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Abstract
In this work, we study the following basic question: “How much parallelism does a distributed
task permit?” Our definition of parallelism (or symmetry) here is not in terms of speed, but
in terms of identical roles that processes have at the same time in the execution. For example,
we may ask: “Can a given task be solved by a protocol that always has at least two processes in
the same role at the same time?” (i.e. by a protocol that never elects a unique leader). We
choose to initiate this study in population protocols, a very simple model that not only allows
for a straightforward definition of what a role is, but also encloses the challenge of isolating the
properties that are due to the protocol from those that are due to the adversary scheduler, who
controls the interactions between the processes. In particular, we define the role of a process at
a given time to be equivalent to the state of the process at that time. Moreover, we isolate the
symmetry that is due to the protocol (inherent symmetry) by focusing on those schedules that
maximize symmetry for that protocol and observing how much symmetry breaking the protocol is
forced to achieve in order to solve the problem. To allow for such symmetry maximizing schedules
we consider parallel schedulers that in every step may select a whole collection of pairs of nodes
(up to a perfect matching) to interact and not just a single pair. Based on these definitions of
symmetric computation, we (i) give a partial characterization of the set of predicates on input
assignments that can be stably computed with maximum symmetry, i.e. Θ(Nmin), where Nmin
is the minimum multiplicity of a state in the initial configuration, and (ii) we turn our attention
to the remaining predicates (that have some essentially different properties) and prove a strong
impossibility result for the parity predicate: the inherent symmetry of any protocol that stably
computes it is upper bounded by a constant that depends on the size of the protocol.

Keywords and phrases coordinator, parallelism, symmetry, symmetry breaking, population pro-
tocol, leader election, majority, parity

All omitted details are included in a clearly marked Appendix, to be read at the
discretion of the Program Committee.

1 Introduction

George Washington said “My observation on every employment in life is, that, wherever and
whenever one person is found adequate to the discharge of a duty by close application thereto,
it is worse executed by two persons, and scarcely done at all if three or more are employed
therein” [32]. The goal of the present paper is to investigate whether the analogue of this
observation in simple distributed systems is true. In particular, we ask whether a task that
can be solved when a single process has a crucial duty is still solvable when that (and any
other) duty is assigned to more than one process. Moreover, we are interested in quantifying
the degree of parallelism (also called symmetry in this paper) that a task is susceptible of.

Leader election is a task of outstanding importance for distributed algorithms. One of
the oldest [4] and probably still one of the most commonly used approaches [24, 9, 6, 23, 20]
for solving a distributed task in a given setting, is to execute a distributed algorithm that
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manages to elect a unique leader (or coordinator) in that setting and then compose this
(either sequentially or in parallel) with a second algorithm that can solve the task by assuming
the existence of a unique leader. Actually, it is quite typical, that the tasks of electing a
leader and successfully setting up the composition enclose the difficulty of solving many other
higher-level tasks in the given setting.

Due to its usefulness in solving other distributed tasks, the leader election problem has
been almost extensively studied, in a great variety of distributed settings [24, 9, 20, 19, 2].
Still, there is an important point that is much less understood, concerning whether an election
step is necessary for a given task and to what extent it can be avoided. Even if a task T can
be solved in a given setting by first passing through a configuration with a unique leader,
it is still valuable to know whether there is a correct algorithm for T that avoids this. In
particular, such an algorithm succeeds without the need to ever have less than k processes in
a given “role”, and we are also interested in how large k can be without sacrificing solvability.

Depending on the application, there are several ways of defining what the “role” of a
process at a given time in the execution is. In the typical approach of electing a unique
leader, a process has the leader role if a leader variable in its local memory is set to true
and it does not have it otherwise. In other cases, the role of a process could be defined as its
complete local history. In such cases, we would consider that two processes have the same
role after t steps iff both have the same local history after each one of them has completed
t local steps. It could also be defined in terms of the external interface of a process, for
example, by the messages that the process transmits, or it could even correspond to the
branch of the program that the process executes. In this paper, as we shall see, we will
define the role of a process at a given time in the execution, as the entire content of its local
memory. So, in this paper, two processes u and v will be regarded to have the same role at a
given time t iff, at that time, the local state of u is equal to the local state of v.

Understanding the parallelism that a distributed task allows, is of fundamental importance
for the following reasons. First of all, usually, the more parallelism a task allows, the more
efficiently it can be solved. Moreover, the less symmetry a solution for a given problem has
to achieve in order to succeed, the more vulnerable it is to faults. For an extreme example, if
a distributed algorithm elects in every execution a unique leader in order to solve a problem,
then a single crash failure (of the leader) can be fatal.

1.1 Our Approach
We have chosen to initiate the study of the above problem in a very minimal distributed
setting, namely in Population Protocols of Angluin et al. [6] (see Section 1.2 for more details
and references). One reason that makes population protocols convenient for the problem
under consideration, is that the role of a process at a given step in the execution can be
defined in a straightforward way as the state of the process at the beginning of that step. So,
for example, if we are interested in an execution of a protocol that stabilizes to the correct
answer without ever electing a unique leader, what we actually require is an execution that,
up to stability, never goes through a configuration in which a state q is the state of a single
node, which implies that, in every configuration of the execution, every state q is either
absent or the state of at least two nodes. Then, it is straightforward to generalize this to any
symmetry requirement k, by requiring that, in every configuration, every state q is either
absent or the state of at least k nodes.

What is not straightforward in this model (and in any model with adversarially determined
events), is how to isolate the symmetry that is only due to the protocol. For if we require the
above condition on executions to be satisfied for every execution of a protocol, then most



O. Michail and P. G. Spirakis 3

protocols will fail trivially, because of the power of the adversary scheduler. In particular,
there is almost always a way for the scheduler to force the protocol to break symmetry
maximally, for example, to make it reach a configuration in which some state is the state of
a single node, even when the protocol does not have an inherent mechanism of electing a
unique state. Moreover, though for computability questions it is sufficient to assume that the
scheduler selects in every step a single pair of nodes to interact with each other, this type of
a scheduler is problematic for estimating the symmetry of protocols. The reason is that even
fundamentally parallel operations, necessarily pass through a highly-symmetry-breaking step.
For example, consider the rule (a, a)→ (b, b) and assume that an even number of nodes are
initially in state a. The goal is here for the protocol to convert all as to bs. If the scheduler
could pick a perfect matching between the as, then in one step all as would be converted to
bs, and additionally the protocol would never pass trough a configuration in which a state is
the state of fewer than n nodes. Now, observe that the sequential scheduler can only pick a
single pair of nodes in each step, so in the very first step it yields a configuration in which
state b is the state of only 2 nodes. Of course, there are turnarounds to this, for example
by taking into account only equal-interaction configurations, consisting of the states of the
processes after all processes have participated in an equal number of interactions, still we
shall follow an alternative approach that simplifies the arguments and the analysis.

