the curvature is 

small. Figure 1.15 (b) shows a typical positive corona discharge between a needle 

and a plate. The ionisation of neutral gas occurs when the electric field is greater than 

a certain critical value. The non-uniform electric field is only formed in the vicinity 

of the sharp corona source, where the ionisation of gas molecules occurs; therefore, 

this region is called the ionisation zone and the corona discharge is considered as 

locally ionised plasma. Further away from the corona needle, the electric field 

magnitude drops and when it is below the required threshold value, no ionisation 

occurs. With the aid of the electrode, the ions created in the ionisation zone drift 

through the region outside the ionisation zone and towards the collecting electrode; 

the space outside the ionisation zone is therefore called the drift zone. In the drift 

zone, electron attachment reactions are favourable, producing negative ions. 

 

  

(a) (b) 

Figure 1.15 (a) Image of a corona plasma discharge; (b) schematic of a positive 

corona discharge. 
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 The corona discharge can be controlled depending on the polarity of the DC 

voltage applied to the electrode. As described above, a positive corona can be formed 

when the high electric field is centred on the anode. When the high electric field is 

centred on the cathode, a negative corona is produced as well. In the corona 

discharge, the strong electric field, ionisation and luminosity are only located close to 

one electrode; the electric current is transferred to the other electrode by the drift of 

the charged particles in the relatively low electric field [73]. Therefore, a low current 

and, as a result, low discharge power are achieved, which will limit the application of 

the continuous corona discharge. Increasing the applied voltage can enable the active 

corona to reach the opposite electrode, forming a spark [72]. However, spark 

channels will result in the local overheating and plasma non-uniformity, which is not 

favourable for practical application. The pulsed-periodic voltage can be used to 

deliver fast and effective power transfer into the non-thermal plasma discharge 

without the spark formation as long as the pulse width is shorter than the duration 

range (on the order of 100-300 nanoseconds with electrode distance of about 1-3 

cm), which is necessary for the development of electron avalanches, avalanche-to-

streamer transition, and streamer propagation between electrodes [61].  

1.2.2.2 Radio frequency (RF) and microwave (MW) discharges  

 Radio frequency (RF) and microwave (MW) discharges are the two forms of 

discharges which are sustained with high frequency electromagnetic fields without 

electrodes. In RF discharges, electromagnetic fields generated by the power supply 

interact with the plasma through the inductive or capacitive coupling processes, with 

the former one generating thermal discharges and the latter one non-thermal 

discharges. The coupling of the electromagnetic field to the plasma discharge is 

mainly to maintain the plasma by the energy absorbed from the field. Poor coupling 

will result in the low efficiency of the power supply and the overall circuit. The 

frequencies to generate RF plasma are typically in the range of 0.1- 100 MHz, with 

the most used frequency being 13.56 MHz [59]. In the RF discharge, the wavelength 

is within the range of 3-300 meters. 

 For MW discharges, the operating frequency ranges between 300 MHz to 10 

GHz with the most commonly used frequency being 2.45 GHz, much higher than 

that of RF discharges. Figure 1.16 shows the typical configuration of a MW 

discharge [62]. In these reactors, the MWs are generated by a magnetron and guided 

by a wave guide to the process chamber. A dielectric tube (usually quartz tube), 

transparent to MW radiation, is passed through the wave guide. The electrons in the 

processing gas absorb the MW energy, which leads to an increase in kinetic energy, 

and thus the ionisation reactions are ignited by the inelastic collisions [74]. The 

plasma is formed at the interaction region of the wave guide and the dielectric tube, 

as the highest electric field is achieved at that point. Depending on the consumed 
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MW power, the bulk gas temperature can be at room temperature or reach up to 

several thousand kelvin [75]. In MW plasmas, the wavelengths are very small, which 

are on the order of centimetres and approach the dimensions of the reactor itself.  

The electrode-less operation of RF discharge and MW discharge render them 

favourable for the conditions where extremely high temperatures are required, as 

complicated electrode cooling devices can be eliminated. However, initiating the 

high frequency plasma is much more challenging than DC plasmas because complex 

and somewhat more expensive power supplies as well as a high frequency generator 

are required. Moreover, the plasma must be coupled and matched as a load in the 

power circuit [76]. 

 

 

Figure 1.16 Schematic diagram of microwave plasma reactor [62]. 

1.2.2.3 Gliding arc discharge (GA) 

 Gliding arc (GA) discharge is an oscillating phenomenon developing between 

at least two diverging electrodes placed in a fast laminar or turbulent gas flow. The 

typical quasi-two-dimensional bi-electrode GA discharge device is shown in Figure 

1.17 (a). A high voltage generator provides the appropriate electric field to initially 

breakdown the gas at the shortest distance between these two electrodes and creates a 

plasma arc column. With the aid of the convective gas flow from the upstream 

injection port, the arc is pushed downstream along the electrode axis and its length is 

elongated until it can no longer sustain itself by the supplied power. Then the arc 

extinguishes, but immediately the new arc is generated at the narrowest gap. Through 

this ignition-evolution-extinction cycle, as shown in Figure 1.17 (b) [77], GA 

discharge region is formed. 
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(a) (b) 

Figure 1.17 Phenomenon of GA discharge: (a) photograph of GA discharge; (b) 

ignition, evolution and extinction of GA discharge [77]. 

  

 Since the traditional GA discharge (i.e. plate GA discharge) device was 

designed by A. Czernichowski [77], it has been widely used in the fields of 

environment and energy, due to its unique characteristics of simple configurations 

and strong capacity of inducing chemical reactions. Several new types of GA 

reactors have been developed based on the configuration and basic characteristics of 

the traditional reactors. Figure 1.18 shows the development of the GA discharge 

reactors, including multi-electrode GA discharge reactor [78], cone-shaped rotating 

GA reactor [79], magnetic GA reactor [80], and reverse vortex GA reactor [81].  

 

 
 

(a) (b) 

  

(c) (d) 

Figure 1.18 Development of different GA discharge configurations: (a) multi-

electrode GA discharge reactor [78]; (b) cone-shaped rotating GA reactor [79]; (c) 

magnetic GA reactor [80]; (d) reverse vortex GA reactor [81].  
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1.2.2.4 Dielectric barrier discharge (DBD) 

 Dielectric barrier discharges (DBDs) are also named silent discharges as they 

were originally known due to the prevention of spark formations, which generated 

noise. There are two major discharge modes in DBDs: filamentary mode and 

homogeneous or glow mode. The filamentary mode has been a hot topic for 

investigation in the past several years, and most industrial applications of DBD use 

the filamentary mode [73]. Therefore, we mainly consider the filamentary mode in 

our study. A DBD reactor consists of two planar or cylindrical electrodes with one or 

more dielectric barriers positioned in the discharge gap as shown in Figure 1.19 (a) 

and (b). The dielectric barrier acts to limit current flow once the discharge is ignited. 

It enables the microdischarges to distribute over the entire electrode area; and no 

spark or arc occurs in the discharge gap with an intact dielectric barrier [82]. The 

dielectric constant and thickness of the dielectric barrier determine the amount of 

displacement current passing through the dielectric. Preferred materials for the 

dielectric barrier are glass or silica glass. Ceramic materials and thin layers of enamel 

and polymer can be used in some special cases. Moreover, additional protective or 

functional coatings are applied in some applications [83]. For an atmospheric 

pressure DBD reactor, the distance between the two electrodes ranges from 

micrometres up to centimetres depending on the used processing gas and the applied 

voltage [74].  

 

 

Figure 1.19 Different configurations of DBD reactors [84]. 
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 DBD reactors can be operated in a wide range of pressures (mbar up to 

atmospheric pressure) and the frequency can range between 50 Hz to 1 MHz [55]. 

Applying a strong electric field across the discharge gap, a large number of separate 

and short-lived current filaments, also known as microdischarges, are formed when 

the local electron density at certain locations in the discharge gap reaches a critical 

value. These bright, thin filaments are statistically distributed in space and time and 

are formed by channel streamers with nanosecond durations. When a microdischarge 

reaches the dielectric, it spreads into a surface discharge and the accumulation of the 

transferred charge on the surface of the dielectric barrier reduces the electric field. As 

the electric field further reduces, electron attachment prevails over the ionisation and 

the microdischarges are extinguished. As the polarity of the electrodes is rapidly 

changing, the microdischarges are re-formed at the point where the electron density 

reaches the critical value necessary for electrical breakdown. This leads to the 

continuous formation of nanosecond microdischarges at a frequency which is twice 

of the applied frequency [60]. The microdischarges appear as spikes on the current 

waveform and in appearance, they are randomly distributed over the surface of the 

dielectric. In reality, the position of the microdischarge is dependent on the residual 

charge distribution on the dielectric surface due to the memory effect [85]. In the 

microdischarges, the total transferred charge is closely related to the gas properties 

and can be influenced by the discharge gap width and the properties of the dielectric 

barriers [82].  

 Surface discharge, as shown in Figure 1.19 (c), is another configuration of 

DBD [86]. A series of strip electrodes are attached to the surface of the dielectric 

barrier; while a film like counter electrode is embedded inside the dielectric barrier 

base and serves as the induction electrode. The dielectric barrier can be either planar 

or cylindrical. By applying an AC voltage between the strip and embedded counter 

electrodes, a surface discharge starts from the peripheral edges of each electrode and 

stretches out along the dielectric barrier surface. Many nanosecond surface streamers 

are contained in the surface discharge.   

1.2.2.5 Packed-bed DBD reactor 

 The packed-bed reactor is a variation of the typical DBD system, which 

consists of packing pellets between the electrodes, as shown in Figure 1.20. The 

packing pellets could be either catalytic or non-catalytic. Glass beads, quartz, 

aluminate and ferroelectrics are the generally used packing pellets. BaTiO3 is the 

most widely used ferroelectric material, which has a dielectric constant of 2000-

10000 [84]. In addition to the packing pellets, one dielectric barrier layer (two or 

none in some cases) may be inserted between the electrodes. In the cylindrical 

packed-bed reactor, the dielectric barrier layer could be adhered to the inner and/or 
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outer electrodes; the inner electrode could be in the shape of a wire, rod, screw or a 

tube. The materials of the dielectric barrier and packing pellets could be different. 

 The major characteristic of the packed-bed reactor is the presence of the 

contact point between the packing pellets and between the packing pellets and the 

electrodes or the reactor wall. Applying a high voltage to the electrodes leads to a 

spontaneous polarisation of the ferroelectric material in the direction of the external 

electric field, generating a strong local electric field at the contact points [87]. This 

intense electric field results in gas breakdown and the production of partial 

discharges in the vicinity of each contact point. The presence of ferroelectric pellets 

in the discharge volume is favourable for a uniform gas distribution and electrical 

discharge. Packing pellets with a high dielectric constant will reduce the breakdown 

voltage and this generally leads to a higher discharge power. Therefore, packed-bed 

reactors could be considered as high electron energy but low plasma density devices 

[88]. Despite the low electron density, the packed-bed reactor could function as an 

alternative approach to enhance the energy efficiency due to the high mean electron 

energy resulting from the increase in the electric field. For the packed-bed reactor, 

the most important parameters are the material, dielectric constant, as well as the size 

and shape of the packing pellets [59, 88].  

 

 

Figure 1.20 Different configurations of packed-bed reactors.  

1.2.3 Plasma-catalysis systems 

1.2.3.1 Plasma-catalysis system configurations 

 As mentioned above, the chemistry in non-thermal plasma is rather complex. 

The selectivity of the desired products is typically low. The combination of non-

thermal plasma and catalysts has attracted high interest as an alternative in increasing 

the energy efficiency and optimising the by-product distribution, as it combines the 

low temperature activity, fast response and compactness of the plasma reactor with 

the high selectivity of the catalytic reactions. The non-thermal plasma can be 
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combined with the catalysts in either single-stage or two-stage configurations, as 

shown in Figure 1.21, depending on the position of the catalyst. In the single-stage 

configuration, the catalyst could be completely or just partially placed in the plasma 

zone, which enables the plasma and the catalyst to interact directly with each other. 

Reactions in this configuration involve short-lived active species, such as excited 

atoms and molecules, radicals, electrons and photons [89].  

 

 

 

Figure 1.21 Schematic diagram of different plasma-catalysis configurations: (a) 

plasma-only system; (b) single-stage arrangement; (c) two-stage arrangement with 

plasma pre-processing; (d) two-stage arrangement with plasma post-processing.  

 

Figure 1.22 shows the common heterogeneous catalyst arrangement in the 

single-stage plasma-catalysis systems [90]. Tu et al. found that the fully packing 

configuration (Figure 1.22 (b)) strongly changes the discharge mode from a typical 

filamentary microdischarge to a combination of spatially limited microdischarges 

and a predominant surface discharge on the catalyst surface. While in the partially 

packing configuration (Figure 1.22 (c)), strong filamentary discharges were still 

clearly observed and the physical and chemical interactions between the plasma and 

catalysts were significantly enhanced, which resulted in much higher performance in 
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the plasma-catalytic dry reforming of CH4 than the fully packed reactor [91]. In the 

two-stage configuration, the plasma zone can be located either upstream or 

downstream of catalyst bed, which is termed as plasma pre-processing and plasma 

post-processing, respectively. In the former case, the plasma provides chemically 

reactive species for further catalysis or pre-converts reactants into easier converted 

products to accelerate the catalysis, which makes it the most adopted configuration 

for the two-stage plasma catalysis; while in the latter case, the plasma is generally 

applied to convert the residual reactants and destroy the undesired by-products 

generated by the thermal catalysis [92]. From the comparison of these two two-stage 

systems for autothermal reforming of C8H18, the plasma pre-processing gave better 

performance for H2 production [93]. In this thesis, the plasma-catalysis refers to the 

single-stage process, where the catalyst is packed directly into the discharge gap of a 

coaxial DBD reactor. 

 

 

Figure 1.22 Common catalyst arrangement methods for the single-stage plasma-

catalysis systems: (a) catalysts coated on the surface of the reactor wall and/or 

electrodes; (b) catalysts inserted as a packed-bed reactor (granulates, coated fibres, 

pellets); (c) catalysts placed as a layer at the bottom of the reactor (powers, pellets, 

granulates, coated fibres) [90].  

1.2.3.2 Plasma-catalyst interactions 

 The interactions between the plasma and catalysts in the two-stage 

configuration are relatively simple as almost all of the generated short-lived active 

species (excited species, radicals and ions) in the plasma extinguish before they reach 

the catalysts. In such systems, the plasma mainly serves to change the gas 

composition fed into the catalytic reactor for the pre-processing configuration or to 
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convert the residual reactants and the undesired by-products from the thermal-

catalytic reactions for the post-processing configuration [92].  

For the single-stage plasma-catalysis system, the interactions between the plasma and 

the catalysts become rather complicated, which has been discussed in detail in the 

reviews [90, 94-96]. The interactions can be elucidated from two aspects: (1) the 

influence of packing catalysts on plasma characteristics and (2) the influence of 

plasma discharge on the catalysis. Figure 1.23 (a) represents some the plasma-

catalysis effects reported in the literatures and Figure 1.23 (b) summarises the 

possible plasma-catalyst interactions resulting in the plasma-catalysis synergism 

[95]. The principles of these mechanisms are briefly described as follows.  

 

 

(a) 

 

 
(b) 

Figure 1.23 (a) Schematic representation of the factors active in plasma catalysis; (b) 

possible plasma-catalytic synergism caused by the effects of catalyst on plasma and 

of plasma on catalyst [95]. 
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(1) Effect of catalyst on plasma 

With the presence of catalysts in the discharge volume, the electric field will 

be enhanced due to the large curvature of the local surface of the catalyst, just like 

the non-catalytic materials packing in the plasma reactor, causing the packed-bed 

effect. Although the electric field enhancement is a physical effect, the modified 

electric field directly influences the electron energy distribution function as well as 

the electron impact dissociation and ionisation rates, which will vary the chemical 

composition in the plasma [95]. Moreover, the electric field enhancement results in 

the formation of microdischarges in the volume of catalyst pores, which is rather 

strong and make the discharge characteristics quite different from the discharge in 

the bulk gas [97-99]. This will in turn lead to the different production and loss rates 

of various plasma species. In addition, packing catalyst pellets in the discharge area 

will propagate the streamer along the catalyst surface, resulting in the expansion of 

the discharge region and a more intensive discharge around the contact points [90, 

100]. With this so-called surface discharge, the electron impact ionisation and 

dissociation rates are enhanced significantly. All of these phenomena contribute to 

the change in the chemistry. The porous structures of the catalyst enable the gas 

reactant species to be adsorbed on the surface, leading to a longer retention time in 

the reactor and therefore a higher reaction efficiency of the plasma-catalytic process 

than that in the plasma process without catalysts [90].   

(2) Effect of plasma on catalyst 

 When the applied voltage across the catalyst bed exceeds a specified value, 

gas discharge will be formed, and it will greatly affect the adsorption-desorption 

equilibrium of molecules on the surface of the porous catalyst due to the electric 

surface properties changed by the discharge [101]. A higher adsorption probability at 

the catalyst surface has been observed in the case of plasma than in the thermal 

catalysis, which will affect the concentration of the gas reactant species, and 

therefore the reaction efficiency. The adsorption probability at the catalyst surface is 

also increased with the surface area of the catalyst. It has been reported that plasma 

discharge favours the formation of the smaller active metal nanoparticles, leading to 

higher dispersion and thus, a larger total surface area [102]. The surface area can also 

be modified by the discharge induced changes in the overall catalyst morphology 

[103]. Moreover, the plasma generated small nanoparticles typically possess a less 

ordered surface structure, containing defects, vacancies, under-coordinated sites, 

edges and corners, all of which will additionally enhance the catalytic activity of the 

catalyst [104]. In addition, in the presence of the plasma, the coke formation on the 

catalyst surface is reduced and therefore, the deactivation of the catalyst is prevented, 

which has been demonstrated to result from increasing the active metal dispersion 

[105].   
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Exposing the catalyst to a plasma discharge will change the oxidation state of 

the catalysts, due to the influence of the high voltages or through the interaction with 

reactive oxygen species (ozone, atoms and radicals) [103, 106]. It has been reported 

that a change in the oxidation state of a surface layer of Cu, Ag and Au supported on 

ZrO2 occurred after the O2 plasma treatment; and the O2 plasma reduced catalysts led 

to the increase in the activity towards butanol dehydrogenation [106]. Plasma can 

also reduce the catalyst, turning oxide phases into the metallic phase [107, 108]. Tu 

el al has shown the reduction of NiO to metallic Ni in an atmospheric DBD reaction 

for the dry reforming of CH4 reaction [107].  

In the plasma-catalysis system, the presence of the voltage and current (or 

charge accumulation) on the catalyst surface could lead to the changes in the work 

function of the metal catalyst, resulting from the change in the electron extraction 

potential of the catalyst due to the plasma induced polarisation [109, 110]. It is stated 

that a higher work function will enhance the reduction of the active metals and 

promote the oxidation reaction [111].  

In the plasma discharge, photons can be generated for the activation of the 

catalyst. This process is therefore called photocatalysis. The most commonly used 

photocatalyst is anatase phase TiO2 with a bandgap of 3.2 eV. Photons with 

wavelengths below 387 nm will promote the electrons from the valence band to the 

conduction band, thereby activating the catalyst for redox reactions [95]. However, 

the plasma generated UV radiation is not always the factor inducing the activation of 

the photocatalyst [112]. 

When catalysts are placed into the discharge volume, strong microdischarges 

are formed in the vicinity of structures with high curvature, leading to the high 

temperature in these regions, which is beneficial to the formation of the hot spots on 

the catalyst surface [90]. These hot spots can then modify the local plasma chemistry 

or perhaps even locally activate the catalyst [97].  

Plasma typically consists of a large fraction of species in vibrationally excited 

states, which can lower the activation barrier for the surface reactions due to the 

increased energy state of the reactants compared to the ground state and the non-

adiabatic barrier crossing (e.g. a barrier crossing which is not accessible from the 

ground state) [95]. Furthermore, plasma treatment can also lower the activation 

barrier of  the catalyst [113]. 

As mentioned above, plasma is a complex mixture of ions, electrons, 

electronically and vibrationally excited species, and stable molecules, atoms, radicals 

as well as photons. This makes the plasma chemistry quite different from that in the 

thermal-catalytic reaction system. Consequently, the reaction path for the formation 

of the desired products from the reactants in the plasma-catalysis process will also be 

different [95].  
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(3) Synergistic effect between the plasma and catalyst (plasma-catalysis) 

In plasma-catalysis, the synergistic effect between the plasma and the catalyst 

may occur, and consequently improved process performances are achieved in terms 

of reactant conversion, product selectivity and/or energy efficiency, compared with 

the catalysis only and the plasma-only process or their sum. This has been 

demonstrated in the VOC removal and the NH3 synthesis process [89, 114, 115]. For 

the dry reforming process, Zhang et al. also reported the synergistic effect generated 

by the combination of the DBD reactor and Cu-Ni/Al2O3 catalyst, as shown in 

Figure 1.24 [116]. The conversion of CO2 and CH4 in the plasma-catalytic reaction 

was higher than the sum of the catalysis only and the plasma-only. The selectivity of 

CO and H2 were also enhanced in the plasma-catalysis process. 

 

  

(a) (b) 

Figure 1.24 Synergistic effect of a DBD and catalyst in dry reforming of CH4 from 

the work of Zhang et al.: (a) reactant conversion; (b) product selectivity [116]. 

1.3 Review of the Application of Non-thermal Plasma in CO2 

Decomposition 

 Based on the generation methods for the non-thermal plasma, different types 

of non-thermal plasma reactors have been applied for CO2 decomposition, including 

corona, DBD, MW and GA. In this section, the performance of different non-thermal 

plasma reactors in CO2 decomposition will be described, except for those processes 

operated at low pressure, such as MW and RF discharges [117, 118], as they may be 

incompatible with the economic requirements for chemical synthesis at a commercial 

scale.  

 In the early stage, when global warming was not yet an issue, applications of 

CO2 decomposition mainly focused on the emission control of automobile exhaust 

gas and the development of CO2-detectors, where highly diluted CO2 was 

investigated [119]. Since CO2 was considered as one of the major contributors to the 
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GHG effect, decomposition of GHGs from industrial and energy production exhausts 

have been attracting increasing attention. From the view point of large scale 

applications, dilution cannot be considered as an optimal option; therefore, pure CO2 

decomposition using non-thermal plasma technology has become a hot research 

topic.  

For the corona discharge, both the positive and the negative corona 

discharges have been used [120-122]. In these studies, CO2 conversion was around 

10% with CO as the carbonaceous products. O2 or O3 were also observed in different 

reactors. Horvath et al. reported that CO2 conversion in the negative polarity 

discharges was slightly higher than that in the positive discharges [122]. In the DBD 

reactor for pure CO2 decomposition, the effects of frequency, input/discharge power, 

feed flow rate, feed gas temperature, discharge gap and dielectric materials have 

been studied [123, 124]. The specific energy density (SED) has been demonstrated to 

play the most significant role in CO2 conversion and energy efficiency. Aerts et al. 

reported that a lower discharge power with a lower gas flow rate could result in a 

higher conversion and energy efficiency [124]. In their work, a maximum CO2 

conversion of 35% with an energy efficiency of 1.9% was obtained in a DBD reactor 

at a feed flow rate of 10 ml/min and a discharge power of 40 W [124]. In the 

experiments performed by Brehmer et al., an almost stoichiometric CO/O2 molar 

ratio of 2:1, along with a strongly temperature dependent O3 production of up to 

0.075%, was observed in the CO2 decomposition products from a DBD reactor [125]. 

GA discharge seems to be very promising for CO2 decomposition, in which high 

energy efficiencies are possible due to high feed flow rate under atmospheric 

conditions. Nunally et al. reported a maximum energy efficiency of 43% for CO2 

decomposition in a non-equilibrium GA plasmatron; however, the corresponding 

CO2 conversion was quite low. In their experiments, CO2 conversion to CO was 

observed in the range of 2-9% for a specific energy input (SEI) variation from 0.1 to 

1.0 eV/molecule and a flow rate variation from 14 to 40 l/min [126]. Therefore, it 

can be deduced that high energy efficiency is achieved at the expense of low CO2 

conversion. Indarto et al. also obtained similar results in their work of CO2 

decomposition in a GA discharge reactor [127]. 

 In order to improve the CO2 decomposition performance, the combination of 

plasma and catalyst (i.e. plasma-catalysis) was introduced, however, most researches 

focused on the effect of the electrode materials. Matsumoto et al. investigated the 

CO2 decomposition process in a DBD reactor with Cu, Ni, and Fe rods as the inner 

electrode for a mixture of 10% CO2 in Ar. They found that CO2 conversion increased 

with the increase in the heat of formation for the corresponding metal oxides, i.e. 

CO2 conversion increased in the order of Cu<Ni<Fe. No obvious difference was 

observed in the selectivity to the produced O2 and CO [128]. In order to study the 

effect of the electrode materials, active metal could be coated on the electrode 
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surface. Brock et al. investigated CO2 decomposition in a fan-type AC glow 

discharge reactor coated with Au, Cu, Pt, Pd, Rh and mixed rotor/stator systems 

(Au/Rh and Rh/Au) for a mixture of 2.5% CO2 in He. The trend in the activity of 

these metals in both conversion and efficiency was observed in the order: Rh > Pt ≈ 

Cu > Pd > Au/Rh ≈ Rh/Au ≈ Au. In the Rh-coated reactor, a conversion as high as 

30.5% was obtained [129].  

The modification of the plasma reactor by using a packed-bed reactor or 

developing new dielectric materials is applied for the enhancement in the CO2 

decomposition performance. For the packed-bed plasma reactors, Wen et al. 

performed pure CO2 decomposition in a corona reactor packed with porous Al2O3 

pellets (α-Al2O3, γ-Al2O3). It was found that the high surface area and strong CO2 

adsorption capacity of γ-Al2O3 played a positive role in CO2 decomposition; 

meanwhile, the presence of γ-Al2O3 also suppressed the reaction of CO and O to 

form CO2 again. Therefore, the decomposition of CO2 was greatly enhanced by 

packing γ-Al2O3 [130]. Yu et al. used silica gel, quartz, α-Al2O3, γ-Al2O3, and 

CaTiO3 as packing materials in a packed-bed DBD reactor to investigate the roles of 

dielectric properties and morphology of packing dielectric pellets in the 

decomposition of CO2. CaTiO3 was found to exhibit the best promotional effect on 

CO2 decomposition with a maximum CO2 conversion about of 20% [131]. Similarly, 

quartz wool, quartz sand, γ-Al2O3, MgO and CaO were utilised as the packing 

materials in a DBD microplasma reactor for CO2 decomposition. CO2 conversion 

and energy efficiency achieved the highest value of 41.9% and 7.1% in a CaO-

packed reactor due to the higher dielectric constant and basicity of CaO [132].  

For the modification of the dielectric materials, Li et al. prepared a series of 

Ca1-xSrxTiO3 (0.1 ≤ x ≤ 0.4) with 0.5 wt% Li2Si2O5 by liquid phase sintering and used 

them as dielectric barriers in the DBD reactor for CO2 decomposition. Ca0.8Sr0.2TiO3 

with 0.5wt.% Li2Si2O5 led to a maximum CO2 conversion of 18.9%, much higher 

than those obtained in commercial SiO2 and Al2O3. This optimal SrTiO3 

concentration was resulted from two competitive effects caused by the high 

permittivity of dielectric barrier: the increase in the transported charges within a 

single microdischarge channel and the rapid accumulation of the charges on the 

surface of the dielectric barrier [133, 134]. Wang et al. prepared Ca0.8Sr0.2TiO3 

ceramic barriers with the addition of CaO-B2O3-SiO2 (CBS) glass in the range of 

0.5%-5% and investigated their effect on the conversion of CO2. They found that 

CO2 conversion and conversion efficiency reached their maximum values of 48.7% 

and 1.1 W/% with the addition of 5.0 wt% CBS when 10% CO2 in N2 was used as 

the reactant. They suggested that increasing the CBS amount would lead to the 

increases of the surface resistance and the capacitance of the grain boundaries; 

moreover, the grain boundaries on the dielectric barrier surface could serve as 

charge-trapping sites, so that a more homogeneous discharge would be generated, all 
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of these factors would result in the enhancement of both CO2 conversion and energy 

efficiency [135]. 

1.4 Review of the Application of Non-thermal Plasma in Dry 

Reforming of CH4 

Several types of non-thermal plasmas have been investigated for dry 

reforming of CH4, including glow discharge [136, 137], corona discharge [138, 139], 

MW discharge [140, 141], GA discharge [142, 143] and DBD [144, 145]. The state 

of the art for dry reforming of CH4 is summarised in the following sections from the 

perspectives of plasma-only and plasma-catalytic processes.  

1.4.1 Non-thermal plasma dry reforming of CH4 without catalyst 

 Atmospheric pressure glow discharges (APGDs) have been investigated for 

dry reforming due to their high electron energy and electron density as well as the 

proper temperature during the plasma process. Ghorbanzadeh et al. studied syngas 

production in an atmospheric pulsed glow discharge reactor sustained by the corona 

pre-ionisation. The energy efficiency was within 15%-40% for different 

experimental conditions with syngas as the main products. Hydrocarbons up to C4 

were also detected with C2H2 showing the highest selectivity [146]. The advantage of 

APGD for the dry reforming process is mainly due to the higher electron density; 

however, the enlargement of the process is the biggest challenge for its industrial 

application [147]. 

 Using corona discharge, the dry reforming process has been investigated in 

different discharge forms, including pulsed, positive, negative and AC corona 

discharges [138, 148, 149]. Dai et al. found that in a pulsed corona plasma at ambient 

conditions, CO2 and CH4 were respectively transformed into CO and C2 

hydrocarbons; the pulse voltage and the repeated frequency had a positive influence 

on the conversion of the feed gases [148]. Li et al. found that the conversion of CO2 

and CH4 increased in the order of negative corona < AC corona < positive corona, 

whereas the H2/CO molar ratio in the products exhibited the opposite order [138, 

149]. Although high electron density can be obtained in corona discharge, it is an 

inhomogeneous discharge with low current density. High electron density mainly 

occupies the region around the high curvature electrode, which makes it difficult to 

achieve a large treatment capacity for dry reforming of CH4.  

 For dry reforming of CH4 in the atmospheric MW discharge reactor, Zhang et 

al. reported that syngas together with C2H4 and C2H2 were obtained as the major 

products in a pulsed MW reactor [141]. Jasinski et al. proposed two types of 

atmospheric pressure MW plasma sources (namely, a nozzleless waveguide supplied 

coaxial-line-based and a nozzleless wave guide-supplied metal cylinder-based) for 
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hydrogen production via CH4 conversion. Their results indicated that the nozzleless 

waveguide-supplied metal-cylinder-based MW plasma source showed better 

performance in terms of hydrogen production rate and energy efficiency [140]. MW 

discharge seems to be a promising plasma form for dry reforming of CH4 due to the 

high conversions, product selectivity and large treatment capacity as well as high 

energy efficiency. However, the equipment necessary for MW discharge is more 

complicated and bulky, which increases the project difficulty and operating cost for 

industrial application. 

 For the utilisation of GA discharge in dry reforming of CH4, the quasi-two-

dimensional gliding arc discharges were mainly applied. Bo et al. investigated the 

effect of the feed gases proportion on the dry reforming performance using GA 

discharges. Their results showed that syngas as well as C2H2 and C2H4 were the main 

reforming products; increasing the CH4/CO2 molar ratio, both CH4 and CO2 

conversion and consequently the formation of each main by-product were enhanced. 

They also found that a CH4/CO2 molar ratio larger than 2:1 resulted in serious coke 

deposition, especially in the relatively high applied voltage condition [142]. Tu et al. 

emphasised the production of carbon nanomaterials from the dry reforming of CH4 in 

a GA discharge reactor. They found that different carbon materials (including 

spherical carbon nanoparticles, multi-wall carbon nanotubes and amorphous carbon) 

were obtained as by-products of syngas generation in the plasma dry reforming 

ptocess [143]. In a GA discharge, high feed flow rates were required to maintain the 

arc evolution during the discharge process. The relatively higher energy efficiencies 

were obtained at the expense of low reactant conversions due to the higher total feed 

flow rate.  

 DBD reactors have been investigated for dry reforming of CH4 for nearly 

three decades, including both the plasma-only and the plasma-catalysis processes. In 

the plasma-only process, syngas was the targeted products in the early stage [44, 

150]. Later, higher hydrocarbons and oxygenates were also considered. Liu et al. 

reported that besides syngas, gaseous and liquid hydrocarbons, plasma-polymerised 

film as well as oxygenates could be directly synthesised in the plasma dry reforming 

reactions [151]. Li et al. developed three different DBD reactors for synthesis of 

oxygenates and higher hydrocarbons directly from the dry reforming of CH4. The 

first reactor had a larger discharge gap while the second one had a smaller gap; based 

on the configuration of the second reactor, the high voltage electrode in the third 

reactor was divided into five parts with equal length to form an after-glow zone 

between each part. Their results indicated that smaller discharge gap favoured the 

formation of liquid hydrocarbons and acid; while much higher concentrations of 

methanol and ethanol were generated with a larger discharge gap. For the production 

of acetic acid, the smaller discharge gap was favourable, especially in the presence of 
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after-glow zones [152]. They also demonstrated that there existed an optimum 

CH4/CO2 molar ratio for the maximum selectivity of the objective oxygenates [153].  

Several modifications of the DBD reactor have been performed to improve 

the reactant conversion and/or the distribution, yield and selectivity of the products. 

Wang et al. proposed the multi-stage ionisation design to enhance the reactant 

conversion and to reduce the output of by-products. It was found that the multi-stage 

ionisation favoured a higher conversion of CO2, but lowered the conversion of CH4. 

Meanwhile, the selectivity to CO and H2 was increased, while the selectivity to the 

by-products (C2-C6) was decreased by the multi-stage ionisation [154]. Rico et al. 

compared two different DBD plasma configurations for the dry reforming of CH4. In 

the first plasma device, attention was paid to the influence of the surface roughness 

of the electrodes on the conversion yields; the effect of the different filling dielectric 

materials (i.e. Al2O3 or BaTiO3) was evaluated in the second packed configuration. It 

was found that the maximum efficiency yield was observed in the packed - bed 

reactor configuration containing Al2O3 for the dry reforming of CH4 (~ 1 mol H2 per 

kilowatt hour) [155]. The effect of the packing materials on the plasma dry reforming 

performance was also investigated by Gallon et al. They used quartz wool, Al2O3 and 

zeolite 3A as the packing materials in their DBD reactor. Quartz wool was found to 

enhance the conversion of CH4 and improve H2 yield because it induced an increase 

in the intensity of the microdischarge filament; while in the presence of Al2O3 and 

zeolite 3A, the discharge intensity was reduced and consequently the conversions of 

CH4 and CO2 were decreased compared with the condition without packing [156]. 

Ozkan et al. developed a new geometry of a DBD reactor with multiple electrodes 

for the treatment of high gas flow rates in the dry reforming of CH4. In their work, 

the main products were syngas, C2H4 and C2H6 when Ar or He was used as the 

carrier gas [157].  

1.4.2 Non-thermal plasma-catalytic dry reforming of CH4 

Generally, the product distribution in the plasma-only process is rather 

complex, including syngas, higher hydrocarbons (≥ 2), oxygenates and polymers. In 

addition, the selectivities towards target products (e.g. syngas) are typically low. The 

combination of non-thermal plasma and heterogeneous catalysts has the potential to 

improve reactant conversions and product selectivities at low temperatures. In 

plasma-catalytic processes, the synergistic effect may be generated by the 

combination of plasma and catalysts, which will enhance the energy efficiency of the 

plasma processes and improve the catalyst stability by reducing poisoning, coking 

and sintering. Up to now, the investigations on plasma-catalytic dry reforming have 

reported using plasma jet, corona and DBD reactors. The plasma-catalytic dry 

reforming of CH4 using DBD reactors has attracted the most significant attention.  
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In the early stage of the research on the plasma-catalytic dry reforming of 

CH4 in the DBD reactors, different zeolites were used as the catalysts. Eliasson et al. 

demonstrated the direct formation of higher hydrocarbons from dry reforming of CH4 

when zeolite NaX was used. They found that the presence of zeolite NaX in the 

discharge zone reduced the overall conversion but increased the concentrations of C2 

to C4 compounds in the products [158]. Zhang et al. compared the effects of quartz 

fleece, zeolite X, zeolite HY, and zeolite NaY on the reaction of CH4 and CO2 at 

ambient conditions. Zeolite NaY was found to be the most promising catalyst for 

producing syngas and liquid hydrocarbonss (C5+) with high CH4 and CO2 

conversions [42]. Comparatively, Zeolite HY showed the best performance in 

producing syngas and C4 hydrocarbons (C4H8, n-C4H10, i-C4H10) with high 

selectivity, compared with quartz fleece, zeolite NaA and zeolite NaY [159]. Jiang et 

al. reported that the application of zeolite A inhibited the formation of carbon black 

and plasma polymers and resulted in a higher selectivity towards valuable 

hydrocarbons (C2-C4) [160].  

In the same period, the catalytic effects from different electrode materials 

were also taken into consideration. Li et al. investigated the effect of the electrode 

materials (Ti, Al, Fe and Cu) on the cogeneration of syngas and higher hydrocarbons 

from dry reforming of CH4 in the DBD reactor. They found the Ti electrode 

exhibited the highest activity for reactant conversions, while the other three materials 

showed a similar performance [161].  

 Later, supported metal catalysts were applied in the plasma-catalytic dry 

reforming of CH4 in DBD reactors, such as Ni/γ-Al2O3 [91, 107, 162-168], Ag/Al2O3 

[169], Pd/Al2O3 [169, 170], Cu-Ni/Al2O3 [116], Cu/Al2O3 [166, 170], Co/γ-Al2O3 

[166], Mn/γ-Al2O3 [166], Fe/Al2O3 [171], La2O3/γ-Al2O3 [172], LaNiO3@SiO2 [173, 

174], etc. Song et al. reported that the presence of Ni/γ-Al2O3 in the discharge 

volume led to enhancement in CO selectivity and CO2 conversion, but the Ni loading 

had no obvious effects on reactant conversion and product distribution [168]. 

However, different phenomenon in the effect of the Ni loading was observed in the 

study of Mahammadunnisa et al. They stated that the 20 wt.% Ni/Al2O3 catalyst 

showed higher reactant conversion, syngas selectivity and H2/CO molar ratio in the 

gas product than those in the catalyst with a higher (30 wt.%) and lower (10 wt.%) 

Ni loading [162]. Zeng et al. compared the influence of different supported metal 

catalysts M/γ-Al2O3 (M = Ni, CO, Cu and Mn) on the performance of the plasma 

reforming process. They found that the combination of plasma with the Ni/γ-Al2O3 

and Mn/γ-Al2O3 catalysts significantly enhanced the conversion of CH4, while no 

enhancement in CO2 conversion was observed with any catalyst. Moreover, the 

integration of plasma and Ni/γ-Al2O3 exhibited the highest activity for syngas 

production [166]. In the study of Zheng et al., LaNiO3@SiO2 core-shell nanoparticle 

catalysts showed better catalytic performance with higher reactant conversion, 
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product selectivity and catalytic stability, compared to the traditional Ni-based 

catalysts (Ni/SiO2, LaNiO3/SiO2 and LaNiO3) [173, 174].  

 For the interaction between the catalyst and the plasma in the plasma-

catalytic system at different conditions, Lee et al. studied the heating effect on the 

syngas production from dry reforming of CH4 in a DBD reactor packed with Ni/γ-

Al2O3. The heating zone was added downstream of the plasma zone with a partially 

overlapped part. In this case, the conversion of CH4 was 97.5 % and that of CO2 was 

almost 100% with an input power of 80 W and a heating temperature of 573 K. Such 

high conversions in the pure thermal catalytic reforming could only be obtained 

when the temperature reached more than 1073 K. They suggested that the synergetic 

effect between the plasma and catalyst resulted in high conversion and selectivity at 

lower temperatures [165]. Wang et al. used three different contact modes of catalyst 

and plasma to investigate their synergetic effect on the dry reforming process, as 

shown in Figure 1.25 (a). In mode A, the catalyst was placed 15 mm away from the 

discharge zone; for mode B, the catalyst was placed at the end of the discharge zone; 

and in mode C, the catalyst was fully packed in the annular discharge gap. They 

found that the synergetic effect was only achieved when the catalyst was fully filled 

in the annular discharge gap (mode C). In addition, with the increase of temperature, 

the synergetic effect appeared to be evident from 673 K [163]. Similarly, Tu et al. 

compared the effect of three different packing methods for Ni/γ-Al2O3 in the single 

stage DBD plasma-catalysis system on the physical properties of the DBD and the 

performance in the plasma-catalytic dry reforming process, see in Figure 1.25 (b). In 

packing method A, the supported Ni catalyst pellets were fully packed into the entire 

discharge gap; in packing method B, Ni catalyst pellets (1 g) were partially packed 

into the discharge gap along the radial direction; and in the packing method C, 

several pieces of the Ni/γ-Al2O3 catalyst (1 g) in flake form were placed along the 

bottom of the quartz tube. It was found that the fully packed reactor strongly changed 

the discharge mode due to a significant reduction in the discharge volume, while 

partially packing the Ni/γ-Al2O3 catalyst either in a radial or axial direction into the 

discharge gap still showed strong filamentary discharge and significantly enhanced 

the physical and chemical interactions between the plasma and catalyst, which 

consequently results in the synergistic effect [91]. In their study, the effect of the 

calcination temperature on the plasma-catalytic performance was also investigated. 

The low calcination temperature (300 
o
C) was reported to result in higher synergy of 

plasma-catalysis [91]. Wang et al. studied the synergistic effect of catalyst and non-

thermal plasma on dry reforming of CH4 in plasma fluidised bed and packed-bed 

reactors with Ni/γ-Al2O3 catalyst. They concluded that both contact modes between 

plasma and catalytic particles could promote the catalyst activity at low temperatures 

(e.g. 673 K) and the plasma fluidised bed behaved better than the plasma packed-bed 

within a certain temperature range [164]. Moreover, Goujard et al. investigated the 
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influence of the plasma power supply nature on the plasma-catalytic synergy for dry 

reforming of CH4. Their experiments were performed in a DBD reactor packed with 

cordierite honeycomb monolith and excited by two different power supplies: a pulsed 

excitation and a sinusoidal excitation. In the absence of the Ni catalyst, the plasma 

discharges generated by the pulsed power supply were more efficient for higher CO2 

and CH4 conversion. Nevertheless, when a 2 wt.% Ni catalyst was deposited in the 

packed-bed, the active species generated by the AC power supply resulted in more 

promotion of the reactant activation on the Ni catalysts, therefore leading to a sharp 

increase of CH4 and CO2 conversion [175].  

