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Abstract

In this paper, we revisit our recently proposed results for a general class of linear stochastic degenerate Sobolev

systems with additive noise by using a different approach keeping, however, the main assumptions unchanged

for the purpose of comparison. In particular, the mild and strong well posedness for the initial and final value

problems are presented and studied by applying a suitable transformation which formulates the degenerate

stochastic system as a pseudoparabolic one. Based on the derived results for the forward and backward cases,

under this new framework, the conditions for the exact controllability are revisited for a particular class of

degenerate Sobolev systems.
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1 Introduction

The Maxwell equations in complex media [12], the one dimensional Dirac equation in the non-relativistic limit

[13, 16] and the Leontief input-output model in economics [8, 10] are only a few of the models that can be

formulated using equations or systems involving mixed spatial and time partial derivatives. Under parameter

or/and environment uncertainties and when singularities appear, such models can often be reduced to linear

stochastic degenerate Sobolev equations with additive noise in suitable infinite dimensional spaces, see [9]. H

being the Hilbert space, their general form is given by

d(Lx(t)) = [Mx(t) + f(t)] dt+B dW (t), t > 0, (1)
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where L : D(L) → H and M : D(M) → H are linear and possibly unbounded (closed and densely defined)

operators and L is non–invertible. The Wiener process W is considered to model the uncertainties in an additive

way. Equations of type (1) are the infinite dimensional analogue of stochastic singular or descriptor systems in

Rn; see for instance [1], [5], [7]. For a treatment of the initial value problem of Eq. (1), we refer to [11] (where

inclusions of multi–valued linear operators are involved) and [17] (concerning controllability with impulsive

components) and references therein.

In [9], recently, the initial and final value problems and the exact controllability for Eq. (1) have been

studied within a stochastic framework. The analysis on the operators L, M and the operator pencil λL−M are

based on [15] where two cases (and respectively, two methods) for the solvability of the deterministic analogue

of Eq. (1) are presented. Obviously, the distinction and usefulness of the two approaches studied by Thaller

and Thaller (1996) [15] depend on the properties of L, M and λL − M . In particular, whenever L has a

closed domain, the deterministic analogue of Eq. (1) can be reduced, with some extra assumptions on M and

λL−M , to a pseudoparabolic problem in the Hilbert space (Ran(L?), ‖.‖H), where Ran(L?) = (KerL)⊥. This

is equivalent with the assumption that the operator L⊥ = L|(KerL)⊥∩D(L) is bounded and defined on the whole

(KerL)⊥. A multiplication with the boundedly invertible operator (L⊥)−1 provides the pseudoparabolicity of

the upcoming equation on the space (KerL)⊥. Alternatively, if L has a closed range, that is Ran(L) = Ran(L),

the deterministic problem can be reduced to a pseudoparabolic one in the Hilbert space (Ran(L), ‖.‖H). This

is equivalent with the assumption that (L⊥)−1 is bounded and defined on the whole Ran(L). In this case a

transformation ψ(t) = L⊥y(t) provides the pseudoparabolicity of the upcoming equation on the space Ran(L).

The equivalence of the two cases is provided whenever L⊥ : (KerL)⊥ → Ran(L) is bounded and boundedly

invertible. In [9], the pseudoparabolicity of the stochastic equation is provided by a multiplication with the

bounded operator (L⊥)−1, in view of the first methodology. In the present paper, the assumptions on the

deterministic coefficients L, M and λL−M are made in such way that the two methodologies be equivalent. In

particular, L is assumed to be bounded with a closed range and L⊥ to be boundedly invertible.

The aim of this paper is to study the forward, backward and exact controllability problems under the same

framework with [9], but applying the second methodology of [15], i.e. using the transformation ψ(t) = L⊥y(t)

(which is briefly presented in Section 2). It is shown that the equivalence of the two methods is valid not only

for the deterministic case, but also for the stochastic problems. Indeed, possible relaxations on the assumptions

of the coefficients can affect the stochastic problems as well. Thus, the study of the second methodology is also

necessary, however further details on this directions are omitted and they will be studied in a sequel paper.

We proceed as follows. In Section 2, some preliminary results are provided. Section 3 is devoted to the

main results, where the study of the forward, backward and exact controllability problem is provided. Some

concluding remarks are presented in Section 4.