In particular, we will consider schedulers that can be maximally parallel. Such a scheduler,
selects in every step a matching (of any possible size) of the complete interaction graph, so,
in one extreme, it is still allowed to select only one interaction but, in the other extreme, it
may also select a perfect matching in a single step. Observe that this scheduler is different
both from the sequential scheduler traditionally used in the area of population protocols
and from the fully parallel scheduler which assumes that Θ(n) interactions occur in parallel
in every step. Actually, several recent papers [11, 2, 17] assume a fully parallel scheduler
implicitly, by defining the model in terms of the sequential scheduler and then performing
their analysis in terms of parallel time, defined as the sequential time divided by n.

Finally, in order to isolate the inherent symmetry, i.e. the symmetry that is only due to
the protocol, we shall focus on those schedules 1 that achieve as high symmetry as possible
for the given protocol. Such schedules may look into the protocol and exploit its structure so
that the chosen interactions maximize parallelism. It is crucial to notice that this restriction
does by no means affect correctness. Our protocols are still, as usual, required to stabilize to
the correct answer in any fair execution (and, actually, in this paper against a more generic
scheduler than the one traditionally assumed). The above restriction is only a convention for
estimating the inherent symmetry of a protocol designed to operate in an adversarial setting.
One the other hand, one does not expect this measure of inherent symmetry to be achieved
by the majority of executions. If, instead, one is interested in some measure of the observed
symmetry, then it would make more sense to study an expected observed symmetry under
some probabilistic assumption for the scheduler. We leave this as an interesting direction for
future research (see Section 5 for more details on this).

For a given initial configuration, we shall estimate the symmetry breaking performed by
the protocol not in any possible execution but an execution in which the scheduler tries to
maximize the symmetry. In particular, we shall define the symmetry of a protocol on a given
initial configuration c0 as the maximum symmetry achieved over all possible executions on
c0. So, in order to lower bound by k the symmetry of a protocol on a given c0, it will be
sufficient to present a schedule in which the protocol stabilizes without ever “electing” fewer

1 By “schedule” we mean an “execution” throughout.
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than k nodes. On the other hand, to establish an upper bound of h on symmetry, we will
have to show that in every schedule (on the given c0) the protocol “elects” at most h nodes.
Then we may define the symmetry of the protocol on a set of initial configurations as the
minimum of its symmetries over those initial configurations. The symmetry of a protocol (as
a whole) shall be defined as a function of some parameter of the initial configuration and is
deferred to Section 2.

I Observation 1. The above definition leads to very strong impossibility results, as these
upper bounds are also upper bounds on the observed symmetry. In particular, if we establish
that the symmetry of a protocol A is at most h then, it is clear that under any scheduler the
symmetry of A is at most h.

Section 2 brings together all definitions and basic facts that are used throughout the
paper. In Section 3, we give a set of positive results. The main result here is a partial
characterization, showing that a wide subclass of semilinear predicates is computed with
symmetry Θ(Nmin), which is asymptotically optimal. Then, in Section 4, we study some
basic predicates that seem to require much symmetry breaking. In particular, we study
the majority and the parity predicates. For majority we establish a constant symmetry,
while for parity we prove a strong impossibility result, stating that the symmetry of any
protocol that stably computes it, is upper bounded by an integer depending only on the size
of the protocol (i.e. a constant, compared to the size of the system). The latter implies that
there exist predicates which can only be computed by protocols that perform some sort of
leader-election (not necessarily a unique leader but at most a constant number of nodes in a
distinguished leader role). In Section 5, we give further research directions that are opened
by our work. Finally, the Appendices A, B, and C provide all omitted details and proofs.

1.2 Further Related Work
In contrast to static systems with unique identifiers (IDs) and dynamic systems, the role of
symmetry in static anonymous systems has been deeply investigated [4, 34, 22, 18]. Similarity
as a way to compare and contrast different models of concurrent programming has been
defined and studied in [21]. One (restricted) type of symmetry that has been recently studied
in systems with IDs is the existence of homonyms, i.e. processes that are initially assigned
the same ID [14]. Moreover, there are several standard models of distributed computing that
do not suffer from a necessity to break symmetry globally (e.g. to elect a leader) like Shared
Memory with Atomic Snapshots [1, 9], Quorums [31, 30, 25], and the LOCAL model [29, 33].

Population Protocols were originally motivated by highly dynamic networks of simple
sensor nodes that cannot control their mobility. The first papers focused on the computational
capabilities of the model which have now been almost completely characterized. In particular,
if the interaction network is complete (as is also the case in the present paper), i.e. one in
which every pair of processes may interact, then the computational power of the model is
equal to the class of the semilinear predicates (and the same holds for several variations)
[7]. Interestingly, the generic protocol of [6] that computes all semilinear predicates, elects a
unique leader in every execution and the same is true for the construction in [12]. Moreover,
according to [2], all known generic constructions of semilinear predicates “fundamentally
rely on the election of a single initial leader node, which coordinates phases of computation”.
Semilinearity of population protocols persists up to o(log logn) local space but not more
than this [10]. If additionally the connections between processes can hold a state from a
finite domain, then the computational power dramatically increases to the commutative
subclass of NSPACE(n2) [26]. Recently, Doty [15] demonstrated the formal equivalence
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of population protocols to chemical reaction networks (CRNs), which model chemistry in
a well-mixed solution. Moreover, the recently proposed Network Constructors extension
of population protocols [28] is capable of constructing arbitrarily complex stable networks.
Czyzowicz et al. [13] have recently studied the relation of population protocols to antagonism
of species, with dynamics modeled by discrete Lotka-Volterra equations. Finally, in [11], the
authors highlighted the importance of executions that necessarily pass through a “bottleneck”
transition (meaning a transition between two states that have only constant counts in the
population, which requires Ω(n2) expected number of steps to occur), by proving that
protocols that avoid such transitions can only compute existence predicates. To the best of
our knowledge, our type of approach, of computing predicates stably without ever electing a
unique leader, has not been followed before in this area (according to [2], “[16] proposes a
leader-less framework for population computation”, but this should not be confused with
what we do in this paper, as it only concerns the achievement of dropping the requirement
for a pre-elected unique leader that was assumed in all previous results for that problem).
For introductory texts to population protocols, the interested reader is encouraged to consult
[8] and [27].

2 Preliminaries

A population protocol (PP) is a 6-tuple (X,Y,Q, I,O, δ), where X, Y , and Q are all finite
sets and X is the input alphabet, Y is the output alphabet, Q is the set of states, I : X → Q

is the input function, O : Q → Y is the output function, and δ : Q × Q → Q × Q is the
transition function.