 

 
 

(a) (b) 

Figure 1.25 Different catalyst packing methods in a DBD reactor: (a) the work of 

Wang et al. [163]; (b) the work of Tu et al. [91]. 

1.5 Thesis Outline 

As mentioned above, the energy challenge and global climate change caused 

by the increasing consumption of fossil fuels have become one of the greatest threats 

to humankind's sustainable development, and make it more and more urgent to 

research and develop effective renewable, alternative energy sources. CO2, as one of 

the GHGs, has little value itself, but it contributes most to the man-made greenhouse 

effect among all the GHGs. Any successful CO2 utilisation method will not only 

alleviate GHG emissions but also provide promising approaches for energy 

production through better utilisation of carbon sources. For CO2 utilisation, the 

current methods, including photocatalytic reduction, electrochemical reduction and 

thermal catalytic conversion of CO2, usually have the drawbacks of low efficiency, 

low selectivity towards the target product and/or high energy consumption as well as 

low ability for treatment of the gas with a high flow rate.  

In the last three decades, non-thermal plasma technology has been widely 

investigated in the field of energy production and environmental protection due to 
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convenient operation at low temperatures with high activity of energetic electrons, 

ions, excited atoms and molecules, radials and other reactive species as well as 

compactness and flexibility of the plasma system. The feasibility of the non-thermal 

plasma technology in an industrial scale application has been demonstrated in ozone 

generation, gas cleaning and water purification. In the plasma-only process, the 

reactant conversions and selectivity towards the target product is usually low and/or 

the production distribution is complex. This drawback can be compensated for by 

combining the non-thermal plasma with the catalysts, namely, plasma-catalysis.  

Both the plasma-only and the plasma-catalysis processes have been used in 

the field of CO2 utilisation. From the above reviews on the current status of plasma-

assisted CO2 utilisation (mainly CO2 decomposition and CO2 reforming of CH4), the 

following problems are observed: 

(1) The systematic study of the influences of the different processing 

parameters on the performance of the plasma-assisted process and the search for 

effective reactor designs with high efficiency is very limited; 

(2)  Few investigations focus on the relationship between the discharge 

characteristics (e.g. discharge behaviour, electric field, mean electron energy and etc.) 

and the reactant conversion and energy efficiency in the plasma process; 

(3) For the direct decomposition of CO2, lack of catalyst investigation in the 

plasma process makes it a great challenge to find a suitable and cost-effective 

catalyst for this reaction to enhance the efficiency of the process; while for the 

plasma-catalytic dry reforming of CH4, the involved catalysts are mainly zeolites and 

unitary supported Ni catalysts, which is still suffered from carbon deposition; in 

addition, the energy efficiency is still low although some new catalysts are utilised. 

Based on these problems, this thesis aims to develop the effective plasma 

processes for the conversion and utilisation of greenhouse gases (plasma-assisted 

CO2 decomposition and CO2 reforming of CH4). Emphasis will be given to the 

effects of the processing parameters and their relative importance on the plasma 

process, the development of the new plasma reactor, the relationship between the 

discharge mode and plasma reaction performance, the exploration of catalysts with 

high activity and stability for plasma reactions as well as the identification of the 

mechanism of plasma-catalysis synergy. The experiments will be mainly performed 

in a coaxial DBD reactor, due to its straightforward scaling up with industrial 

application experience. The study in this thesis is expected to be beneficial to the 

future industrial scale application of the plasma-assisted CO2 conversion and 

utilisation process, and consequently contributes to the development of new energy 

technologies to reduce the negative effects of climate change caused by carbon 

emissions and to ensure global energy security based on sustainable and renewable 

energy sources. 
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 The contents of this thesis are arranged as 8 chapters. The first chapter 

primarily describes the current status of the energy challenge and climate change 

from the high consumption of fossil fuels and the different efforts made for CO2 

remediation and utilisation. Then, the basic principle and generation methods of non-

thermal plasma are described, followed by the reviews of the research progress and 

the remaining problems in plasma-assisted CO2 conversion, mainly for direct 

decomposition of CO2 and dry reforming of CH4. The research scope of this thesis is 

given in the last part of Chapter 1. 

Chapter 2 describes the experimental equipment and system setup for plasma 

reactions, measurement methods of electrical signals, calculation of the discharge 

power, catalyst preparation and characterisation methods and their basic principles as 

well as the reactant and product gas analysis methods involved in this thesis.  

In Chapter 3, the direct decomposition of CO2 is investigated in a coaxial 

DBD reactor. The effects of different processing parameters (frequency, discharge 

power, feed flow rate, discharge length, discharge gap and dielectric thickness) are 

systematically studied. Empirical expressions relating the CO2 decomposition 

performance (i.e. CO2 conversion and energy efficiency) to these processing 

parameters are derived to evaluate the relative importance of these parameters. 

Modified DBD reactors with a screw-type inner electrode and/or an Al foil outer 

electrode are proposed to enhance the efficiency of the plasma process. The effects 

of the photocatalysts (BaTiO3 and TiO2) on the CO2 decomposition performance and 

the detailed reaction mechanisms are analysed as well. 

Chapter 4 performs the CO2 decomposition in a packed-bed DBD reactor. A 

simplified model for the calculation of the gas electric field is proposed. The 

variations in the discharge behaviour, gas electric field and the mean electron energy 

due to the presence of the packing pellets (BaTiO3 and glass beads) in the discharge 

volume are analysed. The relationships between the changes in the discharge 

characteristics and the enhancement in CO2 decomposition performance are 

discussed in detail. The possible chemical effect introduced by the packing pellets is 

included as well. In the last part, comparison of the energy efficiency in the plasma-

assisted CO2 decomposition process using different atmospheric non-thermal plasma 

systems is carried out. 

In Chapter 5, firstly, thermodynamic equilibrium calculation for the dry 

reforming of CH4 is carried out. Then the dry reforming of CH4 in the plasma-only 

process is performed in a similar coaxial DBD reactor. The influences of discharge 

power, total feed flow rate and CO2/CH4 molar ratio in the feed gas on the dry 

reforming process are investigated in terms of the conversion of reactants, the yield 

and selectivity of target products, the energy cost (EC) and the fuel production 

efficiency (FPE) of the plasma process. 
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Chapter 6 firstly investigates the effect of supports on the performance of the 

supported Ni catalysts in the plasma-catalytic reforming process and the optimal 

support is selected. In the second part, design of experiments (DoE) is utilised to 

study the effects of different processing parameters (discharge power, total feed flow 

rate, CO2/CH4 ratio, and Ni loading) and their interactions on the performance in 

plasma-catalytic reforming; an optimisation study is performed to obtain the 

optimum processing parameters for maximum reactant conversions, product yield 

and FPE.  

Chapter 7 aims to develop catalysts with higher plasma-catalytic activity and 

carbon-resistance based on the optimum catalyst 10 wt.% Ni/γ-Al2O3 in Chapter 6. 

Investigations are firstly emphasised on the Ni-Co, Ni-Cu, Ni-Mn bimetallic catalyst 

and the optimum bimetallic catalyst is determined. After the performance evaluation 

on the individual bimetallic catalyst, further studies are carried out to obtain the 

optimum loading of the metal additive on the optimum bimetallic catalyst. In the last 

part, comparisons on the performance of plasma dry reforming of CH4 in both 

plasma-only and plasma catalysis processes are given as well. 

Finally, in chapter 8, appropriate conclusions are summarised and possible 

future work is discussed. 
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CHAPTER TWO    EXPERIMENTAL SETUP AND 

ANALYTICAL TECHNIQUES 

2.1 Experimental System 

Figure 2.1 shows the experimental system for plasma conversion of 

greenhouse gas. It is consisted four parts: a gas-supplying unit, a high voltage power 

supply, a DBD plasma reactor and a product analysis unit. The reactant gases (CO2 

and CH4) are supplied by the gas cylinders. The gas pressure from the gas cylinder is 

adjusted by the gas regulator and the flow rates are controlled by the mass flow 

controllers (MFC). 

 

 

Figure 2.1 Schematic diagram of the experimental setup. 

 

Two kinds of home-made plasma reactors are used: coaxial DBD and packed 

-bed DBD, which have the similar appearance and structure. In the coaxial DBD 

reactor (Figure 2.2 (a)), a quartz tube is used as the dielectric material. A smooth 

stainless steel (SS) or screw-type rod (see in Chapter 3) is placed in the centre of the 

quartz tube and used as the inner high voltage electrode, which is connected to the 

high voltage output of the power supply. The SS mesh or Al foil (see in Chapter 3), 

used as the outer electrode, is wrapped over the quartz tube and grounded via an 

external capacitor. In the plasma-catalytic reaction, catalyst particles are placed along 

the bottom of the quartz tube. Based on the configuration of the coaxial DBD reactor, 

a packed-bed DBD reactor is formed when packing materials are fully packed in the 

discharge volume, shown in Figure 2.2 (b). In these two reactors, quartz wool is 
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used to support the catalysts or packing materials. To avoid the effect of quartz wool 

on the plasma chemical reactions, it is placed outside the plasma region.  

The DBD reactors are supplied by an AC high voltage power supply (CTP-

2000K) with a maximum peak voltage of 30 kV and a frequency of 5-20 kHz. 

 

 

 

(a) 

 

 

(b) 

Figure 2.2 Schematic diagram and picture of the plasma reactor: (a) coaxial DBD; 

(b) packed-bed DBD. 
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2.2 Catalyst Preparation  

In this study, the monometallic catalysts are prepared by impregnation of 

aqueous solution of nitrate salts (e.g. Ni(NO3)2∙6H2O), as shown in Figure 2.3 (a). 

The aqueous precursors are prepared and stirred by the magnetic stirrer for 2 h at 

room temperature, and then the support particles with a diameter of roughly 1 mm 

are added into the solution and impregnated for 12 h. The solutions with the catalyst 

supports are then evaporated in a water bath at 80 
o
C for 4 h and dried at 110 

o
C in 

the chamber furnace overnight. All the dried samples are calcined at 400 
o
C for 5 h.  

 

  

(a) (b) 

Figure 2.3 Schematic flow chart for the preparation steps of Ni-based (a) mono-

metallic catalysts and (b) bimetallic catalysts.  

 

The bimetallic catalysts are prepared by co-impregnating the nitrate salts of 

Ni and another metal (Co, Cu and Mn) with support particles using the same 

procedures mentioned above (shown in Figure 2.3 (b)).  

2.3 Analytic Methods 

2.3.1 Measurement and analysis of electrical signals 

 In the experiments, the Tektronix digital oscilloscope (Tektronix, MDO 3024, 

Figure 2.4 (a)) is used to collect the voltage and current signals in the discharge 

process. The applied voltage is measured by a high voltage probe (Testec, TT-

HVP15 HF, Figure 2.4 (b)), while the voltage on the external capacitor is measured 

by a voltage probe (Tektronix, P6109, Figure 2.4 (c)) to obtain the charge generated 

in the discharge process. The current transformer (Magnelab, CT-E 0.5-BNC, Figure 

2.4 (d)) is used to record the current in the discharge.  
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(a) (b) 

  

(c) (d) 

Figure 2.4 (a) Four-channel digital oscilloscope; (b) High voltage probe; (c) Voltage 

probe; (d) Current transformer. 

 

The discharge power is determined by the Lissajous method, which was first 

introduced by Manley in 1943 [176]. Figure 2.5 shows a typical circuit layout for the 

measurement of the discharge power of a DBD reactor [177] and the Q-U Lissajous 

figure [107, 178]. The principle of this method can be found in the related reference 

[41]. The specific energy density (SED) into the plasma reactor can be determined by  

 
 

 

60 W
SED kJ L

ml min

P

q


  (2-1) 

where P and q are the discharge power and total feed flow rate, respectively. 

 

  

(a) (b) 

Figure 2.5 (a) Circuit for measuring the discharge power of a plasma reactor [177]; 

(b) typical Lissajous figure of a DBD [107, 178]. 
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 Figure 2.6 (a) shows an equivalent electrical circuit of a DBD reactor, which 

contains two capacitors in series [107]. The capacitor Cd stands for the capacitance of 

the dielectric material and the other is the capacitance of the gap, Cgap. When the 

plasma is generated, a resistive channel appears in parallel to Cgap. The switch ‘K’ on 

the equivalent electrical circuit is fictional. The equivalent capacitance of the 

dielectric material is calculated according to the topology of a coaxial capacitor, 

shown in Equation (2-2) [179]: 

  
0

d

2

ln

l
C

d x d

 



  (2-2) 

where ε0 is the dielectric constant of the vacuum (8.854 ×10
-12

 F/m); ε is the relative 

dielectric constant of the dielectric material; l is the discharge length; d and x are the 

inner diameter and wall thickness of the dielectric material, shown in Figure 2.6 (b). 

 

 
 

(a) (b) 

Figure 2.6 (a) Equivalent electrical circuit of the DBD reactor; (b) Transversal 

section of the DBD reactor without packing. 

 

 In the typical Q-U Lissajous figure for a DBD reactor shown in Figure 2.5 

(b), lines BC and AD represent the discharge-off phase when there is only 

displacement current, and their slopes correspond to the Ccell in the plasma-off 

period, which is formed by the dielectric capacitance Cd and the capacitance of the 

gap Cgap, as expressed in Equation (2-3). Then, Cgap in the discharge-off phase is 

calculated in Equation (2-4). Lines AB and CD represent the discharge-on phase 

when gas breakdown occurs in the gap and the plasma is ignited. The slope of Lines 

AB and CD is the effective capacitance Ceff, which should equal Cd for a fully 

bridged gap [180]. 

cell d gap

1 1 1

C C C
   (2-3) 

celld
gap

celld

C C
C

C C





  (2-4) 
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The charge Q flowing through the DBD reactor can be obtained from the 

voltage across the external capacitor (Cext = 470 nF in this study) by  

ext cQ C U  (2-5) 

Then the voltage on the dielectric material Ud can be determined by the following 

relation [181] 

ext c
d

d d

C UQ
U

C C


     (2-6) 

Therefore, the voltage across the gap Ugap is given as 

gap dU U U   (2-7) 

The breakdown voltage UB is the voltage across the gap at which the plasma 

is ignited, which can be calculated by the following equation [70, 83]:  

 
min

B

gap d1

U
U

C C



 (2-8) 

Moreover, the peak-to-peak charge (Qpk-pk), charge discharged (Qd) and charge 

transferred per half-cycle (Qtrans) can also be obtained from the Lissajous figure, as 

plotted in Figure 2.5(b) [181]. 

2.3.2 Catalyst characterisation 

In this study, the following catalyst characterisation approaches are utilised to 

investigate the physical structure, surface element valence, the amount of the basic 

sites and carbon resistance of the catalysts: N2 physisorption, X-ray diffraction 

(XRD), CO2 temperature-programmed desorption (CO2-TPD), X-ray photoelectron 

spectroscopy (XPS) and thermo-gravimetric analysis (TGA). The principles of these 

methods are briefly described as follows. 

2.3.2.1 N2 physisorption 

 Gas adsorption is an effective approach to analyse the specific area, pore 

structure and pore distribution of a catalyst. In general, inert gases (mostly N2) are 

used as the adsorbate to avoid chemical adsorption. The adsorption isotherms are 

obtained by measuring the adsorbed gas amount at a constant temperature with 

different relative pressure p/p0 (p is the real gas pressure; while p0 is the saturated 

vapour pressure at a constant temperature). The adsorption and desorption branches 

are contained in the adsorption isotherms; and the shape of the isotherms is 

dependent on the pore structure of the solid materials.  

In this study, the N2 physisorption is carried out at 77 K using a surface area 

analyser (Quantachrome NOVA 4200e) to measure the pore size and the specific 

surface area of the catalyst. Before each measurement, the samples are outgassed at 

300 
o
C for 2 h under a vacuum to remove any moisture and other adsorbed gases. 
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The specific surface area is calculated via the Brunauer-Emmett-Teller (BET) 

method, while the pore size distribution is determined using the Barrett-Joyner-

Halenda (BJH) model from the data of the desorption branch of the N2 isotherm. 

2.3.2.2 XRD 

 XRD is a technique primarily used to characterise crystal structure at atomic 

level, based on the constructive interference between the monochromatic X-rays and 

the crystalline samples. The X-rays are generated by a cathode ray tube, filtered to 

produce monochromatic radiation, collimated to concentrate and directed to the 

sample. Constructive interference will occur when the interaction between the 

incident rays and the sample satisfies the Bragg’s Law [182], expressed by  

2 sind n   (2-9) 

where d is the spacing between diffracting planes, θ is the incident angle, n is any 

integer, and λ is the wavelength of the beam. In this condition, a reflection spot is 

produced in the diffraction pattern, where an X-ray is reflected from the specimen 

surface at an angle of θ (equal to the angle of the incident radiation) [183], as 

illustrated in Figure 2.7. These diffracted X-rays are then detected. For XRD, the 

samples are prepared by grinding the solid materials into a fine homogeneous 

powder, which is then pressed into a sample holder and smoothed. This procedure 

produces a sample with the crystallites distributed at random orientations, which 

enables all possible diffraction directions of a lattice to be attained by scanning the 

sample through a range of 2θ angles. Then the identification of the crystal structure 

can be completed through conversion of the diffraction peaks to d-spacings, as each 

crystal structure has a set of unique d-spacing, resulting in a characteristic XRD 

pattern.  

 

 

Figure 2.7 Reflection of X-rays at an angle (θ) from two planes of atoms with 

separation distance (d) in a crystalline solid. 

 

In this study, the crystallinity of the catalyst is identified through XRD  

analysis using an X-ray diffractometer (Rigaku, SmartLab) equipped with Cu-Kα 
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radiation (40 kV tube voltage and 40 mA tube current) in the scanning range 2θ 

between 10
o
 and 80

o
 with a scanning rate of 4 

o
/min and a scanning step size of 0.02

o
.  

2.3.2.3 CO2-TPD 

TPD is one of the most powerful tools to elucidate the strength of interfacial 

chemical bonds, which can be used to investigate the surface acidic/basic sites, the 

adsorbate species, as well as the surface activity of the catalysts. In TPD, the solid 

samples are saturated by the adsorbate after pre-treatment. Then the samples are 

heated linearly, and desorption will occur when the adsorbate is activated by the heat, 

which is sufficient to help it overcome the desorption activation energy to escape the 

samples. In general, weakly bonded adsorbates require less heat to break the 

substrate-adsorbate bonds, and desorb at a low temperature; while more strongly 

boned adsorbates require more energy to break their bonds, and thus they desorb at a 

higher temperature.  

In this study, CO2-TPD measurement is applied to investigate the amount of 

the basic sites on the catalyst. It is performed on a fully automated chemisorption 

analyser (AutoChem II 2920) with a thermal conductivity detector (TCD). The CO2 

adsorption is carried out at room temperature for 30 min by passing a CO2/He gas 

mixture (V/V, 10/90) with a flow rate of 50 ml/min. Afterwards, CO2-TPD signal is 

recorded with the temperature rising to 700 
o
C at a rate of 10 

o
C/min. 

2.3.2.4 XPS 

XPS, also known as electron spectroscopy for chemical analysis (ESCA), is 

an analysis method for electron spectroscopy based on the photoelectric effect. In 

general, any material can emit electrons when it is irradiated by photoelectrons; the 

information of kinetics, intensity and angular distribution related to the electrons is 

obtained by detecting these electrons, resulting in the understanding of components 

of the material as well as the electronic structures of atoms and molecules; this is so-

called photoelectron spectroscopy [184]. XPS spectra are obtained by irradiating a 

material with a beam of X-rays, while simultaneously measuring the kinetic energy 

and the number of the electrons that escape from the top 0 to 10 nm of the material 

being analysed [185]. The kinetic energy of these emitted electrons is characteristic 

of the element from which the electron originated. A typical XPS spectrum is a plot 

of the intensity of the XPS peaks (Y-axis, ordinate) versus the binding energy of the 

detected electrons (X-axis, abscissa). Each element produces a characteristic set of 

XPS peaks at its characteristic binding energy values, through which the element that 

exists in or on the surface of the material can be directly identified. The position and 

intensity of the peaks in the energy spectrum provide the desired information for the 

identification of the elemental composition on the surface, the relative amount of 

these constituents in the surface region, as well as the valence band structure.   
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In this study, XPS measurements are carried out on a Perkin-Elmer PHI-5400 

XPS system with mono-chromatic Mg Kα (1253.6 eV) X-rays with a data acquisition 

system. The spectra are referenced to C1s peak at 284.5 eV. 

2.3.2.5 TGA  

 TGA is an analytical technique to examine the thermal stability of a material 

and its fraction of volatile components by monitoring the weight change when it is 

heated. In general, the measurement is performed in air or in an inert atmosphere, 

such as helium or argon, and the weight is recorded and plotted against temperature 

or time to illustrate thermal transitions in the material - such as loss of solvent and 

plasticisers in polymer, water hydration in inorganic materials and finally 

decomposition of the material. In addition to weight changes, the temperature 

difference between the material being analysed and the reference material 

(differential thermal analysis, or DTA) or the heat flow into the material being 

analysed compared to that of the reference one (differential scanning calorimetry, or 

DSC) can also be recorded. The latter one can be used to monitor the energy released 

or absorbed via chemical reactions during the heating processes.  

In this work, the coke deposition on the spent catalyst is analysed via TGA in 

air atmosphere using TA Instruments SDT-Q600 (simultaneous TGA/DSC). The 

spent catalyst (20 mg) is heated from 30 to 800 
o
C at a heating rate of 10 

o
C/min with 

an air flow of 30 ml/min. 

2.3.3 Analysis of gas products 

Gas chromatography (GC) is used for the analysis of the gas mixtures during 

the experiments in this study. Essentially, chromatography requires a ‘mobile phase’ 

(containing the mixture to be separated) and a ‘stationary phase’ through which the 

mobile phase will be eluted. In GC, the mobile phase is a carrier gas, usually an inert 

gas such as helium or argon, or an unreactive gas such as nitrogen. The GC column 

originally consists of a piece of glass or metal tube containing an inert solid support 

with a microscopic layer of liquid or polymer (called stationary phase). The 

separation process is based upon the different partitioning between the mobile and 

stationary phases. When the gas mixture is injected into the column, different gas 

species pass through it at different rates according to the strength of the electrostatic 

interactions with the column walls. This enables the gas mixture to be separated and 

individual gas components to elute at different times, known as the retention time. 

The gas component can be identified by comparing its retention time with 

chromatograms for known species. The retention time is sensitively affected by the 

gas concentration, carrier gas flow rate and pressure as well as the column material 

and operating temperature [186]; therefore, the selection of an appropriate column 

and the operating conditions is critical for the high performance of GC.  
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When each gas reaches the detector, one characteristic peak for that gas is 

produced on the chromatogram. The peak area is proportional to the gas 

concentration. Before gas separation, calibration for the components in the gas 

mixture should be conducted by using the standard gas with a known gas component 

and amount. The gas calibration is only valid for constant operating conditions. Re-

calibration is required once any of the following is changed: flow rate and pressure 

of the carrier gas, the temperatures of the injection, the column and the detectors.  

The most commonly used detectors are TCD and flame ionisation detector 

(FID). Both detectors are sensitive to a variety of components and can work over a 

wide range of concentrations. TCD is used to detect any component other than the 

carrier gas, as long as their thermal conductivities are different from that of the 

carrier gas at the detector temperature, while FID is primarily sensitive to organic 

compounds.  

In this study, the feed and product gases are analysed by a two-channel gas 

chromatograph (Shimadzu GC-2014) equipped with a FID and a TCD. The first 

channel contains a Molecular Sieve 5A (60-80 mesh) column for the separation of H2 

and CO, while the second channel is equipped with a HayeSep N (60-80 mesh) 

column for the measurement of CO2, CH4 and C2-C4 hydrocarbons. The GC is 

calibrated for a wide range of concentrations for each gaseous component using 

standard gas mixtures (Air Liquid) and other calibrated gas mixtures.  

The temperature inside the plasma reactor is measured by a fibre optic 

thermometer (Omega, FOB102). The fibre is inserted into the catalyst bed to contact 

with the catalysts for the measurement of the temperature on the catalyst surface. The 

ozone concentration is measured by an ozone monitor (2B, Model 106-M). 

Preliminary experiments are performed to decide the processing time to reach 

a stable discharge. The gas products are collected when the discharge is stable using 

a sampling bag for further analysis by the GC mentioned above. For the plasma CO2 

decomposition process, the discharge becomes stable when the plasma is on for 20 

min. The conversion of CO2 (C), the selectivity of CO (S), the carbon balance 

(BCarbon) and oxygen balance (BOxygen) as well as the energy efficiency (η) are defined 

as follows: 

 
 

 2

2

CO

2

CO converted mol s
% 100

CO input mol s
C    (2-10) 

 
 

 
CO

2

CO produced mol s
% 100

CO converted mol s
S    (2-11) 
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2
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
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 

 
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 
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2
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CO produced mol s 2 O  produced mol s
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 (2-13) 
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 
2CO converted mol s kJ mol

% 100
Discharge power kW

H



   (2-14)  

where H is the reaction enthalpy of CO2 decomposition, 280 kJ/mol. 

For the plasma dry reforming of CH4, the stable discharge is obtained around 

1 h after igniting the plasma. In the plasma-catalytic dry reforming of CH4, each 

experiment is run for another 90 min after the gas products are collected to 

investigate the carbon deposition on the spent catalyst. The definition of CO2 

conversion is the same as that in CO2 decomposition (shown in Equation (2-10)). 

CH4 conversion and the total carbon conversion are determined by 

 
 

 4

4

CH

4

CH converted mol s
% 100

CH input mol s
C    (2-15) 

 
2 2 4 4TC CO CO CH CH%C x C x C      (2-16) 

where 
2COx and 

4CHx are the percentage concentration of CO2 and CH4 in the feed gas, 

respectively. 

The selectivities (S) and yields (Y) of the main reforming products are 

calculated by 

 
 

 2

2

H

4

H produced mol s
% 100

2 CH converted mol s
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
 (2-17) 
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The H2/CO ratio and carbon balance (B) of the plasma dry reforming process 

are determined as follows: 

 

 
2 2H H produced mol s

CO CO produced mol s
  (2-22) 
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 (2-23) 
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To evaluate the performance of the plasma dry reforming process, the energy 

cost (EC) for CO2 conversion (
2COEC ), CH4 conversion (

4CHEC ) and total carbon 

conversion ( TCEC ), the EC for H2 production (
2HEC ) and syngas production 

( SyngasEC ), and the fuel production efficiency (FPE) are defined as follows:  

 
 
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where LHV is the low heating value of the fuel. 

 The reproducibility is demonstrated in the preliminary experiments. The 

experiment under the same condition is repeated for 3 times. The relative error of the 

reactant conversions and product yields (selectivities) under one experimental 

condition is less than 5%. The uncertainty in the measurement of the gas 

concentration is less than 2%, whilst the uncertainty in the calculation of conversion, 

selectivity and yield is less than 3%. 
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CHAPTER THREE    CARBON DIOXIDE 

DECOMPOSITION IN A COAIXAL DBD REACTOR 

3.1 Introduction 

CO2 has been recognised as one of the major contributors to the greenhouse 

gas effect and its concentration in the atmosphere is continuously increasing due to 

the use of fossil fuels. Great efforts have been devoted to the development of 

effective strategies to deal with the global challenge of CO2 emissions. Undoubtedly, 

CO2 conversion and utilisation could be one of the attractive and sustainable 

solutions for the mitigation of CO2 emissions, by turning CO2 from a waste gas into 

an integral part of industrial processes. Various processes have been used to convert 

CO2 into value-added fuels and chemicals, such as CO2 reforming of CH4 for 

hydrogen production and CO2 hydrogenation for the synthesis of methanol, methane, 

formaldehyde, dimethyl ether, etc [52, 187]. Direct splitting of CO2 into CO has also 

attracted great interest [36], as CO is a useful chemical feedstock which can be used 

as a reactant to produce higher energy products. However, due to the high stability of 

CO2, a large amount of energy is required for its activation in the conventional CO2 

conversion process (see Equation (3-1)). 

1

2 2

1
CO CO O 280 kJ mol

2
H      (3-1) 

Non-thermal plasma technology has been considered as an attractive 

alternative to the conventional thermal or catalytic route for gas purification and 

energy conversion due to its non-equilibrium character, low energy cost and unique 

ability to initiate both physical and chemical reactions at low temperatures [91, 107]. 

In non-thermal plasma, the overall gas kinetic temperature remains low, while the 

electrons are highly energetic with a typical electron temperature of 1-10 eV, which 

can breakdown most chemical bonds in inert molecules (e.g. CO2) and generate a 

large number of reactive species for chemical reactions. The non-equilibrium 

character of such plasma could overcome thermodynamic barriers in chemical 

reactions (e.g. direct CO2 decomposition) and enable thermodynamically 

unfavourable chemical reactions to occur at atmospheric pressure and low 

temperatures [91]. Non-thermal plasma technology has been widely investigated and 

applied in the energy and environmental sectors, such as for hydrogen generation, 

gas cleaning [84, 90, 188, 189] and carbon dioxide utilisation [49, 52]. DBD is one 

of the most effective and most studied non-thermal plasma technologies due to its 

success originating from ozone synthesis. With the presence of one or two dielectric 

barriers in the discharge gap, unstable spark or arc plasma can be inhibited while 

numerous filamentary microdischarges are generated. In addition, the reactor 
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configuration has great flexibility as it can be constructed from inexpensive materials 

(e.g. glass and polymers) and different materials (catalytic or non-catalytic) can 

easily fill the discharge volume.[190]. The efficiency of the DBD reactor is closely 

related to its configurations and operating parameters. It has been reported that the 

synergistic effect may be generated when the DBD plasma is combined with catalyst, 

which leads to higher plasma process performance, compared to the sum of the 

individual processes (i.e. the plasma-only process and the catalysis only process) [91]. 

 In the first part of this chapter, the thermodynamic equilibrium calculation of 

CO2 decomposition is carried out to provide a reference to demonstrate the 

synergistic effect of the plasma-catalytic process for the conversion of CO2.  

 In the latter part, the plasma decomposition of CO2 is performed in a coaxial 

DBD reactor. For the plasma-only process, the effect of the processing parameters 

(frequency, feed flow rate, discharge power, discharge length, discharge gap and 

dielectric material thickness) on the performance of CO2 decomposition are studied 

in terms of CO2 conversion and energy efficiency. The empirical formulas are 

established to indicate the relationship between CO2 decomposition performance and 

these processing parameters. The relative importance of these processing parameters 

on the plasma process performance is discussed based on the established formulas. 

Moreover, modified reactors are designed and manufactured by replacing the SS 

mesh outer electrode with Al foil and/or using a SS screw type inner electrode. In the 

plasma-catalytic process, BaTiO3 and TiO2 pellets are used as photocatalytsts and 

packed into the discharge gap along the bottom of the quartz tube to investigate the 

synergistic effect introduced by the combination of plasma and photocatalysts, from 

both physical and chemical perspectives. A possible mechanism for the plasma-

photocatalytic process is illustrated.  

3.2 Thermodynamic Equilibrium Calculation of CO2 Decomposition 

3.2.1 Description of thermodynamic equilibrium calculation 

 The thermodynamic equilibrium calculation of CO2 decomposition has been 

carried out using the method based on minimisation of Gibbs free energy in a closed 

system. Different from that in the equilibrium constant method, which requires the 

exact knowledge of the chemical species and the independent reactions occurring in 

the system, the Gibbs free energy minimisation-based method considers only the 

chemical species in the calculations. Therefore, the application of this approach is 

quite simple especially for complex systems involving a large number of reactions. 

The Gibbs free energy minimisation-based method has been widely used to perform 

thermodynamic analysis [191, 192]. The basic principle of this method can be found 

elsewhere [191].  
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 In this study, the thermodynamic equilibrium calculation for the CO2 

decomposition process is conducted by the software HSC Chemistry 5, which is a 

thermochemical software designed for various chemical reactions and equilibria 

calculations [108]. In each calculation, it is supposed that 1 mol of CO2 is injected 

into the closed system. The products are assumed to be O2 and CO only. The 

definition of CO2 conversion in this calculation is the same as that in the 

experimental studies, shown in Equation (2-10).   

3.2.2 Calculation results 

The results of the thermodynamic equilibrium calculation for CO2 conversion 

are shown in Figure 3.1. We can see that CO2 begins to decompose into CO and O2 

near 2000 K, but the conversion of CO2 is very low (< 1%). Reasonable conversion 

of CO2 (~60%) can only be obtained at extraordinarily high temperatures (3000-3500 

K), which leads to high energy cost for thermal conversion of CO2. Moreover, CO2 

conversion drops significantly by increasing the operating pressure. Thus, it is crucial 

to perform CO2 decomposition at atmospheric pressure to attain high CO2 

conversion.  

 

  

(a) (b) 

Figure 3.1 Thermodynamic equilibrium calculation of CO2 conversion as a function 

of temperature and pressure (a) gas equilibrium amount; (b) CO2 conversion. 

3.3 Experimental Study of Plasma-Assisted CO2 Decomposition in a 

Coaxial DBD Reactor 

3.3.1 Experimental section 

3.3.1.1 Experimental setup 

CO2 decomposition is performed in a coaxial DBD reactor, as shown in 

Figure 3.2 (a). A SS mesh is wrapped over a quartz tube with an external diameter 
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(Do) of 25 mm and an inner diameter (Di) of 20-22 mm. The length of SS mesh 

varies from 60 mm to 140 mm in order to adjust the discharge length (L). A SS rod 

with an outer diameter (do) of 15-17 mm is placed in the centre of the quartz tube and 

acts as an inner electrode. In the modified reactor, an Al foil outer electrode with a 

length of 100 mm and a screw-type SS inner electrode with a diameter of 17 mm 

(shown in Figure 3.2 (b)) are utilised for comparison. In the plasma-catalytic CO2 

decomposition, different catalyst pellets BaTiO3 (TCU) and TiO2 (Alfa Aesar) with a 

diameter of 1 mm were packed into the discharge gap along the bottom of the quartz 

tube, as shown in Figure 3.2 (c). XRD and XPS measurements are performed to 

investigate the surface structure and element valance and further reveal their effects 

on the reaction performance of plasma-catalytic CO2 decomposition. 

The experimental setup is illustrated in Figure 2.1. The inner electrode of the 

DBD reactor is connected to a high voltage output of the power supply and the outer 

electrode is grounded via an external capacitor Cext (0.47 μF). The applied voltage 

(Ua) is measured by a high voltage probe, while the current (It) is recorded by a 

current monitor. The voltage (Uc) on the external capacitor is measured to obtain the 

charge generated in the discharge. All the electrical signals are sampled by a four-

channel digital oscilloscope. A homemade control system is used for the online 

measurement of the discharge power through the area calculation of the Q-U 

Lissajous figure. Pure CO2 is used as the feed gas with a flow rate of 25-125 ml/min. 

The temperature inside the DBD reactor is measured by a fibre optic temperature 

probe. The temperature probe is inserted into the catalyst bed to contact the catalyst 

for the measurement of the temperature on the catalyst surface. The gas products are 

analysed by a two-channel GC. The details of the measurement equipment are 

described in Section 2.3. 

3.3.1.2 Parameter calculation 

CO2 conversion, CO selectivity, carbon balance, oxygen balance and energy 

efficiency are defined in Section 2.4.3 to evaluate the performance of the plasma 

process.  

Mathematical models are established using the statistical experimental design 

and analysis method to state the relationships between CO2 decomposition 

performance and the processing parameters, expressed as: 

1 2 3( , , , ......)y f x x x  (3-2) 

where y is the dependent variable and x1, x2, x3, ……are the independent variables. In 

this study, the dependent variables are CO2 conversion (
2COC ) and energy efficiency 

(η); and the independent variables are frequency (f), discharge power (P), feed flow 

rate (q), discharge length (L), discharge gap (G) and dielectric material thickness (T). 

The relationships between
2COC , η and f, P, q, L, G, and T are linked as follows: 
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(a) 

 

 

(b) 

 

 

 

(c) 

Figure 3.2 Schematic diagrams of (a) the smooth electrode reactor, (b) the screw-

type electrode reactor and (c) plasma-catalytic DBD reactor. 

 

           1 1 1 1 1 1

2CO 1

a b c d e f
C K f P q L G T  (3-3) 

           2 2 2 2 2 2

2

a b c d e f
K f P q L G T   (3-4) 

where K1, K2 are constants that correlate CO2 conversion and energy efficiency with 

these processing parameters; ai, bi, ci, di, ei, and fi (i=1, 2) are the exponents of the 

terms related to each processing parameter. The value of these constants and indexes 

are calculated using the multiple regression analysis method. 

3.3.2 Experimental results 

3.3.2.1 Effect of frequency 

Figure 3.3 (a) shows the effect of frequency on CO2 conversion and the 

energy efficiency of the plasma process. Clearly, CO2 conversion and energy 

efficiency are almost independent of the frequency when it increases from 8 kHz to 

11 kHz at a constant SED of 96 kJ/l. This phenomenon is possibly due to the slight 

variation in frequency. Similar results have been reported in previous studies [123, 

124]. Aerts et al. reported that more filamentary discharges were observed when 
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increasing the frequency from 6 kHz to 75 kHz in an AC CO2 DBD reactor at a 

constant input power and gas flow rate; however, they also found that the variation of 

frequency had a weak influence on the plasma reaction performance [124]. Liu et al. 

demonstrated that frequency is the least important parameter affecting the plasma 

process performance for nonoxidative conversion of CH4 in an AC power supplied 

DBD reactor [193]. They found that the conversion of CH4 slightly decreased (by 

10%) when the frequency was increased from 20 kHz to 50 kHz at a discharge power 

of 45 W and a gas flow rate of 100 ml/min [193].   

The effect of frequency on the selectivity of CO and the carbon balance is 

shown in Figure 3.3 (b). Increasing the frequency from 8 kHz to 11 kHz has 

negligible effect on the CO selectivity. The selectivity of CO based on the carbon 

atoms at each frequency almost reaches 100%, which indicates that CO is the major 

product from CO2 conversion and that the stoichiometric conversion of CO2 into CO 

is achieved. Moreover, the carbon balance is also independent of the frequency and 

changes between 98.7% and 99.2%. This can be confirmed by the fact that almost no 

carbon deposition is observed during the plasma process. It is noticeable that in 

addition to frequency, CO selectivity and carbon balance are also independent of the 

other processing parameters (e.g. discharge power, feed flow rate, discharge gap, 

discharge length and dielectric material thickness). Therefore, the influence of other 

parameters on the CO2 splitting performance will only be discussed in terms of CO2 

conversion and energy efficiency in the following sections. 

 

  

(a) (b) 

Figure 3.3 Effect of frequency on: (a) CO2 conversion and energy efficiency; (b) CO 

selectivity and carbon balance (SED: 96 kJ/l; feed flow rate: 25 ml/min; discharge 

length: 100 mm; discharge gap: 2.5 mm). 

3.3.2.2 Effect of discharge power and feed flow rate 

Figure 3.4 (a) presents the effect of discharge power on CO2 conversion and 

energy efficiency. Increasing the discharge power leads to an increase in the 

conversion of CO2, and a decrease in the energy efficiency; but the increasing rate in 
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CO2 conversion and the decreasing rate in energy efficiency become moderate at 

higher discharge powers. CO2 conversion rises from 17.4% to 22.4% when the 

discharge power increases from 10 W to 50 W. In this study, the CO2 DBD can be 

characterised as a typical filamentary discharge. The discharge power is changed by 

adjusting the applied voltage at a fixed frequency. Increasing the discharge power by 

only changing the applied voltage does not change the average electric field of the 

plasma, since the gas voltage and breakdown voltage of the CO2 DBD is almost 

constant (calculated from the Lissajous figure [107]) with the increase in discharge 

power. This also means that the change in the average electron energy in the CO2 

discharge is negligible when changing the discharge power at a constant frequency, 

which can be shown from Einstein’s equation, kBTe/e=De/μe (kB is the Boltzmann 

constant, 1.38 × 10
-23

 J/K; De and μe are the diffusion constant and the drift mobility 

of electrons related to the reduced electric field, respectively) [194]. In contrast, we 

find that the number and amplitude of the current pulses in the electrical signals in 

the CO2 DBD increase with the rise in discharge power or applied voltage, as shown 

in Figure 3.4 (b), which indicates the number of microdischarges is increased by 

increasing discharge power or applied voltage. This phenomenon has been confirmed 

by Kim et al. using an intensified charge-coupled device (ICCD) camera [195]. They 

found that more microdischarges were formed in the packed-bed DBD reactor by 

increasing the applied voltage. Dong et al. also reported that the number of filaments 

on the per unit area of dielectric surface in a DBD reactor increases with an increase 

in the applied voltage [196]. The increased number of microdischarges in the CO2 

DBD suggests the formation of more reaction channels and electrons in the plasma, 

both of which contribute to the enhancement in CO2 conversion. The energy 

efficiency of the plasma process is decreased from 9.0% to 2.3% when the discharge 

power is raised from 10 to 50 W.  

 

  

(a) (b) 

Figure 3.4 Effect of discharge power on: (a) CO2 conversion and energy efficiency; 

(b) current signal characteristics (feed flow rate: 25 ml/min; discharge length: 100 

mm; discharge gap: 2.5 mm). 
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The influence of the feed flow rate on CO2 conversion and energy efficiency 

of the plasma process is shown in Figure 3.5. Clearly, a maximum CO2 conversion 

of 22.4% has been obtained at the minimum CO2 flow rate of 25 ml/min. With the 

other processing parameters fixed, increasing the feed flow rate reduces the residence 

time of the reactants in the discharge region, which decreases the possibility for 

activation of the reactants through collisions with energetic electrons and reactive 

species. The residence time of CO2 in the discharge volume decreases from 36.8 s to 

7.4 s when feed flow rate increases from 25 ml/min to 125 ml/min, which decreases 

the conversion of CO2 from its maximum value to 12.6%. Similar results have been 

obtained in the previous studies [123, 124]. Paulussen et al. reported that the 

conversion of CO2 decreased from 28.8% to 3.6% when the gas flow rate increased 

from 50 to 500 ml/min at an input power of 150 W and a frequency of 30 kHz [123]. 

However, the energy efficiency in this study is increased from 2.3% to 6.6% when 

increasing feed flow rate from 25 ml/min to 125 ml/min.  

 

 

Figure 3.5 Effect of feed flow rate on CO2 conversion and energy efficiency 

(discharge power: 50W; discharge length: 100 mm; discharge gap: 2.5 mm). 

