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Abstract

Population explosion is one of the primary causes for concern in the power sector
nowadays because residential buildings consume a high percentage of available elec-
tricity in the market. Also, the majority of current power plants use fossil fuel to gen-
erate electricity which makes the situation even worse due to the high price of fossil
fuel. Consequently, electricity bills have soared dramatically in the last decade. If that
was not enough, many countries have a shortage of electricity because they cannot in-
crease their generation capacity to cover electricity demand. Many solutions have been
introduced to improve the efficiency of the power grid and reduce electricity price for
the users. For instance, Demand Side Management and Demand Response, domestic
top-roof renewable micro-plants, and distributed renewable plants are introduced as a
part of the solution to improve the situation. However, users are still paying a high per-
centage of their monthly income to electricity companies, that is because the surplus
renewable power is not well utilized. The primary problem here is to find an efficient
way to minimize the electricity cost and maximize the utilization of renewable power
without using storage systems (batteries). Another issue is to solve the massive power
allocation optimization problem in polynomial time. In this thesis, heuristic optimiza-
tion algorithms are proposed to cope with the complexity of the problem as these kinds
of problems are NP-hard. Furthermore, a set of different power allocation problems
has been addressed in this thesis. The first one uses an online algorithm to solve power
allocation problem that is modeled as a Knapsack problem. Additionally, the thesis
has coped with the computational issue of a massive LP-based optimization problem
of large buildings. Finally, an MILP-based heuristic algorithm has been used to solve
power allocation problem in micro-grids (a set of houses shares renewable power for
particulate rate). The empirical experiments and evaluations, in general, show promis-
ing results. The findings depict how an appropriate knapsack formulation can be used
to address a significant dynamic energy allocation problem in a straightforward and
flexible way and how good our heuristic algorithms can solve enormous power opti-
mization problem in polynomial time. Finally, the results prove that our micro-grid
model can reduce power bills by using the principle of renewable power sharing for a
fair price.
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Chapter 1

Introduction

“Without knowledge action is useless and

knowledge without action is futile.”

Abu Bakr As-Siddiq

he introductory chapter illustrates the primary motivation for the research in
Section 1.1. Section 1.2 explains the research question together with the
associated issues to be addressed and the adopted research method. In addi-

tion, the chapter presents the objectives of the research and the research contributions
in Section 1.3. Also, Section 1.4 gives a summary of the publications. The scope
of this thesis and assumptions is determined in Section 1.5. Finally, thesis outline is
illustrated in Section 1.6.

1.1 Motivation

Population explosion is one of the leading cause of concerns to power sector; the world
population reached 7 billion in 2011 with a growth rate of 1.4% per year, and it would
hit at least 11 billion by 2050 if the increase rate stayed at this rate. This remark-
able increase in world population has caused a serious problem in the power sector
because the relationship between global population and energy demand is positive,
which means that the energy demand would increase at least at a rate of around 1.4%
a year as well. In reality, the electricity demand rate exceeded the population growth
rate. The electricity energy consumption in 1980 was around 9 TW, whereas it was
about 15.2 TW in 2008 with 1.9% growth rate a year. Therefore, the predicted en-
ergy demand in 2030 would hit something around 22 TW [2]. Residential buildings
consume around 40% of the electricity in the USA, 68% in the European Union [7],
and about 50-70% in the Arabian Peninsula states (53% in Saudi Arabia) [8]. Also,
Figure 1.1a illustrates the energy production and consumption in the United States of
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America, whereas Figure 1.1b demonstrates electricity consumption by sector over 30
years in the USA. Furthermore, these two figures depict that there is a significant in-
crease in energy demand in general. In addition, Figure 1.1c explains the resources of
electricity power in the USA. Figure 1.1d shows the electricity price in the USA over
more than 30 years [9]. Obviously, increasing the generation capacity with this rate
may not be applicable in near future [10]. Furthermore, the situation is more compli-
cated in highly populated countries, such as India, Nigeria, and Egypt. These countries
are already suffering from a lack of electricity production (electricity demand is much
higher than their production capacities). Therefore, they control the demand by cutting
electricity on some towns to maintain the stability of the electricity grid.

(a) The electricity energy production and consump-
tion in the United States of America in Quadrillion
Btu over 30 years [9].

(b) The electricity energy consumption in the
United States of America by sector over 30 years
[9].

(c) Electricity Net Generation in Billion kilowatt-
hour in the United States of America over 30
years[9].

(d) The average of electricity price in cent/
kilowatt-hour in the United States of America over
30 years [9].

Figure 1.1: Energy situation in the United States of America in the last 30 years

According to the U.S. Energy Information Administration (EIA) report [9], fossil
fuels have been the primary energy source that has been used over the globe in the last
century. For example, fossil fuels made up at least 80% of the USA fuel since 1900 [9].
By contrast, more than 98% of electricity is generated by gas and oil in Libya because
these resources are widely available in the country [11]. These kind of energy sources
are not renewable resources (it is running out every day), environmentally friendly (it
causes air pollution by increasing the carbon dioxide), or cheap fuel (fossil fuel price
soars dramatically in the last decade).
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Renewable energy is an excellent alternative for fossil energy. The total renewable
electricity generation capacity in the world has risen from 2.9 trillion kilowatt-hours in
2002 to 4.7 trillion kilowatt-hours in 2012 [9]. Although the capacity has increased to
double in 10 years, more renewable power can be generated. Currently, 22% of elec-
tricity in the globe is produced by renewable resources [12]. However, many countries
produce all their electricity from fossil fuels. The available solar energy on earth can
provide the world with 14,000 times the current electricity demand [13]. Generating
100% of electricity demand from renewable is not an impossible mission nowadays.
Norway, for instance, comes first concerning renewable power generation capacity, in
the last decade, between 95% and 99% of their electricity consumption came from
renewable resources, a vital portion of this percentage comes from hydro-power [14].
Denmark is considered as one of the leading countries in wind power, 43% of their
electricity comes from wind energy. Additionally, Denmark has a plan of increasing
this percentage to 50% by 2020 and to hit 100% by 2050 [15]. It is difficult to say how
realistic this plan is, it would be a significant success if they can reach their target. In
addition, Germany’s renewable energy sector is one of the most successful renewable
models in Europe. It provided the country with 30% of its demand in 2014. Also, Ger-
many comes first regarding Photovoltaic arrays (PV arrays) with installed capacity of
33 Giga Watt-hours in 2012 [16]. The European Union has a plan that each state should
generate 20% renewable power of its energy consumption by 2020. Some countries
have already achieved this goal, whereas the others have to work seriously toward this
goal. Although, some countries are working toward generating 100% of their electric-
ity demand from renewable resources, there are many countries which have not started
using renewable resources yet. In particular, countries that have fossil fuel resources
and the developing countries. Although renewable power is sustainable, cheap, and en-
vironmentally friendly, it could be unreliable (it is from intermittent resources). Hence,
much work needs to be done in the area of energy management in residential buildings
in micro-grids. For example, improve the storage system and increase it, maximizing
the utilization of renewable energy by using load shifting technique and allow power
sharing between residential buildings.

1.2 Problem Statement and Rationale

Electricity price has soared dramatically in the last two decades. For instance, in the
United Kingdom, the average spent on electricity bills was £106 ($150) per month
in 2012, whereas it was £69 ($99) in 2002 with increasing rate of 55% [17]. If that
was not enough, the power bills are going to keep growing in future at an even higher
rate. Consequently, this considerable increase in electricity price affects our monthly
income because it takes a substantial portion of it. Therefore, minimizing the cost of
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electricity is crucial, and it benefits almost everybody.
Many ways can be used to improve the situation. Firstly, residents can improve

their house insulation by using foam insulation, blanket insulation, double glazing, etc.
Nevertheless, building insulation is outside the scope of this thesis. Secondly, users
could install domestic renewable resources (rooftop PV array, rooftop wind turbine,
etc.). Thirdly, home automation techniques (motion sensors, thermostated appliances,
etc.) could be used to reduce power consumption in the residential or commercial
buildings. Finally, end users may use power management and optimization system to
find an optimal schedule for their activities that guarantees the minimum cost (using
Demand-Side Management (DSM) and Demand Response (DR)1).

Renewable resources are intermittent. For example, PV array system has maximum
potential output at midday when most of the inhabitants are at work or schools (outside
the residential building), which mean that the utilization of PV array will be minuscule.
On the other hand, PV array does not generate any electricity at night. Therefore, few
solutions have been introduced in the past to tackle this issue. Firstly, using energy
storage systems such as batteries to accommodate the surplus renewable power and
use it at night. However, the storage system has many disadvantages such as high cap-
ital cost, safety issues, efficiency issues, space taken, etc. The second way is to sell the
surplus renewable energy to national electricity grid using Feed-In Tariff agreement or
contract. Though these contracts are usually unfair for residents, and the users will get
nothing for their surplus power in some countries. Thirdly, the end user could exploit
their surplus energy for heating water or running some other appliances. Finally, users
can use a control system to schedule their house activities (cleaning, washing, heating,
etc.). Nevertheless, there is a computational problem with this method such as run-
time as these kinds of problems are NP-hard. All previous methods have improved
the utilization of renewable power and decreased the electricity bills. However, local
renewable use can be further improved. The load shifting concept is used to maximize
the utilization of domestic renewable power (using different optimization algorithms
to schedule household appliance demand, more detail in the next chapter). There are
many pieces of research have been done in this area, see Section 2.8. For example,
using reactive control system in the residential building to maximize the utilization
of renewable power, where local renewable energy is allocated immediately to house-
hold appliances using the online algorithm, or using predictive control system in the
residential building where the household activities (load) can be scheduled based on
renewable power forecasting. However, the complexity of the problem is still the pri-
mary cause for concern especially to large or huge problems such as building with a

1 Demand Side Management (DSM) is a strategy that has been designed to encourage the customer to
be more energy efficient. Demand Response (DR) is the action that has been taken by the end user to
cut down the amount of electricity at the specific time.
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broad range of appliances, or micro-grid with many houses.
There have been countless studies in this field that tried to come up with perfect

model and method that minimizes the cost of electricity for the user and maximizes
the profit of electricity companies. However, it is tough to achieve this goal for many
reasons (e.g. it is a very complex problem, uncertainty, etc.). Finding an optimal
solution for a single house with few household appliances could be feasible. Never-
theless, finding an optimal solution for power allocation problem to large buildings,
with a wide range of household appliances, or micro-grid with many houses, is not
an easy task. It could be even impossible to find an optimal solution to these kinds
of problems. Therefore, a trade-off between cost and run-time is required and the
sub-optimal solution, in such complex problems, is not a choice but a must. In this
thesis, a number of mathematical models and heuristic algorithms have been designed
to give sub-optimal solutions for power management problems. The research gap in
this field is that finding an optimal solution of massive problems could be infeasible2.
Some frameworks have tackled the computational issue with a heuristic algorithm to
find a sub-optimal solution, see Section 2.8. However, the proposed method will be
different from these studies (more detail later). Furthermore, all studies in literature
review have not tackled the computation time seriously (run-time) especially for mas-
sive problems. Furthermore, they have not considered more than one AC unit works in
the same room, which adds much complexity to the problem, such algorithms will not
cope with such massive problems. On the other hand, they have not used local power
sharing between residents efficiently. Also, the run-time of their algorithms was not
considered seriously.

1.3 Objectives and Contributions

The primary objective of this thesis is to develop a comprehensive mathematical model
for a set of residential buildings, commercial buildings (e.g. offices buildings), and
renewable plants working in a micro-grid setting as a single controllable load. More-
over, designing a heuristic algorithm for the proposed model is another objective. The
thesis will also discuss an appropriate way to convert the complex multi-objective op-
timization problem of allocating power to a set of houses in a micro-grid into a single
objective optimization problem in a way that nobody will lose in micro-setting.

Therefore, based on the aforementioned objectives of this thesis, the main contribu-
tions of the research (with respect to both computer science and electrical engineering)
can be itemized as follows:

∗ A comprehensive mathematical model for a micro-grid. The thesis has pro-

2 Infeasible solution if there exists no solution that satisfies all of the constraints.
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posed a micro-grid model that consists of a set of houses and renewable plants
working collaboratively. It also provides detail about the implementation and the
evaluation of the model, more detail in Chapter 3.

∗ A way to convert a multi-objective optimization problem to a single op-
timization problem. The thesis has proposed a way (hybrid method of ε-
constraint technique and scalarizing technique) to convert a multi-objective opti-
mization problem (MOOP) into a single objective optimization problem (SOOP).
The main goal of this hybrid method is to improve the fairness issue in the micro-
grids. The thesis also provides full detail of the implementation and the evalua-
tion, more detail in Chapter 5.

∗ A way to improve fairness issue in micro-grids. The thesis has provided a set
of constraints with hybrid method to guarantee that nobody will lose in micro-
grid settings, more detail in Chapter 5.

∗ Propose a fair pricing rate for sharing local power in a micro-grid: the thesis
has proposed a pricing rate for houses and plants in micro-grids, more detail in
Chapter 5.

∗ Using LP relaxation and rounding techniques: the thesis has used LP relax-
ation and a set of rounding techniques.

– Cumulative Rounding LP (CRLP) strategy. LP relaxation technique has
been used to reduce the complexity of our optimization problem presented
in Section 4.2. Additionally, the thesis has shown a design for a heuristic
algorithm, an MILP formulation of the problem, and an empirical evalu-
ation of the proposed algorithm. The proposed algorithm uses rounding
method (CRLP) to convert the LP-relaxed solution to a practical solution
for the residential building. Finally, CRLP is intended for AC units only,
more detail in Chapter 6.

– Minimum Deviation Rounding (MDR) strategy. Another rounding tech-
nique (MDR) has been designed and tested to improve the performance of
the previous algorithm (uses CRLP). The main difference between CRLP
and the new rounding method (MDR) is that CRLP rounds the allocated
power for the AC unit without considering the room temperature, whereas
MDR rounds the LP-relaxed solution based on the room temperature, more
detail in Chapter 6. The MDR is designed for AC units only.

– Minimum Cost Rounding (MCS) strategy. This technique is designed
to adjust the relaxed allocated power3 to uni-phase interruptible appliances
(discussed in Section 3.4.2).

3 The power allocated to household appliances after using LP relaxation may not be practical and it
needs to be rounded to either zero or nominal power.
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∗ A mathematical model of air conditioning system. The thesis has provided
a mathematical model for air conditioning system. Also, it has considered a
model for a set of AC units or heaters working in the same room, more detail in
Chapters 3, 5 and 6.

∗ A reactive control system of a smart house. The thesis has suggested an energy
manager for a single stand-alone house. The energy manager can maximize
the utilization of renewable resources based on user preferences, more detail in
Chapter 7.

1.4 Publications

In this section, an annotated list of publications to date that have arisen from the work
described in this thesis is presented. Total of six papers (three papers have been already
published, two have been accepted and are waiting to be published, and one is submit-
ted to Journal of Energy and Power Engineering) have emerged out of the research
presented in this thesis, and these are listed and summarized in this section:

1. M. Arikiez, P. Gatens, F. Grasso, and M. Zito. Smart domestic renewable
energy management using knapsack. In 2013 4th IEEE/PES Innovative
Smart Grid Technologies Europe (ISGT EUROPE), pages 1–5, Oct 2013. It
describes how a variant of the knapsack optimization problem can be applied to
the solution of an allocation problem arising in the management of the renew-
able energy generated by a micro-generation plant. The study used an online
optimization algorithm to maximize the utilization of domestic renewable power
based on user preferences. Theoretical and empirical analysis show that the pro-
posal is viable, it results in significant energy savings, and can be adapted to a
number of different usage patterns.

2. M. Arikiez, F. Grasso, and M. Zito. Heuristics algorithm for coordinating
smart houses in microgrid. In 2015 IEEE International Conference on Smart
Grid Communications (SmartGridComm), pages 49–54, Nov 2015. This work
presents a framework for efficiently managing the energy needs of a set of houses
connected in a micro-grid configuration. The micro-grid consists of houses and
local renewable plants, each seen as independent agents with their specific goals.
In particular, houses have the option to buy energy from the national grid or the
local renewable plants. The authors have discussed a practical heuristic that leads
to power allocation schedules that are cost-effective for the individual houses
and profitable for the local plants. The authors present experiments describing
the benefits of their proposal. The results illustrate that houses and micro-plants
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can make a considerable saving when they work in micro-grid compared with
working alone.

3. M. Arikiez, F. Grasso, and M. Zito. Heuristics for the cost-effective man-
agement of a temperature controlled environment. In 2015 IEEE Innovative
Smart Grid Technologies - Asia (ISGT ASIA), pages 1–6, Nov 2015. This study
investigates the use of linear programming based heuristics for solving particular
energy allocation problems. The primary objective is to minimize the cost of us-
ing a collection of air conditioning units in a residential or commercial building
and keep the inside temperature within pre-set comfort levels. Further, optimal
methods do not scale up well when the number of appliances or the system time
granularity grows past a certain threshold. Therefore, the authors have proposed
a heuristic algorithm that uses LP relaxation and rounding to offer a good trade-
off between cost and computation time.

4. M. Arikiez, F. Grasso, D. Kowalski, and M. Zito. Heuristic Algorithm
for Minimizing the Electricity Cost of Air Conditioners on a Smart Grid.
In 2016 IEEE International Energy Conference and Exhibition (ENERGY-
CON), pages 1–6, April 2016. This paper has investigated using heuristic al-
gorithms to solve Multi-Objective Optimization Problem (MOOP). The primary
goal is to minimize the electricity cost for a set of air conditioners in residential
or commercial buildings. The second objective is to minimize the discomfort
factor. The proposed algorithm also enhances the utilization of local renewable
power. This allocation problem can be formulated using a static technique such
as Mixed Integer Linear Programming (MILP). Nevertheless, solving MILP-
based MOOP could be impracticable in massive problems due to the hardness of
the problem. Accordingly, a trade-off between cost and run-time is required. Our
algorithm uses an MILP-based heuristic optimization algorithm and LP relax-
ation and an innovative rounding technique called Minimum Deviation Round-
ing (MDR) to get a sub-optimal solution. The result reveals that our algorithm
can solve a massive problem in few seconds and gives a superb sub-optimal so-
lution.

5. M. Arikiez, F. Grasso, and M. Zito. Minimizing the electricity cost of coor-
dinating houses on microgrids. In 2016 4th IEEE/PES Innovative Smart
Grid Technologies Europe (ISGT EUROPE), pages 1–6, Oct. 2016. This
manuscript presents a comprehensive mathematical model for multi-objective
optimization problem of the micro-grid. The micro-grid consists of houses and
local plants, each seen as independent agents with their specific goals. We also
propose a heuristic algorithm for optimizing the electricity cost by using the
concept of load shifting and renewable power sharing between houses in the mi-
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crogrid for a particular price. Also, the algorithm minimizes the loss of energy
by prioritizing power exchange between close houses and minimize discomfort
factor. The findings have shown that houses and micro plants working in a micro-
grid setting can make a significant saving. The results have illustrated that our
algorithm guarantee nobody will lose in the micro-grid.

Furthermore, the work described in this Ph.D. thesis has led to a follow-up investiga-
tion results of which are not reported in this thesis, though the follow up paper is listed
here for completeness:

1. M. Arikiez, F. Grasso, and M. Zito. Heuristic Algorithm for Minimizing
the Electricity Cost of Smart House. Submitted to Journal of Energy and
Power Engineering. This framework proposes a heuristic algorithm based on
Linear Programming (LP) for optimizing the electricity cost in large residential
buildings, in a smart grid environment. Our heuristic algorithms tackle large
multi-objective energy allocation problem (a large number of appliances and
high time resolution). The primary goal is to reduce the electricity bills, and dis-
comfort factor. Also, increase the utilization of domestic renewable energy, and
reduce the running time of the optimization algorithm. Our heuristic algorithm
uses linear programming (LP) relaxation, and two rounding strategies. The first
technique, called Cumulative Rounding (CR), is designed for thermostatic appli-
ances such as air conditioner and electric heater, and the second approach, called
Minimum Cost Rounding (MCR), is designed for other interruptible appliances.
The results show that our heuristic algorithm can be used to solve large Mixed
Integer Linear Programming (MILP) problems and gives a decent sub-optimal
solution in polynomial time.

1.5 Scope of Thesis and Assumptions

This thesis has tackled two control systems, reactive and predictive. The reactive sys-
tem uses an on-line algorithm to solve an optimization problem based on real time
instant inputs, whereas predictive system uses an off-line algorithm to solve an opti-
mization problem based on predicted input data. In the predictive system, our solution
depends mainly on prediction (e.g. PV array depends on weather forecasting). Fur-
thermore, error in prediction is beyond the scope of this thesis. This research is not
dedicated to a particular geographical area or country. However, the performance of
our model changes considerably from area to another. For example, it performs much
better in the Mediterranean countries than in north Europe because the weather predic-
tion in the Mediterranean countries is relatively accurate compared with the weather
forecasting in north Europe.
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Some assumptions have been made to reduce the complexity of this problem.
Firstly, it is assumed in this thesis that all appliances are powered by electricity. Sec-
ondly, the proposed models in this thesis have used an equation that models the re-
lationship between outside temperature of the building, inside temperature, and con-
sumed power; this equation is not linear. Therefore, the author had to do some ap-
proximation on the model to convert it to a linear system, more detail will be given
in Chapter 3. Moreover, it is assumed in this thesis that the states of all doors and
windows in the buildings are closed. Additionally, the number of inhabitants in the
building (residents affect the inside temperature) was neglected. It is also assumed that
the output of PV array and wind turbine are constant over one hour that is because
all weather forecasting station gives data with one-hour time resolution. In addition,
a model for the battery of PHEV has been used, the relationship between consumed
power and state of charge is not linear. Therefore, the author had to approximate some
variables related to charging and discharging mode. Also, we have converted the con-
tinuous problem to discrete one, and the time horizon is split into a set of time slots.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows:

Chapter 2 illustrates a general background of the power system, electricity pricing,
electricity bills, and smart grids. It, also, provides a literature review of the
previous work that is of relevance with respect to the work presented in this
thesis.

Chapter 3 provides a comprehensive model of micro-grid and its components. The
chapter starts with modeling renewable resources (wind turbine and solar PV
array). Then, it models household appliances.

Chapter 4 defines the computational problems of optimizing the electricity cost of a
set of houses in micro-grids. Additionally, it illustrates the special cases of the
power allocation problems in micro-grids, and gives a mathematical formulation
of these problems.

Chapter 5 presents MILP formulation of the proposed micro-grid model. The chapter
proposes a predictive control system for a micro-grid. Further, it proposes a
heuristic algorithm to solve the optimization problem. Finally, the findings are
presented and discussed.

Chapter 6 demonstrates MILP formulation of the proposed micro-grid model. The
chapter suggests predictive control system for a set of AC units in a large build-
ing. It also proposes a set of heuristic algorithms to tackle the problem of power
management in large buildings.
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Chapter 7 illustrates ILP formulation of the proposed micro-grid model. It also in-
troduces a reactive control system for knapsack problem in a smart house.

Chapter 8 presents conclusions and future work.



Chapter 2

Background and Literature Review

“There is no knowledge and science like pon-

dering and thought, and there is no prosperity

and advancement like knowledge and science”

Ali Ibn Abi Talib

his chapter presents a background review of the main concepts relevant to
the research of energy management in micro-grids in Sections 2.1, and
2.2. Furthermore, the chapter discusses electricity prices and Demand-Side

Management (DSM) strategies that are available in the electricity market in Sections
2.3 and 2.4. This chapter also defines most of the basic concepts in smart grids and
micro-grids in Sections 2.5, and 2.6. Further, smart house is defined in Section 2.7.
The related works will be discussed in Section 2.8. Finally, Section 2.9 summarizes
the chapter.

2.1 Electricity Systems

An electricity system consists of four parts: i) generation, ii) transmission, iii) distri-
bution, and iv) consumption. Generation is the process of producing electricity from
natural resources (fossil resources, or renewable resources) [2]. The transmission pro-
cess is responsible for transferring the electricity from power plants to distribution
stations over high voltage power lines. In the distribution process, the high-voltage
electricity is converted to low voltage electricity using step-down transformers so that
customers can use the energy, as shown in Figure 2.1 for more detail [2]. Grid reliabil-
ity is crucial in the electricity grid, so the main challenges for electricity companies are
to maintain reliability and efficient operation of the grid. Also, electricity companies
should ensure that there is enough generation capacity for the future. Other challenges
which affect the operation of current resources are: i) increasing fuel cost, ii) potential
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for supply disruptions, iii) technological advances, and iv) additional cost imposed by
climate changes [1].

Figure 2.1: Power system diagram

2.2 Electricity Bills

This section gives a review of the ways that have been used before to reduce electricity
bills. According to report in [1], there are four ways that customers can consider to
reduce their electricity bills:

∗ Energy conservation: it is one of the cleanest and most affordable methods to
decrease electricity bills and lessen the gap between the electricity demand and
electricity supply. For example, a customer could switch off some unneeded
household appliances (lights, or heaters, air conditioner, etc.) to save electricity
and as a result save money. Usually, it is not easy to convince people to reduce
their electricity consumption and change their living style, especially at peak
hours, for many reasons. For instance, people, who have high monthly income,
would not bother saving some money from switching some of their household
appliances off. Besides, it could be impractical to switch some appliances off at
a particular time because it may damage the appliance itself or corrupt the task
or the job that is being done by the appliance [1].

