
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Competitive analysis of fundamental scheduling algorithms on a
fault-prone machine and the impact of resource augmentation
Antonio Fernández Anta a, Chryssis Georgiou b, Dariusz R. Kowalski c, Elli Zavou a,d,∗

a IMDEA Networks Institute, Av. del Mar Mediterráneo 22, 28918 Leganés, Madrid, Spain
b University of Cyprus, Department of Computer Science, 75 Kallipoleos Str., P.O. Box 20537, 1678 Nicosia, Cyprus
c University of Liverpool, Department of Computer Science, Ashton Building, Ashton Street, Liverpool L69 3BX, United Kingdom
d University Carlos III of Madrid, Department of Telematics Engineering, Torres Quevedo Building, Av. Universidad 30, 28911 Leganés, Madrid, Spain

h i g h l i g h t s

• Worst-case analysis of fault-tolerant properties of popular scheduling algorithms.
• Competitive analysis regarding completed/pending load and latency of the algorithms.
• Use of resource augmentation to achieve and/or to improve their performance.
• Differences of scheduling policies based either on arrival time or size of tasks.
• All deterministic and work-conserving algorithms require speedup to be competitive.

a r t i c l e i n f o

Article history:
Received 11 November 2015
Received in revised form
27 May 2016
Accepted 29 May 2016
Available online xxxx

Keywords:
Scheduling
Online algorithms
Different task processing times
Failures
Competitive analysis
Resource augmentation

a b s t r a c t

Reliable task execution in machines that are prone to unpredictable crashes and restarts is both chal-
lenging and of high importance, but not much work exists on the analysis of such systems. We consider
the online version of the problem, with tasks arriving over time at a single machine under worst-case
assumptions. We analyze the fault-tolerant properties of four popular scheduling algorithms: Longest In
System (LIS), Shortest In System (SIS), Largest Processing Time (LPT) and Shortest Processing Time (SPT).
We use three metrics for the evaluation and comparison of their competitive performance, namely, com-
pleted load, pending load and latency. We also investigate the effect of resource augmentation in their
performance, by increasing the speed of the machine. Hence, we compare the behavior of the algorithms
for different speed intervals and show that there is no clear winner with respect to all the three consid-
ered metrics. While SPT is the only algorithm that achieves competitiveness on completed load for small
speed, LIS is the only one that achieves competitiveness on latency (for large enough speed).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Motivation. The demand for processing dynamically introduced
jobs that require high computational power has been increasing
dramatically during the last decades, and so has the research to
face themany challenges it presents. In addition, with the presence
of machine failures (and restarts), which in cloud computing is
now the norm instead of the exception, things get even worse.

∗ Corresponding author at: IMDEA Networks Institute, Av. del Mar Mediterráneo
22, 28918 Leganés, Madrid, Spain.

E-mail addresses: antonio.fernandez@imdea.org (A. Fernández Anta),
chryssis@cs.ucy.ac.cy (C. Georgiou), D.Kowalski@liverpool.ac.uk (D.R. Kowalski),
elli.zavou@imdea.org (E. Zavou).

In this work, we apply speed augmentation [1,2] (i.e., we increase
the computational power of the system’s machine) in order to
overcome such failures, even in the worst possible scenario. This
is an alternative to increasing the number of processing entities,
as done in multiprocessor systems. Hence, we consider a speedup
s ≥ 1, under which the machine performs a job s times faster than
the baseline execution time.

More precisely, we consider a setting with a single machine
prone to crashes and restarts being controlled by an adversary
(modeling worst-case scenarios), and a scheduler that assigns
injected jobs or tasks to be executed by the machine. These tasks
arrive continuously and have different computational demands
and hence size (or processing time). Specifically we assume that
each task τ has size π(τ) ∈ [πmin, πmax], where πmin and πmax
are the smallest and largest possible values respectively, and

http://dx.doi.org/10.1016/j.future.2016.05.042
0167-739X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2016.05.042
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:antonio.fernandez@imdea.org
mailto:chryssis@cs.ucy.ac.cy
mailto:D.Kowalski@liverpool.ac.uk
mailto:elli.zavou@imdea.org
http://dx.doi.org/10.1016/j.future.2016.05.042

2 A. Fernández Anta et al. / Future Generation Computer Systems () –

π(τ) becomes known to the system at the moment of τ ’s arrival.
Since the scheduling decisions must be made continuously and
without knowledge of the future (neither of the task injections
nor of the machine crashes and restarts), we look at the problem
as an online scheduling problem [3–7]. The importance of using
speedup lies in this online nature of the problem; the future
failures, and the instants of arrival of future tasks along with
their sizes, are unpredictable. Thus, there is the need to overcome
this lack of information. Epstein et al. [8], specifically show
the impossibility of competitiveness in a simple non-preemptive
scenario (see Example 2 in [8]).We evaluate the performance of the
different scheduling policies (online algorithms) under worst-case
scenarios, on amachinewith speedup s, which guarantees efficient
scheduling even in the worst of cases. For that, we perform
competitive analysis [9]. The four scheduling policies we consider
are Longest In System (LIS), Shortest In System (SIS), Largest
Processing Time (LPT) and Shortest Processing Time (SPT). Scheduling
policies LIS and SIS are the popular FIFO and LIFO policies
respectively. Graham [10] introduced the scheduling policy LPT
a long time ago, when analyzing multiprocessor scheduling.
Lee et al. [11] studied the offline problem of minimizing the
sum of flow times in one machine with a single breakdown,
and gave tight worst-case error bounds on the performance
of SPT. Achieving reliable and stable computations in such an
environment withholds several challenges. One of our main goals
is therefore to confront these challenges considering the use of
the smallest possible speedup. However, our primary intention
is to unfold the relationship between the efficiency measures we
consider for each scheduling policy, and the amount of speed
augmentation used.
Contributions. In this paper we explore the behavior of some of
the most widely used algorithms in scheduling, analyzing their
fault-tolerant properties under worst-case combination of task
injection and crash/restart patterns, as described above. The four
algorithms we consider are:

(1) Longest In System (LIS): the task that has been waiting the
longest is scheduled; i.e., it follows the FIFO (First In First Out)
policy,

(2) Shortest In System (SIS): the task that has been injected the
latest is scheduled; i.e., it follows the LIFO (Last In First Out)
policy,

(3) Largest Processing Time (LPT): the task with the biggest size is
scheduled, and

(4) Shortest Processing Time (SPT): the task with the smallest size
is scheduled.

We focus on three evaluation metrics, which we regard to
embody the most important quality-of-service parameters: the
completed load, which is the aggregate size of all the tasks that have
completed their execution successfully, the pending load, which is
the aggregate size of all the tasks that are in the queue waiting
to be completed, and the latency, which is the largest time a task
spends in the system, from the time of its arrival until it is fully
executed. Latency, is also referred to as flowtime in scheduling
(e.g., [12,13]). These metrics represent the machine’s throughput,
queue size and delay respectively, all of which we consider
essential. They show how efficient the scheduling algorithms are
in a fault-prone setting from different angles: machine utilization
(completed load), buffering (pending load) and fairness (latency).
The performance of an algorithm ALG is evaluated under these
three metrics bymeans of competitive analysis, in which the value
of the metric achieved by ALG when the machine uses speedup
s ≥ 1 is compared with the best value achieved by any algorithm
X running without speedup (s = 1) under the same pattern of task
arrivals and machine failures, at all time instants of an execution.

Table 1 summarizes the results we have obtained for the four
algorithms. The first results we show apply to all deterministic

algorithms and all work-conserving algorithms—algorithms that do
not idle while there are pending tasks and they do not break the
execution of a task unless the machine crashes. We show that, if
task sizes are arbitrary, these algorithms cannot be competitive
when processors have no resource augmentation (s = 1), thus
justifying the need of the speedup. Then, for work-conserving
algorithmswe show the following results: (a)When s ≥ ρ =

πmax
πmin

,
the completed load competitive ratio is lower bounded by 1/ρ
and the pending load competitive ratio is upper bounded by ρ. (b)
When s ≥ 1 + ρ, the completed load competitive ratio is lower
bounded by 1 and the pending load competitive ratio is upper
bounded by 1 (i.e., they are 1-competitive). Then, for specific cases
of speedup less than1+ρ weobtain better lower andupper bounds
for the different algorithms.

However, it is clear that none of the algorithms is better than
the rest. With the exception of SPT, no algorithm is competitive
in any of the three metrics considered when s < ρ. In particular,
algorithm SPT is competitive in terms of completed load when
tasks have only two possible sizes. In terms of latency, only
algorithm LIS is competitive, when s ≥ ρ, which might not be
very surprising since algorithm LIS gives priority to the tasks that
have been waiting the longest in the system. Another interesting
observation is that algorithms LPT and SPT become 1-competitive
as soon as s ≥ ρ, both in terms of completed and pending load,
whereas LIS and SIS require greater speedup to achieve this.

This is the first thorough and rigorous online analysis of these
popular scheduling algorithms in a fault-prone setting. In some
sense, our results demonstrate in a clear way the differences
between two classes of policies: the ones that give priority based
on the arrival time of the tasks in the system (LIS and SIS) and
the ones that give priority based on the required processing time
of the tasks (LPT and SPT). Observe that different algorithms scale
differently with respect to the speedup, in the sense that with
the increase of the machine speed the competitive performance of
each algorithm changes in a different way.
Related work. We relate our work to the online version of the bin
packing problem [15], where the objects to be packed are the tasks
and the bins are the time periods between two consecutive failures
of the machine (i.e., alive intervals). Over the years, extensive
research on this problem has been done, some of which we
consider related to ours. For example, Johnson et al. [16] analyze
the worst-case performance of two simple algorithms (Best Fit
and Next Fit) for the bin packing problem, giving upper bounds
on the number of bins needed (corresponding to the completed
time in our work). Epstein et al. [17] (see also [15]) considered
online bin packing with resource augmentation in the size of the
bins (corresponding to the length of alive intervals in our work).
Observe that the essential difference of the online bin packing
problemwith the one that we are looking at in this work, is that in
our system the bins and their sizes (corresponding to themachine’s
alive intervals) are unknown. Boyar and Ellen [18] have looked into
a problem similar to both the online bin packing problem and ours,
considering job scheduling in the grid. The main difference with
our setting is that they consider several machines (or processors),
but mainly the fact that the arriving items are processors with
limited memory capacities and there is a fixed amount of jobs in
the system that must be completed. They also use fixed job sizes
and achieve lower and upper bounds that only depend on the
fraction of such jobs in the system.