 

From the definition of SED (Equation (2-1)), variation of SED can be 

achieved by adjusting the discharge power and/or feed flow rate. In Figure 3.4 (a) 

and Figure 3.5, increasing SED from 24 kJ/l to 120 kJ/l is obtained by two 

approaches: (1) increasing the discharge power from 10 W to 50 W at a feed flow 

rate of 25 ml/min; (2) decreasing the feed flow rate from 125 ml/min to 25ml/min at 

a discharge power of 50 W. In the former approach, CO2 conversion is increased by 

28.7% (from 17.4% to 22.4%), whilst in the latter approach, it is increased by 77.8% 

(from 12.6% to 22.4%). Obviously, the residence time of CO2 in the discharge region 

is quite different in these two approaches. The former approach has a constant 

residence time of 36.8 s, but the residence time is increased by a factor of 4 by 

reducing the gas flow rate in the latter one. Although the discharge power in the 

former approach is also enhanced 4 times, the higher enhancement in CO2 
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conversion in the latter approach suggests that the variation in SED obtained by 

changing the feed flow rate has a more pronounced influence on CO2 conversion. By 

contrast, higher decrease in the energy efficiency in the former approach is observed, 

which indicates that the change in SED obtained by adjusting the discharge power 

plays a more important role in energy efficiency. Therefore, both discharge power 

and feed flow rate should be considered when pursuing a suitable SED for high CO2 

conversion and energy efficiency simultaneously. 

3.3.2.3 Effect of discharge gap and discharge length 

Figure 3.6 shows the effect of discharge gap on CO2 conversion and energy 

efficiency as a function of SED. At a specified SED, both CO2 conversion and 

energy efficiency are decreased by increasing the discharge gap. The decreasing rate 

of these two performance parameters becomes more significant at the larger 

discharge gap. For example, at a SED of 96 kJ/l, CO2 conversion slightly decreases 

from 22.1% to 20.5% when the discharge gap increases from 2.5 to 3.0 mm, whereas 

CO2 conversion is decreased by 18.1% (from 20.5% to 16.8%) by increasing 

discharge gap from 3.0 mm to 3.5 mm. The energy efficiency of the plasma process 

is decreased by 7.0% and 18.0% when the discharge gap is increased from 2.5 mm to 

3 mm and from 3 mm to 3.5 mm, respectively.  

 

  

(a) (b) 

Figure 3.6 Effect of discharge gap on CO2 conversion and energy efficiency (feed 

flow rate: 25 ml/min; discharge length: 100 mm). 

 

Increasing the discharge gap increases the residence time of the reactant 

molecules in the discharge region. In this study, the residence time of CO2 in the 

plasma increases from 36.8 s to 48.8 s as the discharge gap is increased from 2.5 mm 

to 3.5 mm, which seems to be beneficial to the plasma processing of CO2. However, 

increasing the discharge gap increases the discharge volume, which results in a 

decline in the power density at a constant discharge power. Previous work of Aerts et 



 Chapter Three 

68 

 

al. has demonstrated that the plasma volume (i.e. the volume occupied by the 

discharge streamers) is much smaller than the total volume of the plasma reactor, 

especially for the large discharge gap, by comparing the effective capacitance Ceff 

with the capacitance of the dielectric materials Cd [124]. Figure 3.7 shows the 

Lissajous figures of the CO2 DBD with different discharge gaps at a SED of 96 kJ/l. 

Increasing the discharge gap decreases the transferred charge (i.e. the transferred 

charge is 0.51, 0.49 and 0.47 μC for discharge gaps of 2.5, 3.0 and 3.5 mm, 

respectively). It is reported that the transferred charge is positively correlated with 

the electron density [197]. The increase in the discharge gap decreases the electron 

density in the discharge, and therewith, the density of reactive species. The effect of 

discharge gap on CO2 decomposition performance is reflected by the combined 

effect of residence time and power density together with electron density. In our 

DBD reactor, the positive effect from the longer residence time cannot compensate 

the negative effect from the decrease in the power density and the electron density. 

Additionally, this negative effect is more significant at higher discharge gap, which 

results in the higher decrease in both CO2 conversion and energy efficiency.  

 

 

Figure 3.7 Lissajous figures of the CO2 DBD with different discharge gaps (SED: 

96kJ/l; discharge length: 100 mm; frequency: 9 kHz). 

 

The influence of discharge length on CO2 conversion and energy efficiency 

as a function of SED is displayed in Figure 3.8. Both CO2 conversion and energy 

efficiency are increased by around 27% when the discharge length increases from 60 

mm to 140 mm at a SED of 120 kJ/l.  The effect of discharge length on the CO2 

decomposition performance can be reflected by two competing effects. On the one 

hand, the residence time of CO2 in the discharge region is increased by 133.3% when 

discharge length increases from 60 to 140 mm, which increases the probability of the 

CO2 molecules colliding with the highly energetic electrons and reactive species, 

thereby improving the conversion of CO2. On the other hand, the barrier volume is 

increased from 6.6 cm
3
 to 15.5 cm

3
 when the discharge length increases from 60 mm 

to 140 mm, which consumes more energy to heat the dielectric material. 
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Correspondingly, the surface area of the discharge regions increases from 47.1 cm
2
 

to 110.0 cm
2
, leading to an increase in the energy loss by the heat dissipation [198]. 

Moreover, longer discharge length lowers the power density due to the increase in 

the discharge volume (from 9.2 cm
3
 to 21.4 cm

3
), and consequently decreases the 

mean energy to each CO2 molecule [198], which decreases the conversion of CO2. 

The results in Figure 3.8 suggest that the change in the residence time obtained by 

increasing the discharge length has a much more significant impact on the 

conversion of CO2 in our DBD reactor. 

 

  

(a) (b) 

Figure 3.8 Effect of discharge length on CO2 conversion and energy efficiency (feed 

flow rate: 25 ml/min; discharge gap: 2.5 mm). 

3.3.2.4 Effect of dielectric material thickness 

Figure 3.9 shows the effect of the dielectric material thickness on the CO2 

decomposition performance as a function of SED. Clearly, increasing the thickness 

of the quartz tube decreases CO2 conversion and energy efficiency at a fixed SED. 

For example, CO2 conversion and energy efficiency are decreased by 14.7% and 

15.0%, respectively, when the thickness of the dielectric material increases from 1.5 

mm to 2.5 mm at a SED of 120 kJ/l. In DBD, the transferred charge Q is 

approximately proportional to the parameter r d ratio ( r and d are the relative 

permittivity and the thickness of the dielectric material, respectively) when the other 

parameters are fixed [197]. Therefore, increasing the relative permittivity and/or 

decreasing the thickness of the dielectric material will increase the transferred charge 

Q, and consequently increase the electron density in the discharge. In this study, as 

only the quartz tube is used as the dielectric material, decreasing its thickness will 

increase the transferred charge and hence the density of the highly energetic 

electrons and reactive species for CO2 decomposition. Figure 3.10 shows the 

Lissajous figures of the CO2 DBD with different dielectric material thicknesses at a 

SED of 96 kJ/l. It can be found that increasing the thickness of the quartz tube from 
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1.5 to 2.5 mm decreases the transferred charge Q by 19.9% (from 0.51 μC to 0.41 

μC), resulting in a decrease in both CO2 conversion and energy efficiency. 

 

  

(a) (b) 

Figure 3.9 Effect of dielectric material thickness on CO2 conversion and energy 

efficiency (feed flow rate: 25 ml/min; discharge gap: 2.5 mm; discharge length: 100 

mm). 

 

 

Figure 3.10 Lissajous figures of the CO2 DBD with different dielectric material 

thicknesses (SED: 96kJ/l; discharge gap: 2.5 mm; discharge length: 100 mm; 

frequency: 9 kHz). 

3.3.2.5 Sensitivity analysis of the processing parameters  

 The empirical formulas are derived to describe the relationships between the 

plasma processing parameters and plasma reaction performance (e.g. CO2 conversion 

and energy efficiency), as shown in Equations (3-5) and (3-6). 

           
2

0.0448 0.1634 0.3839 0.2527 0.6999 0.3593

CO 34.3401C f P q L G T
   

  , 

 R
2
=0.9872 (3-5) 

           
0.0415 0.8367 0.6158 0.2531 0.7004 0.3605

6.4876 f P q L G T
   

  ,  

 R
2
=0.9947 (3-6) 
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 It is important to note that these two models are obtained on the experimental 

data under the following conditions: f = 8-11 kHz, P = 10-50 W, q = 25-125 ml/min, 

L = 60-140 mm, G = 2.5-3.5 mm and T = 1.5-2.5 mm. There is a relatively good 

agreement between the experimental results and the predicted data using the 

established models with an error of within 5.8% (e.g. 5.8% and 5.7% for CO2 

conversion and energy efficiency, respectively). 

The model sensitivity analysis has also been performed to gain a better 

understanding on the relative importance of the processing parameters for CO2 

conversion and energy efficiency. In each sensitivity analysis, only one parameter is 

changed from +10% increase or -10% decrease, and all other parameters are fixed at 

their respective initial values (f = 9 kHz, P = 30 W, q = 41.2 ml/min, L =100 mm, G 

= 3 mm, T = 2 mm). Figure 3.11 shows the sensitivity analysis of processing 

parameters for CO2 conversion and energy efficiency. δλ/λ is the change of each 

parameter divided by the initial value, whilst δS/S is the change in CO2 conversion or 

energy efficiency divided by the corresponding value at initial conditions.  

 

  

(a) (b) 

Figure 3.11 Sensitivity analysis of parameters for (a) CO2 conversion and (b) energy 

efficiency. 

 

Figure 3.11 (a) shows the sensitivity analysis of operating parameters for 

CO2 conversion. Obviously, discharge gap significantly affects the conversion of 

CO2, especially at higher discharge gap. A decrease of δλ/λ from 0 to -50% results in 

a moderate increase of δS/S from 0 to 28.1%, but an increase of δλ/λ from 0 to 50% 

significantly decreases δS/S from 0 to -47.9%. This phenomenon is inconsistent with 

the results shown in Figure 3.6 (a). Feed flow rate and dielectric material thickness 

have a similar negative effect on CO2 conversion. Their δS/S decrease roughly from 

30% to -14% when δλ/λ is increased from -50% to 50%. CO2 conversion is 

positively correlated with discharge power and discharge length. For discharge 

power, an increase of δλ/λ from -50% to 50% leads to a nearly linear enhancement of 

δS/S from -10.7% to 6.8%. Frequency is observed to weakly affect the conversion of 
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CO2. In general, the relative significance of these processing parameters for CO2 

conversion decreases in the following order: G > q > T > L > P > f. 

It is clear from Figure 3.11 (b) that discharge power has a more significant 

effect on energy efficiency of the plasma process compared with other processing 

parameters. The δS/S for energy efficiency is decreased from 78.6% to -28.8% by 

increasing the δλ/λ of discharge power from -50% to 50%. Energy efficiency is 

positively correlated with feed flow rate and discharge length, but negatively 

correlated with discharge gap and dielectric material thickness. The effect of 

frequency on energy efficiency is negligible. Briefly, the relative significance of the 

sensitivity of these processing parameters to energy efficiency is P > G > q > T > L > 

f. 

3.3.2.6 CO2 decomposition in a modified DBD reactor  

Figure 3.12 shows the influence of different types of inner and outer 

electrodes on the conversion of CO2 as a function of SED. The SS rod acts as the 

inner high voltage electrode and the SS mesh as the outer electrode in the reference 

DBD reactor. When the SS mesh outer electrode is replaced by the Al foil, higher 

CO2 conversion and energy efficiency are obtained compared to these in the 

reference reactor; e.g. CO2 conversion and energy efficiency increase by 10.8% and 

10.7%, respectively, at a SED of 120 kJ/l. When the SS mesh is used as the outer 

electrode, the effective discharge area is less than the coverage area, and the mesh 

cannot uniformly cover the quartz tube. However, when the Al foil is used as the 

outer electrode, it covers the outer surface of the quartz tube more uniformly and 

larger effective discharge area is obtained, which increases the number of the 

microdischarges, and consequently contributes to the improvement in both CO2 

conversion and energy efficiency. 

 

  

(a) (b) 

Figure 3.12 Effect of electrode forms on CO2 conversion and energy efficiency (feed 

flow rate: 25 ml/min; discharge gap: 2.5 mm; discharge length: 100 mm). 
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Compared to the reference reactor, CO2 conversion and energy efficiency are 

increased by 13.8% and 11.8%, respectively, when using the screw-type inner 

electrode at a SED of 120 kJ/l (Figure 3.12). As discussed before, increasing SED 

results in the increase of CO2 conversion, but this phenomenon is more remarkable in 

the case of the screw inner electrode. CO2 conversion is increased by 29.2% and 

37.0% in the case of the rod and screw electrodes, respectively, when SED increases 

from 24 kJ/l to 120 kJ/l. The difference between the effect of the screw and rod inner 

electrodes on CO2 decomposition is possibly ascribed to the sharp edge of the screw 

electrode, which can enhance the local electric field near the electrode surface [199]. 

As shown in Figure 3.13, the filaments are distributed randomly in the discharge 

volume when the SS rod is used as the inner electrode; while in the case of the 

screw-type inner electrode, the filaments are significantly intensified near the sharp 

edge of the screw. This generates more reaction channels as well as more energetic 

electrons and reactive species, resulting in higher CO2 conversion and energy 

efficiency of the plasma process.  

 

Figure 3.13 Images of pure CO2 DBD plasma (exposure time: 25 ms): (a) SS rod 

inner electrode; (b) SS screw-type inner electrode (discharge power: 40 W; discharge 

gap: 2.5 mm, discharge length: 100 mm; CO2 feed flow rate: 25 ml/min; frequency: 9 

kHz).  

 

It is interesting to note that the combination of the screw-type inner electrode 

and Al foil outer electrode can further increase the CO2 conversion and energy 

efficiency in the DBD reactor. At a SED of 120 kJ/l, CO2 conversion and energy 

efficiency are 27.2% and 2.8%, respectively, in a DBD reactor with screw-type inner 

electrode and Al foil outer electrode. The maximum energy efficiency of 10.4% is 

achieved at a SED of 24 kJ/l in the DBD reactor with these two modified electrodes. 

Figure 3.14 presents the electrical signals of the pure CO2 discharge with different 

electrode forms at a SED of 96 kJ/l. Clearly, the current waveforms are quasi-

sinusoid with numerous superimposed current pulses per half cycle of the applied 

voltage. These current pulses are assigned to the transient filamentary 

microdischarges.  When the outer electrode is changed from the SS mesh to the Al 
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foil, the microdischarge filaments extend across the discharge gap due to the higher 

effective covered area when using the Al foil, reflected by the enhanced number and 

amplitude of the current pluses (Figure 3.14 (b)). When the screw-type inner 

electrode is used, the current pulses are also intensified due to the higher local 

electric field resulting from the sharp edge of the screw electrode (Figure 3.14 (c)). 

The number and amplitude of the current pulses (and therefore the intensity of the 

microdischarges) are further enhanced by the combination of the Al foil outer 

electrode and the screw-type SS inner electrode in the DBD reactor (Figure 3.14 

(d)), which results in the maximum CO2 conversion. This variation in the number 

and amplitude of the current pulses in CO2 discharge with different electrodes can be 

confirmed by the corresponding transferred charge, as shown in Figure 3.15. By 

integrating the screw-type inner electrode and the Al foil outer electrode into the 

DBD reactor, the transferred charge is increased from 0.51 μC to 0.60 μC, compared 

with the reference reactor. 

 

  

(a) (b) 

  

(c) (d) 

Figure 3.14 Electrical signals of the CO2 DBD: (a) mesh outer electrode and rod 

inner electrode; (b) foil outer electrode and rod inner electrode; (c) mesh outer 

electrode and screw-type inner electrode; (d) foil outer electrode and screw-type 

inner electrode (SED: 96k J/l; discharge gap: 2.5 mm; discharge length: 100 mm; 

frequency: 9 kHz). 
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Figure 3.15 Lissajous figures of the CO2 DBD with different electrodes (SED: 96 

kJ/l; discharge gap: 2.5 mm; discharge length: 100 mm; frequency: 9 kHz).  

3.3.2.7 CO2 decomposition in the plasma-catalytic DBD reactor 

The effect of BaTiO3 and TiO2 photocatalysts on the conversion of CO2 is 

shown in Figure 3.16. It is clear that the presence of both BaTiO3 and TiO2 in the 

discharge significantly enhances the CO2 conversion and energy efficiency. Packing 

BaTiO3 pellets into the discharge gap exhibits exceptional performance with a 

remarkable enhancement of both CO2 conversion (from 15.2% to 38.3%) and energy 

efficiency (from 6.8% to 16.7%), which are enhanced by a factor of 2.5 at a SED of 

28 kJ/l.  

 

 

Figure 3.16 Demonstration of the synergistic effect of plasma-catalysis for the 

conversion of CO2 (SED = 28 kJ/l).  

 

The plasma gas temperature and the temperature on the catalyst surface in the 

plasma conversion of CO2 have been measured in the DBD reactor at a SED of 28 

kJ/l, as shown in Figure 3.17. Clearly, the plasma gas temperature of the CO2 DBD 

without a catalyst significantly increases from 23.3
 o
C

 
to 123.5 

o
C in the first 15 min 

after igniting the plasma, after which it rises slowly and becomes almost constant 
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(~138 
o
C) at 25 min when the plasma reaches a stable state. Similar evolution 

behaviour of the temperature can also be observed in the plasma-catalysis system.  

In the CO2 DBD reactor partially packed with the BaTiO3 and TiO2 catalysts, 

we note that the plasma temperature in the gas phase and the temperature on the 

catalyst surface are almost the same. Thus, only one temperature (the temperature on 

the catalyst surface) is shown in Figure 3.17 to present the temperature in the 

plasma-catalytic system. It is interesting to note that the combination of plasma with 

the BaTiO3 and TiO2 catalysts slightly increases the gas temperature (TiO2: ~144 
o
C 

and BaTiO3: ~149 
o
C) of the CO2 discharge by 6-11 

o
C compared to the CO2 DBD in 

the absence of a catalyst at the same SED (28 kJ/l). This phenomenon might be 

attributed to inelastic electron-molecule collisions in the plasma-catalytic processes 

[90, 200, 201]. 

 

Figure 3.17 Plasma gas temperature and the temperature on the surface of BaTiO3 

and TiO2 catalysts in the CO2 DBD reactor (SED = 28 kJ/l).  

 

To understand the role of plasma in the reaction, a purely thermal experiment 

has been carried out by heating both photocatalysts in a pure CO2 flow at 150 
◦
C.  No 

conversion or adsorption of CO2 was observed. Thermodynamic equilibrium 

calculation of CO2 decomposition (shown in Figure 3.1) has confirmed that the 

conversion of CO2 is almost zero at 150 
◦
C, suggesting that low CO2 conversion is 

expected using thermal catalytic reduction of CO2 at the same temperature as that 

measured in the plasma reaction. The results clearly show that the exceptional 

reaction performance has been achieved by using plasma-catalysis, which is much 

higher than the sum of plasma-only and catalysis only processes, indicating the 

formation of a synergistic effect when combining plasma with photocatalysts at low 

temperatures.  

Catalysts can be integrated into a DBD system in different ways. The 

presence of the catalyst pellets in part of the gas gap still leads to predominantly 

filamentary discharges and surface discharges on the catalyst surface, which induces 

effective interactions between the plasma and catalysts for CO2 activation. In this 



 Chapter Three 

77 

 

work, the dielectric constants of BaTiO3 and TiO2 are 10000 and 85, respectively. 

Previous experimental [202, 203] and simulation [204, 205] studies have shown that 

packing catalyst pellets, especially pellets with high dielectric constant (e.g. BaTiO3), 

into the discharge gap can generate a non-uniform electric field, with enhanced 

electric field strength near contact points between the pellets and the pellet - 

dielectric wall. The maximum local electric field near these contact points can be 10 

– 10
4
 times higher than that in the void in a plasma-catalytic reactor, depending on 

the contact angle, curvature and dielectric constant of the materials [88]. The space 

(including the space filled with pellets) averaged electric field in a plasma reactor 

fully packed with packing pellets is initially increased by a factor of 1.4 with 

increasing dielectric constant of the materials from 10 to 1000; above this the change 

in the electric field becomes negligible [88]. We have reported that the interaction 

between plasma and TiO2 exhibited a strong effect on the electron energy 

distribution in the discharge, with an increase in both highly energetic electrons and 

electric field [185]. This phenomenon is also confirmed by previous work, showing 

that the presence of TiO2 in the plasma leads to a significant increase in the reduced 

electric field [206]. These results suggest that the presence of the catalyst pellets in 

the plasma gap play a crucial role in inducing physical effects, which in turn lead to 

chemical effects and contribute to the conversion of CO2.  

In this study, the electric field of the discharge (breakdown voltage/electrode 

gap) and the electron energy for different experimental conditions are calculated 

through Lissajous figure and BOLSIG
+
 code based on electron energy distribution 

function (EEDF), respectively [107, 207] and the results are shown in Figure 3.18.  

 

 
 

(a) (b) 

Figure 3.18 (a) Average electric field and (b) mean electron energy in the three 

reactor conditions (SED = 28 kJ/l). 

 

It can be observed that the average electric field is increased by 10.9% and 

9.0% with the presence of BaTiO3 and TiO2 in the discharge gap, respectively; while 
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the corresponding mean electron energy increases by 11.3% and 9.4%. Both of these 

effects contribute to the enhancement of CO2 conversion. However, the enhancement 

of the reaction performance in terms of CO2 conversion and energy efficiency is 

found be more significant than the change in plasma physical parameters (e.g. 

average electric field). This suggests that in addition to the plasma physical effect, 

the contribution of the plasma-activated photocatalytic reaction to the synergy of 

plasma-catalysis cannot be ruled out. The XRD patterns of the samples show that the 

BaTiO3 catalyst has the tetragonal phase, while TiO2 exhibits a crystal structure of 

anatase (see Figure 3.19). TiO2 is a widely used photocatalyst with a wide band gap 

of 3.2 eV for anatase phase, while BaTiO3 is a perovskite semiconductor 

photocatalyst with a band gap of 2.8-3.0 eV for tetragonal phase. It is well known 

that photocatalysts can be activated through the formation of electron-hole (e
–
-h

+
) 

pairs with the aid of sufficient photonic energy (hv) with appropriate wavelength to 

overcome the band-gap between the valence band and conductive band [208]:  

+

2TiO  + e + hhv      (3-7) 

+

3BaTiO + e + hhv      (3-8) 

 

 

Figure 3.19 XRD patterns of BaTiO3 and TiO2. 

 

Plasma discharges can generate UV radiation without using any extra UV 

sources (e.g. UV lamps). This has been confirmed by the dominant N2 (C-B) bands 

(between 300 nm and 400 nm) in a CO2 DBD in our previous works [91, 209]. 

However, UV radiation generated by plasma discharges is not always the controlling 

factor for activating photocatalysts due to its low intensity compared to that emitted 

by an UV lamp [210]. In this work, we have measured the UV intensity generated by 

the CO2 DBD with and without a catalyst, as shown in Figure 3.20.  
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Figure 3.20 UV intensity generated by the CO2 DBD with and without a catalyst as a 

function of SED. 

 

In the absence of a catalyst in the DBD reactor, the UV intensity produced by 

the CO2 discharge is about 0.141 mW/cm
2
 at a SED of 28 kJ/l. When the BaTiO3 and 

TiO2 photocatalysts are placed in the plasma zone, the UV intensity of the CO2 

discharge is decreased to 0.115 mW/cm
2 

and 0.123 mW/cm
2
, respectively. Note that 

these values are significantly lower than the UV intensity (~20-60 mW/cm
2
) 

produced from UV lamps to activate photocatalysts in conventional photocatalytic 

reactions [211-213], which suggests that the UV emissions generated by the CO2 

discharge only play a minor role in the activation of the BaTiO3 and TiO2 

photocatalysts. Similar results have been reported in previous papers [214, 215]. 

Assadi et al. found that the UV light generated by a surface DBD was too weak to 

activate a TiO2 photocatalyst for the removal of 3-methylbutanal (3MBA) [214]. 

Sano et al. reported that the UV intensity emitted by a N2/O2 surface discharge was 

only 2.5 μW/cm
2
 at an input power of 5 W. The contribution of the plasma UV 

activated photocatalytic reaction to the overall performance of acetaldehyde 

decomposition was less than 0.2% [215]. 

Whitehead has suggested that electron-hole pairs can be created by electron 

impact upon the photocatalyst surface since part of the electrons generated by the 

DBD have an energy over 3 eV [89, 216], as shown in Equations (3-9)-(3-10). 

Nakamura et al. have also reported that photocatalysts can be activated by plasma 

and the electrons can be trapped on the formed oxygen vacancies (Vo) to enhance the 

photoexcitation process [217].  

 2TiO e 3 2 eV h e.          (3-9) 

 3BaTiO e 3 0 eV h e.         (3-10)  

In this work, the exceptional performance of the plasma-catalytic CO2 

conversion has been achieved through the combination of plasma and photocatalysts. 

However, the significant enhancement of the reaction performance in terms of CO2 

conversion and energy efficiency cannot only be attributed to the changes in plasma 
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physical parameters (e.g. increased average electric field), as the estimated average 

electric field and mean electron energy in the CO2 DBD are only increased by around 

10% when the BaTiO3 and TiO2 catalysts are placed in the plasma zone. 

Furthermore, we find that the UV radiation generated by the CO2 DBD is 

significantly weak compared to that produced from UV lamps, which suggests that it 

may only play a minor role in the activation of photocatalytic CO2, and its 

contribution to the exceptional performance of the plasma-catalytic reaction and the 

synergy of plasma-photocatalysis could be very weak or negligible. Therefore, the 

highly energetic electrons generated by plasma are considered as the main driving 

force to activate the photocatalysts for CO2 conversion. 

Previous investigation has shown that the photocatalytic conversion of CO2 is 

a multistep process, which involves the adsorption and subsequent activation of CO2 

molecules on the surface of photocatalysts and the subsequent dissociation of the C-

O bond. The key step is the activation of CO2 molecules through the transfer of  

trapped electrons to the adsorbed CO2 molecules in the Vo [218].  

However,  the recombination rate of electron-hole pairs is 2 or 3 orders of 

magnitude faster than that of charge separation and transfer in the defect-free 

photocatalysts, which will limit the efficiency of CO2 conversion [218].  The defect 

disorders in photocatalysts, such as Vo, play an important role in CO2 photoreduction 

processes. Vo has been considered as the active site for the adsorption and activation 

of reactants in the photocatalytic reaction [219]. In this study, XPS measurement has 

been performed to investigate the surface structure and the element valence of the 

photocatalysts. Figure 3.21 (a) shows the deconvolution of the spectra of Ti 2p in 

BaTiO3. Two components (Ti 2p3/2 and Ti 2p1/2) are contained and can be 

deconvoluted into 4 peaks, two of which at higher binding energy (459.88, 465.57 

eV) are assigned to the formal valence of Ti (4+) in BaTiO3; while the other two 

peaks, located at around 457.85 eV and 463.67 eV, are consistent with the Ti 2p3/2 

and Ti 2p1/2 peaks of Ti
3+

 in BaTiO3. The presence of Ti
3+ 

demonstrates the 

formation of Vo on the catalyst surface through the following reaction [220, 221]: 

4 2 3

o 22Ti O V 2Ti 1 2O       (3-11) 

where O
2-

 is the lattice oxygen. Clearly, the formation of Vo is accompanied by the 

change in the oxidation state of the vicinal Ti atoms from Ti
4+

 to Ti
3+

 to retain the 

local charge balance. Similarly, the Ti 2p3/2 and Ti 2p1/2 peaks of Ti
3+

 can also be 

detected in the XPS profile of TiO2, as shown in Figure 3.21 (b). Interestingly, from 

the fitted results of Ti 2p XPS profiles of BaTiO3 and TiO2, there are more Ti
3
+ 

species in BaTiO3 (60.9%) than TiO2 (49.9%), which implies more active sites (Vo) 

are contained in BaTiO3, resulting in the higher CO2 conversion.  
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(a) (b) 

Figure 3.21 XPS spectra of Ti 2p peaks for (a) BaTiO3; (b) TiO2.  

  

Moreover, the combination rate of electron-hole pairs can also be 

significantly reduced in a plasma-photocatalysis system due to the high electric field 

and strong interactions between plasma and photocatalysts [222]. In this study, the 

process of the plasma-assisted photocatalytic CO2 decomposition can be described 

by Figure 3.22. The electron (e
-
) - hole (h

+
) pairs are generated with the aid of highly 

energetic electrons from the gas discharge, and are moved in the opposite direction 

by the electric field, which can reduce the probability of recombination. In the 

electron transfer process, CO2 adsorbed in the Vo is reduced to the anion radical CO2
• 

‒
 by electrons from e

-
-h

+
 pairs (Equation (3-12)), followed by the decomposition of 

CO2
• ‒

 into CO and the occupation of one oxygen atom in the Vo site. The overall 

reaction is expressed in Equation (3-13) [218, 223], where [Photocatalyst + Vo] and 

[Photocatalyst] represent the defective and defect-free photocatalysts, respectively.  

2 2CO e CO    (3-12) 

   2 oCO Photocatalyst V CO Photocatalyst      (3-13) 

2

24h 2O O     (3-14) 

4 3e Ti Ti      (3-15) 

 

 

Figure 3.22 Reaction mechanisms of plasma-photocatalytic conversion of CO2 on 

the surface of photocatalysts. 
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In addition, the Vo can be regenerated by oxidising the surface O
2-

 anions 

using holes, followed by the releasing of O2, shown in Equation (3-14). To balance 

the charge, the Ti
4+

 in the vicinity of the regenerated Vo are reduced to Ti
3+

 by the 

electrons [218, 224, 225]. This cyclic healed-regeneration of the oxygen vacancies 

maintains the equilibrium of the active sites in the photocatalysts and accelerates the 

decomposition of CO2, which is confirmed by our experimental results as CO2 

conversion did not change much when the plasma discharge was on for nearly two 

hours. 

Therefore, we find that the synergistic effect resulting from the integration of 

DBD and photocatalysis for CO2 conversion at low temperatures (without extra 

heating) can be attributed to the physical effect induced by the presence of 

photocatalysts in the discharge and the dominant photocatalytic surface reaction 

driven by the discharge. 

3.4 Conclusions 

In this chapter, the thermodynamic equilibrium calculation for the CO2 

decomposition process is firstly carried out. It is found that reasonable conversion of 

CO2 (~60%) can only be obtained at an extraordinarily high temperature. Then, the 

plasma decomposition of CO2 is performed in a coaxial DBD reactor. The results 

indicate that CO2 is stoichiometrically decomposed into CO and O2. In the plasma-

only process, higher CO2 conversion can be obtained by increasing discharge power 

and/or decreasing feed flow rate; while the decrease in discharge power and/or the 

increase in feed flow rate contribute to the higher energy efficiency. Moreover, 

decreasing the discharge gap and the dielectric material thickness and/or enlarging 

the discharge length have a positive influence on both CO2 conversion and energy 

efficiency. From the sensitivity analysis, it is found that the frequency has a weak 

effect on CO2 decomposition; while discharge gap and discharge power play the 

most significant role in CO2 conversion and energy efficiency, respectively. In 

addition, the introduction of the Al foil outer electrode and the screw-type inner 

electrode intensifies the microdischarges in the discharge volume, which can further 

enhance the CO2 decomposition performance. The maximum CO2 conversion of 

27.2% is achieved at a SED of 120 kJ/l while the maximum energy efficiency of 

10.4% is obtained at a SED of 24 kJ/l when the Al foil outer electrode and the screw-

type inner electrode are utilised in the DBD reactor. 

In the plasma-catalytic reaction, the combination of plasma with the BaTiO3 

and TiO2 photocatalysts in the CO2 DBD slightly increases the gas temperature of the 

plasma by 6-11 
o
C compared to the CO2 discharge in the absence of a catalyst at a 

SED of 28 kJ/l. The plasma temperature in the gas phase is almost the same as the 

temperature on the surface of the photocatalysts (BaTiO3 and TiO2) in the plasma-

catalytic DBD reactor. The combination of plasma with BaTiO3 and TiO2 catalysts 
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has resulted in a synergistic effect, which significantly enhances the conversion of 

CO2 and energy efficiency by a factor of 2.5 compared to the plasma reaction in the 

absence of a catalyst. The presence of the catalyst pellets in the plasma gap is found 

to play a dominant role in inducing plasma physical effects, such as the enhancement 

of the electric field and production of more energetic electrons and reactive species, 

which in turn leads to chemical effects and contributes towards the conversion of 

CO2. We find that the intensity of UV emissions generated in the CO2 DBD is 

significantly lower than that emitted from external UV sources (e.g. UV lamps) that 

are commonly used to activate photocatalysts in conventional photocatalytic 

reactions. This phenomenon suggests that the UV emissions generated by the CO2 

DBD only play a minor role in the activation of the BaTiO3 and TiO2 catalysts in the 

plasma-photocatalytic conversion of CO2, and its contribution to the achieved 

exceptional performance of this reaction and the synergy of plasma-photocatalysis 

could be very weak or negligible. In this study, the highly energetic electrons 

generated by plasma have been considered as the main driving force to activate the 

photocatalysts for CO2 conversion. The overall synergistic effect resulting from the 

integration of DBD with photocatalysis for CO2 conversion at low temperatures 

(without extra heating) can be attributed to both the physical effect induced by the 

presence of the catalyst in the discharge and the dominant photocatalytic surface 

reaction driven by energetic electrons from the CO2 discharge. 
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CHAPTER FOUR    CARBON DIOXIDE 

DECOMPOSITION IN A PACKED-BED DBD REACTOR 

4.1 Introduction 

Packed-bed DBD is another type of non-thermal plasma, which is constructed 

by inserting the dielectric pellets within the discharge volume inside the plasma 

reactor. The materials with different dielectric constants (e.g. glass, quartz, Al2O3, 

ceramic, ferroelectrics, etc.) can be used as the dielectric pellets. The enhanced local 

electric field can be achieved in the vicinity of the contact points between pellets and 

pellets/electrodes, which results in the generation of highly energetic electrons. This 

unique characteristic of the packed-bed DBD reactor enables it to have higher energy 

efficiency in the plasma process than that in the conventional non-thermal plasma 

reactor, which has been demonstrated in the plasma processes for ozone generation 

and pollutant removal [88]. The packed-bed DBD reactors have also been applied in 

the CO2 decomposition process [131, 135, 226]. In these invetigations, the high 

permittivity of the dielectrics led to an increasing in the plasma power with very 

dense and strong microdischarges, which significantly enhances the conversion of 

CO2. These findings suggest that the interactions between plasma and packing 

materials play an important role in the plasma conversion of CO2. However, a 

fundamental understanding of the interaction between plasma and packing materials, 

from both a physical and chemical perspective, is still very patchy. In particular, the 

influence of packing materials on the physical characteristics (e.g. electric field, 

mean electron energy) of the discharge and consequent plasma chemical reactions is 

still not clear and has been paid less attention. 

In this study, direct conversion of undiluted CO2 into CO and O2 is carried 

out in a cylindrical DBD reactor with and without packing at low temperatures. The 

effect of glass and BaTiO3 beads on the physical characteristics of the discharge and 

chemical reaction performance is investigated to get a better understanding of plasma 

interactions with packing materials in CO2 conversion.  

4.2 Experimental Section 

4.2.1 Experimental setup 

The experiment is carried out in a packed-bed DBD reactor, as shown in 

Figure 2.2 (b). A 6 cm long SS mesh is wrapped over a quartz tube with an external 

diameter of 25 mm and an inner diameter of 22 mm. A SS rod with an outer diameter 

of 16 mm is placed in the centre of the quartz tube and acted as an inner electrode. 

As a result, the discharge gap is 3 mm with a discharge volume V of 10.1 ml in the 
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absence of the packing material. Different packing materials (BaTiO3 and glass 

beads) of 1 mm in diameter are fully packed into the discharge volume. In this case, 

the reactor can be considered as a typical packed-bed DBD system. For comparison, 

CO2 conversion is also carried out in the DBD reactor with no packing. CO2 is used 

as the feed gas without dilution and the flow rate is fixed at 50 ml/min. The 

experimental setup is the same as those in Section 3.3.  

4.2.2 Parameter calculation  

The equivalent electrical circuit model of the DBD reactor has been described 

in Section 2.3.1. The equivalent capacitance of the quartz tube Cd is 96.6 pF, 

calculated by Equation (2-2), where the relative dielectric constant of dielectric 

material ε is 3.7 for quartz tube. The detailed calculation for the capacitance of the 

gap Cgap in the discharge-off phase, the charge Q flowing through the DBD cell, the 

voltage on the dielectric materials Ud, the voltage across the gap Ugap and the 

breakdown voltage UB can be found in Section 2.4.1. The peak-to-peak voltage (Qpk-

pk), charge discharged (Qd) and charge transferred per half-cycle (Qtrans) can be 

obtained from the Lissajous figure, shown in Figure 2.5 (b). 

In the presence of packing pellets in the discharge gap, Cgap represents the 

capacitance of gas-solid integration in the gas gap; and Ugap is the sum of the voltage 

on the gas (Ug) and packing material (Up). In this study, the beads are tightly packed 

into the discharge gap. The void fraction (α) of the DBD reactor in the presence of 

packing materials is defined as 1-Vp/V (Vp is the total volume of packing beads), 

which is about 0.283 for the fully packing of glass or BaTiO3 beads into the DBD 

reactor. To understand the effect of packing materials on the physical characteristics 

of the discharge, a simplified model has been established to determine the voltage 

across the gas and solid, respectively. The region of solid beads and gas is 

equivalently considered as two parallel plate capacitors, as shown in Figure 4.1. 

  

 

Figure 4.1 Simplified model for the determination of the gas gap. 
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The equivalent gap thicknesses in the gas (dg) and solid (dp) region are 

determined by Equations (4-1) and (4-2): 

 
g

2V
d

D d l









 (4-1) 

p gap gd d d   (4-2) 

where D is the outer diameter of the inner electrode. 

The equivalent capacitances of the gas (Cg) and solid (Cp) regions are 

calculated in the form of a parallel plate capacitor: 

g 0

g

g
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C

d

  
  (4-3) 

p 0

p

p

S
C

d

  
   (4-4) 

where εg is the relative dielectric constant of CO2 (εg =1.6); εp is the relative dielectric 

constant of the packing materials (3.9 for glass bead and 10000 for BaTiO3); S is the 

surface area of the outer electrode. 

The gas voltage Ug can be obtained from the following equation: 

 gap g pp p

g

g g g

U U CU CQ
U

C C C

 
    (4-5) 

By introducing Equations (4-3) and (4-4) into Equation (4-5), we obtain: 

gap
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



 

 (4-6) 

  To evaluate the performance of the plasma process, CO2 conversion, CO 

yield and selectivity as well as the energy efficiency are defined in Section 2.4.3.  

4.3 Experimental Results 

4.3.1 Effect of different packing materials on discharge characteristics 

 Figure 4.2 presents the electrical signals of the CO2 discharge with and 

without packing materials. In the discharge with no packing, a typical filamentary 

discharge can be clearly observed, which can also be confirmed by the numerous 

peaks in the current signal. In contrast, packing BaTiO3 or glass beads into the entire 

discharge area generates a typical packed-bed effect and leads to a transition in the 

discharge behaviour from a filamentary discharge to a combination of surface 

discharge and filamentary discharge. The addition of BaTiO3 or glass beads into the 

DBD reactor is found to significantly reduce the amplitude of the current peaks. In a 

packed-bed DBD reactor, filaments can only be generated in the small gap between 

the pellet-pellet and the pellet-quartz wall, while surface discharge can be formed on 
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the surface of pellets near contact points between pellets. Similar findings were 

reported in our previous works where fully packing Ni/Al2O3 or TiO2 catalyst pellets 

into a DBD reactor significantly changes the discharge mode and inhibits the 

formation of filamentary discharges due the decrease of the discharge volume [107, 

185]. However, intense filamentary discharges were still formed when quartz wool 

was placed in the discharge area due to the porosity of this material and strong 

interactions between the plasma and quartz wool [91].  

Note that the gap voltage of the CO2 discharge in the packed-bed DBD 

reactor is much lower than that of the discharge with no packing. The breakdown 

voltage (UB) of the discharge significantly decreases from 3.43 kV without packing 

to 1.56 kV (packed with glass beads) and 1.03 kV (packed with BaTiO3), 

respectively. This phenomenon can be ascribed to the reduced electrode gap and 

reduced pressure due to the packing of solid materials into the discharge gap. Such 

changes were also observed in previous studies where packing a series of materials 

(Ni/Al2O3, Al2O3, TiO2, and zeolite 3A) into the discharge gap showed that the 

influence of dielectric constant of the packing materials on the reduction of 

breakdown voltage was weak [107, 156, 194]. 

 

  

(a) (b) 

 

(c) 

Figure 4.2 Electrical signals of the CO2 DBD: (a) with no packing; (b) packed with 

glass beads; (c) packed with BaTiO3 beads (discharge power: 40W; feed flow rate: 

50 ml/min; frequency: 9 kHz). 
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Figure 4.3 shows the Lissajous figures of the CO2 discharge with and without 

packing material at the same discharge power of 40 W. The shape of the Lissajous 

figure changes from parallelogram to oval shape when either BaTiO3 or glass beads 

are fully packed in the DBD reactor. This also indicates the change in the discharge 

characteristics. At the same discharge power, the applied voltage of the DBD 

increases from 14.1 kVpk-pk without packing to 15.3 kVpk-pk with the BaTiO3 packing 

and 16.9 kVpk-pk with the glass beads packing, while the current in the discharge with 

no packing is much higher than that in the presence of packing beads, as shown in 

Figure 4.2. 

In the discharge-off phase, the total equivalent capacitance of the DBD 

reactor with no packing is about 13.6 pF. Adding the glass or BaTiO3 beads to the 

plasma system significantly increases the value of this parameter to 43.8 pF and 54.4 

pF, respectively. Similarly, the gap capacitance is also increased from 14.5 pF 

without packing to 80.2 pF and 124.6 pF when the discharge gap is fully packed with 

the glass or BaTiO3 beads. 

 

 

Figure 4.3 Lissajous figures of the CO2 DBD without and with different packing 

materials at a constant discharge power of 40 W (feed flow rate: 50 ml/min; 

frequency: 9 kHz). 

 

The influence of the packing solids on the effective capacitance of the DBD 

at different discharge powers is plotted in Figure 4.4. Increasing the discharge power 

or SED enhances the effective capacitance irrespective of the use of packing 

materials. For example, the effective capacitance of the discharge without packing 

increases from 25.5 pF to 58.6 pF when the discharge power varies from 20 W to 50 

W. This can be clearly seen from the slope of the lines AB and CD in the Lissajous 

figure. In the discharge with no packing, the effective capacitance is much lower than 

the capacitance of the quartz tube (96.6 pF). This phenomenon might be caused by 

the incomplete formation of microdischarge in the whole discharge gap under the 

experimental conditions. Similar observation was reported in a CH4/CO2 DBD [107]. 
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In addition, it is also suggested that Ceff depends on the spatial distribution of the 

discharge across the discharge gap over a half-period of the applied voltage. When 

the packing materials are placed in the reactor, the Ceff increases compared with that 

of the discharge with no packing. Interestingly, the maximum Ceff of 91.5 pF can be 

obtained when the BaTiO3 beads are fully packed into the discharge gap at a 

discharge power of 50 W. This value is very close to the capacitance of the quartz 

tube. It is expected the effective capacitance should be equal to Cd for a fully bridged 

gap [37]. This can demonstrate that the presence of BaTiO3 beads in the discharge 

leads to the expansion of the discharge across the gap, and might consequently affect 

the plasma chemical reactions. 