If δ(a, b) = (a′, b′), we call (a, b) → (a′, b′) a transition. A transition (a, b) → (a′, b′) is
called effective if x 6= x′ for at least one x ∈ {a, b} and ineffective otherwise. When we
present the transition function of a protocol we only present the effective transitions. The
system consists of a population V of n distributed processes (also called nodes). In the
generic case, there is an underlying interaction graph G = (V,E) specifying the permissible
interactions between the nodes. Interactions in this model are always pairwise. In this work,
G is a complete directed interaction graph.

Let Q be the set of states of a population protocol A. A configuration c of A on n nodes
is an element of N|Q|≥0 , such that, for all q ∈ Q, c[q] is equal to the number of nodes that are in
state q in configuration c and it holds that

∑
q∈Q c[q] = n. For example, if Q = {q0, q1, q2, q3}

and c = (7, 12, 52, 0), then, in c, 7 nodes of the 7 + 12 + 52 + 0 = 71 in total, are in state q0,
12 nodes in state q1, and 52 nodes in state q2.

Execution of the protocol proceeds in discrete steps and it is determined by an adversary
scheduler who is allowed to be parallel, meaning that, in every step, it may select one or
more pairwise interactions (up to a maximum matching) to occur at the same time. This is
an important difference from classical population protocols where the scheduler could only
select a single interaction per step. More formally, in every step, a non-empty matching
(u1, v1), (u2, v2), . . . , (uk, vk) from E is selected by the scheduler and, for all 1 ≤ i ≤ k, the
nodes ui, vi interact with each other and update their states according to the transition
function δ. A fairness condition is imposed on the adversary to ensure the protocol makes
progress. An infinite execution is fair if for every pair of configurations c and c′ such that
c→ c′ (i.e. c can go in one step to c′), if c occurs infinitely often in the execution then so
does c′.

In population protocols, we are typically interested in computing predicates on the
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inputs, e.g. Na ≥ 5, being true whenever there are at least 5 as in the input. 2 Moreover,
computations are stabilizing and not terminating, meaning that it suffices for the nodes to
eventually converge to the correct output. We say that a protocol stably computes a predicate
if, on any population size, any input assignment, and any fair execution on these, all nodes
eventually stabilize their outputs to the value of the predicate on that input assignment.

We define the symmetry s(c) of a configuration c as the minimum multiplicity of a
state that is present in c (unless otherwise stated, in what follows by “symmetry” we shall
always mean “inherent symmetry”). That is, s(c) = minq∈Q : c[q]≥1{c[q]}. For example, if
c = (0, 4, 12, 0, 52) then s(c) = 4, if c = (1, . . .) then s(c) = 1, which is the minimum possible
value for symmetry, and if c = (n, 0, 0, . . . , 0) then s(c) = n which is the maximum possible
value for symmetry. So, the range of the symmetry of a configuration is {1, 2, . . . , n}.

Let C0(A) be the set of all initial configurations for a given protocol A. Given an initial
configuration c0 ∈ C0(A), denote by Γ(c0) the set of all fair executions of A that begin from
c0, each execution being truncated to its prefix up to stability. 3

Given any initial configuration c0 and any execution α ∈ Γ(c0), define the symmetry
breaking of A on α as the difference between the symmetry of the initial configuration of α
and the minimum symmetry of a configuration of α, that is, the maximum drop in symmetry
during the execution. Formally, b(A, α) = s(c0)−minc∈α{s[c]}. Also define the symmetry
of A on α as s(A, α) = minc∈α{s[c]}. Of course, it holds that s(A, α) = s(c0) − b(A, α).
Moreover, observe that, for all α ∈ Γ(c0), 0 ≤ b(A, α) ≤ s(c0)− 1 and 1 ≤ s(A, α) ≤ s(c0).
In several cases we shall denote s(c0) by Nmin.

The symmetry breaking of a protocol A on an initial configuration c0 can now be defined
as b(A, c0) = minα∈Γ(c0){b(A, α)} and:

I Definition 1. We define the symmetry of A on c0 as s(A, c0) = maxα∈Γ(c0){s(A, α)}.

I Remark. To estimate the inherent symmetry with which a protocol computes a predicate on
a c0, we execute the protocol against an imaginary scheduler who is a symmetry maximizer.

Now, given the set C(Nmin) of all initial configurations c0 such that s(c0) =
Nmin, we define the symmetry breaking of a protocol A on C(Nmin) as b(A, Nmin) =
maxc0∈C(Nmin){b(A, c0)} and:

I Definition 2. We define the symmetry of A on C(Nmin) as s(A, Nmin) =
minc0∈C(Nmin){s(A, c0)}.

Observe again that s(A, Nmin) = Nmin − b(A, Nmin) and that 0 ≤ b(A, Nmin) ≤ Nmin − 1
and 1 ≤ s(A, Nmin) ≤ Nmin.

This means that, in order to establish that a protocol A is at least g(Nmin) symmetric
asymptotically (e.g. for g(Nmin) = Θ(logNmin)), we have to show that for every sufficiently
large Nmin, the symmetry breaking of A on C(Nmin) is at most Nmin − g(Nmin), that is to
show that for all initial configurations c0 ∈ C(Nmin) there exists an execution on c0 that
drops the initial symmetry by at most Nmin− g(Nmin), e.g. by at most Nmin− logNmin for
g(Nmin) = logNmin, or that does not break symmetry at all in case g(Nmin) = Nmin. On
the other hand, to establish that the symmetry is at most g(Nmin), e.g. at most 1 which is

2 We shall use throughout the paper Ni to denote the number of nodes with input/state i.
3 In this work, we only require protocols to preserve their symmetry up to stability. This means that a

protocol is allowed to break symmetry arbitrarily after stability, e.g. even elect a unique leader, without
having to pay for it. We leave as an interesting open problem the comparison of this convention to the
apparently harder requirement of maintaining symmetry forever.
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the minimum possible value, one has to show a symmetry breaking of at least Nmin−g(Nmin)
on infinitely many Nmins.

3 Predicates of High Symmetry

In this section, we try to identify predicates that can be stably computed with much symmetry.
We first give an indicative example, then we generalize to arrive at a partial characterization
of the predicates that can be computed with maximum symmetry, and, finally, we highlight
the role of output-stable states in symmetric computations.

3.1 An Example: Count-to-x
Protocol Count-to-x: X = {0, 1}, Q = {q0, q1, q2, . . . , qx}, I(σ) = qσ, for all σ ∈ X,
O(qx) = 1 and O(q) = 0, for all q ∈ Q\{qx}, and δ: (qi, qj) → (qi+j , q0), if i + j < x,
(qi, qj)→ (qx, qx), otherwise.

I Proposition 1. The symmetry of Protocol Count-to-x, for any x = O(1), is at least
(2/3)bNmin/xc − (x− 1)/3, when x ≥ 2, and Nmin, when x = 1; i.e. it is Θ(Nmin) for any
x = O(1).

