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Abstract: A improved spectral reflectance reconstruction method is 
developed to transform camera RGB to spectral reflectance for skin images. 
Rather than using conventional direct or two-step processes, we transform 
camera RGB to skin reflectance directly using a principal component 
analysis (PCA) approach. The novelty in our direct method (RGB to 
spectra) is the use of a skin-specific colour characterisation chart with 
spectra closer to human skin spectra, and a new database of skin 
reflectances to derive the PCA bases. The experimental results using the 
facial images of 17 subjects demonstrate that our new direct method gives a 
significantly better performance than conventional, two-step methods and 
direct methods with traditional characterization charts. This new spectral 
reconstruction algorithm is sufficiently precise to reconstruct spectral 
properites relating to chromophores and its performance is within the 
acceptable range for maxillofacial soft tissue prostheses (error < 3 ΔE*ab 
units). 

©2016 Optical Society of America 

OCIS codes: (330.1710) Color, measurement; (110.4234) Multispectral and hyperspectral 
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1. Introduction 

Measuring the spectral reflectance of human skin has gained importance due to the increasing 
number of applications that need an accurate spectral representation of skin colour, including 
biometric identification based on spectral information [1], skin colour reproduction for 
graphic arts [2], skin pigmentation predictions for the cosmetics industry [3], skin colour 
analysis for the diagnosis of cutaneous diseases [4], and skin colour matching for 
maxillofacial soft tissue prostheses [5]. In contrast to colorimetric skin values, skin spectral 
reflectance data contain the necessary information to model skin appearance under different 
illumination conditions and also allow the extraction of information about skin chromophores, 
which is important for detecting various skin diseases including cancers, monitoring health 
status and tissue metabolism, and evaluating convalescence [6]. Since high-resolution RGB 
camera images are readily available compared to spectral measurements, a methodology that 
recovers the skin reflectance spectra from a camera image is important for the above 
applications. An algorithm that accurately reconstructs the spectral reflectance for each 
camera pixel, results in a high-resolution multi-spectral representation of a skin patch 
containing the full information about the subtle spatial texture as well as the spectral 
properties of skin. 

To transform the device-dependent digital RGB camera signals to spectral reflectance, 
two main classes of methods exist (cf. Table 1), direct methods mapping RGB directly into 
spectral reflectance [7, 8], and 2-step methods [9] which map the camera RGB signals into 
spectra, but requiring an intermediate step: camera sensitivities are either known [10–12], or 
need to be estimated [13]. The two steps, camera characterization and spectral reconstruction 
are optimized separately, usually using different sets of training colours. 

The choice of training colours is crucial for both, reflectance reconstruction and camera 
characterization, and performance is generally better if training and test samples are as similar 
as possible [14]. However, large differences in colorimetric and spectral properties between 
human skin and conventional training colour charts currently exist. Human skin is a multi-
layer material and skin colour is determined by melanin, blood concentration and 
oxygenation. These material differences between training and test spectra are likely to affect 
the spectral reconstruction performance. Similarly, for camera characterization, colour charts 



that cover the entire gamut of visible colours are likely to introduce errors in the 
reconstruction performance for skin colours, with the latter only occupy a small area in colour 
space. 

Reflectance reconstruction techniques such as Wiener estimation [11, 12] and finite-
dimensional modeling [15, 16] are widely used in multispectral imaging systems. For skin 
spectral reconstruction, Imai and colleagues [17] have applied finite-dimensional modelling 
to skin images and concluded that three basis functions obtained with Principal Component 
Analysis (PCA) are sufficiently accurate to describe the spectral reflectance of human skin. 
Chen and Liu [18] developed a modified Wiener estimation to predict skin spectra for tissue 
measurements. 

The purpose of this paper is to develop a more accurate spectral reconstruction method of 
camera RGB images, optimized for skin images. The novelty in our approach is the 
simultaneous optimization of both steps (cf. Table 1) and the use of a skin-specific calibration 
chart and a skin spectra database. Performance for the conventional and the new method are 
evaluated by predicting the skin spectra (2 facial areas) of 17 subjects. Two performance 
measures will be used, the root-mean-square error applied to the reflectance spectra and a 
perceptual error measurement taking into account the properties of the visual system [19, 20]. 