Another related problem is packet scheduling in a link.
Andrews and Zhang [19] consider online packet scheduling over
a wireless channel whose rate varies dynamically, and perform
worst-case analysis regarding both the channel conditions and
the packet arrivals. We can also directly relate our work to
research done onmachine scheduling with availability constraints
(e.g., [20,21]). One of the most important results in that area

A. Fernández Anta et al. / Future Generation Computer Systems () – 3

Table 1
General metrics comparison of any deterministic scheduling algorithm, ALGD , any work-conserving one, ALGW , and detailed metric comparison of the four scheduling
algorithms studied in detail. Also, the last column provides the theorem numbers where the results of the corresponding row can be found. Recall that s represents the
speedup of the system’s machine, πmax and πmin the largest and smallest task sizes respectively, and ρ =

πmax
πmin

. Note that by definition, 0-completed-load competitiveness
ratio equals to non-competitiveness, as opposed to the other two metrics, where non-competitiveness corresponds to an ∞ competitiveness ratio.

Alg. Condition Completed load, C Pending load, P Latency, L Thm.

ALGD s = 1, any task size 0 ∞ ∞ 1, [4,14]
ALGW s = 1, any task size 0 ∞ ∞ 1, [4,14]

ALGW
s ≥ ρ [1/ρ, 1] [1, ρ] – 2, 3
s ≥ 1 + ρ 1 1 – 2, 4

LIS

s < ρ, two task sizes 0 ∞ ∞ 5, 12
s ∈ [ρ, 1 + 1/ρ) [1/ρ, 1

2 +
1
2ρ] [

1+ρ

2 , ρ] (0, 1] 8, 13
s ∈ [max{ρ, 1 +

1
ρ
}, 2) [1/ρ, s/2] [

s
2(s−1) , ρ] (0, 1] 8, 13

s ≥ max{ρ, 2} 1 1 (0, 1] 4, 8, 13

SIS

s < ρ, two task sizes 0 ∞ ∞ 5, 11
s ∈ [ρ, 1 + 1/ρ) 1

ρ
ρ ∞ 9, 11

s ∈ [1 + 1/ρ, 1 + ρ) [1/ρ, s/(1 + ρ)] [
1
s +

ρ

1+ρ
, ρ] ∞ 9, 11

s ≥ 1 + ρ 1 1 ∞ 4, 9, 11

LPT s < ρ, two task sizes 0 ∞ ∞ 5, 11
s ≥ ρ 1 1 ∞ 10, 11

SPT s < ρ, two task sizes [
1

2+ρ
,

⌊(s−1)ρ⌋+1
⌊(s−1)ρ⌋+1+ρ

] ∞ ∞ 6, 7, 11
s ≥ ρ 1 1 ∞ 10, 11

is the necessity of online algorithms in case of unexpected
machine breakdowns. However, inmost relatedworks preemptive
scheduling is considered and optimality is shown only for nearly
online algorithms (need to know the time of the next job or
machine availability).

The work of Georgiou and Kowalski [22] was the one that
initiated our study. They consider a cooperative computing system
of n message-passing processes that are prone to crashes and
restarts, and have to collaborate to complete the dynamically
injected tasks. For the efficiency of the system, they perform
competitive analysis looking at the maximum number of pending
tasks. One assumption they widely used was the fact that they
considered only unit-length tasks. One of their last results,
shows that if tasks have different lengths, even under slightly
restricted adversarial patterns, competitiveness is not possible.
In [4] we introduced the term of speedup, representing resource
augmentation, in order to surpass the NP-hardness shown in [22]
and achieve competitiveness in terms of pending load. We found
the threshold of necessary speedup under which no algorithm
can be competitive, and showed that is also sufficient, proposing
optimal algorithms that achieve competitiveness. More precisely,
we looked at a system of multiple machines and at least two
different task costs, i.e., sizes π ∈ [πmin, πmax]. We applied
distributed scheduling and performed worst-case competitive
analysis, considering the pending load competitiveness as our
main evaluation metric. We defined ρ =

πmax
πmin

and proved that
if both conditions (a) s < ρ and (b) s < 1 + γ /ρ hold for
the system’s machines (γ is some constant that depends on πmin
and πmax), then no deterministic algorithm is competitive with
respect to the queue size (pending load). Additionally,weproposed
online algorithms to show that relaxing any of the two conditions
is sufficient to achieve competitiveness. In fact, [4] motivated this
paper, since itmade evident the need of a thorough study of simple
algorithms even under the simplest basic model of one machine
and scheduler.

In [5] we looked at a different setting, of an unreliable com-
munication link between two nodes, and proposed the asymp-
totic throughput for the performance evaluation of scheduling
algorithms. We showed that immediate feedback is necessary to
achieve competitiveness and we proved upper and lower bounds
for both adversarial and stochastic packet arrivals. More pre-
cisely, we considered only two packets lengths, πmin and πmax,
and showed that for adversarial arrivals there is a tight asymptotic

throughput, giving upper bound with a fixed adversarial strategy
andmatching lower bound with an online algorithmwe proposed.
We also gave an upper bound for algorithm Shortest Length, show-
ing that it is not optimal.

Jurdzinski et al. [23] extended our works [4,5] presenting an
optimal online algorithm for the case of k fixed packet lengths,
achieving the optimal asymptotic throughput shown in [5]. They
also showed that considering resource augmentation (specifically
doubling the transmission speed) for faster transmission of the
packets, the asymptotic throughput scales. Kowalski et al. [14],
inspired by [4] proved that for speedup satisfying conditions (a)
and (b) as described above (s < min{ρ, 1 + γ /ρ}), no deter-
ministic algorithm can be latency-competitive or 1-completed-
load-competitive, even in the case of one machine and two task
sizes. They then proposed an algorithm that achieves 1-latency-
competitiveness and 1-completed-load-competitiveness, as soon
as speedup s ≥ 1 + γ /ρ.

2. Model and definitions

Computing setting. We consider a system of one machine prone
to crashes and restarts with a Scheduler responsible for the task
assignment to the machine following some algorithm. The clients
submit jobs (or tasks) of different sizes (processing time) to the
scheduler, which in its turn assigns them to be executed by the
machine.
Tasks. Tasks are injected to the scheduler by the clients of the
system, an operation which is controlled by an arrival pattern A
(a sequence of task injections). Each task τ has an arrival time
a(τ) (simultaneous arrivals are totally ordered) and a size π(τ),
being the processing time it requires to be completed by amachine
running with s = 1, and is learned at arrival. We use the term
π-task to refer to a task of size π ∈ [πmin, πmax] throughout the
paper. We also assume tasks to be atomic with respect to their
completion; in otherwords, preemption is not allowed (tasksmust
be fully executed without interruptions).
Machine failures. The crashes and restarts of the machine are
controlled by an error pattern E, which we assume is coordinated
with the arrival pattern in order to give worst-case scenarios. We
consider that the task being executed at the time of the machine’s
failure is not completed, and it is therefore still pending in the
scheduler. The machine is active in the time interval [t, t∗] if it

4 A. Fernández Anta et al. / Future Generation Computer Systems () –

is executing some task at time t and has not crashed by time t∗.
Hence, an error pattern E can be seen as a sequence of active
intervals of the machine.
Resource augmentation/speedup. We also consider a form of
resource augmentation by speeding up themachine and the goal is
to keep it as low as possible. As mentioned earlier, we denote the
speedup with s ≥ 1.

Notation. Let us denote here some notation that will be exten-
sively used throughout the paper. Because it is essential to keep
track of injected, completed and pending tasks at each timepoint in
an execution, we introduce sets It(A),N s

t (X, A, E) and Q s
t (X, A, E),

where X is an algorithm, A and E the arrival and error patterns re-
spectively, t the time instant we are looking at and s the speedup
of the machine. It(A) represents the set of injected tasks within
the interval [0, t], N s

t (X, A, E) the set of completed tasks within
[0, t] and Q s

t (X, A, E) the set of pending tasks at time instant t .
Q s
t (X, A, E) contains the tasks that were injected by time t inclu-

sively, but not the ones completed before and up to time t . Observe
that It(A) = N s

t (X, A, E) ∪ Q s
t (X, A, E) and note that set I depends

only on the arrival pattern A, while sets N and Q also depend on
the error pattern E, the algorithm run by the scheduler, X , and the
speedup of the machine, s. Note that the superscript s is omitted
in further sections of the paper for simplicity. However, the appro-
priate speedup in each case is clearly stated.

Efficiency measures. Considering an algorithm ALG running with
speedup s under arrival and error patterns A and E, we look at the
current time t and focus on three measures; the Completed Load,
which is the sum of sizes of the completed tasks

C s
t (ALG, A, E) =


τ∈Ns

t (ALG,A,E)

π(τ),

the Pending Load, which is the sum of sizes of the pending tasks

P s
t (ALG, A, E) =


τ∈Q s

t (ALG,A,E)

π(τ),

and the Latency, which is the maximum amount of time a task has
spent in the system

Lst(ALG, A, E) = max

f (τ) − a(τ), ∀τ ∈ N s

t (ALG, A, E)
t − a(τ), ∀τ ∈ Q s

t (ALG, A, E)


,

where f (τ) is the time of completion of task τ . Computing the
schedule (and hence finding the algorithm) that minimizes or
maximizes correspondingly the measures C s

t (X, A, E), P s
t (X, A, E),

and Lst(X, A, E) offline (having the knowledge of the patterns A and
E), is an NP-hard problem [4].

Due to the dynamicity of the task arrivals and machine failures,
we view the scheduling of tasks as an online problem and pursue
competitive analysis using the three metrics. Note that for each
metric, we consider any time t of an execution, combinations of
arrival and error patterns A and E, and any algorithm X designed
to solve the scheduling problem: An algorithm ALG running
with speedup s, is considered α-completed-load-competitive if
∀t, X, A, E, C s

t (ALG, A, E) ≥ α · C1
t (X, A, E) + ∆C holds for some

parameter ∆C that does not depend on t, X, A or E; α is the
completed-load competitive ratio of ALG, which we denote by
C(ALG). Similarly, it is considered α-pending-load-competitive if
∀t, X, A, E, P s

t (ALG, A, E) ≤ α · P1
t (X, A, E)+ ∆P , for parameter ∆P

which does not depend on t, X, A or E. In this case,α is the pending-
load competitive ratio of ALG,whichwe denote byP (ALG). Finally,
algorithm ALG is considered α-latency-competitive if ∀t, X, A, E,
Lst(ALG, A, E) ≤ α · L1t (X, A, E) + ∆L, where ∆L is a parameter
independent of t, X, A and E. In this case, α is the latency
competitive ratio of ALG, whichwe denote byL(ALG). Note that α,
is independent of t, X, A and E, for the three metrics accordingly.1

1 Parameters ∆C , ∆P , ∆L as well as α may depend on system parameters like
πmin , πmax or s, which are not considered as inputs of the problem.