Proof. The scheduler 4 partitions the q1s, let them be N1(0) initially and denoted just N1
in the sequel, into bN1/xc groups of x q1s each, possibly leaving an incomplete group of
r ≤ x− 1 q1s residue. Then, in each complete group, it performs a sequential gathering of
x− 3 other q1s to one of the nodes, which will go through the states q1, q2, . . . , qx−1. The
same gathering is performed in parallel to all groups, so every state that exists in one group
will also exist in every other group, thus its cardinality never drops below bN1/xc. In the
end, at step t, there are many q0s, Nx−1(t) = bN1/xc, and N1(t) = bN1/xc + r, where
0 ≤ r ≤ x− 1 is the residue of q1s. That is, in all configurations so far, the symmetry has
not dropped below bN1/xc.

Now, we cannot pick, as a symmetry maximizing choice of the scheduler, a perfect
bipartite matching between the q1s and the qx−1s converting them all to the alarm state
qx, because this could possibly leave the symmetry-breaking residue of q1s. What we can
do instead, is to match in one step as many as we can so that, after the corresponding
transitions, Nx(t′) ≥ N1(t′) is satisfied. In particular, if we match y of the (q1, qx−1) pairs
we will obtain Nx(t′) = 2y, Nx−1(t′) = bN1/xc − y, and N1(t′) = bN1/xc − y + r and what
we want is

2y ≥ bN1/xc − y + r ⇒ 3y ≥ bN1/xc+ r ⇒ y ≥ bN1/xc+ r

3 ,

which means that if we match approximately 1/3 of the (q1, qx−1) pairs then we will have
as many qx as we need in order to eliminate all q1s in one step and all remaining qx−1s in
another step.

The minimum symmetry in the whole course of this schedule is

Nx−1(t′) = bN1/xc − y = bN1/xc −
bN1/xc+ r

3
= 2

3bN1/xc −
r

3 ≥
2
3bN1/xc −

x− 1
3 .

4 Always meaning the imaginary symmetry-maximizing scheduler when lower-bounding the symmetry.
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So, we have showed that if there are no q0s in the initial configuration, then the symmetry
breaking of the protocol on the schedule defined above is at most Nmin− ((2/3)bN1/xc− (x−
1)/3) = Nmin − ((2/3)bNmin/xc − (x− 1)/3). Next, we consider the case in which there are
some q0s in the initial configuration. Observe that in this protocol the q0s can only increase,
so their minimum cardinality is precisely their initial cardinality N0. Consequently, in case
N0 ≥ 1 and N1 ≥ 1, and if Nmin = min{N0, N1}, the symmetry breaking of the schedule
defined above is Nmin −min{N0, Nx−1(t′)}. If, for some initial configuration, N0 ≥ Nx−1(t′)
then the symmetry breaking is Nmin − Nx−1(t′) ≤ Nmin − ((2/3)bN1/xc − (x − 1)/3).
This gives again Nmin − ((2/3)bNmin/xc − (x − 1)/3), when N1 ≤ N0, and less than
Nmin−((2/3)bNmin/xc−(x−1)/3), when N1 > N0 = Nmin. If instead, N0 < Nx−1(t′) < N1,
then, in this case, the symmetry breaking is Nmin − min{N0, Nx−1(t′)} = N0 − N0 = 0.
Finally, if N0 = n, then the symmetry breaking is 0. We conclude that for every initial
configuration, the symmetry breaking of the above schedule is at most Nmin −Nx−1(t′) ≤
Nmin− ((2/3)bNmin/xc− (x−1)/3), for all x ≥ 2, and 0, for x = 1. Therefore, the symmetry
of the Count-to-x protocol is at least (2/3)bNmin/xc+ (x− 1)/3 = Θ(Nmin), for x ≥ 2, and
Nmin, for x = 1. J

3.2 A General Positive Result
I Theorem 3. Any predicate of the form

∑
i∈[k] aiNi ≥ c, for integer constants k ≥ 1, ai ≥ 1,

and c ≥ 0, can be computed with symmetry more than bNmin/(c/
∑
j∈L aj+2)c−2 = Θ(Nmin).

Proof. We begin by giving a parameterized protocol (Protocol 1) that stably computes any
such predicate, and then we shall prove that the symmetry of this protocol is the desired one.

Protocol 1 Positive-Linear-Combination

Q = {q0, q1, q2, . . . , qc}
I(σi) = qai

, for all σi ∈ X
O(qc) = 1 and O(q) = 0, for all q ∈ Q\{qc}
δ:

(qi, qj)→ (qi+j , q0), if i+ j < c

→ (qc, qc), otherwise

Take now any initial configuration C0 on n nodes and let L ⊆ [k] be the set of indices of
the initial states that are present in C0. Let also qmin be the state with minimum cardinality,
Nmin, in C0. Construct bNmin/xc groups, by adding to each group x = dc/

∑
j∈L aje copies

of each initial state. Observe that each group has total sum
∑
j∈L ajx = x

∑
j∈L aj =

dc/
∑
j∈L aje(

∑
j∈L aj) ≥ c. Moreover, state qmin has a residue rmin of at most x and every

other state qi has a residue ri ≥ rmin. Finally, keep y = d(Nmin + rmin)/(x+ 1)e − 1 from
those groups and drop the other bNmin/xc− y groups making their nodes part of the residue,
which results in new residue values r′j = x(bNmin/xc − y) + rj , for all j ∈ L. It is not hard
to show that y ≤ r′j , for all j ∈ L.

We now present a schedule that achieves the desired symmetry. The schedule consists of
two phases, the gathering phase and the dissemination phase. In the dissemination phase,
the schedule picks a node of the same state from every group and starts aggregating to that
node the sum of its group sequentially, performing the same in parallel in all groups. It does
this until the alarm state qc first appears. When this occurs, the dissemination phase begins.
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In the dissemination phase, the schedule picks one after the other all states that have not yet
been converted to qc. For each such state qi, it picks a qc which infects one after the other
(sequentially) the qis, until Nc(t) ≥ Ni(t) is satisfied for the first time. Then, in a single step
that matches each qi to a qc, it converts all remaining qis to qc.

We now analyze the symmetry breaking of the protocol in this schedule. Clearly, the
initial symmetry is Nmin. As long as a state appears in the groups, its cardinality is at least
y, because it must appear in each one of them. When a state qi first becomes eliminated from
the groups, its cardinality is equal to its residue r′i. Thus, so far, the minimum cardinality of
a state is

min{y,min
j∈L

r′j} = y =
⌈
Nmin + rmin

x+ 1

⌉
− 1 >

⌊
Nmin

c/
∑
j∈L aj + 2

⌋
− 2.

It follows that the maximum symmetry breaking so far is less than Nmin−
⌊

Nmin

c/
∑

j∈L
aj+2

⌋
+2.