2. Methods 

2.1. Conventional 2-step method 

2.1.1. For the characterisation step, polynomial regression [14] is often used to derive the 
transformation from RGB to XYZ, as defined in Eq. (1) 
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where R, G and B are camera signals and X, Y and Z are the CIE tristimulus values; m is the 
order of the polynomial and j1, j2, j3 are nonnegative integer indices; a are the model 
coefficients to be determined via minimizing the X, Y and Z approximation error for a 
characterisation chart with known colorimetric values (e.g. the X-Rite ColorChecker). 
Performance of the above transform is affected by the order m of the polynomial [14]. The 
MATLAB solver: lsqlin is used for training the polynomial model. 

2.1.2. For the reflectance reconstruction step, CIE XYZ tristimulus values are transformed to 
spectral reflectance estimates based on the following Eq. (2) 

 Tu W r=  (2) 

where u is a vector of the tristimulus values (XYZ), W is the n by 3 matrix formed by a 
weighting table under a particular illuminant and CIE standard observer, T is the transpose, 
and r is a column vector with n components, representing reflectance. n is 31 since the 
wavelength range from 400nm to 700nm is sampled uniformly at 10nm intervals. 

Equation (2) describes three linear equations, with n ( = 31) unknowns. The problem is 
therefore underdetermined, and there are an infinite number of solutions for r. However, the 
true dimensionality of skin reflectance is much lower than 31 which can be used to constrain 
the solution space. Principal component analysis (PCA) applied to skin reflectances has 
shown that skin spectra can be represented by three basis functions U3 = (u1, u2, u3) [17], 
hence Eq. (2) can be rewritten as follows: 

 3
Tu W U α=  (3) 



where α is a column vector with three components. We can then solve for α and the 
reflectance r using Eq. (4): 

 1
3 3( ) andTW U u r Uα α−= =      (4) 

In principle, more than three basis vectors can be used in a generalised inverse approach 
defined by Eq. (3), but when applied to skin images the method performs best with three basis 
vectors [21]. 

These two processing steps, i.e. the camera colour characterisation and the subsequent 
reflectance reconstruction, are completely independent and the overall error of the two-step 
method is therefore the sum of the individual errors. Moreover, reflectance samples used to 
characterise the camera are often drawn from different sources to those used to derive the 
linear model, and hence have different statistical distributions. As a result, reducing 
characterization error for a given set of training patches, may not necessarily improve spectral 
reconstruction error for a distinct set of test surfaces. 

In summary, for the implementation of the conventional 2-step method, a chart such as the 
X-Rite ColorChecker 'SG' is needed to obtain the camera RGBs. The chart can also be 
measured for obtaining the reflectance set and its associated tristimulus values under a 
particular viewing condition. Thus, the polynomial model P can be built based on the camera 
RGBs and XYZs of the chart (see Eq. (1)). Next, we can use the measured reflectance set 
from the chart or a large database from any application area under consideration, to obtain the 
three basis functions u1,u2,u3, hence the matrix U3 in Eq. (3). Let W (n by 3 array) be the 
weigthing table (ASTM method [22]) for the selected viewing conditions, and u be the vector 
formed from a given XYZ. Now for any camera RGB, the u vector or XYZ can be predicted 
using the trained model P. Using Eq. (4), the reflectance r can be estimated. 

2.2. Modified method: Silicon skin chart and calibrated skin database 

We propose and evaluate three significant modifications of existing methods to enhance the 
accuracy of reflectance reconstruction for skin images. The modifications are summarized 
here and explained in more detail in the next section. 

(1) Instead of using a standard colour chart (X-Rite ColorChecker, ‘SG’; cf. Table 1) 
which includes a range of 140 skin colours, we use a new silicone skin colour chart 
(‘SS’; cf. Table 1) consisting of 90 colour samples. This silicon skin colour chart 
was developed by Spectromatch Ltd. to provide an accurate reference chart for soft 
tissue prostheses applications. The colour specifications (in CIELAB space) for both 
charts are plotted in Fig. 1, redness-greeness versus yellowness-blueness (a*-b* 
diagram) on top and chroma/lightness (C*-L* diagram) on the bottom. On the left 
the colours of the X-Rite ColourChecker are shown (‘SG’), in the middle the silicon 
skin samples (‘SS’, Spectromatch Ltd), and on the right a sample of 100 typical skin 
colours (sampled from three ethnicities, Caucasian, Kurdish, and Chinese). The 
reflectance spectra of the 90 silicon skin samples are shown in Fig. 2. 

(2) We use a new skin reflectance database [21] to improve the quality of the linear 
model derived by PCA (‘DB’, cf. Table 1). The skin reflectance database consists of 
4392 colorimetric and corresponding spectrophotometric measurements; nine body 
areas of 482 subjects from three ethnic groups (Caucasians, Chinese and Kurdish) 
were measured using a Minolta CM-2600d spectrophotometer (direct contact 
measurement), in a spectral range from 400 to 700 nm with a 10 nm spectral interval. 

