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Outline

• Motivation: Harvesting THz energy by rectennas

• Rectifiers needs:

• Small signal rectification with zero bias

• High degree of non-linearity around zero volt

• Small dynamic resistance

• A design model for resonant tunneling at zero bias MIIM 
diodes
• Theory
• Results

• Conclusions
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Rectenna (Rectifying Antenna)

• Capture the EM waves in broad-band antennas.
• Can be used for solar energy harvesting (feasible range: IR).
• For solar energy harvesting the technology far less expensive than 

photovoltaics.
• Very high efficiencies with full wave rectification (> 80%).
• Absorption at all frequencies.
• Omnidirectional.
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Rectifiers: the Biggest Challenge

• p-n junction diodes:
• Switching speed is limited by minority carrier charge storage.
• Maximum frequency: 0.2 THz.

• Schottky diodes:
• Are faster since minority carrier storage is negligible.
• Switching speed is limited by parasitic capacitance.
• Maximum frequency: 5 THz.

• MIM  and MIIM diodes:
• Transport is limited by tunneling rate.
• Transit time ~ 1/tunneling probability (circa fs).
• Maximum frequency: 100 THz (MIM), > 100 THz (MIIM).

• Geometric diode:
• Small diode capacitance.
• Graphene a promising candidate

due to its long electron mean free path.
• Maximum frequency: 28 THz.



29/06/2016

3

WoDiM 2014, 9-11 June 2014, Kinsale, Ireland
5

Small Signal Rectification

• In large signal rectification the high forward (on) current usually starts after a 
turn-on voltage (usually a fraction of a volt in typical diodes).

• Large signal rectification ~ on/off (forward/reverse) current ratio.
• In rectenna signal amplitude captured by antenna: mV and even µV.

• Large signal rectification out of scope.

• Small signal rectification is realized by nonlinearity of device.
• (Square law rectification using the first two terms in Taylor’s expansion.)

• Responsivity defined as the ratio of rectified dc current to input ac power:

• A good measure of non-linearity in small signal rectification.

• The highest degree of non-linearity is around turn-on voltage.
• Poor rectification at zero volts

• Minimum degree of non-linearity.

• Not efficient for THz signal in rectennas without external bias.
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Resonant Tunneling IN MIIM Diodes

Metal 1 Metal 2

Dielectrics
1            2

• Tunneling probability is increased by 
bound states in the potential well at 
positive bias to Metal 2.

• Resonant tunneling through bound 
states enhances the current and transit 
speed.

• No resonant tunneling in reverse bias: 
Improves large signal rectification.

• Largest responsivity at onset of 
resonant tunneling.

However:
• The onset of resonant tunneling is 

at voltages larger than barrier 
height of Metal 1 to dielectric 
(typically > 0.25 V).

• Not efficient for signal in rectennas
without external bias.

Symmetric MIIM in flat band condition

MIIM positive bias at Metal 2

Metal 1

Metal 2
Dielectrics
1                    2

Potential Well
Bound States

RT
Current
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Calculation of

Bound States

• Hamiltonian matrix is made using a set of localized base states in the stack.
• Eigenstates /energy levels are found by diagonalization or solving time independent 

Schrödinger equation.
• Only states localized in the potential well (lower than Elmax and Ermax) are considered.
• For each bound state in the 1D well, there are also a set of transverse excitations 

which generate a band of closely spaced states.
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Current Density Calculation

• A modified multi-barrier Tsu-Esaki method* is used.

• Dielectric stack: multiple slices of oxide with different barrier heights.
• J depends on DoS (E) and average occupancy of each state (uses F-D).
• Transmission probability Tcoeff calculated by transfer matrix (TM) model for 

tunneling through multiple barriers, containing resonant states.
• Uses WKB for wave-function at each ‘slice’ through a potential barrier by 

constructing a piecewise constant TM for each ‘slice’.

• Tcoeff, hence J depend on barrier height, energy, 
and distance, or the area under CB.

*R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).
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MIIM Current
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Previous MIIM Results*
Dielectric Layers Thickness

Al/Ta2O5/Al2O3 (1 nm)/Al

• Most effect of resonant tunneling on device with first oxide thickness of 3 nm (no 
bound states at 1 nm).

*N. Sedghi et al., ESSDERC (2013).
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Previous MIIM Results*
Various Structures

• All devices have the total thickness of 4 nm.
• Device with no resonant tunneling has no 

advantage over asymmetrical MIM.
• Nb2O5/Al2O3 has the highest band offset between 

oxide layers and lowest barrier to the left metal, 
hence the largest effect of RT.

