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Abstract. In multiagent environments, the capability of learning is
important for an agent to behave appropriately in face of unknown
opponents and dynamic environment. From the system designer’s
perspective, it is desirable if the agents can learn to coordinate to-
wards socially optimal outcomes, while also avoiding being exploit-
ed by selfish opponents. To this end, we propose a novel gradient as-
cent based algorithm (SA-IGA) which augments the basic gradient-
ascent algorithm by incorporating social awareness into the policy
update process. We theoretically analyze the learning dynamics of
SA-IGA using dynamical system theory and SA-IGA is shown to
have linear dynamics for a wide range of games including symmetric
games. The learning dynamics of two representative games (the pris-
oner’s dilemma game and coordination game) are analyzed in details.
Based on the idea of SA-IGA, we further propose a practical multia-
gent learning algorithm, called SA-PGA, based on Q-learning update
rule. Simulation results show that SA-PGA agent can achieve higher
social welfare than previous social-optimality oriented Conditional
Joint Action Learner (CJAL) and also is robust against individually
rational opponents by reaching Nash equilibrium solutions.

1 Introduction

In multiagent systems, the ability of learning is important for an a-
gent to adaptively adjust its behaviors in response to coexisting a-
gents and unknown environments in order to optimize its perfor-
mance. Multiagent learning algorithms have received extensive in-
vestigation in the literature, and lots of learning strategies [5, 13, 3]
have been proposed to facilitate coordination among agents.

The multi-agent learning criteria proposed in [4] require that an
agent should be able to converge to a stationary policy against some
class of opponents (convergence) and the best-response policy a-
gainst any stationary opponent (rationality). If both agents adopt a
rational learning strategy in the context of repeated games and also
their strategies converge, then they will converge to a Nash equilib-
rium of the stage game. Indeed, convergence to Nash equilibrium
has been the most commonly accepted goal to pursue in multiagen-
t learning literature. Until now, a number of gradient-ascent based
multiagent learning algorithms [17, 4, 1, 21] have been sequential-
ly proposed towards converging to Nash equilibrium with improved
convergence performance and more relaxed assumptions (less infor-
mation is required). Under the same direction, another well-studied
family of multiagent learning strategies is based on reinforcement
learning (e.g., Q-learning [20]). Representative examples include dis-
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tributed Q-learning in cooperative games [10], minimax Q-learning
in zero-sum games [11], Nash Q-learning in general-sum games [9],
and other extensions [12, 5], to name just a few.

1’s payoff
2’s payoff

Agent 2’s actions

C D

Agent 1’s
actions

C 3/3 0/5

D 5/0 1/1

Table 1: The Prisoner’s Dilemma Game

All the aforementioned learning strategies pursue converging to
Nash equilibrium under self-play, however, Nash equilibrium solu-
tion may be undesirable in many scenarios. One well-known example
is the prisoner’s dilemma (PD) game shown in Table 1. By converg-
ing to the Nash equilibrium (D,D), both agents obtain the payoff
of 1, while they could have obtained a much higher payoff of 3 by
coordinating on the non-equilibrium outcome (C,C). In situations
like the PD game, converging to the socially optimal outcome under
self-play would be more preferred. To address this issue, one natural
modification for a gradient-ascent learner is to update its policy along
the direction of maximizing the sum of all agents’ expected payoff
instead of its own. However, in an open environment, the agents are
usually designed by different parties and may have not the incentive
to follow the strategy we design. The above way of updating strate-
gy would be easily exploited and taken advantage by (equilibrium-
driven) self-interested agents. Thus it would be highly desirable if
an agent can converge to socially optimal outcomes under self-play
and Nash equilibrium against self-interested agents to avoid being
exploited.

In this paper, we first propose a new gradient-ascent based algo-
rithm (SA-IGA) which augments the basic gradient ascent algorith-
m by incorporating social awareness into the policy update process.
A SA-IGA agent holds a social attitude to reflect its socially-aware
degree, which can be adjusted adaptively based on the relative per-
formance between its own and its opponent. A SA-IGA agent seeks
to update its policy in the direction of increasing its overall payoff
which is defined as the average of its individual and the social payof-
f weighted by its socially-aware degree. We theoretically show that
for a wide range of games (e.g., symmetric games), the dynamics of
SA-IGAs under self-play exhibits linear characteristics. For general-
sum games, it may exhibit non-linear dynamics which can still be
analyzed numerically. The learning dynamics of two representative
games (PD game and coordination game) are analyzed in details.
Like previous theoretical multiagent learning algorithms, SA-IGA



also requires additional assumption of knowing the opponent’s poli-
cy and the game structure.

To relax the above assumption, we then propose a practical gradi-
ent ascent based multiagent learning strategy, called Socially-aware
Policy Gradient Ascent (SA-PGA). SA-PGA relaxes the above as-
sumptions by estimating the performance of its own and the oppo-
nent using Q-learning techniques. We empirically evaluate its perfor-
mance in different types of benchmark games and simulation results
show that SA-PGA agent outperforms previous learning strategies
in terms of maximizing the social welfare and Nash product of the
agents. Besides, SA-PGA is also shown to be robust against individu-
ally rational opponents and converges to Nash equilibrium solutions.