∗ Energy efficiency: consuming less energy to reach the same goal by using effi-
cient household appliances (e.g. consider using two different washing machine
A, and B for the same job (clothes washing) at the same time. Washing machine
A consumed 3 kWh to finish the job properly, and washing machine B con-
sumed 3.3 kWh). Furthermore, most of the modern appliances are categorized
in different levels (usually from A to G) based on their power efficiency, where
a household appliance designed with level A is the most efficient appliance re-
garding electricity consumption, and appliance with level G is the worst energy
efficient appliance. Energy efficient household appliances are usually expensive
and not everybody can afford to buy these appliances, which means efficient ap-
pliances can help to reduce the demand for electricity, but this reduction would
not be considerable [1].
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∗ Smart appliances usability: There are many appliances nowadays which have
many working levels or programmed for different tasks, so that they consume a
different amount of electricity energy each time. For instance, an electric cooker
could have a number of working programs (rice, meat, pasta, etc.), or washing
machine could have a number of working levels (heavy load, light load, white
clothes, colored clothes, etc.). Therefore, it is important to choose the correct
working mode to save electricity energy. By contrast, lack of knowledge about
how to operate these smart appliances could make them consume more than
what they need to finish the task properly. Therefore, the saving of electricity
depends on the user knowledge (elderly people may find it difficult to use such
smart appliances) [1].

∗ Load Management: it is, also, known as demand side management, it is the
process of changing the electricity load (demand) rather than changing the out-
put of electricity power plants to balance the demand and supply. Demand-Side
Management (DSM) is action or tools that encourage end users to consume elec-
tricity energy at different times of the day. For example, the electricity demand
during peak hours could be lessened by using a dynamic pricing scheme, home
automation system, and/or power management control system. Similarly, the
action of electricity provider is called demand side management, whereas the
action of the end user is called the Demand Response (DR). The main disadvan-
tage of this approach is that it may reduce the comfort level. Also, it may need
automatic control systems and more advanced hardware which are usually more
expensive. The complexity of the system is also an issue [1, 18]. For more detail
about demand-side management and demand response see Section 2.4 .

The thesis will consider just the last two ways to minimize the electricity cost, namely
smart appliances and load management, whereas energy conservation and energy ef-
ficiency are outside the scope of this thesis. Next, electricity pricing strategies in the
market are reviewed in detail.

2.3 Electricity Pricing Strategies

Electricity cost is the important part of the energy market. The price of electricity
is a function of four main factors which are : i) customer services, ii) distribution
services, iii) transmission services, and iv) generation services. Further, electricity
bills take a considerable amount of consumer’s monthly income. Although energy
companies have offered different kinds of electricity pricing in the last 30 years to help
customers to save some money, many consumers still face an inefficient fixed price
option. There are many electricity pricing strategies all over the world [1]. In the
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forthcoming sections, a review of the most important of electricity pricing strategies is
introduced.

2.3.1 Hourly Pricing Strategies

The retail electricity prices vary hourly to control the demand. Suppliers usually notify
their customers a day ahead or an hour ahead [1]. The following listed types explain
some versions of hourly pricing in the market:

∗ Basic hourly pricing: This pricing model can be attractive for large consumers.
End users who consume a large amount of energy (e.g. manufacturers, hospitals,
or universities, etc.), are usually interested in the lowest price offered by com-
petitive suppliers regardless of the risk of varying electricity price, Figure 2.2
[1].

Figure 2.2: Basic hourly pricing [1]

∗ Block and index pricing offered by competitive retail providers: Although, the
customers, in these kinds of combined contracts, pay a fixed price for a fixed
amount of energy, they pay prices indexed to the relevant market, locational
marginal pricing (LMP), every hour for any extra demand above the threshold.
The customers who do not care about price certainty during their contract, and
have a high-risk tolerance may be interested in this strategy. On the other hand,
if electricity prices fall, the customers have to pay at the rate specified in the
contract, which means the customer will pay a higher rate than the current market
rate, see Figure 2.3 [19].



2.3 Electricity Pricing Strategies 17

Figure 2.3: Block and index pricing, the consumed power above block purchase (gray
area ) will be more expensive at LMP [1]

∗ Two-part real-time pricing at regulated utilities: Under this price strategy, the
electricity bills are divided into two sections. The first section is that the cus-
tomer pays a standard tariff for a particular amount of energy, called Customer
Baseline Load (CBL), calculated using their historical consumption, usually for
one year before joining real time pricing. The second section is that the clients
pay an hourly price, Real Time Price(RTP), for any amount of power above CBL,
see Figure 2.4 [1].

Figure 2.4: Two-part RTP [1]

∗ Unbundled real-time pricing with self-selected baseline load: electricity tariffs
usually consist of a set of the components for a generation, transmission, and
distribution cost. In this tariff, utility companies unbundle the total cost and add
hourly pricing to the generation component only [1].
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2.3.2 Daily Pricing Strategies

In daily pricing, suppliers sell electricity for a fixed price over blocks of time, but the
price of these blocks may vary daily. This change in price could be announced on
a daily or hourly basis [1]. According to [1], the following pricing schemes present
example on daily pricing:

∗ Day-type Time-Of-Use (TOU) rate: electricity supplier will prepare a set of
TOU prices, which are a low rate, medium rate, and high rate to reflect the price
at that time, after that suppliers announce one of these pricing structures a day
ahead based on the wholesale prices. Tempo residential tariff is one example,
and Electricite de France offers it [1].

∗ Variable peak rate: electricity suppliers fix the price of electricity on off-peak
periods, whereas the on-peak price is announced daily to reflect energy market
price. ISO-NE proposes this pricing strategy.

∗ Critical peak pricing: in this critical peak pricing, the price of electricity will be
increased significantly if electricity supplier notices emergency conditions in the
power system or high market prices [1].

∗ Variable critical peak pricing: this is a combination of time-of-use and real-time
pricing; several critical prices are prepared. Then, the price in peak hours can be
varied by the supplier based on market conditions [1].

∗ Critical peak pricing linked to a standard tariff: utility companies, in this pricing
structure, add critical price charge to the standard rate [1].

∗ Peak-day rebate: the customers, in this pricing structure, can get paid by electric-
ity companies if they reduce their demand below the expected value when there
is an emergency condition in the electricity grid. Furthermore, the electricity
rate will stay the same during emergency conditions [1].

2.3.3 Fixed Time-of-Use Pricing

The time horizon, in this tariff, is split into a set of time-of-use pricing periods, these
periods could be divided based on demand (on the peak, mid peak, and off peak) or
days (weekend and weekdays). Moreover, the price is fixed during each period and
will not be influenced by any situation in the grid and electricity market [1].

2.3.4 Seasonal Flat Pricing

The electricity price, in this pricing structure, is fixed over the whole season or couple
of seasons, and it may be changed between seasons, but not during the season [1].
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2.3.5 Other Pricing Strategies

2.3.5.1 Plug-In Hybrid Electricity Vehicle (PHEV) Charging Rates.

To encourage people using PHEV, electricity price should not be more than the tradi-
tional fossil fuel. Nowadays, powering PHEV with fossil fuel is cheaper than using
electricity power. Some countries give discounted prices for PHEV, but that is unfair
to others. More work needs to be done in this area to come up with sufficient rate [1].

2.3.5.2 Rates Related to Distributed Generation (DG)

In this thesis, DG means the micro power plants that belong to the customers. DG can
be a wind turbine, PV arrays, CHP, fossil fuel generator, etc. [6, 20, 21]. The following
rates for DG are included but not limited to:

∗ Incentives for economic distributed generation: fixed cost of consumed elec-
tricity energy, which is higher than the wholesale price, may encourage many
customers to invest in DG (PV array, wind turbine, CHP, etc.) in order to reduce
their power bills or even to make some money [1].

∗ Sell-back rates: this price usually consists of two components which are gener-
ation tariff and export tariff [1]. Since 2010, it is known as Feed-In Tariff (FIT)
in the UK, and customers get paid for their surplus local generated power that
exported to NEG. Also, they get paid for every kWh they generate. FITs are not
the same in all countries. For instance, in the UK, they pay £0.032 to £0.045/
kWh [22], whereas in Florida in the USA, they pay $0.45/kWh [23]. By contrast,
in Libya, you will get nothing for your surplus power because the electricity is
very cheap [11].

∗ Standby rates: In the case of an outage in DG system, customers of DG will
have to buy electricity from utility companies which will charge them. Usually,
the charge consists of two components; the first one represents the actual energy
consumption and the second one present the penalty for customers of DG [1].

It is imperative to review and understand all pricing strategies that have been used in
the market before you start modeling and designing optimization algorithm. To the best
knowledge of the author, almost all pricing strategies in the market have been reviewed
in this section. However, in this thesis, daily pricing (dynamic pricing), fixed time-of-
use pricing and fixed pricing will be used because they fit with the proposed model of
the micro-grid, the rest of pricing strategies may need a reaction from the electricity
providers and end-users which will not be available if the micro-grid works in islanded
mode. In the next section, Demand-Side Management and Demand Response will be
discussed in detail.
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2.4 Demand-Side Management (DSM) and Demand Re-
sponse (DR)

Stability of the electricity grid is essential [2]. Therefore, electricity suppliers are work-
ing hard to keep demand and supply in balance at all time, as in Figure 2.5. Demand
side management (DSM) and Demand Response (DR) are designed and implemented
to keep balance in the electricity grid and to smooth out peaks and valleys in electricity
energy demand [18, 24]. However, there are a lot of challenges facing DSM and DR.

Figure 2.5: Balancing demand and supply in electricity grid

DSM and DR are historically known as load management. The electricity demand
over 24 hours is very variable. Consequently, it may affect grid stability. Therefore,
variation in electricity demand is one of the primary cause for concern for generation
companies. In the early 1980s, DSM was first coined by Clark Gellings (Electric
Power Research Institute, USA) [25]. Additionally, monitoring, implementation, and
planning of utility activities that are designed to change the end user power profile are
known as DSM [24]. The main purpose of DSM programs is to encourage customers
to be more energy efficient. On other words, DSM is designed to encourage end users
to change their power profile, and usually, aims for long-term reduction [26], whereas
DR is the action that is taken by customers to reduce energy consumption in specific
time. For example, customers may reduce their electricity consumption during peak
hours and increase it during off-peak hours (usually at night). Three things make end
users adapt to the DSM or change their power profile based on DSM, these are:

∗ Dynamic pricing: it is crucial that electricity energy companies design an appro-
priate dynamic pricing scheme to encourage customers to manage their power
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consumption and change the shape of their power demand on electricity by their
living style (reduce their demand on peak hours by scheduling their time-flexible
activities on off-peak hours).

∗ The ability of end users to make a change in their power profiles: it is vital that
end users are equipped with a control system that allows them to control and
monitor their electricity consumption (change their living style). In contrast,
there is some load that can not be delayed or shifted to another time, such as TV
set, PC, beard trimmer, or lights, etc.

∗ The ability to measure the profit that made by adopting DSM: it is critical that
the customers can see how much they saved by using DSM, so that it encour-
ages them to continue taking part in DSM. Therefore, an appropriate interface
is needed. Also, presenting a readable summary of the activities can help a lot,
especially for people who does not have any background about how to calculate
electricity bills [1].

2.4.1 DSM Strategies

There are many DSM strategies [24, 26, 27], see Figure 2.6, that are used to shape the
demand curve including but not limited to:

∗ Load shifting: the central idea of this strategy is to shift loads from peak hour to
off-peak hours. For example, customers may chill/heat water at night (off-peak
hours) and use it at morning (peak hours).

∗ Conservation: it is the oldest and the most known strategy to cut down elec-
tricity demand on all time not just in peak hours. For example, energy-efficient
appliances can save power at all times.

∗ Peak clipping: the primary goal of the strategy is to reduce the demand on peak
hours (e.g. at 07:00 PM). The reduction can be achieved by controlling interrupt-
ible appliances such as AC unit or heater by end users or electricity providers.

∗ Valley filling: the principal purpose of this strategy is to build up the demand
during off-peak hours to smooth out the electricity demand, PHEV is a good
example for valley filling where the battery is charged at night.

∗ Load growth: this strategy is opposite of conservation policy, it consists of
growth in overall sales (off-peak and peak hours).

∗ Flexible load shape: In this strategy the utility company has the right to interrupt
loads when required without telling the users. Flexible load shape usually refers
to variations in reliability or quantity of service.
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Almost all DSM strategies are designed and implemented in order to maximize the use
of current power plants. Also, another important aim is to avoid, defer or postpone the
need for new power plants (conventional or renewable plants).

Figure 2.6: Demand-Side Management strategies and objectives

In this thesis, load shifting techniques to minimize the electricity cost will be used.
All related work about DSM and DR will be presented in Section 2.8.

2.4.2 Challenges for Demand-Side Management

According to framework [18], there are many challenges for DSM including the fol-
lowing:

Information and Communication Technology

The primary challenge for DSM is that there is a lack of Information and commu-
nication technology infrastructure in most of the current electricity grid. Applying
DSM technology needs advanced metering infrastructure including advanced meters,
two-way communication between customers and suppliers, controllers, sensors, and
information technology. Furthermore, adding all of these components to the smart
grid will make it an extremely complicated electricity grid [18].

Security and Privacy

One of the primary cause for concern to a researcher is security and privacy issues in
the smart electricity grid. Plus, exchanging data in the smart grid could raise a cyberse-
curity issues. Therefore, many pieces of research are needed to find an efficient system
that can not be hacked or, at least, minimize the risk of cyber attacks. Confidentiality
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is another issue, hackers or even electricity providers may know exactly the type of
activity inside the house at any time [18].

Benefit of Demand-Side Management

There is a lack of understanding of the benefits of DSM among customers, which
are considered as a principal challenge for a supplier to applying DSM in the smart
electricity grid. Additionally, the advantage of DSM is not significant when there is
enough generation capacity, whereas the value of DSM is crucial when the demand is
higher than or close to the generation capacity [18].

Competitiveness of DSM-based Solutions

Concerning technical, economic and environmental1, the performance of solutions
based on DSM is not competitive with traditional solutions. Therefore, a compre-
hensive work needs to be done in this area to improve the situation and make DSM in
smart grid more preferable than conventional solution [18].

Complexity of DSM-based solutions

The system complexity of DSM-based solutions is much higher than the conventional
solutions since DSM needs more modern devices to apply it to the electricity grid.
For example, sensors, smart meters, controllers, and communication devices. Also,
information system between customers and utility companies needs security system
which will add complexity to the DSM-based solutions. Besides, this complexity will
affect demand response as well (e.g. tenants of a residential building have a set of
household appliances, and they would like to use DSM and DR to minimize the cost
of electricity by scheduling the load in off-peak hours) [18].

Unsuitable Market

The current market of electricity structure is not appropriate for DSM because there are
many types of customers taking part in DSM, each of them has different preferences,
which create a real challenge to suppliers, researchers, and developers of DSM system.
In addition, there is a lack of incentives as mentioned above [18].

1 DSM-based is proposed to reduce electricity consumption and cost. As a result DSM improves the
gas emission produced by power plants.
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2.5 Smart Grids

The notion of a smart grid is relatively new. It is an enhanced electrical grid in which
information and communication technology is used to improve the power system and
increase the profit of consumers, distributors and generation companies, see Figure 2.7
[28]. Additionally, smart grid accommodates different types of electricity resources
(e.g. conventional plants (such as CHP and diesel generators) or renewable resources
(such as PV arrays and wind turbine)) [6]. The essential features of such infrastruc-
ture are reliability, flexibility, efficiency, sustainability, peak curtailment, and demand
response. It is, also, market enabling, it provides a platform for advanced services, and
increases the manageability of resources. To exploit the smart grid in residential build-
ings, we need new technologies such as integrated communications, sensing and mea-
surements, smart meters, advanced control, advanced components, power generation,
and smart appliances [28]. The central parts of the smart grid are integrated two-way
communication, advanced component, advanced control methods, sensing technolo-
gies, measurement techniques, improved interfaces, improved decision support, and
applications of smart grid technology.

Figure 2.7: Smart grid diagram

Table 2.1 demonstrates summarized comparison between current conventional elec-
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tricity grid and future electricity smart grid.

Table 2.1: Comparison between conventional grid and smart grid [6].

Electricity Grid (Conventional grid) Smart Grid

Electromechanical Digital

One-Way Communication Two-Way Communication

Centralized Generation Distributed Generation

Hierarchical Network

Few Sensors Sensors Throughout

Blind Self-Monitoring

Manual Check/Test Remote Check/Test

Limited Control Pervasive Control

Few Customer Choices Many Customer Choices

Failures and Blackout Adaptive and Islanding

Manual Restoration Self-Healing

The proposed work fits within the smart grid setting because two-way communica-
tion between customers and electricity providers is required which is available only in
smart grids. Also, a smart grid is a pervasive, self-monitored, and self-healing. These
features are an essential requirement in the proposed model. Finally, the optimization
techniques related to this work will be presented in Section 2.8.

2.6 Micro-grids

2.6.1 Basic Concepts of Micro-grids

The power grid consists of a complex fabric of generation plants, substations, trans-
formers, and transmission lines that supply electricity to cities, businesses, and indus-
try. Additionally, there exist smaller power grids, called micro-grids or remote-grids.
Micro-grid provides electricity power to island, rural area, and remote operation that
have limited or no access to primary grid power. Traditionally, micro-grid uses diesel
generators (DG), and diesel pickup system for generating electricity, in some micro-
grids. Also, integration of renewable power plants (e.g. wind turbine, geothermal heat
pump, ground-coupled heat exchanger, hydro-power turbine, and PV array) are used
in combination with diesel generators; storage system is used, as well as to accom-
modate the surplus renewable power, see Figure 2.8. Furthermore, micro-grid must
continually manage fluctuation in demand and generation to maintain 60 Hz frequency
(50 Hz in the UK) which is required to maintain electricity grid stability. Moreover,
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any drop in frequency could create serious issues such as brownout2 or blackout3. The
micro-grid, also, can be defined as a set of houses containing loads (appliances) and
co-located resources (such as Photovoltaic (PV) arrays, gas turbines, or wind plants)
working as a single controllable system, see Figure 2.8 [29]. Micro-grids also offer
the possibility to export the surplus of locally generated power to the national grid or
neighbors [30]. Additionally, micro-grid can be grid-tied4 to National Electricity Grid
(NEG), or islanded5 [21]. Moreover, the US Department of Energy gives the following
definition to smart micro-grid, “a group of interconnected loads and distributed energy
resources within clearly defined electrical boundaries that acts as a single controllable
entity with respect to the grid. A micro-grid can connect and disconnect from the grid
to enable it to operate in both grid-connected or island mode.”[20].

Figure 2.8: Micro-grid diagram

2.6.2 Topology of Micro-grids

As mentioned above, micro-grids work in two modes, grid-tied and islanded [6]. Ad-
ditionally, it integrates with the following features:

∗ The micro-grid is equipped with co-generation micro-plants such as wind tur-
bine, PV arrays, Hydro-power micro-plant, or Combined Heat and Power (CHP)
unit that generate electricity for local use within the micro-grid. The micro-grid
is also able to penetrate any surplus power into the NEG.

2 Brownout is a drop in voltage caused by a state of poor power quality. Intentional brown-out is used
to prevent a blackout by reducing the voltage on pockets of customers.

3 Blackout is power failure or cut, it is a loss of electricity for short or long time to an area.
4 Grid-tied means that the micro-grid consumes part of its electricity demand from NEG.
5 Islanded micro-grid means that micro-grid consumes 100% of its demand from local generators.
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∗ The electricity demand in the micro-grid could come from residential, commer-
cial, offices, or industrial building.

∗ Using renewable resources is one of the useful features of the micro-grid, but
one of the primary cause for concern is that renewable power is intermittent.
Therefore, the micro-grid must be able to use it’s local storage system, such as
batteries, to smooth out the fluctuation in renewable power.

∗ The micro-grid is provided with two-way communication system which consists
of smart meters, sensors, etc. Thus, it can use this advanced infrastructure to
know the power profile of each customer at any time and react to it if required.

∗ The micro-grid exploits the communication infrastructure to send and receive in-
formation between customers and utility companies over data cable or via wire-
less communication.

∗ The micro-grid can communicate with smart appliances and smart component in
the end user to control them (On/Off) as requires, or schedule the load of these
appliances to decrease the demand for electricity during peak hours [6].

Chapter 3 will introduce research contributions in the micro-grids research area which
is a comprehensive mathematical model for micro-grids. Also, Chapter 4 will present
MILP-based formulation of micro-grids. The relevant work about micro-grids will be
reviewed in Section 2.8. Finally, all related work about micro-grids will be illustrated
in Section 2.8.

2.7 Smart Houses

Smart house, Figure 2.9, is a residential building that is designed carefully to assist
occupiers to run a particular household function (e.g. cooking, space heating/cooling,
etc.) by using an automatic control system. This automatic control system usually
deploys information and telecommunication technology. The primary purpose of using
such system is to optimize power consumption in the building to reduce electricity
and gas bills. Also, increased comfort is one of the advantages of using automation
in a domestic setting [31]. Although the idea of the smart house could be applied
everywhere, disabled and elderly people are the most interested in such systems in
their houses because it facilitates their independent life. The smart house could have
local power plants (traditional or renewable), and it can work as a standalone house or
as a part of a so-called smart grid. The main challenge for smart homes in smart grid
is that the smart house depends on other grid entities (e.g. other houses, renewable
micro plants, and utility companies). The smart house usually consists of a set of
smart appliances, smart meter, power micro-plant (e.g. PV array, wind turbine, CHP,
or diesel generator), control system, and storage system (e.g. PHEV, or batteries) [32].
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Figure 2.9: Smart house

2.8 Optimization Techniques

Many computational tools and techniques have been used with DSM and DR to mini-
mize the cost of electricity, and to increase the utilization of renewable resources in the
residential and commercial buildings [2]. The authors in [2] classified optimization
techniques into decision system, static, adaptive dynamic programming, evolution-
ary programming, and intelligent system. Furthermore, Figure 2.10 gives more detail
about optimization tools of each category. This section will review most of the opti-
mization tools that have been used in the area of micro-grids research. In what follows,
the most relevant literature to the thesis will be discussed in detail.

2.8.1 Decision Systems

Decision systems are computer software that can analyze a set of data and make de-
cision based on a set of rules [33]. Many studies have investigated using a decision
system as an energy optimization tool to minimize the cost of electricity in the resi-
dential building, including but not limited to frameworks [34–41]. However, the most
important studies that have been used in the area of decision systems will be presented.
In study [34], game theory was used to optimize the cost of electricity in the smart grid.
The authors introduced an optimal autonomous distributed incentive-based energy con-
sumption scheduling algorithm. The primary objective of this algorithm is to minimize
the cost of electricity power for all houses in the smart grid. The authors claim that
the main focus of their study was the cooperation between the users (houses), not
between end user and electricity provider. Additionally, they minimize the communi-
cation between customers into just one message. The framework, also, proposes smart
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Figure 2.10: Optimization techniques [2]

pricing tariff between users. In addition, framework [35] proposed Demand Response
Management system (based on game theory) that considers multiple utility companies,
the interaction between electricity providers and end users is modeled as a two-level
game. Furthermore, they formulate the competition among electricity providers as a
non-cooperative game. By contrast, they modeled the interaction among customers as
an evolutionary game. The proposed algorithm is iterative. The authors claim that their
simulation results help smart grids to avoid variation of electricity demand and reduce
the average peak hour demand.

To conclude, decision systems could be used as an optimization tool for residential
buildings. However, if the size of the problem is large, these systems would become
very complicated and may fail to provide provable optimal/ suboptimal solution.

2.8.2 Adaptive Dynamic Programming

Adaptive dynamic programming is an approximate dynamic programming optimiza-
tion tool [42, 43]. The study [44] investigates the use of Action-Dependent Heuristic
Dynamic Programming for minimizing the cost of electricity bills. This algorithm



2.8 Optimization Techniques 30

invokes two Neural Networks (NN) to manage energy system in the smart home con-
nected to a battery system, photovoltaic system and National Electricity Grid (NEG).
The first one works as online sub-algorithm whereas the another works as offline sub-
algorithm. Also, they exploit Particle Swarm Optimization in order to pre-train the
weights of NNs. Framework [45] has introduced an intelligent self-learning optimiza-
tion algorithm that can be used for minimizing the energy cost of the residential build-
ing. The proposed algorithm has the ability to learn from user demand and the envi-
ronment. Single critic NN is used in this algorithm to eliminate the iterative training
loops between the action and the critic networks. As a result, the training process is
considerably simplified. Optimization algorithm based on Action-dependent heuristic
dynamic programming for residential energy management is proposed in paper [46],
the algorithm controls the load of two houses in real time pricing environment. It
allows electricity energy sharing between these houses in order to minimize the elec-
tricity cost. The algorithm is based on NN.