*N. Sedghi et al., ESSDERC (2013).
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Proposed Structure

Flat band Zero Bias
• Work function of Metal 2 slightly lower than Metal 1.
• Bound states exist at zero bias when the band offset between two dielectrics is 

high enough.
• Even at very small positive voltage at Metal 2 the current is by resonant tunneling.
• At negative voltage to Metal 2 the bound states leak to the left: no resonant 

tunneling.

Metal 1 Metal 2

Dielectrics
1            2

Metal 1
Metal 2

Dielectrics
1                    2

Potential Well
Bound State
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Design Considerations

• Large band offset between two dielectrics 
increases the number of bound states in 
the potential well.

• A good choice: Nb2O5/Al2O3.
• Small barrier height at left: 

• Resonant tunneling at very small positive 
voltage,

• Bound states leak to the left at very small 
negative voltage.

• A good choice: Al/Nb2O5.

Metal 1
Metal 2

Dielectrics
1                    2

Potential Well
Bound State

• Wide choice of metals with close values of work function to fine tune the 
device: Al, Ti, V, Cr, Fe, Cu, Zn, Mo, Nb, Ag, W, and Ta.

• For more precise work function tuning: alloy of above metals, TaN, or TiN.
• Thickness of dielectric layers can also shift the onset of resonant tunneling.
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Simulation Results

• The work function of left contact is kept at 4.5 eV and the work function of right 
contact is varied.

• The onset of resonant tunneling on symmetric device is at 0.25 V.
• For right metal contact work function of 4.26 eV the onset of resonant tunneling 

is at zero volts.
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Simulation Results
Low Voltage

• Simulation at very low voltages (up to 10 mV) with step size of 10 µV.
• Percentile and adjacent average algorithms used to smooth the 

resonant peaks.
• Sharp rise in current after start of resonant tunneling.
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Device Nonlinearity (Responsivity)

• Rectification depends on 
device nonlinearity.

• Highest degree of 
nonlinearity (largest 
responsivity) at start of 
resonant tunneling.

• The start of resonant 
tunneling can be brought 
to zero volts.

• Large rectification for very 
small amplitude signals 
(µV) without bias.
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Practical Considerations

• Selection of right metals and fine tuning the work 
functions.
• This is not always straightforward.

• Stored charge at the interface of two dielectrics gives 
shift to the IV characteristics.

• The right barrier heights might not be achieved due to 
Fermi pinning.

• Native oxide on the bottom metal electrode is a big 
issue.
• Its thickness is close to that of main dielectrics.

• … Solutions?
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Practical Considerations
Possible Solutions

• The onset of resonant tunneling can be fine tuned 
practically on trial samples.
• Metal work functions, oxide layers thicknesses, dielectric 

type, nitrogen or forming gas annealing.

• The IV characteristics shift due to stored charge is 
insignificant for low voltage applications.

• Native oxide on metal electrodes can be removed by 
dry etching prior to oxide deposition.

• Metals with insignificant native oxide thickness can 
be used.
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Fabrication Process

Shadow Mask Photolithography
• Cross over structure by shadow mask, overlap structure by lithography.
• Device dimensions: 5-100 µm.
• Single or double dielectric layers deposition by ALD or rf sputtering.
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Preliminary Experimental Results*

• MIIM device with Ta2O5 as the main dielectric and native oxide as the 
second dielectric.

• Device with Cr contacts has larger current than one with Al contacts
• Smaller barrier to Cr2O3 than Al2O3.

• Responsivity of 8 A/W on sample with Al contacts (close to state-of-the-
art values for MIIM with resonant tunneling).

*Don Weerakkody, Electrical Engineering and Rob Treharne, Stephenson's Institute, University 
of Liverpool are acknowledged for device fabrication.
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Conclusions

• Rectenna has the potential of harvesting THz energy.

• MIIM diodes benefit from resonant tunneling within bound states, increasing the 
operating frequency to a few 100 THz, in the range of light spectrum.

• Signals captured by antenna have very small amplitude and large signal 
rectification concept is not applicable.

• IN MIIM diodes the highest degree of nonlinearity is at the onset of resonant 
tunneling (a fraction of volt in conventional symmetric MIIM diodes).

• Poor rectification around 0 V for small signals.

• An MIIM device configuration is proposed which can bring the onset of 
resonant tunneling to 0 V.

• Large degree of nonlinearity for rectification of very small amplitude signals.

• Responsivity values of a few hundreds A/W around 0 V.

• Typical values without resonant tunneling few tens of A/W.
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