The remainder of the paper is organized as follows. Section 2 re-
views normal-form game and the basic gradient ascent approach.
Section 3 introduces the SA-IGA algorithm and analyzes its learning
dynamics theoretically. Section 4 presents the practical multiagent
learning algorithm SA-PGA in details. In Section 5, we extensive-
ly evaluate the performance of SA-PGA under various benchmark
games. Lastly we conclude the paper and point out future directions
in Section 6.

2 Background
2.1 Normal-form games
In a two-player, two-action, general-sum normal-form game, the pay-
offs for each player i ∈ {r, c} can be specified by a matrix as follows,

Ri =

[
ri11 ri12
ri21 ri22

]
Each player i simultaneously selects an action from its action set

Ai = {1, 2}, and the payoff of each player is determined by their
joint actions. For example, if player r selects the pure strategy of
action 1 while player c selects the pure strategy of action 2, then
player r receives a payoff of rr12 and player c receives the payoff of
rc12.

Apart from pure strategies, each player can also employ a mixed
strategy to make decisions. A mixed strategy can be represented as
a probability distribution over the action set and a pure strategy is
a special case of mixed strategies. Let pr ∈ [0, 1] and pc ∈ [0, 1]
denote the probability of choosing action 1 by player c and player
r respectively. Given a joint mixed strategy (pr, pc), the expected
payoffs of player c and player r can be specified as follows,

Vr (pr, pc) =rr11prpc + r12pr (1− pc) + rr21 (1− pr) pc

+ rr22 (1− pr) (1− pc)

Vc (pr, pc) =rc11prpc + rc12pr (1− pc) + rc21 (1− pr) pc

+ rc22 (1− pr) (1− pc)

(1)

respectively.
A joint strategy is called a Nash Equilibrium (NE), if no player

can get a better expected payoff by changing its current strategy u-
nilaterally. Formally, (p∗r , p∗c) ∈ [0, 1]2 is a NE, iff Vr (p

∗
r , p

∗
c) ≥

Vr (pr, p
∗
c) and Vc (p

∗
r , p

∗
c) ≥ Vc (p

∗
r , pc) for any (pr, pc) ∈ [0, 1]2.

2.2 Gradient Ascent (GA)
When a game is repeatedly played, an individually rational player up-
dates its strategy towards maximizing its expected payoffs. A player
i employing GA-based algorithms updates its policy towards the di-
rection of its expected reward gradient, which can be shown in the
following equations.

∆p
(t+1)
i ← η

∂Vi

(
p(t)

)
∂pi

(2)

p
(t+1)
i ← Π[0,1]

(
p
(t)
i +∆p

(t+1)
i

)
(3)

where parameter η is the gradient step size, and Π[0,1] is the projec-
tion function mapping the input value to the valid probability range
of [0, 1], used to prevent the gradient moving the strategy out of the
valid probability space. Formally, we have,

Π[0,1] (x) = argminz∈[0,1] |x− z| (4)

To simplify the notations, let us denote ui = ri11+ri22−ri12−ri21,
ci = ri12−ri22 and di = ri21−ri22. For the two-player case, the above
way of GA-based updating in Equation 2 and 3 can be represented as
follows,

p(t+1)
r ← Π[0,1]

(
p(t)r + η

(
urp

(t)
c + cr

))
(5)

p(t+1)
c ← Π[0,1]

(
p(t)c + η

(
ucp

(t)
r + dc

))
(6)

In the case of infinitesimal gradient step size (η → 0), the learn-
ing dynamics of the players can be modeled as a system of differen-
tial equations and analyzed using dynamic system theory [17]. It is
proved that the agents will converge to a Nash equilibrium, or if the
strategies themselves do not converge, then their average payoffs will
nevertheless converge to the average payoffs of a Nash equilibrium
[17].

Following [17], various GA-based algorithms have been proposed
to improve the convergence performance towards Nash equilibria and
representative examples include IGA-WoLF (Win or Learn Fast) [4],
Weighted Policy Learner (PWL) [1] and Gradient Ascent With Policy
Prediction (IGA-PP) [21]. In contrast, in this work, we seek to incor-
porate the social awareness into GA-based strategy update and aim
at improving the social welfare of the players under self-play rather
than pursuing Nash equilibrium solutions. Meanwhile, individually
rational behavior is employed when playing against a selfish agen-
t. Similar idea of adaptively behaving differently against different
opponents was also employed in previous algorithms [12, 8, 14, 6].
However, all the existing works focus on maximizing an agent’s indi-
vidual payoff against different opponents in different types of games,
but do not directly take into consideration the goal of maximizing so-
cial welfare (e.g., cooperate in the prisoner’s dilemma game).

3 Socially-aware Infinitesimal Gradient Ascent
(SA-IGA)

In our daily life, people usually do not always behave as a purely
individually rational entity and seeks to achieve Nash equilibrium
solutions. For example, when two person subjects play a PD game,
reaching mutual cooperation may be observed frequently. Similar
phenomenon have also been observed in extensive human-subject
based experiments in games such as the Public Good game and Ul-
timatum game, in which human subjects are usually found to obtain
much higher payoff by mutual cooperation rather than pursuing Nash
equilibrium solutions. If the above phenomenon is transformed into
computational models, it indicates that an agent may not only up-
date its policy in the direction of maximizing its own payoff, but also
take into consideration other’s payoff. We call this type of agents as
socially-aware agents.