2 Preliminaries

Let us consider for the deterministic and stochastic coefficients of problem (1) the same functional spaces,

notation and main assumptions (A1-A6) as in Section 2 of [9]. In particular, the deterministic analogue is

derived as follows:
d

dt
(L⊥y(t)) =M0y(t) + f(t), t > 0,

y(0) =P⊥x0,

 (2)

where M0 = MX. It is assumed that DM0
= P⊥D (see (A2)(ii) ) is dense in P⊥H, M0 and (λL −M)X =

λL⊥ −M0 are closed operators (see [14] and [15]) in P⊥D. Here, we intent to treat problem (2) by applying
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the transformation

ψ(t) = L⊥y(t)⇔ y(t) = (L⊥)−1ψ(t) for every y ∈ P⊥H, t ∈ [0, T ].

Now, system (2) is re-written as follows in Q⊥H:

d

dt
ψ(t) =M0(L⊥)−1ψ(t) + f(t), t > 0,

ψ(0) =L⊥P⊥x0 = Lx0,

 (3)

with A2 = M0(L⊥)−1 and DA2 = {ψ ∈ Q⊥H : (L⊥)−1ψ ∈ DM0} = {ψ ∈ Q⊥H : (L⊥)−1ψ ∈ P⊥D} = L(D),

which is dense on Q⊥H. Furthermore, A2 is closed on DA2
(see [15] for more details) and since

(λI −A2)−1 = L(λL−M)−1Q⊥ on Q⊥H,

by assumption (A3)(ii) we obtain that A2 : DA2
→ Q⊥H fulfils also the Hille–Yoshida conditions. From [15],

the following result is derived.

Theorem 1 Let the assumptions of Theorem 1 in [9] hold. Then the deterministic analogue of the linear forward

problem has a unique strict solution x(t), t ∈ [0, T ], with x(t) = Xy(t), where y(t) = (L⊥)−1ψ(t) and ψ(t) is

the unique strict solution of problem (3), i.e.

ψ(t) = S2(t)Lx0 +

∫ t

0

S2(t− s)f(s) ds, t ∈ [0, T ]

and

x(t) = X(L⊥)−1S2(t)Lx0 +X

∫ t

0

(L⊥)−1S2(t− s)f(s) ds, t ∈ [0, T ].

3 Main results

The main results for the two corresponding problems of the linear degenerate Sobolev systems are presented.

Additionally, the study of the exact controllability is also examined for a special class of equations.

3.1 The linear forward problem

Let us formulate here the forward problem for the stochastic equation (1) in a Hilbert space H:

d(Lx(t)) =[Mx(t) + f(t)] dt+B dW (t), t ∈ [0, T ],

x(0) =ξ.

}
(4)

The mild solution for Eq. (4) is given by the following definition.

Definition 1 Mild solution for the problem (4) is called an H−valued, Ft−progressively measurable, stochastic

process x(t), t ∈ [0, T ] which has the following expression:

x(t) = X(L⊥)−1S2(t)Lξ + X

∫ t

0

(L⊥)−1S2(t− s)f(s) ds+X

∫ t

0

(L⊥)−1S2(t− s)B dW (s), t ∈ [0, T ],

where S2(t), t ≥ 0 is the C0−semigroup generated by the operator A2 = M0(L⊥)−1.

For the definition of the strong solution, we refer to [9].

Theorem 2 Assume that (A1) − (A6) of [9] hold. Then, problem (4) is mildly well–posed, with x(t) ∈ D,

P − a.s., a.e. in [0, T ], and Lx ∈ L1(0, T ;H), P-a.s.
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Proof. First, let us apply the transformation ψ(t) = L⊥y(t)⇔ y(t) = (L⊥)−1ψ(t), then Eq. (4) takes the form:

dψ(t) =[M0(L⊥)−1ψ(t) + f(t)] dt+B dW (t), t ∈ [0, T ],

ψ(0) =L⊥P⊥ξ = Lξ.

}
(5)

From [4] and [6], the system (5) has a unique mild solution, which also belongs to L(D), P − a.s., a.e. in [0, T ],

if the following two results can be proved

1.

∫ T

0

‖S2(t)B‖2L0
2
dt <∞,

2. ψ(t) ∈ D(M0(L⊥)−1) = L(D), P-a.s., a.e. in [0, T ].