Based on the literature review, ADP uses some intelligent systems such as NN to
minimize the electricity cost. To the best knowledge of the author, there are very few
studies that have using ADP as an optimization tool in micro-grids. Also, the results
were not promising regarding the run-time. Therefore, the author has decided not to
investigate this method.

2.8.3 Evolutionary Programming

Evolutionary Programming (EP) is heuristic optimization tool. In addition, Particle
Swarm Optimization, Ant Colony optimization, Tabu search are an example of EP.

Particle Swarm Optimization (PSO) is an evolutionary programming. In 1995, Dr.
Eberhart and Dr. Kennedy introduced PSO. PSO is a stochastic optimization method
inspired by social behavior of fish, flocking or bird movement. The central idea of PSO
is that it generates random solutions then searches for optimal one by updating the ex-
isting solutions. However, there are many common things between PSO and other
evolutionary computation techniques such as Genetic Algorithms (GA), PSO does not
have evolution operators such as mutation or crossover [47]. Many studies have used
PSO in order to minimize the cost of electricity in residential buildings. Framework
[48] proposes scheduling algorithm based on PSO to reduce the peak to average ra-
tio in a residential building. The proposed algorithm shifts the load or the demand and
reschedules to avoid sharp fluctuation. Also, dynamically distributed resource manage-
ment in a Demand-Side Management is introduced in the paper [49]. The primary goal
of this framework is to minimize the cost of electricity in residential buildings. PSO is
used as resource management technique. Study [50] investigate using controller based
on Binary PSO to reduce the peak demand on electricity power. The elemental ob-
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jective of this study is to find the optimal load demand schedule that minimizes the
peak demand and maximizes the comfortable level of the users. Study [51] has investi-
gated the use of Binary PSO in demand side management, the principal objects of this
framework is to minimize the electricity cost of interruptible appliances, minimize the
switching On/Off. The authors simplified this multi-objective optimization problem
by using a single aggregate objective function and by dividing the swarm into a set
of sub-swarms. The framework [52] has introduced a cost-effective energy manage-
ment system for a set of houses and micro-generators working in a micro-grid setting.
The proposed mathematical model provides renewable power sharing between houses
in the micro-grid. Further, the authors have formulated the distributed resources in
micro-grid as a nonlinear integer programming problem. As known, Nonlinear integer
programming problem is NP-hard. Therefore, authors used PSO.

The Ant colony optimization (ACO) is also one type of evolutionary programming.
In 1999, Marco Dorigo introduced ACO in his Ph.D. The behavior of ant colony was
what inspired him to introduce this technique [53]. In study [54], the authors use an
ACO-based algorithm to predict energy demand. Energy demand model was proposed
using ACO as a multi-agent system. The model is developed based on population,
gross domestic product (GDP), import and export.

Tabu Search is one kind of evolutionary programming. In 1986, Fred W. Glover
created Tabu search, after three years he formalized it [55, 56]. Minimizing the cost of
household appliances in residential building is an NP-Hard problem. Therefore, find-
ing the optimal value is not easy. Tabu Search is optimization meta-heuristic method
that uses local search to find a heuristic solution to such problems. A study [57] inves-
tigate using Tabu Search for optimizing the electricity cost of the residential building.
The idea of home automation and power management is achieved in this by using a
control system that uses Tabu Search. The authors divided the automation control sys-
tem into three parts or levels, which are anticipation, reactive and device layers. The
primary aim of this algorithm is to maximize comfort level and minimize the electricity
cost. Another study [58] uses Tabu Search and Genetic Algorithm (GA) to minimize
the electricity cost in a residential building by applying load shifting idea (from peak
hours to off-peak hours). They split the algorithm into two main parts. One deals with
controllable loads such as dishwasher and washing machine, whereas the second one
schedules the resources.

To sum up, the main disadvantages of using Evolutionary programming is that no
guarantee for finding optimal solutions in a finite time. Also, it needs a long time
for convergence (e.g. it needs a decent size of the population to get good results).
Moreover, in GA, mutation rate, crossover parameters, fitness/selection parameters
depend on trial and error and it could take tremendous time in huge problems such as
micro-grids. Additionally, in PSO, the representation of weights is tough.
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2.8.4 Intelligent System

Intelligent systems can be used as optimization tools for minimizing the electricity cost
of residential buildings. Expert systems, Fuzzy logic, and Artificial Neural Network
are type of intelligent system [2]. Furthermore, expert systems rely on heuristic or
rule-driven decision-making [2]. Framework [59] has proposed optimization algorithm
for residential building in smart grids based on rule-based decision-making system.
Nevertheless, they have not presented solid evaluation about the computation time.
Additionally, they have used low time resolution (15 minutes).

Fuzzy logic is an intelligent system. The idea of fuzzy logic was first advanced in
the 1960s by Prof. Lotfi Zadeh of the University of California at Berkeley. Dr. Zadeh
was working on the problem of computer understanding of natural language. Fuzzy
logic is a many-valued logic which means the truth value could be any number between
0 and 1 [60]. Further, James in [2] gives the following definition of Fuzzy logic, “Fuzzy
logic is a superset of conventional logic that has been extended to handle the concept of
partial truth, which are the truth values between completely true and completely false”.
Framework [61] used fuzzy logic control for air conditioning system in residential
buildings. However, the objective of this study is not minimizing the electricity cost.
Additionally, they have not tackled the problem of computational time. Study [62] has
used fuzzy logic decision-making algorithm to reduce the load of a HVAC system in
a smart residential building. Nevertheless, the authors have not tackled the run-time
problem.

In 1943, artificial neuron was introduced by Warren McCulloch and Walter Pits.
“Artificial Neural Network (ANN) is an information processing paradigm that is in-
spired by the way biological nervous systems, such as the brain, process information.
The key element of this paradigm is the novel structure of the information processing
system. It is composed of a large number of highly interconnected processing ele-
ments (neurones) working in unison to solve specific problems.” [63]. In addition,
Neural Network (NN) is a sort of intelligent system, and it is exploited in [64–66] to
minimize the electricity cost of residential building.

2.8.5 Static Optimization Technique

Numerous frameworks have used the static optimization technique to minimize the
electricity cost in residential and commercial buildings. The framework [67] has pro-
posed a mathematical model based on MILP for power allocation problem in the res-
idential building. The study used LP solver to solve this optimization problem. The
manuscript considered two pricing strategies to find the optimal solution for an apart-
ment building with just two household appliances. The study also has shown the com-
putation time of the algorithm but the authors have not tackled it seriously (they have
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not tested their algorithm with large number of appliances and high time resolution).
Moreover, it does not consider the use of local renewable energy. Additionally, it has
not proposed a model for all type of appliances (e.g. AC unit and PHEV). To the best
knowledge of the author, the proposed algorithm would not scale up well with a broad
range of appliances, especially if we use high time resolution. Also, the algorithm can
not tackle large optimization problems such as large building or micro-grid. The au-
thors stated that the algorithm can not provide a feasible solution when the number of
appliances is significant (20 appliances) due to the hardness of the problem. To the best
knowledge of the author, this depends on time resolution, the proposed algorithm may
not be able to find the optimal solution to a house with 5 AC units with time resolution
< 2 sec., for instance.

Manuscript [68] has tackled the load uncertainty in smart grids. The authors have
designed and implemented an MILP-based mathematical model for residential build-
ing in a smart grid. The proposed algorithm is a real-time multi-stage optimization
algorithm. The strong aspect of the proposed model is that it considers uncertainty
in electricity demand. The proposed control algorithm can update the schedule once
new demand information is revealed. In the result, authors claim that their algorithm
can benefit end users and utility companies. Nevertheless, the time granularity used in
this study is (1 hour, 30 minutes, and 15 minutes) which are very low time resolution.
Some appliances may need 10 minutes or less to finish their tasks. Moreover, the study
does not consider HVAC system and electric vehicle. Finally, to the best knowledge
of the author, this algorithm would not cope with all kind of appliances in residential
building. Additionally, it can not take large building with a large number of appliances.

Authors, in paper [27], have proposed an integer linear programming based model
for residential building in a smart grid. The mathematical model does not add a lot to
the model that has been introduced in study [67]. The model is, in fact, straightforward
because it does not consider renewable power and temperature controlled appliances
such as AC unit, or heater, etc. Also, authors do not consider appliances that have a
battery such as PHEV (PHEV and AC unit add a lot of complexity to the optimization
problem). The authors have used low time resolution (1 hour). Also, the results do not
show the computation time of the proposed algorithm. As known, this optimization
problem is NP-hard. Therefore, the computation time of the algorithm is crucial. The
proposed model definitely will not cope with a wide range of appliances and high
time resolution especially if the model contains AC units and PHEV(s), these kind of
appliances make the problem more complicated as they need more variables to model
them.

The authors, in framework [69], have introduced an MILP-based model for energy
management problem in a residential building. Moreover, the mathematical model
seems relatively comprehensive, compared with the studies that have been mentioned
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above; the manuscript provides a general model of appliances included AC unit. They
have, furthermore, considered use of domestic renewable resources. However, in their
evaluation, authors have used time slot of one hour, which is a really low time res-
olution. The scheduling optimization algorithm can find an optimal solution if the
number of appliances in a house is around a handful of appliances. For example, with
this setting, each appliance needs just 24 binary decision integer variables, whereas if
time resolution is 5 minutes, each appliance needs 12 times 24 integer variables which
makes the problem harder to solve. Therefore, the proposed algorithm in this frame-
work can not be used in the large problem. Also, more evaluation is needed to examine
the performance of the proposed algorithm properly.

Papers [70, 71] have proposed a comprehensive mathematical model for energy
management problem in residential buildings. In the first framework [70], the au-
thors have proposed a new idea to reduce the complexity of the optimization problem
of power allocation (by using two sampling strategies, the first one is high sampling
resolution, whereas the second one is low sampling resolution). Furthermore, low sam-
pling resolution is designed for uninterruptible appliances such as dishwasher, washing
machine, etc., whereas the high sampling resolution is designed for interruptible appli-
ances such as air conditioning unit, electric heater, and water heater, etc. The authors,
in their evaluation, have used time resolution of 5 minutes for interruptible appliances
and 20 minutes for uninterruptible appliances. However, they have used a time horizon
of just 6 hours. Therefore, each uninterruptible appliances needs 6 times 3 binary vari-
ables and each interruptible appliance need 6 times 12. In the studies mentioned above,
they have used one hour and 30 minutes time slots for 24 hours. So, each appliance
24 times 2 binary variables for both interruptible and uninterruptible variables. So, the
improvement is not significant. To the best knowledge of the author, even with using
this technique, it is extremely hard to solve the large problem to provable optimality.
The study [71] is an improved version of framework [70]. Authors use 24-hour time
horizon, but they have not provided accurate evaluation about computation time of the
problem.

Authors, in framework [72], have designed and implemented an MILP-based co-
generation model for the energy allocation problem in residential building problem
working in a smart grid. The provided algorithm seems to work in the given settings
because they have used low time resolution (one hour). The authors, in a study [73],
have included battery system to the previous model presented in [72]. They have used
decomposition method to reduce the complexity of the problem and improve the per-
formance of the algorithm. Nevertheless, the provided evaluation has not tackled the
run-time issue of the proposed optimization algorithm. In the results, authors have
used one hour time resolution. Therefore, form the author’s point of view, this algo-
rithm will not cope with the same model if high time resolution was used, such as a
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time slot less than or equal to 5 minutes.
The authors in [74] have proposed a mathematical model for cost optimization of

smart appliances in a residential building in smart grids. The study has explicitly mod-
eled the interruptible and uninterruptible household appliances. Also, it has presented
clearly all the constraints of each type of appliance. The study used a couple of case
studies to evaluate the performance of the suggested algorithm. But it has not tackled
the run-time issue of the algorithm. Also, it has not provided a model for an air condi-
tioning system which is the most difficult system to model and the most complicated
system to solve.

Many studies, [75–85], have used an MILP-based algorithm to minimize the cost
of electricity for residential building in the smart grid by using local renewable power
and the concept of load shifting. The primary goal of all these studies was to find the
optimal solution. Therefore, they had to sacrifice the accuracy of the model by making
a lot of assumptions in their models. Also, the proposed algorithm can be used to find
the optimal solution for a single house with a limited number of appliances. However,
all of them have not used LP relaxation in this area.

Study [86] has tackled single objective optimization problem of a smart micro-grid.
The authors have proposed a mathematical model for a set of houses and micro-plants
working in micro-grid settings. Furthermore, the authors claim that their algorithm
(MILP-based energy management system) can solve the problem to optimality. The
primary objective of this algorithm is to minimize the overall electricity cost of all
houses in the micro-grid by using domestic renewable resources and load shifting.
However, scalability is the main issue in the proposed algorithm, because this is an
NP-hard problem.

The authors in framework [87] has proposed an MILP-based model for a smart
residential micro-grid. The primary aim is to minimize the operating cost of a residen-
tial micro-grid. The model operates in grid-connected mode. The proposed residential
micro-grid, basically, consists of a single house with few appliances (including PHEV),
storage system, and few micro plants (including renewable and traditional micro plant
such as CHP). Although the authors have used relatively high time resolution (15 min-
utes), scalability is a serious issue in such NP-hard optimization problem if there is
more than one house in the micro-grid. Actually, from the author’s point of view, the
proposed model is not really for micro-grid but a single home equipped with a set of
electricity generators.

Authors in paper [88] have suggested a mathematical programming formulation
(MILP-based model) for fair profit distribution among residential buildings in a smart
micro-grid. The recommended model allows renewable power sharing between houses.
Furthermore, authors have proposed Lexicographic Minimax approach to finding a fair
solution. The Pareto-optimal solution of their method depends on predicted data of re-
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newable resources and demand. In the finding, the authors have demonstrated two
scenarios (case studies). In the first scenario, they have examined a micro-grid with
ten houses, and in the second scenario, they have tested micro-grid with fifty homes.
However, the time resolution is not high which means the number of decision vari-
ables is small. Moreover, they have not considered household appliances that depend
on other variables such as temperature in the case of heaters and AC units or state of
charge in case of using Plug-In Hybrid Electric Vehicle (PHEV).

Framework [89] uses MILP-based scheduling algorithm to minimize the electricity
cost of a set of residential building equipped with micro CHP unit and solar PV arrays.
The study compares the cost of 20 houses working individually and the same houses
working in a micro-grid setup. Although this study adds some knowledge to the field,
it does not tackle the important issue of computation time. In studies of this type, the
time complexity of the particular algorithm increases with the system’s granularity or
the number of available appliances. The authors are only able to present examples that
allocate resources over relatively large time slots.

A study [90] investigates using optimization algorithm for residential building in
micro-grid environment. The main objective of this algorithm is to find the optimal
cost of electricity for a set of houses. However, the study does not tackle computation
time and complexity of the problem well. Authors used just 48-time slots which are not
suitable for interruptible appliances such as AC units and heaters. They claim that the
MILP solver can solve the problem in a matter of few seconds, but this will not always
be the case because this problem is an NP-hard and the computation time would go to
infinity if time slot were small (< 5 minutes).

The proposed scheduling algorithm in the paper [91] uses MILP formulation to
model micro-grid and solve it using a commercial solver. The authors use a convex
piecewise affine function to approximate nonlinear cost function and constraints into
linear equations. The main objective of this study is to reduce the peak demand on
particular times. The same authors as in [91] have provided a further study in [92],
and they have used control-oriented approach for optimizing the cost in micro-grid
and MILP combined with Model Predictive Control. However, the authors have not
discussed the complexity of the problem well. Regarding the computation time, they
mentioned in the first study that the calculation time is around 5 seconds, but from the
author’s point of view, this is not always the case. In a further study [93], authors ex-
tended their previous work and tried to provide more results and discussions. However,
there is no considerable contribution about computational time.

A stochastic power management system has been suggested for a micro-grid by
authors in framework [94]. The proposed model has considered uncertainties in the re-
newable energy generated by local resources. They have tackled this problem by using
a diesel generator. Further, the optimization problem has been decomposed into cen-
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tral or master MILP-based problem and nonlinear programming (NLP) sub-problem.
Additionally, the master problem consists of a 24-hour stochastic energy scheduling
problem (MILP solver solves these problems), whereas the sub-problem is an hourly
radial micro-grid power flow with a set of variables received from the master problem
solution.

The authors in framework [95] has proposed dynamic programming algorithm and
simplex method to solve the optimization problem of a micro-grid. However, the
micro-grid in this study consists of just a CHP, a PV array, a Wind turbine, a Fuel
cell, and heat load (boiler). Also, time resolution is large (one hour). Furthermore,
study [96] has suggested a dynamic programming based method for developing op-
timal micro-grid architectures. Moreover, the authors in paper [97] have proposed a
dynamic programming approach for minimizing the cost of a micro-grid and maxi-
mizing the efficiency of energy storage system. Nevertheless, the algorithm can not
solve large optimization problem as the authors have only managed to use micro-grid
with one PV array, one wind turbine, one hydrogen-based fuel cell, batteries and diesel
generator.

All literature mentioned above uses a predictive control system. Regarding re-
active control system, the idea of trying to effectively allocate electric power using
online algorithm is not new. Maximum demand control is an established research area
in Electrical Engineering [98]. More recently, several proposals have emerged in the
context of renewable energy management [27, 69, 99, 100]. Knapsack models [101]
have been used in this area. However, these tend to be “predictive” systems: the power
allocation is planned in advance using information about the geography of the place,
as well as historical meteorological and usage data. Such systems are bulky and do
not cope well with changeable weather conditions. Furthermore, there is little analysis
of the quality of the resulting allocation in terms of its efficiency. Perhaps the closest
to the proposal reactive system (Presented in Section 4.3 and Chapter 7) are hardware
components like EMMA [102] or Solar Switch system [103]. Both of these try to adapt
the household energy usage to the amount of available power. However, in both cases,
the system’s behaviour is quite limited: the hardware is hooked up to the household
water tank and any surplus energy is used to heat up the water. A number of issues had
to be addressed. An electric appliance will typically use a variable amount of power,
only coarsely bound by the nominal power mentioned in the manufacturer’s informa-
tion sheet. A natural way to deal with this is to assume that the appliance loads are not
fixed numbers but, rather, random quantities. Related to this, the variability of the re-
newable power source implies that any empirical evaluation will have to resort to both
real-life and simulated experiments enabling the investigation of different allocation
strategies or different parameter settings under essentially identical conditions. Last
but not least, Knapsack is an NP-hard problem [104]. There is a vast literature on the
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Knapsack problem, ranging from the study of exact and approximation strategies to
the study of many generalizations [105, 106]. In particular several stochastic variants
have received significant attention [107, 108]. These are obtained by replacing part of
the standard problem definition with a random component. Some authors have studied
models in which the item availability is governed by a probabilistic law. Others have
looked at the case of random profits [109].

Micro-grid issues are discussed in detail in [110, 111]. Additionally, frameworks
[112–123] illustrate extensive literature review about optimization methods and ap-
proaches that have been used to minimize the running cost of a set of houses in micro-
grids.

2.9 Summary of Literature Review

It can be concluded from the literature review that several mathematical models and
optimization algorithms based on various approaches have been proposed for optimiz-
ing the electricity cost of the residential building using renewable power resources and
load shifting in micro-grid settings and a smart grid environment [27, 67–85, 90, 124–
127]. Although there are countless pieces of research which have used static tools as
optimization method, the author has decided to work in the same area due to the fact
that the proposed methods using other optimization tools are not as good as a static
method in this area. Moreover, the LP solvers have become very powerful and can
solve relatively large problems, and these solvers can provide heuristic solutions. All
the previous frameworks have added decent knowledge to the field. However, there
are few issues that have not been tackled seriously. Firstly, the computational time
(run-time) of the proposed optimization algorithm has not been addressed seriously.
Further, the proposed algorithms can not scale up well with large or huge optimization
problems such as micro-grids or a large building with a large number of appliances.
Secondly, AC systems have not been considered carefully because solving a problem
with k AC units (or any thermostated household appliance such as electric heater) is
more complicated than solving the same problem with k Dishwashers, as AC system
depends on inside and outside temperature. Also, to the best knowledge of the author,
nobody has proposed a model for AC system when there is more than one AC unit
working the same room. Therefore, this thesis has introduced a comprehensive math-
ematical model for AC system (it is assumed that AC unit operates in k > 2 modes)
and a couple of an MILP-based heuristic optimization algorithm that is able to solve
the problem to near-optimal in polynomial time by using LP relaxation and round-
ing. Regarding frameworks about micro-grid, the proposed algorithm, and model, in
[52, 76, 85, 90–93, 113–116, 118–123], have added decent knowledge to the research
field. Nevertheless, they have not considered the run-time problem with detail. In other
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words, they have used low time resolution and a small number of grid entities. Also,
the proposed models are not comprehensive, most of the study proposed a single ob-
jective model. In this thesis, a comprehensive multi-objective model for the micro-grid
has been introduced.
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System Modeling

“Acquire wisdom from the story of those who

have already passed”

Uthman Ibn Affan

comprehensive mathematical model of micro-grids (operating in grid-tied
mode) is illustrated in this chapter in Section 3.1. Potential power exchange
in the micro-grid is explained in Section 3.2. Furthermore, this chapter

presents a detailed model of micro-grid components such as renewable micro gener-
ators (e.g. PV arrays and wind turbines) and smart household appliances in Sections
3.3 and 3.4, respectively. Moreover, this chapter proposes a mathematical model for
each type of household electric appliance. Additionally, the chapter discusses our ap-
proximation technique of the power profile of household appliances and explains the
sampling technique in Section 3.5. Finally, Section 3.6 summarizes the chapter.

3.1 The Micro-grid

In this thesis, it is assumed that the micro-grid operates in grid-connected mode to
cover the extra demand needed in the micro-grid. Consider a micro-grid consists of a
set of smart houses H and a set of micro-generation power plants R, some of these
plants may belong to house h, Rh. Additionally, each house consists of a set of rooms
Mh and each house has a set of electric household appliances Ah. Some houses in
the micro-grid (like houses labeled with symbol H4, and H1 in Figure 3.1) may be
directly connected to one or more generators, and therefore be able to receive energy
from them in a particularly efficient way, and for free, but in general the houses in
the system may receive their power from any of the generators in the micro-grid or
the National Electricity Grid (NEG). Furthermore, the proposed model will consider
each house and micro-plant in the micro-grid as an agent; each agent has its own



3.2 Power Exchange in Micro-grid 42

Figure 3.1: Micro-grid (set of houses, storage systems, and micro generators), some
houses are equipped with rooftop PV array or wind turbine, and some of them not.

objective. The energy exchange between these agents within a micro-grid is controlled
by a central control system called Local Micro-Grid Optimizer (LMGO). The power
plants generate energy which can be either used by the houses in the micro-grid or
exported to the NEG.

3.2 Power Exchange in Micro-grid

Without considering technical issues regarding power exchange between micro-grid
agents, Figure 3.2 describes the possible energy exchanges between a house, a genera-
tor, and the NEG. Houses (and their appliances) can only use electricity. The electricity
comes into the house either from a generator (internal to the house or external) or the
NEG. The labels on the arcs represent the electricity cost that the entity at the end of
the arrow will have to pay to the entity at the other end to get electricity from it. In this
thesis, it is assumed that the energy produced by a generator r ∈ R can be sent to a
house h ∈H at a unit cost γr

h(t) for each kWh, or exported to the NEG at a cost ζr(t)

for each kWh. Alternatively, a house can buy energy from the NEG at a cost λh(t) for
each kWh. Additionally, all costs might change over time (hence they depend on the
time parameter t). Note that the price of local renewable power, γr

h(t), is decided by
residents and the owner of local generators in a micro-grid, whereas electricity rate,
ζr(t) is set by electricity providers. In what follows, the chapter will give detail of the
various components of the micro-grid system.
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Figure 3.2: Diagram shows local renewable energy exchange between the agents in a
micro-grid.

3.3 Micro-generation Plants

This section illustrates renewable power generation. Renewable generation is the pro-
cess of producing electricity or heat from renewable resources. There are many re-
sources of renewable energy (including but not limited to sunlight, wind, rain, tides,
waves, and geothermal heat) that can be used to generate electricity. However, the
most common resources that can be employed in the residential building are solar and
wind power.

3.3.1 Solar Power and PhotoVoltaic Array

Solar power is a renewable power generated by converting the sunlight into electricity
using a Photovoltaic (PV) array. This sort of power is the most common source of
energy in the residential building [9]. The main issue with solar power is that the
output during the night is zero kWh. Furthermore, the operating time could be only a
few hours in countries such as Finland and Sweden during wintertime.

PV cells are joined via tiny electric wires in series or parallel circuits to gener-
ate higher voltages, currents and power levels. Moreover, PV arrays are solar energy
micro-plants that consist of a set of PV panels. Additionally, each PV Panel consists
of a set of PV modules that include a set of PV cells, assembled in series and parallel,
and sealed in an environmentally protective laminate, see Figure 3.3 [128].

Figure 3.3: PV cells, Module, Panel, and PV array.