In this paper, we incorporate the social awareness into the
gradient-ascent based learning algorithm. In this way, apart from



learning to maximizing its individual payoff, an agent is also e-
quipped with the social awareness such that it can (1) reach mutu-
ally cooperative solutions faced with another socially-aware oppo-
nent (self-play); (2) behave in a purely individually rational manner
against a purely rational opponent.

Specifically, for each agent i ∈ {r, c},we distinguish two types of
expected payoffs, namely V idv

i and V soc
i . The payoff V idv

i (pr, pc)
and V soc

i (pr, pc) represent the individual and social payoff (the av-
erage payoff of both players) that agent i perceives under the joint
strategy (pr, pc) respectively. The payoff V idv

i (pr, pc) follows the
same definition as Equation (1) and the payoff V soc

i (pr, pc) can be
defined as follows,

V soc
i (pr, pc) =

1

2
[V idv

r (pr, pc) + V idv
c (pr, pc)],∀i ∈ {r, c} (7)

Each agent i adopts a social attitude wi to reflect its socially-
aware degree. The social attitude intuitively models an agent’s so-
cially friendly degree towards its partner. Specifically, it is used as
the weighting factor to adjust the relative importance between V idv

i

and V soc
i , and agent i’s overall expected payoff is defined as follows,

Vi (pr, pc) = (1− wi)V
idv
i (pr, pc) + wiV

soc (pr, pc) , ∀i ∈ {r, c}
(8)

Each agent i updates its strategy in the direction of maximizing
the value of Vi. Formally we have,

∆pi ← ηp
∂Vi (pr, pc)

∂pi

pi ← Π[0,1] (pi +∆pi)

(9)

where parameter ηp is the gradient step size of pi. If wi = 0, it means
that the agent seeks to maximize its individual payoff only, which is
reduced to the case of traditional gradient-ascent updating; if w = 1,
it means that the agent seeks to maximize the sum of the payoffs of
both players.

Finally, each agent i’s socially-aware degree is adaptively adjusted
in response to the relative value of V idv

i and V soc
i as follows. During

each round, if player i′s own expected payoff V idv
i exceeds the value

of V soc, then player i increases its social attitude wi, (i.e., it becomes
more social-friendly because it perceives itself to be earning more
than the average). Conversely, if V idv

i is less than V soc t, then the
agent tends to care more about its own interest by decreasing the
value of wi. Formally we have,

wi =

{
Π[0,1] (wi +∆wi) if V idv

i > V soc
i

Π[0,1] (wi −∆wi) if V idv
i < V soc

i
(10)

where ∆wi is the adjustment step size of wi.

3.1 Theoretical Modeling and Analysis of SA-IGA
An important aspect of understanding the behavior of a multiagent
learning algorithm is theoretically modeling and analyzing its under-
lying dynamics [19, 15, 3]. In this section, we first show that the
learning dynamics of SA-IGA under self-play can be modeled as a
system of differential equations.

Based on the adjustment rules in Eq (9) and (10), the learning
dynamics of a SA-IGA agent can be modeled as a set of equations
in (11). For ease of exposition, we concentrate on a unconstrained
update equations by removing the policy projection function which

does not affect our qualitative analytical results. Any trajectory with
linear (non-linear) characteristic without constraints is still linear
(non-linear) when a boundary is enforced.

∆p
(t+1)
i ← ηp

∂Vi

(
p
(t)
r , p

(t)
c

)
∂pi

∆wt+1
i ← ηw(V

idv
i − V soc)

p
(t+1)
i ← p

(t)
i +∆p

(t+1)
i

w
(t+1)
i ← w

(t)
i +∆w

(t+1)
i

(11)

Substituting V idv
i and V soc

i by their definitions (Eq. (1) and (7)),
the learning dynamics of two SA-IGA agents can be expressed as
follows,

∆pt+1
r = ηp

[(
ur +

uc − ur

2
wt

r

)
ptc +

cc − cr
2

wt
r + cr

]
∆pt+1

c = ηp

[(
uc +

ur − uc

2
wt

c

)
ptr +

dr − dc
2

wt
c + dc

]
∆wt+1

r =

ηw
[
(ur − uc) p

t
rp

t
c + (cr − cc) p

t
r + (dc − dr) p

t
c + e

]
∆wt+1

c =

− ηw
[
(ur − uc) p

t
rp

t
c + (cr − cc) p

t
r + (dc − dr) p

t
c + e

]
(12)

where ui = ri11 + ri22 − ri12 − ri21, ci = ri12 − ri22,di = ri21 − ri22,
and e = rr22 − rc22 with i ∈ {r, c}.