(3) Rather than mapping RGB to XYZ and then to reflectance as a two-step process, we 
map RGB direct to reflectance (‘Direct’, cf. Table 1). For the implementation of 
these direct methods (SS/SS and SS/DB), we need a chart as explained in detail in 
the next section. Camera RGBs and the reflectance functions are obtained from the 
chart and the PCA is used to calculate the basis functions UK = (u1,u2,...,uk) from the 
measured chart reflectances (SS/SS method in the Table 1) or the reflectances in our 



database DB (SS/DB method in the Table 1). For each chart reflectance r, the best 
coordinate vector β is obtained from Eq. (5). Thus, for each colour from the chart, 
we have the camera RGB and the β hence the polynomial model P can be trained to 
map the RGB to the best coordinate vector β (see Eq. (6) and upper part of Fig. 3). 
Using the trained polynomical model P we can now estimate, for any given camera 
RGB, the associated best coordinate vector β. The reflectance function r can be 
obtained using the basis function Uk and the estimated best coordinate β and Eq. (7) 
as shown in the lower part of Fig. 3. 

 

Fig. 1. Colour specifications in CIELAB of the two different colour charts used for calibration. 
(a) on the left: the 140 X-Rite SG colour samples, (b) in the middle, the 90 Silicon skin chart 
(Spectromatch Ltd), and (c) on the right, a subset (100) of typical human skin colours. Please 
note that the scales are different between (a) and (b)/(c) to visualize the subtle but important 
differences between the Silicon and the human skin colours. 

 

Fig. 2. Spectra of Silicon skin charts (SS), provided by Spectromatch Ltd. 



Table 1. A summary of the properties of the four methods 

METHOD Recovery Method Calibration 
Chart 

PCA Source 
data 

Two-step 
SG/DB 

RGB->XYZ-> 
Reflectance 

X-Rite SG 
Skin Database 

(DB) 

Two-step 
SS/DB 

RGB->XYZ-> 
Reflectance 

Spectromatch 
Silicon (SS) 

Skin Database 
(DB) 

Direct 
SS/SS 

RGB-> Reflectance 
Spectromatch 
Silicon (SS) 

Spectromatch 
Silicon (SS) 

Direct 
SS/DB 

RGB-> Reflectance 
Spectromatch 
Silicon (SS) 

Skin Database 
(DB) 

Table 1 shows the four different methods to be evaluated, with the first two rows being 
the convential methods. The first conventional two-step approach (‘Two-step SG/DB’) uses 
the X-Rite ColorChecker SG chart (with 140 coloured patches) as a calibration chart. The 
reference skin colour chart is imaged with a camera and measured with a spectrophotometer, 
so that for ech colour in the chart the camera RGB data and the reflectance, hence, the XYZ 
are available. Mapping from RGB to XYZ can be computed using Eq. (1). Then the n basis 
functions u1, u2, ..., un are derived from the skin reflectance database using PCA; the first K 
basis functions form a matrix denoted by UK. This matrix is used in Eqs. (3) and (4) with K = 
3 to map from XYZ (u vector transformed from RGB) to reflectance (r). Note that, for each 
reflectance r from the chart, the best first K (K≥3) coordinates (denoted by a column vector β) 
under this set of basis functions are computed as: 

 ( )T
KU rβ =  (5) 

However, the two-step SG/DB method computes the coordinate vector α using Eq. (4), which 
is an approximation to the best coordinate vector β. 

The 2nd modified two-step method (‘Two-step SS/DB’) makes use of the silicon skin 
colour chart instead of using the X-rite SG chart (Table 1). Otherwise it is identical to the first 
method. 

The 3rd method also uses the silicon skin colour chart (‘Direct SS/SS’), but maps the 

camera RGB directly into the vector β̂  (Fig. 3), where β̂  is again an approximation to the 
best coordinate vector β. We use a simple modification of the polynomial of Eq. (1), which 

maps RGB to the first K (K≥3) reflectance basis weights of vector β̂  using polynomial 
regression (Eq. (6): 
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The polynomial regression (Eq. (6) uses as input the RGB values of the Silicon Skin chart 
(‘SS’). To derive the basis functions, the silicon skin spectra are used (‘SS’). Reflectance r is 
then predicted using Eq. (7): 

 Kr U β=  (7) 

Finally, to evaluate the effect of the skin database, we use the human skin database in method 
#4 (‘Direct SS/DB’) instead of the silicon skin spectra chart to derive the basis functions (Eqs. 
(5) and (7)). 