Both completed and pending load measures are important.
Observe that they are not complementary of one another. An
algorithm may be completed-load-competitive but not pending-
load-competitive, even though the sum of sizes of the successfully
completed tasks complements the sum of sizes of the pending
ones (total load). For example, think of an online algorithm that
manages to complete successfully half of the total injected task
load up to any point in any execution. This gives a completed
load competitiveness ratio C(ALG) = 1/2. However, it is
not necessarily pending-load-competitive since in an execution
with infinite task arrivals its total load (pending size) increases
unboundedly and there might exist an algorithm X that manages
to keep its total pending load constant under the same arrival
and error patterns. This is further demonstrated by our results
summarized in Table 1.

3. Properties of work-conserving and deterministic algorithms

In this sectionwe present some general properties for all online
work-conserving and deterministic algorithms. Obviously, these
properties apply to the four policies we focus on in the rest of the
paper.

3.1. Negative results

We first present some negative results, in the sense that they are
upper bounds when looking at the completed-load competitive-
ness and lower bounds when looking at the pending-load and la-
tency competitiveness. The first results show that when there is no
speedup these types of algorithms cannot be competitive in any of
the goodness metrics we use, which justifies the use of speedup in
order to achieve competitiveness (see Theorem 1). We then show
that even with the use of speedup, the achievable competitiveness
is limited (see Theorem 2).

Theorem 1. If tasks can have any size in the range [πmin, πmax] and
there is no speedup (i.e., s = 1), no work-conserving algorithm and
no deterministic algorithm is competitive with respect to the three
metrics, i.e., C(ALG) = 0 and P (ALG) = L(ALG) = ∞.

Theorem 2. Any work-conserving algorithm ALG running with
speedup s, has a completed-load competitive ratio C(ALG) ≤ 1 and a
pending-load competitive ratio P (ALG) ≥ 1.

The proof of Theorem 1 follows directly from Lemmas 1 and 2,
in combinationwith the non-competitiveness results in [4,14]. The
lemmas show the non completed load competitiveness, while the
results in [4,14] show the non pending load competitiveness and
non latency competitiveness respectively. The proof of Theorem 2
follows directly from Lemmas 3 and 4, showing the two ratio
bounds separately.

Lemma 1. If tasks can have any size in the range [πmin, πmax] and
there is no speedup (i.e. s = 1), no work-conserving algorithm ALG is
competitive with respect to completed load, i.e. C(ALG) = 0.

Proof. Assuming s = 1, we consider the following scenario as a
result of adversarial arrival and error patterns A and E respectively.
Let us fix some ϵ ∈ (0, 1) and use the notation ∆(k) = (πmax −

πmin)ϵ
k. Then, let wk be a task with size π(wk) = πmin + ∆(k), for

all k = 0, 1, 2, 3, Observe that ∀k, π(wk) ∈ (πmin, πmax] and
π(wk+1) < π(wk). Let us also define time points tk, such that t0 =

0 (the beginning of the execution) and tk+1 = tk +πmin +
1+ϵ
2 ∆(k).

Let us also define time points t ′k = tk−1 +
1−ϵ
2 ∆(k− 1). The arrival

pattern A is such that task w0 = πmax is injected in the system at
time instant t0. Then, for k = 1, 2, . . . task wk is injected at time t ′k.

A. Fernández Anta et al. / Future Generation Computer Systems () – 5

The error pattern E is such that at every time instant tk there is a
crash and restart.

We compare all work-conserving algorithms ALG with an
algorithm X of our choice. In the execution of ALG, task w0 is
scheduled as soon as it arrives, at time t0 (it is the only task
pending). On the other hand, X waits until time t ′1 for the arrival of
w1 and schedules it immediately. When the processor crashes at
time t1 the task w0 executed by ALG is interrupted, since t1 − t0 =

πmin +
1+ϵ
2 ∆(0) < π(w0) = πmin + ∆(0). However, X is able to

complete task w1 because t ′1 + π(w1) = t0 +
1−ϵ
2 ∆(0) + πmin +

∆(1) = t0 + πmin +
1+ϵ
2 ∆(0) = t1. After the restart at t1, ALG

schedules one of the pending tasks {w0, w1}, while X waits until t ′2
to schedule the next task to be injected, w2.

The general process is as follows. At time instant tk, ALG
schedules one of the pending tasks in {w0, w1, . . . , wk} while X
waits until the next taskwk+1 is injected at time t ′k+1 and schedules
it. When the processor crashes at time tk+1 the scheduled by ALG
is interrupted, since tk+1 − tk = πmin +

1+ϵ
2 ∆(k) < π(wk) =

πmin + ∆(k) and all possible tasks scheduled by ALG are at least
π(wk) long. However, X is able to complete task wk+1 because
t ′k+1 + π(wk+1) = tk +

1−ϵ
2 ∆(k) + πmin + ∆(k+ 1) = tk + πmin +

1+ϵ
2 ∆(k) = tk+1.
Letting this adversarial behavior run to infinity we see that at

any point in time t , Ct(ALG) = 0, while X will keep completing the
injected tasks. This, results to a completed-load competitive ratio
C(ALG) = 0. �

Lemma 2. If tasks can have any size in the range [πmin, πmax] and
there is no speedup (i.e. s = 1), no deterministic algorithm ALG is
competitive with respect to completed load, i.e. C(ALG) = 0.

Proof. Assuming s = 1, we consider the following scenario as a
result of adversarial arrival and error patterns A and E respectively.
Let us fix some ϵ ∈ (0, 1) and use the notation ∆(k) = (πmax −

πmin)ϵ
k. Then, let wk be a task with size π(wk) = πmin + ∆(k), for

all k = 0, 1, 2, 3, Observe that ∀k, π(wk) ∈ (πmin, πmax] and
π(wk+1) < π(wk). Let us also define time points tk, such that t0 =

0 (the beginning of the execution) and tk+1 = tk +πmin +
1+ϵ
2 ∆(k).

Let us also define time points t ′k = tk−1 +
1−ϵ
2 ∆(k− 1). The arrival

pattern A is such that task w0 = πmax is injected in the system at
time instant t0. Then, for k = 1, 2, . . . two identical tasks wk are
injected at time t ′k.

Now consider current time instant being tk. Since ALG is
deterministic, the adversary knows what decisions the algorithm
will take. There are two cases we need to examine:
(a) If ALG schedules a task before t ′k+1, then X waits until task wk+1
is injected at time t ′k+1 and schedules it. Then, crashes the machine
right after the wk+1 is completed. Note that X will complete the
task at time t ′k+1 + π(wk+1) = tk +

1−ϵ
2 ∆(k) + πmin + ∆(k+ 1) =

tk + πmin +
1+ϵ
2 ∆(k) = tk+1. On the other hand, ALG will not be

able to complete the task that was scheduled before t ′k+1. This is
because, tk+1 − tk = πmin +

1+ϵ
2 ∆(k) < π(wk) and all possible

tasks that ALG could have scheduled before t ′k+1 are of size at least
π(wk).
(b) If ALG does not schedule any task before t ′k+1, then X schedules
a packet wk at time tk and the machine is not crashed until it is
completed. Also, a new taskwk is injected only after the completion
of the one scheduled. Then, wemove to the same statewe had at tk.
Observe that X will complete thewk task at time t∗ = tk+π(wk) =

tk + πmin + ∆(k). On the same time, if ALG schedules any of the
available tasks at time t ′k+1, say the smallest possiblewk, it will only
be able to complete is by t ′k+1 + π(wk) = tk +

1−ϵ
2 ∆(k) + πmin +

∆(k) = tk + πmin +
3−ϵ
2 ∆(k), which is bigger than the previously

defined t∗.

Letting this adversarial behavior run to infinity we see that at
any point in time t , Ct(ALG) = 0, while X will keep completing the
injected tasks. This, results to a completed-load competitive ratio
C(ALG) = 0. �

Lemma 3. Anywork-conserving algorithmALG runningwith speedup
s, has a completed-load competitive ratioC(ALG) ≤ 1, more precisely
in executions where Qt(ALG) = ∅ infinitely many times.

Proof. Let us consider an adversary that causes the queue of
pending tasks of ALG to become empty infinitely many times
in an execution. In particular, let us consider the arrival and
error patterns A and E, such that there are time instants tk =

tk−1 + π , where k = 0, 1, 2 . . . and t0 = 0. At each tk there
is a machine failure (crash and restart) and exactly one π-task
(π ∈ [πmin, πmax]) injected. We name Ti the time interval [ti, ti+1].
Observe that an algorithm X (running with s = 1) completes
π-task injected at ti in interval Ti, while any work-conserving
algorithm ALG running with speedup s will complete the same
task at time ti + π/s < ti+1 resulting in an empty queue. Hence,
C(ALG) ≤ 1 as claimed. �

Lemma 4. Anywork-conserving algorithmALG runningwith speedup
s, has a pending-load competitive ratio P (ALG) ≥ 1, more precisely
in executions where the queue of pending tasks never becomes empty
after a point in time.

Proof. Let us consider arrival and error patterns A and E such that
algorithm ALG always has at least one pending task of any size
π ∈ [πmin, πmax] available to schedule. We consider phases of
arbitrarily chosen lengths π , defined as intervals Ti = [tk, tk+1]

where tk+1 = tk + π , t0 = 0 and k = 0, 1, 2 . . . being instants of
machine failures. As a result, in a phase of length π an algorithm
X will be able to complete a π-task, while ALG will complete up to
πs total load. Assuming that there are no phases of length less than
πmin, the complementing pending load at a time tk will therefore
be Ptk(X) ≥ Itk(A) − tk and Ptk(ALG) ≥ Itk(A) − tks. The pending
load competitive ratio becomes P (ALG) ≥

I(A)−ts
I(A)−t , which yields to

P (ALG) ≥ 1, since we can make I(A) infinitely big. �

3.2. Positive results

We then present some positive results, in the sense that they
show that if the speedup is large enough some competitiveness is
achieved.

Lemma 5. No algorithm X (running without speedup) completes
more tasks than a work-conserving algorithm ALG running with
speedup s ≥ ρ . Formally, for any arrival and error patterns A and
E, |Nt(ALG, A, E)| ≥ |Nt(X, A, E)| and hence |Qt(ALG, A, E)| ≤

|Qt(X, A, E)|.