As ηp → 0 and ηw → 0, it is straightforward to show that the
above equations become differential. Thus the unconstrained dynam-
ics of the strategy pair and social attitudes as a function of time is
modeled by the following system of differential equations:

ṗr =
(
ur +

uc − ur

2
wr

)
pc +

cc − cr
2

wr + cr

ṗc =
(
uc +

ur − uc

2
wc

)
pr +

dr − dc
2

wc + dc

ẇr = ε [(ur − uc) prpc + (cr − cc) pr + (dc − dr) pc + e]

ẇc = −ε [(ur − uc) prpc + (cr − cc) pr + (dc − dr) pc + e]

(13)

where ε = ηw
ηp

> 0.
Based on the above theoretical modeling, next we analyze the

learning dynamics of SA-IGA qualitatively as follows.

Theorem 1 SA-IGA has non-linear dynamics when ur ̸= uc.

Proof 1 From the system of differential equations in (13), it is s-
traightforward to verify that the dynamics of SA-IGA learners are
non-linear when ur ̸= uc due to the existence of wrpc, wcpr or
prpc in all equations.

Since SA-IGA’s dynamics are non-linear when ur ̸= uc, in gen-
eral we cannot obtain a closed-form solution, but we can still resort
to solve the equations numerically to obtain useful insight of the sys-
tem’s dynamics. Moreover, a wide range of of important games fall
into the category of ur = uc, in which the system of equations be-
come linear. Therefore, it allows us to use dynamic system theory to
systematically analyze the underlying dynamics of SA-IGA.

Theorem 2 SA-IGA has linear dynamics when the game itself is
symmetric.



1’s payoff
2’s payoff

Agent 2’s actions

action 1 action 2

Agent 1’s
actions

action 1 a/a c/d

action 2 d/c b/b

Table 2: The General Form of a Symmetric Game

Proof 2 A two-player two-action symmetric game can be represent-
ed in Table 2 in general. It is obvious to check that it satisfies the
constraint of ur = uc, given that ui = ri11 + ri22 − ri12 − ri21,
i ∈ {r, c}. Thus the theorem holds.

3.2 Dynamics Analysis of SA-IGA
Previous section mainly analyzed the dynamics of SA-IGA in a qual-
itative manner. In this section, we move to provide detailed analy-
sis of SA-IGA’s learning dynamics in two representative games: the
Prisoner’s Dilemma game (Table 3) (as a symmetric game example )
and Coordination game (Table 4) (as an asymmetric game example).
Specifically we analyze the SA-IGA’s learning dynamics by identi-
fying the existing equilibrium points, which provides useful insights
into understanding of SA-IGA’s dynamics.

Theorem 3 The dynamics of SA-IGA algorithm under Prisoner’s
Dilemma (PD) game have three types of equilibrium points:

1. (0, 0, w∗
r , w

∗
c ), where w∗

r , w
∗
c < min

{
2(T−R)
T−S

, 2(P−S)
T−S

}
;

2. (1, 1, w∗
r , w

∗
c ), where w∗

r , w
∗
c > max

{
2(T−R)
T−S

, 2(P−S)
T−S

}
;

3. (p∗, p∗, w∗, w∗), others

The first and second types of equilibrium points are stable, while the
last is not. We say an equilibrium point is stable if once the strategy
starts ”close enough” to the equilibrium (within a distance δ from
it), it will remain ”close enough” to the equilibrium point forever.

1’s payoff
2’s payoff

Agent 2’s actions

C D

Agent 1’s
actions

C R/R S/T

D T/S P/P

Table 3: The Prisoner’s Dilemma Game(where T > R > P > S)

Proof 3 Following the system of differential equations in Equations
(13), we can express the dynamics of SA-IGA in PD game as follows:

ṗr = (u) pc +
T − S

2
wr + S − P

ṗc = (u) pr +
T − S

2
wc + S − P

ẇr = ε (S − T ) (pr − pc)

ẇc = −ε (S − T ) (pr − pc)

(14)

where ε = ηw
ηp

> 0,u = R+ P − S − T .
We start with proving the last type of equilibrium points: If there

exit an equilibrium eq = (p∗r , p
∗
c , w

∗
r , w

∗
c )

T ∈ (0, 1)4, then we have
ṗi (eq) = 0 and ẇi (eq) = 0, i ∈ {r, c}. By solving the above

equations, we have p∗r = p∗c = S−T
2u

w∗+ P−S
u

and w∗ = w∗
r = w∗

c .
Since p∗r , p

∗
c ∈ (0, 1), then we have,

wr, wc > min

{
2 (T −R)

T − S
,
2 (P − S)

T − S

}
wr, wc < max

{
2 (T −R)

T − S
,
2 (P − S)

T − S

}
Then eq = (p∗r , p

∗
c , w

∗
r , w

∗
c )

T is an equilibrium. The stability of
eq can be verified using theories of non-linear dynamics[16]. By ex-
pressing the unconstrained update differential equations in the form
of ẋ = Ax+B, we have

A =


0 u T − S 0
u 0 0 T − S

ε (S − T ) ε (T − S) 0 0
ε (T − S) ε (S − T ) 0 0


After calculating matrix A’s eigenvalue, then we have λ1 = 0, λ2 =
u, λ3 = −u

2
+ k and λ4 = −u

2
− k, where k is a constant. Since

there exist an eigenvalue λ > 0, the equilibrium eq is not stable.
Next we turn to prove the first type of equilibrium. In this case, we

need to put the projection function back since we are dealing with
boundary cases. If pi = 0, i ∈ {r, c}, according to the known condi-

tions, we have wr, wc < min
{

2(T−R)
T−S

, 2(P−S)
T−S

}
. Combined with

the unconstrained update differential equations, we have limpi ṗi <
0, then pi remains unchanged. And because pr = pc = 0, then for
∀wi ∈ [0, 1], ẇi ((0, 0, w