 

Fig. 3. Direct recovery method using the skin database (DB) and the silicon skin chart (SS) 

2.3. Evaluation 

2.3.1. Test images and skin spectra 

To evaluate the performance of each method, test data were obtained using a skin imaging 
system consisting of a large viewing cabinet and a digital camera. The viewing cabinet 
(Verivide Ltd) is sufficiently spacious for a subject to sit inside, and provides a consistent 
daylight environment. A Nikon D7000 digital SLR camera controlled by the DigiEye system 
software, was used to capture images with an aperture = 7.1, ISO = 100, and the white 
balance fixed at D65. A Nikon AF-S DX 18-105 mm lens was used, with a fixed focus of 
50mm.The image capture distance between camera lens and training colour charts (or the 
subject’s face) was fixed to 57.5cm and the capture angle was 0 degrees. After image capture, 
a uniformity correction was performed to compensate for the non-uniformity of illumination. 
A Konica Minolta (CM700d) spectrophotometer was used to measure spectral reflectance 
(400 nm to 700 nm; 10nm intervals) for both the training chart and the facial skin areas of the 
subjects. Facial images for 17 subjects were captured and the reflectance of their foreheads 
and cheeks were measured, resulting in 34 skin reflectance measurements (Fig. 4(b)). The 
subjects consisted of 8 Caucasians, 8 Chinese and 1 Indian and were either lab members or 
academic staff associated with the lab. The faces of the subjects were captured as shown in 
Fig. 4(a). 



 

Fig. 4. (a) On the left the capture of the facial camera image is shown while subjects are seated 
in the viewing cabinet. Spectral reflectances are obtained using a CM700d spectrophotometer. 
(b) 34 Test skin spectra (forehead and cheek) for 17 individuals 

2.3.2. Evaluation procedure 

The four methods were evaluated in the following way. For each image of the 34 images, the 
RGB values were averaged across all pixels and then transformed to skin spectral reflectance 
using each of the four methods (Table 1). Assuming a standard observer (CIE 1931 standard 2 
deg observer), the CIELAB colour differences between the predicted skin spectra and the 
measured skin spectra were calculated. This colour difference reflects a perceptual difference 
and is often used as measure for the goodness of fit [19]. The mean of the median colour 
differences under each of the five illuminants (A, D50, F02, F11, and D65) is used as the 
overall performance of each method. Using multiple illuminants provides a robust 
performance assessment since it guards against obtaining small errors for metameric, rather 
than spectral matches. 

Two spectral shape differences were also used for the evaluation of the spectral 
differences between the original ( ( )or ) and the reconstructed ( ( )cr ) spectra: the root mean 
square error (RMSE) and the spectral similarity value (SSV) [23], using Eqs. (8) and (9): 

 ( ) ( ) 2

1

1
RMSE ( )

n
o o

k k
k

r r
n =

= −  (8) 

 2 2SSV RMSE S= +  (9) 

Here n is the number of the components of the reflectance. The square of S is defined by Eq. 
(10) 

 2 ( ) ( ) ( ) ( ) ( ) ( ) 2

1
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n
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S r r
n

μ μ σ σ
=
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Here, ( )cμ and ( )oμ are the means of the reconstructed and original reflectances, and 
( )cσ and ( )oσ are the standard deviations of the reconstructed and original reflectances. 

The accuracy of skin reflectance reconstruction depends not only on the type of the 
characterisation chart and the spectral skin database but also on the order of the polynomial 
(m), and the number of basis functions (K) in the linear model. To investigate how those 
parameters affect the model performance, the polynomial order m is varied from 1 to 5 and 
the number of basis functions K from 3 to 6 respectively and the median colour difference 



under five different illuminants is calculated. The parameters (m, K) minimizing the error are 
reported in the results. 

3. Results 

The performance for all four methods is shown in Table 2. Below the median performance, 
the maximum errors are shown for each of the tested illumination conditions. The best 
performance, i.e. the smallest median colour difference between the predicted and the 
measured spectra, is achieved by the new direct method (DIRECT SS/DB) which uses the 
skin database to derive the PCA basis functions and the Silicon Skin Chart for calibration. 
Median colour differences range from 2.3 (Illuminant F02) to 3.1 ΔE*ab units (Illuminant A), 
with an overall mean of 2.7 ΔE*ab units. A statistical analysis using ANOVA and a post-hoc 
multiple comparison tests shows the performance between each pair of methods to be 
statistically significant (p<0.001). 