These results can be provided by similar arguments as in the proof of Theorem 2 in [8]. For problem (4),

we can prove that the process x(t) = Xy(t) = X(L⊥)−1ψ(t), t ∈ [0, T ], which is defined uniquely, satisfies

Definition 1 and belongs in D, P − a.s., a.e. in [0, T ]. Additionally, X is densely defined on P⊥H and the

process y(t) = (L⊥)−1ψ(t), t ∈ [0, T ] is Ft−progressively measurable, so we derive that x(t), t ∈ [0, T ] is

also Ft−progressively measurable. Furthermore, by considering the boundedness of L⊥ on P⊥H, we can prove

that Lx ∈ L1(0, T ;H), P-a.s.. Under assumption A3(ii), X is considered with its domain DX being a dense

subspace of P⊥D = P⊥H (see [14]) and when equipped with the graph norm ‖z‖G = ‖Xz‖H is a Hilbert space

isometrically isomorphic to D under the norm of H. By considering the Remark 2.24 in [15], we conclude that

the family of operators X(L⊥)−1S2(t)L⊥P⊥ = X(L⊥)−1S2(t)L, t ∈ [0, T ], is a C0−semigroup on the space D.

Consequently, for every ξ ∈ D, P-a.s., we have that

‖X(L⊥)−1S2(t)Lξ‖H = ‖X(L⊥)−1S2(t)Lξ‖H ≤ ‖X(L⊥)−1S2(t)L‖L(D)‖ξ‖H ,

and the proof of Theorem 2 is completed. 2

In what follows, we investigate the determination of some extra conditions for the unique mild solution of

problem (4) to become a strong solution as well.

Theorem 3 Let the assumptions of Theorem 2 hold. Assume also that for the solution ψ(t), t ∈ [0, T ], of

problem (5) it holds that

∫ T

0

‖M0(L⊥)−1ψ(t)‖H dt < ∞, P-a.s. Then the problem (4) is strongly well–posed

and the unique solution satisfies that Lx ∈ L2
Ft

(0, T ; Ω;H) and the following expression is true:

x(t) = X(L⊥)−1S2(t)Lξ +

∫ t

0

X(L⊥)−1S2(t− s)f(s) ds +

∫ t

0

X(L⊥)−1S2(t− s)B dW (s), t ∈ [0, T ].

Proof. In order to be able to show that the solution x(t), t ∈ [0, T ] is a strong one for the forward problem (4),

it remains to prove that Mx ∈ L1(0, T ;H), P-a.s. Indeed, since

Mx(t) = MXy(t) = M0(L⊥)−1ψ(t), for every t ∈ [0, T ],

and

∫ T

0

‖M0(L⊥)−1ψ(t)‖H dt < ∞, P-a.s, we obtain that Mx ∈ L1(0, T ;H), P-a.s. Furthermore, the bound-

edness of M−1 on Q⊥H provides also that x ∈ L1(0, T ;H), P-a.s. By replacing X with its closed extension X

in the solution, the integral representation of the theorem is obtained. The continuous dependence has already

been proved in Theorem 2. Consequently, by applying the assumptions on ξ, f,B, it is derived that

E

[ ∫ T

0

‖Lx(t)‖2H

]
= E

[ ∫ T

0

‖L⊥y(t)‖2H

]
= E

[ ∫ T

0

‖ψ(t)‖2H

]
<∞. 2

We note that the integral form of the solution x(t), t ∈ [0, T ] in Theorem 3 can be defined for every ξ ∈ D, P-a.s.

and f(t) ∈ L(D), P-a.s., a.e. in [0, T ], as long as Ran(B) ⊆ L(D), see also Remark 3 in [9].
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3.2 The linear backward problem

In this subsection, the following linear degenerate backward problem is investigated in the Hilbert space H:

−d(Lx(t)) =[Mx(t) +Nz(t) + f(t)] dt− z(t) dW (t), t ∈ [0, T ],

x(T ) =ξT .

}
(6)

Thus, we seek for the existence of a unique solution pair (x, z) ∈ L2
Ft

(0, T ; Ω;H) × L2
Ft

(0, T ; Ω;L0
2) for the

backward problem (6), where L0
2 denotes the space of all Hilbert-Schmidt operators from U0 to Q⊥H (i.e.