∗
r , w

∗
c )) = 0, then ((0, 0, w∗

r , w
∗
c )) is an

equilibrium.
Because wr, wc < min

{
2(T−R)
T−S

, 2(P−S)
T−S

}
, there exist a δ > 0,

and a set U (eq, δ) =
{
x ∈ [0, 1]4 | |x− eq| < δ

}
, that for ∀x ∈

U (eq, δ), limpi ṗi < 0. Thus p will stablize on the point of 0. Also,
because

lim
t→0

ẇi = (S − T ) lim
t→0

(pr − pc) = (S − T ) lim
t→0

(0− 0) = 0

then w is also stable, and thus the equilibrium eq is stable.
The second type of equilibrium can be proved similarly, which is

omitted here.

Intuitively, for a PD game, from Theorem 3, we know that if both
SA-IGA players are initially sufficiently social-friendly (the value of
w is large than a certain threshold), then they will always converge to
mutual cooperation of (C,C). In other words, given that the value of
w exceeds certain threshold, the strategy point of (1, 1) (or (C,C)) in
the strategy space is asymptotically stable. If both players start with a
low socially-aware degree (w is smaller than certain threshold), then
they will always converge to mutual defection of (D,D) eventually.
For the rest of cases, there exist infinite number of equilibrium points
in-between the above two extreme cases, all of which are not stable.

Next we turn to analyze the dynamics of SA-IGA playing coordi-
nation game by identifying all equilibrium points. The general form
of a coordination game is shown in Table 4. Intuitively, both Nash
equilibria (C, C) and (D, D) can be part of the equilibrium points
depending on the agents’ social-aware degrees. Formally we have,

Theorem 4 The dynamics of SA-IGA algorithm under a coordina-
tion game have three types of equilibrium points:

1. (0, 0, w∗
r , w

∗
c ), with w∗

r = 1 ∧ w∗
c = 0 when P > p > s; w∗

r =
0 ∧ w∗

c = 1 when T < P < p; and
(
s−S
2

w∗
r < P − S

)
∧(

T−t
2

w∗
c < p− t

)
when P = p;



1’s payoff
2’s payoff

Agent 2’s actions

C D

Agent 1’s
actions

C R/r S/s

D T/t P/p

Table 4: The General Form of a Coordination Game (where R >
T ∧ P > S and r > s ∧ p > t)

2. (1, 1, w∗
r , w

∗
c ), with w∗

r = 1 ∧ w∗
c = 0 when R > r > t; w∗

r =
0 ∧ w∗

c = 1 when T < R < r; and
(
T−t
2

w∗
r < R− T

)
∧(

S−s
2

w∗
c < r − s

)
when R = r;

3. others non-boundary equilibrium points (p∗r , p
∗
c , w

∗
r , w

∗
c )

The first and second types of equilibrium points are stable, while
the last non-boundary equilibrium points are not. The definition of a
stable equilibrium point is the same as Theorem 3.

Proof 4 Following the system of differential equations in Equations
(13), we can express the dynamics of SA-IGA in coordination game
as follows:

ṗr =
(
ur +

uc − ur

2
wr

)
pc +

cc − cr
2

wr + cr

ṗc =
(
uc +

ur − uc

2
wc

)
pr +

dr − dc
2

wc + dc

ẇr = ε [(ur − uc) prpc + (cr − cc) pr + (dc − dr) pc + e]

ẇc = −ẇr

(15)

where ε = ηw
ηp

> 0,ur = R+P−S−T > 0, uc = r+p−s−t > 0,
cr = S − P , cc = s− p, dr = T − P , dc = t− p, and e = P − p.
We can see that the dynamic of coordination game is nonlinear when
ur ̸= uc. We start with proving the last type of equilibrium points
first:

If there exit a equilibrium eq = (p∗r , p
∗
c , w

∗
r , w

∗
c )

T ∈ (0, 1)4, then
there have ṗi (eq) = 0 and ẇi (eq) = 0, i ∈ {r, c}. By linearizing
the unconstrained update differential equations into the form of ẋ =
Ax+B in point eq = (p∗r , p

∗
c , w

∗
r , w

∗
c )

T , we have

A =


0 u∗

r a13 0
u∗
c 0 0 a24

−εa13 εa24 0 0
εa13 −εa24 0 0


where u∗

r = ur + uc−ur
2

w∗
r , u∗

c = uc + ur−uc
2

w∗
c , c∗r =

cc−cr
2

w∗
r + cr , and d∗c = dr−dc

2
w∗

c + dc. The parameters aij are
represented as functions of p∗r , p

∗
c , w

∗
r and w∗

c . Without loss of gener-
ality, we set ur ≥ uc. Because of ur ≥ uc > 0, and w∗

r , w
∗
c ∈ [0, 1],

we have u∗
r ∈ [uc+ur

2
,ur] and u∗

c ∈ [uc,uc+ur
2

], which means
u∗
c > u∗

c > 0.
After calculating matrix A’s eigenvalue in Matlab, we have an

eigenvalue λ1 = 0, a eigenvalue λ2 with its real part Re (λ2) > 0,
an eigenvalue λ3 with Re (λ3) < 0 and an eigenvalue λ4 close to
0. Since there exists an eigenvalue λ > 0, the equilibrium eq is not
stable[16].