The total amount of generated solar power during a distinct time interval, PsT , is
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Figure 3.4: The output power of a PV array

presented in the following equation:

PsT =
∫

Ps(t)dt. 0≤ Ps(t)≤ Ps, (3.1)

where Ps is the maximum output of PV array, whereas the instance output of PV array
at any time can be estimated by using the following equation:

Ps(t) = ηe ·ηd ·ηc ·ηw ·AsIT (t), (3.2)

where Ps(t) is the solar power at time t, ηe is the efficiency of a solar cell, ηd is the
degradation factor of PV array, ηc is the efficiency of the power conditioning devices,
and ηw is the wiring efficiency of the PV array system. As is the PV array surface area
and IT (t) is the solar radiation in W/m2 at any time, t [129]. In this thesis, Equation
(3.2) is simplified into the following equation:

Ps(t) = ηT ·AsIT (t), (3.3)

where ηT is the efficient of PV array.
Figure 3.4 depicts real data for the output power of a PV array (maximum capacity

of 4.1 kWh in the city of Liverpool, England).

3.3.2 Wind Power and Wind Turbine.

Wind power is renewable power generated by converting kinetic energy (wind power)
to electrical energy by using a wind turbine. This sort of renewable is less common
than the solar energy in the residential building. The main issue with wind energy
is that it is intermittent and very fluctuated. Consequently, it is not a reliable source
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Figure 3.5: Wind turbine component [3]

of energy. Additionally, having rooftop wind turbine in the residential building could
cause some safety issues.

The wind turbine is a tool, or electricity plant, used to generate electricity by con-
verting wind power to electrical energy. There are four main parts in wind turbine: a
rotor, control system, main gearbox and generator, (see Figure 3.5). It is very hard to
estimate the output of wind turbine because it depends on wind speed, wind density,
and other weather parameters. The cumulative amount of energy generated by wind
turbine during a particular period is presented in the following equation:

PwT =
∫

Pw(t)dt. 0≤ Pw(t)≤ Pw, (3.4)

where Pw is the maximum output of wind turbine. In addition, the instance output of
wind turbine can be estimated by using the following equation:

Pw(t) =


0

1
2 · cw ·ρ ·Aw · v3(t)

Prate

vCout < v(t)≤ vCin

vCin < v(t)≤ vr

vr < v(t)≤ vCout

(3.5)

where Pw(t) is the output power of wind turbine, cw is the power coefficient of the
wind turbine, Aw = π · r2 is the swept area of a wind turbine, ρ is the air density, v(t)

is the wind speed at time t, and Prate is the maximum output power. In order to use this
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Figure 3.6: The output of wind turbine (real data) [4]

formula, some approximation and assumption must be made. For instance, ρ depends
on weather variant parameters and it is very difficult to measure them or get them from
meteorological stations [3].

Figure 3.6 depicts the output power (real data) of wind turbine (maximum capacity
of 1.78 kWh in the city of Liverpool, England) [4].

3.3.3 Renewable Power Approximation

Figure 3.7 demonstrates real data of solar power, measured every 5 seconds. The data
was generated in the city of Liverpool ( North West England, UK) in June in 2012. In
this thesis, recorded data (heuristic data) for solar radiation and wind speed have been
used in the experiments to estimate the output of the renewable micro-plants (PV array
and wind turbine, respectively) at each hour. To deploy the proposed model, predicted
data of wind speed and solar radiation must be provided to the model. Unfortunately,
to the best of our knowledge, there is no weather forecasting station which provides
a predicted wind speed and solar radiation with high time resolution such as every 5
seconds or even higher. However, they are able to provide hourly (average) predicted
data for solar radiation or wind speed with time resolutions of one hour. Therefore,
hourly (average) wind speed and solar radiation have been used as input to the proposed
models of wind turbine and PV array to estimate the predicted output renewable energy
of these micro-plants over time horizon (24 hours say).

3.3.4 Renewable Power Pricing

As mentioned in Section 2.3.5.2, there are many tariffs in the market nowadays. These
tariffs are very different from one country to another. In this thesis, an exchange rate
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Figure 3.7: The output solar power of PV array (Capacity is 4.1 kWh), the data was
generated in Liverpool, Merseyside, North West England (53°24´N 2°59´W)

for the surplus renewable power generated by local micro-plants in micro-grids has
been proposed. The key idea is that the local power should be sold to residents for
any amount of money between the NEG electricity rate and the NEG export tariff, in
other words, it should be cheaper than NEG price and higher than the export rate to the
NEG.

3.4 Appliances Modeling

This section presents a model of household electric appliances in detail.

3.4.1 Definition of Household Appliance

Household appliances are machines that are used to perform a particular household
function, (e.g. washing, cleaning, cooking or heating). Within this thesis, only electric
appliances have been considered.

3.4.2 Appliances Classification

To model household appliances, the power profile of each appliance must be analyzed
and understood. Further, Figure 3.8 shows recorded real data of energy consumption
of various appliances. Figure 3.8a demonstrates that some of the household appli-
ances consume almost the same electricity over their operating time, these type of
appliances are called uni-phase appliances. Moreover, some of these appliances are
interruptible (Electric towel radiator in green, and water heater in black). These kinds
of appliances can be switched on or off during their operating time without any techni-
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(a) Interruptible uni-phase appliances

(b) Uninterruptible multiphase appliances

Figure 3.8: Uniphase vs Multiphase appliances [5]

cal issue and without affecting its performance (e.g. air conditioner, heater, or PHEV).
By contrast, there are some appliances that have uninterruptible power profile such
as Electric cooker (in red). On the other hand, Figure 3.8b illustrates power profile
of three uninterruptible household appliances (washing machine in navy blue, laundry
dryer in green, and dishwasher in red). These appliances are called multiphase appli-
ances because their power consumption varies over their operating time. For instance,
washing machine performs a sequence of cycles, and each cycle consumes a partic-
ular amount of energy (e.g. wash cycle, rinse cycle, and spin cycle). To the best of
our knowledge, all multiphase appliances are uninterruptible appliances, which means
that these appliances cannot be interrupted during their operating time (e.g. washing
machine, dishwasher, or laundry dryer) because it may harm the appliance or it may
affect the performance of the appliance. Finally, some smart appliances, called grid-
friendly appliances, are provided with computer microchip, this component can sense
high electricity demand by measuring electricity frequency1. Then it acts to this high
demand by switching itself off [2, 67, 75, 130].

The total amount of energy consumed by any household appliance i ∈ A , over
specific time, can be calculated using the following equation:

Pi =
∫

P(t)dt. (3.6)

where Pi is the total amount of energy, in kWh, that is consumed by appliance i to
finish its task, P(t) is the instance consumed power at any time, t, in kW.

There are some appliances where its job or task depends on other variables such as

1 The electricity frequency, called line frequency in the USA (60 Hz) and mains frequency in the UK
(60 Hz), is the frequency of the oscillations of alternating current (AC) in an electric power grid
transmitted from a power plant to the end-user.
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AC unit and PHEV (they depend on temperature and state of charge, respectively).

3.4.2.1 Heating, Ventilation, and Air Conditioning System

One of the most complicated system to model is Heating, Ventilation, and Air Con-
ditioning system (HVAC) because it is a function of many variables, such as outside
temperature, insulation, state of the door and windows (Open/Close), etc. AC unit
is uni-phase and interruptible appliance. So, it can be switched ON/OFF at any time
without affecting its efficiency and without any technical issues. The mathematical
model for AC system (presented in frameworks [71, 75]) is used in this thesis. The
thermodynamic system modeled by Equations (3.7), (3.8), and (3.9) presents heat/cool
exchange, in the room, among room temperature, AC system and outside temperature.

dTin(t)
dt

=
1

Mair.c

{(
dQ(t)

dt

)
HVAC

−
(

dQ(t)
dt

)
losses

}
, (3.7)

(
dQ(t)

dt

)
HVAC

= Ṁ.c× (Th(t)−Tin(t)) , (3.8)

(
dQ(t)

dt

)
losses

=
Tin(t)−Tout(t)

Req
, (3.9)

where Tin(t) is the room temperature, Tout(t) is external temperature, Th(t) is the air
temperature, Mair is the mass of air inside the room, c is the heat capacity of air in-
side the room at constant pressure, Ṁ is the air flow rate from the air conditioner
to the room, Req is the equivalent thermal resistance of the house, (dQ/dt)losses is the
quantity of heat exchanged between room temperature and outside temperature, and
(dQ/dt)HVAC is the quantity of heat exchange between room and air conditioner unit
[71].

Assume that the time horizon T is split into a set of time slots, each of which is
with length τ , and τ ≪ T . It is also assumed in this thesis that Tout(t) is constant over
τ . For simplicity, the quantity of heat (dQ/dt)HVA is assumed to be constant over time τ

and equal to Ph(t). Equation (3.10) is produced by using these assumptions in Equation
(3.7):

dTin(t)
dt

+
Tin(t)

Mair× c×Req
=

Ph(t)
Mair× c

+
Tout(t)

Mair× c×Req
(3.10)

By solving the differential Equation (3.10) for Tin(t), assuming that the time being
taken at the beginning of time slot t.

Tin(t) =
(
T 0

in(t)−Req−Tout(t)
)
× exp

(
−t

Mair× c×Req

)
+Req×Ph(t)−Tout(t)

(3.11)
For simplicity, we need to convert our continuous function to discrete function. Tin(t)
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is a continuous function. Therefore, Tin(t) = T 0
in(t +1), where T 0

in(t) is the temperature
at the beginning of each time slot t. For simplicity, we assume that Tin(t) = T 0

in(t +1).
Also, we assume that ε = exp

(
−t

Mair×c×Req

)
.

ε×T 0
in(t)−T 0

in(t +1)+(1− ε)×Req×Ph(t) = (ε−1)×Tout(t), (3.12)

Tin(t +1) = ε×Tin(t)+(1− ε)
[
Req×Ph(t)+Tout(t)

]
. (3.13)

The relationship between Tin(t), Tout(t), and P(t) is presented in the following equation
[71]:

Tin(t +1) = ε×Tin(t)+(1− ε)
[
Tout(t)+

η

κ
×P(t)

]
. (3.14)

Note, we used the following approximation

Req×Ph(t) =
η

κ
×P(t) (3.15)

where P(t) is the nominal power consumed by AC unit, η is the efficiency of the
system, κ ̸= 0 is the thermal conductivity. Note, η/k > 0 means AC units work in
heating mode, and η/k < 0 means AC unit work in cooling mode.

|Ph(t)| ≤ Pmax ∀t : t ∈T (3.16)

where Pmax > 0 is the maximum amount of heat that can be removed or added to the
room.

Tmin ≤ Tin(t)≤ Tmax ∀t : t ∈T (3.17)

where Tmin and Tmax are the minimum and maximum room temperature, respectively.
Note that in case of cooling Req must be negative value.

The total amount of energy consumed by AC unit over specific time can be calcu-
lated using the following equation

Pi =
∫

P(t)dt. (3.18)

3.4.2.2 Plug-in Hybrid Electric Vehicle (PHEV)

PHEV is fast becoming an essential instrument in smart grids because it is energy
efficient, convenient, environmentally friendly, and low running cost. PHEV is also
known as a plug-in hybrid vehicle (PHV). This kind of automobiles have rechargeable
batteries that powers electric motor and an internal combustion engine. Regarding
the modeling of PHEV, it is considered as an electronic storage system or batteries.
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Frameworks [131–133] provides models for PHEV.

Θ =
∫

(C(t)−Ploss)dt Charging phase, (3.19)

Θ =
∫

(D(t)+Ploss)dt Discharging phase, (3.20)

where C(t) is charging rate, and D(t) is discharging rate, Θ is the final state of charge
of PHEV’s battery after charging, Θ is the final state of charge of PHEV’s battery after
discharging phase.

The state of charge of PHEV’s battery at any time, ϑ(t), can be estimated by the
following equation:

ϑ(t) = ϑ(t−1)+
1
4
×µ×P(t) Charging mode, (3.21)

ϑ(t) = ϑ(t−1)− 1
4
×ρ×P(t) Discharging mode, (3.22)

where µ is battery charging efficiency, ρ is the battery discharging efficiency. Note
that Ploss has been disregarded for simplicity. For technical issue the state of charge of
the battery must not be less than Θ, and the battery has maximum capacity of Θ

Θ≤ ϑ(t)≤Θ (3.23)

The desired charging level, Θ, can be achieved by using following constraint,

ϑ(tend) = Θ, (3.24)

where tend is the deadline for charging the battery.
The total amount of energy consumed by PHEV unit can be calculated using the

following equation,
Pi =

∫
P(t)dt. (3.25)

The most general way to model the appliance power consumption (in each phase,
if necessary) is with the power obeying some kind of probabilistic law. In our thesis,
it is assumed that the law is degenerated, and the power is fixed, but the most general
setting in the problem defined in Section 4.3 will be described.
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3.5 Power Profile Approximation and Sampling.

The power profile of household appliance is incredibly complex to model as it is not
constant over time. Further, the manufacturers of electric household appliances usually
give an estimated consumed energy (NOT the power) of the appliance2 in kWh. For
example, let us consider uni-phase appliance (e.g. electric heater); if the nominal
energy of electric heater is α = 1.2 kWh, then the actual consumed power at any
time t, when the appliance is ON, is around 1.2 kW (e.g it could be 1.15, 1.23, etc.).
So, the real consumed power of any uni-phase appliance is fluctuating around value of
α . The value of this fluctuation depends on many factors such as the nominal power
itself (α), the quality of the appliance (power-efficiency), the stability of electricity, the
voltage (120 or 220 Volt), and electricity frequency (50 Hz or 60 Hz). To model the
power profile of household appliance, P(t) needs to be simplified in order to reduce
the complexity of the problem. To cope with the fluctuation in power profile, there are
many ways to approximate the power profile; the first way is by running the appliance
many times and then take the average of the consumed power, the second way is by
using the maximum consumed power, or the minimum consumed power. In this thesis,
the average consumed power was used. Figure 3.9 and 3.10 show how the power
profiles of two household appliances have been approximated. Also, it demonstrates
how the power profile of the appliance is sampled.

Regarding multiphase appliances, it is is more difficult to model them as the nomi-
nal power is not constant over time. These kind of appliances work in different modes
so that it needs different amount of power. For example, dishwasher work in at least 4
phases which are adding water to the tanker, heating the water, shooting the water, and
drain the dirty water. Figure 3.10 shows real data (red in color) of power profile of a
washing machine, whereas the black line shows the approximated power profile. The
approximation of power profile can be modeled by using the maximum value of the ac-
tual power of each phase or by using the average value of each phase or the minimum
value of each phase. In this thesis, the average value will be used.

To make our modeling more precise, the power profile of appliance i is sampled
with rate τ (time unit) in order to generate a factor of α j, j = 1, . . . ,∆ that represent
accurately the power profile of the appliance. The value of τ should be chosen care-
fully because it effects the model considerably. In addition, the smaller τ , the less error
in modeling. However, the resolution of sampling increases the size of the optimiza-
tion problem significantly. Therefore, a trade-off between the sampling resolution and
problem size is needed, see Figure 3.10. For the purpose of this study, it is assumed
that each appliance i operates in ∆i > 0 (nominal) phases and for each appliance, it
is possible to define a power profile vector (α i

1, . . . ,α
i
∆i
) describing its energy needs,

2 The average consumed power over period of time (usually one hour, in kWh)
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Figure 3.9: Uni-phase profile formalization and sampling

Figure 3.10: Multiphase profile formalization and sampling

where α i
j ≥ 0, and 0 < j ≤ ∆i. It is also assumed that ∆min > 0 is length of the shortest

phase, see Figure 3.11. Each α i
j is a non-negative real number, corresponding to the

average amount of power used by the appliance during its jth phase. When switched
on, appliance i progresses through each of its phases, starting from phase 1 up until
phase ∆i at which point the appliance is switched OFF. It is also assumed in this thesis
that for each appliance i, it is known whether the appliance is interruptible or not, and
the number of times it must be used, ni. Note that such model fits the different types
of appliances described before.

Figure 3.11: The power profile of multiphase appliance

Figure 3.12 shows power profile of uni-phase appliances after approximation.
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Figure 3.12: The power profile of uni-phase appliance

Arrays can be used to represent the power profile of any household appliances. Con-
sider the following example, assume that it is needed to represent a uni-phase appliance
(Figure 3.12) and a multiphase appliance (Figure 3.11). Further, the approximated
nominal power of uni-phase appliance α1−12 = 1.1 kW and ∆=12. On the other hand,
multiphase appliance has three phases (α1−4 = 3.2, α5−8 = 2.1, α9−12=1.4), and ∆=12.
Figure 3.13 demonstrates how the approximated power profiles (in Figure 3.11 and
3.12) have been represented in two single dimensional arrays.

Figure 3.13: Array representation of power profile

3.6 Summary

This chapter has presented a unique, comprehensive mathematical model for micro-
grids working in smart grids setting. The chapter has defined the potential power
exchange between agents in the micro-grid. It has also provided models for a set
of renewable micro-plants (PV array and Wind turbine) and household electrical ap-
pliances. Finally, the approximation and sampling process of the power profile of
electrical appliances has been described in detail in this chapter.



Chapter 4

Computational Problems

“Two signs of an educated person are accep-

tance of other people’s criticism, and being

knowledgeable about the angles and dimen-

sions of rhetoric and debate”

Al-Hussein Ibn Ali

his chapter defines the computational problems that have been tackled in this
thesis. To illustrate the power and generality of the proposed framework, it
is shown that how it is suitable to define various power allocation problems

in micro-girds. Three different energy allocation problems working in a smart grid
environment have been tackled in this thesis, some of these problems use predictive
control system, and one of them is a reactive control system. The first problem (shown
in Section 4.1) is maximizing the profit of each agent (house or micro-plant) in a micro-
grid, a predictive control system has been used to solve this problem. Furthermore, two
special cases of our general model of the micro-grid have been examined. In the first
particular case, the thesis has considered a micro-grid which consists of a single large
building (with a wide range of AC units), and a single micro-plant. A predictive control
system has been used to tackle this problem, and the primary objective is to minimize
the electricity cost and the discomfort level in the building, see Section 4.2. In the
second special case, a micro-grid consisting of a single house is reviewed. The house
has a set of appliances and an only micro-plant. This uses a reactive control system;
the primary objective is to maximize the utilization of renewable power in single house
based on user preferences, see Section 4.3. Section 4.4 provides a summary of the
chapter. In the forthcoming sections, each of these problems will be defined.



4.1 Power Allocation Problem in a Micro-grid 56

4.1 Power Allocation Problem in a Micro-grid

The definition of micro-grid and power exchange in micro-grid was given in 3.1. The
thesis will focus on agent interactions as our main contribution, in this problem, lies in
this modeling part. The main work was published in papers [130, 134].

4.1.1 Problem Definition

Consider a micro-grid (as shown in Figure 4.1) which consists of a set of houses H

(each house h ∈H has a set of rooms Mh), and a set of micro-generation plants (or
generators) R (some of these micro-plants may belong to house h, Rh ⊂ R). Each
house h ∈H has a set of electric household appliances, Ah. Each house and micro-
plant are considered as independent agent (e.g. a house is independent from its top-
roof micro generator and other micro-plants in the micro-grid). The power exchange
between these agents is explained in Section 3.2.

Figure 4.1: Micro-grid

It is, also, assumed in this thesis that the given house, h ∈H , is equipped with
control system that can be used to control a set of electric household appliances in
the house h, Ah, the number of these appliances is Nh ≥ 0. The residents of the
house can specify, via user interface, a list of tasks or jobs (washing, heating, etc.)
to be carried out next time window. They can, also, put a set of preferences (e.g.
time, temperature, etc.). Moreover, user can put bh

i time windows (time preferences)
(Ih,i

1 , . . . , Ih,i
bh

i
) to each task or appliance, i, (start time th,i

start and end time th,i
end). For

example, Ih,i
1 = {th,i

start , . . . , th,i
end}, and Ih,i

bh
i
= {th,i

start , . . . , th,i
end}) (e.g. user would like to

switch on washing machine between 23:00 and 06:00). If the job of the appliance de-
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pends on other preferences (the job of air conditioner depends on temperature), users
can determine their comfortable temperature as well. In such cases, each room m

is fitted with a set of AC units (identified by some label m) , A h,m
AC ⊂ Ah, which

are capable of cooling down or heating up the environment. In addition, room m

has nh
m ≥ 0 AC unit(s), whereas the total number of AC units in the building h is

Nh
AC = ∑m∈M nh

m ≥ 0. It is assumed in this thesis that each room m, in house h

is equipped with a single thermostat that is used to define its internal temperature
T h,m

in (t) at any given time t. Moreover, the dwelling’s owner may want to be able
to specify constrains on the environment’s temperature at different times of the day
(e.g. “user would like room temperature to be around T h,m,1

opt = 20.0◦C with minimum
room temperature, T h,m,1

min = 18.0◦C and maximum room temprature T h,m,1
max = 22.0◦C

between th,m,1
start = 06:00 am and th,m,1

end = 09:00 am and around T h,m,2
opt = 22.0◦C with

T h,m,2
min = 20.0◦CandT h,m,2

max = 24.0◦C between th,m,2
start =11:00 and th,m,2

end =15:00”). Ad-
ditionally, it is assumed that a house, h, may have set of PHEV, A h

PHEV ⊂ Ah. The
electricity demand of PHEV depends on the state of charge of its battery. Therefore,
usually the charging task specified by θ h

i (t
h,i
end) = Θh

i . Figure 3.2 describes the possi-
ble energy exchanges between a house, a generator, and the NEG. Houses (and their
appliances) can only use electricity. The electricity comes in the house either from a
generator (internal to the house or external from local generators) or the NEG.

The primary objective of this problem is to maximize the profit of each agent in the
micro-grid (minimize the electricity cost for each house, and maximize the profit for
each micro-plant) over a specific time by using load shifting, and allowing renewable
energy sharing among agents in the micro-grid. This system is a predictive which
means that it uses predicted data to maximize the profit of each agent.

4.1.2 Optimization Problem

It is evident that a micro-grid consists of various agents each with their own goals and
priorities. Houses, as agents, need the energy to run their set of appliances according
to pre-defined plans, whereas generators, as agents, produce energy that can be sold to
the houses in the micro-grid or the NEG; houses want to purchase cheap energy (min-
imizing their electricity bills), whereas generators want to make profit (maximizing
their profit). In this setting, a cost function Ψh is associated with each house h ∈H

and for generality, the time limit of the integration will not be specified here (users
may assume that the time interval limit is from t1 to t2):

Ψh =
∫

λh(t)Lh
g(t)dt + ∑

r∈R

∫
γ

r
h(t)G

r
h(t)dt, (4.1)
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where Lh
g(t) describes the amount of energy from the NEG used by house h at time t,

and Gr
h(t) the amount of energy generated from plant r and used by house h at time t.

Similarly, a profit function Ξr is associated with each r ∈R:

Ξr =
∫

ζr(t)Er
g(t)dt + ∑

h∈H

∫
γ

r
h(t)G

r
h(t)dt, (4.2)

in such formula, Er
g(t) describes the amount of energy produced by r at time t that is

sold to the NEG.
It is also assumed that each room m in house h has a discomfort factor or function,

ϒh
m, defined as follows:

ϒ
h
m =

∫
|T h,m

in (t)−T h,m
opt |dt, (4.3)

the discomfort factor for whole residential building is Ωh, Ωh = ∑m∈M ϒh
m. Note,

the time limit of integration has not been specified here for generality, and it will be
specified later where required.

The problem of allocating energy to houses in a micro-grid (Π ) in a way that is
cost effective for the houses and profitable for the grid’s power plants can then be cast
as a multi-objective optimization problem [135].

min(Ψh− ∑
r∈Rh

Ξr : h ∈H ;−Ξr : r ∈R \Rh; Ωh : h ∈H ), (4.4)

where Rh is a set of micro-plants that belongs to house h.
Chapter 5 will present MILP formulation of the problem, the proposed heuristic

algorithm, the findings, and the discussion of the results.

4.2 Cost-Effective Management of a Temperature Con-
trolled Environment

The first special case of our general model of the micro-grid is explained in this section.
The main problem here is to allocate domestic renewable power and grid power into
a set of of AC units in single large building. The main work was published in papers
[136, 137].

4.2.1 Problem Definition

Let us consider a special case of smart grid (single building and single micro-plant).
Our model is well-suited for large buildings (residential building, hospital, company,or
commercial, etc.) or a set of houses or flats that have the same owner (as shown in
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Figure 4.2) . In this thesis, it is assumed that the given building consists of a set of
rooms, M . The total number of rooms in the building is M > 0, each room (identified
by some label m) is fitted with a set of AC units, Am, perhaps spread around different
rooms, which are capable of cooling down or heating up the environment. In addition,
room m has nm appliances, whereas the total number of AC units in the building is
N = ∑m∈M nm. Each AC unit is designed to be switched ON/OFF at any time without
affecting its efficiency and without any technical issues. In general, each AC unit has
three working modes: it can be “Off mode”, “Cooling mode” or “Heating mode”. If
the appliance is “Off”, it may be assumed that the appliance uses no power. However,
if it is “On”, it may be in ”Cooling mode” or ”Heating mode”. Furthermore, if it
is in ”Cooling mode”, without loss of generality, it is assumed that AC unit has kc

different ways to cool the place, whereas if it is in heating mode, it has kh different
ways to produce heat. Let α1, . . . ,αkc and β1, . . . ,βkh be the amount of power required
by each of the cooling, and heating ways, respectively. In other words, it is assumed
(in this thesis) that AC unit has k nominal power. In reality, there is no such AC unit.
However, this system can be constructed by using k AC units to cool/heat one room.
Additionally, using k AC units, each of which has α nominal power, is more effective
than using one large AC unit with nominal power k ·α . Also, it smooths out the change
in room temperature and electricity demand. By contrast, it increases the complexity
of the system (increase the complexity of optimization problem). For more detail about
AC modeling, see Section 3.4.2.1.