Table 2. Performance of the four reconstruction methods across different illuminations 

METHOD ΔE*ab A D50 F02 F11 D65 Mean 

Two-step 
SG/DB 

Median 
(Max) 

4.6 
(11.3 

4.3 
10.4 

4.2 
10.1 

4.7 
10.7 

4.2 
10.0 

4.4 
10.0) 

Two-step 
SS/DB 

Median 
(Max) 

3.7 
(8.6 

3.6 
8.7 

3.7 
8.6 

4.2 
8.7 

3.5 
8.7 

3.7 
8.7) 

Direct 
SS/SS 

Median 
(Max) 

3.4 
(8.3 

3.2 
8.4 

3.1 
8.3 

3.7 
8.3 

3.1 
8.4 

3.3 
8.3) 

Direct 
SS/DB 

Median 
(Max) 

3.1 
(8.4 

2.6 
8.6 

2.3 
8.4 

3.0 
8.6 

2.6 
8.6 

2.7 
8.5) 

3.1. Reconstruction performance in terms of perceptual error 

All three modifications lead to a commensurable reduction in the spectral reconstruction 
error. (1) Mapping directly from camera RGB to the skin spectral reflectances yields smaller 
errors than mapping from camera RGB to XXZ, and then from XYZ to spectral reflectances 
(2.7 and 3.3 ΔE*ab compared to 4.4 and 3.7 ΔE*ab), across all five illumination conditions. (2) 
Using the newly developed skin-specific Silicon chart (Spectromatch Ltd) reduces the mean 
error from 4.4 to 3.7 ΔE*ab); this improvement is systematic across all illumination 
conditions. (3) Using the spectral skin database (DB) instead of the Silicon skin chart to 
derive the PCA basis functions leads to an error reduction from 3.3 to 2.7ΔE*ab. 

For each method, performance for the optimal polynomial order and number of basis 
functions is reported in Table 2. Best-fitting parameters (polynomial order / number of basis 
functions) for each of the four methods are as follows: Two-step SG/DB – 4th order, 3 bases; 
Two-Step SS/DB – 2nd order, 3 bases; Direct SS/DB - 4th order, 5 bases; Direct SS/SS – 5th 
order; 3 bases. 

3.2. Spectral measures of reconstruction performance 

To evaluate the spectral reconstruction performance, in section 3.1. we have used perceptual 
error (ΔE*ab) which incorporpates properties of the visual system. For many applications, 
conversion of the spectra into a uniform colour space such as CIELAB might not be practical 
and sufficient and a measure based on the spectral difference is required. 

Two spectral shape differences can be used for the evaluation of the spectral differences 
between the original and the reconstructed spectra: the root mean square error (RMSE) and 
the spectral similarity value (SSV) [23]. Spectral shape differences are evaluated RMSE and 
SSV in the full spectral range (between 400nm and 700nm at 10nm interval) in terms of 
average (Ave), maximum (Max) and median (Med) of the differences. The Appendix shows 
each of the 34 spectra generated using different method together with the original. Each 



individual RMSE error and perceptual error (ΔE*ab) are also shown in the Appendix. Here, 
statistical results are given in Tables 3 and 4 respectively. Using the RMSE, the methods that 
perform best to worst are: DIRECT SS/DB, DIRECT SS/SS, TWO-STEP SS/DB, TWO-
STEP SG/DB (Table 3), consistent with the perceptual error ranking. When using the SSV 
(Table 4), however, the best-to-worst performing methods are: TWO-STEP SG/DB, DIRECT 
SS/DB, DIRECT SS/SS, and TWO-STEP SS/DB, which is not consistent with the 
performance ranking based on the perceptual error. The results show the RMSE and SSV 
measures are not consistent with each other, but RMSE is consistent with the perceptual error 
ranking. 

Table 3. Spectral shape differences in terms of RMSE for each method in the full spectral 
range between 400 nm and 700 nm at 10 nm intervals) 

RMSE (400-700 nm) Ave Max Med 
TWO-STEP SG/DB 0.0449 0.1178 0.0420 
TWO-STEP SS/DB 0.0341 0.0934 0.0262 
DIRECT SS/SS 0.0341 0.0902 0.0269 
DIRECT SS/DB 0.0329 0.0909 0.0254 

Table 4. Spectral shape differences in terms of SSV for each method in the full spectral 
range (between 400 nm and 700 nm at 10 nm intervals) 

SSV (400-700 nm) Ave Max Med 
TWO-STEP SG/DB 0.0773 0.1482 0.0718 
TWO-STEP SS/DB 0.0885 0.1834 0.0897 
DIRECT SS/SS 0.1042 0.1628 0.1013 
DIRECT SS/DB 0.0831 0.1402 0.0819 