Next we turn to prove the first type of equilibrium. In this case, we
need to put the projection function back since we are dealing with
boundary cases.

For the case P > p > s, we have V idv
i (eq) > V soc

i (eq), thus
ẇr (eq) > 0 and ẇc (eq) < 0, which means wr and wc will keeps
wr = 1 and wc = 0. Because ṗr (eq) = s−p+S−P

2
< 0 and

ṗc (eq) = t − p < 0, then pr and pc will keeps pr = 0 and pc =
0. According to the continuity theorem of differential equations [7],
(0, 0, 1, 0) is a stable equilibrium. The case p > P > T can be
proved similarly, which is omitted here.

For the case P = p, we have V idv
i = V soc

i , then ẇr (eq) =
−ẇc (eq) = ε

(
V idv
r − V soc

r

)
= 0. Because

(
T−t
2

w∗
c < p− t

)
, we

have ṗr = T−t
2

w∗
c + t − p < 0. Because

(
s−S
2

w∗
r < P − S

)
, we

have ṗc = s−S
2

w∗
c + S − P < 0. According to the continuity theo-

rem of differential equations, (0, 0, w∗
r , w

∗
c ) is a stable equilibrium.

The stability of the second type of equilibrium points can be proved
similarly, which is omitted here.

4 A Practical Algorithm

In SA-IGA, each agent needs to know the policy of its opponent and
the payoff matrix, which are usually not available before a repeat-
ed game starts. Based on the idea of SA-IGA, we relax the above
assumptions and propose a practical multiagent learning algorithm
called Socially-Aware Policy Gradient Ascent (SA-PGA). The over-
all flow of SA-PGA is shown in Algorithm 1. In SA-PGA, each agent
only needs to observe the payoffs of both agents by the end of each
round.

Algorithm 1 SA-PGA for player i

1: Let α ∈ (0, 1) and δp, δw ∈ (0, 1) be learning rates.
2: Initialize Qidv

i (a)← 0, Qop
i (a)← 0,Qi (a)← 0,

wi ← 0.5, πi (a)← 1
|Ai|

.
3: repeat
4: Select action a ∈ Ai according to mixed strategy πi with

suitable exploration.
5: Observing reward r and its opponent’s reward r′,

Qidv
i (a)← (1− α)Qidv

i (a) + αr,
Qop

i (a)← (1− α)Qop
i (a) + αr′,

6: Qi (a)←
(
1− w

2

)
Qidv

i (a) + w
2
Qop

i (a),
7: Average payoff Vi =

∑
a∈Ai

πi(a)Qi(a)
8: for each action a ∈ Ai do
9: πi (a)← πi (a) + δp (Qi (a)− Vi (s))

10: end for
11: πi ← Π△[πi]
12: V idv

i =
∑

a∈Ai
πi (a)Q

idv
i (a)

13: V op
i =

∑
a∈Ai

πi (a)Q
op
i (a)

14: V soc
i = 1

2

(
V idv
i + V op

i

)
15: wi ← wi + δw

(
V idv
i − V soc

i

)
16: until the repeated game ends

In SA-IGA, we know that agent i’s policy (the probability of se-
lection each action) is updated based on the partial derivative of the
expected value Vi, while the social attitude w is adjusted according
to the relative value of V idv

i and V soc
i . Here in SA-PGA, we first

estimate the value of V idv
i and V op

i using Q-values, which are up-
dated based on the immediate payoffs received during repeated in-
teractions. Specifically, each agent i keeps a record of the Q-value of
each action for both its own and its opponent (Qidv

i and Qop
i ) (Line

2). Both Q-values are updated following Q-learning update rules ac-
cordingly by the end of each round (Line 5). The overall Q-value of
each agent is calculated as the weighted average of Qidv

i and Qop
i

weighted by its social attitude w (Line 6). Based on the Q-values, we
estimate the value of Vi in SA-IGA as the expected Q-value over all
actions given the current policy (Line 7). However, Vi is simply an
estimated value instead of a function which cannot be differentiated.



To obtain the derivative of Vi with respect to different actions, we
estimate it as the difference between each action’s Q-value and the
expected Q-value over all actions (the value of Vi) (Line 9). Agent
i’s probability of selecting an action is updated in the direction of
the estimated derivative of the action’s expected value (Line 8-10).
After that, agent i’s policy is mapped back to the valid probability
space (Line 11). Similarly, the expected individual payoff and its op-
ponent’s payoff when agent i plays policy πi are estimated based on
its current policy and Q-values (Line 12-13). The value of V soc

i is
calculated as the average between V idv

i and V op
i (Line 14). Finally,

the social attitude of agent i is updated in the same way as we in-
troduced in SA-IGA based on the estimated V -values (Line 15). The
updating direction of wi is estimated as the difference between V idv

i

and V soc
i .