Each room is equipped with a single thermostat that is used to define its internal
temperature T m

in (t) at any given time t. It is assumed (in this thesis) that the dwelling’s
owner may want to be able to specify constrains on the environment’s temperature
at different times of the day (e.g. “user would like the room temperature to be at
20◦C (optimal temperature, T m

opt ) with tolerant comfortable range between 18.0◦C and
22.0◦C between 06:00 and 09:00 and at 21.0◦C with tolerant comfortable range be-
tween 19.0◦C and 23.0◦C between 14:00 and 22:00”). The building is also equipped
with a micro-generation plant. The electricity from such plant can either be used imme-
diately at the property (at a unit cost of ξ (t)), or exported to the NEG and the building
is awarded a monetary premium of ζ (t) pounds (or dollars) per kWh. All AC units in
the building are controlled by an energy manager, whose primary task is to minimize
the cost of the electricity used by the AC units and the discomfort factor which is sum
of temperature deviation from the optimal one, ∑ |T m

in (t)− T m
opt |, in the room within

pre-specified limits. Such goal is achieved by using the thermostats, weather informa-
tion (providing readings for the external temperature Tout(t)) as well as instantaneous
information on the electricity unit cost from the NEG, λ (t), and the eventual export
benefit for the locally produced renewable power. See Figure 4.2.
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Figure 4.2: Our model: a building split up in rooms with independent appliances and
thermostats

4.2.2 Optimization Problem

A cost function Ψ is associated with the whole building, defined as follows:

Ψ =
∫

λ (t)Lg(t)dt +
∫

ξ (t)Lr(t)dt−
∫

ζ (t)E(t)dt, (4.5)

where Lg(t) describes in whole building, λ (t) is the NEG electricity price, Lr(t) is
the amount of renewable power used in the whole building, ξ (t) is the cost of local
renewable power, E(t) the amount of surplus renewable power exported to NEG, and
ζ (t) is the export rate in Feed-in tariff scheme. In addition to this equation, another
equation presents the discomfort level. Assume that each room, m, has a discomfort



4.3 Smart Domestic Renewable Energy Management 61

factor or function, ϒm, defined as follows:

ϒm =
∫
|T m

in (t)−T m
opt |dt, (4.6)

Discomfort factor for whole building is Ω, where Ω = ∑∀m ϒm. The problem of
allocating electrical energy to a set of AC units in a way that satisfies a set of given
temperature constraints and is cost-effective for the users, Π, is equivalent to minimiz-
ing both functions, Ψ and Ω.

min(w1 ·Ψ, w2 ·Ω), (4.7)

where w1 and w2 are weights.
Chapter 6 will present MILP formulation of the problem, the proposed heuristic

algorithms, the findings, and the discussion of the results.

4.3 Smart Domestic Renewable Energy Management

This section defines the second special case problem of the general model of the micro-
grid (maximizing the utilization of domestic resources). The first special case problem
of our general model of the micro-grid is explained in this section. The main problem
here is how to allocate the available local renewable power to a set of AC units in single
large building. The main objective here is to maximize the utilization of domestic
renewable power. The main contribution of this work was published in paper [138].

4.3.1 Problem Definition

In some residential buildings (could be stand-alone house) that are equipped with do-
mestic renewable power micro-plant, the surplus of renewable energy is not utilized
for many reasons (e.g. there is no storage system in the building to accommodate the
surplus of renewable power, or there is no feed-in tariff, etc.). Therefore, in such cases,
the best that can be done is to maximize the utilization of the local renewable power
based on user preferences without considering the cost of NEG electricity. Assume
that a micro-grid consists of a single residential building and a single micro-plant. The
given residential building (as shown in Figure 4.3) is equipped with renewable micro-
plant (PV array) that generate Ps(t) at time t, the building does not have storage system
to accommodate the surplus renewable energy, also it can not export the surplus renew-
able power to NEG. The building have set of smart appliances (electric heaters, water
heaters, etc.), A , the number of these appliances is N, each of these appliances have
value, v (user preference), and weight w (nominal power, w = α). Each appliance,
i ∈A , is designed to be switched ON/OFF at any time without effecting its efficiency
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and without any technical issues. In general, each appliance has two working modes:
it can be “Off” or “On”. If the appliance is “Off”, it may be assumed that it uses no
power, whereas when it is “On”, it consumes w watt.

Figure 4.3: Smart house

4.3.2 Optimization Problem

In this setting, a profit function Φ is associated with the whole building, this function
is defined as follows:

Φ =
∫

∑
i∈A

vi ·δi(t)dt (4.8)

s.t.

∑αi ·δi(t)≤ Ps(t), ∀t (4.9)

where αi > 0 is the power needed by appliance i = 1, . . .N, vi > 0 is the value of the
appliance (user preference), δi(t)∈ {0, 1} is delta function to represent if the appliance
i is on or off, P(t) is the available renewable power at time t.
The problem of allocating local renewable energy to set of household appliance in a
way that satisfies a set of given constraints and is cost-effective for the users (Max-
Utilization), is equivalent to maximizing the function Φ. Chapter 7 will present prob-
lem formulation, the proposed algorithm, the findings, and the discussion of the results.
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4.4 Summary

This chapter has defined a set of electricity power allocation problems in smart grids.
Further, it has identified and mathematically modeled these computational problems
by associating a cost and profit function.



Part III

Results and Discussions



Chapter 5

Heuristic Algorithm for Coordinating
Smart Houses in a Micro-grid

“If people realize the value of science and

knowledge, they will sacrifice themselves for

earning it.”

Ali ibn Al-Hussein (Zain al abidin)

icro-grid is relatively new research topic. This chapter illustrates the pro-
posed MILP formulation of the micro-grid problem presented in Section
4.1.2. The chapter starts with MILP formulation of household appliances

in Section 5.1. Then, Section 5.2 proposes a heuristic algorithm that has been used
to tackle the hardness of the optimization problem. Section 5.3 provides an empirical
evaluation of the proposed model and algorithm. Section 5.4 discusses the results in
detail. Finally, Section 5.5 summarizes this chapter.

5.1 MILP Formulation

This section presents the proposed MILP-based formulation of the multi-objective op-
timization problem of micro-grid (described in Section 4.1.2).

5.1.1 Appliances Modeling and Linear Constraints

This subsection will provide MILP formulation of household appliances (Multiphase
and uni-phase).

Portion of this chapter was published in: Heuristics algorithm for coordinating smart houses in micro-
grid. In IEEE SmartGridComm, pages 49–54, Nov 2015. And another part will be published in:
Minimizing the electricity cost of coordinating houses on micro-grids. In IEEE/PES ISGT EUROPE,
pages 1–6, Oct. 2016.
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Figure 5.1: The power profile of multiphase appliance is split into a set of virtual
appliances (VA)

5.1.1.1 Multiphase Appliances

In this thesis, it is assumed that each instance of the problem is solved over a fixed
time horizon (say 24 hours) and that time within such time horizon is divided into
a finite set of time slots, T = {t1, t2, . . . , tT}, all of the length τ with 0 < τ < ∆min.
Suppose that τ divides the length of each phase within the system. We identify the
mh multiphase appliances and nh uni-phase appliances in house h with the numbers
1,2, . . . ,mh, and 1,2, . . . ,nh, respectively. Without loss of generality, it is assumed that
each appliance i runs through ∆h

i (real) phases, of length τ , and divided to set of phases
or virtual appliances (J h

i ). Further, virtual appliances was introduced to improve the
accuracy of the power allocation process especially with multiphase appliances where
the consumed power is not constant, see Figure 5.1. It is also assumed that real phases
are grouped into clutches of length ∆min corresponding to the nominal phases and the
appliances are uninterruptible within each clutch (Figure 5.1 shows appliance with
three clutches). A dedicated binary decision variable xh

i, j(t) is used for each virtual
appliance j ∈J h

i . The variable holds the appliance ON/OFF state at time slot t. The
power profile of the appliances can be formulated by the following equation:

Ph
i, j(t) = α

h
i, j · xh

i, j(t) ∈
{

0, . . . ,αh
∆h

i

}
, i ∈ {1, . . . ,mh}, j ∈J h

i , h ∈H . (5.1)

For example, consider a single house in a micro-grid; this house has just one electric
appliance. Figure 3.13 illustrates the array representation of two type of appliances, the
multiphase appliance has different values of α(s) (α1

1,1 = 3.2, α1
1,5 = 2.1, and α1

1,12 =

1.4 kW).
It is assumed in this thesis that appliance i in house h can only be run between time

slot th,i
start and th,i

end (with th,i
start ≤ th,i

end), in a so-called comfort interval specified by the
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user, if needed. This time interval is modeled by using the following constraints:

th,i
start−1

∑
t=0

xh,i
j (t)+

tT

∑
t=th,i

end+1

xh,i
j (t) = 0, ∀h : h ∈H , ∀i : i ∈ {1, . . . ,mh}, ∀ j : j ∈J h

i ,

(5.2)
where previous constraint may vanish, if th,i

start = 1 or th,i
end = tT . If both equalities hold

(say if the user does not specify a comfort interval) the constraints vanish as well.
To enforce that appliance i in house h runs nh

i times in {th,i
start , . . . , th,i

end}, the follow-
ing constraints are needed:

∑
t∈{th,i

start ,...,t
h,i
end}

xh,i
j (t) = nh

i , ∀h : h ∈H , ∀i : i ∈ {1, . . . ,mh}, ∀ j : j ∈J h
i . (5.3)

As known, washing machine performs a sequence of cycles, and each cycle con-
sumes a particular amount of energy (e.g. wash cycle, rinse cycle, and spin cycle).
Furthermore, by splitting the power profile into a set of virtual appliances, the con-
troller considers each virtual appliance as an independent appliance, which means it
may schedule spin cycle phase before wash cycle, etc. Therefore, the order of power
phases of washing machine needs to be kept in the right order. Therefore, phases or
virtual appliances can be kept in right order for multiphase appliances by imposing the
following constraints:

∑
t∈T

[
t · xh,i

j+1(t)− t · xh,i
j (t)

]
≥ 1. ∀h : h ∈H , ∀i : i ∈ {1, . . . ,mh}∀ j : j ∈J h

i . (5.4)

The following constraint is used to prevent interruption between any two consec-
utive phases or virtual appliances, say VA1 and VA2 in Figure 5.1. For example, the
controller must allocate two adjacent time slots for switching on virtual appliances VA1

and VA2:

∑
t∈T

[
t · xh,i

j+1(t)− t · xh,i
j (t)

]
= 1.∀h : h ∈H , ∀i : i ∈ {1, . . . ,mh}, ∀ j : j ∈J h

i . (5.5)

5.1.1.2 Uni-phase Appliances

These kind of appliances can be considered as a special case of multiphase appliances.
In order to reduce the complexity of the problem (by reducing the number of binary
decision variables), special MILP formulation will be used for uni-phase appliances. It
is assumed in this thesis that each house, h, has a set of uni-phase appliances, nh. The
power profile of uni-phase appliances, shown in Figure 5.2, is split into set of identical
phases, called virtual appliance J h

i . Then, the algorithm or the controller can pick
one phase and run it ∆h

i times.
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Figure 5.2: The power profile of uni-phase appliances

Equation (5.6) demonstrates mathematical model of the power profile of uni-phase
appliance:

Ph
i (t) = α

h
i · xh

i (t) ∈
{

0, α
h
i

}
. ∀i : i ∈ {1, . . . ,nh}, ∀h : h ∈H , ∀t : t ∈T . (5.6)

The following constrain is used to specify the potential operating time of uni-phase
appliance. In other words, users can specify the comfortable time for running their
appliances.

th,i
start−1

∑
t=0

xh
i (t)+

tT

∑
t=th,i

end+1

xh
i (t) = 0 ∀i : i ∈ {1, . . . ,nh}, ∀h : h ∈H . (5.7)

The sequences or the order of virtual appliances (phases) is not necessary for uni-
phase appliances because it does not make any affect the functionality of the appliance,
the task, or the electricity cost. Therefore, to reduce the number of decision variables
in the problem (lessen the complexity of the optimization problem), just one virtual
appliance can be used. For example, if the power profile is split into 12 virtual appli-
ances (see Figure 5.2), the controller can use only one virtual appliance (say VA1) and
switched it on 12 times to model the power profile of the uni-phase appliance shown in
the figure. Virtual appliances (VA1 to VA12 ) can be allocated to a set of adjacent time
slots with the aid of the auxiliary binary variable δ h

i (t) ∈ {0, 1} and the following set
of constraints:

xh
i (t)+δ

h
i (t)6 1 ∀t : t ∈T , ∀h : h ∈H , ∀i : i ∈ {1, . . . ,nh}, (5.8)

δ
h
i (t−1)−δ

h
i (t)6 0 ∀t : t ∈T , ∀h : h ∈H , ∀i : i ∈ {1, . . . ,nh}, (5.9)

xh
i (t−1)− xh

i (t)−δ
h
i (t)6 0 ∀t : t ∈T , ∀h : h ∈H , ∀i : i ∈ {1, . . . ,nh}. (5.10)

As mentioned before in Chapter 3, the operation of some appliances depends on
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external conditions rather than initial user demands. For instance, charging a battery
depends on: i) battery’s state of charge ( ϑ h

i (t)), ii) charging rate of the battery (αh
i ),

iii) the initial state of charge of the battery (Θh
i ), and iv) the desired state of charge

by user (Θh
i ), whereas the task of an Air Conditioning (AC) unit depends on: i) the

room temperature (T h,m
in (t)), ii) the outside temperature (Tout(t)), and iii) the appliance

heating or cooling power (β h
i or αh

i respectively). In the case of batteries, Equations
(5.11) and (5.12) are needed to model the battery:

ϑ
h
i (t) = ϑ

h
i (t−1)+

1
4
·πh,i ·Ph

i (t) ∀t : t ∈
{

th,i
start , . . . , t

h,i
end

}
, (5.11)

ϑ
h
i (t

h,i
start) = Θ

h
i , and ϑ

h
i (t

h,i
end) = Θh

i , (5.12)

where Θh
i is the initial state of charge of the battery, Θh

i is the desired final state of
charge of the battery (usually full), and πh,i is the battery charging efficiency.

In the case of heating/cooling units, the main task of the given unit is to keep the
room temperature within the comfort level [T h,m

min , T h,m
max ] during bh

i specified time inter-
vals Ih

1 , . . . , I
h
bi

. The relationship between room temperature and the power allocated to
the appliance is shown in Equations (5.13) and (5.14):

T h,m
in (t) = εh,i ·T h,m

in (t−1)+
(
1− εh,i

)[
Tout(t)−

ηh

κh
Ph

m(t)
]
∀t, ∀i, ∀h, (5.13)

T h,m
min ≤ T h,m

in (t)≤ T h,m
max ∀t : t ∈ Ih

1 ∪ . . . Ih
bm
, ∀h : h ∈H , (5.14)

where Ph
m(t) is the allocated power to room m in house h, εh,i is the appliance inertia,

ηh is efficiency of the system (with ηh > 0 for a heating appliance and ηh < 0 in the
case of cooling), κh is the thermal conductivity, and Tout(t) is outside temperature at
time t.

5.1.2 Objective Function and Additional Constraints

For the purpose of experiments, the general model presented in Section 4.1.2 is simpli-
fied. The cost function in Equation (4.1) is replaced by the following piecewise linear
function,

Ψh = ∑
t∈T

{
λ (t)Lh

g(t)+ ∑
r∈R

[γr
h(t)G

r
h(t)]

}
∀h : h ∈H , (5.15)
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and similarly, the profit function in Equation (4.2) is replaced by,

Ξr = ∑
t∈T

{
ζ (t)Er

g(t)+ ∑
h∈H

[γr
h(t)G

r
h(t)]

}
∀r : r ∈R. (5.16)

It is assumed that the cost of the energy from the NEG, λ (t), and the profit obtained
selling energy to the grid, ζ (t), may vary over time but are otherwise identical for all
houses and generators in the system. Also if r belongs to h then γr

h(t)= 0 ∀t, and Ψh is
the right-hand side of Equation (5.15) minus Ξr.

Few constraints related to renewable power need to be added to the system. These
constraints are modeled as follow:

Er
g(t)+ ∑

h∈H
Gr

h(t) = Pren(t) ∀t : t ∈T , ∀r : r ∈R. (5.17)

The allocated power to all houses in the micro-grid from micro-plant r and the allocated
power to the NEG from micro-plant r at any time t must equal to the generated power
Pren(t).

Lh
g(t)+ ∑

r∈R
Gr

h(t) = ∑
i∈Ah

∆h
i

∑
j=0

Ph,i
j (t), ∀t : t ∈T , ∀h : h ∈H . (5.18)

The key idea is to reduce the multi-objective optimization problem to a single ob-
jective optimization problem using modified version of ε-constraint method (Hybrid
ε-constraint method and scalarizing method) [139], see the objective function in Equa-
tion (5.19). Then using an MILP solver to find a feasible allocation. In ε−constraint
method, the solver will focus on one objective function (single house or single micro-
plants) and consider the rest objective functions as constraints which will cause fairness
problem. To this purpose, it is considered that the MILP model obtained by using the
constraints listed in the previous sections along with the following objective function,

Min

{
|H |

∑
h=1

wh ·Ψh−
|R|

∑
r=1

wr ·Ξr

}
, (5.19)

and the following extra constraints:

Ψh ≤ Ψ̃h ∀h : h ∈H , (5.20)

Ξr ≥ Ξ̃r ∀r : r ∈R \
⋃
h

Rh, (5.21)

where Ψ̃h, and Ξ̃r are the optimal costs of the energy allocation problem for house
h and renewable plant r, considered as isolated units connected solely to the NEG
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(Independent houses and renewable micro-plants), and wh and wr the weights. These
extra constraints are used to guarantee that nobody will lose and to improve the fairness
in the micro-grid. However, the profit of houses and micro-plants remain an open issue
as the current version of the model does not guarantee fair distribution of the profit.

5.2 MILP-based Heuristic

Let MINCOST denotes the version of optimization problem (defined in Section 4.1)
restricted to a single house, with m uni-phase household appliances, to be allocated in
one of two possible time slots. Also, it is assumed that the available renewable power is
always 1

2 ∑
m
i=1 αi, and the NEG electricity price is λ (t)> 0. Furthermore, a straightfor-

ward reduction from the PARTITION problem [140] shows that MINCOST is NP-hard
optimization problem. Therefore, there is a little hope that the MILP-based mathemat-
ical model defined in the previous section might be solved quickly if the number of
appliances is large. In fact, the optimization algorithm may not be able to find a feasi-
ble solution and run-time could go to infinity. In experiments, the author resorts to an
MILP-based heuristic algorithm to get a feasible solution in acceptable time. The ba-
sic idea is to use an off-the-shelf LP-solver to generate a feasible solution but without
running the optimization process to completion. The LP-solver uses dual relaxation to
find a lower bound on the optimum and stops as soon as the difference between the
cost of the best feasible solution so far and the lower bound on the optimum becomes
smaller than a predefined threshold. Also, time limit or deadline can be put to stop the
heuristic optimization algorithm.

5.3 Empirical Results

All the experiments in this thesis have been done on a PC with an Intel(R) Core(TM)
i7-2600 CPU @ 3.4 GHz, RAM is 16 GB, 64-bit Operating System (Windows 7).
Also, Gurobi has been used to solve LP and MILP problems, whereas Java is used to
model the optimization problem ( the software development platform is Netbeans IDE
7.0.1 ).

5.3.1 Common Input Settings

three case studies have been carried out in this study to examine the performance of
the proposed model. In all these case studies, the same time slot resolution, τ = 5
minutes has been used. Figure 5.4 demonstrates the electricity prices (λh(t)), that are
used in experiments. The electricity price is assumed to be the same for every house
h. In this case study, it is assumed that ζr(t) = 0.045 £/kWh, γh

r (t) = 0.085 £/kWh for
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Figure 5.3: Predicted outside temperature

Figure 5.4: Electricity price for all houses, fixed pricing and two dynamic pricing
strategies

all r,h and t. Also, π = 0.8, ρ = 0.96, η = 30 kWm, κ = 0.98, Tmin = 18.0◦C, and
Tmax = 22.0◦C, wh=1 ∀h : h ∈H , wr=1 ∀r : r ∈R. In addition, Figure 5.3 illustrates
the predicted outside temperature for all houses.

Figures 3.4 and 3.6 depict solar and wind power (generated in Liverpool, UK (53
24’N 2 59’W)) using 2 kWh wind turbine and 3.5 kWh PV array. These data will
be approximated and scaled up/down to model different sets of PV arrays and wind
turbines.

5.3.2 First Case Study

The main objective of this case study is to illustrate the effect of renewable power
demand on saving or profit that is made by houses and micro-plants in the micro-grid.

5.3.2.1 Input Setting

Consider micro-grid with 23 agents. Further, the micro-grid consists of 20 houses with
different renewable power generation capacities in the micro-grid, as shown in Table
5.1, and three independent renewable plants: i) PV array with maximum generation
capacity of 5 kWh, ii) wind turbine with maximum generation capacity of 1 kWh, and
iii) wind turbine with maximum generation capacity of 10 kWh). The micro-grid with

Table 5.1: The generation capacity of house’s PV array

House No. 5, 10, 15 1, 6, 11, 16, 19 2, 7, 12, 17, 20 3, 8, 13, 18 4, 9, 14
Capacity (kW) 0.0 1.0 1.5 2.0 2.5
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Table 5.2: Multiphase uninterruptible appliances

Laundry Dryer
α in kW 3.2 0.28 0.0 3.2 0.28

∆min in minutes 15 10 5 20 10

Dishwasher
α in kW 0.2 2.7 0.2 2.7 0.2

∆min in minutes 5 15 15 20 5

Washing machine
α in kW 2.2 0.28 2.2 0.28 -

∆min in minutes 10 20 10 20 -

these agents (houses and micro-plants) will be examined to investigate the performance
of the proposed MILP-based heuristic algorithm.
Dynamic pricing 1 (as depicted in Figure 5.4) will be used in this case study. Three
scenarios will be carried out to examine the proposed model of micro-grid and the
MILP-based heuristic algorithm, these scenarios are : i) Low-demand scenario, ii)
Medium-demand scenario, iii) and High-demand scenario in this case study to examine
the effect of electricity demand on saving. Furthermore, in the High-demand scenario,
each house uses 8 appliances (20x8 appliances in the micro-grid). In Medium-demand
scenario, 98 appliances are used in the micro-grid. In Low-demand scenario, 80 ap-
pliances are used in the micro-grid. Appendix B gives further detail about houses and
appliances in these scenarios.

The power profiles of uninterruptible appliances are shown in Table 5.2, whereas
the power profile of interruptible appliances are given in Table 5.3.

Table 5.3: Interruptible appliances

Interruptible appliance α kW/t Depends on
Water heater 3.1 -

Electric towel radiator 1.5 -
Electric cooker 2.5 -

Plug-in Hybrid Electric Vehicle 0.35 Θ(tstart)= 2.0, Θ(tend)=16.0
Air conditioner 2.3 Tmin=18◦C, Tmax=22◦C

5.3.2.2 Findings

Figure 5.5a has displayed the average profit of houses and renewable micro-plants
(micro-grid agents) in different three scenarios, which are Low-demand, Medium-
demand, and High-demand scenarios working in a micro-grid setting. The houses
and micro-plants in High-demand scenario, in general, have made more profit because
the relationship between saving and renewable power consumption is positive (more
renewable power consumption will give users more saving), whereas the micro-grid
agents, in Medium-demand scenario, have made the second best profit for the same
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(a) The average profit that has been made by a set of houses working in micro-grid in three different
scenarios

(b) The relative MILP Gap of MILP-based heuristic algorithm in three different scenarios

Figure 5.5: The results of Low-demand, Medium-demand, and High-demand scenarios
in micro-grid.

reason. Finally, the agents in Low-demand scenario have made the less profit than the
previous scenarios.

In contrast, Figure 5.5b has illustrated the relative MILP Gap (duality gap %) of
the three different scenarios (Low-demand, Medium-demand, and High-demand). The
figure has also depicted that MILP Gap of High-demand scenario remains above 100%
after 30 minutes of calculation time which means the solution could be far away from
optimality; it could be so close to optimality, though. Besides, MILP Gap in the Low-
demand and Medium-demand scenarios illustrates that the solution found is very close
to the optimal solution because MILP Gap has reached 1% within a couple of minutes
of calculation time. To sum up, MILP gap depends on the number of decision variables
(binary variables) in the model which is specified by the total number of appliances in
the micro-grid and time resolution.