Proof. We will prove that ∀t, A ∈ A and E ∈ E , |Qt(ALG, A, E)| ≤

|Qt(X, A, E)|, which implies that |Nt(ALG, A, E)| ≥ |Nt(X, A, E)|.
Observe that the claim trivially holds for t = 0. We now use
induction on t to prove the general case. Consider any time t > 0
and corresponding time t ′ < t such that t ′ is the latest time instant
before t that is either a failure/restart time point or a point where
ALG’s pending queue is empty. Observe here, that by the definition
of t ′, the queue is never empty within interval T = (t ′, t]. By the
induction hypothesis, |Qt ′(ALG)| ≤ |Qt ′(X)|.

Let iT be the number of tasks injected in the interval T . Since
ALG is work-conserving, it is continuously executing tasks in the
interval T . Also, ALG needs at most πmax/s ≤ πmin time to execute

6 A. Fernández Anta et al. / Future Generation Computer Systems () –

any task using speedup s ≥ ρ, regardless of the task being
executed. Then it holds that

|Qt(ALG)| ≤ |Qt ′(ALG)| + iT −


t − t ′

πmax/s


≤ |Qt ′(ALG)| + iT −


t − t ′

πmin


.

On the other hand, X can complete at most one task every πmin

time. Hence, |Qt(X)| ≥ |Qt ′(X)| + iT −


t−t ′
πmin


. As a result, we have

that

|Qt(X)| − |Qt(ALG)| ≥ |Qt ′(X)| + iT −


t − t ′

πmin


− |Qt ′(ALG)| − iT +


t − t ′

πmin


≥ 0.

Since this holds for all times t , the claim follows. �

The following theorem now follows directly from Lemma 5.

Theorem 3. Any work-conserving algorithm ALG running with
speedup s ≥ ρ has completed-load competitive ratio C(ALG) ≥ 1/ρ
and pending-load competitive ratio P (ALG) ≤ ρ .

Finally, increasing even more the speedup we can show that
both competitiveness ratios improve.

Theorem 4. Any work-conserving algorithm ALG running with
speedup s ≥ 1+ρ , has completed-load competitive ratioC(ALG) ≥ 1
and pending-load competitive ratio P (ALG) ≤ 1.

Proof. Consider an execution of any work-conserving algorithm
ALG running with speedup s ≥ 1 + ρ under any arrival and error
patterns A and E, as well as an algorithm X . Then, looking at any
time t of an execution, we define time instant t ′ < t to be the latest
time before t at which one of the following events happens: (1) an
active period starts (after a machine crash/restart), (2) algorithm X
has successfully completed a task, or (3) the queue of pending tasks
of ALG is empty, Qt ′(ALG) = ∅.

It is trivial that P0(ALG, A, E) ≤ P0(X, A, E) holds at the
beginning of the executions. Now assuming that Pt ′(ALG, A, E) ≤

Pt ′(X, A, E) holds at time t ′, we prove by induction that Pt(ALG,
A, E) ≤ Pt(X, A, E) still holds at time t . This also means that the
tasks successfully completed by ALG by time t have at least the
same total size as the ones completed by X .

Considering the interval T = (t ′, t], there are two cases:
Case 1: X is not able to complete any task in the interval T . Then,
it holds that Pt(X, A, E) = Pt ′(X, A, E) + iT , where iT denotes the
size of the tasks injected during the interval T . Similarly, it holds
that Pt(ALG, A, E) ≤ Pt ′(ALG, A, E) + iT even if ALG is not able to
complete successfully any task in T , and therefore,P (ALG, A, E) ≤

P (X, A, E).
Case 2: X completes successfully a task in the interval T . Note that
by definition of time t ′, during interval T there can only be one task
completed by X , and it must be completed at time t . (If that were
not the case, t ′ would not be well defined.) There are two subcases.
(a) First, t ′ is from case (3) of its definition. Hence, Qt ′(ALG) = ∅

and Pt(ALG, A, E) ≤ iT . At time t ′ algorithm X was executing the
task that was completed at time t . Hence, the task was injected
before t ′, and X has not completed any of the tasks injected in T .
Then, Pt(X, A, E) ≥ iT ≥ Pt(ALG, A, E).
(b) Second, t ′ is from cases (1) or (2) of its definition. Then, the
interval T has length π ∈ [πmin, πmax], which is the size of
the task completed by X . In that interval ALG is continuously
executing tasks. Hence, in the interval (t ′, t] it completes tasks
whose aggregate size is at least πs − πmax. Then, the pending

load at time instant t of both algorithms satisfy Pt(X, A, E) =

Pt ′(X, A, E) + iT − π while Pt(ALG, A, E) ≤ Pt ′(ALG, A, E) + iT −

(πs − πmax). Observe that s ≥ 1 + ρ implies that πs − πmax ≥ π .
Hence, from the induction hypothesis, Pt(ALG, A, E) ≤ Pt(X, A, E).

This implies a completed-load competitive ratio C(ALG) ≥ 1
and a pending-load competitive ratioP (ALG) ≤ 1, as claimed. �

4. Completed and pending load competitiveness

In this section we present a detailed analysis of the four algo-
rithms with respect to the completed and pending load metrics,
first for speedup s < ρ and then for s ≥ ρ.

4.1. Speedup s < ρ

Let us start with some negative results, whose proofs involve
specifying the combinations of arrival and error patterns that force
the claimed bad performances of the algorithms. We also give
some positive results for SPT, the only algorithm that can achieve a
non-zero completed-load competitiveness under some circum-
stances.

Lemma 6. When algorithms LIS and LPT run with speedup s <
ρ , they both have a completed-load competitive ratio C(LIS) =

C(LPT) = 0 and a pending-load competitive ratio P (LIS) =

P (LPT) = ∞.

Proof. Let us use the same combination of algorithm X , arrival and
error patterns A and E to prove the non-competitiveness of both
algorithms. We consider an infinite arrival pattern which injects
one πmax-task at the beginning of the execution, t = 0, and after
that it keeps injecting one πmin-task every πmin time. Consider also
an infinite error pattern that sets the machine failure points (crash
immediately followed by a restart) at time instants ti = i · πmin,
where i = 1, 2,

It can be easily seen, that an algorithm X running with no
speedup (s = 1), will be able to complete the πmin-tasks injected,
while neither LIS nor LPT will manage to complete any task,
running with speedup s < ρ, since they will both insist on
scheduling the πmax-task injected at the beginning. In an interval
of length πmin, algorithm X is able to complete a πmin-task but
neither LIS nor LPT can complete the πmax-task since it needs time
πmax

s > πmin. This means that the number of pending tasks in the
queues of both LIS and LPT will be continuously increasing with
time, and so will the total of their pending sizes. At the same time,
X is able to keep its pending tasks bounded, with nomore than one
πmax and one πmin tasks. As for the total size of completed tasks,
C(LIS, A, E) = C(LPT, A, E) = 0 at all times of the execution, while
the one of X grows to infinite as t goes to infinity.

Hence, for speedup s < ρ, algorithms LIS and LPT have
completed-load competitive ratios C(LIS) = C(LPT) = 0 and
pending-load competitive ratios P (LIS) = P (LPT) = ∞ as
claimed, which completes the proof. �

Lemma 7. When algorithm SIS runs with speedup s < ρ , it has a
completed-load competitive ratio C(SIS) = 0 and a pending-load
competitive ratio P (SIS) = ∞.

Proof. Let us divide the proof in two parts giving different
combinations of arrival and error patterns for the completed load
and the pending load respectively.

We first consider a combination of arrival and error patterns
A and E that behave as follows. We define time instants tk where
k = 1, 2, . . . and ti = ti−1 + πmin with time t0 = 0 being the
beginning of the execution. At every such time instants there is a
crash and restart of the machine and then an immediate injection

A. Fernández Anta et al. / Future Generation Computer Systems () – 7

of a πmin-task followed by a πmax-task. This creates active intervals
[ti, ti+1) of length πmin.

It is easy to observe that the patterns described cause algorithm
SIS to assign the last πmax-task injected, every time it has to make
a scheduling decision, since it is the last task injected. Since the
alive intervals are of length πmin and SIS needs πmax

s > πmin time
to complete the πmax-tasks, it is not able to complete any of the
tasks it starts executing, giving Ct(SIS) = 0 at all times t (and in
particular at tk time instants). On the same time, an algorithm X is
able to schedule and complete all the πmin-tasks injected, one in
every alive interval, giving a completed load of Ctk(X) = k · πmin at
every tk time instant.

Now let us consider another combination of arrival and error
patterns A′ and E ′ respectively, as well as an algorithm X ′. We
define time instants tk′ , where k′

= 1, 2, . . . as tk′ = tk′−1 + κπmin,
with time t0 = 0 being the beginning of the execution. At every
such time instant there are κ πmin-tasks injected followed by a
πmax-task. The crashes of the machine are set at time instants tk′
as well as tk′ + iπmin where i = 1, 2, . . . , κ . This creates κ alive
intervals of length πmin between tk′ and tk′+1.

The arrival pattern A′ causes algorithm SIS to schedule the last
πmax-task injected right after time instant tk′ . However, since all
alive intervals are of length πmin and s < ρ, created by the
error pattern E ′, algorithm SIS can never complete the πmax-task
scheduled, nor any other injected task (does not even get them
scheduled). On the same time though, algorithm X ′ is able to
complete the κ πmin-tasks injected at the last tk′ time instant. As
a result, looking right before the injection at a time instant ti in the
execution, the pending-load competitive ratio will be Pi(SIS) =
iκπmin+iπmax

iπmax
= 1 +

κ
ρ
. Hence, the more πmin-tasks are injected

at every tk′ (i.e. the bigger the κ), the bigger the pending-load
competitiveness of SIS, growing to infinity.

Therefore, for speedup s < ρ algorithm SIS has completed-load
competitive ratio C(SIS) = 0 and pending-load competitive ratio
P (SIS) = ∞ as claimed. �

Combining now Lemmas 6 and 7 we have the following
theorem.

Theorem 5. NONE of the three algorithms LIS, LPT and SIS is
competitive when speedup s < ρ , with respect to completed or
pending load, even in the case of only two task sizes (i.e., πmin and
πmax).

Surprisingly, for algorithm SPT we are not able to prove zero
completed-load competitiveness when s < ρ. This will be later
justified by the fact that for two task sizes SPT achieves a positive
completed-load competitiveness, cf., Theorem 7. We can however,
prove the following upper bound restriction for the completed-
load of algorithm SPT.