Finally, we must also take into account the dissemination phase. In this phase, the qcs
are 2y initially and can only increase, by infecting other states, until they become n and
the cardinalities of all other states decrease until they all become 0. Take any state qi 6= qc
with cardinality Ni(t) when the dissemination phase begins. What the schedule does is to
decrement Ni(t), until Nc(t′) ≥ Ni(t′) is first satisfied, and then to eliminate all occurrences
of qi in one step. Due to the fact that Ni is decremented by one in each step resulting in
a corresponding increase by one of Nc, when Nc(t′) ≥ Ni(t′) is first satisfied, it holds that
Ni(t′) ≥ Nc(t′) − 1 ≥ Nc(t) − 1 ≥ 2y − 1 ≥ y for all y ≥ 1, which implies that the lower
bound of y on the minimum cardinality, established for the gathering phase, is not violated
during the dissemination phase.

We conclude that the symmetry of the protocol in the above schedule is more than
bNmin/(c/

∑
j∈L aj + 2)c − 2. J

3.3 Output-stable States
Informally, a state q ∈ Q is called output-stable if its appearance in an execution guarantees
that the output value O(q) must be the output value of the execution. More formally, if q is
output-stable and C is a configuration containing q, then the set of outputs of C ′ must contain
O(q), for all C ′ s.t. C  C ′, where ‘ ’ means reaches in one or more steps. Moreover, if
all executions under consideration stabilize to an agreement, meaning that eventually all
nodes stabilize to the same output, then the above implies that if an execution ever reaches
a configuration containing q then the output of that execution is necessarily O(q).

A state q is called reachable if there is an initial configuration C0 and an execution on
C0 that can produce q. We can also define reachability just in terms of the protocol, under
the assumption that if Q0 ⊆ Q is the set of initial states, then any possible combination of
cardinalities of states from Q0 can be part of an initial configuration. A production tree for
a state q ∈ Q, is a directed binary in-tree with its nodes labeled from Q s.t. its root has
label q, if a is the label of an internal node (the root inclusive) and b, c are the labels of its
children, then the protocol has a rule of the form {b, c} → {a, ·} (that is, a rule producing a
by an interaction between a b and a c in any direction) 5, and any leaf is labeled from Q0.
Observe now that if a path from a leaf to the root repeats a state a, then we can always

5 Whenever we use an unordered pair in a rule, like {b, c}, we mean that the property under consideration
concerns both (b, c) and (c, b).
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replace the subtree of the highest appearance of a by the subtree of the lowest appearance of
a on the path and still have a production tree for q. This implies that if q has a production
tree, then q also has a production tree of depth at most |Q|, that is, a production tree having
at most 2|Q|−1 leaves, which is a constant number, when compared to the population size n,
that only depends on the protocol. Now, we can call a state q reachable (by a protocol A) if
there is a production tree for it. These are summarized in the following proposition.

I Proposition 2. Let A be a protocol, C0 be any (sufficiently large) initial configuration of
A, and q ∈ Q any state that is reachable from C0. Then there is an initial configuration C ′0
which is a sub-configuration of C0 of size n′ ≤ 2|Q|−1 such that q is reachable from C ′0.

Proposition 2 is crucial for proving negative results, and will be invoked in Section 4.

I Proposition 3. Let p be a predicate. There is no protocol that stably computes p (all
nodes eventually agreeing on the output in every fair execution), having both a reachable
output-stable state with output 0 and a reachable output-stable state with output 1.

An output-stable state q is called disseminating if {x, q} → (q, q), for all x ∈ Q.

I Proposition 4. Let A be a protocol with at least one reachable output-stable state, that
stably computes a predicate p and let Qs ⊆ Q be the set of reachable output-stable states of
A. Then there is a protocol A′ with a reachable disseminating state that stably computes p.

I Theorem 4. Let A be a protocol with a reachable disseminating state q and let Cd0 be the
subset of its initial configurations that may produce q. Then the symmetry of A on Cd0 is
Θ(Nmin).

Theorem 4 emphasizes the fact that disseminating states can be exploited for maximum
symmetry. We have omitted its proof, because it is similar to the proofs of Proposition
1 and Theorem 3. This lower bound on symmetry immediately applies to single-signed
linear combinations (where passing a threshold can safely result in the appearance of a
disseminating state, because there are no opposite-signed numbers to inverse the process),
thus, it can be used as an alternative way of arriving at Theorem 3. On the other hand,
the next proposition shows that this lower bound does not apply to linear combinations
containing mixed signs, because protocols for them cannot have output-stable states.

I Proposition 5. Let p be a predicate of the form
∑
i∈[k] aiNi ≥ c, for integer constants

k ≥ 1, ai, and c ≥ 0 such that at least two ais have opposite signs. Then there is no protocol,
having a reachable output-stable state, that stably computes p.

The proofs of Propositions 3, 4, and 5 can be found in Appendix A.

4 Harder Predicates

In this section, we study the symmetry of predicates that, in contrast to single-signed
linear combinations, do not allow for output-stable states. In particular, we focus on linear
combinations containing mixed signs, like the majority predicate, and also on modulo
predicates like the parity predicate. Recall that these predicates are not captured by the
lower bound on symmetry of Theorem 4.
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4.1 Bounds for Mixed Coefficients
We begin with a proposition stating that the majority predicate (also can be generalized
to any predicate with mixed signs) can be computed with symmetry that depends on the
difference of the state-cardinalities in the initial configuration.

I Proposition 6. The majority predicate Na − Nb > 0 can be computed with symmetry
min{Nmin, |Na −Nb|}, where Nmin = min{Na, Nb}. (The proof is given in Appendix B)

I Remark. A result similar to Proposition 6 can be proved for any predicate of the form∑
i∈[k] aiNi −

∑
j∈[h] bjN

′
j > c, for integer constants k, h, ai, bj ≥ 1 and c ≥ 0.

Still, as we prove in the following theorem, it is possible to do better in the worst case,
and achieve any desired constant symmetry.

I Theorem 5. For every constant k ≥ 1, the majority predicate Na−Nb > 0 can be computed
with symmetry k. (The proof can be found in Appendix B)

4.2 Predicates that Cannot be Computed with High Symmetry
We now prove a strong impossibility result, establishing that there are predicates that cannot
be stably computed with much symmetry. The result concerns the parity predicate, defined
as n mod 2 = 1. In particular, all nodes obtain the same input, e.g. 1, and thus all begin
from the same state, e.g. q1. So, in this case, Nmin = n in every initial configuration, and we
can here estimate symmetry as a function of n. The parity predicate is true iff the number of
nodes is odd. So, whenever n is odd, we want all nodes to eventually stabilize their outputs
to 1 and, whenever it is even, to 0. If symmetry is not a constraint, then there is a simple
protocol, described in [5], that solves the problem. Unfortunately, not only that particular
strategy, but any possible strategy for the problem, cannot achieve symmetry more than a
constant that depends on the size of the protocol, as we shall now prove.

I Theorem 6. Let A be a protocol with set of states Q, that solves the parity predicate. Then
the symmetry of A is less than 2|Q|−1.