Figure 5.6 demonstrates profit stability in Low-demand scenario (Figure 5.6a),
Medium-demand scenario (Figure 5.6b), and High-demand scenario (Figure 5.6c).
Note that just 6 houses have been picked and displayed because it would not be clear if
the figure shows the curves of 20 houses. Generally, the relationship between run-time
of the algorithm and the average profit of all entities is positive which means that the
more time users give to algorithm, the best overall solution algorithm can achieve, but
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it does not always hold for each agent in the micro-grid. For instance, House No.17, in
Figure 5.6c, have made more profit after 1, 5, and 10 minutes of calculation time than
after 15 minutes of computation time but in general the average profit increases with
time until it reaches optimality as shown in Figure 5.5a.

(a) The proift made by a set of houses working in micro-grid in Low-demand scenario.

(b) The profit made by a set of houses working in micro-grid in Medium-demand scenario.

(c) The profit made by a set of houses working in micro-grid in High-demand scenario.

Figure 5.6: Results of Low-demand, Medium-demand, and High-demand scenarios.

Figure 5.7 shows the profit that has been made by each agent in the micro-grid
in three different scenarios (Low-demand, Medium-demand, and High-demand). Fur-
thermore, the first five houses in the Medium-demand scenario have made more profit
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than the first five houses in the High-demand scenario. This contradicts with the re-
sults in Figure 5.5a because the first five houses in the Medium-demand scenario have
a number of household appliances between 7 and 8 ( see Figure B.3 in Appendix B).
In addition, the MILP gap of the Medium-demand scenario, Figure 5.5b, shows that
the solution is so close to optimality. By contrast, it is still far to the optimal solution
in the High-demand scenario. This explains why the first five houses in the Medium-
demand scenario have made more saving than their counterparts in the High-demand
scenario. Also, a couple of houses have made more profit in the Low-demand scenar-
ios than in others that are because these houses in the Low-demand scenario have eight
appliances. see Figure B.2 in Appendix B.

Figure 5.7: The profit made by each agent in micro-grid in three different scenarios

Figure 5.7 supports author’s claim that nobody will lose in micro-grid environment.
Also, the figure illustrates that just one house (House number 9) in Medium-demand
scenario has made almost nothing (£0.01), whereas the rest of houses made consider-
able profit in the micro-grid setting compared with stand-alone setting. However, the
same house may make more profit in another day. Unfortunately, the research can not
tell how much each house will make for sure. This issue might be addressed in future
work.

5.3.3 Second Case Study

The primary purpose of this empirical experiment is to examine the performance of the
proposed micro-grid model and MILP-based heuristic algorithm (MILP-H) concerning
the saving in three different pricing strategies, presented in Figure 5.4.

5.3.3.1 Input Setting

This case study will use almost the same input data that have been used in the third
scenario (High-demand) in the first case study (Section 5.3.2.1), but the experiments

The definition of Stand-alone house is a house that is not connected to the national electricity grid.
However, in this setting, stand-alone house means the house that does not work in micro-grid or
independent house that does not share its renewable power with neighbors.
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will be carried out with three different pricing strategies (two different dynamic pricing
and one fixed pricing strategy).

5.3.3.2 Findings

Figure 5.8 shows the percentage of the profit made by each agent in the micro-grid with
various three pricing strategies (Dynamic price 1, Dynamic price 2, and Fixed price).
MILP gap of 25% has been used to stop searching for a better solution. The findings
illustrate that micro-grid agents can make more profit in dynamic pricing strategy than
in fixed pricing strategy. The main reason for using two pricing strategy is to emphasize
that any dynamic pricing strategy is better than the fixed pricing one.

Figure 5.8: The percentage of the profit that have been made by each agent in the
micro-grid using three pricing schemes.

5.3.4 Third Case Study

The main goal of this case study is to examine the effect of number of houses in micro-
grid on the performance of the proposed model and the heuristic algorithm. Further,
two scenarios will be demonstrated here.

5.3.4.1 Input Setting

In the first scenario, up to 30 identical houses (have the same power demand and gen-
eration capacity) will be used, each house has eight household appliances, the detail of
the nominal power for all appliances and their comfortable time periods are the same as
in the first case study. Each house equipped with PV array with a maximum generation
capacity of 2.5 kWh. There is no independent micro-plant in this scenario.

In the second scenario, up to 30 house and three independent micro-plants (in the
micro-grid) will be examined. Almost the same input data are used in this scenario as
in the third scenario (High-demand scenario in the first case study). The only difference
here is that the number of houses is varied from 1 to 30 to examine the performance of
the proposed mathematical model of micro-grid and the proposed heuristic algorithm.
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5.3.4.2 Findings

Figure 5.9 has illustrated that the average profit increases with fluctuation up to a point
(house no.9) then it decreases with fluctuation. The main reason behind this is that
the calculation time is fixed to 5 minutes (deadline =300 sec), whereas the number of
houses is increasing for each experiment (it increases the complexity of the optimiza-
tion problem, As shown in Figure 5.10). Moreover, a micro-grid with two houses (in
general) will reach optimality or near-optimality faster than a micro-grid with 5, 10,
or 30 houses. Plus, the figure has illustrated that the relationship between MILP Gap
and the number of houses in the micro-grid is overall positive with some fluctuation.
This fluctuation is normal behavior in MILP problems. Additionally, the relationship
between MILP Gap and profit is negative. This explains why the curve of profit starts
decreasing when MILP Gap curve starts increasing. To sum up, the number of agents
in the micro-grid plays key role in the proposed model and heuristic algorithm.

Figure 5.9: The average profit of houses in the first scenario in the third case study

Moreover, Figure 5.11 has demonstrated the average profit of houses in the micro-
grid in the second scenario, whereas Figure 5.12 has illustrated the MILP gap in %
of the optimization problem of allocating power to a set of houses in the micro-grid.

Figure 5.10: MILP gap of houses in the first scenario in the third case study
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Figure 5.11: The average profit of the second scenario in the third case study

Figure 5.12: MILP gap of the second scenario in the third case study

Generally, the figure depicts the same behavior of the first scenario. To sum up, the
results have revealed that having more agents in the micro-grid does not mean the
agents would make more profit.

5.4 Discussion

5.4.1 Fairness Issues

By converting the problem from multi-objectives to single objective one and using the
ε-constraint method, fairness issue could raise (some agents may make more profit than
others even with the same number of appliances and the same generation capacity).
Therefore, the objective function of ε-constraint method has been modified, Equation
(5.19), to tackle this fairness problem. The total cost of all agents is minimized (not
just one of them as in ε-constraint method), and a set of constraints has been added so
that nobody will lose in micro-grid setting. Figure 5.7 shows the individual profit of
each agent. Further, house no. 5, 10, and 15, which are the houses that do not have PV
array, have made a profit higher than house no. 9 (equipped with PV array). The main
reason for this fairness issue is that the input setting is different in each scenario. Also,
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because the total cost of all houses has been minimized, not just the cost of one house.
More investigations are needed to cope with this issue, probably prioritizing the agent
can solve this problem.

5.4.2 Profit Stability

The stability of the profit of each agent depends on the size of the problem (the number
of integer decision variables) and MILP Gap. If the problem is small, the algorithm
will reach optimality/near-optimality relatively fast and the profit will be almost sta-
ble for the micro-grid and for each agent, and vice versa. See Figure 5.5 and Figure
5.6. Figure 5.5b shows, after 30 minutes of run-time, the MILP gap is still around
100%, which means that the solution may be still far away from optimality; it could be
very close, however. Because the MILP gap gives users an indication about the sub-
optimal solution but it does not tell exactly how far the sub-optimal solution is from
the optimality.

5.4.3 Scalability

Although there is a positive relationship between the number of agents in a micro-grid
and the saving, this statement does not always hold with the proposed heuristic al-
gorithm. Figure 5.9 and Figure 5.11 have revealed that the relationship between the
number of houses and the payoff is not always positive using the proposed heuristic al-
gorithm. as has been pointed out in both scenarios, the correlation between the number
of homes and the average profit is positive up to a point, then it becomes negative, that
is because increasing the number of houses will add more complexity to the optimiza-
tion problem. Consequently, the algorithm will take longer to come up with a decent
sub-optimal solution. By contrast, adding more micro generator to the micro-grid will
not increase the complexity of the problem as these agents will not add any binary
variables to the system.

5.5 Summary

This chapter has introduced MILP formulation of a set of agents working collabora-
tively in a micro-grid. The chapter has also proposed a way to convert multi-objective
optimization problem to a single objective optimization problem. Furthermore, it has
proposed an MILP-based heuristic algorithm. Finally, it has provided the finding along
with discussions about the issues related to the outcomes.



Chapter 6

Heuristic Algorithms for the
Cost-Effective Management of a
Temperature Controlled Environment

“Whoever acts without knowledge, what he

corrupts is greater than what he fixes.”

Umar Ibn Abdul Aziz

his chapter illustrates the MILP formulation of the power allocation problem
(presented in Section 4.2) in Section 6.1. Section 6.2 discusses the hard-
ness of the problem. Section 6.3 describes how LP relaxation and rounding

strategy have been used. It also gives empirical evaluation for our single objective op-
timization problem using LP relaxation and Cumulative Round Linear Programming
(CRLP) strategy. Section 6.4 illustrate Multi-objective optimization model using LP
relaxation and Minimum Deviation Rounding (MDR) strategy. it also provide results
and discussions. Finally, Section 6.5 summarize the chapter. in this chapter.

6.1 MILP Formulation

The computational problem defined in Section 4.2 lends itself naturally to a simple
linear programming formulation. From now on, it is assumed (in this thesis) that each
instance of the given problem is solved over a finite time window and that the time
horizon is subdivided into a finite number of time slots or a set of time slots, T =

{t1, t2, . . . , tT}, each time slot has length of τ .

Portion of this chapter was published in the following papers: Heuristics for the cost-effective manage-
ment of a temperature controlled environment. In IEEE ISGT ASIA, pages 1–6, Nov 2015. Heuristic
Algorithm for Minimizing the Electricity Cost of Air Conditioners on a Smart Grid. In IEEE Energy-
Con, pages 1–6, April 2016.
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6.1.1 Air Conditioning Unit

AC units usually have four working modes: Off, Fan, cooling, and heating mode.
However, for generality in this thesis, It is assumed that each AC unit has ki

c > 1
cooling mode and ki

h heating mode. Without loss of generality, this can be achieved
by using nm > 1 AC unit to cool down or heat up the environment in room m. In other
words, it is assumed that any percentage of power can be allocated to AC unit in case
of cooling and heating (e.g., it is not ON or OFF).

Pi(t) =
ki

c

∑
j=1

α
i
jx

i
j(t)+

ki
h

∑
j=1

β
i
jy

i
j(t) ∀i : i ∈A , ∀t : t ∈T (6.1)

where, the allocated power to AC unit is Pi(t) kW/unit time, α i
j is the nominal power

of AC unit when it works in cooling mode, β i
j is the nominal power of AC unit when

it works in heating mode, and xi
j(t) and yi

j(t) are binary variables, called a binary
decision variables in optimization problems.

xi
j(t), yi

j(t) ∈ {0,1} ∀i : i ∈A , ∀ j : j ∈ {1, . . . , ki
c}∪{1, . . . , ki

h}, ∀t : t ∈T (6.2)

AC unit works in a single mode, constraint (6.3) will be used to make sure that AC unit
works in a single mode

ki
c

∑
j=1

xi
j(t)+

ki
h

∑
j=1

yi
j(t)≤ 1 ∀i : i ∈A , ∀t : t ∈T (6.3)

In case, there is more than one AC unit heating up or cooling down the same room,
the total allocated power to these appliances in room m at time t is presented in the
following constraint

Pm(t) =
nm

∑
i=1

Pi(t) ∀t : t ∈T . (6.4)

The possible allocated power to a set of identical AC units cool down/heat up room
m, could be Γ = {0,α, 2α, . . . , nmki

cα}∪{β , 2β , . . . ,nmki
hβ}, the number of working

mode is nm× (kr
c + ki

h)+1, whereas if the AC units are not identical, it is 2nm×(ki
c+ki

h).
Additionally, the permissible allocated power to the AC unit could be one of any com-
bination of the nominal power of AC units.

The primary task of the AC units in each room is to keep the interior temperature
within the comfort level specified in br time intervals Im

1 , . . . , Ibm by a lower bound T m, j
min

and an upper bound T m, j
max , where j = 1, . . . , bm.

Section 3.4.2.1 presents our model for AC units. The relationship between a room
temperature, an external temperature and the allocated power to a set of AC units in
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room m as follows:

T m
in (t) = ε ·T m

in (t−1)+(1− ε)
[
Tout(t)−

η

κ
Pm(t)

]
, (6.5)

where Pm(t) is the allocated power to a set of AC units in room m, and the comfortable
room temperature constraint as follows:

T m, j
min ≤ T m

in (t) ≤ T m, j
max ∀t : t ∈ Im

j . (6.6)

6.1.2 Objective Function and Additional Constraints

For the purpose of our experiments, the general model presented in Section (4.2) is
simplified. The cost function Ψ in Equation (4.1) is replaced by the piecewise linear
function

Ψ = ∑
t∈T

{
λ (t) ·Lg(t)+ξ (t) ·Lr(t)−ζ (t) ·E(t)

}
, (6.7)

and the discomfort function in (4.6) is replaced by the following piecewise linear func-
tion

Ω = ∑
m∈M

∑
t∈Im

j

|T m
in (t)−T m

opt(t)|, j = 1, . . . ,bm (6.8)

The objective function is presented in the following equation:

Min(Ψ, Ω) (6.9)

subject to all the constraints defined in this section as well as few more involving
functions Lg(t), Lr(t) and E(t). Thus, the exported renewable power to NEG and
the consumed renewable power at any time must be equal to the predicted renewable
power,

E(t)+Lr(t) = Prew(t) ∀t : t ∈T , (6.10)

where Prew(t) is the renewable power available at time t. The power allocated to the
building at any time slot, t, must be equal to building demand,

Lg(t)+Lr(t) = ∑
m∈M

Pm(t), ∀t : t ∈T . (6.11)

Also, users can put a limit to the amount of grid power that could be used,

Lg(t)< L̄g(t), ∀t : t ∈T , (6.12)

where L̄g(t) is the maximum amount of power that can be consumed by a set of AC
units from electricity grid (NEG) at time t.
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6.2 Complexity Considerations

The framework presented so far leads to a straightforward implementation of an MILP-
based algorithm for problem Π which is defined in Section 4.2. Nevertheless, there is
strong evidence suggesting that the allocation problem may be rather difficult compu-
tationally even with one building with large number of AC units. The experiments in
this chapter support our claim (see results in Table 6.7); many experiments have been
carried out. The results clearly suggest that the underlying LP solver speed is heavily
affected by the number of time slots and the number of appliances (the number of bi-
nary variables in the problem) in the building. Furthermore, the optimization problem
is, in fact, NP-hard [141] even if the building has a single room and a single AC unit
(with many power levels and high time resolution). The outcomes of such analysis
led us to the study of efficient heuristics that can be used to obtain good quality fea-
sible solutions relatively quickly. Therefore, LP relaxation and two unique rounding
techniques have been used to achieve this goal.

This chapter will present the results of two the different models, the first model is
a single objective model using CRLP rounding strategy and the second one is multi-
objective model using MDR rounding strategy.

6.3 Single Objective Model with CRLP

In this model, the temperature comfort level in Equation (6.8) is ignored so that the
objective function in Equation (6.9) is replaced by Equation (6.13):

Minimize Ψ (6.13)

So, the main object here is to minimize the electricity cost.

6.3.1 LP Relaxation and Rounding

LP relaxation and rounding is a well-known approach to cope with the computational
intractability of an MILP formulation. LP relaxation is achieved by removing all con-
straints restricting the values of some variables to be integer numbers; in this opti-
mization problem, all the integer variables are binary variables [142]. In the specific
of Π this can be done by replacing all constraints described in Equation (6.2) by the
following constraint:

0 6 xi
j(t)6 1, and 0 6 yi

j(t)6 1. (6.14)
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Solving the resulting problem can be done effectively and will lead to a solution that
will have cost no larger than that of an optimal solution for the original problem. How-
ever, there is no guarantee that all decision variables forced to take binary values in the
initial formulations will do so in the relaxed version. Note that, for Π , this also implies
that constraints (6.3) and (6.2) may not be satisfied. Thus, the resulting solution does
not immediately translate into a schedule for the building’s appliances. For example,
if xi

j(5) = 0.42596, do the controller turn the appliance i “On” at level j or not?. this
chapter presents a rounding strategy that can be used to get feasible solutions for Π .

Algorithm CRLP (pseudo-code below) works on the solution produced by the LP
relaxation and generates (in polynomial time) a sub-optimal feasible solution for the
initial MILP optimization problem. Then, different rooms are treated independently.
Let us assume that Γm is the set of all permissible nominal power values for set of ap-
pliances working in room m. The rationale behind CRLP algorithm is to loop through
all time slots t and check whether Pm(t) is permissible value in room m or not. If that
is the case, CRLP set P̃m(t) = Pm(t) and the room controlling variables xi

j(t) and yi
j(t)

are set accordingly to 0 or 1. In the opposite case (Pm(t) is not permissible in room m)
CRLP round Pm(t) to the closest value in Γm, and the controlling variables are set to 0
or 1 as required.

Algorithm 1 Cumulative Rounding based on Linear Programming (CRLP)
1: procedure CRLP
2: for m ∈ M do
3: for t ∈ T do
4: if Pm(t) ∈ ΓNm then
5: P̃m(t)← Pm(t)
6: else
7: Sum←Carry+Pm(t)
8: Round Sum to closest working level in ΓNm

9: P̃m(t)← Rounded Sum
10: Carry← Sum− P̃m(t)
11: end if
12: CHECK FEASIBILITY of solution
13: end for
14: end for
15: end procedure

The rounding process described so far does not guarantee that the rounded solution
satisfies the temperature constraints in Equation (5.13). Step 12 in CRLP (described
by the additional pseudo-code below) explains how this issue has been fixed.

Example 6.3.1.

To explain the mechanism of converting continuous/ real values to integers by us-
ing our CRLP rounding strategy, let us consider the following numerical example.
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Algorithm 2 Checking Feasibility(CF) of CRLP’s solution
1: procedure CHECK FEASIBILITY

2: for each time slot, t ∈ Im
1 ∪, . . . , Im

bm
i

do

3: Calculate T̃ m
in (t) using P̃m(t).

4: if T̃ m
in (t)>Tmax then

5: Adjust P̃m(t), P̃m(t)← P̃m(t)+α , in case of cooling mode, or
6: P̃m(t)← P̃m(t)−β , in case of heating mode.
7: end if
8: if T̃ m

in (t)<Tmin then
9: Adjust P̃m(t), P̃m(t)← P̃m(t)−α , in case of cooling mode, or

10: P̃m(t)← P̃m(t)+β , in case of heating mode.
11: end if
12: end for
13: Update All dependent variables.
14: end procedure

Table 6.1: Numerical example explains the mechanism of CRLP.

t 1 2 3 4 5 6 7 8 9 10
Pm(t) 0.3 0.0 1.8 1.0 2.5 0.2 0.5 1.1 0.0 1.6
sum 0.3 - 2.1 - 2.6 -0.2 0.3 1.4 - 2.0

carry 0.3 - 0.1 - -0.4 -0.2 0.3 0.4 - 0.0
P̃m(t) 0.0 0.0 2.0 1.0 3.0 0.0 0.0 1.0 0.0 2.0

Consider studio flat with one AC unit, and time horizon is split into 10 time slots. The
optimal allocated power to AC unit is Pm(t). In addition, assume that residents need to
keep room temperature within comfort level between 18◦C, and 22◦C. Also, assume
that the permissible allocated power to AC unit is Γ = {0.0, 1.0, 2.0, 3.0}. First of all,
CRLP algorithm will check if the allocated power to AC unit at t = 1, Pm(1) ∈ Γ or
not. If Pm(1) ∈ Γ then CRLP do not need to round the allocated power and CRLP goes
to the next time slot. Otherwise, CRLP will round it to closest permissible power in Γ

and add the carry to the next allocated power to AC Pm(t), and so on and so forth. See
Table 6.1

6.3.2 Empirical Results

All the experiments in this thesis have been done on a PC with an Intel(R) Core(TM) i7-
2600 CPU @ 3.4 GHz, RAM is 16 GB, 64-bit Operating System (Windows 7). Also,
Gurobi 6.2.1 has been used to solve LP and MILP optimization problems, whereas
Java is used to model our problems ( the software development platform is Netbeans
IDE 7.0.1 ).

This section presents our empirical results related to the optimization problem de-
fined in Equation (4.7). Two case studies are demonstrated, both of these studies based
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Figure 6.1: Two bedrooms flat with 6 small AC units

Table 6.2: Two comfortable periods in the flat where inside temperature should be in
comfortable range

First period Second period
Room number Start time Finish time Start time Finish time

m = 1 05:00:00 10:00:00 17:00:00 18:00:00
m = 2 05:00:00 13:00:00 14:00:00 23:00:00
m = 3 09:00:00 11:00:00 16:00:00 20:00:00

on the following scenarios. Firstly, consider a small residential building including three
rooms, m= 3, see Figure 6.1, and that the resident needs to keep the inside temperature
within the comfort level in each of these rooms. The system includes N = 6 identical
AC units: n1 = 3, n2 = 2 and n3 = 1 each of which has one working level. Thus, the
possible allocated power sets to the living room is Γ1 = {0, 2.3, 4.6, 6.9}, whereas the
possible allocated power to the master bedroom is Γ2 = {0, 2.3, 4.6}, and the possi-
ble allocated power to the second bedroom is Γ3 = {0, 2.3}. In other words, three
AC units working in living room works as single AC unit with three cooling modes,
each mode consumes different amount of energy. Each room has a thermostat, mea-
suring the inside temperature, and the thermal parameters have the following values:
ε1 = ε2 = ε3 = 0.96, η1 = 10, η2 = 20 ,η3 = 30, and κ1 = κ2 = κ3 = 0.98 kW/ ◦C,
respectively. Comfort intervals for the three rooms in the building are described in
Table 6.2. Also, T m

min= 18.0 and T m
max= 22.0◦C are the same for all rooms.

Assume that the residential building is equipped with a domestic micro-generation
plant, say a PV array. These PV arrays generate a maximum amount of 4.1 kWh of
solar power, three shapes of renewable power are used, zero (cloudy day), bell shape
(sunny day), and intermittent form (partly cloudy day), see the second chart in Figure
6.2.
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Figure 6.2: Hourly forecasting of renewable power for three different days, sunny day,
partly cloudy day, and completely cloudy day

Figure 6.3: Two electricity pricing strategies, dynamic and fixed

Locally generated renewable energy costs nothing (ξ = 0.0 £/kWh), and the resi-
dential building benefits of an export tariff ζ = 0.05 £/kWh. Furthermore, two pricing
strategies will be used in our empirical study for the NEG electricity: a “Fixed pricing
strategy” and a “Dynamic pricing strategy”, as described in Figure 6.3.

Figure 6.4 shows the outside temperature, Tout(t), for three different days that is
used in these experiments.

6.3.2.1 First Case Study

The main purpose of this study is to investigate the performance of the four processes
concerning cost and the effect of input data on cost. Input data is as given above.

Figure 6.4: The hourly predicted outside temperature for three different days, sunny
day, cloudy day and partly cloudy day
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Table 6.3: The optimal solution, the maximum cost (worst-case cost), run-time, and
the maximum saving of the power allocation problem using exact algorithm

Electricity
price

Maximum
cost (£)

Minimum
cost (£)

Run-time Maximum
saving (%)

Day 1 Fixed 3.88 3.88 76 Sec. 00.0
Dynamic 5.24 4.23 147 Sec. 19.1

Day 2 Fixed 3.16 1.50 4 h, 34 m 52.5
Dynamic 3.66 1.69 19 h, 47 m 53.8

Day 3 Fixed 3.16 1.10 13 h, 22 m 65.2
Dynamic 3.73 1.19 17 h, 02 m 68.1

The time horizon is split into T = 288 time slots, τ = 5 minutes. Six scenarios will
be illustrated to investigate the effect of input data on maximum saving, defined in
Equation (6.15). Input data for three different days will be used, in each day, two
different pricing strategies will be used which generate a total of six different scenarios.

Table 6.3 shows the maximum saving, calculated using Equation (6.15), using
MILP-based exact algorithm. To get an idea of the quality of our algorithmic solu-
tions, in our experiments, we have compared the cost values of the various heuristics
(column Min cost) with a quantity we call (Max cost). This is defined as the cost
obtained by solving the maximization version of Π with the extra constraint that the
total amount of energy used by the solution must match the one corresponding to the
optimal solution of Π . The right-most column in the table is computed as follows:

Maximum Saving =
|Worst cost−Optimal cost |

|Worst cost|
×100%, (6.15)

Table 6.3, also, highlights the run-time of our MILP-based exact algorithm. Fur-
thermore, the run-time depends on the electricity price and predicted renewable power.
The first row in the table shows that the run time is a couple of minutes when electric-
ity price is fixed and there is no renewable power, whereas in the last four rows, the
run-time is between 4 to 17 hours which is completely unpractical.