5 Experimental Evaluation
We start the performance evaluation with analyzing the learning per-
formance of SA-PGA under two-player two-action repeated games.

In general a two-player two-action game can be classified into
three categories[18]:

Category 1: (rr11−rr21)(rr12−rr22) > 0 or (rc11−rc12)(rc21−rc22) >
0. In this case, each player has a dominant strategy and thus the
game only has one pure strategy NE.

Category 2: (rr11 − rr21)(r
r
12 − rr22) < 0 and (rc11 − rc12)(r

c
21 −

rc22) < 0 and (rr11 − rr21)(r
c
12 − rc22) > 0. In this case, there are

two pure strategy NEs and one mixed strategy NE.
Category 3: (rr11 − rr21)(r

r
12 − rr22) < 0 and (rc11 − rc12)(r

c
21 −

rc22) < 0 and (rr11 − rr21)(r
c
12 − rc22) < 0. In this case, there only

exists one one mixed strategy NE.

where rrij and rrij are payoffs of player r and player c respectively
when player r takes action i while player c takes action j. We select
one representative game for each category for illustration.

5.1 Category 1
For category 1, we consider the PD game as shown in Table 1. In this
game, both players have one dominant strategy D, and (D,D) is the
only pure strategy NE, while there also exists one socially optimal
outcome (C,C) under which both players can obtain higher payoffs.

Figure 1(a) show the learning dynamics of the practical SA-PGA
algorithm playing the PD game. The x-axis p1 represents player 1’s
probability of playing action C and the y-axis p2 represents player
2’s probability of playing action C. We randomly selected 20 initial
policy points as the starting point for the SA-PGA agents. We can
observe that the SA-PGA agents are able to converge to the mutual
cooperation equilibrium point starting from different initial policies.

Figure 1(b) illustrates the learning dynamics predicted by the the-
oretical SA-IGA approach. Similar to the setting in Figure 1(a), the
same set of initial policy points are selected and we plot all the learn-
ing curves accordingly. We can see that for each starting policy point,
the learning dynamics predicted from the theoretical SA-IGA is well
consistent with the learning curves from simulation. This indicates
that we can better understand and predict the dynamics of SA-PGA
algorithm using its corresponding theoretical SA-IGA model.

5.2 Category 2
For category 2, we consider the CG game as shown in Table 5. In
this game, there exist two pure strategy Nash equilibria (C, D) and
(D, C), and both of them are also socially optimal.

Figure 2(a) illustrates the learning dynamics of the practical SA-
PGA algorithm playing a CG game. The x-axis p1 represents play-
er 1’s probability of playing action C and the y-axis p2 represents
player 2’s probability of playing action C. Similar to the case of PD
game, 20 initial policy points are randomly selected as the starting
points. We can see that the SA-PGA agents can converge to either of
the aforementioned two equilibrium points depending on the initial
policies they start with.

Figure 2(b) shows the learning dynamics predicted by the theo-
retical SA-IGA approach. Similar to the setting in Figure 2(a), we
adopt the same set of 20 initial policy points for comparison pur-
pose. All the learning curves starting from these 20 policy points
are drawn accordingly. We can observe that for each starting policy
point, the learning dynamics predicted from the theoretical SA-IGA
is well consistent with the learning curves obtained from simulation.
Therefore, the theoretical model can facilitate better understanding
and predicting the dynamics of SA-PGA algorithm.

1’s payoff
2’s payoff

Agent 2’s actions

C D

Agent 1’s
actions

C 3/4 0/0

D 0/0 4/3

Table 5: Coordination game (Category 2)

5.3 Category 3

The game we use in Category 3 is shown in Table 6. In this game,
there only exist one mixed strategy Nash equilibrium, while the pure
strategy outcome (C,D) is socially optimal.

Figure 3(a) illustrates the learning dynamics of the practical SA-
PGA algorithm playing the game in Table 6. The x-axis p1 and y-axis
p2 represent player 1’s probability of playing action C and player 2’s
probability of playing action C respectively. Similar to the previous
cases, 20 initial policy points are randomly selected as the starting
points. From Figure 3(a), we can see that the SA-PGA agents can
always converge to the socially optimal outcome (C,D) no matter
where the initial policies start with.

Figure 3(b) presents the learning dynamics of agents predicted by
the theoretical SA-IGA approach. Similar to the setting in Figure
3(a), we adopt the same set of 20 initial policy points for comparison
purpose, and the corresponding learning curves are drawn accord-
ingly. From Figure 3(b), we can observe that for each starting policy
point, the theoretical SA-IGA model can well predict the simula-
tion results of SA-PGA algorithm. Therefore, better understanding
and insights of the dynamics of SA-PGA algorithm can be obtained
through analyzing its corresponding theoretical model.