Proof. For the sake of contradiction, assume A solves parity with symmetry f(n) ≥ 2|Q|−1.
Take any initial configuration Cn for any sufficiently large odd n (e.g. n ≥ f(n) or n ≥
|Q| · f(n), or even larger if required by the protocol). By definition of symmetry, there is an
execution α on Cn that reaches stability without ever dropping the minimum cardinality of
an existing state below f(n). Call Cstable the first output-stable configuration of α. As n is
odd, Cstable must satisfy that all nodes are in states giving output 1 and that no execution on
Cstable can produce a state with output 0. Moreover, due to the facts that A has symmetry
f(n) and that α is an execution that achieves this symmetry, it must hold that every q ∈ Q
that appears in Cstable has multiplicity Cstable[q] ≥ f(n).

Consider now the initial configuration C2n, i.e. the unique initial configuration on 2n
nodes. Observe that now the number of nodes is even, thus the parity predicate evaluates to
false and any fair execution of A must stabilize to output 0. Partition C2n into two equal
parts, each of size n. Observe that each of the two parts is equal to Cn. Consider now the
following possible finite prefix β of a fair execution on C2n. The scheduler simulates in each
of the two parts the previous execution α up to the point that it reaches the configuration
Cstable. So, the prefix β takes C2n to a configuration denoted by 2Cstable and consisting
precisely of two copies of Cstable. Observe that 2Cstable and Cstable consist of the same states
with the only difference being that their multiplicity in 2Cstable is twice their multiplicity in
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Cstable. A crucial difference between Cstable and 2Cstable is that the former is output-stable
while the latter is not. In particular, any fair execution of A on 2Cstable must produce a state
q0 with output 0. But, by Proposition 2, q0 must also be reachable from a sub-configuration
Csmall of 2Cstable of size at most 2|Q|−1. So, there is an execution γ restricted on Csmall
that produces q0.

Observe now that Csmall is also a sub-configuration of Cstable. The reason in that (i)
every state in Csmall is also a state that exists in 2Cstable and thus also a state that exists in
Cstable and (ii) the multiplicity of every state in Csmall is restricted by the size of Csmall,
which is at most 2|Q|−1, and every state in Cstable has multiplicity at least f(n) ≥ 2|Q|−1,
that is, Cstable has sufficient capacity for every state in Csmall. But this implies that if γ is
executed on the sub-configuration of Cstable corresponding to Csmall, then it must produce
q0, which contradicts the fact that Cstable is output-stable with output 1. Therefore, we
conclude that A cannot have symmetry at least f(n) ≥ 2|Q|−1. J

I Remark. Theorem 6 constrains the symmetry of any correct protocol for parity to be upper
bounded by a constant that depends on the size of the protocol. Still, it does not exclude the
possibility that parity is solvable with symmetry k, for any constant k ≥ 1. The reason is
that, for any constant k ≥ 1, there might be a protocol with |Q| > k (or even |Q| � k) that
solves parity and achieves symmetry k, because k < 2|Q|−1, which is the upper bound on
symmetry proved by the theorem. On the other hand, the 2|Q|−1 upper bound of Theorem 6
excludes any protocol that would solve parity with symmetry depending on Nmin.

5 Further Research

In this work, we managed to obtain a first partial characterization of the predicates with
symmetry Θ(Nmin) and to exhibit a predicate (parity) that resists any non-constant symmetry.
The obvious next goal is to arrive at an exact characterization of the allowable symmetry of
all semilinear predicates.

Another question, concerns the parity predicate, but could possibly apply to other modulo
predicates as well. Some preliminary results of ours, indicate that constant symmetry for
parity can be achieved if the initial configuration has a sufficient number of auxiliary nodes
in a distinct state q0. It seems interesting to study how is symmetry affected by auxiliary
nodes and whether they can be totally avoided.

Another very challenging direction for further research, concerns networked systems
(either static or dynamic) in which the nodes have memory and possibly also unique IDs.
Even though the IDs provide an a priori maximum symmetry breaking, still, solving a task
and avoiding the process of “electing” one of the nodes may be highly non-trivial. But in
this case, defining the role of a process as its complete local state is inadequate. There are
other plausible ways of defining the role of a process, but which one is best-tailored for such
systems is still unclear and needs further investigation.

Finally, recall that in this work we focused on the inherent symmetry of a protocol as
opposed to its observed symmetry. One way to study the observed symmetry would be
to consider random parallel schedulers, like the one that selects in every step a maximum
matching uniformly at random from all such matchings. Then we may ask “What is the
average symmetry achieved by a protocol under such a scheduler?”. In some preliminary
experimental results of ours, the expected observed symmetry of the Count-to-5 protocol (i)
if counted until the alert state q5 becomes an absolute majority in the population, seems to
grow faster than

√
n and (ii) if counted up to stability, seems to grow as fast as logn (see

Appendix C for more details).
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APPENDIX
A Proofs of Propositions 3, 4, and 5

Proposition 3. Let p be a predicate. There is no protocol that stably computes p (all
nodes eventually agreeing on the output in every fair execution), having both a reachable
output-stable state with output 0 and a reachable output-stable state with output 1.

Proof. Let A be such a protocol and let q and q′ be the two reachable output-stable states,
such that O(q) = 0 and O(q′) = 1. As both q and q′ are reachable, both have production
trees. Denote by L(a) the set of leaves of a minimum (w.r.t. its number of leaves) production
tree for state a together with their labels. Consider now an initial configuration C0, in which
a subset set of the nodes is labeled as L(q) and another disjoint subset of nodes is labeled
as L(q′). As any label in L(q) ∪ L(q′) is an initial state, there is always such an initial
configuration C0. Now, consider the following finite prefix of a fair execution on C0: The
scheduler first simulates the production tree of q on the nodes corresponding to L(q) and
then it simulates the production tree of q′ on the nodes corresponding to L(q′). One way of
performing the simulation is to always pick the next internal node of maximum depth, not
picked yet. Such a node can only have nodes already picked or leaves as its children, otherwise
there would be an unpicked internal node of greater depth, violating depth maximality. What
the scheduler does after picking an internal node in state a with children in states b and c, is
to select the appropriate interaction between two nodes in states b and c in order to produce
a copy of state a in the population. At the end of the first simulation, there will be a copy of
state q in the population and at the end of the second simulation there will be a copy of
state q′ in the population. As q is output-stable, any fair execution having the above prefix
producing q must necessarily have eventually all nodes agree on output O(q) = 0. But q′ is
also output-stable implying that all nodes must eventually agree on output O(q′) = 1, which
is a contradiction. J

Proposition 4. Let A be a protocol with at least one reachable output-stable state, that
stably computes a predicate p and let Qs ⊆ Q be the set of reachable output-stable states of
A. Then there is a protocol A′ with a reachable disseminating state that stably computes p.