 

 

Figure 4.4 Effect of packing materials on the effective capacitance of the CO2 

discharge (feed flow rate: 50 ml/min; frequency: 9 kHz). 

 

Figure 4.5 shows the influence of the packing materials on the charge 

characteristics of the CO2 DBD at different discharge powers. It is found that the 

peak-to-peak charge increases with the increase in the discharge power. Both charge 

generated and transferred per half-cycle of the applied voltage also increase with the 

discharge power. Similar evolution was observed in previous studies where these 

charge parameters increased with the discharge power in a plasma methane 

reforming process [107]. The addition of the packing materials to the DBD reactor 

has a significant effect on the charge characteristics of the CO2 discharge. Both 

packing materials are found to bridge the gap between the electrodes and enhance the 

charge transfer between them. 
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(a) (b) 

 

(c) 

Figure 4.5 Effect of packing materials on the charge generation and transfer in the 

pure CO2 DBD: (a) peak-to-peak charge; (b) charge generated per half-cycle; (c) 

charge transferred per half-cycle (feed flow rate: 50 ml/min; frequency: 9 kHz). 

4.3.2 Effect of packing materials on electric field and electron energy 

The effect of the packing materials on the average electric field strength of 

the discharge is shown in Figure 4.6. Clearly, the presence of the packing materials 

in the discharge significantly improves the average electric field strength. The 

material (BaTiO3) with a higher dielectric constant has a more significant effect on 

the electric field of the discharge. For example, the average electric field strength 

(3.27 kV/mm) in the DBD reactor fully packed with the BaTiO3 beads is almost 

doubled compared to that of the discharge with no packing (1.75 kV/mm) at the same 

discharge power of 40 W. A similar finding was reported in [206] where the presence 

of TiO2 pellets in a nitrogen DBD led to a significant increase of the electric field. 

Previous experimental [202, 203] and simulation studies [204, 227] showed that 

packing solid pellets especially the pellets with a high dielectric constant (e.g. 

BaTiO3) into the discharge gap significantly enhanced the local electric field strength 

near contact points between the pellets and the pellet - dielectric wall. The maximum 
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local electric field near these contact points can be 10 - 10
4
 times higher than that in 

the void in a plasma-catalysis system, depending on the properties of the packing 

materials such as contact angle, shape and dielectric constant, while the averaged 

electric field in an argon plasma fully packed with packing pellets was increased by a 

factor of 1.4 with increasing the dielectric constant of the packing materials from 10 

to 1000, above this the change in the electric field became negligible [88]. Our 

results also show that the electric field of the CO2 discharge is not a function of 

dielectric constant when the packing materials with different constants (3.9 and 

10000) are fully packed in the DBD reactor. Figure 4.6 also presents the effect of the 

packing materials on the reduced electric field strength. Similarly, the presence of the 

glass or BaTiO3 beads in the plasma system leads to a higher reduced electric field. 

 

 

Figure 4.6 Effect of packing materials on the average electric field and reduced 

electric field strength (discharge power: 40 W; feed flow rate: 50 ml/min; frequency: 

9 kHz). 

 

The EEDF of the CO2 discharge under our experimental conditions is 

calculated by BOLSIG+
 
[228]. Figure 4.7 shows the effect of the packing solids on 

the mean electron energy of the discharge. Clearly, packing the BaTiO3 pellets in the 

discharge gap almost results in an increase of 75.0% in the mean electron energy at 

the discharge power of 40 W, while the mean electron energy of the discharge with 

glass beads is increased by around 34.6%. In our previous study, we reported that the 

integration of plasma and TiO2 strongly affected the electron energy distribution in a 

N2 discharge with an increase in both highly energetic electrons and electric field 

strength [185]. These results suggest that the presence of solid pellets in the 

discharge gap play a crucial role in inducing physical effects, such as the 

enhancement of electric field and mean electron energy, which in turn produces more 

energetic electrons and chemically reactive species for plasma reactions and 

consequently contributes to the conversion of CO2.   
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Figure 4.7 Effect of packing materials on the mean electron energy in the CO2 DBD 

(discharge power: 40 W; feed flow rate: 50 ml/min; frequency: 9 kHz). 

4.3.3 Effect of packing materials on CO2 conversion 

 Plasma conversion of CO2 is carried out in the DBD reactor with and without 

packing material. CO2 conversion increases with the increase of the discharge power, 

as shown in Figure 4.8. The presence of the packing materials in the discharge gap 

makes the reactor more effective for CO2 conversion, even though fully packing 

these packing beads into the discharge gap significantly decreases the residence time 

of CO2 molecules in the discharge area from 12.9 s with no packing to 3.7 s with 

packing. It is worth noting that plasma-induced adsorption and desorption of CO2 on 

the BaTiO3 surface may prolong the retention time of CO2 in the discharge and partly 

compensate the reduced of CO2 residence time due to the decrease of the discharge 

volume. Compared to the plasma reaction with no packing, the addition of BaTiO3 

and glass beads to the plasma system increases the conversion of CO2 by around 

75.0% and 35.0%, respectively. It is found that the conversion of CO2 is not a 

function of dielectric constant when the packing pellets with different dielectric 

constants are placed in the plasma reactor. The enhancement of CO2 conversion is 

mainly attributed to the changes in the discharge characteristics, such as the increase 

of the average electric field and mean electron energy when solid pellets are packed 

into the discharge volume, as shown in Figure 4.6 and Figure 4.7. However, with 

the BaTiO3 packing, the contribution of plasma photocatalytic surface reaction to the 

enhancement of CO2 conversion cannot be ruled out [208]. It is believed that plasma 

discharges can generate strong UV radiation without using extra UV sources (e.g. 

UV lamps) to activate photocatalysts such as BaTiO3. Previous works reported that 

UV radiation generated by plasma discharges is not always the controlling factor to 

activate photocatalysts [50, 51]. In contrast, the electrons with a high energy (> 3.0 

eV for BaTiO3) generated by the CO2 discharge can trigger electron impact 

activation of BaTiO3 photocatalysts to form electron-hole pairs, as discussed in 

Chapter 3, which contributes to the enhanced conversion of CO2. 
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Figure 4.8 Effect of packing materials on CO2 conversion (feed flow rate: 50 

ml/min; frequency: 9 kHz). 

 Figure 4.9 shows the effect of the packing materials on the energy efficiency 

of the plasma processing of CO2 as a function of the discharge power. The energy 

efficiency is defined as the ratio of the dissociation enthalpy of CO2 and the energy 

for converting per unit CO2 molecules (Equation (2-14)). Compared to the plasma 

reaction with no packing, the presence of BaTiO3 and glass beads in the gas gap 

significantly enhances the energy efficiency of the plasma process. Packing the 

BaTiO3 into the discharge leads to an increase in the energy efficiency of the process 

by 73.5% compared to the reaction with no packing at the same discharge power of 

50 W. The maximum energy efficiency of 7.1% is achieved when the BaTiO3 pellets 

are fully packed into the discharge volume at a discharge power of 20 W and a feed 

flow rate of 50 ml/min.  

 

Figure 4.9 Effect of discharge power on energy efficiency (feed flow rate: 50 

ml/min; frequency: 9 kHz). 

 

The influence of the packing solids on CO selectivity and CO yield at 

different discharge powers is plotted in Figure 4.10. CO selectivity is almost 

independent of the discharge power and packing materials, while CO yield increases 

with the increase of the discharge power. The presence of the BaTiO3 in the 
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discharge gap significantly enhances the yield of CO by 72.9%. The selectivity of 

CO based on carbon atom (Equation (2-12)) is close to 100%, which suggests that 

stoichiometric conversion of CO2 to CO is achieved in this study. This can be 

confirmed by the linear relationship between the CO2 conversion and CO yield (see 

Figure 4.11), which suggests that the production of CO mainly comes from the 

dissociation of CO2. The electron impact dissociation of CO2 will most likely result 

in CO in its ground state (
1
Σ) and O atoms in both the ground state (

3
P) and the 

metastable state (
1
D). However, previous work reported that CO can also be formed 

in excited state since CO electronic bands were observed [91]. The stoichiometric 

conversion of CO2 to CO can be further demonstrated by the fact that no carbon 

deposition and ozone are detected in the plasma reactions. In contrast, Horvath et al. 

found that CO and ozone were the main gas products in the decomposition of pure 

CO2 by a corona discharge [122]. Mikoviny et al. reported that adding trace oxygen 

into pure CO2 significantly increased the concentration of ozone and CO in the CO2 

splitting using a negative corona discharge reactor [120].  

  

(a) (b) 

Figure 4.10 Effect of packing materials on (a) CO selectivity and (b) CO yield (feed 

flow rate: 50 ml/min; frequency: 9 kHz). 

 

Figure 4.11 CO yield vs. CO2 conversion (feed flow rate: 50 ml/min; frequency: 9 

kHz). 
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4.3.4 Energy efficiency of the plasma process 

Table 4.1 compares the CO2 conversion and energy efficiency of the CO2 

decomposition process using different atmospheric plasma sources. It is worth noting 

that in each plasma reactor, the maximum CO2 conversion and energy efficiency 

cannot be achieved simultaneously. In general, higher power and/or lower feed flow 

results in higher CO2 conversion but lower energy efficiency, while higher energy 

efficiency can be obtained at lower power and/or higher feed flow rate but with 

lower CO2 conversion. This phenomenon calls for the further optimisation of these 

processing parameters in the future investigation of the plasma-assisted CO2 

decomposition process. The energy efficiency of the plasma-assisted CO2 

decomposition process achieved in this work is higher than those obtained in the 

decomposition processes using similar DBDs regardless of the packing materials. 

The combination of the Al outer electrode and screw-type SS inner electrode are 

introduced into the atmospheric DBD reactor to improve CO2 conversion and energy 

efficiency, and a maximum energy efficiency of 10.4% for the plasma decomposition 

process is achieved at a discharge power of 10 W and a feed flow rate of 50 ml/min. 

As shown in Table 4.1, a maximum energy efficiency of 19.3% was achieved when 

the pure CO2 decomposition was performed in an AC gliding arc discharge at a feed 

flow rate of 1.31 l/min. However, the corresponding conversion of CO2 in this 

process was only 15.1%, which is significantly lower than that (27.2%) obtained in 

this work at the condition without catalysts (Chapter 3). A balance between CO2 

conversion and energy efficiency in the plasma processing of CO2 is significantly 

important for the development and deployment of an efficient and cost-effective 

plasma process for CO2 conversion and utilisation [229].  

In the DBD reactor, the dielectric layer placed between the electrodes is of 

significant importance in the discharge process. Arc formation during the discharge 

process is inhibited with the aid of the dielectric layer, and non-thermal and 

homogeneous plasma is generated. It has been reported that the dielectric materials 

with higher permittivity lead to an increase in the density of the energetic electrons 

and therefore the improvement in the reactivity of the DBD reactor. Li et al. used a 

series of Ca0.7Sr0.3TiO3 as the dielectric materials in the DBD reactor for CO2 

decomposition [133, 226, 230]. Due to the high permittivity, much denser 

microdischarges characterised by the stronge current pulses are generated when the 

Ca0.7Sr0.3TiO3 ceramic is applied, thereby leading to much higher CO2 conversion 

than that with using alumina and silica glass. Similar studies are performed by Wang 

et al. [135], where Ca0.8Sr0.2TiO3 added with CaO-B2O3-SiO2 (CBS) glass was used 

as the dielectric material and a maximum CO2 conversion of 48.7% was achieved 

with a CBS addition of 5%.  
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Table 4.1 Comparison of CO2 conversion and energy efficiency of CO2 

decomposition process using different atmospheric plasma sources. 

Plasma 

type 

Feed gas 

(vol/vol)
a
 

Power 

(W) 

Total flow 

rate 

(ml/min) 

Catalysts/ 

dielectric 

CO2 

conversion 

(%) 

η (%) Ref 

DBD 

Screw 
Pure CO2 

50 25 - 27.2 2.8 Chapter 

3 10 25 - 20.0 10.4 

DBD Pure CO2 
24 50 TiO2 25.3 11.0 Chapter 

3 24 50 BaTiO3 38.3 16.6 

Packed 

DBD 
Pure CO2 

50 50 
BaTiO3 

28.2 5.9 Chapter 

4 20 50 13.7 7.1 

DBD Pure CO2 
40 10 - 33.8 1.9 

[124] 
15 50 - 13.1 9.1 

DBD Pure CO2 
200 50 - 30.0 1.6 

[123] 
150 200 - 14.0 3.9 

Packed 

DBD 
Pure CO2 

35 40 
CaTiO3 

20.5 4.8 
[131] 

22 40 15.8 6.1 

DBD 
CO2/Ar 

(3/197) 

25 2000 - 9.5 2.3 
[231] 

7.5 2000 - 6.5 5.3 

Packed 

DBD 

CO2/N2 

(1/9) 
42 200 CST+ CBS

b
 48.7 4.8 [135] 

Corona Pure CO2 
40 30 - 10.9 1.7 

[121] 
8 90 - 3.1 7.5 

GA Pure CO2 
219 857 - 17.4 14.1 

[127] 
229 1380 - 15.1 19.3 

Glow  

CO2/He 

(1/99) 
0.506 40 

Cu 

21.2 3.5 

[232] 
CO2/He 

(1/24) 
0.019 40 1.1 19.7 

Glow 
CO2/He 

(1/39) 

2.85 30 
Rh 

30.5 1.7 
[129] 

0.714 100 5.8 4.2 

Glow  
CO2/He 

(1/39) 

8.21 30 Rh 36.4 0.8 
[233] 

1.79 60 Pt 14.1 2.5 

a
 vol/vol:  the feed flow rate ratio of CO2 and the auxiliary gas in the feed gas; 

b
 CST: Ca0.8Sr0.2TiO3; CBS: CaO-B2O3-SiO2. 

 

For the packed-bed DBD reactor, it can significantly improve CO2 conversion 

and energy efficiency due to the energetic electrons generated by the high electric 

field near the contact points between the packing pellets as well as between the 

packing pellets and the dielectric tube. This enhancement is closely related to the 
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relative permittivity of the packing pellets. The enhancement of CO2 conversion 

performance in the packed-bed DBD reactor has been reported in the work of Yu et 

al. [131]. They reported that a maximum energy efficiency of 6.1% was obtained 

with a CO2 conversion of 15.8% when CaTiO3 was used as the packing material. In 

this work, a relative higher CO2 conversion of 7.1% is obtained when BaTiO3 is used 

as the packing pellets in this chapter. 

Another advantage of DBD technology is its ability to be combined with 

other technologies such as heterogeneous catalysis, known as hybrid plasma-

catalysis. Up to now, limited work related to the plasma catalysis CO2 decomposition 

has been reported. Metal coated electrodes using Cu, Rh, Pt, Au and Pd were applied 

in the glow discharge for CO2 decomposition [129, 232, 233]; a maximum CO2 

conversion of 36.4% was obtained with the Rh coated electrode [233]. But these 

metal coated electrodes were used in the highly diluted CO2 by He, Ar or N2, their 

feasibility in the treatment of gas stream with large amount of CO2 has not been 

reported yet. Moreover, the utilisation of inert gases as dilution is not favourable for 

industrial applications due to the cost of these gases, especially for He.  

In Chapter 3, the integration of plasma and photocatalysts (BaTiO3 and TiO2) 

shows a synergistic effect in the reduction of CO2 into CO and oxygen, which 

significantly enhances the conversion of CO2 and the energy efficiency of the 

process, as well as a balance between them. An energy efficiency (16.6%) of the 

plasma CO2 conversion in the presence of BaTiO3 (Chapter 3), increased by up to 

250% compared to that obtained in the plasma-only condition, is much higher than 

most of the other plasma processes regardless of the catalyst used. It is also 

interesting to note that the energy efficiency obtained in the plasma-catalytic process 

using BaTiO3 as photocatalyst is much higher than that of similar chemical reactions 

using a conventional packed-bed DBD reactor where materials and/or catalysts are 

fully packed into the discharge gap [178]. Previous works have demonstrated that 

packing catalysts into the entire discharge zone led to a strong packed-bed effect and 

was found to shift the discharge mode from a typical strong filamentary 

microdischarge across the gap to a combination of surface discharge and weak 

microdischarge due to a significant reduction in the discharge volume [91, 107, 156]. 

As a result, only limited surface discharge can be generated on part of the catalyst 

surface and spatially limited microdischarges generated in the void space between 

pellet-pellet and pellet-quartz wall [107, 203]. The formation of strong filamentary 

discharges in a DBD reactor without a catalyst is strongly suppressed when the solid 

catalysts are fully packed into the discharge gap. It is well known that a packed-bed 

effect can enhance the electric field in the plasma, which contributes to the 

enhancement of the reaction performance to some extent. This phenomenon has also 

been observed in our CO2 decomposition experiments in the fully packed-bed DBD 

reactor in this chapter. However, such a significant transition in behaviour of the 
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discharge mode induced by the strong packed-bed effect (fully packed) could 

substantially reduce the performance of plasma-catalytic conversion or reforming 

processes for energy and fuel production, as catalysts placed in the plasma area 

cannot be fully interacted and activated by the spatially limited discharges and weak 

interactions between the plasma and catalyst [91, 107]. This may be one of reasons 

for the phenomenon that CO2 conversion and energy efficiency in the fully packed 

DBD reactor (Chapter 4) are lower than those obtained in the DBD reactor partially 

packed with the same photocatalyst BaTiO3
 
(Chapter 3). It has been reported that 

how to pack catalysts in a DBD reactor is of primary importance to induce strong 

physical and chemical interactions between the plasma and catalyst, which 

consequently affects the generation of the synergistic effect of the plasma-catalytic 

reaction, especially for the conversion of undiluted reactants to valuable fuels and 

chemicals [91].  

One may argue that as packed-bed DBD reactors have been demonstrated to 

be effective at removing a wide range of low concentration (10-1000 ppm) 

environmental gas pollutants [88], they could also be beneficial in the conversion of 

undiluted reactants. However, the major reaction mechanisms involved in the 

removal of dilute and low concentration gas pollutants and in the conversion of 

undiluted reactants (e.g. CO2 or a mixture of CO2 and CH4) are significantly different 

due to different concentrations of reactants in the plasma chemical reactions. In the 

former reactions, highly energetic electrons mainly collide with carrier gas (e.g. air) 

to generate chemically reactive species (e.g. O, O3, OH and N2 (A)), which play 

dominant roles in the stepwise decomposition and oxidation of low concentration 

(ppm level) pollutants into CO, CO2, H2O and other by-products [234]. In contrast, 

electron impact reactions with reactants (e.g. CO2) make significant contributions to 

the conversion of undiluted reactants in the latter reactions as carrier gases (e.g. N2 

and Ar) are not preferable. The transition behaviour of the discharge mode resulting 

in weak interactions of plasma and catalyst induced by the packed-bed effect might 

not be so important in the former reactions since the increased electric field in the 

packed-bed DBD reactor might be sufficient to produce reactive species for the 

removal of pollutants of ppm level. In addition, even a catalyst support (e.g. γ-Al2O3 

and SiO2) placed in a packed-bed DBD reactor could absorb or decompose some gas 

pollutants of low concentration [235, 236], leading us to think that the negative effect 

caused by the weak interaction between the plasma and packing catalysts (or 

supports) might be insignificant in the removal of dilute gas pollutants. 

Compared with the thermal catalytic CO2 decomposition, CO2 conversion 

obtained in the DBD reactor is rather lower and there is still much room for 

improvement [37]. Considering the heterogeneous catalysts used in the thermal 

catalytic decomposition of CO2, series of ferrite catalysts MFe2O4 (M = Ni, Cu, Co 

and Zn) and iron oxides were widely used [38, 237-239]. The oxygen-deficient sites 
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on these catalysts are the major contributor to the high performance of CO2 

decomposition. This mechanism for CO2 decomposition on oxygen-deficient sites of 

the catalyst is much similar with that on the plasma-photocatalytic CO2 

decomposition, as discussed in Chapter 3. It is therefore expected that exploration 

and development of the catalysts with high redox ability and low-temperature 

activity, which can be activated in the non-thermal plasma reactor, can further 

enhance CO2 conversion and energy efficiency in the plasma-assisted CO2 

decomposition. Additionally, previous simulation work has suggested that the energy 

efficiency of a plasma reactor can be enhanced by a factor of 4 when using 

rectangular pulses instead of a sinusoidal voltage [240]. Further improvement in the 

energy efficiency of this process can also be expected from the optimisation of the 

plasma power. 

4.4 Conclusions 

Plasma-assisted conversion of undiluted CO2 into CO and O2 has been carried 

out in a cylindrical DBD reactor with and without packing materials. The influence 

of the packing materials (BaTiO3 and glass beads) on the CO2 discharge 

characteristics and CO2 conversion has been investigated. The presence of BaTiO3 

and glass beads in the DBD reactor changes the discharge behaviour and shows a 

transition from a typical filamentary discharge with no packing to a combination of 

filamentary discharge and surface discharge at the same discharge power. The 

addition of BaTiO3 into the plasma system significantly enhances the average electric 

field and mean electron energy by 86.9% and 75.0%, respectively, which also affects 

the plasma chemical reactions. The use of packing materials (BaTiO3 and glass 

beads) in the discharge gap is found to make the DBD reactor more effective for CO2 

conversion even though the residence time of CO2 in the discharge is reduced due to 

the decrease of the discharge volume at the same gas flow rate. Compared to the 

plasma CO2 conversion with no packing, the presence of BaTiO3 beads in the DBD 

reactor significantly increases the conversion of CO2 by 75 %. These results indicate 

that the change of the discharge properties (e.g. electric field and mean electron 

energy) significantly enhances CO2 conversion, CO yield and energy efficiency of 

the plasma process. In addition, highly energetic electrons (> 3.0 eV) generated by 

the discharge could activate photocatalyst (BaTiO3) to form electron-hole pairs on 

the surface of BaTiO3, which also contributes to the enhanced conversion of CO2. 

From the comparison of the CO2 decomposition performance in different 

plasma reactors and in the conventional thermal-catalytic reactors, the development 

of the catalyst with high redox ability and low-temperature activity would favour the 

enhancement of CO2 conversion and energy efficiency in the plasma-assisted CO2 

decomposition process. 
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CHAPTER FIVE    DRY REFORMING OF METHANE IN 

A COAXIAL DBD REATOR WITHOUT CATALYST 

5.1 Introduction  

 Aside from CO2, CH4 is the second major greenhouse gas, and its global 

warming potential (GWP) is approximately 25 times higher than that of CO2 

although its concentration in the atmosphere is lower [241, 242]. The conversion of 

CO2 with CH4 (dry reforming of CH4) for the generation of synthesis gas (syngas) 

has attracted significant interest as this reaction uses two major greenhouse gases 

simultaneously. This process generates syngas with a H2/CO molar ratio of ~ 1:1, 

which is preferable for the further synthesis of long-chain hydrocarbons or 

oxygenated hydrocarbons. Moreover, this reaction can be carried out using feedstock 

in the form of natural gas, biogas or shale gas with differing amounts of CO2, which 

maximises the energy utilisation and minimises the negative environmental impact. 

However, dry reforming of CH4 using conventional catalytic methods still faces two 

major challenges that limits the use of this process on a commercial scale: firstly, 

high reaction temperatures (> 700 ºC) are required to obtain reasonable conversions 

of reactants and yields of syngas, since this is a highly endothermic reaction and both 

reactants (CO2 and CH4) are very stable molecules, which incurs high energy cost; 

secondly, the formation of carbon deposition on the catalyst surface results in rapid 

deactivation of the catalyst, especially for the transition metal catalyst [91, 166]. 

 Non-thermal plasma is considered as an attractive alternative for converting 

greenhouse gases (CO2 and CH4) into syngas and other value-added chemicals, as it 

can be carried out at atmospheric pressure and low temperatures, resulting from its 

non-equilibrium characteristics. In this thesis, the plasma dry reforming of CH4 will 

be performed in a coaxial DBD reactor with and without a catalyst. 

 In this chapter, the thermodynamic equilibrium calculation for dry reforming 

of CH4 is firstly carried out, in which the effects of operating temperature and 

CO2/CH4 molar ratio in the feed gas are taken into consideration. Secondly, dry 

reforming of CH4 in the plasma-only process are performed to investigate the effects 

of discharge power, total feed flow rate and CO2/CH4 molar ratio on the performance 

of the plasma process. The results presented in this chapter will be compared with the 

plasma-catalytic dry reforming reaction in the following chapters. 
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5.2 Thermodynamic Equilibrium Calculation for Dry Reforming of 

CH4 

5.2.1 Thermodynamic equilibrium calculation method 

The thermodynamic equilibrium calculation for dry reforming of CH4 is 

carried out using the Gibbs free energy minimisation-based method in a closed 

system. The main reactions which may occur in the dry reforming process are listed 

in Equations (5-1) to (5-7) [191, 192]. Dry reforming of CH4 (Equation (5-1)) is an 

intensively endothermic reaction, which consumes a large amount of energy. In 

addition, the occurrence of side reactions (Equations (5-2) to (5-7)) lowers the 

conversion of reactants and the yields of products.  

0

4 2 2 298KCH CO 2H 2CO 247 kJ molH      (5-1) 

0

2 2 2 298KCO H CO H O 41 kJ molH     (5-2) 

0

4 2 2 298KCH H O CO 3H 206 kJ molH      (5-3) 

0

4 2 2 2 298KCH 2H O CO 4H 165 kJ molH      (5-4) 

0

2 2 2 298KCO H O CO H 41 kJ molH      (5-5) 

0

2 2 4 2 298KCO 4H CH 2H O 165 kJ molH      (5-6) 

0

2 4 2 298KCO 3H CH H O 206 kJ molH      (5-7) 

The calculation results are reported in terms of the thermodynamic 

equilibrium amount of each species as well as the conversion of the reactants (CO2 

and CH4). The definitions of the conversion of reactants have been provided in 

Section 2.4.3. 

5.2.2 Thermodynamic equilibrium calculation results 

5.2.2.1 Effect of operating temperature  

 Figure 5.1 shows the thermodynamic equilibrium calculation results for dry 

reforming of CH4 at 1 atm. The major products from the dry reforming process are 

CO, H2 and H2O with a trace of C2 hydrocarbons, methanol and dimethoxyethane 

(DME). Due to their small amount, C2 hydrocarbons, methanol and DME are not 

considered in the calculation. The performance of dry reforming of CH4 process is 

strongly dependent on the temperature, since it is an intensively endothermic reaction. 

Clearly, the reforming reaction starts to take place only when the temperature is 

higher than 600 K. The amounts of produced CO and H2 increase sharply as the 

temperature is increased up to 1000 K. Afterward, the amount of these two produced 

gases rises smoothly before reaching a constant value. From the Equation (5-1), it is 

expected that an equal conversion of CO2 and CH4 with a unity H2/CO molar ratio 
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would be obtained. However, CO2 conversion is higher than that of CH4 in the 

equilibrium system, and more CO is produced. A small amount of water can be seen 

to form in the higher temperature range, with its value peaking at 900 K; this 

phenomenon indicates that the unfavourable reactions involving water formation 

have a pronounced influence on both reactant conversions and product yields. 

 

  

(a) (b) 

Figure 5.1 Thermodynamic equilibrium calculation for dry reforming of CH4 as a 

function of operating temperature at 1 atm (a) gas composition; (b) reactant 

conversions (total feed gas: 2 mol, CO2/CH4: 1:1). 

5.2.2.3 Effect of CO2/CH4 molar ratio 

 The effect of the CO2/CH4 molar ratio on the conversion of CO2 and CH4 at 1 

atm is presented in Figure 5.2. We can see that a lower CO2/CH4 molar ratio is 

beneficial to CO2 conversion, whilst a higher CO2/CH4 molar ratio is preferred for a 

higher CH4 conversion. This phenomenon indicates that CO2 as a weak oxidant has a 

positive effect on CH4 conversion; adding more CO2 into the reaction system will 

 

  

(a) (b) 

Figure 5.2 Effect of CO2/CH4 molar ratio on the thermodynamic equilibrium 

conversion of (a) CO2 and (b) CH4 (total feed gas: 2 mol, pressure: 1 atm). 
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enhance the activity of CH4 and lead to higher CH4 conversion. When the CO2/CH4 

molar ratio is lower than 1:1, CO2 is the limiting reactant and will be consumed to 

the maximum extent within the investigated temperature range, but CH4 cannot be 

converted completely. Therefore, CO2 conversion is nearly 100% at higher 

temperature (e.g. 1023 to 1473 K) with a CO2/CH4 molar ratio of lower than 1:1. 

Conversely, the conversion of CO2 will be limited when CO2/CH4 molar ratio is 

higher than 1:1, as CH4 plays the role of the limiting reactant in such conditions. 

 Figure 5.3 depicts the thermodynamic equilibrium mole number of CO, H2 

and H2O at different CO2/CH4 molar ratios. When the CO2/CH4 molar ratio is less 

than 1:1, increasing CO2/CH4 molar ratio enhances the thermodynamic equilibrium 

mole number of CO. As mentioned above, CO2 is the limiting reactant at this 

condition; any incremental addition of CO2 would be largely consumed, leading to a 

higher equilibrium mole number of CO. However, when the CO2/CH4 molar ratio is 

larger than 1:1, CH4 becomes the limiting reactant; addition of CO2 inhibits the 

conversion of CO2, resulting in a decline in the equilibrium mole number of CO. 

Similarly, the CO2/CH4 molar ratio exhibits a positive impact on H2 yield with a ratio 

lower than 1:1 and a negative impact with a ratio higher than 1:1. Contrary to the 

increasing trend in the equilibrium mole number of CO versus temperature (> 885 K) 

at a specified CO2/CH4 molar ratio (> 1:1), H2 yield is suppressed due to the RWGS 

reaction, in which H2 is consumed by reacting with CO2 to produce CO and H2O. 

This can be confirmed by the reliance of the equilibrium mole number of H2O on 

temperatures when the CO2/CH4 molar ratio is higher than 1:1 (see Figure 5.3 (c)). 

5.3 Dry Reforming of CH4 in a Coaxial DBD Reactor without 

Catalyst 

5.3.1 Experimental section 

The experiments are performed in a coaxial DBD reactor, as shown in Figure 

2.2 (a). A 10 cm long SS mesh is wrapped over a quartz tube with an external 

diameter of 25 mm and an inner diameter of 22 mm. A SS rod with an outer diameter 

of 17 mm is placed in the centre of the quartz tube and acts as an inner electrode. As 

a result, the discharge gap is 2.5 mm with a discharge volume (V) of 15.3 ml. The 

power supply (including the calculation of discharge power) and gas analysis 

methods are the same as those in Section 3.3.1.1. CO2 and CH4 are used as the feed 

gas. 

To evaluate the performance of the plasma process, the reactant conversions, 

product yields and selectivities as well as the EC and FPE have been defined in 

Section 2.3.3. 
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(a) (b) 

 

(c) 

Figure 5.3 Effect of CO2/CH4 molar ratio on the thermodynamic equilibrium mole 

number of (a) CO, (b) H2 and (c) H2O (total feed gas: 2 mol, pressure: 1 atm). 

5.3.2 Experimental results 

5.3.2.1 Effect of discharge power 

The influence of discharge power on the performance of plasma dry 

reforming of CH4 is displayed in Figure 5.4. Both CO2 and CH4 conversion 

increases with increasing discharge power. The conversions of CO2 and CH4 increase 

up to 23.8% and 41.8%, respectively, at a discharge power  of 60 W. Similar results 

have been reported in previous studies [91, 243]. In this study, the discharge power is 

changed by adjusting the applied voltage at a fixed frequency. As discussed in 

Section 3.3.2.2, increasing the discharge power by only changing the applied voltage 

results in the increase in the number of microdischarges and the current intensity in 

the DBD reactor, which indicates that more reaction channels and electrons are 

formed to activate and convert the reactant molecules; both of these two factors 

contribute to the enhancement in the conversion of CO2 and CH4.  

The conversion of CO2 is always lower than that of CH4 under our 

experimental conditions. This phenomenon is different from that in the conventional 
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(a) (b) 

 

(c) 

Figure 5.4 Effect of discharge power on the performance of plasma dry reforming 

reaction without catalyst: (a) conversion of CO2 and CH4; (b) yield of CO and H2 and 

H2/CO molar ratio; (c) selectivities of syngas and C2-C4 hydrocarbons (total feed 

flow rate: 50 ml/min; CO2/CH4: 1:1). 

 

thermal catalytic dry reforming of CH4, in which the conversion of CH4 is usually 

lower than that of CO2 due to the occurrence of the RWGS reaction, as shown in 

Equation (5-2). This higher conversion of CO2 is also observed in our 

thermodynamic equilibrium calculation. These results indicate that CO2 and CH4 

conversions occur through different pathways in the conventional thermal catalytic 

and plasma-assisted processes. Pyrolysis of the gas molecules is dominant in the 

thermal dry reforming process, whilst reactions of electrons, radicals and excited 

species play important roles in the plasma process [41]. More specifically, in the 

plasma dry reforming of CH4, the initial reaction steps for the conversion of CO2 and 

CH4 are mainly driven by electron-impact dissociation (Equations (5-8) and (5-9)). 

Moreover, more reaction pathways exist for CH4 conversion to generate CH3, CH2 

and CH (Equations (5-9) to (5-11)), followed by the radical recombination reactions 

to form higher hydrocarbons or further electron-impact dissociation of radicals.  
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2CO e CO O e     (5-8) 

4 3CH e CH H e     (5-9) 

4 2 2CH e CH H e     (5-10) 

4 2CH e CH H H e      (5-11) 

CO2 and CH4 can promote the conversion of each other when they are co-fed 

to the plasma reactor, compared to the decomposition of pure CO2 or CH4 [44]. The 

excited atomic oxygen species from the dissociation of CO2 can easily break C-H 

bond in CH4 as shown in Equation (5-12), while hydrogen atoms from CH4 

dissociation can facilitate the conversion of CO2 according to Equation (5-13). 

However, the rate coefficient of Equation (5-12) is several orders of magnitude 

higher than that of Equation (5-13) in the temperature range of 300-2500 K [44]. 

This may be one of the reasons for the less pronounced CO2 conversion compared to 

that of CH4 in the plasma dry reforming of CH4. 

4 3CH O CH OH   ,    
1.5128.75 10 298 exp 4330k T T    [44] (5-12) 

2CO H OH CO   ,  102.5 10 exp 13300k T   [44] (5-13) 

In addition, recent simulation has shown that the following reaction plays a 

dominant role in the production of CO2 in the plasma dry reforming reaction in a 

DBD reactor, leading to a lower CO2 conversion [244].  

2 4 4 2CO CH CH CO     (5-14) 

The plasma dry reforming processes are performed without extra heating. 

When the discharge power increases from 20 W to 60 W, the temperature inside the 

reactor in the plasma-only process is increased from 150 
o
C to 225 

o
C. From the 

thermodynamic equilibrium calculations in the above section, the equilibrium 

conversion of CO2 and CH4 under such temperature (150 ~ 225 
o
C) is very low 

(<1%). This phenomenon demonstrates that the DBD plasma can induce the dry 

reforming reaction at lower temperature.  

Figure 5.4 also shows that increasing the discharge power results in an 

increase in the yield of CO and H2 but slightly decreases their selectivity. At a higher 

discharge power of 60 W, the maximum yield of CO and H2 is 15.3% and 13.1%, 

respectively. However, discharge power has weak influence on the H2/CO ratio, 

which only changes between 0.87 and 0.90 in the discharge power range of 20-60 W.  

Noticeably, increasing the discharge power significantly decreases the 

selectivity of C2H6. Previous simulation has shown that the reaction (Equation (5-9)) 

is responsible for 79% of the total electron impact dissociation of CH4 [245], which 

generates CH3 as the main radical. C2H6 is mainly formed from the recombination of 

CH3 radicals through the neutral-neutral reaction, shown in Equation (5-15). 

Meanwhile, C2H6 can be consumed by the reactions with CH radicals to form C3 

hydrocarbons, electron ionisation to form C2H4
+
, and/or dissociation to form C2H4 or 
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C2H5 [246]. The produced radicals favour the formation of other hydrocarbons, such 

as C3H8 and C4H10 from the neutral-neutral reaction (Equations (5-16) and (5-17)). 

This suggests that increasing the discharge power results in the decomposition of 

C2H6 to form other hydrocarbons, confirmed by the slight increase in the selectivity 

of C3H8 and C4H10 (see Figure 5.4 (c)). 

3 3 2 6CH CH C H   (5-15) 

2 5 3 3 8C H CH C H   (5-16) 

2 5 2 5 4 10C H C H C H   (5-17) 

 Figure 5.5 shows the effect of the discharge power on the EC and FPE of the 

plasma dry reforming process. Clearly, increasing the discharge power increases EC 

for both reactant conversion and gas production. Although the mole numbers of 

converted CO2 and CH4, as well as the mole numbers of generated CO and H2, are  

 

  

(a) (b) 

 

(c) 

Figure 5.5 Effect of discharge power on (a) the EC for CH4 conversion, CO2 

conversion and total carbon conversion; (b) the EC for H2 and syngas production; (c) 

the FPE of plasma dry reforming without catalyst (total feed flow rate: 50 ml/min; 

CO2/CH4: 1:1). 
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increased by increasing the discharge power, the energy consumed to convert a unit 

amount of reactant and to generate a unit amount of syngas is also increased due to 

the increase in discharge power. The EC for CO2 and CH4 conversion is 7.5 MJ/mol 

and 5.1 MJ/mol at a discharge power of 20 W, respectively, and increases to 13.5 

MJ/mol and 7.7 MJ/mol when the discharge power is increased to 60W. 

Correspondingly, the EC for total carbon conversion increases from 3.0 MJ/mol to 

4.9 MJ/mol; meanwhile, the EC for H2 and syngas production increases by 63.4% 

and 68.0%, respectively.  

Figure 5.4 (c) shows that the selectivity towards C3H8 and C4H10 is slightly 

increased by increasing discharge power, which leads to an increase in the mole 

numbers of the generated C3H8 and C4H10. Although increasing discharge power 

decreases the selectivity to C2H6, the mole number of the produced C2H6 is still 

increased due to the increase in the mole numbers of the converted CO2 and CH4. It 

therefore can be concluded that increasing discharge power increases the mole 

numbers of all the produced fuels (H2, CO, C2H6, C3H8 and C4H10). However, 

increasing discharge power decreases the FPE (see Figure 5.5 (c)), due to the higher 

increasing rate in the discharge power compared to that in the total low heating value 

(LHV) of the generated fuels. A maximum FPE of 13.0% is achieved at a discharge 

power of 20 W, which decreases to 7.4% when the discharge power is increased to 

60 W. 

5.3.2.2 Effect of feed gas flow rate 

Figure 5.6 shows the influence of total feed flow rate on the plasma dry 

reforming at a constant discharge power of 50 W and a CO2/CH4 molar ratio of 1:1. 

Increasing the total feed flow rate decreases the conversion of CO2 and CH4 due to 

the decline of the residence time of the reactants in the discharge region, which 

reduces the possibility of the reactant molecules colliding with energetic electrons 

and reactive species. When total feed flow rate is increased from 25 ml/min to 150 

ml/min, the residence time of CO2 and CH4 in the plasma zone is significantly 

decreased from 36.7 s to 6.1 s; therefore, CO2 and CH4 conversion decreases from 

34.1% and 50.5% to 9.1% and 16.1%, respectively. In addition, increasing total feed 

flow rate results in a remarkable decrease in the yield of CO and H2 but only slightly 

decreases their selectivity. Figure 5.6 (b) shows that the yield of CO and H2 is 

decreased by about 75% when total feed flow rate increases from 25 ml/min to 150 

ml/min. However, the selectivity of CO and H2 is only decreased by approximately 

11.0% when the total feed flow rate increases to 50 ml/min, and remains nearly 

constant afterwards, as shown in Figure 5.6 (c). This suggests that a lower total feed 

flow rate is beneficial in improving the conversions of CO2 and CH4 and producing 

more syngas. Moreover, a maximum H2/CO molar ratio of 0.90 is achieved at a total 
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flow rate of 50 ml/min, which decreases to 0.84 when the total flow rate is increased 

up to 150 ml/min. 

 

  

(a) (b) 

 

(c) 

Figure 5.6 Effect of total feed flow rate on the performance of plasma dry reforming 

without catalyst: (a) conversion of CO2 and CH4; (b) yield of CO and H2 and H2/CO 

molar ratio; (c) selectivities of syngas and C2-C4 hydrocarbons (discharge power: 50 

W; CO2/CH4 : 1:1). 

 

In Figure 5.6 (c),  we can see that increasing the total feed flow rate increases 

the selectivity of C2-C4 hydrocarbons, especially C2H6 and C3H8, which is in 

accordance with previous studies [158]. The decline in the residence time resulting 

from an increase in the feed gas flow rate reduces the chance for C2-C4 hydrocarbons 

to be dissociated in an electron avalanche and converted to free radicals to form other 

carbon-containing chemicals, such as CO [243]. This explanation can be clearly 

confirmed by the decreasing trend in CO selectivity with the increase of total feed 

flow rate. Therefore, a high total feed flow rate is preferred for the production of C2-

C4 hydrocarbons.  
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The dependence of the EC and FPE of the plasma process on total feed flow 

rate is shown in Figure 5.7. The EC for reactant conversion decreases significantly 

when the total feed flow rate increases from 25 ml/min to 100 ml/min, beyond which 

the EC becomes stable or starts to increase slightly. The EC for CO2 and CH4 

conversion reaches their respective minimum value of 9.5 MJ/mol and 5.5 MJ/mol at 

a total feed flow rate of 125 ml/min, which results in the minimum EC for total 

carbon conversion as well (3.5 MJ/mol). This phenomenon is mainly caused by the 

increased mole number of converted CO2 and CH4 resulting from the increase in the 

total feed flow rate, although the conversions of CO2 and CH4 decrease (see Figure 

5.6 (a)).  

 

  

(a) (b) 

 

(c) 

Figure 5.7 Effect of total feed flow rate on (a) the EC for CH4 conversion, CO2 

conversion and total carbon conversion; (b) the EC for H2 and syngas production; (c) 

the FPE of plasma dry reforming without catalyst (discharge power: 50 W; CO2/CH4: 

1:1). 