Theorem 6. For speedup s < ρ , algorithm SPT cannot have a
completed-load competitive ratio more than C(SPT) ≤

⌊(s−1)ρ⌋+1
⌊(s−1)ρ⌋+1+ρ

.
Additionally, it is NOT competitive with respect to the pending load,
i.e., P (SPT) = ∞.

Proof. For all speedup s < ρ, let us define parameter γ to be the
smallest integer such that γπmin+πmax

s > πmax holds. This leads to
γ > (s− 1)ρ and hence we can fix γ = ⌊(s− 1)ρ⌋ + 1. Assuming
speedup s < ρ we consider the following combination of arrival
and error patterns A and E respectively: We define time points tk,
where k = 0, 1, 2 . . . , such that t0 is the beginning of the execution
and tk = tk−1 + πmax + γπmin. At every tk time instant there
are γ tasks of size πmin injected along with one πmax-task. What
is more, the crash and restarts of the system’s machine are set at
times tk +πmax and then after every πmin time until tk+1 is reached.

By the arrival and error patterns described, every epoch; time
interval [tk, tk+1], results in the same behavior. Algorithm SPT is

able to complete only the γ tasks of size πmin, while X is able to
complete all tasks that have been injected at the beginning of the
epoch. From the nature of SPT, it schedules first the smallest tasks,
and therefore the πmax ones never have the time to be executed;
a πmax-task is scheduled at the last phase of each epoch which is
of size πmin (recall s < ρ ⇒ πmin < πmax/s). Hence, at time tk,
Ctk(SPT, A, E) = kγπmin and Ctk(X, A, E) = kγπmin + kπmax.

Looking at the pending load at such points, we can easily see
that SPT’s is constantly increasing, while X is able to have pending
load zero; Ptk(SPT, A, E) = kπmax but Ptk(X, A, E) = 0. As a result,
we have a maximum completed-load competitive ratio C(SPT) ≤

γ

γ+ρ
=

⌊(s−1)ρ⌋+1
⌊(s−1)ρ⌋+1+ρ

and a pending load P (SPT) = ∞. �

Then, restricting the number of different task sizes introduced
by the adversary, we can show a positive result for algorithm SPT.
More specifically, as shown in the following theorem, non-zero
completed-load competitiveness is guaranteedwhenonly two task
sizes are introduced.

Theorem 7. If tasks can be of only two sizes (πmin and πmax),
algorithm SPT can achieve a completed-load competitive ratio
C(SPT) ≥

1
2+ρ

, for any speedup s ≥ 1. In particular, Ct(SPT) ≥

1
2+ρ

Ct(X) − πmax, for any time t.

Proof. Let us assume fixed arrival and error patterns A and E
respectively, as well as an algorithm X , and let us look at any time t
in the execution of SPT. Let τ be a task completed byX by time t (i.e.,
τ ∈ Nt(X)), where tτ is the time τ was scheduled and f (τ) ≤ t the
time it completed its execution. We associate τ with the following
tasks inNt(SPT): (i) The same task τ . (ii) The taskw being executed
by SPT at time tτ , if it was not later interrupted by a crash. Not every
task in Nt(X) is associated to some task in Nt(SPT), but we show
now that most tasks are. In fact, we show that the aggregate size of
the tasks inNt(X) that are not associatedwith any task inNt(SPT) is
at most πmax. More specifically, there is only one task execution of
a πmax-task by SPT, namely w, such that the πmin-tasks scheduled
and completed by X concurrently with the execution of w fall in
this class.

Considering the generic task τ ∈ Nt(X) fromabove,we consider
the cases:

• If τ ∈ Nt(SPT), then task τ is associated at least with itself in
the execution of SPT, regardless of τ ’s size.

• If τ ∉ Nt(SPT), τ is in the queue of SPT at time tτ . By its greedy
nature, SPT is executing some task w at time tτ .
– If π(τ) ≥ π(w), then task w will complete by time f (τ) and

hence it is associated with τ .
– If π(τ) < π(w) (i.e., π(τ) = πmin and π(w) = πmax), then τ

was injected afterwwas scheduled by SPT. If this execution of
task w is completed by time t , then task w is associated with
τ . Otherwise, if a crash occurs or the time t is reached before
w is completed, task τ is not associated to any task inNt(SPT).
Let t∗ be the time one of the two events occurs (a crash occurs
or t∗ = t). Hence SPT is not able to complete task w. Also,
since τ ∉ Nt(SPT), it means that τ is not completed by SPT
in the interval [t∗, t] either. Hence, SPT never schedules a
πmax-task in the interval [t∗, t], and the case that a task from
Nt(X) is not associated to any task in Nt(SPT) cannot occur
again in that interval.

Hence, all the tasks τ ∈ Nt(X) that are not associated to tasks in
Nt(SPT) are πmin-tasks and have been scheduled and completed
during the execution of the same πmax-task by SPT. Hence, their
aggregate size is at most πmax.

Now let us evaluate the sizes of the tasks in Nt(X) associated
to a task in w ∈ Nt(SPT). Let us consider any task w successfully
completed by SPT at a time f (w) ≤ t . Task w can be associated
at most with itself and all the tasks that X scheduled within the

8 A. Fernández Anta et al. / Future Generation Computer Systems () –

interval Tw = [f (w)−π(w), f (w)]. The latter set can include tasks
whose aggregate size is at most π(w) + πmax, since the first such
task starts its execution no earlier than f (w) − π(w) and in the
extreme case a πmax-task could have been scheduled at the end of
Tw and completed at tw + πmax. Hence, if task w is a πmin-task, it
will be associated with tasks completed by X that have total size
at most 2πmin + πmax, and if w is a πmax-task, it will be associated
with tasks completed by X that have a total size of at most 3πmax.
Observe that πmin

2πmin+πmax
< πmax

3πmax
. As a result, we can conclude that

Ct(SPT) ≥
πmin

2πmin+πmax
Ct(X) − πmax =

1
2+ρ

Ct(X) − πmax. �

Conjecture 1. The above lower bound on completed load, still holds
in the case of any bounded number of task sizes in the range
[πmin, πmax].

4.2. Speedup s ≥ ρ

First, recall that in Theorem 3 we have shown that any work
conserving algorithm running with speedup s ≥ ρ has pending-
load competitive ratio at most ρ and completed-load competitive
ratio at least 1/ρ. So do the four algorithms LIS, LPT, SIS and SPT. A
natural question that rises is whether we can improve these ratios.
Let us start from some negative results, focusing at first on the
two policies that schedule tasks according to their arrival time,
algorithms LIS and SIS.

Lemma 8. When algorithm LIS runs with speedup s ∈ [ρ, 1 + 1/ρ),
it has a completed-load competitive ratio C(LIS) ≤

1
2 +

1
2ρ and a

pending-load competitive ratio P (LIS) ≥
1+ρ

2 .

Proof. Let speedup s ∈ [ρ, 1 + 1/ρ). We define a combination
of arrival and error patterns A and E, and algorithm X . Patterns
A and E behave as follows: Initially, there is a πmin-task injected,
followed by a πmax-task. After every period of πmax time the same
injection sequence is repeated, when also the machine is crashed
and restarted.

This behavior results to the following execution. There are
only active phases of size πmax, during which an algorithm X can
successfully execute the πmax task injected, while LIS is forced to
schedule the tasks in the order they arrive. Observe that, since
s < 1 + 1/ρ = (πmin + πmax)/πmax, LIS is able to complete only
one task in each phase, either a πmin-task or a πmax-task. Observe
also, that after k phases, where k is a multiple of 2, there will be
exactly k tasks of size πmin pending in the queue of X , while LIS
will have pending half of the tasks injected, half of which are of size
πmin and the other half πmax. Hence, the pending-load competitive
ratio of the algorithm becomes P (LIS) =

πmin+πmax
2πmin

=
1+ρ

2 and the
completed-load competitive ratio C(LIS) =

πmin+πmax
2πmax

=
1
2 +

1
2ρ ,

which completes the proof. �

Lemma 9. When algorithm LIS runs with speedup s ∈ [1 + 1/ρ, 2),
where s ≥ ρ as well, it has a completed-load competitive ratio
C(LIS) ≤

s
2 and a pending-load competitive ratio P (LIS) ≥

s
2(s−1) .

Proof. Let speedup s ∈ [1 + 1/ρ, 2). We define a combination of
arrival and error patterns A and E, algorithm X , and consider tasks
of sizes πmin and π , where π ∈ (πmin, πmax) such that πmin+π

s >

π ⇒ π <
πmin
s−1 . Note that such a value π always exists since

s ∈ [1+ 1/ρ, 2). More specifically, let us define π = ε
πmin
s−1 , where

ε ∈ (0, 1).
Patterns A and E behave as follows: We define time instants

tk = tk−1 + π , where k = 0, 1, 2, . . . and t0 = 0 is the beginning
of the execution. At each tk time instant there is a machine crash
and restart followed by an injection of a πmin-task and then a task
of size π .

This behavior results to the following execution. All phases are
of size π , during which algorithm X completes successfully the
π-task injected at the beginning of the phase, while LIS is able to
complete either a πmin-task or a π-task. Algorithm LIS schedules
the tasks by their arrival times (ascending order). However, by the
definition of size π , algorithm LIS cannot complete both a πmin and
a π-task in a period of length π . Observe that at every time instant
tk where k is a multiple of 2, LIS will be able to complete k/2 tasks
of size πmin and k/2 tasks of size π while X will complete k tasks of
sizeπ . Hence, the completed-load competitive ratio of LIS becomes
C(LIS) =

1
2 +

πmin
2π =

1
2 + πmin/(2ε

πmin
s−1) =

1
2 +

s−1
2ε . Respectively,

at such time instants Ptk(LIS) =
k(πmin+π)

2 while Ptk(X) = kπmin.
Hence, the pending-load competitive ratio P (LIS) =

1
2 +

π
2πmin

=

1
2 + (ε

πmin
s−1)/(2πmin) =

1
2 +

ε
2(s−1) .

This leads to an upper bound C(LIS) ≤
s
2 and a lower bound

P (LIS) ≥
s

2(s−1) as claimed. Let us assume otherwise, i.e.,C(LIS) >
s
2 . This means that there exists a parameter δ ∈ (0, 1) such that
C(LIS) ≥

1
2 +

s−1
2δ . Parameter ε mentioned above can bemade such

that ε > δ andCε(LIS) =
1
2 +

s−1
2ε < 1

2 +
s−1
2δ . For the pending-load

competitiveness a similar approach can be followed. �

Lemma 10. When algorithm LIS runs with speedup s ∈ [2, 1 + ρ),
where s ≥ ρ as well, it has a completed-load competitive ratio
C(LIS) ≥ 1 and a pending-load competitive ratio P (LIS) ≤ 1.