Proof. We first show how to construct A′ from A. Pick a single state q ∈ Qs. Replace any
occurrence of a q′ ∈ Qs in the transition function δ by q, eliminate duplicate rules, and
remove from Q all q′ ∈ Qs\{q}. Finally, replace any rule (x, y)→ (z, w), where x = q, y = q,
z = q, or w = q by the rule (x, y)→ (w,w). This completes the construction of A′. State
q is a disseminating state of A′ because, by the last step of the construction, it holds that
{x, q} → (q, q) for all x ∈ Q. Moreover, q is reachable because every q′ ∈ Qs is reachable in
A, q inclusive, and the above construction has only positively affected the reachability of q.

It remains to show that A′ stably computes p. As A stably computes p, it suffices to
show that when the two protocols are executed on the same schedule (including the choice of
the initial configuration) their stable outputs are the same. Take any schedule in which A
produces a q′ ∈ Qs and consider the first time t that this happens. As q′ is output-stable, the
stable output of A on this schedule must be O(q′). Consider now A′ on the same schedule.
Before step t, the executions of A′ and A must be equivalent, because the construction has
only affected rules containing at least one output-stable state. At step t, A′ produces its
disseminating state q, thus its output is O(q) = O(q′), so the outputs of the two protocols
agree on schedules producing output-stable states. Finally, for any schedule in which A
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does not produce an output-stable state, the executions of A′ and A are equivalent on this
schedule, thus again their outputs agree. J

Proposition 5. Let p be a predicate of the form
∑
i∈[k] aiNi ≥ c, for integer constants

k ≥ 1, ai, and c ≥ 0 such that at least two ais have opposite signs. Then there is no protocol,
having a reachable output-stable state, that stably computes p.

Proof. Let A be such a protocol and let q ∈ Q be a reachable output-stable state of A.
Take an initial configuration C0 that can produce q. As q is output-stable, it must hold
that the value of the predicate on C0 is equal to O(q). If O(q) = 1 then C0 must satisfy∑
i∈[k] aiNi ≥ c. Construct now another initial configuration C ′0 by adding to C0 as many

nodes in a negative-coefficient initial state as required to violate
∑
i∈[k] aiNi ≥ c. The value

of the predicate p on C ′0 is equal to 0 but q can still be produced on the C0 sub-configuration
of C ′0 implying that A’s output on C ′0 is 1. The latter violates the fact that A stably computes
p. If, instead, O(q) = 0, then we can obtain a similar contradiction by adding a sufficient
number of positive-coefficient nodes to C0. J

B Proofs of Proposition 6 and Theorem 5

Proposition 6. The majority predicate Na − Nb > 0 can be computed with symmetry
min{Nmin, |Na −Nb|}, where Nmin = min{Na, Nb}.

Proof. Initially, a node is in (l, 1) if its input is a and in (l,−1) if its input is b. The definition
of the protocol is given in Protocol 2.

Protocol 2 Majority

Q = {l, f} × {−1, 1}
I(a) = (l, 1) and I(b) = (l,−1)
O(·,−1) = 0 and O(·, 1) = 1
δ:

(l, i), (l, j)→ (f,−1), (f,−1), if i+ j = 0
(l, i), (f, j)→ (l, i), (f, i)
(f, j), (l, i)→ (f, i), (l, i)

(f,−1), (f, 1)→ (f,−1), (f,−1)
(f, 1), (f,−1)→ (f,−1), (f,−1)

We first argue about the correctness of the protocol. Initially all nodes are l-leaders and
l-leaders can only decrease via an interaction between an (l, 1) and an (l,−1), in which case
both become followers in state (f,−1). The only things that followers do is to copy the data
bit of the leaders (provided that at least one leader still exists) and to let the data bit −1
dominate a disagreement between two of them. Moreover, as long as there are at least two
leaders with opposite data bits, due to fairness, an interaction between them will eventually
occur. It follows that eventually, min{Na, Nb} such eliminations will have occurred leaving
2 ·min{Na, Nb} followers and n− 2 ·min{Na, Nb} leaders. All leaders will have data bit 1 in
case as are the majority, data bit −1 in case bs are the majority, while there will be no leaders
in case none of the two is a strict majority. In the first case, all followers will eventually copy
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1, thus all nodes will stabilize their output to 1. Observe that the 1 of a follower may change
many times to −1 due to its interactions with other followers that have not yet set their data
bit to 1, still fairness guarantees that eventually the unique (continuously reachable) stable
configuration in which all followers have switched to 1 after interacting with the leaders will
occur. In the second case, all followers will eventually copy -1, thus all nodes will stabilize
their output to 0 and in the third case there are only followers, so the data bit -1 eventually
dominates due to the last two rules of the protocol and eventually all nodes will stabilize their
output to 0. In summary, if the as form a strict majority all nodes stabilize to 1, otherwise
all nodes stabilize to 0, thus Protocol 2 stably computes the majority predicate.

For symmetry, consider first those initial configurations which satisfy |Na − Nb| ≥
min{Na, Nb}. Consider the schedule that matches min{Na, Nb} leaders with opposite data
bits in its first step, leaving |Na − Nb| leaders agreeing on the majority (i.e. in the sate
state) and 2 ·min{Na, Nb} followers in state (f,−1). Up to this point, there is no symmetry
breaking because the minimum cardinality that has appeared is still the initial minimum
min{Na, Nb}. Next, the scheduler matches in one step min{Na, Nb} followers to leaders
and then in another step the rest min{Na, Nb} followers to leaders, which leads to a stable
configuration in which all followers have their output agree with the data bit of the leaders.
As the minimum cardinality never has fallen below the initial minimum min{Na, Nb}, the
symmetry is in this case at least min{Na, Nb}.

Next, consider those initial configurations which satisfy |Na−Nb| < min{Na, Nb}. Again,
in the first step all opposite data bits are matched leaving 2 · min{Na, Nb} followers and
|Na −Nb| ≥ 0 leaders. Observe that if |Na −Nb| = 0 then the configuration is already stable
without any symmetry breaking. If |Na−Nb| ≥ 1, then the scheduler goes on by matching in
one step |Na −Nb| followers to the leaders. Then it picks a leader and converts sequentially
from the remaining followers, until precisely |Na − Nb| of them remain. Those are then
converted in one step by being matched to the leaders. The minimum cardinality of a state
in this schedule is |Na − Nb| and the initial minimum is min{Na, Nb}, so the symmetry
breaking is min{Na, Nb} − |Na − Nb| and the symmetry is on those initial configurations
|Na −Nb|. J

Theorem 5. For every constant k ≥ 1, the majority predicate Na−Nb > 0 can be computed
with symmetry k.

Proof. The idea is to multiply both Na and Nb by k so that their difference becomes
k|Na − Nb|. In this manner, the difference will become at least k (in absolute value)
whenever there is a strict majority which can be exploited for computation with symmetry k.
Fortunately, multiplying both Na and Nb by k ≥ 1 does not affect the value of the majority
predicate, but only the winning difference.