On the other side, Table 6.4 illustrates the performance of CRLP-V algorithm con-
cerning the cost of electricity and the computation time of our optimization algorithm.
Moreover, the results, in the table, back our claim that by using LP relaxation, NP-hard
problems can be solved in polynomial time. Surprisingly, the sub-optimal cost of some
experiments looks cheaper than the optimal cost, that is because, CRLP-V algorithm
violates temperature constraints (the inside/room temperature can go outside the spe-
cific range, if cheaper solution can be found ). As a result, the AC units consume less
electricity.

Table 6.5 shows the performance of our heuristic algorithms CRLP regarding the
cost and run-time. The algorithm can find solution in polynomial time. Nevertheless,
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Table 6.4: The suboptimal solution, the maximum cost (worst-case cost), run-time,
and the maximum saving of the power allocation problem using CRLP-V algorithm

Electricity
price

Maximum
cost (£)

Minimum
cost (£)

Run-time
(seconds)

Maximum
saving (%)

Day 1 Fixed 3.88 3.59 0.038 07.40
Dynamic 5.24 3.96 0.050 24.42

Day 2 Fixed 3.16 1.44 0.047 54.43
Dynamic 3.66 1.48 0.045 59.56

Day 3 Fixed 3.16 1.07 0.059 66.13
Dynamic 3.73 1.24 0.049 66.75

Table 6.5: The suboptimal solution, the maximum cost (worst-case cost), run-time,
and the maximum saving of the power allocation problem using CRLP algorithm

Electricity
price

Maximum
cost (£)

Minimum
cost (£)

Run-time
(seconds)

Maximum
saving (%)

Day 1
Fixed 3.88 3.88 0.044 00.00

Dynamic 5.24 4.27 0.051 18.51

Day 2
Fixed 3.16 1.80 0.048 43.10

Dynamic 3.66 2.02 0.064 44.80

Day 3
Fixed 3.16 1.50 0.076 52.53

Dynamic 3.73 1.69 0.079 54.96

it is a bit slower than CRLP-V that is because it needs more time to do feasibility check
(the time needed for Algorithm (2) to guarantee feasibility).

Table 6.6 explains the results of MILP-Heuristic algorithm (provided by MILP
solver). Additionally, all the results of the experiments are obtained after allowing 10
minutes of calculation time.

Figure 6.5 depicts a comparison between our heuristic algorithms concerning run-
ning cost. Note that in fixed pricing strategy in Day 1 MILP-H and CRLP does not
make any saving because when there is no renewable power and price is fixed the cost

Table 6.6: The suboptimal solution, the maximum cost (worst-case cost), run-time,
and the maximum saving of the power allocation problem using MILP H algorithm

Electricity
price

Maximum
cost (£)

Minimum
cost (£)

Run-time
(seconds)

Maximum
saving (%)

Day 1
Fixed 3.88 3.88 600.0 00.00

Dynamic 5.24 4.25 600.0 18.89

Day 2
Fixed 3.16 1.51 600.0 52.22

Dynamic 3.66 1.70 600.0 53.60

Day 3
Fixed 3.16 1.12 600.0 64.87

Dynamic 3.73 1.32 600.0 67.56
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Figure 6.5: Comparison between our heuristic algorithm regarding maximum saving

Table 6.7: The average computation time, in seconds, of exact algorithm

Time slots,τ , in minutes
Number of AC units N 30 20 15 10 5 1

1 0.698 0.705 0.735 0.945 2375.87 ∞

5 5.905 31.677 3451.01 ∞ ∞ ∞

10 2151.74 4586.41 ∞ ∞ ∞ ∞

50 ∞ ∞ ∞ ∞ ∞ ∞

will be the same, but CRLP-V has made 7.4% profit, that is because the allocated en-
ergy to the building in CRLP-V is less than the allocated energy to the building in exact
MILP algorithm.

Figure 6.6 gives an even more detailed picture. It shows the allocated power and
inside temperature in the master bedroom using CRLP (Figure 6.6a) and CRLP-V
(Figure 6.6b), respectively. Based on this picture, we may argue that although CRLP-
V does not guarantee feasibility in practice the algorithm never goes astray, and in fact
returns reasonably cheap solutions.

6.3.2.2 Second Case Study

The main purpose of this case study is to perform scalability test. In other words,
the primary goal is to investigate the performance of the various heuristics in terms of
computation time when there is a large number of AC units and high time resolution (a
large number of binary decision variable). Almost the same input data that have been
used in the first case study will be used in this case study, just time resolution and the
number of AC units in the building will be varied.

Table 6.7 illustrates the average run-time of our MILP-based exact algorithm. As
expected, the results show that the exact algorithm can not obtain an optimal feasible
solution for large problems where the number of appliances or time resolution is sig-
nificant due to the hardness of the optimization problem. Furthermore, the table shows
that the exact algorithm (MILP) is capable of solving small problems and some of
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(a) The red line presents solution of CRLP and black line presents LP solution before rounding.

(b) The red line presents solution of CRLP-V and black curve presents LP solution before rounding.

Figure 6.6: The allocated power and room temperature of the master bedroom (n = 2
AC units)

Table 6.8: The average computation time, in seconds, of CRLP-V.

Time slots,τ , in minutes
Number of AC units N 30 20 15 10 5 1

1 0.002 0.003 0.004 0.005 0.007 0.061
5 0.007 0.011 0.013 0.021 0.033 0.548

100 0.027 0.049 0.074 0.157 0.461 3.111
300 0.113 0.237 0.298 0.549 0.992 9.044

the medium size problems only, whereas it could not handle any of large optimization
problem. Note, there is no safe generalization about MILP problems apart from your
mileage (run-time) will vary.

By contrast, the proposed heuristic optimization algorithms can find feasible solu-
tion relatively quickly, especially CRLP-V and CRLP. The time provided in Table 6.8
is achieved by CRLP-V only. In addition, MILP-H can not beat CRLP-V or CRLP
in term of calculation time. Also, CRLP is a bit slower than CRLP-V by just a few
milliseconds, as it uses these milliseconds to check and guarantee that no other con-
straints are violated by the process of rounding the allocated power. Therefore, there
is no need to present it here.

Table 6.9 shows a comparison between MILP-H (deadline is 10 minutes), and
CRLP-V algorithms in terms of predicted cost. The results illustrate that when the
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Table 6.9: MILP-Heuristic vs CRLP-V

Time slots,τ , in minutes
Number of ACs 30 20 10 5 1

N=1 MILP-H MILP-H MILP-H MILP-H CRLP-V
N=10 MILP-H MILP-H CRLP-V MILP-H CRLP-V
N=50 MILP-H MILP-H MILP-H CRLP-V. CRLP-V.
N=100 MILP-H CRLP-V. MILP-H CRLP-V. CRLP-V.
N=200 MILP-H MILP-H CRLP-V. CRLP-V. CRLP-V.
N=300 CRLP-V. CRLP-V. CRLP-V. CRLP-V. CRLP-V.

Figure 6.7: The cost of electricity in the building using MILP-H, CRLP, and CRLP-V
algorithms for 200 AC units, when τ = 1 minutes. MILP-H UB present the best known
solution, whereas MILP-H LB is the best known bound.

problem is large CRLP-V gives a better solution in terms of cost and run-time and vice
versa. The results may change slightly if the input data is changed, but, in general, this
is the general pattern of their results.

Figure 6.7 compares between CRLP, CRLP-V and MILP-H heuristic algorithms for
a building that has large number of AC units (200 AC units) and high time resolution
(τ = 1 minute). The results illustrate that when MILP-H can find a solution that is
better than CRLP and CRLP-V. According to our finding, MILP-H can not beat CRLP
and CRLP-V in a large problem in reasonable time.

6.3.3 Discussions

Regarding first case study, the findings, in Table 6.3, illustrate that the exact MILP-
based algorithm can only be used for small problems (buildings with a handful of AC
units and low time resolution (τ > 10 minutes)) because this is an NP-hard problem
and the computation time could go to infinity if the size of the problem is increased
by increasing the number of appliances, the time horizon, or time resolution. The
run-time varied considerably (from 76 seconds to 27 hours) for the same problem just
by changing the electricity price and predicted renewable power; This is a common
behavior in MILP problems as the computation time vary a lot by changing the value
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of variables.
Tables 6.4, 6.5, and 6.6 demonstrate that the maximum saving provided by any of

the three heuristics is close to the optimal solution shown in Table 6.3. These algo-
rithms can be used in large and medium problems (of course, it is possible to com-
bine various heuristics, even run all of them and pick the best solution. Additionally,
CRLP-V algorithm can find a cheaper solution than the optimal solution of MILP that
is because CRLP-V violate temperature constraint in Equation (5.13) which mean that
it could allocate less power to the building than the exact MILP-based algorithm. Of
course, the efficient use of our system hinges on reliable weather forecasts, and the
accuracy of this data depends on the country or the area where this model will be used.
For instance, the weather in Mediterranean and Middle Eastern countries is more sta-
ble than in North Europe, especially in the summer. The error in weather forecasting
and the uncertainty of electricity pricing are outside of the scope of this framework,
and more investigations are needed to tackle this issue.

6.4 Multi-Objective Model with MDR

This section presents MILP formalization of the computational problem discussed in
Section 4.2. Although the similar problem has been dealt with in the previous section
(Single Objective Optimization Problem (SOOP)), this problem is a Multi-Objective
Optimization Problem (MOOP). It considers the discomfort factor inside the residen-
tial building.

6.4.1 MILP Formulation Issues

There are two issues with the objective function in Equation (6.9). The first one is
that, to the best of our knowledge, there is no LP solver can tackle MILP-based multi-
objective optimization problem (MOOP). Therefore, MOOP needs to be converted into
Single Objective Optimization Problem (SOOP). The second issue is that the absolute
variable cannot be used directly in linear programming. Therefore, Equation (6.8)
needs to be represented to eliminate absolute sign. Any absolute value function can be
represented by introducing an auxiliary variable ( e.g. Min | f (x)|, can be represented
as Min Z subject to f (x)≤ Z and− f (x)≤ Z) [142]. So, to reformulate absolute value,
| T m

in (t)− T m
opt |, another auxiliary binary variable δ (t) ∈ {0, 1} is needed and three

more constraints, illustrated in Equations (6.16), (6.17), and (6.18).

−T m
in (t)+T m

opt ≤ δ (t) ∀t : t ∈T , ∀m : m ∈M (6.16)

T m
in (t)−T m

opt ≤ δ (t) ∀t : t ∈T , ∀m : m ∈M (6.17)
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Φ = ∑
m∈M

∑
t∈Im

j

δm(t) (6.18)

Having coped with the absolute sign issue, another problem needs to be dealt with
which is the converting MOOP into SOOP. Linear scalarization technique [143] will
be used to convert MOOP into SOOP, the objective function in Equation (4.7) will be
replaced by the following function (6.19),

Min(w1Ψ+w2Φ), (6.19)

where w1 > 0 and w2 > 0 are weights to bias the optimization toward either cost or
comfort.

6.4.2 LP Relaxation and Rounding

LP relaxation can be done in problem Π by replacing all integer constraints described
in Equation (6.2) by the following constraints

0 6 xi
j(t)6 1, and 0 6 yi

j(t)6 1. (6.20)

Solving the resulting problem can be achieved efficiently and will lead to a solution
that will have cost no larger than that of an optimal solution for the original problem.
Nevertheless, there is no guarantee that the allocated power to any AC unit, in case of
cooling, α , will be equal to any of α1, . . . ,αki

c
. Thus the resulting solution does not im-

mediately translate into a schedule for the building’s appliances. Note that 0.4785×α j

cannot be allocated to AC unit, doing so could damage the AC unit or make it operate
in an inefficient way. A rounding strategy that can be used to get practical solutions
for Π is presented. Minimum Deviation Rounding (MDR) works on the solution pro-
duced by the LP relaxation and generates (in polynomial time) a feasible solution for
the initial MILP problem. Let us assume that Γr = {α1,β1, . . . ,αkr

c,i
,βki

h
} is a set of all

permissible power values for room m. The rationale behind algorithm MDR is to round
the allocated power to the first permissible power value, say P̃m(t) = α1, and calculate
the deviation between T m

in (t) and T̃ m
in (t), where T̃ m

in (t) is the room temperature in case
α1 is allocated to the AC unit. Then, do the same with the rest. After that, the best
permissible power value that gives the smallest temperature deviation is picked and
approved as a solution as long as it does not violate other constraints. Equation (6.21),
Equation (6.22), and Equation (6.23) show how does MDR work in case of cooling.
Note, in case of heating swap α with β .

∆k =| T̃ m,k
in (t)−T m

in (t) | ∀m, ∀t, k = 0,1, . . . ,K (6.21)
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P̃m(t) = αs, (βs in case of heating) (6.22)

∆s ≤ ∆ j, s ̸= j, j and s = 0,1 . . . ,K, (6.23)

where T̃ m,k
in (t) is the temperature of mth room when P̃m(t) = αk (or βk in case of heat-

ing).
To understand how does our rounding strategy work, pseudo code of MDR is in-

troduced in Algorithm 3 and 4.

Algorithm 3 Minimum Deviation Rounding (MDR)
1: procedure MDR
2: for each room m ∈ M do
3: for each time slot t ∈ T do
4: for each α and β ∈ Γm do
5: Calculate T m,k

in (t), and ∆(k) using Equation(6.21).
6: end for
7: Find Minimum Deviation,∆s using Equation(6.23) & (6.23).
8: Check Feasibility of solution using Algorithm 4
9: end for

10: end for
11: end procedure

Algorithm 4 Checking Feasibility of MDR’s Solution
1: procedure CHECK FEASIBILITY

2: for each time slot, t ∈ Im
1 ∪, . . . , Im

bm
i

do

3: Calculate T̃ m
in (t) using P̃m(t)← αs or βs.

4: if T̃ m
in (t)>Tmax then

5: Adjust P̃m(t), P̃m(t)← αs+1 or βs−1.
6: end if
7: if T̃ m

in (t)<Tmin then
8: Adjust P̃m(t), P̃m(t)← αs−1 or βs+1.
9: end if

10: end for
11: Check that MDR does not violate (5.13)
12: Update All dependent variables.
13: end procedure

6.4.3 Empirical Results

All the experiments in this thesis have been done on a PC with an Intel(R) Core(TM)
i7-2600 CPU @ 3.4 GHz; RAM is 16 GB, 64-bit Operating System (Windows 7).
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Also, Gurobi has been used to solve LP and MILP problems, whereas Java is used to
model our problems ( the software development platform is Netbeans IDE 7.0.1 ).

This section compares two different heuristic ways of finding feasible solutions
for our optimization problem (Π) defined in Section 4.2, using a truncated version of
the MILP (MILP-H), using MDR algorithm, or a slightly faster version of the same
process, named MDR-V, which omits the process of checking the feasibility of the
solution in procedure MDR. Three case studies will be demonstrated in this section in
order to compare between these heuristic algorithms.

6.4.3.1 Communal Input Setting

All case studies will use the same input data presented in this section. All AC units
have the same inertia, ∀i, εi = 0.96 , and ∀r, κr= 0.98 kW/◦C. Also, all scenarios will
use T m

min= 18.0, T m
max= 22.0 and T m

opt= 20.0 ◦C. Locally generated renewable energy
costs nothing (ξ = 0.0 £/kWh), and the building benefits of an export the surplus re-
newable power via FIT, ζ = 0.05 £/kWh. Note that the same input data as in our
previous Section 6.3.2 is used here, so that the results can be compared. Addition-
ally, w1 = w2 = 1 are used in our multi-objective optimization problem. Figure 6.3
shows two pricing strategies that will be used for all cases, a "Fixed" and "Dynamic"
pricing. Additionally, Figure 6.2 illustrates the predicted renewable power in three dif-
ferent days, completely cloudy day (0.0 kW), partly cloudy, and sunny day (blue sky).
Finally, Figure 6.4 demonstrates the outside temperature on three different days.

6.4.3.2 First Case Study

The primary purpose of this case study is to compare the enhanced rounding technique,
MDR, with the previous rounding technique, CRLP, presented in Section 6. Therefore,
this case study uses the same input data used in the last section so that a comparison can
be done between them. Consider a small residential building consists of 3 studio flats or
rooms and that users need to cool these flats/rooms and keep the temperature in comfort
level in each of them. The system includes N = 6 identical AC units: n1 = 3, n2 = 2
and n3 = 1. Thus the possible allocated power sets are Γ1 = {0, 2.3, 4.6, 6.9}, Γ2 =

{0, 2.3, 4.6}, and Γ3 = {0, 2.3}, respectively. Each flat has a thermostat, measuring
the inside temperature, and the thermal parameters have the following values: η1 = 10,
η2 = 20 , and η3 = 30, respectively. Comfort intervals are shown in Table 6.2. It is
assumed that the building is equipped with a domestic micro-generation plant, say a
PV array. These PV arrays generate a maximum amount of 4.1 kWh of solar power.
Figure 6.2 shows the predicted renewable power in three different days.

Table 6.10 illustrates comparison between MDR and CRLP strategies. The re-
sults show that when there is no renewable power and electricity price is fixed, both
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Table 6.10: Comparison between CRLP and MDR in terms of cost, IMP stand for
improvement in saving using MDR.

Fixed price Dynamic price
Day 1 Day 2 Day 3 Day 1 Day 2 Day 3

Maximum cost (£) 3.88 3.16 3.16 5.24 3.66 3.73
CRLP (£) 3.88 1.80 1.50 4.27 2.02 1.79
MDR (£) 3.88 1.76 1.43 4.26 1.93 1.63

Maximum Saving (MS) % 0.00 44.3 54.8 18.6 47.3 56.3
Improvement in MS % 0.00 2.22 4.66 0.23 3.07 8.93

techniques have achieved the same results. By contrast, MDR saves more money in
dynamic pricing. MS shows the maximum saving that has been made by MDR.

The result, in general, shows an improvement in the saving. However, the saving
is zero when there is no renewable power and the electricity price is fixed. Unfortu-
nately, the author cannot tell the percentage of the improvement because it depends
on so many variables such as the number of AC units, the generated renewable power,
electricity pricing, outside temperature, and user preferences.

6.4.3.3 Second Case Study

The main purpose of this empirical experiment is to compare between three heuris-
tic algorithms which are MDR, MDR-V, MILP-H concerning the cost and Average
Discomfort Factor (ADF=Ω

T ). Firstly, these heuristic algorithms with MOOP will be
examined. Then, the same experiment for SOOP will be carried out here and same in-
put data will be used as in first case study. Moreover, discomfort factor has a negative
relationship with the amount of consumed power by AC unit(s). However, consuming
more energy does not mean that it is more expensive. For instance, consuming 2.0
kWh, in dynamic price environment in off peak hours, could be cheaper than consum-
ing 1.0 kWh on peak hours.

Table 6.11 shows a comparison between three heuristic algorithms, MDR-V, MDR,
and MILP-H concerning the cost and ADF. These algorithms are used to solve Single
Objective Optimization Problem (SOOP).

The table depicts that MDR-V is the best algorithm in terms of cost. By contrast,
it is the worst heuristic algorithm regarding the ADF that is because it violates temper-
ature constraint in order to a get cheaper solution. As a result, users must compromise
comfort (ADF goes high). MILP-H comes second in terms of electricity cost, whereas
MDR comes last in terms of cost and ADF.

Table 6.12 illustrates the result of Multi Objective Optimization Problem (MOOP).

Maximum Saving (MS)= (Max−Min)/Min×100
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Table 6.11: Comparison between MDR-V, MDR, and MILP-H, for solving SOOP.

MDR-V MDR MILP-H
Price Cost (£) ADF Cost (£) ADF Cost (£) ADF

First day Fixed 3.59 3.13 3.88 1.85 3.88 1.81
Dynamic 3.96 2.11 4.26 1.67 4.25 1.75

Second day Fixed 1.44 2.12 1.76 1.74 1.51 1.74
Dynamic 1.68 2.07 1.93 1.65 1.70 1.69

Third day Fixed 1.19 2.05 1.43 1.84 1.12 1.69
Dynamic 1.34 2.03 1.53 1.56 1.32 1.64

Table 6.12: Comparison between MDR-V, MDR, and MILP-H, for solving MOOP.
Note, MILP-H is stopped after 600 sec.

MDR-V MDR MILP-H
Price Cost (£) ADF Cost (£) ADF Cost (£) ADF

First day Fixed 3.96 0.51 3.96 0.51 3.96 1.12
Dynamic 4.26 0.47 4.26 0.47 4.37 0.97

Second day Fixed 1.59 0.35 1.59 0.35 1.62 1.03
Dynamic 1.76 0.28 1.76 0.28 1.78 0.89

Third day Fixed 1.19 0.33 1.19 0.33 1.23 0.37
Dynamic 1.44 0.24 1.46 0.24 1.37 0.54

It gives a comparison between three heuristic algorithms, MDR-V, MDR, and MILP-H
concerning the cost and ADF. The results have shown that MDR and MDR-V give the
best ADF. Note that ADF of MDR-V is the same as ADF of MDR because MOOP
will force the temperature curve to be around Topt and when the allocated power to AC
unit rounded it never goes above Tmax or under Tmin (It does not violate temperature
constraints).

6.4.3.4 Third Case Study

The main goal of this case study is to do scalability test or to examine the performance
of our heuristic algorithms (MDR, MDR-V and MILP-H) in terms of computation time
and the cost of proposed schedule (solution). Almost the same input data as in the first
case study will be used here. Nevertheless, just τ and N will be varied.

In our previous case study 6.3.2.2, the results have showed that solving large prob-
lem with the exact algorithm is not applicable, and the results support our claim by
empirical experiments in the second case study. Therefore, there is no need to re-
peat the same experiments in this section. Table 6.13 demonstrates the run-time of
our heuristic algorithm (MDR) for solving MOOP using CRLP, whereas Table 6.14
depicts the run-time for our enhanced rounding strategy (MDR).

Table 6.15 shows a comparison between the built-in heuristic algorithm (MILP-H)
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Table 6.13: The average computation time, in seconds, of CRLP heuristic algorithm

Time slots,τ , in minutes
Number of AC units N 20 15 10 5 3 1

1 0.004 0.005 0.006 0.005 0.009 0.066
10 0.008 0.012 0.015 0.026 0.037 0.554

100 0.031 0.052 0.088 0.079 0.475 3.111
300 0.122 0.240 0.908 0.301 0.998 9.142

Table 6.14: The average computation time, in seconds, of MDR.

Time slots,τ , in minutes
Number of AC units N 20 15 10 5 3 1

1 0.002 0.002 0.004 0.005 0.021 0.061
10 0.009 0.010 0.016 0.026 0.136 0.989

100 0.031 0.053 0.088 0.179 0.644 3.501
300 0.23 0.714 0.908 1.095 2.237 9.471

and our heuristic algorithm (uses rounding). The finding indicates that MILP-H can not
beat MDR in large problems when the number of AC units is large or time resolution
is high (a large number of binary decision variables). By contrast, MILP-H is the best
choice for a small room and houses with just a couple of AC units.
Figure 6.8 highlights the difference between two techniques in terms of computation
time. The results show that MDR is a bit slower than CRLP because it does more
checks before rounding. However, this difference is acceptable, and this delay is the
price to pay for better performance.

6.4.3.5 Discussions

The main propose of the first case study is to show the difference between our new
rounding strategy, MDR, compared with our previous strategy CRLP. Table 6.10 shows
that using MDR can save up to around 8% of our profit in this settings. However, in
some settings it gave 0% improvement. This depends on the number of appliances,

Table 6.15: Comparison between MILP-H vs MDR in terms of cost.

Time slots,τ , in minutes
Number of ACs 20 15 10 5 3 1

N=1 MILP-H MILP-H MILP-H MILP-H MILP-H MDR
N=10 MILP-H MILP-H MDR MILP-H MDR MDR
N=50 MILP-H MILP-H MILP-H MDR MDR MDR

N=100 MILP-H MILP-H MILP-H MDR MDR MDR
N=200 MILP-H MILP-H MDR MDR MDR MDR
N=300 MILP-H MDR MDR MDR MDR MDR
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Figure 6.8: Increment in run-time using MDR for MOOP compared with CRLP for
MOOP

electricity price and the amount of renewable power. Therefore, it was difficult to tell
exactly how much profit will make using MDR algorithm compared with the previous
rounding strategy CRLP presented in the previous chapter.

In addition, the finding shows that MDR-V, with SOOP, performs better than its
counterpart with MOOP in terms of cost. However, the Average of Discomfort Factor
(ADF) in MOOP is better than its counterpart in SOOP. Surprisingly, MDR in MOOP
is better that MDR in SOOP (in terms of cost and comfort) and that is because adding
discomfort factor forces the temperature to be a bit far from T m

min and T m
max. Therefore,

fewer changes are made on the allocated power to AC units in the rounding process.
By contrast, MILP-H gives a cheaper solution in SOOP but again the discomfort factor
is higher in MOOP. So, it is a matter of trade-off between the cost and comfort and it
is ultimately up to the end users which option they prefer.