 

The EC for both H2 and syngas production is also decreased by increasing the 

total feed flow rate. In Figure 5.6 (b), we can see that increasing the total feed flow 

rate decreases the yield of CO and H2, but the mole number of produced CO and H2 
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is increased due to the large amount of CO2 and CH4 in the feed gas, which decreases 

the EC for both. At the total feed flow rate of 125 ml/min, the minimum EC for H2 

production and syngas production is 9.1 MJ/mol and 4.2 MJ/mol, respectively. 

The FPE increases gradually with the total feed flow rate. The maximum FPE 

of 12.7% is achieved at a total feed flow rate of 150 ml/min. The mole numbers of 

C2H6, C3H8 and C4H10 are all increased by increasing the total feed flow rate, due to 

the increase in their selectivities, as shown in Figure 5.6 (c). Therefore, the mole 

numbers of the different produced fuels are all increased by increasing the total feed 

flow rate, which results in the increase in the FPE at a constant discharge power. 

5.3.2.3 Effect of CO2/CH4 molar ratio 

Figure 5.8 presents the effect of different CO2/CH4 molar ratios on 

performance of the plasma dry reforming process. The conversion of CH4 increases 

significantly with the increase of the CO2/CH4 molar ratio, which suggests that a 

higher content of CO2 in the reactant gas mixture favours the conversion of CH4. A 

maximum CH4 conversion of 51.5% is achieved at a CO2/CH4 molar ratio of 4:1. In 

contrast, the conversion of CO2 is slightly decreased from 24.2% to 21.1% when the 

CO2/CH4 ratio is changed from 1:4 to 4:1. As discussed above, active oxygen from 

CO2 decomposition favours the conversion of CH4 through Equation (5-12). More 

oxygen is produced and therefore the rate of Equation (5-12) is increased by 

increasing the CO2/CH4 molar ratio, which results in the enhancement in CH4 

conversion. By contrast, the effect of Equation (5-13) on the conversion of CO2 

becomes weaker by increasing the CO2/CH4 molar ratio, which leads to the decline 

in CO2 conversion.  

Figure 5.8 (b) shows that the CO2/CH4 molar ratio significantly affects the 

yield of CO and H2. When the CO2/CH4 molar ratio increases from 1:4 to 4:1, the 

yield of H2 is more than doubled, and the yield of CO is enhanced 2.8 times. These 

results are in good agreement with those obtained in previous studies [44, 116]. 

Zhang et al. reported that increasing the CO2/CH4 molar ratio from 2:3 to 3:1 

increased the H2 yield  from 11.4% to 20.4% and the CO yield from 7.3% to 31.3% 

in a non-catalytic DBD reactor [116]. The variation of CO2/CH4 molar ratio plays a 

significant role in determining the H2/CO molar ratio in the produced syngas. Thus 

we could expect that syngas with a desired H2/CO molar ratio for further synthesis 

can be produced by adjusting the CO2/CH4 molar ratio. For example, when the 

CO2/CH4 molar ratio is lower than 1:2, a H2/CO molar ratio of 2:1 can be obtained, 

which is desirable for  catalytic synthesis of methanol [44].  

In addition, increasing the CO2 content in the feed gas significantly increases 

the selectivity of H2 and CO. We can see that the selectivity of H2 increases by 35.9% 

(from 29.5% to 40.1%), while the CO selectivity is increased by a considerable 

factor of 2.9 when the CO2/CH4 molar ratio changes from 1:4 to 4:1. By contrast, 



 Chapter Five 

112 

 

  

(a) (b) 

 

(c) 

Figure 5.8 Effect of CO2/CH4 molar ratio on the performance of plasma dry 

reforming without catalyst: (a) conversion of CO2 and CH4; (b) yield of CO and H2 

and H2/CO molar ratio; (c) selectivities of syngas and C2-C4 hydrocarbons (discharge 

power: 50 W; total feed flow rate: 50 ml/min). 

 

lower content of CO2 in the feed gas leads to a higher selectivity of C2-C4 

hydrocarbons, especially to C2H6, as shown in Figure 5.8 (c). Zhang et al. suggested 

that lower CO2 content in the feed gas decreased the availability of oxygen in the 

reaction system, which enhanced the possibility of the active CH4 species (CH3, CH2, 

CH) reacting with each other to form other hydrocarbons (C2, C3, etc.) compared 

with that of CH4 oxidation to form CO [116]. This explanation is in consistent with 

the decreasing trend in CO selectivity as a result of decreasing the CO2 content in the 

feed gas (see Figure 5.8 (c)). The highest selectivity to C2H6 (28.8%) is obtained at a 

CO2/CH4 molar ratio of 1:4, which nearly reaches that of H2 and is increased by a 

factor of 6.8 compared with that obtained at a CO2/CH4 molar ratio of 4:1.  

Figure 5.9 shows the effect of CO2/CH4 molar ratio on the EC and FPE of 

the plasma process. Increasing the CO2/CH4 molar ratio decreases the EC for CO2 

conversion, but increases that for CH4 conversion. This is mainly due to the fact that 
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increasing the CO2/CH4 molar ratio results in an increase in the mole number of 

converted CO2 but a decrease in that of converted CH4. When the CO2/CH4 molar 

ratio is less than 2:1, the EC for CO2 conversion is higher than that for CH4 

conversion. The maximum EC for CO2 conversion of 27.7 MJ/mol is obtained at a 

CO2/CH4 molar ratio of 1:4, but the corresponding EC for CH4 conversion 

approaches its minimum value (5.6 MJ/mol). The EC for CH4 conversion peaks (13.0 

MJ/mol) at a CO2/CH4 molar ratio of 4:1. The EC for total carbon conversion is 

independent of the variation in CO2/CH4 molar ratio. 

 

  

(a) (b) 

 

(c) 

Figure 5.9 Effect of CO2/CH4 molar ratio on (a) the EC for CH4 conversion, CO2 

conversion and total carbon conversion; (b) the EC for H2 and syngas production; (c) 

the FPE of plasma dry reforming without catalyst (discharge power: 50 W; total feed 

flow rate: 50 ml/min). 

 

 The yield of H2 is increased by increasing the CO2/CH4 molar ratio, but the 

mole number of the produced H2 is decreased, which leads to the increase in the EC 

for H2 production, as shown in Figure 5.9 (b). A maximum EC of 16.3 MJ/mol for 

H2 production is obtained at a CO2/CH4 molar ratio of 4:1. However, the 
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corresponding EC for syngas production is decreased, resulting from the increase in 

the mole number of produced syngas (mainly CO) via the plasma reaction. 

 In Figure 5.9 (c), we can see the FPE is slightly decreased by increasing the 

CO2/CH4 molar ratio. The maximum FPE is 9.3%, obtained at a CO2/CH4 molar ratio 

of 1:4. Increasing the CO2/CH4 molar ratio decreases the mole numbers of the 

produced C2H6, C3H8 and C4H10, due to the decline in their selectivities, as shown in 

Figure 5.8 (c). Although the mole number of the produced CO is increased, the total 

LHV of the generated fuels is decreased by increasing the CO2/CH4 molar ratio, 

which leads to the decrease in the FPE. 

5.4 Conclusions 

 In this chapter, the thermodynamic equilibrium calculation for dry reforming 

of CH4 and the experiments of the plasma dry reforming of CH4 without catalyst, 

have been performed. From the thermodynamic equilibrium calculation, it is known 

that the reaction is significantly sensitive to the operating temperature due to the 

endothermic character of the reaction. In the reaction system with CO2/CH4 molar 

ratio of 1:1, the conversion of CO2 is always higher than that of CH4, due to the 

occurrence of the RWGS reaction. Furthermore, increasing the amount of CO2 in the 

feed gas favours the conversion of CH4 but limits the conversion of CO2. In addition, 

increasing the CO2/CH4 molar ratio results in a higher thermodynamic equilibrium 

mole number of CO than that of H2, especially when the CO2/CH4 molar ratio is 

larger than 1 due to the formation of water by the RWGS reaction. 

In the plasma dry reforming of CH4 without catalyst, increasing discharge 

power favours the conversions of CO2 and CH4, but increases EC for reactant 

conversion and gas production and decreases FPE of the plasma process. By contrast, 

the increase in total feed flow rate has a negative influence on the reactant 

conversions, but decreases EC for both reactant conversion and gas production and 

increases FPE. Different from the reaction mechanism in the thermal process for dry 

reforming, the reactions related to electrons, radicals and other reactive species are of 

great importance in the plasma process, which results in higher conversions of CH4 

than those of CO2 at a CO2/CH4 molar ratio of 1:1 in the feed. Moreover, the 

variation in CO2/CH4 molar ratio has the opposite effect on CO2 and CH4 conversion. 

It was also found that H2/CO molar ratio in the product gas is significantly affected 

by the CO2/CH4 molar ratio in the feed gas, but almost independent on the other 

reaction condition parameters (e.g. discharge power and total feed flow rate); high 

H2/CO molar ratios (>1) are obtained in the plasma reaction when CO2/CH4 molar 

ratio is less than 1. The dependence of H2/CO molar ratio on CO2/CH4 molar ratio 

can be manipulated to adjust the composition of syngas, making it suitable for the 

production of different desired chemical products. The variation in CO2/CH4 molar 

ratio also plays an opposite role in EC for CO2 conversion and CH4 conversion as 
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well as in EC for H2 production and syngas production. Due to the decreased amount 

of generated fuels, an increasing CO2/CH4 molar ratio leads to a decrease in FPE of 

the plasma process. 
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CHAPTER SIX    DRY REFORMING OF METHANE IN 

A COAXIAL DBD REACTOR USING NI-BASED 

CATALYSTS 

6.1 Introduction 

In the thermal catalytic dry reforming of CH4, catalysts based on both noble 

(Rh, Ru, Pt and Pd) and transition metals (Fe, Co and Ni) have been extensively 

investigated [48, 247]. Although the noble metal catalysts have been demonstrated to 

show high activity and carbon-resistance, their inherent rarity and high costs limit 

their widespread application in industry [46]. Alternatively, Ni-based catalysts have 

been extensively investigated in the reforming process due to their high initial 

activity and availability in large scale, lending them great potential for industrial 

application [248]. Nevertheless, high temperatures are required in the dry reforming 

process to obtain reasonable conversions of CO2 and CH4 due to the strong 

endothermic character of this reaction, which leads to the sintering of the active 

metal component and the supportive phases and/or coke formation over the catalyst 

surface; all of these factors result in catalyst deactivation and reactor blocking, 

thereby hinder its long-term application in industrial practices [248]. In order to 

overcome these drawbacks, several approaches have been applied to improve the 

activity and stability of the Ni-based catalyst, including exploring effective supports 

with high resistance against Ni particle sintering and coke formation, incorporating 

promoters (alkali, alkali earth and rare earth metal oxides) to modify the existing 

supports [249], adding modifiers to form Ni-based bimetallic catalysts [250], and 

selecting the catalyst preparation methods [247].  

As mentioned in Chapter 5, the non-equilibrium character of non-thermal 

plasma could overcome the thermodynamic barriers in the dry reforming reaction 

and enable it to occur at a lower temperature than that required in the conventional 

thermal catalytic process. However, in the plasma dry reforming of CH4 without 

catalyst, the conversions of reactants and the selectivities towards the target products 

such as CO and H2 are rather low. It has been reported that the efficiency and the 

selectivity of desired products in the plasma process can be improved when a suitable 

catalyst is involved in the plasma reaction [171]. The synergistic effect generated by 

the combination of plasma and different catalysts has also been demonstrated by 

previous studies [91, 116]. In the early stage, the catalysts used in the plasma-

catalytic dry reforming of CH4 were mainly focused on the zeolites [42, 158-160]; 

later on, the Ni-based catalysts have attracted increasing interest [91, 107, 162, 163, 

166, 243]; however, these catalysts were mainly supported on limited supports (e.g. 

Al2O3). The limitation in the exploration of low cost and active catalysts cannot 
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satisfy the development of the plasma-catalytic dry reforming process. In addition, 

the deactivation of the Ni-based catalysts in the discharge zone due to carbon 

deposition and the sintering of active metals has also been reported [162], but very 

few works have been devoted to the further modification of the Ni catalysts to 

enhance their catalytic activity in the plasma-catalytic dry reforming process. 

Therefore, it is of great importance to find cost-effective Ni-based catalysts with high 

activity and carbon-resistance suitable for the plasma-catalytic dry reforming 

conditions.  

Supports have been reported to play a key role in the enhancement of 

catalytic activity and the suppression of carbon deposition in the process of dry 

reforming of CH4 [46]. The primary role of supports is mainly determined by their 

surface area, acid-base properties and ability to disperse the supported phase. 

Different supports (e.g. γ-Al2O3, MgO, SiO2, TiO2, etc.) are commonly employed in 

the conventional thermal-catalytic dry reforming of CH4 [46, 247]. In this chapter, 

the effect of the supports on the plasma-catalytic dry reforming process is firstly 

investigated. The catalyst supports were selected based on their abundant usage in 

the conventional thermal catalytic dry reforming process. 10 wt.% Ni supported 

catalysts are combined with DBD plasma to evaluate the plasma-catalytic activity 

based on the conversions of reactants, the yield and selectivity of target products and 

the carbon deposition as well as the EC and the FPE.  

Plasma-catalytic dry reforming of CH4 is a complex and challenging process 

involving a large number of physical and chemical reactions. The reaction 

performance (conversions of CO2 and CH4, yields and selectivities of products, as 

well as energy efficiency) is dependent on a wide range of plasma processing 

parameters such as the discharge power, frequency, total gas flow rate, CO2/CH4 

molar ratio in the input gas stream and reactor configuration, as well as the catalyst 

components [144]. It is often of primary interest to explore the relationships between 

these key independent input variables and the output performance of the plasma 

process. 

Standard experiments are designed to look at one of these parameters in 

isolation from the others and so screening a large number of processing parameters is 

time-consuming and costly due to the large numbers of experiments which need to be 

performed. This type of experimentation requires large quantities of resources to 

obtain a limited amount of information about the process. A fundamental 

understanding of the importance of different processing parameters, especially the 

combined effects of these parameters on the performance of plasma dry reforming of 

CH4, is very limited and not clear, which makes it difficult to determine the set of 

processing parameters that will optimise the performance of the plasma process. 

Plasma chemical modelling offers an alternative route for solving this problem. De 

Bie et al. developed a one-dimensional (1D) fluid model to investigate the effect of 
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different plasma process conditions on the plasma decomposition of CH4 in a DBD 

reactor [245]. The model consisted of 36 species (electrons, atoms, ions, molecules) 

and 367 gas phase reactions. This model was recently extended to simulate plasma 

methane conversion in CH4/CO2 and CH4/O2 mixtures [251]. Snoeckx et al. 

developed a zero-dimensional (0D) kinetics model to understand the influence of 

different processing parameters (gas mixture ratio, discharge power, residence time 

and frequency) on the conversion and energy efficiency of plasma dry reforming of 

CO2 and CH4 in a similar DBD reactor, and to investigate which of these parameters 

lead to the most promising results [144, 244]. However, although model calculations 

can be fast depending on the type of model, the development of a comprehensive 

model takes time and is thus not always useful for fast and cost-effective 

optimisation of highly complex plasma chemical processes.  

Design of experiments (DoE) is a powerful tool for process optimisation as it 

allows multiple input factors to be manipulated, determining their individual and 

combined effects on the process performance in the form of one or more output 

responses, whilst significantly reducing the number of experiments compared to 

conventional methods that just focus on one factor at a time [252]. Response surface 

methodology (RSM) is one of the most useful experimental designing methodologies 

for building the relationship between the multiple input parameters and the output 

responses, which enables us to get a better understanding of the effect of individual 

factors and their interactions on the responses by three-dimensional and contour 

interpretations. Central composite design (CCD), a commonly used approach for 

experimental design in RSM, is an efficient five-level design developed for fitting 

quadratic response surfaces [253]. CCD has been widely used in areas of energy 

[254], environment [255] and chemistry [253]. Until now, the applications of the 

DoE method have mainly focused on material fabrication and treatment [256, 257]. 

Recently, the use of DoE for quick optimisation of plasma chemical reactions, such 

as CO2 conversion and utilisation, has been demonstrated in our previous work [229].  

 In the second part of this chapter, upon determining the most suitable 

catalyst support (γ-Al2O3), RSM based on CCD has been used to establish the 

relationship between the key plasma processing parameters (discharge power, total 

feed flow rate, CO2/CH4 molar ratio and Ni loading) and the process performance, 

and to optimise the performance of the plasma-catalytic dry reforming reaction in 

terms of reactant conversions, product yields and FPE. The influence of these 

different processing parameters and their interactions on the reaction performance 

has been investigated and discussed in detail. 
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6.2 Effect of Supports on the Performance of Plasma-Catalytic Dry 

Reforming of CH4 using Ni-based Catalysts  

6.2.1 Experimental section  

The Ni catalysts on different supports (γ-Al2O3, MgO, SiO2, and TiO2) with a 

Ni loading of 10 wt.% were prepared by the conventional wetness impregnation 

method using Ni(NO3)2
.
6H2O as the metal precursor. All of the support pellets have a 

diameter of ~ 1 mm. The detailed procedure for the preparation of these catalysts has 

been described in Section 2.2. The obtained samples are denoted as Ni/M (M=Al, 

Mg, Si and Ti). To understand the surface structures and properties of the catalysts, 

as well as their effect on the performance of the plasma-catalytic dry reforming of 

CH4, the N2 physisorption is used to measure the pore size and the specific surface 

area of the catalysts; the crystal phases of the calcined catalysts are identified through 

the XRD; the CO2-TPD measurements are performed to evaluate the amount of basic 

sites on the Ni catalyst. The coke deposition on the spent catalysts is analysed by 

TGA in air atmosphere.  

Plasma-catalytic dry reforming of CH4 over the supported Ni catalysts is 

performed in a coaxial DBD reactor. The experimental setup is the same as those in 

Section 5.3.1. Prior to the plasma-catalytic dry reforming reaction, 0.5 g of the Ni 

catalyst is placed at the bottom of the reactor and then reduced in an Ar-H2 discharge 

at a discharge power of 50 W and a total flow rate of 50 ml/min with 20 vol.% H2 for 

30 min in the same DBD reactor. The reforming process is then conducted once the 

reduced catalyst has cooled down to room temperature in the Ar atmosphere. CO2 

and CH4 are used as feed gases with a total flow rate of 50 ml/min and a CO2/CH4 

molar ratio of 1:1. The experiments are performed using a discharge power in the 

range of 30-60 W.  

6.2.2 Experimental results 

6.2.2.1 Catalyst properties 

(1) Surface structure of the catalysts 

 The physicochemical properties of the fresh Ni catalysts are listed in Table 

6.1. Clearly, a wide-ranged surface area and pore distribution are detected in the Ni 

catalysts. The Ni/Al catalyst has the maximum surface area and pore volume, 

followed by the Ni/Mg, Ni/Si and Ni/Ti catalysts. The specific surface area of the 

Ni/Al catalyst is more than twice that of the Ni/Ti catalyst.  
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Table 6.1 Physicochemical properties of the Ni catalysts on different supports. 

Sample SBET (m
2
/g) Pore volume (cm

3
/g) Pore diameter (nm) 

Ni/Al 268.0 0.39 3.80 

Ni/Mg 193.8 0.36 4.25 

Ni/Si 166.4 0.33 6.73 

Ni/Ti 103.6 0.26 7.84 

  

The XRD patterns of the fresh catalysts are shown in Figure 6.1.  For the 

Ni/Al, Ni/Si and Ni/Ti catalysts, the NiO peaks are clearly demonstrated in their 

XRD spectra. For the Ni/Mg catalyst, it is well known that both NiO and MgO 

oxides have a NaCl-lattice structure; it is difficult to distinguish the NiO peaks from 

the MgO peaks to the similar dimensions of their respective unit cells [258]. 

However, on the catalysts calcined at a lower temperature (e.g. 400 
o
C or 500 

o
C), 

only a part of  NiO could be incorporated into the lattice of the MgO support, and the 

remainder of NiO still exists in the form of free NiO [259]. The lower calcination 

temperature (400 
o
C) in this study can ensure the existence of the NiO phase on the 

Ni/Mg catalyst. It has been demonstrated that the formed NiO in the supported 

catalysts can be reduced in the low temperature Ar-H2 plasma [166, 260]. Compared 

with the diffraction peaks of NiO in the Ni/Mg, Ni/Si and Ni/Ti catalysts, the NiO 

peaks in the Ni/Al catalyst are weaker and broader, indicating that the high 

dispersion and small size of the NiO particles are obtained on the Ni/Al catalyst.  

 

 

Figure 6.1 XRD patterns of catalyst supports and fresh catalysts on the different 

supports. 

(2) CO2-TPD 

Figure 6.2 shows the CO2-TPD patterns of the fresh Ni catalysts on different 

supports. It has been reported that CO2 adsorbed on weak basic sites is desorbed at 

low temperatures and CO2 adsorbed on strong basic sites is desorbed at high 

temperatures; the weak, intermediate, strong and very strong basic sites of the 
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catalysts are within the temperature ranges of 20-150, 150-300, 300-450 and > 450 
o
C, respectively [261]. The amount of the basic sites is estimated from the area under 

their CO2-TPD curves [261]. Clearly, the Ni/Al, Ni/Mg and Ni/Si catalysts show 

three CO2 desorption peaks: the first two peaks are centred at lower temperatures 

(around 50-100 
o
C and 120-200 

o
C, respectively) and the third peak is centred at 

higher temperatures (around 300-500 
o
C). Therefore, the first two desorption peaks 

on these three catalysts are assigned to weak basic sites, while the third one is 

attributed to strong basic sites. The peak area of the strong basic sites on the Ni/Al 

catalyst is much larger than that of the Ni/Mg and Ni/Si catalysts. It is interesting to 

note that the amount of the basic sites on the Ni/Ti catalyst is quite different from 

that of the other catalysts: only a small CO2 desorption peak centred at low 

temperatures (around 50-100 
o
C) is observed. It therefore can be concluded that the 

Ni/Al catalyst has the highest amount of the strong basic sites, followed by the 

Ni/Mg, Ni/Si and Ni/Ti catalysts. Catalysts with larger amount of strong basic sites 

can supply surface oxygen through acidic CO2 to inhibit coke formation on the 

catalyst surface [262, 263]. Thus, it could be expected that the Ni/Al catalyst will 

have higher coke resistance than the other catalysts. 

 

 

Figure 6.2 CO2-TPD patterns of the Ni catalysts. 

6.2.2.2 Reactant conversions 

  The effect of the catalyst supports on the conversion of CO2 and CH4 as a 

function of discharge power is shown in Figure 6.3. Clearly, both CO2 and CH4 

conversions are increased by increasing the discharge power no matter whether the 

catalysts are used or not. In this study, the increase in the discharge power is obtained 

by increasing the applied voltage at a fixed frequency. As discussed in Section 

3.3.2.2, increasing the discharge power enhances the formation of reaction channels 

and electrons, which is beneficial in improving the conversions of CO2 and CH4.  

Similar dependence of CO2 and CH4 conversion on discharge power have been 

demonstrated in previous studies [107]. In the plasma-catalytic reaction, the 
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combination of plasma with the Ni/Al catalyst leads to the highest reaction 

performance. The maximum CO2 conversion of 26.2% is obtained with the presence 

of the Ni/Al catalyst at a discharge power of 60 W, followed by those achieved with 

the Ni/Mg, Ni/Si and Ni/Ti catalysts. Correspondingly, the activity of these catalysts 

for CH4 conversion has the same order, Ni/Al > Ni/Mg > Ni/Si > Ni/Ti. A maximum 

CH4 conversion of 44.1% is obtained when the Ni/Al catalyst is used. The above 

maximum conversions of CO2 and CH4 are increased by 10.1% and 5.7%, 

respectively, compared to the results obtained in the plasma-only process at the same 

discharge power. 

 

  

(a) (b) 

Figure 6.3 Effect of the supports on (a) CO2 conversion and (b) CH4 conversion as a 

function of discharge power (total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 

1:1). 

 

 Generally, the catalysts with higher specific surface area could provide larger 

contact area and more active sites for the catalytic reaction, and consequently result 

in higher reaction activity [264, 265]. The smaller particle size of the active phase 

also plays an important role in enhancing the reaction performance and reducing 

coke deposition on the catalysts [234, 265]. The physicochemical properties of these 

catalysts reveals that the large specific surface area and the smaller NiO crystalline 

size are obtained in the Ni/Al catalyst, which make it possible to exhibit higher 

catalytic performance in the plasma dry reforming process. In the dry reforming 

process, CO2 molecules in the reactant gas stream are activated and reduced to CO 

while releasing O, which helps the oxidation of the surface carbon formed from CH4 

activation [48]. The catalysts with a larger amount of strong basic sites can improve 

the adsorption of CO2; the adsorbed CO2 then is decomposed to supply a greater 

amount of oxygen species on the catalyst surface for gasification of intermediate 

carbonaceous species from CH4 decomposition, and consequently enhance the 

carbon resistance of the catalyst [264]; in addition, more reactive oxygen-containing 
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radicals (e.g. oxygen radicals) from CO2 are generated in the plasma conditions to 

enhance the dissociation of CH4 [41], all of which contribute to the promotion in the 

conversions of CO2 and CH4. Therefore, the larger amount of strong basic sites on 

the Ni/Al catalyst might be another reason for the higher conversion of CO2 and CH4, 

compared with that in other catalysts. The catalytic activity of these Ni catalysts for 

CO2 and CH4 conversion is in accordance with their amount of basic sites. 

In the conventional thermal catalytic CO2 reforming of CH4, these catalysts 

are normally activated at higher temperature (around 800 
o
C) [259, 266]. The 

combination of plasma and catalyst can shift the catalyst activation temperature 

downwards. In this study, the measured temperature inside the reactor is lower than 

230 
o
C in the plasma-catalytic reaction under our experimental conditions. The 

thermodynamic equilibrium calculation for dry reforming of CH4 (see Chapter 5) has 

confirmed that the conversion of CO2 and CH4 is very low (<1%) at low 

temperatures (e.g. 300 
o
C), which suggests that extremely low CO2 and CH4 

conversions can be obtained using thermal catalytic dry reforming reaction at low 

temperatures (< 300 
o
C). These results indicate the formation of a synergistic effect 

by combining plasma with different catalysts at low temperatures. Moreover, NiO 

phase detected on all of the catalysts (see Figure 6.1), can be reduced to the active 

Ni metal in the low-temperature Ar-H2 plasma [166, 260].  

We can therefore conclude that the higher catalytic activity for CO2 and CH4 

conversion observed in the Ni/Al catalyst is mainly ascribed to the higher specific 

surface area, higher dispersion and smaller particle size of NiO and larger amount of 

the strong basic sites. The synergistic effect generated by the combination of plasma 

and catalyst also cannot be ruled out.  

6.2.2.3 Production of syngas and C2-C4 hydrocarbons 

 Figure 6.4 shows the variation of the syngas production in the plasma 

catalytic dry reforming process as a function of the discharge power. Clearly, under 

all the experimental conditions, the yield of CO and H2 is increased by increasing the 

discharge power. At a specified discharge power, the introduction of Ni catalysts into 

the plasma system enhances the yield of CO and H2. The maximum yield of CO and 

H2 is achieved in the presence of the Ni/Al catalyst, followed by the Ni/Mg, Ni/Si 

and Ni/Ti catalysts, which is in accordance with their activity for conversion of CO2 

and CH4. With the presence of the Ni/Al catalyst in the DBD reactor, the maximum 

yield of CO and H2 is 16.8% and 15.2%, respectively, at a discharge power of 60 W. 

This maximum yield of CO and H2 is increased by 9.9% and 15.9%, compared with 

that obtained in the plasma-only process.  

The combination of plasma with the Ni catalysts increases the selectivity of 

CO and H2. This effect is different from the previous results reported by Song et al. 

in a DBD reactor [168]. They found that the use of Ni/Al2O3 slightly decreased the 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 6.4 Effect of the supports on the syngas production as a function of discharge 

power: (a) CO yield; (b) CO selectivity; (c) H2 yield; (d) H2 selectivity; (e) H2/CO 

molar ratio (total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 1:1). 

 

selectivity of H2 and increased the selectivity of CO during the dry reforming process 

at a discharge power of 130 W, compared to the plasma-only process. In this study, 

the effect of the catalysts on the selectivity of CO and H2, from low to high, is in the 
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order of Ni/Ti < Ni/Si < Ni/Mg < Ni/Al, which is in consistent with their effect on 

the yield of CO and H2 at a specified discharge power. The maximum selectivity of 

CO and H2 is 48.8 % and 34.6%, respectively, when the Ni/Al catalyst is used at a 

discharge power of 30 W. Increasing the discharge power always decreases the 

selectivity of CO and H2, regardless of the catalysts. The formation of carbon 

deposition and higher hydrocarbons by increasing discharge power might be the 

reason for the decreases in the CO selectivity; whilst the formation of higher 

hydrocarbons and H2O might account for the decline in the H2 selectivity. Similar 

variation in the selectivity of CO and H2 with discharge power was also observed in 

previous studies. Jiang et al. also reported that the selectivity of CO and H2 was 

decreased from 50.8% and 52.2% to 42.8% and 23.2%, respectively, by increasing 

the input power from 100 to 500 W in the plasma-catalytic dry reforming reaction 

over a zeolite A catalyst at a total feed flow rate of 200 ml/min with a CO2/CH4 

molar ratio of 1:1 [160]. 

Figure 6.4 (e) shows that the molar ratio of H2/CO in the gas product is lower 

than unity. This may be attributed to the occurrence of the RWGS reaction (Equation 

(5-2)), in which CO2 reacts with the generated H2 to form more CO. The variation of 

the molar ratio of H2/CO is independent of the catalysts used in this study. Discharge 

power in the plasma-catalytic reforming process also plays an irregular role in the 

H2/CO molar ratio, which is similar to the results of the plasma process without 

catalyst, as discussed in Section 5.3.2.1.  

 The effect of Ni catalyst supports on the selectivity of C2-C4 hydrocarbons as 

a function of discharge power is shown in Figure 6.5. The selectivity towards C3H8 

and C4H10 is increased by increasing the discharge power. In contrast, increasing the 

discharge power decreases the selectivity towards C2H6. The results suggest that a 

higher discharge power is favourable for the dissociation of the produced C2H6 to 

form other hydrocarbons. 

The highest selectivity towards C3H8 and C4H10 is achieved when the Ni/Al 

catalyst is combined with the DBD at a specified discharge power, while the 

selectivity to C2H6 reaches its maximum value in the plasma-only process. In this 

study, the maximum selectivity towards C3H8 and C4H10 are 5.6% and 4.4%, 

respectively, obtained in the presence of the Ni/Al catalyst at a discharge power of 60 

W, while a maximum selectivity of 22.2% towards C2H6 is obtained in the absence 

of any catalyst at a discharge power of 30 W.  

6.2.2.4 Carbon balance 

 Figure 6.6 shows the carbon balance in the gas stream of plasma-catalytic 

reaction using different Ni catalysts as a function of the discharge power. The carbon 

balance is below 100% under all the experimental conditions and decreased by 

increasing discharge power. This is possibly due to carbon deposition occurring to a  
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(a) (b) 

 

(c) 

Figure 6.5 Effect of the supports on the selectivity to C2-C4 hydrocarbons (a) C2H6; 

(b) C3H8; (c) C4H10 (total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 1:1). 

 

greater extent in the plasma-catalytic reaction with higher discharge power [138, 

149]. The higher hydrocarbons and oxygenates that are generated in the plasma 

process with high discharge power but cannot be identified by the GC, may be 

another reason for the decrease in the carbon balance. The plasma-catalytic 

reforming process using the Ni/Al catalyst shows the maximum carbon balance, 

followed by that using the Ni/Mg, Ni/Si and Ni/Ti catalyst at a specified discharge 

power. In this study, a maximum carbon balance of 96.4% is achieved when the 

Ni/Al catalyst is used in the plasma-catalytic reforming process at a discharge power 

of 30 W. At the same discharge power, the carbon balance in the gas stream of 

plasma-catalytic reaction using the Ni/Mg, Ni/Si and Ni/Ti catalyst is 96.2%, 95.9% 

and 95.7%, respectively. 
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Figure 6.6 Effect of the supports on the carbon balance of the plasma-catalytic dry 

reforming process as a function of discharge power (total feed flow rate: 50 ml/min; 

CO2/CH4 molar ratio: 1:1). 

 

 The TG results of the Ni catalysts after the plasma-catalytic reaction at a 

discharge power of 50 W for 150 min are shown in Figure 6.7. The type of carbon 

deposition on these spent catalyst are quite similar, mainly the active carbonaceous 

species (Cα) and the less active carbonaceous species (Cβ) [267]. The details of the 

carbon deposition will be discussed in Section 7.3.3.4. The total amount of carbon 

deposition formed on the surface of Ni/Ti catalyst is up to 5.3%, while it is 4.9% for 

the Ni/Si catalyst, 4.2% for the Ni/Mg catalyst and only 3.8% for the Ni/Al catalyst. 

These amounts of carbon deposition are not only lower than those detected in the 

conventional thermal catalytic dry reforming of CH4 [267-270], but also lower than 

the carbon deposition in the previous plasma-catalytic dry reforming of CH4 in a 

DBD reactor [163, 164]. Wang et al. reported that the carbon deposition was 5.4% 

and 11.5% when reduced and unreduced Ni/γ-Al2O3 catalysts were used in the 

plasma-catalytic dry reforming of CH4 in a DBD reactor [163].   

 

 

Figure 6.7 TG results of different supported Ni catalysts after reaction at a discharge 

power of 50 W for 150 min. 
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The carbon deposition in the conventional thermal-catalytic dry reforming of 

CH4 can originate from either CH4 decomposition (Equation (1-8)) or CO 

disproportionation (Equation (1-9)) [271]. In the plasma-catalytic dry reforming 

process, Li et al. stated that the carbon deposition mainly originated from CH4 

decomposition [272]. Catalysts with a larger amount of the strong basic sites have a 

high affinity to chemically adsorb the CO2 molecules; this will improve the oxygen 

content on the catalyst surface and thus reduce the carbon deposition by carbon 

gasification. The larger amount of the strong basic sites on the Ni/Al catalyst 

therefore enables it to have high carbon resistance.  

The relationship between the carbon deposition and the active metal particle 

size has been thoroughly discussed and several critical Ni particle sizes have been 

reported, below which the carbon deposition can be inhibited. For example, Tang et 

al. stated that this critical size was 10 nm for metallic nickel particle to inhibit the 

carbon deposition [273]. Kim et al. reported that a critical size of 7 nm for nickel 

particles to suppress the carbon formation during the dry reforming process [274]. 

The larger specific surface area in the Ni/Al catalyst results in higher dispersion of 

the Ni particles and thus smaller Ni particle size, which contributes to the reduced 

carbon deposition on the Ni/Al catalyst.  

Therefore, we can conclude that the large surface area and larger amount of 

the strong basic sites on the Ni/Al catalyst contribute to the lower carbon deposition 

on this catalyst in comparison to the other catalysts. In addition, it is worthy to note 

that the carbon deposition on the catalysts in the plasma-catalytic dry reforming 

process is much lower compared with that in the conventional thermal catalytic dry 

reforming reaction using similar catalysts [275].  

6.2.2.5 Energy efficiency 

 Figure 6.8 shows the effect of the different catalyst supports on the EC and 

FPE of the plasma reforming reaction at a discharge power of 30 W. The EC for CO2 

conversion is higher than that for CH4 conversion in the plasma reaction both with 

and without catalysts. This result is mainly due to the higher conversion of CH4 than 

that of CO2, which have more CH4 converted at the same discharge power. The 

introduction of the Ni catalysts decreases the EC for reactant conversion by differing 

amounts. When the Ni/Al catalyst is used, the minimum EC for CO2 conversion, CH4 

conversion and total carbon conversion is 9.9 MJ/mol, 6.2 MJ/mol and 3.8 MJ/mol, 

which is decreased by 7.4%, 4.9% and 5.7%, respectively, compared with those 

values obtained in the plasma-only process. The Ni/Al catalyst also leads to 

minimum EC for H2 and syngas production.  

 The FPE of the plasma reforming process is also enhanced by combining Ni 

catalysts with the plasma system. The maximum FPE (10.4%) is achieved when the 

Ni/Al catalyst is packed in the plasma region, followed by the Ni/Mg, Ni/Si and 
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Ni/Ti catalysts. This maximum FPE is increased by 6.1%, compared with that 

obtained in the plasma dry reforming process without catalyst. 

 

  

(a) (b) 

 

(c) 

Figure 6.8 Effect of the supports on (a) the EC for CH4 conversion, CO2 conversion 

and total carbon conversion; (b) the EC for H2 and syngas production; (c) the FPE 

(discharge power: 30 W; total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 1:1). 

6.3 Optimisation of Plasma-Catalytic Dry Reforming of CH4 using 

Design of Experiments 

6.3.1 Experimental section 

 The Ni/γ-Al2O3 catalysts with different Ni loadings (5 wt.%, 7.5 wt.%, 10 

wt.%, 12.5 wt.% and 15 wt.%) are prepared by the conventional wetness 

impregnation method using Ni(NO3)2
.
6H2O as the metal precursor. The preparation 

procedure is the same as that in Section 2.2. The obtained samples are denoted as xNi 

(x = 5, 7.5, 10, 12.5 and 15). The characterisation methods used to reveal the catalyst 

properties are similar to those in Section 6.2.1. 

The plasma-catalytic dry reforming of CH4 using Ni/γ-Al2O3 catalysts with 

different Ni loadings are performed in a coaxial DBD reactor. The experimental 
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system and procedure are the same as those in Section 6.2.1. In this section, the 

processing parameters of the plasma process include discharge power, total flow rate, 

CO2/CH4 molar ratio in the feed gas and the Ni loading in the Ni/γ-Al2O3 catalyst. 

The range of these plasma processing parameters is setup by design of experiments 

(DoE).  

6.3.2 DoE 

 In this study, a four-factor and five-level CCD based RSM is used to 

investigate the effects of each independent factor and their interactions on the 

reaction performance of the plasma-catalytic dry reforming process. Based on the 

results of our previous work and other papers [91, 162], discharge power (A), total 

flow rate (B), CO2/CH4 molar ratio (C), and Ni loading (D) have been identified as 

the four most important independent parameters affecting the plasma-catalytic dry 

reforming process and thus have been chosen as the independent variables for the 

design, while CO2 conversion (Y1), CH4 conversion (Y2), CO yield (Y3) , H2 yield (Y4) 

and FPE (Y5) are identified as the responses. The coded and actual levels of the 

independent variables are given in Table 6.2.  

 

Table 6.2 Experimental independent variables: coded and real values in CCD. 

Parameter Unit Code 
Level and range (coded) 

-2 -1 0 +1 +2 

Discharge power W A 20 30 40 50 60 

Total flow rate ml/min B 25 50 75 100 125 

CO2/CH4 - C 0.5 0.75 1 1.25 1.5 

Ni loading wt.% D 5 7.5 10 12.5 15 

 

 In the CCD design, the response variables will be fitted into a second-order 

model in order to correlate the response variables to the independent variables once 

the experiments are performed. The general form of the second-order polynomial 

equation is defined as follows [252]: 

3 3 2 3
2

0

1 1 1 1

i i ii ii ij i j

i i i j i

Y X X X X   
    

        (6-1) 

where Y is the response, β0 is a constant coefficient, βi and βii are linear and quadratic 

coefficients for the term Xi and Xii, respectively. βij are the coefficients representing 

the interactions of Xi and Xj. This model can be used to predict the reaction 

performance under different process conditions. 

The analysis of variance (ANOVA) is used to evaluate the adequacy and 

fitness of the models. The statistical significance of the models and each term in the 

models can be identified by the F-test and adequacy measures such as the coefficient 
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of determination R
2
, adjusted R

2
 and predicted R

2
. The difference between the 

predicted R
2
 and adjusted R

2
 should be within 0.2 for a well-developed model [252].  

The above analysis is conducted using a regression analysis program coupled with 

ANOVA analysis at 5% significance level incorporated in Design Expert software 

version 9, trial version [276]. 

6.3.3 Experimental results 

6.3.3.1 Catalyst properties 

(1) Surface structures of the catalysts 

 The physicochemical properties of the Ni/γ-Al2O3 catalysts, such as specific 

surface area, pore volume and average pore diameter are summarised in Table 6.3. 

The specific surface area gradually decreases from 294.0 m
2
/g to 223.9 m

2
/g with the 

increase of the Ni loading. Similarly, the pore volume of the catalysts also decreases 

from 0.43 cm
3
/g to 0.34 cm

3
/g when increasing the Ni content. In contrast, an 

increase in average pore diameter from 3.63 to 3.84 nm on the Ni/γ-Al2O3 catalysts is 

observed when increasing the Ni loading from 5 wt.% to 15 wt.%. 

 

Table 6.3 Physicochemical properties of the fresh catalysts with different Ni 

loadings. 

Sample SBET (m
2
/g) Pore volume (cm

3
/g) Pore diameter (nm) 

5Ni 294.0 0.43 3.63 

7.5Ni 274.9 0.42 3.75 

10Ni 268.0 0.39 3.80 

12.5Ni 249.9 0.35 3.83 

15Ni 223.9 0.34 3.84 

 

 Figure 6.9 shows the XRD patterns of the fresh catalyst samples with 

different Ni loadings. The XRD pattern of the γ-Al2O3 support shows five major 

diffraction peaks, which are in accordance with those of the γ-Al2O3 crystalline with 

cubic structure (2θ =14.5
o
, 28.3

o
, 38.5

 o
, 49.7

 o
 and 67.1

o
, PDF # 52-0803). The 

diffraction peaks of NiO are detected in the impregnated Ni catalysts (2θ = 37.2
o
, 

43.3
o
, PDF # 44-1159). Obviously, the NiO peak at 2θ = 43.3

o
 is intensified with 

increasing Ni loading. This reflects the formation of the larger NiO particle in the 

catalyst, which is due to the increased aggregation of Ni particles at a higher 

concentration of nickel. This phenomenon has been reported in previous studies 

[268].  
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Figure 6.9 XRD patterns of catalyst support and fresh Ni/Al2O3 catalyst with 

different Ni loadings: (1) γ-Al2O3; (2) 5Ni; (3) 7.5Ni; (4) 10Ni; (5) 12.5Ni; (6) 15Ni. 

6.3.3.2 Statistical model analysis 

 In this study, the total number of the experimental samples required for the 

CCD design is 30, including six replicated experimental runs using the processing 

parameters at the centre points (No. 7, 11, 13, 19, 23 and 27), shown in Table 6.4.  

(1) Effect of operating variables on CO2 conversion (Y1)  

The quadratic model for CO2 conversion in terms of coded and actual factors 

is presented in Equations (6-2) and (6-3), where P, F, R and N account for discharge 

power, total flow rate, CO2/CH4 molar ratio and Ni loading, respectively.  