Proof. Let speedup s ∈ [2, 1 + ρ) and let us analyze first the
completed load metric. Let t∗ be the first time in an execution, at
which by means of contradiction, Ct∗(LIS) < Ct∗(X) −

3πmax
2 holds.

Also, let time t ′ < t∗ be the earliest time instance such that for
every t ∈ [t ′, t∗], Ct(LIS) < Ct(X) holds. Note that this implies
that the queue of pending tasks of LIS is never empty within the
interval [t ′, t∗]. What is more, both instants t ′ and t∗ are times at
which algorithm X completes a task. By definition of t ′, it also holds
that Ct ′(LIS) ≥ Ct ′(X) − πmax.

We then break the interval [t ′, t∗] into consecutive periods
[t ′, t1] and (ti−1, ti] for i = 2, 3, . . . , k, called periods i. Time
instance tk = t∗, and the rest of tis are the processor’s crashing
points within the interval. Let us denote by Ci(X) and Ci(LIS) the
load completed in period i by X and LIS respectively. We discard
the periods in which Ci(LIS) = 0 since Ci(X) = 0 will hold as well
(recall that s ≥ ρ). After discarding these periodswe renumber the
rest in sequence from 1 to k′.

In order to prove the theorem, we need to show that the total
completed load by X within the interval [t ′, t∗] is larger than the
total completed load by LIS within the same interval by at least an
additive term of 3πmax

2 − πmax.
If in a period j ≤ k′, algorithm LIS completes more total load

than X , it must be the case that
j−1

i=1 Ci(X) −
j−1

i=1 Ci(LIS) >
Cj(LIS) − Cj(X), otherwise time t ′ is not well defined. Else if in a
period j < k′ algorithm X completes more than LIS, i.e.,

Cj(X) > Cj(LIS), (1)

then the following holds,

Cj(LIS) + π(τj+1)

s
> Cj(X)

⇒ s · Cj(X) − π(τj+1) < Cj(LIS), (2)

where τj+1 is the last task intended for execution by LIS in period j
but is not completed, it remains at the head of the queue of LIS at
the end of period j. Hence it will be the first one to be completed in
the next period. Therefore ∀j ∈ [2, k′

],

Cj(LIS) ≥ π(τj). (3)

A. Fernández Anta et al. / Future Generation Computer Systems () – 9

From Eqs. (1) and (2), we have that Cj(X) > Cj(LIS) > s · Cj(X) −

π(τj+1). Since s ≥ 2, the following is implied

(s − 1) · Cj(X) < π(τj+1) ⇒ Cj(X) < π(τj+1).

What ismore, from Eqs. (1) and (3) we have that Cj(X) > π(τj) and
hence the following order of relationships holds

π(τj) ≤ Cj(LIS) < Cj(X) < π(τj+1) ≤ Cj+1(LIS).

Combining this with Eq. (2):

s · Cj(X) − Cj(LIS) < π(τj+1)

s
k′
i=1

Ci(X) −

k′
i=1

Ci(LIS) <

k′
i=1

π(τi+1) =

k′+1
i=2

π(τi)

s
k′
i=1

Ci(X) −

k′
i=1

Ci(LIS) <

k′
i=2

Ci(LIS) + π(τk′+1)

s
k′
i=1

Ci(X) < 2
k′
i=1

Ci(LIS) − C1(LIS) + π(τk′+1)

k′
i=1

Ci(X) <
2
s

k′
i=1

Ci(LIS) +
π(τk′+1) − C1(LIS)

s

k′
i=1

Ci(X) <

k′
i=1

Ci(LIS) +
πmax

s
.

Combining this with the fact that Ct ′(LIS) ≥ Ct ′(X)−πmax, we have
that

Ct∗(X) = Ct ′(X) +

k′
i=1

Ci(X)

< Ct ′(LIS) + πmax +

k′
i=1

Ci(LIS) +
πmax

s

= Ct∗(LIS) + πmax +
πmax

s
≤ Ct∗(LIS) +

3πmax

2
,

which contradicts the initial claim and the definition of time t ′.
Note that again, the last inequality follows from the fact that
speedup s ≥ 2. Hence, even if algorithm X manages to complete
more total load in some periods, LIS will eventually surpass its
performance.

Since the pending load is complementary to the completed load
we can claim the following:

Ct(LIS) ≥ Ct(X) −
3πmax

2

It − Ct(LIS) ≤ It − Ct(X) +
3πmax

2

Pt(LIS) ≤ Pt(X) +
3πmax

2
which completes the proof for both completed-load and pending-
load competitive ratios being optimal for algorithm LIS when
speedup s ∈ [2, 1 + ρ). �

Combining Lemmas 8–10 and Theorem 4we have the following
theorem.

Theorem 8. Algorithm LIS has a completed-load competitive ratio

C(LIS) ≤


1
2

+
1
2ρ

s ∈ [ρ, 1 + 1/ρ)

s
2

s ∈ [1 + 1/ρ, 2),

and C(LIS) ≥ 1 when s ≥ max{ρ, 2}.

It also has a pending-load competitive ratio

P (LIS) ≥


1 + ρ

2
s ∈ [ρ, 1 + 1/ρ)

s
2(s − 1)

s ∈ [1 + 1/ρ, 2),

and P (LIS) ≤ 1 when s ≥ max{ρ, 2}.

Recall that ρ ≥ 1, which means that 1 + ρ ≥ 2.

The following lemmas analyze the efficiency of algorithm SIS
in a similar way, looking at different speedup intervals for which
s ≥ ρ always holds.

Lemma 11. When algorithm SIS runswith speedup s ∈ [ρ, 1+1/ρ),
it has a complete-load competitive ratioC(SIS) ≤ 1/ρ and a pending-
load competitive ratio P (SIS) ≥ ρ .
Proof. Let speedup s ∈ [ρ, 1 + 1/ρ). We define a combination
of arrival and error patterns A and E, and algorithm X as follows:
At the beginning of the execution there is a πmax-task injected,
followed by a πmin-task. After every period of πmax time there is
a crash and restart of the machine, followed by the same injection
sequence (a πmax-task and then a πmin-task).

This behavior results to the following execution. There are
only active phases of size πmax, during which an algorithm X can
successfully execute the πmax tasks injected. At the same time,
SIS schedules the task injected the latest. Observe that, since s <
1 + 1/ρ = (πmin + πmax)/πmax, SIS is able to complete only one
task in each phase; only the πmin-task injected. Observe also, that
after k phases, there will be exactly k tasks of size πmin pending
in the queue of X , while SIS will have pending k tasks of size
πmax. Hence, the completed-load competitive ratio of SIS becomes
C(SIS) =

πmin
πmax

= 1/ρ and its pending-load competitive ratio
becomes P (SIS) =

πmax
πmin

= ρ, which completes the proof. �

Lemma 12. When algorithm SIS runswith speedup s ∈ [1+1/ρ, 1+

ρ), where s ≥ ρ as well, it has a completed-load competitive ratio
C(SIS) ≤

s
1+ρ

and a pending-load competitive ratio P (SIS) ≥

1
s +

ρ

1+ρ
.

Proof. Let speedup s ∈ [1+1/ρ, 1+ρ). We define a combination
of arrival and error patterns A and E, algorithm X and consider
tasks of sizes πmax, πmin and π , where π ∈ (πmin, πmax), such
that π <

πmin+πmax
s . Note that, such a value π always exists since

s ∈ [1+1/ρ, 1+ρ).More specifically, let us defineπ = ε
πmin+πmax

s ,
where ε ∈ (0, 1).

PatternsA and E behave as follows:Wedefine time instants tk =

tk−1+π , where k is an increasing positive integer (k = 0, 1, 2, . . .),
with t0 = 0 being the beginning of the execution. At each time
tk there is exactly one π-task injected, followed by one πmax-task,
followed by oneπmin-task. Crashes and restarts are also set at times
tk, before the new injection, causing active intervals of duration π .

This behavior results to executionswhere an algorithm X is able
to complete the lastπ-task injected, while SIS is forced to schedule
the latest πmin-task followed by the latest πmax-task, and hence
being able to complete only the πmin-task. Therefore, at the end
of each alive interval, Ctk(SIS) = kπmin, Ctk(X) = kπ , Ptk(SIS) =

k(π + πmax) and Ptk(X) = k(πmin + πmax). Hence, the completed-
load competitive ratio of algorithm SIS becomes

C(SIS) =
πmin

π
=

πmin

ε
πmin+πmax

s

=
s

ε(1 + ρ)

and its pending-load competitive ratio

P (SIS) =
π + πmax

πmin + πmax
=

ε
πmin+πmax

s + πmax

πmin + πmax

=
ε(1 + ρ) + sρ

s(1 + ρ)
=

ϵ

s
+

ρ

1 + ρ
.

10 A. Fernández Anta et al. / Future Generation Computer Systems () –

This leads to the upper and lower bounds claimed, i.e., C(SIS) ≤
s

1+ρ
and P (SIS) ≥

1
s +

ρ

1+ρ
.

Let us assume otherwise, i.e., C(SIS) > s
1+ρ

. This means that
there exists a parameter δ ∈ (0, 1) such that C(SIS) ≥

s
δ(1+ρ)

.
Parameter ε mentioned above can be made such that ε > δ and
Cε(SIS) =

s
ε(1+ρ)

< s
δ(1+ρ)

. For the pending-load competitiveness
a similar approach can be followed. �

Combining Lemmas 11, 12 and Theorem 4, we have the follow-
ing theorem.

Theorem 9. Algorithm SIS has a completed-load competitive ratio

C(SIS) ≤


1/ρ s ∈ [ρ, 1 + 1/ρ)

s
1 + ρ

s ∈ [1 + 1/ρ, 1 + ρ),

and C(SIS) ≥ 1 when s ≥ 1 + ρ.

It also has a pending-load competitive ratio

P (SIS) ≥


ρ s ∈ [ρ, 1 + 1/ρ)

1
s

+
ρ

1 + ρ
s ∈ [1 + 1/ρ, 1 + ρ),

and P (SIS) ≤ 1 when s ≥ 1 + ρ.

In contrast with these negative results, we present positive
results for algorithms LPT and SPT. It seems then that the nature of
these algorithms (scheduling according to the sizes of tasks rather
than their arrival time), gives better results for both the completed
and pending load measures.