For some biomedical applications reconstruction of the spectra is most important in a 
limited medium wavelength range (500-600nm) where the visual system exhibits its highest 
sensitivity and the spectral skin properities are diagnostic for the health of the individual (see 
discussion for further details). Skin spectra often exhibit a ‘W’ feature (see Fig. 5) between 
520 and 580nm reflecting the oxygen saturation of haemoglobin in the blood flow [24].We 
therefore further evaluated the spectral differences in the W-shape range (between 500nm and 
600nm at 10nm interval) and the results are given in Tables 5 and 6. In this medium 
wavelength range the rankings based on the two measures are in better agreement and the 
lowest spectral error is consistent with the perceptual error. 

Table 5. Spectral shape differences in terms of RMSE for each method in the W shape 
range (between 500 nm and 600 nm at 10 nm intervals) 

RMSE (500-600 nm) Ave Max Med 
TWO-STEP SG/DB 0.0322 0.0840 0.0275 
TWO-STEP SS/DB 0.0275 0.0904 0.0208 
DIRECT SS/SS 0.0262 0.0865 0.0194 
DIRECT SS/DB 0.0256 0.0891 0.0190 

Table 6. Spectral shape differences in terms of SSV for each method in the W shape 
range (between 500 nm and 600 nm at 10 nm intervals) 

SSV (500-600 nm) Ave Max Med 
TWO-STEP SG/DB 0.1373 0.3406 0.1177 
TWO-STEP SS/DB 0.1922 0.4392 0.1893 
DIRECT SS/SS 0.1995 0.3149 0.1961 
DIRECT SS/DB 0.1218 0.3006 0.1131 

3.3. Correlation between spectral and perceptual error measures 

The previous analysis showed that, for skin images, the RMSE is a more robust and useful 
measure to evaluate spectral reconstruction performance than the SSV is. In the following we 
therefore compare the perceptual errors with the RMSE and evaluate their strength of 
association and whether the perceptual error can be predicted from the RMSE. 



 

Fig. 5. Representative sample of reconstructed spectra. Upper row: two spectra (#7, #26) with 
errors close to the mean error of 2.7 (cf Table 1) for direct reconstruction (DIRECT SS/DB) as 
indicated by a solid line (spectrum #7 with a perceptual error of 2.35 and spectrum #26 with a 
perceptual error of 2.87). Lower left panel: spectrum #8 with the lowest perceptual error of 
0.63 for the best performing method ‘DIRECT SS/DB’. Lower right panel: worst 
reconstruction; spectrum #20 with a perceptual error of 8.5. In all cases the ‘W’ feature at 
around 560nm is recovered if present in the original spectrum. 

To visualize the performane of all four methods, the reconstructed and the target spectra 
are plotted for three different scenarios: representative spectra (#7, #26) with a perceptual 
error close to the mean error (for the best method ‘DIRECT SS/DB’; cf Table 1; Fig. 5), the 
spectrum with the best performance (#8; error = 0.63), and the spectrum with the worst 
performance #20; error = 8.5). The general spectral shape is captured by all methods apart 
from method #1 (TWO-STEP SG/DB) which consistently over/under-estimates the 
reflectance throughout the visible spectrum. Significant differences between the remaining 
three methods (cf Table 1) exist in this medium wavelength range (520-580nm) where the 
visual system exhibits its highest sensitivity. Crucially, the reflectance spectrum in this 
wavelength range is diagnostic of the health of individuals (see discussion for further details) 
and the accurate reflectance reconstruction in this wavelength range is of vital importance for 
heath-related applications. Skin spectra often exhibit a ‘W’ feature (see Fig. 5) between 520 
and 580nm reflecting the oxygen saturation of haemoglobin in the blood flow [24]. Only the 
improved direct method is able to reconstruct this important feature of human skin spectra 
(please see the appendix for plots and associated errors of all 34 reconstructed spectra). 

Figure 6 plots the perceptual error against the root-mean-square error (RMSE); the RMSE 
is based on the spectral reflectances and does not make any assumptions about the visual 



system. Across all four methods the variance explained is 65%; all correlations are 
significantly different from zero (p<0.001). 

The correlation is strongest for the best-performing reconstruction method (DIRECT 
SS/DB); in this case the RMSE explains 75% of the variance in the perceptual errors, 
compared to 47% for the worst-performing reconstruction algorithm (TWO-STEP SG/DB). 
This strong association for the new reconstruction method therefore allows a farily accurate 
prediction of the perceptual error from a spectral-based error measure. 