Model in terms of coded factors: 

1 2

2 2 2 2

: CO conversion (%)

20.45 2.93 5.15 1.88 0.22 0.74

0.30 0.042 0.31 0.073 0.029

0.16 0.051 0.22 0.55

Y

A B C D AB

AC AD BC BD CD

A B C D

           

         

       

 (6-2) 

Model in terms of actual factors: 

1 2

3

3 3

3 3 2

5 2 2 2

: CO conversion (%)

14.047 0.525 0.161 9.416 10 1.597

2.979 10 0.118 1.688 10 0.0499

1.167 10 0.046 1.580 10

8.106 10 3.493 0.087

Y

P F R N

PF PR PN FR

FN RN P

F R N



 

 



          

         

       

      

 (6-3) 

Table 6.5 presents the ANOVA analysis for CO2 conversion. Based on the 

95% confidence level, the model is significant as the F-value (1432.55) is much 

higher than the critical value (2.43 in this case) [252] and the p-value is less than 

0.05, indicating that the model is adequate to predict CO2 conversion within the 

range of independent variables. This can also be evidenced by a good agreement (R
2
 

close to 1) between the experimental data and the simulated values from the 

regression model. In addition, the value of the predicted R
2
 is in agreement with that 
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of the adjusted R
2
, which also demonstrates the stability and validity of the 

established model for CO2 conversion.  

 

Table 6.4 Experiment matrix of four-factor and five-level CCD and results. 

Exp. 

order 

Factors Y1 Y2 Y3 Y4 Y5 

P
a)

 

(W) 

F
b)

 

(ml/min) 
R

c)
 

N
d)

 

(wt.%) 

CCO2 

(%) 

CCH4 

(%) 

YCO 

(%) 
YH2 (%) 

FPE 

(%) 

1 40 75 1 15 18.1 25.4 11.0 9.0 7.5 

2 20 75 1 10 15.5 21.0 9.8 7.3 11.3 

3 40 75 1.5 10 16.3 37.2 15.9 13.0 9.4 

4 40 75 0.5 10 23.1 20.2 8.5 6.9 6.6 

5 30 100 1.25 7.5 11.2 22.2 9.7 7.5 10.0 

6 50 100 1.25 12.5 19.1 33.1 14.2 12.0 8.2 

  7
e)
 40 75 1 10 20.3 28.7 12.8 10.1 8.3 

8 30 100 0.75 7.5 14.0 14.3 6.6 4.6 7.7 

9 50 50 1.25 7.5 26.5 48.1 20.3 17.4 7.3 

10 40 75 1 5 18.7 26.9 11.4 9.4 7.7 

 11
f)
 40 75 1 10 20.5 29.3 12.6 10.2 8.2 

12 50 100 0.75 12.5 18.6 21.9 8.4 6.8 6.5 

  13
g)

 40 75 1 10 20.5 29.2 12.7 10.3 8.3 

14 50 100 0.75 7.5 19.1 21.8 8.6 7.0 6.7 

15 50 50 0.75 7.5 31.7 36.6 16.3 13.9 6.6 

16 50 100 1.25 7.5 15.1 31.4 11.8 9.7 7.9 

17 40 25 1 10 31.0 44.0 19.1 16.6 5.4 

18 50 100 1.25 12.5 14.8 30.5 11.5 9.3 7.8 

  19
h)

 40 75 1 10 20.6 29.3 12.4 10.2 8.1 

20 30 100 0.75 12.5 13.6 14.2 6.5 4.5 7.6 

21 30 100 1.25 12.5 11.0 20.7 9.4 7.2 9.8 

22 50 50 0.75 12.5 30.9 35.5 15.9 13.5 6.5 

  23
i)
 40 75 1 10 20.4 29.4 12.9 10.2 8.5 

24 40 125 1 10 10.5 17.5 7.1 4.8 7.3 

25 30 50 0.75 7.5 23.6 25.6 11.0 9.4 7.2 

26 30 50 1.25 7.5 19.6 38.4 14.6 12.5 8.2 

  27
j)
 40 75 1 10 20.4 29.8 12.4 10.3 8.2 

28 60 75 1 10 27.0 41.2 18.4 14.6 8.1 

29 50 50 1.25 12.5 25.8 46.0 19.8 16.9 7.1 

30 30 50 0.75 12.5 23.0 24.2 10.7 9.1 7.1 

a)-d) P: discharge power; F: total flow rate; R: CO2/CH4; N: Ni loading; 

e)-g) Replicated experimental runs (run order: 7, 11, 13, 19, 23 and 27). 
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Table 6.5 ANOVA for response surface quadratic model of CO2 conversion.  

Model terms 
Sum of 

squares 

Degree of 

freedom 
Mean square F-value p-value 

Model  

Equation (6-2) 
952.08 14 68.01 1432.55 <0.0001 

        A 206.18 1 206.18 4343.27 <0.0001 

        B 636.96 1 636.96 13417.53 <0.0001 

        C 84.89 1 84.89 1788.16 <0.0001 

        D 1.12 1 1.12 23.55 0.0002 

        AB 8.88 1 8.88 186.98 <0.0001 

        AC 1.40 1 1.40 29.51 <0.0001 

        AD 0.03 1 0.03 0.60 0.4505 

        BC 1.56 1 1.56 32.84 <0.0001 

        BD 0.09 1 0.09 1.79 0.2007 

        CD 0.01 1 0.01 0.28 0.6047 

        A
2
 0.68 1 0.68 14.42 0.0018 

        B
2
 0.07 1 0.07 1.48 0.2421 

        C
2
 1.31 1 1.31 27.53 <0.0001 

        D
2
 8.20 1 8.20 172.63 <0.0001 

Residual 0.71 15 0.047 - - 

Total 952.80 29 - - - 

R
2
: 0.9993;      adjusted R

2
: 0.9886;     predicted R

2
: 0.9862. 

 

 In order to determine the significant terms in the model for further analysis, 

the p-value of each term is estimated. If the p-value of a term (individual factor or 

interaction of two factors) is below the critical value 0.05 (level of significance), the 

corresponding term is considered to have a significant impact on the process 

performance. In this study, A, B, C, D, AB, AC, BC, A
2
, C

2
 and D

2
 are identified as 

the significant terms, while terms AD, BD, CD and B
2
 play a weak role in CO2 

conversion. However, the insignificant terms are not eliminated in the model 

Equation (6-2) in order to obtain a hierarchy model. The relative importance of a 

term is determined by its F-value. Total flow rate has the most significant impact on 

CO2 conversion compared with the other factors due to the highest F-value of 

13417.53. 

 Response surface plots provide a method to study the effects of different 

processing parameters and their interactions on each response systematically and 

efficiently in the form of a three dimensional response surface and corresponding 

projected contour derived from the regression equations. If there is no or weak 

interaction between two processing parameters, the fitted response surface will be a 

plane or a regular curved surface (e.g. contour lines will either straight, or parallel 
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with each other, or symmetrical about a specified line). In contrast, if two different 

processing parameters strongly interact, the fitted response surface will be distorted, 

while the contour produced by the second-order model will exhibit an elliptical or 

saddle nature [277]. This phenomenon is also reflected from the gradient of the 

response with respect to one of these processing parameters. If two processing 

parameters have a significant interaction effect, the gradient of the response to one 

processing parameter can be significantly different when changing the other 

parameter. 

Figure 6.10 shows the combined effect of discharge power and total feed 

flow rate on CO2 conversion in the form of three dimensional response surface and 

projected contour derived from regression Equation (6-3) at a CO2/CH4 molar ratio 

of 1:1 and a Ni loading of 10 wt.%. The maximum CO2 conversion (around 40%) 

can be achieved at the highest discharge power (60 W) and the lowest total feed flow 

rate (25 ml/min). The conversion of CO2 increases with the increase of discharge 

power from 20 W to 60 W and the increasing trend is more remarkable at the low 

total feed flow rate (e.g. 25 ml/min), which is reflected by the larger gradient of CO2 

conversion with respect to discharge power at the lower total feed flow rate, as 

plotted in Figure 6.10 (b). This suggests that the interaction effect of discharge 

power and total feed flow rate plays a significant role, as confirmed by the small p-

value (< 0.0001) of the term AB. In the plasma-catalytic dry reforming process, 

packing the Ni catalysts along the bottom of the plasma reactor shows strong 

filamentary discharge due to the large void fraction in the discharge gap, which 

significantly enhances the physical and chemical interactions between the plasma 

and catalyst. This phenomenon has also been observed in the previous study [91]. In 

this study, discharge power is changed by adjusting the applied voltage at a fixed 

frequency. Increasing the discharge power by only increasing the applied voltage 

leads to an increase in the number of microdischarges and the current intensity in the 

CO2/CH4 DBD; this is similar to our experimental work on CO2 decomposition (see 

Chapter 3). Thus, more reaction channels and energetic electrons are formed in the 

plasma for the initiation and propagation of both physical and chemical reactions, 

which enhance the conversion of CO2 and CH4 (the conversion of CH4 will be 

discussed in the next section). Moreover, a lower total feed flow rate is beneficial for 

improving the conversion of reactants due to the longer residence time of reactants in 

the plasma volume. In this study, the residence time is increased from 7.35 s to 36.73 

s when the total flow rate decreases from 125 ml/min to 25 ml/min. Increasing the 

residence time of the reactants in the discharge region increases the possibility of 

activating the reactant molecules through collisions with energetic electrons and 

reactive species, thereby enhancing their conversions. 
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(a) (b) 

Figure 6.10 Effect of discharge power, total feed flow rate and their interaction on 

CO2 conversion at a CO2/CH4 molar ratio of 1:1 and a Ni loading of 10 wt.%: (a) 3D 

surface plot; (b) projected contour plot. 

 

 The combined effect of discharge power and CO2/CH4 molar ratio on CO2 

conversion is shown in Figure 6.11. The maximum CO2 conversion (around 31%) is 

achieved at the lowest CO2/CH4 molar ratio (1:2) and the highest discharge power 

(60 W). Increasing CO2/CH4 molar ratio decreases the conversion of CO2. This 

phenomenon is similar to that in the plasma dry reforming of CH4 without catalyst 

[116]. Moreover, the effect of CO2/CH4 molar ratio on the conversion of CO2 is 

dependent on discharge power, which is reflected by the gradient of CO2 conversion 

with respect to CO2/CH4 molar ratio at different discharge powers as plotted in 

Figure 6.11 (b). The gradient of CO2 conversion with respect to CO2/CH4 molar 

ratio is only -5.2% at the discharge power of 20 W, whilst it is increased to -9.9% at 

the discharge power of 60 W. This suggests that the interaction between discharge 

power and CO2/CH4 molar ratio has a significant effect on CO2 conversion, 

confirmed by the p-value (< 0.0001) of the term AC.  

In addition, the conversion of CO2 is slightly more sensitive to the effect of 

CO2/CH4 molar ratio at a lower total feed flow rate than that at a higher total feed 

flow rate, as shown in Figure 6.12 (b). The gradient of CO2 conversion with respect 

to CO2/CH4 molar ratio is -10.0% at a total feed flow rate of 25 ml/min, higher than 

that (-5.0%) obtained at a higher total feed flow rate of 125 ml/min. This shows that 

the interaction between total feed flow rate and CO2/CH4 molar ratio is significant, 

which is in consistent with the low p-value (< 0.0001) of the term BC, as listed in 

Table 6.5. 
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(a) (b) 

Figure 6.11 Effect of discharge power, CO2/CH4 molar ratio and their interaction on 

CO2 conversion at a total flow rate of 75 ml/min and a Ni loading of 10 wt.%: (a) 3D 

surface plot; (b) projected contour plot. 

 

  

(a) (b) 

Figure 6.12 Effect of total flow rate, CO2/CH4 molar ratio and their interaction on 

CO2 conversion at a discharge power of 40 W and a Ni loading of 10 wt.%: (a) 3D 

surface plot; (b) projected contour plot. 

 

 Figure 6.13 shows the combined effect of discharge power and Ni loading on 

CO2 conversion. Clearly, there exists an optimum Ni loading to obtain a high CO2 

conversion, regardless of the discharge power. Although a larger specific surface 

area is obtained at the lower Ni loading, fewer active sites are available on the 

catalyst surface to obtain higher reactant conversion. Therefore, CO2 conversion 

initially increases by increasing the Ni loading. However, increasing the Ni loading 

leads to the aggregation of the active metal particles, and thus the specific surface 

area and metal dispersion are decreased [268]. All of these variations in the catalyst 

properties result in negative effects on the conversion of reactants. At a specified 

discharge power, the maximum CO2 conversion is obtained at a moderate Ni loading, 
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which suggests that there exists an optimum Ni loading for higher reaction 

performance. The optimum Ni loading is near 10% at the low discharge power (20 

W). Similar phenomenon has been observed in the work of Mahammadunnisa et al. 

[162]. They used similar Ni/Al2O3 catalysts with different Ni loadings (10 wt.%, 20 

wt.% and 30 wt.%) for the plasma-catalytic dry reforming of CH4 in a DBD reactor. 

Their results showed that maximum CO2 and CH4 conversions were obtained when 

the Ni/Al2O3 catalyst with the moderate Ni loading (20 wt.% Ni/Al2O3) was used.  

Increasing discharge power from 20 W to 60 W slightly lowers the optimum 

Ni loading for high CO2 conversion; however, the contour lines of CO2 conversion 

are almost parallel to each other, which makes the gradient of CO2 conversion with 

respect to discharge power almost constant regardless of Ni loading (see Figure 6.13 

(b)). This suggests the insignificant role of the interaction between discharge power 

and Ni loading on CO2 conversion. Table 6.5 also shows that the p-value (0.4776) of 

the term AD is much higher than the level of significance (0.05).  

 

  

(a) (b) 

Figure 6.13 Effect of discharge power, Ni loading and their interaction on CO2 

conversion at a total flow rate of 75 ml/min and a CO2/CH4 molar ratio of 1:1: (a) 3D 

surface plot; (b) projected contour plot. 

(2) Effect of operating variables on CH4 conversion (Y2)  

 For the conversion of CH4, the quadratic model in terms of coded and actual 

factors is expressed as follows.  

Model in terms of coded factors: 

2 4

2 2 2 2

: CH conversion (%)

29.28 5.00 6.83 4.59 0.65 0.65

0.25 0.27 0.68 0.46 0.46

0.42 0.34 0.17 0.80

Y

A B C D AB

AC AD BC BD CD

A B C D

           

         

       

 (6-4) 

Model in terms of actual factors: 
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2 4

3

3 3 2

4 2 2 2

: CH conversion (%)

1.328 0.149 0.214 35.403 2.057

2.613 10 0.099 0.011 0.110

7.342 10 0.730 4.234 10

5.422 10 2.737 0.129

Y

P F R N

PF PR PN FR

FN RN P

F R N



 



         

        

       

      

 (6-5) 

The effect of the individual plasma processing parameter and their 

interactions on CH4 conversion is shown in Table 6.6. The high F-value (403.39) 

from the F-test indicates that the quadratic model (Equation (6-4)) is significant for 

CH4 conversion at a 95% level of confidence. A, B, C, D, AB, BC, BD, CD, A
2
, B

2
 

and D
2
 are identified as the significant model terms for the response of CH4 

conversion, due to their respective low p-value (< 0.05). Additionally, a high R
2
 of 

0.9874 and a small difference of 0.0206 between the predicted R
2
 and the adjusted R

2
 

indicate that the quadratic model for CH4 conversion is well developed and accurate 

to fit the experimental data. Total feed flow rate is also found to be the most 

significant term affecting the conversion of CH4 with the highest F-value of 2760.71.  

 

Table 6.6 ANOVA for response surface quadratic model of CH4 conversion. 

Model terms 
Sum of 

squares 

Degree of 

freedom 
Mean square F-value p-value 

Model  

Equation (6-4) 
2287.19 14 163.37 403.39 < 0.0001 

        A 598.91 1 598.91 1478.82 < 0.0001 

        B 1118.07 1 1118.07 2760.71 < 0.0001 

        C 506.13 1 506.13 1249.72 < 0.0001 

        D 10.02 1 10.02 24.75 0.0002 

        AB 6.83 1 6.83 16.86 0.0009 

        AC 0.98 1 0.98 2.41 0.1412 

        AD 1.18 1 1.18 2.91 0.1084 

        BC 7.50 1 7.50 18.51 0.0006 

        BD 3.37 1 3.37 8.32 0.0113 

        CD 3.33 1 3.33 8.22 0.0118 

        A
2
 4.92 1 4.92 12.14 0.0033 

        B
2
 3.15 1 3.15 7.78 0.0138 

        C
2
 0.80 1 0.80 1.98 0.1795 

        D
2
 17.71 1 17.71 43.73 < 0.0001 

Residual 6.07 15 0.40 - - 

Total 2293.26 29 - - - 

R
2
: 0.9874;      adjusted R

2
: 0.9849;     predicted R

2
: 0.9643. 
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 Figure 6.14 shows the interaction effect between discharge power and total 

feed flow rate on CH4 conversion. Similar with their effects on CO2 conversion, 

higher discharge power and lower total flow rate contribute to the higher conversion 

of CH4. The maximum CH4 conversion almost reaches 60%, predicted by the three-

dimensional response surface derived from the quadratic model Equation (6-5) at a 

discharge power of 60 W and a total flow rate of 25 ml/min. The small p-vale of 

0.0009 for the model term AB (listed in Table 6.6) suggests the significant role of the 

interaction between discharge power and total flow rate on the response of CH4 

conversion. This is also reflected by the higher gradient of CH4 conversion with 

respect to discharge power at the lower total feed flow rate than that at the higher 

total feed flow rate (0.63%/W at the total feed flow rate of 25 ml/min and 0.37%/W 

at the total feed flow rate of 125 ml/min), as illustrated by Figure 6.14 (b). 

Compared with the data in Figure 6.10, the conversions of CH4 are higher than those 

of CO2 at the same experimental condition, which is similar to the results obtained in 

the plasma-only process. As mentioned above, the initial conversion reaction step of 

CO2 and CH4 in the plasma dry reforming of CH4 is primarily controlled by electron-

impact dissociation. More reaction pathways exist for CH4 conversion than for CO2 

conversion. Although the conversions of CO2 and CH4 can promote each other when 

they are co-fed into the plasma system, the rate coefficient of the promotion reaction 

for CH4 conversion is much higher than that of the promotion reaction for CO2 

conversion (see Section 5.3.2.1). All of these factors contribute to the higher 

conversion of CH4 in comparison to that of CO2. 

 

  

(a) (b) 

Figure 6.14 Effect of discharge power, total flow rate and their interaction on CH4 

conversion at a CO2/CH4 molar ratio of 1:1 and a Ni loading of 10%: (a) 3D surface 

plot; (b) projected contour plot. 

 

 Figure 6.15 shows the combined effect of total feed flow rate and CO2/CH4 

molar ratio on CH4 conversion. A maximum CH4 conversion (around 55%) is 
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achieved at the lowest total feed flow rate of 25 ml/min with a CO2/CH4 molar ratio 

of 3:2. Different from the effect of CO2/CH4 molar ratio on CO2 conversion (see 

Figure 6.11), increasing the CO2/CH4 molar ratio is favourable to obtain higher CH4 

conversion. More oxygen can be supplied through CO2 decomposition by increasing 

CO2/CH4 molar ratio, which contributes to the enhancement in CH4 conversion by 

Equation (5-12). At the lowest total feed flow rate of 25 ml/min, CH4 conversion 

increases from 31.7% to 55.5% when CO2/CH4 molar ratio rises from 1:2 to 3:2, 

whereas CH4 conversion is enhanced by nearly a factor of 1.3 with the same increase 

in CO2/CH4 molar ratio at the highest total feed flow rate of 125 ml/min. This means 

that the gradient of CH4 conversion with respect to CO2/CH4 molar ratio is dependent 

on total feed flow rate, as shown in Figure 6.15 (b). These results indicate that the 

interaction between total feed flow rate and CO2/CH4 molar ratio has a significant 

effect on CH4 conversion, confirmed by the small p-value for the term BC (0.0006).  

 

 
 

(a) (b) 

Figure 6.15 Effect of total flow rate, CO2/CH4 molar ratio and their interaction on 

CH4 conversion at a discharge power of 40 W and a Ni loading of 10 wt.%: (a) 3D 

surface plot; (b) projected contour plot. 

 

 Figure 6.16 shows the interaction effect of total flow rate and Ni loading on 

CH4 conversion. Similar to the effect of the Ni loading on CO2 conversion, there also 

exists an optimum Ni loading for higher CH4 conversion. This optimum Ni loading is 

around 7.5 wt.% at the low total flow rate of 25 ml/min, and is gradually increased to 

a level slightly higher than 10 wt.% when the total flow rate increases to 125 ml/min. 

Moreover, the Ni loading significantly affects the gradient of CH4 conversion with 

respect to total feed flow rate, which is 0.31%/(ml/min) at a Ni loading of 5 wt.%, 

and decreases to 0.23%/(ml/min) when the Ni loading increases to 15 wt.%. These 

results suggest that there is a significant interaction between the total feed flow rate 

and Ni loading on CH4 conversion, which is confirmed by the p-value of 0.0113 for 

the term BD, shown in Table 6.6.  
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The optimum Ni loading for higher CH4 conversion is also dependent on 

CO2/CH4 molar ratio, as shown in Figure 6.17. At the lowest CO2/CH4 molar ratio of 

1:2, the optimum Ni loading is slightly higher than 10 wt.%, whereas it is decreased 

to around 7.5 wt.% when CO2/CH4 molar ratio is increased to 3:2. Additionally, the 

variation in Ni loading leads to different effect of the CO2/CH4 molar ratio on CH4 

conversion. At a Ni loading of 5 wt.%, CH4 conversion is increased by a factor of 1.4 

when CO2/CH4 molar ratio increases from 1:2 to 3:2, whilst it is only increased by 

88.0% with the change of CO2/CH4 molar ratio at a higher Ni loading of 15 wt.%. 

This suggests that the interaction between CO2/CH4 molar ratio and Ni loading have 

a significant effect on CH4 conversion, confirmed by the low p-value (0.0118) of the 

term CD. 

  

  

(a) (b) 

Figure 6.16 Effect of total flow rate, Ni loading and their interaction on CH4 

conversion at a discharge power of 40 W and a CO2/CH4 molar ratio of 1:1: (a) 3D 

surface plot; (b) projected contour plot. 

 

  

(a) (b) 

Figure 6.17 Effect of CO2/CH4 molar ratio, Ni loading and their interaction on CH4 

conversion at a total flow rate of 75 ml/min and a discharge power of 40 W: (a) 3D 

surface plot; (b) projected contour plot. 
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(3) Effect of operating variables on CO yield (Y3)  

 The quadratic model for CO yield based on the coded and actual factors is 

presented in Equations (6-6) and (6-7).  

Model in terms of coded factors: 

3

2 2 2 2

: CO yield (%)

12.61 1.97 3.11 1.76 0.14 0.86

0.081 0.017 0.16 0.038 0.031

0.30 0.054 0.18 0.43

Y

A B C D AB

AC AD BC BD CD

A B C D

           

         

       

 (6-6) 

Model in terms of actual factors: 

3

3 4

4 3 2

5 2 2 2

: CO yield (%)

8.132 0.188 0.019 13.894 1.358

3.432 10 0.033 6.836 10 0.026

6.007 10 0.050 3.000 10

8.629 10 2.865 0.069

Y

P F R N

PF PR PN FR

FN RN P

F R N

 

 



         

         

       

      

 (6-7) 

 

The ANOVA analysis for CO yield is listed in Table 6.7. The quadratic 

model (Equation (6-6)) is tested to be significant for CO yield at a 95% confidence 

level due to the high F-value of 231.52, which indicates that the model is adequate to 

predict the yield of CO. Additionally, a high value of 0.9954 for R
2
 also shows the 

accuracy of the model. The model terms of A, B, C, AB, A
2
, C

2
 and D

2
 are considered 

to be significant based on their p-value being lower than 0.05.  

  

 Figure 6.18 shows the combined effect of discharge power and total feed 

flow rate on CO yield. The distorted-quadrangle response surface for CO yield 

indicates that the higher discharge power and lower total flow rate favours the higher 

CO yield. The maximum CO yield of 27.6% is obtained at the highest discharge 

power of 60 W and the lowest total feed flow rate of 25 ml/min. At the total feed 

flow rate of 25 ml/min, CO yield is enhanced by over 110% when discharge power 

increases from 20 to 60 W, while it only increases from 7.3% to 8.3% with the 

change of discharge power at the total feed flow rate of 125 ml/min. Similarly, the 

gradient of CO yield with respect to total feed flow rate is much higher at a high 

discharge power (e.g. 60 W) compared to that at a lower discharge power (e.g. 20 

W). These phenomena suggest that the interaction between discharge power and total 

feed flow rate play an important role in the yield of CO, which can be confirmed by 

the presence of the contour lines in Figure 6.18 (b) and the low p-value (< 0.0001) 

for the term AB in Table 6.7.  
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Table 6.7 ANOVA for response surface quadratic model of CO yield. 

Model terms 
Sum of 

squares 

Degree of 

freedom 
Mean square F-value p-value 

Model  

Equation (6-6) 
422.20 14 30.16 231.52 < 0.0001 

        A 92.95 1 92.95 713.62 < 0.0001 

        B 232.58 1 232.58 1785.56 < 0.0001 

        C 74.13 1 74.13 569.09 < 0.0001 

        D 0.45 1 0.45 3.47 0.0820 

        AB 11.78 1 11.78 90.41 < 0.0001 

        AC 0.11 1 0.11 0.81 0.3815 

        AD 4.673E-003 1 4.673E-003 0.04 0.8523 

        BC 0.42 1 0.42 3.20 0.0940 

        BD 0.02 1 0.02 0.17 0.6832 

        CD 0.02 1 0.02 0.12 0.7333 

        A
2
 2.47 1 2.47 18.95 0.0006 

        B
2
 0.08 1 0.08 0.61 0.4460 

        C
2
 0.88 1 0.88 6.75 0.0202 

        D
2
 5.10 1 5.10 39.18 < 0.0001 

Residual 1.95 15 0.13 -  -  

Total 424.80 29 - - - 

R
2
: 0.9954;      adjusted R

2
: 0.9841;     predicted R

2
: 0.9756. 

 

 
 

(a) (b) 

Figure 6.18 Effect of discharge power, total flow rate and their interaction on CO 

yield at a CO2/CH4 molar ratio of 1:1 and a Ni loading of 10 wt.%: (a) 3D surface 

plot; (b) projected contour plot. 
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 The effect of CO2/CH4 molar ratio and Ni loading as well as their interaction 

on CO yield is shown in Figure 6.19. An optimum Ni loading also exists to obtain 

the higher yield of CO. This optimum Ni loading is slightly lower than 10 wt.%, 

regardless of CO2/CH4 molar ratio. The yield of CO increases with the increase of 

CO2/CH4 molar ratio from 1:2 to 3:2, regardless of the Ni loading. This can also be 

reflected by a weak variation in the gradient of CO yield with respect to CO2/CH4 

molar ratio at different Ni loadings, as plotted in Figure 6.19 (b). The gradient of CO 

yield with respect to CO2/CH4 molar ratio is 7.3%, 7.0% and 6.8%, respectively, at a 

Ni loading of 5 wt.%, 10 wt.% and 15 wt.%. The p-value (0.7333) of the term related 

to the interaction of these two parameters is much higher than the critical value 

(0.05). These results clearly show that the interaction between CO2/CH4 molar ratio 

and Ni loading on CO yield is insignificant.  

 

  

(a) (b) 

Figure 6.19 Effect of CO2/CH4 molar ratio, Ni loading and their interaction on CO 

yield at a discharge power of 40 W and a total flow rate of 75 ml/min: (a) 3D surface 

plot; (b) projected contour plot. 

(4) Effect of operating variables on H2 selectivity (Y4)  

 Equations (6-8) and (6-9) present the quadratic model for the response of H2 

yield in terms of coded and actual factors, respectively. The quadratic model is tested 

to be significant at 95% level of confidence based on the F-value of 1309.88 shown 

in the ANOVA analysis for the yield of H2 (Table 6.8). In addition, the accuracy of 

the model is also confirmed by the high value of R
2
 (0.9993) and the small difference 

between adjusted R
2
 and predicted R

2
 (0.0326). Clearly from Table 6.8, A, B, C, D, 

AB, BC, A
2
, B

2
, C

2
 and D

2
 are identified as the significant model terms for the 

response of H2 yield, due to their small p-value (< 0.5).  

Model in terms of coded factors: 
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4 2

2 2 2 2

: H yield (%)

10.22 1.77 2.99 1.49 0.14 0.61

0.030 0.026 0.14 0.050 0.033

0.17 0.097 0.091 0.27

Y

A B C D AB

AC AD BC BD CD

A B C D

           

         

       

 (6-8) 

Model in terms of actual factors: 

4 2

3 3

4 3 2

4 2 2 2

: H yield (%)

4.463 0.226 0.030 10.619 0.850

2.440 10 0.012 1.035 10 0.023

8.012 10 0.053 1.656 10

1.556 10 1.449 0.044

Y

P F R N

PF PR PN FR

FN RN P

F R N

 

 



         

         

       

      

 (6-9) 

 

Table 6.8 ANOVA for response surface quadratic model of H2 yield. 

Model terms 
Sum of 

squares 

Degree of 

freedom 
Mean square F-value p-value 

Model  

Equation (6-8) 
353.41 14 25.24 1309.88 < 0.0001 

        A 75.22 1 75.22 3903.1 < 0.0001 

        B 214.44 1 214.44 11127.16 < 0.0001 

        C 53.09 1 53.09 2754.87 < 0.0001 

        D 0.5 1 0.5 25.95 0.0001 

        AB 5.96 1 5.96 309.05 < 0.0001 

        AC 0.014 1 0.014 0.74 0.4037 

        AD 0.011 1 0.011 0.56 0.4673 

        BC 0.33 1 0.33 17.05 0.0009 

        BD 0.04 1 0.04 2.08 0.1696 

        CD 0.018 1 0.018 0.91 0.3545 

        A
2
 0.75 1 0.75 39.02 < 0.0001 

        B
2
 0.26 1 0.26 13.46 0.0023 

        C
2
 0.22 1 0.22 11.66 0.0038 

        D
2
 2.04 1 2.04 105.99 < 0.0001 

Residual 0.29 15 0.019 -  -  

Total 353.70 29 - - - 

R
2
: 0.9913;      adjusted R

2
: 0.9884;     predicted R

2
: 0.9658. 

 

 Figure 6.20 shows the combined effect of discharge power and total feed 

flow rate on the yield of H2 at a CO2/CH4 molar ratio of 1:1 and a Ni loading of 10 

wt.%.  The maximum H2 yield of 23.2% is achieved at the highest discharge power 

of 60 W and the lowest total feed flow rate of 25 ml/min. The yield of H2 at a higher 

discharge power (e.g. 60 W) is more sensitive to total feed flow rate than that at a 
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lower discharge power (e.g. 20 W), as plotted in Figure 6.20 (b). In addition, the 

gradient of H2 yield with respect to discharge power at the lower total feed flow rate 

is much higher than that at the higher total feed flow rate (0.30%/W at total feed flow 

rate of 25 ml/min, while only 0.06%/W at total feed flow rate of 125 ml/min). This 

suggests that there is a significant interaction between discharge power and total feed 

flow rate on the yield of H2, which can also be confirmed by the low p-value (< 

0.0001) of the term related to the interaction of these two parameters, as listed in 

Table 6.8.  

 

 
 

(a) (b) 

Figure 6.20 Effect of discharge power, total flow rate and their interaction on H2 

yield at a CO2/CH4 molar ratio of 1:1 and a Ni loading of 10 wt.%: (a) 3D surface 

plot; (b) projected contour plot. 

 

The small p-value of 0.0009 for the model term BC indicates that the effect of 

the interaction between total feed flow rate and CO2/CH4 molar ratio on the response 

of H2 yield is significant. This can be reflected by the contour lines plotted in Figure 

6.21 (b), which shows that the H2 yield at the higher CO2/CH4 molar ratio (e.g. 3:2) 

is more sensitive to total feed flow rate than that at the lower CO2/CH4 molar ratio 

(e.g. 1:2). In addition, at the low total feed flow rate of 25 ml/min, the gradient of H2 

yield with respect to CO2/CH4 molar ratio (7.1%) is higher than that (5.8%) obtained 

at the higher total feed flow rate of 125 ml/min. Compared with the data in Figure 

6.18, the yield of H2 is lower than that of CO at the same experimental condition. 

This mainly results from the occurrence of the RWGS reaction (Equation (5-2)), in 

which H2 reacts with CO2 to produce CO and H2O.  

The effect of discharge power and Ni loading as well as their interaction on 

the yield of H2 is shown in Figure 6.22. There exists an optimum Ni loading for 

higher H2 yield, which is similar to the effect of Ni loading on the yield of CO (see 

Figure 6.19). The optimum Ni loading is slightly lower than 10 wt.%, and is 

independent of discharge power. Increasing discharge power results in an increase in  
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(a) (b) 

Figure 6.21 Effect of total flow rate, CO2/CH4 molar ratio and their interaction on H2 

yield at a discharge power of 40 W and a Ni loading of 10 wt.%: (a) 3D surface plot; 

(b) projected contour plot. 

 

the yield of H2, regardless of the Ni loading; this is reflected by a nearly constant 

gradient of H2 yield with respect to discharge power. This suggests that the effect of 

the interaction between the discharge power and Ni loading on H2 yield is 

insignificant, confirmed by the high p-value (0.4673) of the model term AD.  

 

  

(a) (b) 

Figure 6.22 Effect of discharge power, Ni loading and their interaction on H2 yield at 

a total flow rate of 75 ml/min and a CO2/CH4 molar ratio of 1:1: (a) 3D surface plot; 

(b) projected contour plot. 

(5) Effect of operating variables on FPE (Y5)  

The quadratic model for the response of FPE in terms of coded and actual 

factors is presented in Equations (6-10) and (6-11), respectively.  

Model in terms of coded factors: 
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5

3

3 2 2 2 2

: FPE(%)

8.26 0.66 0.43 0.67 0.065 0.20

0.17 2.68 10 0.22 0.012
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 (6-10) 

Model in terms of actual factors: 

5

4 4

4 3 3 2

4 2 2 2

: FPE(%)

0.644 0.185 0.149 6.186 0.675

7.946 10 0.070 1.072 10 0.035

1.930 10 3.530 10 3.114 10

8.881 10 1.659 0.034

Y
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 

  



         

         

        

      

 (6-11) 

The ANOVA analysis of the FPE is shown in  

 

 

Table 6.9. The F-value for the regression model of FPE (Equation (6-10)) is 

48.66, higher than the critical value of 2.43, suggesting that this model is statistically 

significant to represent the correlation between the plasma processing parameters and 

the FPE. This can also be validated by the higher value of R
2
 (0.9785) and the small 

difference between adjusted R
2
 and predicted R

2
 (0.0326). Due to their small p-

values (< 0.5) listed in Table 6.9, A, B, C, AB, AC, BC, A
2
, B

2
, C

2
 and D

2
 are 

identified as the significant model terms for the response of the FPE.  

 

 Figure 6.23 shows the combined effect of discharge power and total feed 

flow rate on the FPE. At a constant discharge power, an optimum total feed flow rate 

is observed for high FPE. This optimum total feed flow rate is around 100 ml/min at 

a discharge power of 20 W, and gradually decreases to 75 ml/min when the discharge 

power increases to 60 W. At the low and high total feed flow rates, the FPE decreases 

with the increase of discharge power initially and reaches a minimum value at a 

certain discharge power, beyond which the FPE starts to increase gradually. The 

discharge power related to the minimum FPE, is dependent on total feed flow rate 

(around 45 W at a total feed flow rate of 25 ml/min, while nearly 60 W at a total feed 

flow rate of 125 ml/min). Whilst at the moderate range of total feed flow rate (50 

ml/min to 100 ml/min), the FPE is initially decreased by increasing discharge power 

and stabilised when discharge power is higher than 45 W. The maximum FPE is 

obtained at a discharge power of 20 W and a total feed flow rate of around 100 

ml/min. The contour lines in the shape of a saddle (see Figure 6.23 (b)) indicate that 

there is a significant role of the interaction between the discharge power and total 

feed flow rate on the FPE, which can be confirmed by the low p-value (0.0057) of 

the term AB listed in Table 6.9. 
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Table 6.9 ANOVA for response surface quadratic model of the FPE. 

Model terms 
Sum of 

squares 

Degree of 

freedom 
Mean square F-value p-value 

Model  

Equation (6-10) 
41.4 14 2.96 48.66 < 0.0001 

        A 10.45 1 10.45 172 < 0.0001 

        B 4.51 1 4.51 74.21 < 0.0001 

        C 10.7 1 10.7 176.02 < 0.0001 

        D 0.1 1 0.1 1.67 0.2152 

        AB 0.63 1 0.63 10.39 0.0057 

        AC 0.49 1 0.49 8.03 0.0126 

        AD 1.15E-04 1 1.15E-04 1.89E-03 0.9659 

        BC 0.77 1 0.77 12.66 0.0029 

        BD 2.33E-03 1 2.33E-03 0.038 0.8474 

        CD 7.79E-05 1 7.79E-05 1.28E-03 0.9719 

        A
2
 2.66 1 2.66 43.77 < 0.0001 

        B
2
 8.45 1 8.45 139.06 < 0.0001 

        C
2
 0.29 1 0.29 4.85 0.0437 

        D
2
 1.23 1 1.23 20.31 0.0004 

Residual 0.91 15 0.061 -  -  

Total 42.31 29 - - - 

R
2
: 0.9785;      adjusted R

2
: 0.9583;     predicted R

2
: 0.9154. 

 

 
 

(a) (b) 

Figure 6.23 Effect of discharge power, total flow rate and their interaction on the 

FPE at a CO2/CH4 molar ratio 1:1 and a Ni loading of 10 wt.%: (a) 3D surface plot; 

(b) projected contour plot. 
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The effect of discharge power and CO2/CH4 molar ratio as well as their 

interaction on the FPE at a total flow rate of 75 ml/min and a Ni loading of 10 wt.% 

is shown in Figure 6.24. The maximum FPE of around 12.4% is achieved at the 

lowest discharge power and the highest CO2/CH4 molar ratio. At low values of 

CO2/CH4 molar ratio, there exists a certain discharge power to achieve the minimum 

FPE. The discharge power corresponding to the minimum FPE is shifted to a higher 

value when CO2/CH4 molar ratio increases from 1:2 to 5:4. When CO2/CH4 molar 

ratio is larger than 5:4, the FPE decreases with discharge power to a minimum value 

and then remains stable. In addition, the FPE at a low discharge power is more 

sensitive to CO2/CH4 molar ratio than that at a high discharge power, confirmed by 

the large difference in the gradient of FPE with respect to CO2/CH4 molar ratio at 

different discharge power levels (-4.1% at a discharge power of 20 W, but -1.3% at a 

discharge power of 60 W). Table 6.9 shows that the p-value of the term AC (0.0126) 

is lower than the level of significance (0.05). These results indicate that the 

interaction between discharge power and CO2/CH4 molar ratio plays a significant 

role in the FPE.  

The presence of the contour lines (part of ellipse, see Figure 6.25) for the 

interaction of total feed flow rate and CO2/CH4 molar ratio demonstrates that there is 

also a significant interaction between the effects of these two processing parameters 

on the FPE, which can be confirmed by the low p-value of the term BC (0.0029) 

listed in Table 6.9. Additionally, increasing CO2/CH4 molar ratio increases the 

optimum total feed flow rate for high FPE (e.g. around 75 ml/min at a CO2/CH4 

molar ratio of 1:2, while nearly 100 ml/min at a CO2/CH4 molar ratio of 3:2). 

  

  

(a) (b) 

Figure 6.24 Effect of discharge power, CO2/CH4 molar ratio and their interaction on 

the FPE at a total flow rate of 50 ml/min and a Ni loading of 10 wt.%: (a) 3D surface 

plot; (b) projected contour plot. 
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(a) (b) 

Figure 6.25 Effect of total flow rate, CO2/CH4 molar ratio and their interaction on 

the FPE at a discharge power of 40 W and a Ni loading of 10 wt.%: (a) 3D surface 

plot; (b) projected contour plot. 

 

 Figure 6.26 shows the combined effect of discharge power and Ni loading on 

the FPE. Similar to the relationship shown in Figure 6.23, the FPE decreases with 

discharge power until it reaches a minimum value, and then starts to increase slightly 

at a constant Ni loading. The discharge power for the minimum FPE is independent 

on Ni loading (50 W at all the Ni loading conditions). Moreover, an optimum Ni 

loading (slightly less than 10 wt.%) is observed for high FPE, regardless of the 

change of discharge power. The maximum FPE is achieved at the lowest discharge 

power of 20 W with a Ni loading slightly lower than 10 wt.%. The contour lines (see 

in Figure 6.26 (b)) are symmetrical about the line through the optimum Ni loading 

and parallel to the x-axis for discharge power. These results suggest that the 

interaction between discharge power and Ni loading is very weak in terms of FPE, 

which can also be confirmed by the high p-value (0.9659) of the term AD, listed in 

Table 6.9. 

6.3.3.3 Optimisation of the processing variables  

From the above analysis, we find that the reactant conversion and product 

yield follow the same trend with respect to the processing parameters. However, the 

FPE and reactant conversion (and also product yield) cannot reach their maximum 

values simultaneously under the same plasma operating conditions. For example, 

higher discharge power results in higher reactant conversion and higher product yield 

but lower FPE when the other processing parameters are fixed. In contrast, higher 

total feed flow rate leads to higher FPE but significantly decreases the conversion of 

reactants. Therefore, increasing discharge power and total feed flow rate has an 

opposite effect on reactant conversion (product yield) and FPE, indicating that there 

exists a trade-off between reactant conversion (product yield) and FPE. The SED is 
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(a) (b) 

Figure 6.26 Effect of discharge power, Ni loading and their interaction on the FPE at 

a total flow rate of 75 ml/min and a CO2/CH4 molar ratio of 1:1: (a) 3D surface plot; 

(b) projected contour plot. 

 

introduced to further investigate the effect of discharge power and total feed flow 

rate on the performance of the plasma dry reforming process. Figure 6.27 shows the 

effect of the SED on reactant conversions, product yields and FPE. Clearly, both the 

reactant conversions (including the conversion of CO2 and CH4 and the total carbon 

conversion) and the yield of CO and H2 is increased by increasing the SED, but the 

increase in the SED leads to a decline in the FPE.  

Similar trade-off has been observed in previous studies related to plasma dry 

reforming of CH4 both with and without catalyst. Figure 6.28 shows a comparison of 

the total carbon conversion and the FPE as a function of the SED in different 

atmospheric non-thermal plasma reactors. For reasonable comparison, the plasma 

reforming processes with a CO2/CH4 molar ratio of 1:1 are selected. In the plasma-

only process, Wang et al. reported a maximum total carbon conversion of 66.1% 

with a CO2 conversion of 52.7% and a CH4 conversion of 79.5% in a DBD reactor at 

a SED of 533 kJ/l (discharge power: 177.8 W; total feed flow rate: 20 ml/min), 

corresponding to a FPE of 2.7% [154]. They claimed that a maximum FPE of 7.7% 

was achieved at the expense of relatively low total carbon conversion (31.0%) [154]. 