Lemma 13. When algorithm LPT runs with speedup s ≥ ρ , it has
completed-load competitive ratio C(LPT) ≥ 1 and pending-load
competitive ratio P (LPT) ≤ 1.

Proof. As proven in Lemma 5, the number of completed tasks of
any work conserving algorithm under any combination of arrival
and error patterns A and E, and speedup s ≥ ρ, is never smaller
than the number of completed tasks of X . The same holds for
algorithm LPT, |Nt(LPT)| ≥ |Nt(X)|.

Since the policy of LPT is to schedule first the tasks with the
biggest size, the ones completed will be of the maximum size
available at all times, which trivially results to a total completed
load at least as much as the one of X , Ct(LPT) ≥ Ct(X) at any time
t . This gives a completed-load competitive ratio of C(LPT) ≥ 1, as
claimed.

For the pending-load competitiveness let us use the fact that at
any time of any execution the sum of completed and pending task
load sums up to the same total load independent of the algorithm;
i.e., ∀t, A, E, X , Ct(ALG)+Pt(ALG) = Ct(X)+Pt(X). Let us denote it
by K . This holds for LPT as well, hence Ct(LPT) + Pt(LPT) = K . We
have already shown that Ct(LPT) ≥ Ct(X). Hence replacing with
the corresponding expressions for the pending load, K −Pt(LPT) ≥

K − Pt(X) which leads to Pt(LPT) ≤ Pt(X) and Pt(LPT) ≤ 1 as
claimed. �

Lemma 14. When algorithm SPT runs with speedup s ≥ ρ , it has
completed-load competitive ratio C(SPT) ≥ 1 and pending-load
competitive ratio P (SPT) ≤ 1.

Proof. Let us consider any execution of algorithm SPT running
speedup s ≥ ρ under any arrival and error patterns A and E
respectively. We will prove that at all times in the execution, the
completed load of SPT is more than that of an algorithm X , i.e.,
C(SPT) ≥ C(X).

By contradiction, we assume a point in time t to be the first
time in the execution where Ct(SPT) < Ct(X). It must be the case

that X has just completed a task, since at all earlier times, up to t−,
Ct−(SPT) ≥ Ct−(X).

We first consider the case where X has completed a πmin-task.
This means that during the interval (t − πmin, t) no machine
failure has occurred and hence algorithm SPT was also able to
complete some tasks. Let t∗ be the last time in (t − πmin, t) that
SPT completes a task. Since s ≥ ρ > 1, it holds that Ct∗(SPT) ≥

Ct−πmin(SPT) + πmin. At the same time, Ct∗(X) = Ct−πmin(X). At
time t , algorithm SPT has the same completed load as at time t∗,
whereas X ’s completed load increases by πmin. Hence

Ct(SPT) = Ct∗(SPT) ≥ Ct−πmin(SPT) + πmin

≥ Ct−πmin(X) + πmin = Ct(X),

which contradicts the initial assumption.
We then consider the case where X has completed a

πmax-task. This means that during the interval (t −πmax, t) noma-
chine failure has occurred and hence algorithm SPT was also able
to complete some tasks. Let t∗ be the last time in (t − πmax, t) that
SPT completes a task. Since s ≥ ρ > 1, it holds that Ct∗(SPT) ≥

Ct−πmax(SPT) + πmax = Ct−πmax(SPT) + ρπmin. At the same time,
Ct∗(X) = Ct−πmax(X). At time t , algorithm SPT has the same com-
pleted load as at time t∗, whereas X ’s completed load increases by
πmax. Hence

Ct(SPT) = Ct∗(SPT) ≥ Ct−πmax(SPT) + πmax

≥ Ct−πmax(X) + πmax = Ct(X),

which again contradicts the initial assumption.
We have therefore shown that C(SPT) ≥ C(X) at all times,

which results to a completed-load competitive ratio C(SPT) ≥ 1.
Observe that with the same scenarios, for the pending load it will
be the case that Pt(SPT) ≤ Pt(X) which gives a pending-load
competitive ratio P (SPT) ≤ 1. �

Combining Lemmas 13 and 14 we have the following theorem.

Theorem 10. When algorithms LPT and SPT run with speedup s ≥

ρ , they have completed-load competitive ratios C(LPT) ≥ 1 and
C(SPT) ≥ 1 and pending-load competitive ratios P (LPT) ≤ 1 and
P (SPT) ≤ 1.

5. Latency competitiveness

In the case of latency, the relationship between the competi-
tiveness ratio and the amount of speed augmentation is more neat
for the four scheduling policies.

Theorem 11. NONE of the algorithms LPT , SIS or SPT can be
competitive with respect to the latency for any speedup s ≥ 1. That is,
L(LPT) = L(SIS) = L(SPT) = ∞.

Proof. We consider one of the three algorithms ALG ∈ {LPT,
SIS, SPT}, and assume ALG is competitive with respect to the
latency metric, say there is a bound L(ALG) ≤ B on its latency
competitive ratio. Then, we define a combination of arrival and
error patterns, A and E, under which this bound is violated.
More precisely, we show a latency bound larger than B, which
contradicts the initial assumption and proves the claim.

Let R be a large enough integer that satisfies R > B+ 2 and x be
an integer larger than sρ (recall that s ≥ 1 and ρ > 1, so x ≥ 2).
Let also a task w be the first task injected by the adversary. Its size
is π(w) = πmin if ALG = SPT and π(w) = πmax otherwise. We
now define time instants tk for k = 0, 1, 2, . . . , R as follows: time
t0 = 0 (the beginning of the execution), t1 = π(xR−1

+ xR)−π(w)
(observe that x ≥ 2 and we set R large so t1 is not negative), and
tk = tk−1 + π(xR−1

+ xR) − πxk−1, for k = 2, . . . , R. Finally, let us

A. Fernández Anta et al. / Future Generation Computer Systems () – 11

define the time instants t ′k for k = 0, 1, 2, . . . , R as follows: time
t ′0 = t0, t ′1 = t1 + π(w), and t ′k = tk + πxk−1, for k > 1.

The arrival and error patterns A and E are as follows. At time t0
task w is injected (with π(w) = πmax if ALG = SPT and π(w) =

πmin otherwise) and at every time instant tk, for k ≥ 1, there
are xk tasks of size π injected. Observe that π-tasks are such that
ALG always gives priority to them over task w. Also, the machine
runs continuously without crashes in every interval [tk, t ′k], where
k = 0, 1, . . . , R. It then crashes at t ′k and does not recover until tk+1.

We now define the behavior of a given algorithm X that runs
without speedup. In the first alive interval, [t1, t ′1], algorithm X
completes task w. In general, in each interval [tk, t ′k] for every
k = 2, . . . , R, it completes the xk−1 tasks of size π injected at time
tk−1.

On the other hand, ALG always gives priority to the x π-tasks
over w. Hence, in the interval [t1, t ′1] it will start executing the
π-tasks injected at time t1. The length of the interval isπ(w). Since
x > sρ, then x > (s − 1)π(w)/π and hence πx+π(w)

s > π(w).
This implies that ALG is not able to complete w in the interval
[t1, t ′1]. Regarding any other interval [tk, t ′k], whose length isπxk−1,
the xk π-tasks injected at time tk have priority over w. Observe
then, that since x > sρ, then πxk + π(w) > sπxk−1 and hence
πxk+π(w)

s > πxk−1. Then, ALG again will not be able to complete w
in the interval.

As a result, the latency of X at time t ′R is Lt ′R(X) = π(xR−1
+ xR).

This follows since, on the one hand, w is completed at time t ′1 =

π(xR−1
+xR). On the other hand, for k = 2, . . . , R, the tasks injected

at time tk−1 are completed by time t ′k, and t ′k − tk−1 = tk +πxk−1
−

tk−1 = tk−1+π(xR−1
+xR)−πxk−1

+πxk−1
− tk−1 = π(xR−1

+xR).
At the same time t ′R, the latency of ALG is determined by w since it
is still not completed, Lt ′R(ALG) = t ′R. Then,

Lt ′R(ALG) = tR + πxR−1

= tR−1 + π(xR−1
+ xR) − πxR−1

+ πxR−1
= · · ·

= t1 + (R − 1)π(xR−1
+ xR) − π

R−2
i=1

xi

= Rπ(xR−1
+ xR) − π(w) − π

xR−1
− x

x − 1
.

Hence, the latency competitive ratio of ALG is no smaller than

Lt ′R(ALG)

Lt ′R(X)
=

Rπ(xR−1
+ xR) − π(w) − π xR−1

−x
x−1

π(xR−1 + xR)

= R −
π(w)

π(xR−1 + xR)
−

1
x2 − 1

+
1

xR − xR−2

≥ R − 2 > B.

The three fractions in the second line are no larger than 1 since
x ≥ 2, and R is large enough so that t1 ≥ 0 and hence π(xR−1

+

xR) ≥ π(w). �

For algorithm LIS on the other hand, we show that even though
latency competitiveness cannot be achieved for s < ρ, as soon
as s ≥ ρ, LIS becomes competitive. The negative result verifies
the intuition that since the algorithm is not competitive in terms
of pending load for s < ρ, neither should it be in terms of
latency. Apart from that, the positive result verifies the intuition
for competitiveness, since for s ≥ ρ algorithm LIS is pending-load
competitive and it gives priority to the tasks that have beenwaiting
the longest in the system.

Theorem 12. For speedup s < ρ , algorithm LIS is not competitive in
terms of latency, i.e., L(LIS) = ∞.

Proof. Let us consider a combination of arrival and error patterns
A and E, and algorithm X . Pattern A is an infinite arrival pattern
that injects a πmin-task at the beginning of the execution, followed
by a πmax-task (after an infinitesimally small time ε). After that,
it injects only πmin-tasks, one every πmin time. Pattern E sets the
first crash/restart instant at πmax + ε time from the beginning
and then every πmin period of time, creating a phase (time period
between a restart and the next crash) of length πmax followed by
infinite phases of length πmin. These patterns allow an algorithm
X to execute successfully the πmax-task injected at the beginning
on the first phase, while algorithm LIS’s policy to schedule the
one that was injected earlier in the system forces it to schedule
the πmin-task. Even though it will also be executed, the πmax-task
scheduled next will never be completed in any of the following
phases since they are all of size πmin and πmax

s > πmin. This means
that algorithm’s LIS latency will increase to infinity with time,
while X ’s latency will remain bounded (each task is completed at
most πmax + πmin time after its injection).

Hence, completing the theorem, for speedup s < ρ algorithm
LIS is not competitive in terms of latency, L(LIS) = ∞, as
claimed. �

Theorem 13. For speedup s ≥ ρ , algorithm LIS has a latency
competitive ratio L(LIS) ≤ 1.