 

Fig. 6. Correlation between the RMSE based on spectral information and the perceptual error 
reflecting the visible differences between the original and the reconstructed spectra. The 
highest correlation between these two measures is obtained for the best-performing method 
(DIRECT SS/DB). 

4. Discussion 

Our aim was to improve on existing methods of reconstructing spectral reflectance functions 
for skin from RGB camera images. The best spectral reconstruction performance, i.e. the 
smallest mean colour difference between the predicted and the measured spectra, is achieved 
by the new direct method (mapping RGB to spectra) using the skin database to derive the 
PCA basis functions and a new Silicon Skin Chart for calibration. The mean resulting error 
(averaged across all illumination conditions) for this method is 2.7ΔE*ab, a cumulative error 
reduction of 1. 7 ΔE*ab in comparison to the conventional method. 

Each of the three modifications leads to an incremental increase in performance and will 
be discussed in turn. 

(1) In the two-step method, using the Silicon skin chart for the calibration step (step #1) 
reduces the average error by 0.7ΔE*ab (cf. Table 2, rows 1 and 2). The choice of 
training colours used to derive the camera characterization model clearly affects the 
accuracy of the spectral reconstruction method; this is likely due to the fact that the 
gamut covered by the Silicon skin colour chart (cf. Figure 1, columns 2 and 3) is 
similar to the gamut of human skin whereas the X-rite ColorChecker includes 14 
skin colours but is not skin-specific. Since the camera characterization model is 
optimized for the training colours, it will make more accurate predictions if training 
and test colours cover a similar gamut. In the evaluation stage, human skin images 
are used and the error due to the camera characterization will increase the overall 
reconstruction error. 



(2) The most significant performance improvement is achieved by mapping the camera 
RGB values directly into the skin spectral reflectance functions, and thereby 
bypassing the mapping from RGB into the XYZ tristimulus values. Using the direct 
method (Table 1, row 4) compared to the 2-step method (row 2) leads to an error 
reduction of about 1 ΔE*ab. Since the same calibration chart (Silicon) and database 
are used, the improvement must be due to the methods. In the direct method, only a 
single optimization is performed, namely optimizing the coefficients of the 
polynomial regression (cf. Figure 3). In contrast, both 2-step methods first estimate 
the XYZ values and subsequently the spectra are reconstructed from the estimated 
XYZ hence introducing two sources of errors. The reflectance reconstruction based 
on the true XYZ has already a reconstruction error; the reconstruction based on the 
estimated XYZ adds an additional error. Furthermore, the reflectance r based on the 
estimated XYZ is aiming for the reconstructed reflectance having the same XYZ as 
the estimated XYZ, hence it cannot be expected the reconstructed reflectance is the 
same as the original or has the same characteristics as the original. Both of these 
shortcomings are addressed in the direct method which minimizes the difference 
between the estimated and the original reflectance. 

(3) In the direct method, when the silicon skin colours are used for the principal 
component analysis (Table 1, row 3) instead of the skin database (row 4), the error 
increases on average by 0.6 ΔE*ab. Although the Silicon skin colour chart is 
optimized to mimic the colour gamut of natural skin (Fig. 1), there are significant 
differences in their respective spectral reflectance functions (compare Fig. 2 with 
Fig. 4) which results in slightly different basis functions. Since the reflectance 
recovery methods are tested with real skin images, a larger error occurs when the 
Silicon spectra are used for the derivation of the principal components. In addition to 
minimizing the perceptual error, the use of the human skin database instead of the 
silicon spectra also results in reconstructed spectra with the main characteristics of 
human skin spectra which is important for biomedical applications (see last section 
of the discussion for details) 

(4) In addition to the spectral differences between the Silicon colour charts and the 
human skin database, the number of spectra used for the PCA also differ 
significantly: the silicon skin chart consists of 90 samples, whereas the skin database 
contains 4392 spectra. We have tested the effect of the sample size by using a 
randomly selected subset (n = 90) of the human skin spectra. We find that the errors 
are virtually identical to the errors obtained for n = 4392 (Illuminant A: 3.1 (8.5); 2.6 
(8.6); D50: 2.4 (8.4); F02: 3.0 (8.6); F11: 2.6 (8.6); D65: 2.7 (8.5)). We therefore 
conclude that it is not the number of samples, but the spectral similarity between the 
database and the test spectra that accounts for the better performance. 

(5) Neither for the new nor for the conventional method, is there a limitation on the 
requirement of the illumination (see reference 9 as well) for the imaging. 