In a similar coaxial DBD reactor, Goujard et al. found that a maximum total carbon 

conversion of 19.3% can be obtained at a SED of 60 kJ/l with a discharge power of 9 

W and a total feed flow rate of 9 ml/min [278]. However, the maximum FPE of the 

plasma process (8.0%) was not achieved at the same operating conditions, but at a 

much lower SED of 15 kJ/l [278]. Similarly, in the work of Kim et al., the maximum 

total carbon conversion of 73.0% was obtained at a SED of 1500 kJ/l with an 

electrical power of 500 W and a total feed flow rate of 20 ml/min, while the 

maximum FPE (2.6%) was achieved at a much lower SED of 176.5 kJ/l [238]. 

Gliding arc discharge has been used for plasma dry reforming of CH4 and offers a 
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(a) (b) 

 

(c) 

Figure 6.27 Effect of SED on reactant conversion, product yield and FPE at a 

CO2/CH4 molar ratio of 1:1 and a Ni loading of 10 wt.%. 

 

high flexibility to work in a relatively high reactant gas flow rate [143]. A maximum 

FPE of 47.2% was obtained at a SED of 1.32 kJ/l with an electrical power of 165 W 

and a total feed flow rate of 7500 ml/min, which corresponds to a relatively low total 

carbon conversion (9.8%), compared to the maximum CO2 conversion of 13.8% 

obtained in their work [143]. For the plasma-catalytic dry reforming processes, 

Eliasson et al. investigated the effect of zeolite NaX on the performance in the 

plasma process [158]. They reported that a maximum total carbon conversion of 

55.0% was obtained at an electric power of 500 W and a total feed flow rate of 150 

ml/min (a SED of 200 kJ/l), which corresponds to a low FPE of 2.8%; while the 

highest FPE of 6.4% was achieved at a much lower SED of 37.5 kJ/l with a much 

higher total feed flow rate of 800 ml/min, which led to a lower total carbon 

conversion of 17.7% [158]. A similar effect of the SED on total carbon conversion 

and FPE has also been observed when other zeolite catalysts were used in the 

plasma-catalytic dry reforming process, such as zeolite NaY [42], zeolite HY [159], 

and zeolite A [160]. Zheng et al. prepared the silica-coated LaNiO3 nanoparticles 
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(LaNiO3@ SiO2 NPs) for the production of syngas from dry reforming of CH4 in a 

DBD reactor [174]. The maximum total carbon conversion of 63.3% was obtained at 

an electrical power of 160 W and a total feed flow rate of 50 ml/min (a SED of 192 

kJ/l), which corresponds to a relatively low FPE (5.9%), compared with the 

maximum FPE of 6.3% obtained at a lower SED of 120 kJ/l with a higher total feed 

flow rate of 80 ml/min [174].   

 

  

(a) (b) 

Figure 6.28 Comparison of total carbon conversion and FPE vs. SED of the plasma 

reforming process in different atmospheric non-thermal plasma reactors at a 

CO2/CH4 molar ratio of 1:1, collected from literature.  

  

Apart from the trade-off between the reactant conversion and FPE, the trade-

off between the conversion of CO2 and CH4 is also observed when changing 

CO2/CH4 molar ratio in the feed gas and fixing the other processing parameters. 

Figure 6.29 shows the comparison of reactant conversion vs. CO2/CH4 molar ratio of 

the plasma reforming process in different atmospheric non-thermal plasma reactors. 

In our study, increasing CO2/CH4 molar ratio from 1:2 to 3:2 results in a decrease in 

CO2 conversion from 23.3% to 15.8% but an increase in CH4 conversion from 19.4% 

to 37.8%; the corresponding total carbon conversion increases slightly and peaks at a 

CO2/CH4 molar ratio of 5:4, and then starts to decline gradually. Similar behaviours 

of reactant conversions with changing CO2/CH4 molar ratio have been also observed 

in previous studies. Wang et al. found that CO2 conversion decreased from 43.6% to 

27.1%, while CH4 conversion increased by 81.8% when CO2/CH4 molar ratio 

increased from 1:5 to 5:1 [154]. The reactant conversions in their work were higher 

than our results, due to the higher SED in their work (71.5 kJ/l) than that in this study 

(32 kJ/l). Ozkan et al. used a new geometry of DBD reactor with multi-electrodes for 

dry reforming of CH4; however, the reported reactant conversions were lower 

compared to the results in our studies due to their lower SED (22.5 kJ/l) [157].  
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Figure 6.29 Comparison of reactant conversion vs. CO2/CH4 molar ratio of the 

plasma reforming process in different atmospheric non-thermal plasma reactors. 

 

The overall performance of the plasma dry reforming of CH4 strongly 

depends on a wide range of plasma operating conditions. In addition, a balance 

between the reactant conversions and FPE as well as a balance between CO2 and 

CH4 conversion is of significant importance for the development of an efficient 

plasma process for dry reforming of CH4. Therefore, it is essential to optimise the 

plasma dry reforming process using multiple inputs and multiple responses. The aim 

of the process optimisation in this study is to find a combination of the plasma 

processing parameters (different factors) that maximise the reactant conversions 

(product yields) and FPE (different responses) simultaneously. RSM coupled with 

function maximisation technique is applied to determine the optimum process 

operating conditions in the plasma-catalytic dry reforming. The response surface 

method is embedded in the regression analysis program (Design Expert 9 software, 

trial version) [276]. A global desirability function (D) has been introduced as a key 

parameter to identify the optimal processing parameters and performance in the 

plasma-catalytic process. This function can be calculated from the product of 

individual desirability function (di) for each response, as shown in the following 

equation: [279, 280] 

 

1

1

1 2

1

n n

n
n i

i

D d d d d


 
      

 
L  (6-13) 

where n is the number of the response in the experiment (n = 4 in this work) and di is 

in the range between 0 (least desirable) and 1 (most desirable). The optimal 

processing parameters can be achieved when the highest value D is found.  

 Table 6.10 shows the different values of global desirability for the plasma-

catalytic dry reforming reaction in the process optimisation. The optimal process 

performance - CO2 conversion (31.7%), CH4 conversion (48.1%), CO yield (21.7%), 

H2 yield (17.9%) and FPE (7.9%) - is achieved at a discharge power of 60.0 W, a 

total feed flow rate of 56.1 ml/min, a CO2/CH4 molar ratio of 1.03 and a Ni loading 
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of 9.5 wt.% as the highest global desirability of 0.854 is obtained at these input 

values. To validate this predicted result, five additional experimental runs are carried 

out using the optimal processing parameters. The results show a fairly good 

agreement between the experimental results and the predicted ones with a relative 

error of less than 10% for all of the five responses. The reproducible results confirm 

that DoE can be used to optimise the plasma-catalytic dry reforming of CH4 process.  

 

Table 6.10 Process optimisation for plasma-catalytic dry reforming of CH4 by RSM. 

Opt. 
P 

(W) 

F 

(ml/min) 
R 

N 

(wt.%) 

CCO2 

(%) 

CCH4 

(%) 

YCO 

(%) 

YH2 

(%) 
FPE 

(%) 
D 

1 60.0 56.1 1.03 9.5 31.7 48.1 21.7 17.9 7.9 0.854 

2 59.9 55.8 1.04 9.6 31.7 48.1 21.7 17.9 7.9 0.852 

3 59.9 55.6 1.04 10.2 31.7 48.1 21.8 17.9 7.8 0.851 

4 59.6 55.5 1.04 9.3 31.7 48.1 21.7 17.9 7.8 0.850 

5 60.0 53.9 1.09 10.0 31.6 50.2 22.6 18.7 7.8 0.848 

6.4 Conclusions 

 In this chapter, the plasma-catalytic dry reforming of CH4 using Ni-based 

catalysts are performed in a coaxial DBD plasma reactor. The effect of different 

supports on the plasma dry reforming performance is investigated in terms of 

reactant conversion, product yield and selectivity and the carbon deposition on the 

spent catalysts, as well as the EC and FPE of plasma-catalytic process. In the 

prepared Ni catalysts, NiO phases are formed, which are reduced to the active Ni 

metal for the dry reforming process. Due to its high specific surface area and larger 

amount of strong basic sites, the Ni/Al catalysts shows the maximum conversion of 

CO2 and CH4, followed by (in decreasing order) the Ni/Mg, Ni/Si and Ni/Ti catalysts. 

Furthermore, the maximum carbon-resistance is also obtained from the Ni/Al catalyst 

with a minimum carbon deposition of 3.8% after the reaction was performed at a 

discharge power of 50 W for 150 min. The variation of carbon resistance in these 

catalysts is found to be in accordance with that of the carbon balance. Because of the 

lower specific surface area and much smaller amount of the basic sites, the Ni/Ti 

catalyst is observed to have the minimum carbon resistance, demonstrated by the low 

carbon balance.  

 After determining the support with the highest performance, the effects of the 

processing parameters (discharge power, total feed flow rate, CO2/CH4 molar ratio 

and Ni loading in the γ-Al2O3 supported Ni catalyst) and their combined effect on the 

plasma-catalytic dry reforming process are studied through RSM based on CCD. 

Regression models have been developed to describe the relationships between the 

plasma processing parameters and the reaction performance. The significance and 

adequacy of the models for each response (CO2 conversion, CH4 conversion, CO 
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yield, H2 yield and FPE) have been verified by ANOVA. Based on the optimum 

process operating conditions determined by the optimisation module, the optimum 

plasma-catalytic dry reforming performance with maximum reactant conversion 

(CO2 conversion of 31.7%, CH4 conversion of 48.1%) and product yield (CO yield 

of 21.7 %, H2 yield of 17.9%), as well as the maximum FPE (7.9%) is achieved at a 

discharge power of 60.0 W, a total flow rate of 56.1 ml/min, a CO2/CH4 molar ratio 

of 1.03 and a Ni loading of 9.5 wt.% to balance the trade-off between the reactant 

conversion and FPE as well as that between CO2 conversion and CH4 conversion. 

The reproducible experimental results obtained when using the theoretical optimal 

conditions have demonstrated the capability and reliability of the DoE method as a 

way of better understanding the role of different processing parameters and their 

interactions for process optimisation of the plasma-catalytic dry reforming of CH4. 
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CHAPTER SEVEN    APPLICATION OF NI-BASED 

BIMETALLIC CATALYSTS IN PLASMA-CATALYTIC 

DRY REFORMING OF METHANE  

7.1 Introduction 

 As mentioned in Chapter 6, introducing active metal additives to form Ni-

based bimetallic catalyst is one approach to improve their catalytic activity and 

stability in the dry reforming process. Previous studies have reported the beneficial 

effect of the noble metal addition (e.g. Pd, Rh, Ru and Pt) to the Ni-based 

monometallic catalyst in the conventional thermal catalytic dry reforming process 

[247, 281-283]. From the economic point of view, the addition of non-noble metals 

is more preferable. In this respect, active additives such as K, Mo, Mn, Cu, and Co 

are of great interest [46, 284-289]. In the plasma-catalytic dry reforming process, 

Zhang et al. used a Ni-Cu bimetallic catalyst in a DBD reactor to enhance the dry 

reforming reaction performance and a synergistic effect, generated by combining the 

plasma with the bimetallic catalyst, was observed [116]. However, no further related 

work has been reported and the understanding on the effect of the bimetallic catalysts 

in the plasma-catalytic dry reforming process is limited. Therefore, further 

investigations are required to reveal the synergistic effect resulting from the 

combination of plasma and bimetallic catalysts. 

 In this chapter, Co, Cu and Mn are incorporated into the Ni catalysts 

supported on γ-Al2O3 to form bimetallic catalysts for the plasma-catalytic dry 

reforming process. In Chapter 6, the optimum Ni loading for high reforming 

performance is around 7.5 wt.% to 10 wt.% under different experimental conditions; 

therefore, the Ni loading in the bimetallic catalysts is fixed at 10 wt.%. The effects of 

the active metal additives on the performance of the plasma-catalytic dry reforming 

of CH4 are investigated and discussed in terms of the reactant conversions, product 

yields, carbon resistance of these bimetallic catalysts and FPE in the plasma process.  

The effect of the Co loading in the Ni-Co bimetallic catalysts on the 

performance of the dry reforming process is investigated when the optimal bimetallic 

catalyst (Ni-Co) is determined. The relationships between the reforming performance 

and the catalyst characters are discussed. Moreover, a comparison of the plasma dry 

reforming performance using different plasma systems with and without catalysts are 

performed with respect to the total carbon conversion, the EC for H2 production and 

the FPE of the plasma process. 
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7.2 Plasma-Catalytic Dry Reforming of CH4 over Ni-M/γ-Al2O3 

Bimetallic Catalysts (M= Co, Cu and Mn)  

7.2.1 Experimental section  

The 10 wt.% Ni/γ-Al2O3 catalyst (denoted as 10Ni) is prepared by the 

wetness impregnation method using Ni(NO3)2
.
6H2O, as described in Section 2.2. The 

10 wt.% Ni - 3wt.% M/γ-Al2O3 (M = Co, Cu and Mn) bimetallic catalysts are 

prepared by co-impregnation of the nitrate salts of Ni and Co, Cu or Mn using the 

same procedure. The obtained bimetallic catalysts are denoted as 10Ni3M (M = Co, 

Cu and Mn). The characterisation methods used to reveal the catalyst properties are 

the same as those in Section 6.2.1. The plasma-catalytic dry reforming of CH4 with 

Ni-based bimetallic catalysts is performed in a coaxial DBD reactor. The 

experimental system and procedure are the same as those used in Section 6.2.1 

7.2.2 Experimental results 

7.2.2.1 Catalyst properties 

(1) Surface structure of the catalysts 

 Table 7.1 shows the physicochemical properties of the supported Ni 

catalysts. Compared with the 10Ni catalyst, introducing 3 wt.% metal additive 

decreases the specific surface area of the catalysts. The specific surface area of the 

10Ni3Co catalyst is decreased by 6.6%, followed by larger decreases in this property 

for the 10Ni3Mn and 10Ni3Cu catalysts. In addition, these catalysts have a similar 

pore volume and an average pore diameter. The variations in the physicochemical 

properties of the catalysts can be attributed to doping with the metal additives, which 

have also been observed in previous studies [290].  

 

Table 7.1 Physicochemical properties of the fresh Ni-based catalysts with different 

metal additives.  

Sample SBET (m
2
/g) Pore volume (cm

3
/g) Pore diameter (nm) 

10Ni 268.0 0.39 3.80 

10Ni3Co 250.4 0.38 3.83 

10Ni3Cu 231.8 0.35 3.86 

10Ni3Mn 245.2 0.37 3.84 

 

 Figure 7.1 shows the XRD patterns of the fresh catalyst and support. All the 

catalysts show a clear γ-Al2O3 structure at 2θ =14.5
o
, 28.3

o
, 38.5

o
, 49.7

 o
 and 67.1

o
 

(PDF # 52-0803). Profiles of all samples contain NiO peaks at 2θ = 37.2
o
 and 43.3

o
 

(PDF # 44-1159). It is interesting to note that the NiO peaks are weak and broad, 



 Chapter Seven 

161 

 

indicating that the high dispersion and small particle size of the active species are 

achieved on the catalysts. In addition, the diffraction peaks related to the oxide phase 

of the metal additives are also detected in the corresponding bimetallic catalysts, 

namely: Co3O4 (2θ = 19.1
o
, 31.2

o
, 36.5

o
, 44.8

o
, 55.6

o
, 59.3

o
 and 65.2

o
: PDF# 42-

1467), CuO (2θ = 35.5
o
 and 48.7

o
: PDF # 45-0937) and Mn2O3 (2θ = 38.2

o
, 45.2

o
 and 

55.2
o
: PDF # 41-1442) in the catalysts of 10Ni3Co, 10Ni3Cu and 10Ni3Mn, 

respectively. These oxides in the supported catalysts can be reduced in the low 

temperature Ar-H2 plasma, which has been demonstrated in previous studies [166].   

 

 

Figure 7.1 XRD patterns of catalyst support and different fresh Ni catalysts: (1) γ-

Al2O3; (2) 10Ni; (3) 10Ni3Co; (4) 10Ni3Cu; (5) 10Ni3Mn. 

(2) CO2-TPD 

 The CO2-TPD patterns of the Ni catalysts are displayed in Figure 7.2. For all 

the catalysts, two obvious CO2 adsorption peaks at around 75 
o
C and 370 

o
C as well 

as one weak and broad peak at around 150 
o
C are observed. As mentioned in Section 

6.2.2.1, the two CO2 adsorption peaks at lower temperatures are assigned to the weak 

basic sites, and the peak at the higher temperature is attributed to the strong basic 

site. Compared with the 10Ni catalyst, the central temperature of CO2 desorption 

peaks in the 10Ni3Co and 10Ni3Mn catalysts are shifted to a higher temperature by 

21.5
 o
C and 4.2

 o
C, respectively; whereas the temperature of the CO2 desorption peak 

in the 10Ni3Cu catalyst is reduced by 6.0 
o
C. It has been reported that the amount 

and strength of the basic sites on the catalysts significantly affects the performance of 

the dry reforming [291]. Moreover, CO2 molecules can be more easily adsorbed on 

stronger basic sites, which could favour the gasification of the deposited carbon and 

thus inhibit the carbon formation [262, 263]. We therefore can expect that the 

10Ni3Co catalyst might give the highest performance among all the catalysts in the 

plasma-catalytic dry reforming reaction from the perspective of strong basic sites.  
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Figure 7.2 CO2-TPD patterns of the fresh Ni catalysts. 

7.2.2.2 Reactant conversion 

 Figure 7.3 shows the conversion of CO2 and CH4 in the plasma dry 

reforming of CH4 as a function of discharge power. As discussed in Chapter 6, both 

CO2 conversion and CH4 conversion are increased by increasing the discharge power 

regardless of whether the catalysts are used or not. Increasing the discharge power 

contributes to the increased number of microdischarges, which implies that more 

reaction channels and energetic electrons are generated to enhance the plasma dry 

reforming process. Compared to the plasma reforming reaction without a catalyst, the 

combination of plasma with the 10Ni catalyst can improve the conversion of the 

reactants. For example, CO2 conversion is increased from 23.8% to 26.2% when the 

10Ni catalyst is used at a discharge power of 60 W; the corresponding CH4 

conversion is increased by 5.6% (from 41.8% to 44.1%). The conversions of CO2 

and CH4 are further enhanced by introducing the active metal additives into the 10Ni 

catalyst. At a discharge power of 60 W, the presence of the 10Ni3Co catalyst in the 

DBD reactor leads a maximum CO2 conversion of 29.8%, which is increased by 

25.0% compared with that obtained in the plasma-only process. The corresponding 

conversion of CH4 is increased by 17.5%. Zhang et al. reported similar enhancement 

in reactant conversions when bimetallic catalyst was used for plasma dry reforming 

of CH4 [116]. The conversions of CO2 and CH4 were increased by 212.5% and 

130.0%, respectively, when a 12 wt.% Cu-12 wt.% Ni/γ-Al2O3 catalyst was used in a 

DBD reactor at a discharge power of 60 W. In their work, Ar was used as the dilution 

gas and the plasma-catalytic reforming reaction was performed using extra thermal 

heating (at 450 
o
C), which may contribute to the much greater enhancement in their 

reactant conversions than these in our study. Similar improvement in the conversions 

of CO2 and CH4 due to metal additives has also been reported in previous studies of 

the thermal catalytic dry reforming of CH4 using Ni-based bimetallic catalysts [292].  
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(a) (b) 

Figure 7.3 Effect of bimetallic catalysts on (a) CO2 conversion and (b) CH4 

conversion as a function of discharge power (total feed flow rate: 50 ml/min; 

CO2/CH4 molar ratio: 1:1).  

 

The positive effect of the metal additives on promotion in the conversion of 

CO2 and CH4 is related to the interaction between the metal additive and Ni in the 

individual catalyst. In the 10Ni3Co catalyst, the simultaneous presence of Ni and Co 

on the γ-Al2O3 support increases the reducibility of the Ni-Co bimetallic catalyst. Co 

catalyst shows higher activity for CH4 decomposition, which generates more H2 to be 

used as a reducing agent to reduce the metal oxides during the dry reforming process 

[292-294]. In addition, the adjacent Ni and Co sites on the Ni-Co bimetallic catalyst 

will hinder the deactivation of the Co single sites [293]. Moreover, cobalt has a high 

ability to oxidise the deposited carbon to avoid the deactivation of the catalyst, thus 

maintaining the high catalytic performance [295, 296].   

For the 10Ni3Mn catalyst, it was reported that the performance of the 

catalytic dry reforming is still enhanced when the Ni-Mn bimetallic catalyst is used, 

although patches of partially-reduced manganese oxide species MnOx cover part of 

the active nickel surface [284, 297]. Two major factors could be responsible for this 

observation. Firstly, the decoration of Ni by the MnOx species acts as a control of the 

metal ensemble size on the nickel surfaces, as it has been reported that smaller nickel 

particles were obtained in the Ni-based catalyst with Mn additive [297]. Secondly, as 

a basic oxide, MnOx can increase the adsorption of CO2 on the bimetallic catalyst; 

with the increase in CO2 concentration, carbon deposition can be reduced through 

CO disproportionation by shifting the equilibrium concentration [298]. Moreover, 

with the adsorbed CO2, MnOx can form reactive carbonate species to react with the 

carbon deposition from CH4 decomposition, thereby improve the conversion of CO2 

and CH4 [299].  

In the 10Ni3Cu catalyst, the Cu additive stabilises the structure of the active 

sites on the Ni surface for CH4 decomposition, which will inhibit the deactivation of 
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the Ni catalyst resulting from sintering or loss of Ni crystallites. Moreover, the co-

existence of Ni and Cu can adjust the catalytic activity to balance the CH4 

decomposition and carbon gasification by CO2, thereby preventing carbon deposition 

on the Ni particle and maintaining the catalytic activity [300]. However, the sintering 

of the Cu particles leads to lower catalytic activity than other Ni-based bimetallic 

catalysts, which has been reported in a previous study [301]. This may be the main 

reason for the weak enhancement in the performance of the plasma-catalytic 

reforming when the 10Ni3Cu catalyst is used. 

Compared to the plasma reforming reaction without catalyst, the combination 

of plasma with the 10Ni3Co catalyst leads to the maximum enhancement in both 

conversion of CO2 and CH4, followed by the catalysts of 10Ni3Mn and 10Ni3Cu. 

The active metal oxides in the catalysts (see Figure 7.1) can be reduced to the active 

species for the dry reforming process in the low-temperature Ar-H2 plasma [166]. As 

mentioned in Section 6.2, these reduced catalysts favour the low temperature 

conversion of CO2 and CH4 due to the synergistic effect resulting from the 

combination of plasma and catalyst. In addition to the unique characteristics of each 

catalyst, the difference in the physicochemical properties and the basic sites between 

these catalysts also leads to the disparity in their activities in the plasma dry 

reforming process. The higher specific surface area can enhance the contact area for 

the reactants with the active sites, and consequently results in higher conversion of 

reactants [302]. Although introducing metal additives into the Ni catalysts leads to a 

slight decrease of the specific surface area, this negative influence is compensated by 

the promotional effect of the metal additives, confirmed by the enhancement in the 

conversion of CO2 and CH4 when using these bimetallic catalysts. Among the three 

Ni-based bimetallic catalysts, the 10Ni3Co catalyst shows the largest specific surface 

area, and therefore the highest plasma-catalytic reaction performance is achieved 

when it is combined with plasma. Moreover, the effect of the stronger basic sites on 

the 10Ni3Co catalyst should not be ruled out. In addition, the synergy between Ni 

and Co - the formation of Ni-Co alloy, which will be discussed in Section 7.3 in 

detail - is another important contributor to its high catalytic performance.  

7.2.2.3 Production of syngas and C2-C4 hydrocarbons 

 Figure 7.4 shows the variation of syngas production in the plasma catalytic 

dry reforming of CH4. Similar to the results obtained in Section 6.2.2.3, the yield of 

CO and H2 increases with increase in the discharge power under all the experimental 

conditions. At a specific discharge power, introducing the bimetallic catalysts leads 

to an enhancement in the yield of syngas. The maximum yield of CO and H2 is 

obtained when the 10Ni3Co catalyst is used, followed by the 10Ni3Mn, 10Ni3Cu 

and 10Ni catalyst. Interestingly, only a slight difference in the yield of syngas is 

observed when the 10Ni3Cu and 10Ni catalysts are combined with the  
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 7.4 Effect of bimetallic catalysts on the syngas production as a function of 

discharge power: (a) CO yield; (b) CO selectivity; (c) H2 yield; (d) H2 selectivity; (e) 

H2/CO molar ratio (total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 1:1). 

 

plasma system. This phenomenon is similar to the difference in the reactant 

conversions when the 10Ni3Cu and 10Ni catalysts are used (see Figure 7.3). When 

the 10Ni3Co catalyst is used, the maximum yield of CO and H2 is 20.7% and 18.7%, 

respectively, at a discharge power of 60 W. In addition, the combination of plasma 
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with bimetallic catalysts also increases the selectivity of syngas. The selectivity of 

CO and H2 reaches its peak of 52.6% and 39.0%, respectively, in the plasma-

catalytic dry reforming over the 10Ni3Co catalyst at a discharge power of 30 W. 

However, the selectivity is decreased by increasing the discharge power due to the 

formation of other hydrocarbons, similar to the results obtained in Section 6.2.2.3. 

Figure 7.4 (e) shows the variation of the H2/CO molar ratio in the gas 

product. Higher discharge power leads to a higher H2/CO molar ratio. At a specified 

discharge power, the effect of these bimetallic catalysts on the H2/CO molar ratio is 

in consistent with that on the reactant conversions. Additionally, all the H2/CO molar 

ratios are less than unity, regardless of the catalysts; this is partly due to the 

occurrence of the reverse water gas shift reaction. The decrease in the selectivity of 

H2 and CO due to the formation of C2-C4 hydrocarbons and carbon deposition might 

be another possible reason.  

 The selectivity of the hydrocarbons C2H6, C3H8, and C4H10 produced in the 

plasma process is presented in Figure 7.5. At a fixed discharge power, the 

introduction of these bimetallic catalysts into the DBD reactor increases the 

selectivity of C3H8 and C4H10, and the maximum selectivity is obtained when the 

10Ni3Co catalyst is used. This is in accordance with their catalytic activity for 

reactant conversions. Additionally, increasing discharge power increases the 

selectivity of C3H8 and C4H10. By contrast, the selectivity of C2H6 is decreased by 

increasing discharge power, and is further reduced by the introduction of the 

bimetallic catalysts. The maximum selectivity of C3H8 and C4H10 (6.2% and 5.3%) is 

achieved when the 10Ni3Co catalyst is used at a discharge power of 60 W, whilst the 

selectivity of C2H6 reaches its minimum value of 13.8% under the same condition. 

7.2.2.4 Carbon balance  

 The carbon balance in the gas stream of plasma-catalytic reaction using 

different Ni-based bimetallic catalysts is shown in Figure 7.6. The variation of the 

carbon balance with these bimetallic catalysts is consistent with their catalytic 

ability. In this study, the maximum carbon balance of 97.2% is obtained with the 

10Ni3Co catalyst at a discharge power of 30 W. From the TG analysis shown in 

Figure 7.7, the carbon deposition amounts formed on the catalyst surface are within 

the range of 2.9% - 3.9% after the plasma-catalytic reaction at a discharge power of 

50 W for 150 min. Compared to that of the 10Ni catalyst, the higher carbon 

resistance of the bimetallic catalysts (except the 10Ni3Cu catalyst) is partly ascribed 

to the increased amount of strong basic sites on the catalysts caused by the metal 

additives. The smaller particle size resulting from the larger specific surface area also 

contributes to the higher carbon resistance. The higher amount of the strong basic 

sites and the larger specific surface area in the 10Ni3Co catalyst contribute to its 

maximum carbon resistance in comparison to the other catalysts. 
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(a) (b) 

 

(c) 

Figure 7.5 Effect of bimetallic catalysts on the selectivity of C2-C4 hydrocarbons (a) 

C2H6; (b) C3H8; (c) C4H10 (total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 

1:1). 

 

 

Figure 7.6 Effect of bimetallic catalysts on the carbon balance as a function of 

discharge power (total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 1:1). 
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Figure 7.7 TG results of bimetallic catalysts after reaction at a discharge power of 50 

W for 150 min. 

7.2.2.5 Energy efficiency 

 The effect of the Ni catalysts on the EC and FPE of the plasma dry reforming 

process at a discharge power of 30 W is shown in Figure 7.8. The use of the 

different bimetallic catalysts decreases the EC for reactant conversion. The 

combination of the 10Ni3Co catalyst with the DBD decreases the EC for CO2 

conversion, CH4 conversion and total carbon conversion by 24.4%, 15.2% and 

18.9%, respectively, compared with that obtained in the plasma-only process. 

Correspondingly, the EC for H2 and syngas is decreased by 29.4% and 27.9%, 

respectively. The presence of the 10Ni3Co catalyst in the DBD reactor improves the 

FPE by 25.8%. It is worthy to note that little differences in the EC and FPE are 

observed when the 10Ni3Cu and 10Ni catalysts are used.  

7.3 Effect of Co Loading on Plasma-Catalytic Dry Reforming of CH4 

using Ni-Co Bimetallic Catalysts  

7.3.1 Experimental section  

Wetness impregnation method is used to prepare the 10 wt.% Ni/γ-Al2O3 

catalyst (denoted as 10Ni) by impregnating Ni(NO3)2
.
6H2O, as described in Section 

6.2.1. The 10 wt.%Ni - x wt.%Co/γ-Al2O3 bimetallic catalysts with different Co 

loadings (x = 1, 3, 5, 7.5 and 10) are prepared by co-impregnation of nitrate salts of 

the Ni and Co using the same procedure. The obtained samples are denoted as 

10NixCo (x=0 stands for the 10Ni catalyst). The characterisation methods used to 

reveal the catalyst properties are the same as those used in Section 6.2.1. The plasma-

catalytic dry reforming of CH4 using the Ni-Co bimetallic catalysts are performed in 

a coaxial DBD reactor. The experimental system and procedure are the same as those 

in Section 6.2.1. 
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(a) (b) 

 

(c)  

Figure 7.8 Effect of bimetallic catalysts on (a) the EC for CH4 conversion, CO2 

conversion and total carbon conversion; (b) the EC for H2 and syngas production; (c) 

the FPE of the plasma-catalytic process (discharge power: 30 W; total feed flow rate: 

50 ml/min; CO2/CH4 molar ratio: 1:1). 

7.3.2 Experimental results 

7.3.2.1 Catalyst properties 

(1) Surface structure of the prepared catalysts 

Table 7.2 summarises the physicochemical properties of the Ni-Co/γ-Al2O3 

bimetallic catalysts with different Co loadings. With the increase of the Co loading, 

the specific surface area of the catalysts gradually decreases from 268.0 m
2
/g 

(without Co loading) to 221.3 m
2
/g in the 10Ni10Co catalyst; the corresponding pore 

volume also slightly decreases from 0.39 to 0.31 cm
3
/g. This phenomenon could be 

attributed to the deposition of the metal particles inside γ-Al2O3 pores or the partial 

blocking of pores [303]. In addition, these catalysts have similar average pore 

diameter. 
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Table 7.2 Physicochemical properties of the Ni-Co/γ-Al2O3 bimetallic catalysts with 

different Co loadings. 

Sample SBET (m
2
/g) Pore volume (cm

3
/g) Pore diameter (nm) 

10Ni 268.0 0.39 3.80 

10Ni1Co 256.0 0.39 3.81 

10Ni3Co 250.4 0.36 3.82 

10Ni5Co 246.5 0.35 3.83 

10Ni7.5Co 228.7 0.33 3.84 

10Ni10Co 221.3 0.31 3.86 

 

Figure 7.9 (a) shows the XRD patterns of the catalyst support and fresh 

catalysts. The XRD spectrum of the support shows five diffraction peaks at 2θ 

=14.5
o
, 28.3

o
, 38.5

 o
, 49.7

 o
 and 67.1

o
, which are assigned to the cubic structure of γ-

Al2O3 crystalline (PDF # 52-0803). These peaks can also be observed in the XRD 

patterns of the Ni-Co bimetallic catalysts with different Co loadings.  

 

  

(a) (b) 

Figure 7.9 XRD patterns of (a) the fresh and (b) the reacted catalysts (1) γ-Al2O3; (2) 

10Ni; (3) 10Ni1Co; (4) 10Ni3Co; (5) 10Ni5Co; (6) 10Ni7.5Co; (7) 10Ni10Co. 

 

The XRD patterns of the bimetallic catalysts show diffraction peaks of Co3O4 

at 2θ = 19.1º, 31.2º, 36.5º, 44.8º, 55.6º, 59.3º and 65.2º (PDF# 42-1467), while weak 

peaks of NiO (PDF# 44-1159) are identified at 2θ = 37.2
o
 and 43.3

o
 (PDF # 44-

1159). In the bimetallic catalysts, obvious peak narrowing is observed at Co3O4 

peaks with the increase in Co loading, which may indicate the increase of the 

crystalline size of Co3O4 or the crystallinity of the catalysts. In this study, the 

interaction between the catalyst support and the active metal phase is relatively weak 

under the low calcination temperature (400 
o
C), which favours the formation of metal 

oxides in the catalyst preparation process [91]. It has been demonstrated that these 

metal oxides can be reduced in the low temperature Ar-H2 plasma [166]. Figure 7.9 
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(b) shows the XRD patterns of the spent catalysts after the plasma catalytic dry 

reforming process at a discharge power of 50 W for 150 min. The details will be 

explained in the following section. 

 (2) CO2-TPD 

The CO2-TPD patterns for the Ni-Co bimetallic catalysts with different Co 

loadings are presented in Figure 7.10. Obviously, the 10Ni catalyst shows three CO2 

adsorption peaks centred around 75 
o
C, 150 

o
C and 370 

o
C. The former two peaks are 

assigned to the weak (20-150 
o
C) basic sites, while the third one is ascribed to the 

strong (300-450 
o
C) basic sites [261]. Compared with the 10Ni catalyst, all the Ni-Co 

bimetallic catalysts have similar CO2 adsorption peaks. However, the peaks 

corresponding to the strong basic sites are shifted to a higher temperature by 

increasing the Co loading, and the area under the CO2-TPD curve is also gradually 

increased, especially when the Co loading is higher than 5 wt.%. These phenomena 

indicate that the amount of the strong basic sites on the Ni-Co bimetallic catalysts is 

increased by increasing the Co loading. As mentioned before, catalysts with more 

strong basic sites can improve the adsorption of CO2, which will provide more 

surface oxygen for the gasification of coke during the dry reforming reaction, and 

consequently reduce coke deposition on the catalysts. The oxygen species from CO2 

decomposition also contributes to the enhancement in the CH4 conversion.  

 

 

Figure 7.10 CO2-TPD patterns of the fresh catalysts with different Co loadings. 

7.3.2.2 Reactant conversion  

Figure 7.11 presents the effect of different Co loadings on the conversion of 

CO2 and CH4 in the plasma catalytic dry reforming of CH4. Compared to the plasma 

dry reforming reaction without catalyst, the combination of the plasma with these 

catalysts results in significant enhancement in the conversions of CO2 and CH4; and 

an optimum Co loading for maximum CO2 and CH4 conversion is observed. For 

example, when the discharge power is fixed at 60 W, CO2 conversion increases 
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gradually by increasing the Co loading, and peaks (30.9%) at a Co loading of 5 wt.%, 

beyond which CO2 conversion decreases slowly. A CO2 conversion of 26.0% is 

obtained when the Co loading is increased to 10 wt.%; this value is still higher than 

that obtained in the plasma process without catalyst. Similarly, the corresponding 

maximum CH4 conversion (50.7%) is also achieved at the Co loading of 5 wt.%. 

This maximum conversion of CO2 and CH4 is increased by 29.4% and 21.5%, 

respectively, compared with that obtained in the plasma-only process. Zhang et al. 

also reported that there existed an optimum loading of the metal additive in the 

bimetallic catalyst to obtain high reactants conversion in the plasma-catalytic dry 

reforming of CH4 [116]. In their study, Cu with different loadings (1 wt.%, 5 wt.%, 

12 wt.% and 16 wt.%) was added to the 12 wt.% Ni/γ-Al2O3 catalyst to form the Ni-

Cu bimetallic catalysts for the plasma-catalytic dry reforming in a DBD reactor. 

Their results indicated that the presence of the 12 wt.% Ni-12 wt.% Cu/γ-Al2O3 

catalyst in the DBD reactor showed the highest conversion of reactants. The similar 

enhancement in CH4 and CO2 conversion over the Ni-Co bimetallic catalysts have 

been previously reported in thermal catalytic dry reforming processes, and various 

optimum Co loadings have been proposed [292, 295, 302-304]. Sengupta et al. stated 

that the Ni-Co bimetallic catalyst with a Ni/Co weight ratio of 3:1 (total loading: 15 

wt.%) exhibited a better catalytic activity than other catalysts in the CO2 reforming 

of CH4 [292]. Chen et al. found that the Ni-Co bimetallic catalyst with a Ni/Co 

weight ratio of 1:1 and 7:3 (total loading: 10 wt.%) had a similar activity in terms of 

CH4 conversion, and CH4 conversion with these two catalysts was higher than that 

obtained when using the Ni-Co bimetallic catalyst with a lower Ni/Co weight ratio 

(3:7) [295]. The excellent performance of the Ni-Co bimetallic catalysts in the dry 

reforming of CH4 is closely related to the synergy between nickel and cobalt, e.g. the 

formation of the Ni-Co alloy [304]. In this study, the characteristic diffraction peaks 

of the active Ni-Co alloy can be clearly identified on the spent catalysts (Figure 7.9 

(b)), and the alloy size is enlarged by increasing the Co loading, which is 

demonstrated by the narrowing in the characteristic peaks of the Ni-Co alloys at 2θ = 

43.8
o
. The 10Ni5Co catalyst exhibits the highest activity in terms of CO2 and CH4 

conversion, compared with the other catalysts. This variation in the catalytic activity 

for the Ni-Co bimetallic catalysts could be ascribed to the difference in the surface 

structures and the amount of the basic sites on the catalysts. The catalysts with high 

specific surface area can supply the reactants with a large contact area, which leads 

to a high reaction activity [302]. In this study, increasing the Co loading in the 

bimetallic catalysts results in the decrease in the specific surface area and the 

increase in the particle size, and consequently lowers the catalyst activity for reactant 

conversion in the plasma dry reforming process. However, the amount of strong 

basic sites on the bimetallic catalyst is enhanced by increasing the Co loading, which 

contributes to the improvement in the reactant conversions. These results suggest that 
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the compromise between the surface structure and the amount of the strong basic 

sites of the Ni-Co bimetallic catalysts has been achieved and enables the 10Ni5Co 

catalyst to show the highest activity for reactant conversion. 

 

  

(a) (b) 

Figure 7.11 Effect of Co loadings on (a) CO2 conversion and (b) CH4 conversion as 

a function of discharge power (total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 

1:1; -1 in the x-coordinate stands for the case in the absence of the catalyst).  

7.3.2.3 Production of syngas and C2-C4 hydrocarbons 

Figure 7.12 shows the effect of the Co loadings on the production of syngas 

as a function of discharge power. In the plasma process without catalyst, increasing 

the discharge power increases the yield of CO and H2, but decreases their selectivity. 

The presence of the 10Ni catalysts leads to an increment in both the yield and 

selectivity of syngas. This phenomenon has also been reported in previous studies, 

where a similar Ni/γ-Al2O3 catalyst was used in the DBD plasma catalytic dry 

reforming of CH4 [91]. The use of Ni-Co bimetallic catalysts further increase the 

yield and selectivity of syngas until the Co loading reaches the optimum value for 

maximum CO2 and CH4 conversions. For example, the highest yield of CO and H2 is 

21.2% and 19.1% when the 10Ni5Co catalyst is used at a discharge power of 60 W; 

their corresponding maximum selectivity is 51.9% and 37.6%, respectively.  

It is clear to see in Figure 7.12 (e) that the effect of Co loadings on the molar 

ratio of H2/CO is consistent with that on the yield and selectivity of H2 and CO. A 

H2/CO molar ratio close to 1 is obtained when the Co loading approaches its 

optimum value. As mentioned before, the syngas with a H2/CO molar ratio close to 1 

is favourable for the synthesis of higher hydrocarbons [305]. In this study, the 

maximum H2/CO molar ratio of 0.96 is obtained when the 10Ni5Co catalyst is used 

in the plasma-catalytic dry reforming reaction at a discharge power of 50 W. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 7.12 Effect of Co loadings on the production of syngas as a function of 

discharge power: (a) CO yield; (b) CO selectivity; (c) H2 yield; (d) H2 selectivity; (e) 

H2/CO molar ratio (total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 1:1; -1 in 

the x-coordinate stands for the case in the absence of the catalyst). 

 

The influence of Co loadings on the selectivity of C2-C4 hydrocarbons is 

illustrated in Figure 7.13. Different to the variation of selectivity towards CO and 
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H2, the optimum Co loading for syngas production leads to the minimum selectivity 

to C2H6. In the plasma reaction system, Ni-Co bimetallic catalyst with appropriate 

Co loading favours the dissociation of the produced C2H6 to further form higher 

hydrocarbons. This can be confirmed by the maximum selectivity towards C3H8 and 

C4H10 achieved for the catalyst with the optimum Co loading, as shown in Figure 

7.13 (b) and (c).  

 

  

(a) (b) 

 

(c) 

Figure 7.13 Effect of Co loadings on the selectivity to C2-C4 hydrocarbons (a) C2H6; 

(b) C3H8; (c) C4H10 (total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 1:1; -1 in 

the x-coordinate stands for the case in the absence of a catalyst). 

 

In the plasma-catalytic reforming reaction, the temperature inside the reactor 

is within the range of 160-230 
o
C, slightly higher than the temperature measured in 

the plasma reforming process without catalysts (150 
o
C to 225 

o
C, see in Section 

5.3.2.1). Our thermodynamic equilibrium analysis for dry reforming of CH4 has 

demonstrated that the conversions of both gases are very low (< 1%) at such low 

temperatures (160-230 
o
C). Moreover, much higher temperatures (e.g. > 600 

o
C) are 

required in thermal catalytic CO2 reforming of CH4 in order to obtain favourable 

conversion of CO2 and CH4 and yield of CO and H2 [306, 307].  Therefore, we can 
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conclude that only extremely low conversions of the feed gases can be obtained in 

the conventional thermal catalytic dry reforming of CH4 when carried out at low 

temperatures within the temperature range in our plasma-catalytic reaction. These 

results clearly indicate the generation of a synergistic effect resulting from the 

combination of plasma and the Ni-Co bimetallic catalyst at low temperature (without 

extra heating), in which the performance of plasma-catalytic reaction is much higher 

than the sum of results in the plasma-only and the catalysis only processes. This 

synergistic effect is closely related to the balance between the change in the 

discharge behaviour produced by packing the catalysts in the discharge gap and the 

catalytic activity of the catalyst generated by the plasma [91, 92]. In this case, the 

synergy is believed to be attributed to the strong plasma-catalyst interaction due to 

the filamentary discharge resulting from the large discharge volume when the 

catalysts are partially packed along the bottom of the reactor and the high activity of 

the Ni-Co bimetallic catalyst with appropriate Co loadings. 