L2(U0, Q
⊥H)). Additionally to (A1) − (A4), the assumptions (B1) − (B2) of [9] also hold. For the notion of a

strong solution of problem (6), we refer to [9].

Using similar steps with the provided analysis of the previous section, under the assumptions (A1) − (A4)

and (B1)− (B2), problem (6) takes the following form in Q⊥H:

−d(L⊥y(t)) =[M0y(t) +Nz(t) + f(t)] dt− z(t) dW (t), t ∈ [0, T ],

y(T ) =P⊥ξT

}
(7)

Performing the transformation ψ(t) = L⊥y(t) ⇔ y(t) = (L⊥)−1ψ(t), t ∈ [0, T ], in problem (7), this takes the

form
−dψ(t) =[M0(L⊥)−1ψ(t) +Nz(t) + f(t)]dt− z(t)dW (t), t ∈ [0, T ],

ψ(T ) =L⊥P⊥ξT = LξT .

}
(8)

Definition 2 Mild solution for the problem (8) is called a pair (ψ, z) ∈ L2
Ft

(0, T ; Ω;H)×L2
Ft

(0, T ; Ω;L0
2) if for

every t ∈ [0, T ], P-a.s. the following expression holds:

ψ(t) = S2(T − t)LξT +

∫ T

t

S2(s− t)Nz(s) ds+

∫ T

t

S2(s− t)f(s) ds −
∫ T

t

S2(s− t)z(s) dW (s), t ∈ [0, T ],

where S2(t), t ≥ 0, is the C0−semigroup of operators in the closed subspace Q⊥H generated by the operator

A2 = M0(L⊥)−1.

Definition 3 Strong solution for the problem (8) is called a pair (ψ, z) ∈ L2
Ft

(0, T ; Ω;H)× L2
Ft

(0, T ; Ω;L0
2) if

the following conditions are satisfied:

1. ψ(t) ∈ L(D), P-a.s., a.e. in [0, T ] and ψ ∈ L1(0, T ;H).

2. M0(L⊥)−1ψ ∈ L1(0, T ;H), P-a.s.

3. ψ(t) = LξT +

∫ T

t

[M0(L⊥)−1ψ(s) +Nz(s) + f(s)] ds−
∫ T

t

z(s) dW (s), P-a.s., a.e in [0, T ].

Modifying accordingly the assumptions of Theorem 4 in [9], the next theorem is derived:

Theorem 4 Under assumptions (A1)−(A4) and (B1)−(B2), a unique mild solution (ψ, z) ∈ L2
Ft

(0, T ; Ω;H)×
L2

Ft
(0, T ; Ω;L0

2) for the problem (8) is derived. Moreover, let us assume that:

(B3) S2(s− t)z(s)h ∈ L(D), (equivalently z(s)h ∈ L(D)), P-a.s., for every s ∈ [t, T ] and h ∈ U .

(B4) E

[∫ T

0

∫ T

t

‖M0(L⊥)−1S2(s− t)(Nz(s) + f(s))‖H ds dt

]
<∞.

(B5) E

[∫ T

0

∫ T

t

‖M0(L⊥)−1S2(s− t)z(s)‖2L0
2
ds dt

]
<∞.

Then, the continuous version of the mild solution (ψ, z) is the unique strong solution for the problem (8).
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Proof. A direct application of Theorem 4.2 in [3] renders the proof of our new theorem, so unnecessary details

are omitted. Based on the assumptions on ξT , f and (B1) on N , it is provided that S2(T − t)LξT ∈ L(D),

S2(s− t)f(s) ∈ L(D) and S2(s− t)Nz(s) ∈ L(D), P-a.s., for every s ∈ [t, T ]. 2

Returning now again back to Eq. (7), we find that the solution (y, z) has the form

y(t) = (L⊥)−1S2(T − t)LξT +

∫ T

t

(L⊥)−1S2(s− t)Nz(s) ds+

∫ T

t

(L⊥)−1S2(s− t)f(s) ds −∫ T

t

(L⊥)−1S2(s− t)z(s) dW (s), t ∈ [0, T ],

where following similar arguments as for the proof of Theorem 5 in [9], we can prove that x(t), t ∈ [0, T ], satisfies

the properties 1-3 of Definition 2 of [9] and hence the following theorem is obtained:

Theorem 5 Under assumptions (A1)− (A4), (B1)− (B5), the pair (x, z) is the unique strong solution for prob-

lem (6), where:

x(t) = X(L⊥)−1S2(T − t)LξT +

∫ T

t

X(L⊥)−1S2(s− t)Nz(s) ds+

∫ T

t

X(L⊥)−1S2(s− t)f(s) ds

−
∫ T

t

X(L⊥)−1S2(s− t)z(s) dW (s), t ∈ [0, T ].