Advantages of the new skin-specific reconstruction algorithm for biomedical applications 

Precise reconstruction of skin spectra from camera RGB inmages is important since spectral 
reflectance functions contain information not available in colorimetric skin values. Spectral 
reflectance data contain the necessary information to model skin appearance under different 
illumination conditions and also allow the extraction of information about skin chromophores, 
such as oxygen saturation of haemoglobin. Figure 7 (left panel) shows the absorbance of 
haemoglobin (http://omlc.org/spectra/hemoglobin), either in the oxygenated (thick red line) or 
the de-oxygenated state (thick green line); the locations of the peak sensitivities of the short- 
(442nm), medium- (543nm), and long-wavelength (570nm) sensitive cones are indicated by 
the thin vertical lines, respectively. The right panel shows the inverse of the haemoglobin 
absorbance and demonstrates that the ‘W’ feature in the skin reflectance spectra (e.g. Figure 



5, upper left panel) is a reflection of the oxygenation saturation of haemoglobin. Recovering 
the ‘W’ feature of the skin spectra is important for two reasons. Firstly, the visual system is 
very sensitive to colour variations in the wavelength region containing the ‘W’ feature (520 to 
580nm) due to the location of the peak cone sensitivities. When reconstructed skin spectra are 
used to model skin appearance under different illumination conditions, imperfectly 
reconstructed spectra in this region can lead to significant appearance changes. Secondly, 
variations of hemoglobin (Hb) oxygenation in skin tissue are important indicators for its 
physiological conditions and important for clinical care. Precise estimates of Hb oxygenation 
requires a concise reconstruction of this ‘W’ feature, which is achieved by incorporating the 
use a human skin database in our new reconstruction method (cf. Figure 3). 

 

Fig. 7. On the left the absorbance as a function of wavelength is shown for the oxygenated (red 
line) and the de-oxygenated haemoglobin (green line). On the right panel, the inverse of the 
absorbance is plotted to show that the ‘W’ feature in the skin reflectance spectra (e.g. Figure 5, 
upper left panel) is a reflection of the oxygenation saturation of haemoglobin. Thin vertical 
lines indicate the location of the peak sensitivities of the cones in the human retina. 

5. Conclusion 

In conclusion, the three modifications together reduce the perceptual error to less than 3 
ΔE*ab units across all five different illuminations, which is within the acceptable range for 
skin reproduction for maxillofacial soft tissue prostheses [25]. We conclude that our direct 
method using the spectral skin database to derive the basis functions is likely to be of 
significant value for biomedical applications, as well as for digitally rending skin under 
varying illumination conditions.We also show that perceptual errors associated with the 
spectral reconstruction algorithm can be predicted from a spectral-based RMS error and 
thereby increasing its practical value for health-related applications. 

Acknowledgements 

This work was supported by the Royal Academy of Engineering (Grant NO. RECI033), the 
EPSRC (EP/K040057, EP/L001012) and the National Natural Science Foundation of China 
(No. 61178053,61575090). We would also like to thank Spectromatch Ltd (London) for 
kindly providing the silicon skin colour samples. The spectral skin database will be made 
publicly available on pcwww.liv.ac.uk/~sophiew/skin, together with the source code. 

Appendix: Reconstructed skin spectra (n=34) with associated reconstruction error 
(RMSE and Perceptual Error) 

In this appendix, all the 34 test skin spectra and their reconsctructed spectra using the four 
methods: TWO-STEP SG/DB, TWO-STEP SS/DB, DIRECT SS/SS, DIRECT SS/DB are 
shown in Figs. 8-10 respectively. Furthermore, the RMSE and perceptual errors for each 
reconstrcuted spectra are also shown in the diagrams. 



 

Fig. 8. Reconstructed skin spectra #1-9 with associated reconstruction error (RMSE and 
Perceptual Error) using each of the four methods: TWO-STEP SG/DB, TWO-STEP SS/DB, 
DIRECT SS/SS, DIRECT SS/DB together with the original spectra 



 

Fig. 9. Reconstructed skin spectra #10-21 with associated reconstruction error (RMSE and 
Perceptual Error) using each of the four methods: TWO-STEP SG/DB, TWO-STEP SS/DB, 
DIRECT SS/SS, DIRECT SS/DB together with the original spectra 



 

Fig. 10. Reconstructed skin spectra #22-34 with associated reconstruction error (RMSE and 
Perceptual Error) using each of the four methods: TWO-STEP SG/DB, TWO-STEP SS/DB, 
DIRECT SS/SS, DIRECT SS/DB together with the original spectra 

 