7.3.3.4 Catalyst characterisation after reaction 

The carbon balance in the gas stream of plasma-catalytic reaction using 

different Ni-Co bimetallic catalysts is shown in Figure 7.14. A maximum carbon 

balance of 97.4% is achieved when the 10Ni5Co catalyst is used at a discharge 

power of 30 W.  

 

 

Figure 7.14 Effect of Co loadings on the carbon balance as a function of discharge 

power (total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 1:1; -1 in the x-

coordinate stands for the case in the absence of the catalyst). 

 

The amount of carbon deposition on the catalysts is analysed using TG-DTG 

and the results are presented in Figure 7.15 and Table 7.3. TG analysis of the Ni 

catalysts shows a weight loss within the range of 2.1%-3.8%. The TGA profile of the 

10Ni10Co catalyst indicates that two different carbonaceous species are formed on 

the catalysts, as shown in Figure 7.15. The peak at around 320 
o
C is assigned to the 



 Chapter Seven 

177 

 

formation of active carbonaceous species (Cα), which are easily oxidisable 

amorphous carbon and often regarded as the intermediate for CO formation. The 

higher temperature (around 520 
o
C) peak corresponds to the less active carbonaceous 

species (Cβ), which may be between amorphous carbon and graphitic carbon [267]. 

Both carbonaceous species are formed in all of the spent catalysts, as shown in Table 

7.3. The graphitic carbon species (shown by a peak above 650 
o
C) is responsible for 

the deactivation of the catalysts. It can be found that no such carbon species is 

formed on the catalysts used in the plasma dry reforming process. This can be 

confirmed by the stability of the CO2 and CH4 conversion, and the CO and H2 

selectivity when the catalysts participate in the plasma reaction for 150 min. The 

variation of carbon deposition with the Co loading, as given in Table 7.3, indicates 

the least amount of carbon (2.1%) is formed on the 10Ni5Co catalyst, which exhibits 

the highest carbon resistance; whereas the largest amount of carbon (3.8%) is formed 

on the 10Ni catalyst (without Co additive). In the conventional thermal catalytic dry 

reforming of CH4 using similar Ni-Co bimetallic catalysts, Sengupta et al. used 

Al2O3 supported Ni-Co bimetallic catalysts containing 15 wt.% metal for the dry 

reforming of CH4 at a high temperature of 600 
o
C. They found that the bimetallic 

catalyst 25Ni75Co (3.75 wt.%/11.25 wt.%) had a minimum carbon deposition of 3%; 

while the maximum amount of carbon (20%) was deposited on the 75Ni25Co 

catalyst (11.25 wt.%/3.75 wt.%) [292]. Son et al. reported a high carbon deposition 

of 16% when the Ni-Co/Al2O3 catalyst was used in the thermal-catalytic dry 

reforming of CH4 performed at the temperature between 700 
o
C to 850 

o
C [308]. This 

phenomenon indicates that the combination of plasma and the Ni-Co bimetallic 

catalysts in our study can further suppress the carbon deposition.  

 

 

Figure 7.15 TG and DTG results for the 10Ni10Co catalyst after reaction at a 

discharge power of 50 W for 150 min. 
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Table 7.3 Comparison of carbon deposition of different catalysts at a discharge 

power of 50 W for 150 min. 

Sample 
Carbonaceous species /% 

Cα Cβ Total 

10Ni 2.6 1.2 3.8 

10Ni1Co 1.9 1.1 3.0 

10Ni3Co 1.8 1.1 2.9 

10Ni5Co 1.1 1.0 2.1 

10Ni7.5Co 1.7 1.1 2.8 

10Ni10Co 2.1 1.3 3.4 

 

The introduction of the Ni-Co bimetallic catalysts in the dry reforming 

process is mainly motivated by the high catalytic activity of Ni catalysts and the high 

carbon resistance of Co catalysts. Ni catalysts show high catalytic activity in the dry 

reforming of CH4; however, during the reforming process, a large amount of carbon 

species are formed on the catalyst surface, which need to be removed to proceed with 

the reforming reaction [309]. Cobalt is a good oxidative agent for soot, which can 

decrease the coke formation rate by transforming the surface carbon to CO and/or 

CO2 [296]. Previous studies have reported that increasing the Co loading in the Ni-

Co bimetallic catalyst would result in a significant decrease of coke in the reforming 

process [309, 310]. This is possibly due to the fact that increasing the Co loading 

could effectively control the activity of CH4 decomposition to balance carbon 

formation and elimination, thereby achieving a higher carbon resistance [309]. 

Moreover, the contribution of the larger amount of strong basic sites on the catalyst 

to its high carbon resistance cannot be ruled out [284].  

The geometric effect is another important factor influencing the carbon 

resistance of the Ni-Co bimetallic catalysts. A large ensemble of adjacent sites is a 

prerequisite for carbon growth during the carbon deposition process; and there exists 

a critical size of the metal particles below which carbon formation can be 

significantly reduced in the reforming process. In the thermal-catalytic dry reforming 

of CH4 using Ni-Co bimetallic catalysts, Zhang et al. found that the metal particle 

size less than 10 nm is critical to avoid carbon formation [302]. In this study, the 

metal particle size is enlarged by increasing the Co loading in the Ni-Co bimetallic 

catalysts. It is clear from Table 7.3 that the carbon deposition is enhanced when the 

Co loading is higher than 5 wt.%, therefore we may conclude that the metal particle 

size is beyond the critical size for inhibiting carbon formation by increasing the Co 

loading to higher than 5 wt.%. In this study, the lowest carbon deposition is achieved 

when the 10Ni5Co catalyst is used in the plasma dry reforming process, indicating 

that the formation of the Ni-Co alloy and the variation in its size are the main driving 

forces that control the carbon resistance of the Ni-Co bimetallic catalysts.  
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7.3.3.5 Energy efficiency 

 Figure 7.16 shows the EC and FPE of the plasma catalytic dry reforming 

process using different NI-Co bimetallic catalysts at a discharge power of 30 W. A 

minimum EC of 7.7, 5.4 and 3.2 MJ/mol for CO2 conversion, CH4 conversion and 

total carbon conversion, respectively, is achieved when the 10Ni5Co catalyst is 

combined with the DBD plasma; this value is decreased by 28.0%, 17.4% and 21.8%, 

compared to the respective values in the plasma-only process. Correspondingly, 

introducing the 10Ni5Co catalyst into the plasma reaction decreases the EC for H2 

and syngas production by 32.9% and 32.2%. In addition, the combination of the 

10Ni5Co catalyst with the DBD reactor leads to a maximum FPE of 12.7%, which is 

increased by 30.4% compared to that obtained in the plasma-only process at the same 

condition.  

 

  

(a) (b) 

 

(c) 

Figure 7.16 Effect of Co loadings on (a) the EC for CH4 conversion, CO2 conversion 

and total carbon conversion; (b) the EC for H2 and syngas production; (c) the FPE 

(discharge power: 30 W; total feed flow rate: 50 ml/min; CO2/CH4 molar ratio: 1:1). 
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7.4 Comparison of Reaction and Energy Performance for Different 

Non-thermal Plasma Dry Reforming Reactors 

In order to evaluate the effectiveness of the DBD reactor for the plasma dry 

reforming of CH4, we compare the performance of our DBD reactor with that of 

other non-thermal plasma reactors. Reactant conversion and energy efficiency are the 

most important performance parameters for the plasma process [144]. In this work, 

we also compare the EC for H2 production, as H2 is a promising alternative to fossil 

fuels and its production cost is one of the main issues for its large scale application.   

Table 7.4 lists various atmospheric pressure non-thermal plasma systems for 

comparison along with their different specific processing parameters, including 

discharge form, frequency, power, total flow rate, CO2/CH4 molar ratio in the feed 

gas as well as any catalysts used. In addition to the DBD reactors, one DC pulsed 

plasma reactor, two GA reactors, and a pulsed corona reactor, are also selected. 

7.4.1 Performance comparison for plasma dry reforming of CH4 without 

catalyst 

 In this section, the performance comparison for the dry reforming of CH4 in 

the plasma-only process is performed in terms of the maximum total carbon 

conversion, the minimum EC for H2 production and the maximum FPE. 

Table 7.5 shows the maximum total carbon conversion in our study and that 

obtained from literature. Other parameters, such as product selectivity, EC for H2 

production and FPE, are also included. The effect of SED on the maximum total 

carbon conversion is illustrated in Figure 7.17. Generally, the maximum total carbon 

conversion is enhanced by increasing SED. Similar phenomenon has been observed 

in other plasma gas reactions, such as removal of VOC and CO2 decomposition [234, 

311]. 

It is clear from Table 7.4 and Table 7.5 that most of the reactors produce 

their maximum total carbon conversion at the lower limit of the total feed flow rate, 

which indicates that a lower total feed flow rate is beneficial for the conversion of 

reactants. Decreasing the total feed flow rate increases the residence time of the 

reactant molecules in the discharge region, which will increase the possibility of 

collisions between the reactant molecules and the highly energetic electrons as well 

as active species, therefore enhancing the conversion. The maximum total carbon 

conversion in our study (42.3%) is obtained at a SED of 120 kJ/l and a total feed 

flow of 25 ml/min with a CO2/CH4 molar ratio of 1:1. Due to the relatively low SED, 

this maximum total carbon conversion is smaller than that obtained in most of the 

other reactors, but it is comparable to that obtained in reactors which have a similar 

SED to ours, such as the DBD reactor of Tu et al. (No 15) [91] and 

Mahammadunnisa et al. (No 16) [162]. The DBD reactor of Zhang et al. had the 
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Table 7.4 Experimental conditions of the atmospheric non-thermal plasma reactors for dry reforming of CH4. 

Plasma reactor Frequency 

(kHz) 
Power (W) 

Total feed flow rate 

(ml/min) 
CO2/CH4 molar ratio Catalyst Ref 

No Type 

1 DBD 5 – 20   20 – 60 25 – 150  1:4 – 4:1 Ni-based catalysts This work 

2 DBD 30 200 – 700  150, 500 1:4 – 4:1  – [151] 

3 DBD 25 100 40 17.2:82.8 – 66:34  – [312] 

4 DBD 5 – 20   23.0 – 178.5 16, 20, 30 1:5 – 5:1 – [154] 

5 DBD 30 200 – 500  20 – 200  1:4 – 4:1  – [238] 

6 DBD 0.3 9 4.5 – 45  1:1 – [278] 

7 DBD 10 – 40  24 – 147  30 1:1 – [313] 

8 DC pulse 0 - 700 9.2 – 34.8 45, 90  1:1 – [314] 

9 Gliding arc 0.05 205.3 – 544.0 12700 1:2 – 2:1 – [142] 

10 Gliding arc  0.05 95 – 165  2500 - 7500 3:7 – 7:3 – [143] 

11 DBD 30 200 – 700  150 – 800  1:5 – 4:1 Zeolite NaX [158] 

12 DBD 30 500 200 – 600 1:3 – 2:1 Zeolite NaX, HY, NaY [42] 

13 DBD 30 100 – 500 200 – 600 1:3 – 1:1 Zeolite A [160] 

14 DBD 20 80 – 130  10 – 40  1:4 – 2:1 (2, 5, 7, 10 wt.%) Ni/γ-Al2O3 [168] 

15 DBD 30 – 40  30 – 60  25 – 100  1:1 10 wt.% Ni/γ-Al2O3 [91] 

16 DBD 0.05 1.4 – 4.8 2.67, 3 1:2 – 2:1 (10, 20, 30 wt.%) Ni/γ-Al2O3 [162] 

17 DBD 20 126  30 1:1 5 wt.% Ni/γ-Al2O3 [165] 

18 DBD 30 – 40 70.5 – 97.3 50  1:1  26 wt.% Ni/Al2O3 [107] 

19 DBD 30 25 – 75 30 – 75  2:3 – 3:1 
Ni/γ-Al2O3, Cu/γ-Al2O3, Cu-

Ni/γ-Al2O3, Ni-Cu/γ-Al2O3 
[116] 

20 DBD  5 – 100 150 40 1:1 
Ni/SiO2, LaNiO3, LaNiO3/SiO2, 

LaNiO3@SiO2 
[173] 

21 DBD – 2.8 – 25.4 11.3 – 45 2:3 – 10:7 Perovskite LaNiO3 [315] 

22 Corona – 18 – 42  60 2:1 Ni/γ-Al2O3, Zeolite HZSM-5 [272] 
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same SED as that in this study and presented a more promising total carbon 

conversion than ours [116], but FPE in their reactor is relatively lower. From the 

perspective of industrial applications, higher reactant conversions with large 

treatment capacity are desired. Although the total feed flow rates in the GA reactors 

(e.g. plasma reactor No 9 and 10) were typically higher than that in the DBD 

reactors, the reactant conversions in the GA reactors is relatively low. Therefore, how 

to increase the treatment capacity when maintaining the high reactant conversion 

should be a research topic in the future. 

 

Table 7.5 Comparison of the maximum total carbon conversion in different plasma-

only systems.  

Plasma 

reactor SED 

(kJ/l) 

Total 

feed flow 

rate 

(ml/min) 

CO2/

CH4 

molar 

ratio 

Conversion (%) 
Selectivity 

(%) 
ECH2 

(MJ/ 

mol) 

FPE 

(%) 
Ref 

No Type CH4 CO2 CTC H2 CO 

1 DBD 120 25 1:1 50.5 34.1 42.3 35.8 52.0 14.9 5.8 
This 

work 

2 DBD 280 150 1:2 72.4 63.0 69.3 46.8 34.2 13.9 3.9 [151] 

3 DBD 150 40 1:3 52.5 41.9 49.8 37.4 24.6 11.4 5.1 [312] 

4 DBD 533.4 20 1:1 79.5 52.7 66.1 75.7 84.9 19.9 2.7 [154] 

5 DBD 1500 20 1:1 78.1 67.9 73.0 46.2 47.2 93.1 0.5 [238] 

6 DBD 60 9 1:1 21.1 17.5 19.3 50.3 57.5 12.7 4.3 [278] 

7 DBD 282 30 1:1 65.7 38.7 52.2 46.2 53.8 20.8 3.2 [313] 

8 
DC 

pulse 
46.4 45 1:1 52.7 42.7 47.7 75.0 70.8 2.6 15.3 [314] 

9 GA 2.46 12700 2:1 41.0 36.4 38.0 38.4 55.0 0.5 64.7 [142] 

10 GA  3.96 2500 7:3 19.3 11.5 13.8 25.8 63.0 3.0 25.6 [143] 

11 DBD 200 150 1:2 64.3 55.4 61.3 40.5 33.3 12.9 4.7 [158] 

14 DBD 780 10 1:1 74.1 49.2 61.7 66.0 73.8 35.8 1.5 [168] 

15 DBD 144 25 1:1 50.6 30.5 40.6 33.4 53.8 19.1 3.0 [91] 

16 DBD 90.0 2.7 1:1 45.8 39.0 42.4 32.5 38.6 13.5 3.7 [162] 

19 DBD 120 30 1:1 59.6 37.0 48.3 43.5 43.5 10.4 4.2 [116] 

21 DBD 62.6 11.5 2:3 30.7 22.0 27.2 33.9 35.3 11.2 6.3 [315] 
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Figure 7.17 Comparison of the maximum total carbon conversion in the plasma-only 

dry reforming of CH4 as a function of SED (each squared number refers to the 

plasma reactor No listed in Table 7.4). 

 

 The minimum EC for H2 production in our DBD plasma reactor and that 

obtained from literature is shown in Table 7.6 and Figure 7.18. Similar to the 

maximum total carbon conversion, the minimum EC for H2 production is also 

increased by increasing the SED. From Table 7.6, the selectivity towards H2 is 

another important parameter controlling the EC for H2 production. The EC for H2 

production can be significantly decreased when higher selectivity of H2 is obtained. 

In the DBD reactor of Wang et al. [154], the higher selectivity of H2 resulted in the 

deviation of the minimum EC for H2 production from its general trend with SED (see 

Figure 7.18). Compared with the DBD reactors, the DC pulsed wire-to-plate reactor 

(No 8) and GA reactor (No 9 and 10) show a much lower minimum EC for H2 

production together with a much higher FPE. As mentioned above, Ar was used as 

the carrier gas in plasma reactor No 8 to enhance the reactant conversion. However, 

the cost of the carrier gas is not considered in our comparison, thus the actual EC for 

H2 production in plasma reactor No 8 could be much higher. For the GA reactors (No 

9 and 10), the lower minimum EC for H2 production and higher FPE were obtained 

at the expense of lower reactant conversions. For example, in the plasma reactor No 

10, the minimum EC for H2 and the corresponding FPE are 1.2 MJ/mol and 47.2%, 

obtained at a SED of 1.32 kJ/l and a CO2/CH4 molar ratio of 3:7, but the total carbon 

conversion is only 9.8% at the same condition. A large amount of unconverted 

reactant in the product stream would increase the cost of separating the products for 

further application. Among the DBD plasma reactor, a minimum EC for H2 

production of 7.5 MJ/mol is obtained in this study at a SED of 24 kJ/l and a CO2/CH4 

molar ratio of 1:1 with a total flow rate of 50 ml/min, which is comparable to other 

DBD plasma reactors due to the combination of the low SED and relatively high 

selectivity of H2.  
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Table 7.6 Comparison of the minimum EC for H2 production in different 

atmospheric non-thermal plasma-only systems.  

Plasma 

reactor SED 

(kJ/l) 

Total 

feed flow 

rate 

(ml/min) 

CO2/

CH4 

molar 

ratio 

Conversion (%) 
Selectivity 

(%) ECH2 

(MJ/

mol) 

FPE 

(%) 
Ref 

No Type CH4 CO2 CTC H2 CO 

1 DBD 24 50 1:1 21.2 14.3 17.7 33.7 47.8 7.5 13.0 
This 

work 

2 DBD 160 150 1:2 58.4 49.7 55.5 36.6 33.3 12.6 5.3 [151] 

3 DBD 150 40 1:3 52.5 41.9 49.8 37.4 24.6 11.4 5.1 [312] 

4 DBD 143 30 1:1 63.3 33.5 48.4 89.9 94.7 5.6 8.1 [154] 

5 DBD 150 200 1:4 37.9 33.2 37.0 36.4 25.4 15.2 2.2 [238] 

6 DBD 15 36 1:1 12.7 8.9 10.8 46.2 39.9 5.7 8.0 [278] 

7 DBD 70 30 1:1 24.4 16.1 20.3 45.9 53.2 14.0 5.2 [313] 

8 
DC 

pulse 
12.3 45 1:1 29.0 21.0 25.0 65.8 61.9 1.4 23.2 [314] 

9 GA 1.0 12700 1:2 12.3 8.1 10.9 72.8 26.4 0.2 87.9 [142] 

10 GA  1.32 7500 3:7 13.3 8.4 9.8 31.6 69.5 1.2 47.2 [143] 

11 DBD 200 150 1:2 64.3 55.4 61.3 40.5 33.3 12.9 4.7 [158] 

14 DBD 260 30 1:3 42.6 29.0 39.2 54.1 25.5 16.8 2.7 [168] 

15 DBD 18 100 1:1 15.5 6.3 10.9 21.6 37.4 12.0 4.2 [91] 

16 DBD 28.2 3 1:2 22.0 10.3 18.1 33.9 36.8 6.4 5.7 [162] 

19 DBD 25 60 1:1 17.5 12.3 14.9 58.3 59.1 5.5 7.9 [116] 

21 DBD 36.5 22.5 2:3 17.0 12.5 15.2 57.6 37.3 7.0 8.3 [315] 

 

Figure 7.18 Comparison of the minimum EC for H2 production in the plasma-only 

dry reforming of CH4 as a function of SED. 

  

Table 7.7 and Figure 7.19 show the comparison of the FPE in different 

plasma-only systems for dry reforming of CH4. Obviously, a lower SED is 

favourable for a higher FPE in the plasma dry reforming process. It can be seen from 

Table 7.4 and Table 7.7 that the majority of the maximum FPE are obtained near the 

upper limit of the total feed flow rate, which suggests that a higher total feed flow 
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rate is preferred for higher FPE. From the definition of the SED (Equation (2-1)), a 

higher total feed flow rate leads to a lower SED when maintaining or reducing 

discharge power, thereby increasing the FPE as discussed above. This phenomenon 

has been reported in our previous study [229]. A maximum FPE of 13.0% is obtained 

at a SED of 24 kJ/l. It is interesting to note that the maximum FPE is obtained at the 

same experimental condition as that for the minimum EC for H2 production in our 

study. The same results were also obtained in plasma reactors No 4, 6, 8, 9, 10, 16 

and 19, which implies that similar experimental conditions are required to obtain 

both lower EC for H2 production and higher FPE. Apart from the maximum FPE 

obtained in plasma reactor No 8 (with the aid of the carrier gas Ar) and that in the 

plasma reactors No 9 and 10 (obtained at the expense of reactant conversion), the 

maximum FPE in our DBD reactor is higher than that in other DBD reactors from the 

published literature. Comparing Table 7.5 with Table 7.7, it can be found that the 

FPE corresponding to the maximum total carbon conversion is relatively low, and 

vice versa. This suggests that further optimisation is necessary in the future work to 

enhance the reactant conversion and the FPE simultaneously.  

 

Table 7.7 Comparison of the FPE in different plasma-only processes for dry 

reforming of CH4.  

Plasma 

reactor SED 

(kJ/l) 

Total 

feed flow 

rate 

(ml/min) 

CO2/

CH4 

molar 

ratio 

Conversion (%) 
Selectivity 

(%) 
ECH2 

(MJ/

mol) 

FPE 

(%) 
Ref 

No Type CH4 CO2 CTC H2 CO 

1 DBD 24 50 1:1 21.2 14.3 17.7 33.7 47.8 7.5 13.0 
This 

work 

2 DBD 80 150 1:2 34.1 30.2 32.8 19.7 31.4 20.0 5.9 [151] 

3 DBD 150 40 1:2 54.0 37.4 48.6 40.3 31.8 11.4 5.2 [312] 

4 DBD 143 30 1:1 63.3 33.5 48.4 89.9 94.7 5.6 8.1 [154] 

5 DBD 150 200 1:1 43.3 32.5 37.9 42.6 55.4 18.2 2.9 [238] 

6 DBD 15 36 1:1 12.7 8.9 10.8 46.2 39.9 5.7 8.0 [278] 

7 DBD 86 30 1:1 27.0 16.7 21.9 50.8 61.5 14.0 5.3 [313] 

8 
DC 

pulse 
12.3 45 1:1 29.0 21.0 25.0 65.8 61.9 1.4 23.2 [314] 

9 GA 1.0 12700 1:2 12.3 8.1 10.9 72.8 26.4 0.2 87.9 [142] 

10 GA  1.32 7500 7:3 13.3 8.4 9.8 31.6 69.5 1.2 47.2 [143] 

11 DBD 60 500 1:2 36.3 27.8 33.5 11.9 43.1 23.3 6.7 [158] 

14 DBD 160 30 1:2 39.3 20.4 29.9 53.8 54.6 17.0 3.5 [168] 

15 DBD 36 50 1:1 20.2 13.1 16.7 29.0 42.4 13.8 9.6 [91] 

16 DBD 28.2 3 1:2 22.0 10.3 18.1 33.9 36.8 6.4 5.7 [162] 

19 DBD 25 60 1:1 17.5 12.3 14.9 58.3 59.1 5.5 7.9 [116] 

21 DBD 16.0 44.9 2:3 10.7 8.3 9.7 35.0 33.0 8.0 9.6 [315] 
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Figure 7.19 Comparison of the maximum FPE in the plasma-only dry reforming of 

CH4 as a function of SED. 

7.4.2 Performance comparison for plasma-catalytic dry reforming of CH4  

A comparison of the FPE in the different plasma-catalytic processes for dry 

reforming of CH4 is shown in Table 7.8. Most research has focused on the DBD 

reactor, which reflects the potential of this reactor for the dry reforming process. In 

the early stages, zeolites were used in the plasma-catalytic reforming process. Later, 

some new catalysts, such as LaNiO3@SiO2, were applied as well as the common 

Ni/γ-Al2O3 catalyst. Figure 7.20 shows the variation of the maximum FPE as a 

function of the SED in the plasma-catalytic processes. Similar to the phenomenon in 

the plasma-only process, the maximum FPE in the plasma-catalytic process is also 

decreased by increasing SED. The DBD reactor of Lee et al. showed very high 

reactant conversions and product selectivities when the 5% Ni/γ-Al2O3 catalyst was 

used [165]; however, they were obtained at a higher SED of 252 kJ/l and by using 

thermal heating at 573 K, both of which increase EC for H2 production and decrease 

the FPE. The cost of the thermal heating is not considered in this comparison; thus 

the FPE in their DBD reactor would be lower than the stated value of 8.4%. Similarly, 

in the DBD reactor of Zheng et al., the core-shell structured LaNiO3@SiO2 nano-

particle catalysts were introduced to obtain high reactant conversion and product 

selectivity [173]; however, the reactions were performed at a high SED of 225 kJ/l, 

resulting in a low FPE of 7.3%. Zhang et al. reported that high reactant conversion 

and product selectivity were obtained at a relatively low SED of 120 kJ/l when the 12 

wt.%Ni-12 wt.% Cu/γ-Al2O3 catalyst was used in a DBD reactor [116] but the 

promotional effect of the carrier gas Ar and the thermal heating (at 450 
o
C) should 

not be ruled out, which would decrease FPE from its current value of 8.5%. In the 

DBD reactor of Mahammadunnisa et al., relatively high FPE (12.0%) and low EC for 

H2 production (2.3 MJ/mol) were obtained over the 20 wt.% Ni/γ-Al2O3 catalyst at a 

SED of 28 kJ/l [162], but the reactants were balanced with Ar and the effective total 

flow rate was very low (only 3 ml/min), which is unsuitable for practical application. 
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Table 7.8 Comparison of the FPE in different plasma-catalytic systems 

Plasma reactor SED 

(kJ/l) 

Total feed 

flow rate 

(ml/min) 

CO2/CH4 

molar ratio 
Catalyst 

Conversion (%) Selectivity (%) ECH2 

(MJ/mol) 
FPE (%) Ref 

No Type CH4 CO2 Total H2 CO 

1 DBD 36 50 1:1 
10 wt.% Ni-5 wt.% 

Co/γ-Al2O3 
30.0 21.0 25.5 40.2 54.4 6.7 12.7 

This 

work 

11 DBD 37.5 800 1:1 Zeolite NaX 20.1 15.3 17.7 
 

40.1 
 

6.4 [158] 

12 DBD 50 600 1:1 Zeolite NaY 34.7 15.2 25.0 23.2 45.0 13.9 9.3 [42] 

13 DBD 150 200 1:3 Zeolite A 54.8 25.3 47.4 48.1 26.8 8.5 8.6 [160] 

14 DBD 260 30 1:1 7 wt.% Ni/γ-Al2O3 55.5 32.6 44.0 53.5 63.9 19.6 3.2 [168] 

15 DBD 60 50 1:1 10 wt.%Ni/γ-Al2O3  56.4 30.2 43.3 31.0 52.4 7.7 16.4 [91] 

16 DBD 28 3 1:2 20 wt.% Ni/γ-Al2O3 35.9 20.0 30.6 57.1 37.0 2.3 12.0 [162] 

17 DBD 252 30 1:1 5 wt.% Ni/ γ-Al2O3 97.0 99.8 98.4 100.0 97.0 5.8 8.4 [165] 

18 DBD 116.9 50 1:1 26 wt.% Ni/γ-Al2O3 18.0 12.4 15.2 45.5 23.8 32.0 1.3 [107] 

19 DBD 120 30 1:1 
12 wt.%Ni-12 wt.% 

Cu/γ-Al2O3 
69.8 75.3 72.6 56.6 76.0 6.8 8.5 [116] 

20 DBD 225 40 1:1 LaNiO3@SiO2  88.3 77.8 83.0 83.7 92.4 6.8 7.3 [173] 

21 DBD 66.7 22.5 2:3 Perovskite LaNiO3 54.5 73.0 61.9 38.2 50.4 6.0 8.5 [315] 

22 Corona 18 60 2:1 Ni/Al2O3 43.8 35.5 38.2 74.9 89.6 1.8 28.8 [272] 

 

 

mailto:LaNiO3@SiO2
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Figure 7.20 Comparison of the maximum FPE in the plasma-catalytic dry reforming 

of CH4 as a function of SED. 

 

In this study, the plasma-catalytic dry reforming of CH4 using Ni-based 

catalysts is performed at low temperatures and atmospheric pressure (without extra 

heating). Compared with simple catalysts in the previous studies, the suitable 

supports for the Ni-based catalysts have been screened and the optimal Ni loading on 

the suitable support for high reaction performance have also been determined. The 

Ni-based bimetallic catalysts are further developed to improve their plasma-catalytic 

activity and stability, and to decrease the carbon deposition on the spent catalysts. 

The optimised Ni-Co bimetallic catalyst has shown the stronger carbon resistance 

than that in both conventional thermal-catalytic and previous plasma-catalytic dry 

reforming of CH4. The highest FPE of 12.7% is achieved in the presence of the 

10Ni5Co catalyst at a SED of 36 kJ/l and CO2/CH4 molar ratio of 1:1 with a total 

feed flow rate of 50 ml/min, which is comparable to the results obtained in the 

published non-thermal plasma reactors, except that reported in the corona reactor 

(28.8% in reactor No 22) [272]. Nevertheless, characterised by the localised 

breakdown, corona discharge may not have a very large treatment capacity for the 

plasma-catalytic dry reforming of CH4 due to the limited reaction volume [147]. 

Contrarily, the DBD reactor can effectively utilise the entire electrode area for 

plasma reactions and a large scale DBD reactor can be obtained by integrating a 

number of coaxial tubular reactors, which has been demonstrated in the large scale 

water treatment using DBD reactors at water purification plants [316]. This enables 

DBD reactors to treat gases at a high flow rate and results in their high potential for 

industrial scale application. The research related to the Ni catalysts contributes to the 

exploration of the feasible catalysts for the plasma-catalytic dry reforming process 

and the further development of the plasma-catalysis system. In addition, renewable 

energy (e.g. solar and wind energy) is witnessing rapid development worldwide, and 

the renewable energy plants are generally established in remote areas. Its 

compactness and fast start-up and switch-off enable the plasma system to be easily 
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established in those areas and integrated with the renewable energy sources. The 

utilisation of the plasma-catalytic process supplied by energy from renewable 

sources will provide a promising approach for storage and transportation, in the 

chemical form, of the electricity produced during peak periods; in this way, the 

operating cost of the plasma-catalytic process will be significantly reduced. 

Moreover, no more CO2 will be emitted into the atmosphere in this process, thus 

achieving carbon neutrality.   

7.5 Conclusions 

In this chapter, the Ni-based bimetallic catalysts are introduced into the 

coaxial DBD reactor for the plasma-catalytic dry reforming of CH4. The combination 

of plasma with the bimetallic catalysts improves the performance of the plasma-

catalytic reforming reaction, regardless of the discharge power. Among the three Ni-

based bimetallic catalysts - 10Ni3Co, 10Ni3Cu, 10Ni3Mn - the 10Ni3Co catalyst 

shows the best catalytic performance due to its large amount of the strong basic sites, 

the interaction between Ni and Co, as well as the relative high specific surface area.  

For the Ni-Co bimetallic catalysts with different Co loadings, it is found that 

the 10Ni5Co catalyst gives the highest catalytic performance, with the highest CO2 

conversion of 30.9% and CH4 conversion of 50.8% at the discharge power of 60 W 

and a total feed flow rate of 50 ml/min. In addition, it was found that the carbon 

resistance is firstly enhanced by increasing the Co loading and then is decreased 

when the Co loading is beyond its optimal value. This is possibly due to the variation 

of physicochemical properties (i.e. metal particle size and specific surface area) and 

the amount of the basic sites on these catalysts. The 10Ni5Co catalyst shows the 

highest carbon resistance, which is higher than that in the thermal-catalytic reforming 

process using a similar Ni-Co bimetallic catalyst.  

Considering the reaction performance, reasonable total carbon conversion, 

EC for H2 production and FPE of the plasma-only process are obtained in this study, 

compared with those values available from literature related to the dry reforming of 

CH4 in atmospheric pressure non-thermal plasma reactors. For the plasma-catalytic 

dry reforming process, the maximum FPE is obtained with a promising EC for H2 

production, which is comparable to those in the published works. It is expected that 

the integration of the plasma-catalytic process with renewable energy sources will 

give it high potential for use on an industrial scale. 
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CHAPTER EIGHT CONCLUSIONS AND FUTURE 

WORK 

8.1 Conclusions 

 Climate change due to greenhouse gas emission has attracted worldwide 

attention, along with the need to find new methods of producing clean and 

sustainable energy. Carbon dioxide utilisation will benefit humans from the 

perspectives of energy utilisation and environmental protection. In this thesis, 

worldwide energy consumption and greenhouse gas emission are firstly described, 

followed by current strategies for CO2 remediation and utilisation, including policy 

and technological efforts. As an attractive and promising alternative to the thermal 

catalytic route for the conversion of CO2 into value-added fuels and chemicals, the 

non-thermal plasma technology is employed. Specifically, direct CO2 decomposition 

and dry reforming of CH4 are performed in a coaxial DBD reactor. The pursuit of 

suitable catalysts for the plasma-catalytic processed of these two reactions is also 

carried out to enhance the energy efficiency of the plasma process. The main 

conclusions are summarised as follows: 

 (1) In the plasma decomposition of CO2, the effects of the processing 

parameters - frequency, discharge power, feed flow rate, discharge length, discharge 

gap and dielectric thickness - on the performance of CO2 decomposition (CO2 

conversion and energy efficiency) are systematically investigated. Empirical 

equations relating the CO2 decomposition performance and processing parameters 

are established for sensitivity analysis. It is found that CO2 is stoichiometrically 

decomposed into CO and O2 and no carbon deposition is observed. The discharge 

gap plays the most important role in CO2 conversion, whilst discharge power most 

significantly affects the energy efficiency. 

 (2) The enhancement in the performance of the plasma CO2 decomposition is 

achieved by introducing a screw-type inner electrode and an Al foil outer electrode. 

The local electric field near the inner electrode surface is enhanced by the sharp edge 

of the screw electrode, whilst the larger effective cover area is obtained by using the 

Al foil outer electrode, all of these factors contribute to the intensification of the 

filamentary discharges and the generation of more energetic electrons and reactive 

species, and consequently lead to higher CO2 conversion and energy efficiency. With 

the screw-type inner electrode and the Al foil outer electrode, CO2 conversion and 

energy efficiency is increased by 21.3% and 21.4%, respectively, at a SED of 120 

kJ/l. 

 (3) In the plasma-photocatalytic conversion of CO2 using BaTiO3 and TiO2 as 

photocatalysts, the gas temperature of the plasma (almost the same as the 

temperature on the surface of the photocatalysts) is increased by 6-11 
o
C compared to 
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that in the CO2 discharge in the absence of a catalyst at a SED of 28 kJ/l. A 

synergistic effect is generated from the combination of non-thermal plasma with 

photocatalysts in the plasma-catalytic CO2 decomposition. CO2 conversion and 

energy efficiency are both increased by a factor of 2.5 compared to the plasma 

reaction in the absence of a catalyst. This phenomenon is mainly attributed to both 

the physical effect (enhancement in the electric field and the mean electron energy) 

induced by the presence of the photocatalysts in the discharge volume and the 

photocatalytic surface reactions driven by the non-thermal plasma (energetic 

electrons and reactive species generated in the discharge contribute to the chemical 

reactions). It is suggested that the highly energetic electrons generated by plasma is 

the main driving force to activate the photocatalysts for CO2 conversion. 

 (4) In the packed-bed DBD reactor, by integrating the packing pellets 

(BaTiO3 and glass beads) into the DBD reactor to form a packed-bed, the discharge 

behaviour changes from a typical filamentary discharge with no packing to a 

combination of filamentary discharge and surface discharge at a constant discharge 

power. An enhancement in CO2 conversion and energy efficiency in the packed-bed 

DBD reactor are also achieved due to the increase in the electric field and mean 

electron energy resulting from the presence of the packing pellets. For BaTiO3, the 

effect of its photocatalytic properties to the enhanced conversion of CO2 is also 

considered. A maximum CO2 conversion of 28.2% is obtained when BaTiO3 is used 

at a SED of 60 kJ/l. 

 (5) For the dry reforming of CH4, different reaction mechanisms are found to 

exist in the thermal-catalytic and the plasma reforming processes. This can be 

ascertained by comparing the reaction performance of these two processes using the 

thermodynamic equilibrium calculation and the experiments of dry reforming of CH4 

in the plasma-only process. In the thermal dry reforming process, pyrolysis is the 

main reaction mechanism; while in the plasma process, reactions related to electrons, 

radicals and reactive species are of great importance. 

 (6) The synergistic effects in the plasma-catalytic dry reforming of CH4 are 

observed when the Ni-based catalysts are placed in the DBD plasma reactor. Due to 

the higher specific surface area and larger amount of basic sites compared with other 

catalysts (Ni/Mg, Ni/Si and Ni/Ti), the Ni/Al catalyst shows the highest conversion 

of reactants, the highest yield and selectivity of desired products and the lowest 

carbon deposition. The maximum conversions of CO2 and CH4 are increased by 10.1% 

and 5.7% when the Ni/Al catalyst is used compared to these obtained in the plasma-

only process at a discharge power of 60 W.  

(7) The optimum Ni loading in the Ni/γ-Al2O3 catalyst for the plasma-

catalytic dry reforming of CH4 in different operating conditions is found to be around 

10 wt.% through ANOVA in the CCD based RSM. The effect of the processing 

parameters (e.g. discharge power, total feed flow rate, CO2/CH4 molar ratio and Ni 



 Chapter Eight 

192 

 

loading) and their interactions on the performance of the dry reforming process is 

also analysed. Based on the optimisation of the processing variables, the optimum 

processing parameter setting for the highest reactant conversion, product yield and 

FPE is as follows: A discharge power of 60 W, a total flow rate of 56.1 ml/min, a 

CO2/CH4 molar ratio of 1.03 and a Ni loading of 9.5 wt.%.  

 (8) Further enhancement of the plasma-catalytic reforming performance is 

achieved by introducing Ni-based bimetallic catalysts into the DBD reactor. The 

10Ni3Co catalyst shows the highest plasma-catalytic ability, with maximum reactant 

conversions and target product yields and selectivities due to the interaction between 

Ni and Co. The highest carbon resistance is also observed in the 10Ni3Co catalyst 

compared with the other bimetallic catalysts (10Ni3Cu, 10Ni3Mn and 10Ni). In 

addition, an optimum Co loading (10Ni5Co) is detected in the Ni-Co bimetallic 

catalyst, which gives the best plasma-catalytic performance. The maximum CO2 and 

CH4 conversion is 30.9% and 50.7% when the 10Ni5Co catalyst is used at a 

discharge power of 60W. This optimum bimetallic catalyst also shows the maximum 

carbon resistance, reflected by the minimum carbon deposition value of 2.1% when 

the catalyst is involved in the plasma dry reforming reaction at a discharge power of 

50 W for 150 min. This minimum carbon deposition is lower than that in the 

conventional thermal catalytic reforming of CH4 using similar Ni-Co bimetallic 

catalysts at higher temperatures. 

 (9)  The maximum FPE for the plasma-catalytic dry reforming of CH4 is 

12.7%, higher than most of the previous results obtained in atmospheric non-thermal 

plasma reactors. The integration of the non-thermal plasma-catalytic process with 

renewable energy sources (e.g. solar and wind energy) is expected to be a promising 

approach to transport and store the surplus energy from renewable energy sources in 

a chemical form.  

8.3 Future work 

This thesis is mainly aimed at investigating the performance of the direct 

decomposition of CO2 into CO and O2 and dry reforming of CH4, to produce syngas 

and other value-added fuels and chemicals, in a plasma-catalytic reactor in order to 

pursue a cost-effective and environmentally-friendly method of controlling 

greenhouse gas emissions. There is still much room for improvement when it comes 

to the efficiency of the plasma-catalytic process. 

 (1) Currently, the detailed mechanism of the plasma-catalysis process in the 

plasma-catalytic reforming reaction is still unclear. Much work is required to reveal 

the interaction between the plasma and catalyst and to gain a complete understanding 

of the fundamental mechanisms leading to the synergy. It is suggested that more 

detailed catalyst characterisation should be performed based on the work in this 
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thesis, such as transmission electron microscopy (TEM), H2-temperature 

programmed reduction (H2-TPR), etc.  

(2) New nanocatalysts (e.g. LaNiO3@SiO2) have been used in the previous 

plasma-catalytic dry reforming of CH4, but the energy efficiency is still relatively 

low. Further investigations are required to develop suitable catalysts for plasma-

catalysis process, including study on the effective promoters, preparation methods, 

calcination approaches, reducing environment as well as the selection of plasma 

reactor and the interaction between plasma and catalysts. Several important factors 

should be paid attention to during this process, such as high catalytic activity towards 

the desired reactions, inhibition of processes that lead to undesired by-products, high 

surface area of the active species to enhance reaction rates, high activity and stability 

at the low temperature related to that in the plasma reactor, etc.   

(3) For the decomposition of CO2, the effective catalysts for the plasma 

process are very limited, so the exploration of catalysts with high redox ability and 

low-temperature activity should be emphasised; for the plasma-catalytic dry 

reforming of CH4, the catalysts used are mainly the same as those for the thermal-

catalytic process. It would therefore be useful to develop the special catalysts for the 

plasma-assisted conversion of CO2 and other plasma processes. This research into 

new catalysts for plasma processes should consider the catalysts’ dielectric properties, 

size and porosity, which have substantial influence on the plasma physical properties. 

Additionally, the stability of the catalysts in the plasma processes should also be 

taken into consideration.  

 (4) In this thesis, only the pure reactant gases are considered in the 

experiments, while in practical applications, other gases in differing amounts (such 

as air, O2, N2, C2-C4+ hydrocarbons and H2S) are generally present in the feed 

mixture. The effects of these gases on the plasma process and the effectiveness of the 

catalysts should be taken into consideration in future experiments. 
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