1’s payoff
2’s payoff

Agent 2’s actions

C D

Agent 1’s
actions

C 3/2 4/4

D 1/3 5/1

Table 6: An example game of Category 3
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Figure 1: The Learning Dynamics of SA-IGA and SA-PGA in PD game (parameter wr(0) = wc(0) = 0.85, δp = 0.001, α = 0.8 and
ε = 0.02 )
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Figure 2: The Learning Dynamics of SA-IGA and SA-PGA in coordination game (parameter wr(0) = wc(0) = 0.85, δp = 0.001, α = 0.8
and ε = 0.02 )
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Figure 3: The Learning Dynamics of SA-IGA and SA-PGA in game with one mix NE (parameter wr(0) = wc(0) = 0.85, δp = 0.001,
α = 0.8 and ε = 0.02 )



5.4 Performance in General-sum Games

In this section we turn to evaluate the performance of SA-PGA with
previous representative learning strategies CJAL [2] and WoLF-PHC
[4] in two-player’s repeated games under self-play. CJAL is select-
ed since this algorithm is specifically designed to enable agents to
achieve mutual cooperation (i.e., maximizing social welfare) instead
of inefficient NE for games like prisoner’s dilemma. WoLF-PHC is
selected as one representative NE-oriented algorithm for baseline
comparison purpose. For all previous strategies the same parameter
settings used in their original papers are adopted.

We use all possible structurally distinct two-player, two-action
conflict games as a testbed for SA-PGA. In each game, each play-
er ranks the four possible outcomes from 1 to 4.We use the rank of
an outcome as the payoff to that player for any outcome. We perform
the evaluation under 100 randomly generated games with strict or-
dinal payoffs. We perform 10,000 interactions for each run and the
results are averaged over 20 runs for each game.

We compare their performance based on the the following two cri-
teria: utilitarian social welfare and Nash social welfare. Utilitarian
social welfare is the sum of the payoffs obtained by the two play-
ers in their converged state, averaged over 100 randomly generated
games. Nash social welfare is the product of the payoffs obtained
by two players in their converged state, averaged over 100 random-
ly generated games. Both criteria reflect the system-level efficiency
of different learning strategies in terms of the total payoffs received
for the agents. Besides, Nash social welfare also partially reflects
the fairness in terms of how equal the agents’ payoffs are. The over-
all comparison results are summarized in Table 7. We can see that
SA-IGA outperforms the previous CJAL strategy under both criteria.
The WoLF-PHC strategy is designed to achieve NE and thus can on-
ly achieve the same level of performance as adopting NE solutions.

Table 7: Performance comparison with CJAL and WoLF-PHC

Utilitarian Social
Welfare

Nash Product

SA-PGA (our strategy)
(wr(0) = wc(0) = 0.85)

7.241± 0.003 12.706± 0.015

CJAL [2] 6.504± 0.032 10.887± 0.114
WoLF-IGA [4] 6.536± 0.004 10.943± 0.145

5.5 Against Selfish Agents

If a learning agent is facing selfish agents that attempt to exploit
others, one reasonable choice for an effective algorithm is to learn
a Nash equilibrium. In this section, we evaluate the ability of SA-
PGA against selfish opponents. We adopt the same three represen-
tative games used in previous sections as the testbed and the results
are given in Figure 4, 5 and 6 respectively. We can observe that for
the PD and coordination games, the SA-PGA agent can successful-
ly achieve the corresponding NE solution. This property is desirable
since it prevents the SA-PGA agent from being taken advantage by
selfish opponents. The results also show how the socially-aware de-
gree w of SA-PGA agent changes, which varies depending on the
game structure. For PD and coordination game, a SA-PGA agen-
t eventually behaves as a purely individually rational entity and one
pure strategy NE is eventually converged to. In contrast, for the third
type of game (Table 6), a SA-PGA agent behaves as a purely so-
cially rational agent and cooperate with the selfish agent towards the
socially optimal outcome (C,D) without fully exploiting the oppo-
nent. This indicates the cleverness of SA-PGA since higher individ-

ual payoff can be achieved under the outcome (C, D) than pursuing
Nash equilibrium (C, C).
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Figure 4: SA-PGA against a selfish agent for in PD game(wr(0) = 1,
pr(0) = 0.2 and pc(0) = 0.8)
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Figure 5: SA-PGA against a selfish agent for in coordination
game(wr(0) = 1, pr(0) = 0.2 and pc(0) = 0.8)
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Figure 6: SA-PGA against a selfish agent for the game with only one
mix NE(wr(0) = 1, pr(0) = 0.2 and pc(0) = 0.8)

6 Conclusion and Future Work
In this paper, we proposed a novel way of incorporating social aware-
ness into traditional gradient-ascent algorithm to facilitate reaching
mutually beneficial solutions (e.g., (C, C) in PD game). We first
present a theoretical gradient-ascent based policy updating approach
(SA-IGA) and analyzed its learning dynamics using dynamical sys-
tem theory. For PD games, we show that mutual cooperation (C,C) is
stable equilibrium point as long as both agents are strongly socially-
aware. For AC games, either of the Nash equilibria (C,C) and (D,D)
can be a stable equilibrium point depending on the agents’ socially-
aware degrees. Following that, we proposed a practical learning al-
gorithm SA-PGA relaxing the impractical assumptions of SA-IGA.
Experimental results show that a SA-PGA agent can achieve higher



social welfare than previous algorithms under self-play and also is
robust against individually rational opponents. As future work, more
testbed scenarios (e.g., population of agents) will be applied to fur-
ther evaluate the performance of SA-PGA. Another interesting direc-
tion is to investigate how to further improve the convergence rate of
SA-PGA.
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