The solution process x(t), t ∈ [0, T ], is continuously dependent on the P-a.s., D−valued final data ξT ∈
L2

FT
(Ω;H).

Remark 1 By the uniqueness of the solutions of the forward and the backward problem provided by the two

methodologies and the equivalence between them (since L⊥ is bounded and boundedly invertible), the following

operator identities hold:

S2(t) = LS1(t)(L⊥)−1 on Q⊥H and S1(t) = (L⊥)−1S2(t)L on P⊥H, t ∈ [0, T ].

If L is not a bounded operator, these identities become (see also Remark 2.24 in [15]):

S2(t) = L⊥S1(t)(L⊥)−1 on Q⊥H and S1(t) = (L⊥)−1S2(t)L⊥ on P⊥H, t ∈ [0, T ].

A possible relaxation on the boundedness and the bounded invertibility of L⊥ (for example L⊥ is not bounded or

(L⊥)−1 is not bounded) lead to the loss of the equivalence between the two methodologies. As an example, in the

case that (L⊥)−1 is bounded but L⊥ is not, we have to proceed with the solvability of the problem by applying the

transformation techniques, as long as the first methodology (multiplication by left with the unboundedly invertible

operator (L⊥)−1 ) fails. Similarly, in the case that L⊥ is bounded but (L⊥)−1 is not, we have to proceed with the

solvability of the problem by using the first methodology, as long as the transformation may not be well defined.

3.3 Exact controllability for a special class of degenerate Sobolev systems

Finally, in this subsection, a special class of degenerate Sobolev systems is presented which allows us the study

of the forward and the backward problem simultaneously. In the previous subsection, we treated the backward

problem (6), which can be written also in the form

d(Lx(t)) =−[Mx(t) +Nz(t) + f(t)] dt+ z(t) dW (t), t ∈ [0, T ],

x(T ) =ξT ,

}
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and we proved that the solution is provided in terms of the C0-semigroup S2(t), t ≥ 0, generated by the operator

A2 = M0(L⊥)−1. An interesting case of S2(t) being a C0-group of operators is considered. In this case, solvability

results can be obtained for the following linear backward problem in H:

d(Lx(t)) =[Mx(t) +Nz(t) + f(t)] dt+ z(t) dW (t), t ∈ [0, T ],

x(T ) =ξT ,

}
(9)

Applying the results of Section 3.2, the following theorem is formulated:

Theorem 6 Under assumptions (A1) − (A4), (B1) − (B5), with the extra hypothesis that S2(t), t ∈ R, is a

C0-group of operators, the pair (x, z) is the unique strong solution for problem (9), where

x(t) = X(L⊥)−1S2(t− T )LξT −
∫ T

t

X(L⊥)−1S2(t− s)Nz(s) ds−
∫ T

t

X(L⊥)−1S2(t− s)f(s) ds

−
∫ T

t

X(L⊥)−1S2(t− s)z(s) dW (s), t ∈ [0, T ].

The solution process x(t), t ∈ [0, T ], is continuously dependent on the P-a.s., D−valued final data ξT ∈
L2

FT
(Ω;H).

Now, let us define the following controlled stochastic system on a separable Hilbert space H:

d(Lx(t)) =[Mx(t) + Cu(t) + f(t)] dt+Bu(t) dW (t), t ∈ [0, T ],

x(0) =ξ, x(T ) = ξT ,

}
(10)

where the control parameter which takes values in a separable Hilbert space K is represented by u. Moreover, all

progressively measurable, square–integrable processes, i.e. U = L2
Ft

(0, T ; Ω;K) consists the set of all admissible

controls. Additionally, let the assumptions of section 3.1 (see Theorem 3) hold on the coefficients L, M, f, B for

the existence of a strong solution and (F1) assumption of [9] also holds, where the stochastic process Cu(t), t ∈
[0, T ] satisfies now that:

E

[∫ T

0

∫ t

0

‖M0(L⊥)−1S2(s− t)(Cu(s) + f(s))‖H ds dt

]
<∞.