To this end, we set the state of a node initially to (l, k) if its input is a and to (l,−k) if
its input is b. The definition of the protocol is given in Protocol 3.

For correctness, initially all nodes are l-leaders. Now, l-leaders, apart from decreasing
as in Protocol 2, can also increase. This occurs whenever an (l, i), with |i| ≥ 2, meets a
follower, in which case the follower becomes a leader taking one unit of the other leader’s
count. Still, as in Protocol 2, as long as there are at least two leaders with opposite data
bits, due to fairness, an interaction two such leaders will eventually occur. Eventually, all
leaders will have a positive data bit in case as are the majority, and a non-positive in case as
are not the majority. From that point on, no leader can change its output and all followers
will eventually copy this output.
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Protocol 3 k-Symmetry-Majority

Q = {l, f} × {−k,−(k − 1), . . . , 0, . . . , k − 1, k}
I(a) = (l, k) and I(b) = (l,−k)
O(·, j) = 0, for all −k ≤ j ≤ 0 and O(·, i) = 1, for all 0 < i ≤ k
δ:

(l, i), (l, j)→ (l, i+ j), (f, 1), if i, j have opposite signs and i+ j > 0
→ (l, i+ j), (f, 0), if i, j have opposite signs and i+ j < 0
→ (f, 0), (f, 0), if i+ j = 0

(l, i), (f, ·)→ (l, i− 1), (l, 1), if i ∈ {2, 3, . . . , k}
(f, ·), (l, i)→ (l, 1), (l, i− 1), if i ∈ {2, 3, . . . , k}
(l, j), (f, ·)→ (l, j + 1), (l,−1), if j ∈ {−k,−(k − 1), . . . ,−2}
(f, ·), (l, j)→ (l,−1), (l, j + 1), if j ∈ {−k,−(k − 1), . . . ,−2}
(l, i), (f, ·)→ (l, i), (f, i), if i ∈ {−1, 0, 1}
(f, ·), (l, i)→ (f, i), (l, i), if i ∈ {−1, 0, 1}

(f, 0), (f, 1)→ (f, 0), (f, 0)
(f, 1), (f, 0)→ (f, 0), (f, 0)

For symmetry, in case Na = Nb, then the scheduler can pick a perfect bipartite matching
between the (l, k)s and the (l,−k)s to convert them to (f, 0) and thus stabilize to output 0
without any symmetry breaking. The case, Nb > Na is simpler then the Na > Nb because
the default output of the followers is 0, while in the Na > Nb case there is a small additional
difficulty due to the fact that all (f, 0)s have to be converted to (f, 1)s. So, w.l.o.g. we focus
on the Na > Nb case and we only give a proof for the special case in which Na = Nb + 1 as
the other cases are similar.

So, assume that Na = Nb + 1. The construction requires that n ≥ 2k(k + 1). The initial
configuration consists of Na = Nb + 1 nodes in state (l, k) and Nb nodes in (l,−k). We
present a schedule with symmetry k. The scheduler first picks a matching between (l, k)s and
(l,−k)s of size dk/2e. This introduces k copies of state (f, 0) and leaves Nb − dk/2e nodes
in state (l,−k) and Nb − dk/2e+ 1 nodes in state (l, k). Now isolate k + 1 nodes in state
(l, k) and k nodes in state (l,−k). The remaining nodes in states (l, k) and (l,−k) (equal
of each) are n− k − (k + 1)− k ≥ 2k(k + 1)− 3k − 1 = 2k2 − k − 1. These are converted
to (f, 0)s in one step, so we now have the initial k (f, 0)s, the new (f, 0)s that are at least
2k2 − k − 1, k + 1 (l, k)s, and k (l,−k)s. Together the (l, k)s and (l,−k)s hold a total count
of k(k + 1) + k2 = 2k2 + k and together the new (f, 0)s, the (l, k)s, and the (l,−k)s are at
least 2k2− k− 1 + (k+ 1) + k = 2k2 + k nodes. So, there are enough nodes (the initial (f, 0)s
excluded) to distribute on them the count as follows. First the scheduler picks the (l, k)s and
matches them in one step to k + 1 nodes in (f, 0). This leaves k + 1 nodes in (l, k − 1) and
k + 1 nodes in (l, 1). Then it matches the (l, k − 1)s to (f, 0)s, introducing k + 1 more (l, 1)s
and leaving k + 1 nodes in (l, k − 2). It continues in the same way until no count is greater
than 1, in this way distributing the counts of the k + 1 nodes in (l, k) to k(k + 1) copies of
(l, 1). Observe that during this process the initial (l, k)s are always in identical states going
in parallel through the sequence of states (l, k), (l, k− 1), (l, k− 2), . . . , (l, 1), so each state on
them is the state of k + 1 other nodes. Moreover, their first matching with (f, 0)s introduces
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k + 1 (l, 1)s in one step and from that point on (during this particular process) (l, 1)s only
increase, so the cardinality of (l, 1)s does not go below k + 1. Next (or in parallel), it does
the same with the k nodes in (l,−k) leaving k2 copies of (l,−1). Observe that even though
(f, 0)s decrease during these processes, their cardinality never goes below k due to the initial
set of k (f, 0)s. So, at this point there are at least k (f, 0)s, k2 + k (l, 1)s, and k2 (l,−1),
while the minimum multiplicity of a state has never dropped below k. The scheduler now
matches in one step all the (l,−1)s to (l, 1)s leaving in the population at least k2 + k (f, 0)s
and precisely k (l, 1)s. Then, the scheduler matches all (l, 1)s to (f, 0)s, thus introducing in
one step k (f, 1)s (and still having at least k2 (f, 0)s), and then picks an (l, 1) and starts
converting sequentially (f, 0)s to (f, 1)s until precisely k (f, 0)s have remained. Finally, it
matches the remaining k (f, 0)s to the k (l, 1)s to convert all (f, 0)s to (f, 1)s in one step. At
this point the protocol has stabilized and the multiplicity of no state has ever dropped below
k. J

C Experiments on the Expected Observed Symmetry of Count-to-5

(a) (b)

Figure 1 The experiments were performed with the NETCS simulator [3]. The scheduler selects
in every step a maximum cardinality matching, uniformly at random from all maximum matchings
of the complete interaction graph. The implemented protocol is the Count-to-x protocol of Section
3.1, for x = 5. In a fraction of the populations of size up to 6000 nodes, several repetitions were
performed and the average observed symmetry achieved by the protocol is plotted. The initial
configuration is always the one resulting from assigning to all nodes the input value 1. (a) The
observed symmetry of Count-to-5 (red line) is calculated up to the point that the alert state q5 first
becomes an absolute majority in the population and seems to grow faster than

√
n (green line). (b)

The observed symmetry of Count-to-5 (red line) is calculated up to stability and seems to grow as
fast as log n (green line).
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