Proof. Consider an execution of algorithm LIS running with
speedup s ≥ ρ under any arrival and error patterns A ∈ A and
E ∈ E . Assume interval T = [t0, t1) where time t0 is the instant at
which a task w arrived and t1 the time at which it was completed
in the execution of algorithm LIS. Also, assume by contradiction,
that task w is such that Lt1(LIS, w) > max{Lt1(X, τ)}, where τ
is some task that arrived before time t1. We will show that this
cannot be the case, which proves latency competitiveness with
ratio L(LIS) ≤ 1.

Consider any time t ∈ T , such that task w is being executed
in the execution of LIS. Since its policy is to schedule tasks in
the order of their arrival, it means that it has already completed
successfully all tasks that were pending in the scheduler at time t0
before scheduling task w. Hence, at time t , algorithm LIS’s queue
of pending tasks has all the tasks injected after time t0 (say x), plus
taskw, which is still not completed. By Lemma 5, we know that the
there are never more pending tasks in the queue of LIS than that of
X and hence |Qt(LIS)| = x+1 ≤ |Qt(X)|. Thismeans that there is at
least one task pending for X which was injected up to time t0. This
contradicts our initial assumption of the latency of task w being
bigger than the latency of any task pending in the execution of X
at time t1. Therefore LIS’s latency competitive ratio when speedup
s ≥ ρ, is L(LIS) ≤ 1, as claimed. �

6. Conclusions

In this paper we performed a thorough study on the competi-
tiveness of four popular online scheduling algorithms (LIS, SIS, LPT
and SPT) under dynamic task arrivals and machine failures. More
precisely, we looked at worst-case (adversarial) task arrivals and
machine crashes and restarts and compared the behavior of the al-
gorithms under various speedup intervals. Even though our study
focused on the simple setting of one machine, interesting conclu-
sions have beenderivedwith respect to the efficiency of these algo-
rithms under the three differentmetrics – completed load, pending
load and latency – and under different speedup values. A challeng-
ing future work, apart from enhancing the analysis of these four
popular algorithms, is designing new ones in order to overcome
the limitations these present. Some other natural next steps are to
extend our investigation to the setting with multiple machines, or
to consider preemptive scheduling.

12 A. Fernández Anta et al. / Future Generation Computer Systems () –

Acknowledgments

This research was partially supported by the grant TEC2014-
55713-R from the Spanish Ministry of Economy and Compet-
itiveness (MINECO), the Cloud4BigData grant (S2013/ICE-2894)
fromMadrid Regional Government (CM), co-financed by Structural
Funds of the European Union (FSE & FEDER), and the FPU12/00505
grant from the Spanish Ministry of Education, Culture and Sports
(MECD). In addition, the second author was supported by the grant
UCY/ED2015 of theUniversity of Cyprus and the third author by the
grant 2015/17/B/ST6/01897 of the National Science Centre, Poland.

References

[1] B. Kalyanasundaram, K. Pruhs, Speed is as powerful as clairvoyance
[scheduling problems], in: 36th Annual Symposium on Foundations of
Computer Science, 1995. Proceedings., Oct 1995, pp. 214–221.

[2] S. Anand, Naveen Garg, Nicole Megow, Meeting deadlines: How much
speed suffices? in: Luca Aceto, Monika Henzinger, Ji Sgall (Eds.), Automata,
Languages andProgramming, in: LectureNotes in Computer Science, vol. 6755,
Springer, Berlin, Heidelberg, 2011, pp. 232–243.

[3] Kirk Pruhs, Jiri Sgall, Eric Torng, Online scheduling, in: Handbook of
Scheduling: Algorithms, Models, and Performance Analysis, 2004, pp. 1–15.

[4] Antonio Fernández Anta, Chryssis Georgiou, Dariusz R. Kowalski, Elli Zavou,
Online parallel scheduling of non-uniform tasks, Theoret. Comput. Sci. 590 (C)
(2015) 129–146.

[5] Antonio Fernández Anta, Chryssis Georgiou, Dariusz R. Kowalski, Joerg
Widmer, Elli Zavou, Measuring the impact of adversarial errors on packet
scheduling strategies, J. Sched. (2015) 1–18.

[6] K. Schwan, H. Zhou, Dynamic scheduling of hard real-time tasks and real-time
threads, IEEE Trans. Softw. Eng. 18 (8) (1992) 736–748.

[7] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced cpu energy,
in: 36th Annual Symposium on Foundations of Computer Science, 1995.
Proceedings, Oct 1995, pp. 374–382.

[8] Leah Epstein, Asaf Levin, Alberto Marchetti-Spaccamela, Nicole Megow, Julián
Mestre, Martin Skutella, Leen Stougie, Universal sequencing on an unreliable
machine, SIAM J. Comput. 41 (3) (2012) 565–586.

[9] Daniel D. Sleator, Robert E. Tarjan, Amortized efficiency of list update and
paging rules, Commun. ACM 28 (2) (1985) 202–208.

[10] Ronald L. Graham, Bounds onmultiprocessing timing anomalies, SIAM J. Appl.
Math. 17 (2) (1969) 416–429.

[11] Chung-Yee Lee, Surya Danusaputro Liman, Singlemachine flow-time schedul-
ing with scheduled maintenance, Acta Inform. 29 (4) (1992) 375–382.

[12] Nikhil Bansal, Algorithms for flow time scheduling (Ph.D. thesis), IBM, 2003.
[13] Igal Adiri, John Bruno, Esther Frostig, A.H.G. Rinnooy Kan, Singlemachine flow-

time schedulingwith a single breakdown, Acta Inform. 26 (7) (1989) 679–696.
[14] Dariusz R. Kowalski, PrudenceW.H.Wong, Elli Zavou, Fault tolerant scheduling

of non-uniform tasks under resource augmentation, in: Proceedings of the
12th Workshop on Models and Algorithms for Planning and Scheduling
Problems, 2015, pp. 244–246.

[15] Rob van Stee, Online scheduling and bin packing (Ph.D. thesis), 2002.
[16] D. Johnson, A. Demers, J. Ullman, M. Garey, R. Graham, Worst-case

performance bounds for simple one-dimensional packing algorithms, SIAM J.
Comput. 3 (4) (1974) 299–325.

[17] Leah Epstein, Rob van Stee, Online bin packing with resource augmentation,
Discrete Optim. 4 (34) (2007) 322–333.

[18] Joan Boyar, Faith Ellen, Bounds for scheduling jobs on grid processors,
in: Andrej Brodnik, Alejandro Lpez-Ortiz, Venkatesh Raman, Alfredo Viola
(Eds.), Space-Efficient Data Structures, Streams, and Algorithms, in: Lecture
Notes in Computer Science, vol. 8066, Springer, Berlin, Heidelberg, 2013,
pp. 12–26.

[19] Matthew Andrews, Lisa Zhang, Scheduling over a time-varying user-
dependent channel with applications to high-speed wireless data, J. ACM 52
(5) (2005) 809–834.

[20] Eric Sanlaville, Gnter Schmidt, Machine scheduling with availability con-
straints, Acta Inform. 35 (9) (1998) 795–811.

[21] Anis Gharbi, Mohamed Haouari, Optimal parallel machines scheduling with
availability constraints, Discrete Appl. Math. 148 (1) (2005) 63–87.

[22] Chryssis Georgiou, Dariusz R. Kowalski, On the competitiveness of scheduling
dynamically injected tasks on processes prone to crashes and restarts,
J. Parallel Distrib. Comput. 84 (2015) 94–107.

[23] Tomasz Jurdzinski, Dariusz R. Kowalski, Krzysztof Lorys, Online packet
scheduling under adversarial jamming, in: Approximation and Online
Algorithms, Springer, 2014, pp. 193–206.

Antonio Fernández Anta is a Research Professor at IMDEA
Networks. Previously he was a Full Professor at the
Universidad Rey Juan Carlos and was on the Faculty of the
Universidad Politécnica de Madrid, where he received an
award for his research productivity. He was a postdoc at
MIT from 1995 to 1997. He has more than 20 years of
research experience, with a productivity of more than 5
papers per year on average. He is Chair of the Steering
Committee of DISC and has served in the TPC of numerous
conferences and workshops. He is Senior Member of ACM
and IEEE.

Chryssis Georgiou is an Associate Professor in the
Department of Computer Science at the University of
Cyprus. He holds a Ph.D. (2003) in Computer Science
& Engineering from the University of Connecticut, USA.
His research interests span the Theory and Practice
of Fault-tolerant Distributed and Parallel Computing
with a focus on Algorithms and Complexity. He has
publishedmore than 70 articles in journals and conference
proceedings and co-authored two books on Robust
Distributed Cooperative Computing. He served on the
Program Committees of many conferences related to

Distributed Computing. In 2015 he was the General Chair of the ACM Symposium
PODC.

Dariusz R. Kowalski received his Ph.D. degree in Com-
puter Science in 2001 and M.Sc. degree in Mathematics in
1996, both from the University of Warsaw, Poland. He is
currently a Professor at the University of Liverpool, UK. He
published over 115 peer reviewed research papers, mainly
on distributed and parallel computing, network protocols
and fault-tolerance.

Elli Zavou received her B.Sc. in Computer Science from the
University of Cyprus, in 2011, having a Scholarship from
the Cyprus State Scholarship Foundation. She then joined
IMDEA Networks Institute in Spain, and received herM.Sc.
in Telematics Engineering from the Universidad Carlos
III de Madrid, in 2012. She is currently working towards
her Ph.D. in Telematics Engineering under the supervision
of Prof. Antonio Fernández Anta, and is supported by an
FPU Grant from MECD. Her research focuses on energy
efficient fault-tolerant dynamic/online scheduling, both of
non-uniform tasks in unreliable machine systems and of

packets in unreliable communication networks.

http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref2
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref3
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref4
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref5
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref6
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref8
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref9
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref10
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref11
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref12
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref13
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref15
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref16
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref17
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref18
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref19
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref20
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref21
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref22
http://refhub.elsevier.com/S0167-739X(16)30167-4/sbref23

	Competitive analysis of fundamental scheduling algorithms on a fault-prone machine and the impact of resource augmentation
	Introduction
	Model and definitions
	Properties of work-conserving and deterministic algorithms
	Negative results
	Positive results

	Completed and pending load competitiveness
	Speedup s <ρ
	Speedup s geq ρ

	Latency competitiveness
	Conclusions
	Acknowledgments
	References