We refer to [9] for the definition of the exact controllability of the problem (10). Moreover, in order to prove

that system (10) is exactly controllable, we have to demonstrate that at least one admissible control, u ∈ U ,

exists with Cu(t) ∈ L(D), P-a.s., t ∈ [0, T ], such that

ξT = X(L⊥)−1S2(T )Lξ +

∫ T

0

X(L⊥)−1S2(T − s)Cu(s) ds +

∫ T

0

X(L⊥)−1S2(T − s)f(s) ds +∫ T

0

X(L⊥)−1S2(T − s)B dW (s), P-a.s.,

and removing the operator X outside the integrals and replacing it by X, that

S2(−T )L⊥P⊥ξT − Lξ −
∫ T

0

S2(−s)B dW (s) =

∫ T

0

S2(−s)[Cu(s) + f(s)]ds, P−a.s. (11)

For the case that u ∈ U is given by

Cu(t) = S2(t)v(t)− f(t), t ∈ [0, T ], (12)

and for a Ft−progressively measurable stochastic process v(t) ∈ L(D), P-a.s., a.e. in [0, T ], by substituting Eq.

(12) in (11), we show that v should satisfy∫ T

0

v(s)ds = S2(−T )LξT − Lξ −
∫ T

0

S2(−s)B dW (s), P−a.s. (13)
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Considering now the backward problem in the space P⊥H

d(ψ(t)) =[M0(L⊥)−1ψ(t)] dt+ z(t) dW (t), t ∈ [0, T ],

ψ(T ) =LξT ,

}
(14)

we see that for N = 0 and f = 0, this is an analogue of problem (8) of section 3.2, assuming also that S2(t), t ∈ R,

is a C0-group. For problem (14) there is a unique pair (ψ1, z1) ∈ L2
Ft

(0, T ; Ω;P⊥H)×L2
Ft

(0, T ; Ω;L0
2) such that

ψ1(t) = S2(t− T )LξT −
∫ T

t

S2(t− s)z1(s) dW (s),

is a strong solution of (14), with ψ1(t) ∈ L(D), P-a.s., a.e. in [0, T ].

Obviously, the random variable ψ1(0) = S2(−T )LξT −
∫ T

0

S2(−s)z1(s) dW (s), is F0− measurable. Thus, Eq.

(13) becomes ∫ T

0

v(s)ds = ψ1(0)− Lξ −
∫ T

0

S2(−s)(B − z1(s)) dW (s),

and following similar steps with the subsection 3.3 in [9], a possible choice for Cu(t), t ∈ [0, T ] is given by

Cu(t) = S2(t)
1

T
(ψ1(0)− Lξ)−

∫ t

0

1

T − s
S2(t− s)(B − z1(s)) dW (s)− f(t), (15)

for t ∈ [0, T ]. Consequently, Theorem 7 of [9] is fully recovered, having now as right hand side this of Eq. (15).

Similarly, the condition Ran(C) = L(D) provides the exact controllability of (10).

4 Conclusion

Systems with mixed spatial and time partial derivatives often appear in science and engineering. When singu-

larities and uncertainties are also involved, such systems can be reduced to linear stochastic degenerate Sobolev

equations with additive noise in an infinite dimensional Hilbert space.

In this paper, the study of the mild and strong well posedness for the initial and final value problems is provided

as a continuation of the research work proposed by Liaskos et al. (2015) [9], which now uses an alternative

methodology based on a deterministic framework by Thaller and Thaller (1996) [15]. It is interesting that sim-

ilarly with the deterministic methodologies, using appropriate assumptions on the operators and the spectral

properties of the operator pencil, the equivalence for the stochastic methods is derived. Furthermore, it should

be mentioned that in the present paper, an infinite dimensional generalization of the notion of a regular matrix

pencil is also considered. Finally, using the results of the forward and backward problems, the conditions for

the exact controllability of a particular class of these equations are provided.

Last but not least, it should be emphasised that the proposed stochastic methodology can be very distinct to the

one presented in [9] if some of the assumptions are relaxed. This direction will be investigated in a forthcoming

paper.
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