Table 6.15 depicts that MILP-H gives the best solution when the size of the prob-
lem is small or medium, whereas MDR gives the best solution when the size of the
problem is large. However, When N = 10 and τ = 10, MDR was better than MILP H.
This behavior is common in MILP. The only safe generalization with MILP is that the
calculation time will vary.

6.5 Summary

This chapter has presented two case studies (optimization problems). These problems
are special cases of our general model of the problem of power allocation in micro-
grids. The chapter has illustrated MILP formulation of the problem presented in Sec-
tion 4.2. It has also suggested two LP-based heuristic algorithms. Finally, the chapter
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has presented the results of these case studies along with a comprehensive discussion
of the issue related to these finding.



Chapter 7

Smart Domestic Renewable Energy
Management Using Knapsack

“What regresses, never progresses”

Umar Ibn Al-Khattab

e start the empirical analysis of the problems described in Section 4.3 by
looking at the Max-Utilization problem. In the forthcoming sections, a re-
active formulation of this problem is studied, in which time is discrete and

(re-)optimization is performed at every time step. The proposed probabilistic model
works only with interruptible appliances. This chapter looks at the problem of maxi-
mizing the amount that is immediately used at the site before any excess is dumped to
the NEG. Combinatorial optimization techniques may help the decision making in this
setting, by dynamically modulating the household energy needs in response to changes
in the amount of generated power. Section 7.1 presents ILP formulation of the prob-
lem. Empirical Evaluation is given in Section 7.2. The results are discussed in Section
7.3. Finally, Section 7.4 summarize the chapter.

7.1 Integer Linear Programming (ILP) Formulation of
the Problem

A reactive control system could convert a large proportion of the generation surplus
into thermal energy which could be used to regulate the building temperature. More-
over, the mathematical formulation of the core allocation method provides guarantees
on the quality of its results. This chapter describes experiments involving a PV array

Portion of this chapter was published in "Smart Domestic Renewable Energy Management using
Knapsack". In 2013 4th IEEE/PES Innovative Smart Grid Technologies Europe (ISGT EUROPE),
pages 1–5, Oct 2013.
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system, but the method can be used to manage any type of domestic renewable energy
plant. A variety of appliances can be actively controlled. The Knapsack formulation
can be used to obtain allocations optimizing different criteria, such as the amount of
allocated power, the number of appliances switched on, or giving special priority to a
selected set of appliances (e.g. situated in specific parts of the house).

In combinatorial optimization, Knapsack problem is choosing a subset of items
from a set of n possible items in order to maximize the profit of these elements without
exceeding the capacity of the Knapsack, see Figure 7.1a. The 0-1 Knapsack problem
is a special case of Knapsack problem where fractions of the articles are not allowed.
0-1 Knapsack admits an ILP formulation:

maximize
n

∑
j=1

v j · x j (7.1)

subject to
n

∑
j=1

w j · x j ≤ B (7.2)

x j ∈ {0, 1}, and j = 1, . . . ,n (7.3)

where v j is the value of item j, and w j is the weight, x j is binary decision variable.
Figure 7.1b shows a straightforward model of the Max-Utilization power allocation
problem as Knapsack problem, where the available renewable power is modeled as the
Knapsack capacity, the user preferences is modeled as the value of the item, and the
allocated power is modeled as weight of the item.

However, a number of issues have to be addressed. An electric appliance will
typically use a variable amount of power, only coarsely bound by the nominal power
mentioned in the manufacturer’s information sheet. A natural way to deal with this
is to assume that the appliance loads are not fixed numbers but, rather, random quan-
tities. Knapsack is an NP-hard problem [144]. Exact algorithms for such problems
are typically quite slow. Sometimes approximation heuristics offer advantages, but the
available performance guarantees are too weak in the case at hand. This chapter shows
how a particular Knapsack variant can be used to solve the dynamic energy allocation
problem at hand. The effectiveness of the proposal hinges on the fact that the relevant
instances do not involve large numbers (typical domestic micro-generation plants are
capable of producing no more than a few kilowatts of power per hour) and their combi-
natorial size is quite restricted too. Thus, the instances can then be solved by standard
dynamic programming. In particular, the look-up tables employed by such method
are small and do not have to be recomputed from scratch in successive iterations of
the allocation process, provided that the set of controlled appliances is not modified.
Note that uninterruptible multiphase appliances cannot be used in this setting because
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(a) Knapsack optimization problem

(b) Renewable power allocation to a set of interruptible household appliances

Figure 7.1: Knapsack problem

it is an online allocation algorithm which means that the appliances may be switched
On/Off as required. So, appliances that can be used are interruptible uni-phase (e.g.
water heaters, AC units, heaters, storage systems, etc.).

The most relevant to the scope of this study is the so-called chance constrained
Knapsack (CHKNAPSACK). Where the item sizes (the nominal power) w j are indepen-
dent random variables with known distribution and, for each j, the profit p j = r j.w j ,
for some fixed number r j ≥ 0. The aim is to find a set of items S ⊂A that maximizes
the sum of the expected profits ∑ j∈S r j.E(w j) subject to the probabilistic constraint

Pr

[
∑
j∈S

w j > B

]
≤ p, (7.4)
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where p ∈ (0,1/2] is the infeasibility probability, i.e. the chance that the chosen solu-
tion will be infeasible. In general, CHKNAPSACK(P) cannot be solved very efficiently.
An alternative way will be presented to relate CHKNAPSACK(P) to KNAPSACK.

Let c be a positive real number. For any given instance Π of CHKNAPSACK(P),
define its associated instance Π ′(c) of (KNAPSACK), on the same number of items,
and using the same capacity B. For each j, the weight (profit) of item j in Π ′(c)

is µ j + c · σ j (respectively r j.µ j). Here µ j and σ j are, respectively, the mean and
standard deviation of w j. Solutions for both problems are sets of items satisfying some
feasibility conditions. For any set of items S , σ(S) = ∑ j∈S σ j. The following result
expresses an important property of the above reduction. The theorem is stated for the
case of normal weights.

Theorem 7.1.1. Let Π be an instance of KNAPSACK(P). If the items of Π have

normal distribution then every feasible solution of the associated instance Π ′ where

Π′(
√

2log(1/p)) is also a feasible solution of Π .

Proof. Let S be a feasible solution to Π′(c) where c =
√

2 · log(1/p). The random
variable W = ∑ j∈S w j has normal distribution with parameters µ = ∑ j∈S µ j and σ =

∑ j∈S σ j. Hence Pr[W > µ +c ·σ ]≤ exp(−c2/2). Also, Pr[W > B]≤Pr[W > µ +c ·σ ]

by monotonicity, as µ+ c ·σ ≤ B for any feasible solution S of Π ′. The result follows
from the given definition of c. Feasible solutions of KNAPSACK(P) can thus be found
by solving instances of the classical Knapsack problem.

Feasible solutions of CHKNAPSACK(P) can thus be found by solving instances of
the classical Knapsack problem. The rest of the chapter provides empirical support to
the claim that these solutions are in fact good.

7.2 Empirical Evaluation

A prototype Energy Manager (EM) including the implementation of both the standard
dynamic programming and the most elementary exhaustive search method for solu-
tion of KNAPSACK was implemented as part of this project. The former was used to
get feasible solutions of CHKNAPSACK(P) via reduction described above. Exhaustive
search was used to solve CHKNAPSACK(P) exactly.

7.2.1 The Prototype

Figure 7.2 depicts the architecture of the EM system that have been used in this project.
It consists of a computer running the main reactive control application, connected to
a generation and a usage monitor. The software controls some sockets (household ap-
pliances) via radio signals. Furthermore, the household appliances are attached to the
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house electricity circuit through such sockets. Depending on the amount of generated
power, the reactive control system varies the household power load by deciding which
sockets should be turned on or off. The system, also, allows the end-users to specify a
list of controlled appliances and, for each appliance, (the average and standard devia-
tion of) its power usage, and its allocation priority. Additionally, the end-users can set
the rate at which the system will recompute the allocation. In practice, such quantity
is constrained by the speed of a single run of the particular allocation algorithm and
the rate at which new data become available. For the case study described in this sec-
tion, such algorithms typically complete a run in few milliseconds and new generation
data arrives every 10 seconds. The allocation process consists of a loop that repeatedly
executes the following operations:

∗ Read the current amount of generated power Ps(t) and house load Lr(t);

∗ Compute the amount of available power B as Ps(t)−(Lr(t)+u(t)), where u(t) =

∑ j∈S µ j, is the average of the amount of power allocated at the previous alloca-
tion step;

∗ Calculate new allocation using the appropriate Knapsack solver and capacity
equals to B;

∗ Turn appliances On/Off as required.

The architecture described in Figure 7.2 was deployed in the summer of 2012 at a
household in the North-West of the UK (Liverpool, Coordinates: 53°24´N 2°59´W),
fitted with an array of PV arrays (total nominal power 3.95 kWh), feeding power to an
inverter connected to a generation meter and the grid.

7.2.2 Experiments

A prototype EM including the implementation of both the standard dynamic program-
ming and the most elementary exhaustive search method for the solution of KNAP-
SACK was implemented as part of this project. The former was used to get feasible so-
lutions of CHKNAPSACK(p) via the reduction described above. An exhaustive search
was used to solve CHKNAPSACK(p) exactly, for benchmark purposes.

The system has been in use for two years, and daily data has been collected dur-
ing this time. The variability of the energy source and the electrical quantities involved
makes it tough to come up with statistically meaningful results. However, the selection
of experiments presented suggests that the proposed reduction of a deterministic prob-
lem is efficient, flexible, and compares well with more sophisticated optimal strate-
gies. In all experiments, c = 1.35373... (corresponding to an unfeasibility probability
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Figure 7.2: The energy manager architecture

of 40%) yet the resulting allocations are quite large, and they only rarely use more
energy than is available. The payoff of each experiment is computed as the cumulative
difference between the generated and the used power, restricted to those intervals of
time where the former is no smaller than the latter. More precisely, if the experiment
runs from time t1 to t2, let Ps(t) denotes the quantity of generated power and Lr(t) the
household power load at time t. Let PsT denote the total amount of generated power,
between t1 and t2.

PsT =
∫ t2

t1
Ps(t)dt. (7.5)

The payoff of the given experiment is

1− 1
PsT

∫
T
(Ps(t)−Lr(t))dt (7.6)

where T is the set of those t ∈[t1, t2] for which Ps(t)−Lr(t) ≥ 0. For the purpose of
the experiments the integrals were approximated using standard numerical methods.

Real-life Setting:

Figure 7.3 displays a snapshot of the generation and usage curve (power measured
in watts) during approximately an hour work of the allocation process. The picture
shows how the process adapts to an evolving generation pattern. As the amount of
generated energy (dark line) grows the system allocates the best possible load subject
to the given priorities. The light gray line shows the resulting energy usage. The
broad peak in such plot between 10:36 AM and 10:37 AM is due to a kettle being
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Table 7.1: Appliances used in the experiments

Appliance number ( j) Appliance Type µ j σ j nominal power (Pj)
1 Water Tank Heater 1768 82 1771
2 Oil Heater 569 16 601
3 Fan Heater 957 56 955
4 Halogen Heater 297 9 31
5 Halogen Heater 283 10 31
6 Tubular Heater 178 9 176
7 Tubular Heater 187 41 201
8 Tubular Heater 78 6 8
9 Tubular Heater 77 22 8

switched on. The graph shows a certain latency in the allocation process (light gray
line shifted to the right of the dark gray one). Decreasing the value of the allocation rate
reduces such effect. The top of Figure 7.3 shows the generation/usage graph obtained
by running the EM between approximately 7 AM and 8 PM on a sunny day in late
March 2013. The experiment resulted in 20 kWh being generated. The allocation
payoff was approximately 88.5%. The drops in the allocation values are due to either
thermostated appliances switching themselves off or the recovery process which takes
place when the system’s prediction for the amount of available power is inaccurate.
These and other implementation issues are discussed at the end of this chapter. The
experiment supports the idea that the proposed approach is worthwhile: almost 90% of
the renewable power available at the particular household on the day of the experiment
was immediately converted into thermal energy which was used to heat up the water
tank and the household. The rest of this section describes experiments performed using
artificial appliances.

Simulated Setting

The simulated setting of the experiments are explained in this section. The prototype
is designed so that generation and usage data are regularly dumped to a text file. The
data collected over time allows performing realistic experiments in artificial/simulation
settings. The parameters of this simulated environment can be controlled and thus
different allocation strategies or different settings of the EM can be compared. Figure
7.4a demonstrates the result of simulating the EM on the same generation data that is
used in the Figure 7.4b. Table 7.2 summarizes the results of the experiments in the
simulated setting. All experiments were run on the same generation and usage data
used in the Figure 7.4a. Each number in the table is an average over 100 repetitions of
the same experiment. The two parts of the table display average payoffs and percentage
of allocated appliances for different values of the infeasibility probability and different
allocation algorithms. As expected, higher values of p allow more slackness, and
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Figure 7.3: A snapshot of the allocation process.

Table 7.2: Results of the simulations

p Algorithm Priorities as in Table 7.1 All priorities set to one
Payoff % Allocation % Payoff % Allocation %

10% Dynamic 87.10 24.91 73.88 48.79
Exhaustive 89.21 26.48 77.29 52.42

40% Dynamic 91.03 26.49 77.52 52.84
Exhaustive 94.85 29.16 85.46 57.98

the resulting allocations have a higher power consumption. The table also provides
evidence of the effectiveness of the proposed approach: solving CHKNAPSACK by
reducing it to the deterministic Knapsack leads to a minor reduction in the payoff but
removes the need to use the exact complicated algorithm for CHKNAPSACK. Finally,
the figures in the rightmost column illustrate the flexibility of the Knapsack based
optimization approach. They correspond to the case when all priorities are set to one.
In such setting, the allocation process maximizes the number of appliances used, rather
than the total allocated load. Similarly, priorities can be set to favor certain appliances
and inhibit some others.

7.3 Discussion

This result shows how an appropriate Knapsack formulation can be used to solve an
important dynamic energy allocation problem in a straightforward and flexible way. A
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number of issues aside from the obvious usability ones have to be considered before
the system is deployed for general use.

(a) The EM in simulated mode using the same generation data in Figure 7.4b. The thick black plot at
the bottom of the graph is the per mille of allocated appliances.

(b) The real-life allocation process on a sunny spring day

Figure 7.4: Simulated results
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7.3.1 Power Variability

If the appliance loads had been fixed quantities, the energy management problem
would have been reduced to an instance of the classical KNAPSACK. In the proposed
reactive control system (EM), the information always flows in one direction, from the
controller software to the controlled sockets and there is no feedback from the sock-
ets. As electricity fluctuates, the appliance loads are not fixed quantities. A crucial side
effect of this is that the EM cannot calculate precisely the background power consump-
tion. At any moment in time, the difference between the house load and the total load
of the allocated appliances can only be estimated using, for instance, the appliances
average values µ j. Many appliances are allocated, or when there is a sudden drop in
the household power consumption, such estimate may become negative. In this case,
the EM cannot run the regular allocation process, and therefore it enters a recovery
phase. During this period, the set of allocated appliances is updated by removing from
it one appliance at a time. This will eventually take the system back to a normal state,
possibly with no allocated appliance, and from then on the regular allocation process
can be resumed.

7.3.2 Appliances Issues

Three issues are related to the choice of which appliances to control. First of all, the
EM works by repeatedly switching appliances on and off. It is, therefore, evident
that in its current version it is best suited for a small number of interruptible resistive
appliances (heaters, fans, coolers, or electric cookers) with no internal power controls.
In fact, as explained below, the system also copes with thermostated appliances, but the
processing in such case departs from the pure Knapsack based optimization strategy.
On the other hand, there is probably a relatively little point in using the Manager to
control a collection of lamps or other light fittings. The management of more intelligent
uninterruptible appliances such as washing machines, fridge, cookers or ovens, will
require further investigation.

7.3.3 Feedback Information

The limitation of the current system is that no information is fed back from the ap-
pliances to the reactive control system. The proposed reactive control system cannot
be certain about the nature of the drop or, alternatively, a drop due to a thermostated
appliance switching itself off could be compensated (and those go un-noticed) by an
increase in the energy consumption due to other reasons. This becomes relevant with
appliances including a local decision mechanism (e.g. thermostats) or in coping with
faults. If the fact that an allocated appliance did not switch on is not reported back
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to the Manager, the sudden drop in the household power usage cannot be adequately
addressed.

7.3.4 System Usability

Finally, thorough consideration is to be given to users’ needs, not only concerning
usability of the interface, which at the moment is simple and very technical but espe-
cially regarding performance tailoring. User modeling and adaptation of the level of
optimization to a learned model of the individual household behavior is envisaged as
the long-term natural evolution of this case study.

7.4 Summary

This chapter has presented an exclusive case study (optimization problem) of power
allocation problem in micro-grids. The proposed model has used a reactive control
system to optimize the renewable power usage based on user preferences. The chapter
has also provided a simulated and real-life finding along with discussion related to the
issue associated with the proposed model.



Chapter 8

Conclusions and Future Research

“Two signs of educated person are acceptance

of other people’s criticism, and being knowl-

edgeable about the angles and dimensions of

rhetoric and debate”

Al-Hussein Ibn Ali

T his concluding chapter illustrates a comprehensive summary of the work de-
scribed in this thesis, along with the main findings and contributions. Further-

more, this chapter provides some suggestions and advice for future research.

8.1 Conclusions

The thesis has tackled a critical electricity demand problem in residential buildings in
micro-grids working in smart grid settings. The fundamental intentions of this frame-
work were to reduce electricity bills in residential buildings, increase the utilization of
renewable power, and lessen the demand for peak hours without affecting the comfort-
able level of the residents. Finding an optimal solution to such problem is not easy be-
cause these kind of optimization problems are NP-hard. Therefore, the main challenge
was to find a powerful optimization algorithm that can tackle such problems. Having
done a lot of literature review (at the beginning and during this research), heuristic
algorithms have been chosen as an optimization tools as there is a little hope to make
any significant contribution by using exact optimization algorithms.

The main contributions of this research lie in two parts (modeling and heuristic
optimization algorithms). During our research, a various number of optimization prob-
lems have been tackled. Also, different models of micro-grids have been used in this
thesis, and two control systems (reactive and predictive) have been proposed for resi-
dential buildings.
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The thesis has presented a comprehensive mathematical model for a micro-grid
working in the smart grids environment. Besides, the thesis has proposed a mathemat-
ical model for each entity in the micro-grid. The thesis has proposed a hybrid method
to convert the multi-objective optimization problem to a single optimization problem
to guarantee some fairness of sharing renewable power in the micro-grid. Also, the
research suggested renewable power exchange rate among agents in a micro-grid. Ad-
ditionally, the research has suggested an MILP-based heuristic optimization algorithm.
In general, the results presented in Chapter 5 have revealed that the proposed heuristic
algorithms and the predictive control system can manage power allocation problems in
micro-grids with less than twelve houses, and time resolution is around 5 minutes. The
proposed algorithm can manage power allocation problem in micro-grid with more
houses if time resolution is lower than 5 minutes. In the proposed model, the number
of power plants would not affect the complexity of the problem. The proposed algo-
rithm can manage power allocation problem of a micro-grid with even a 1000s plants
if the number of houses is less than twelve that is because power plants do not need
decision variables (Binary variables are responsible for making the problem hard to
solve).

The thesis has also tackled a particular case of power allocation problem in a micro-
grid. It has addressed power allocation problem in a micro-grid with just one large
building with a broad range of AC units. The main contribution in this special case
lies in modeling and heuristic algorithms. The thesis has proposed a predictive control
system in this case. Regarding the modeling, two comprehensive mathematical models
of air conditioning system have been introduced. The models assume that AC unit
can work in k > 2 levels. One of these models considers minimizing the discomfort
function as well as minimizing electricity cost (Multi-objective model), whereas the
other is a single objective model, it just minimizes the cost of electricity. Regarding
the heuristic algorithm, the thesis has proposed a set of heuristic algorithms to tackle
this problem, each of which has advantages and disadvantages. The results revealed
that the heuristic algorithm can solve the huge optimization problem in polynomial
time.

Another special case of our general model of the power allocation problem of
micro-grid has been addressed; a reactive control system and optimization algorithm
have been introduced for optimizing the utilization of renewable resources in a stand-
alone house. The study has presented simulation and real-time evaluation results. In
general, the results are promising (around 90 % of the domestic renewable power is
allocated to household appliances).
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8.2 Open Issues and Future Research

Due to the broad range of power allocation problems, the thesis has dealt with, there
are many open questions in the current version of the framework, and many potential
future directions can be considered for future works. These directions are listed below:

∗ Energy Efficiency: the proposed model for sharing domestic renewable power
in a micro-grid presented in chapter 3 does not consider energy loss in the power
lines. Therefore, this issue can be tackled in future work. Our first thought it
is that the loss of renewable energy in power lines can be minimized by giving
priority to sell/buy domestic renewable power to/from close houses rather than
far houses. This idea and others can be investigated in future frameworks.

∗ Fairness of Power Allocation: All houses in the micro-grid, including those
that do not participate in generating renewable power, currently have the same
priority. For example, let us assume that there is a high demand for local renew-
able energy at the particular time, 3.5 kWh say. Also, let us suppose that the
available renewable power is 2.5 kWh. In this case, the predictive control sys-
tem or the LMGO cannot provide everybody with cheap local renewable power.
However, it allocates the 2.5kWh to the houses in the micro-grid without any
preferences and it has to allocate the rest of the demand from the NEG. The
issue here is that some houses that do not participate in electricity generation
(houses with no renewable plants) could get cheap renewable power whereas
other houses with some renewable power generation capacity have to buy elec-
tricity from NEG for a higher rate. Our suggestion is that houses that equipped
with renewable plants should be given priority to buy surplus power just to en-
courage everybody to install renewable plant and participate in renewable power
in the micro-grid. Therefore, prioritizing the houses in micro-grid based on their
generation capacity could be considered in further researches.

∗ Scalability Issues: The finding has revealed that the proposed MILP-based
heuristic algorithm cannot minimize the cost of electricity in large micro-grids
(micro-grid with more than ten houses and with high time resolution). There-
fore, future frameworks may investigate using another suitable heuristic algo-
rithm that can solve large power allocation problem in micro-grids. From our
point of view, using LP relaxation and rounding would not be an easy job, but it
is not impossible.

∗ Technical Issues: The proposed heuristic optimization algorithm does not con-
sider the effect of switching air conditioning unit On and Off very frequently
which may affect the efficiency of the system. Therefore, if future researchers
can investigate the effect of turning the appliance On/Off on the internal tem-
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perature, that would improve the performance of our current system. Our first
thought about this issue is that minimizing the number of switching On/Off.

∗ Model Assumptions: For simplicity, in our current model of air conditioning
system, the number of people occupying the building has not been considered
as they affect the temperature inside the building. Also, it was assumed, for the
same reason, that all doors and windows are closed. Therefore, finding a model
that can consider the status of doors and windows (Opened/Closed) would be a
real achievement.

∗ Appliance Limitation: Our online algorithm presented in Chapter 7 is de-
signed for interruptible appliances only (Electrical heaters). Therefore, future
researchers could investigate using uninterruptible appliances such as washing
machine, dishwasher, etc.

∗ LP Relaxation: In chapter 6, LP relaxation has been used with two rounding
techniques to reduce the complexity of the problem. Future work could work in
this area, but the author thinks there is small room for any contribution there. So,
research should work hard to find a research gap in this area.
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Appendix A

The real power profile of household
appliances

This Appendix presents real power profile of a set of household appliances. Figure
(A.1) shows the power profile of a dishwasher. Note that a dishwasher could have
many power profiles depends on the setting, or washing program.

Figure A.1: The real power profile of Dishwasher appliances [5]

The power profile of washing machine is illustrated in Figure (A.2). Note that the
power profile can be different from one setting to another.

Figure A.2: The real power profile of Washing Machine appliance [5]

Figure (A.3) demonstrates the power profile of electric cooker. Additionally, this
power profile could be changed from electric cooker to another. Also, it could be
different for the same cooker if we changed the cooking settings.
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Figure A.3: The real power profile of Electric Cooker appliance [5]

Figure (A.4) demonstrates the power profile of laundry dryer. Additionally, this
power profile could be changed from laundry dryer to another. Also, it could be differ-
ent for the same dryer if we changed the drying settings.

Figure A.4: The real power profile of Laundry Dryer appliance [5]

Figure (A.5) demonstrates the power profile of electric water heater. Additionally,
this power profile could be changed from water heater to another. Also, it could be
different for the same water heater if it is not programmed to work in specific time (
depends on water temperature).

Figure A.5: The real power profile of Water Heater [5]

The power profile of PHEV is illustrated in Figure (A.6). The length of charging
time depends on battery state of charge. Therefore, it is different from day to another.
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Figure A.6: The real power profile of PHEV [5]



Appendix B

Input setting for case study

This appendix presents input information for the experiments in Chapter 5.
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