THE HOMFLYPT SKEIN ALGEBRA OF THE TORUS AND THE
ELLIPTIC HALL ALGEBRA

HUGH MORTON AND PETER SAMUELSON

ABSTRACT. We give a generators and relations presentation of the Homflypt skein alge-
bra H of the torus T2, and we give an explicit description of the module corresponding
to the solid torus. Using this presentation, we show that H is isomorphic to the ¢ = &1
specialization of the elliptic Hall algebra of Burban and Schiffmann [BS12].

As an application, for an iterated cable K of the unknot, we use the elliptic Hall
algebra to construct a 3-variable polynomial that specializes to the A-colored Homflypt
polynomial of K. We show that this polynomial also specializes to one constructed by
Cherednik and Danilenko using the gl double affine Hecke algebra. This proves one of
the Connection Conjectures in [CD14].
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1. INTRODUCTION

In this paper we compare an algebra coming from knot theory with an algebra defined
using elliptic curves over finite fields. We use this to derive results about polynomials
associated to algebraic knots, which are iterated torus knots that arise from a singular
point of a planar algebraic curve. Below we briefly introduce both algebras and then give
precise statements of the results.

1.1. The Homflypt skein algebra. The framed Homflypt skein module H(M) of an
oriented 3-manifold M consists of R-linear combinations of framed oriented links in M
up to isotopy, modulo the linear ‘skein relations’

— =(s—s1 (Switch and smooth)

=vt =0 (Framing change)
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using the ring R = Z[v*!, s*1] with denominators s" — s, 7 > 0 as coefficient ring.

In these relations we use the convention that the framing is defined by a ribbon for
each component of the link, and the skein relations apply in a ball in which the framing
ribbons lie parallel to the strands as seen. This is sometimes termed the ‘local blackboard
framing’. The second framing relation then introduces v*! when a framing ribbon acquires

a single extra twist.

Remark 1.1. The term skein module indicates that H(M) is a module over R. Since
many skeins are also modules over more complicated R-algebras, Morton and his co-
workers often simply use the term skein, and suppress the qualifications framed Homflypt
also when the context is clear.

When F is an orientable surface and M = F' x I we adopt the notation H(F') in place
of H(F x I), and refer to H(F) as the skein (module) of the surface F. Framed links in
F x I can be represented by diagrams in F', with the global ‘blackboard framing’ from F,
up to isotopy and Reidemeister moves Ry, Rr;;. We can then regard elements of H(F')
as diagrams in F' modulo R;;, R;;; and the skein relations.

The skein H(F') forms an algebra over R under the product induced by placing one copy
of F' x I containing an element D € H(F') on top of another copy containing £ € H(F)
to determine their product DE (see Section 2.3).

In the case C = H(F) where F is the annulus S* x I this algebra is commutative and
has been studied for some time. A recent account of some of its properties can be found in
[MMOS]. Tt has an interpretation as the algebra of symmetric functions in a large number
of commuting variables z1, ..., xx, and contains an element P, for each m corresponding
to the power sum z{" + --- 4+ z%}. One representation of this element, due originally to
Aiston [Ais96], is a multiple of the sum of m explicit closed m-braids (see Section 2.4).

The case of primary interest to us is the skein H = H(T?) for the surface T?. As
an algebra H is non-commutative, and can be generated by elements Py, one for each
x € Z*\ {0}, corresponding to free homotopy classes of curves in T?.

For a primitive x = (m,n) € Z?* we represent Py by the oriented embedded (m, n) curve
on T2. It is an immediate consequence of the switch and smooth skein relation that the
commutator [P oy, Po,1)] satisfies

[P0y, Po) = (s — 3_1)P(1,1)-

The same switching and smoothing relation shows that [Py, Py| = (s — s7') Pxyy when
the primitive curves x and y cross once in the positive direction. Our main result is the
following simple extension of these commutation relations (see Theorem 3.2).

Theorem 1. (Global switch and smooth). The commutator [Px, Py in H satisfies
(1.1) [P, Py] = (5" = s7%) Py

where d = det[x y] is the signed crossing number of x with y. In particular, if x and'y
are collinear, then Py and Py, commute.

In making the statement of Theorem 1 we must also specify P,,x for any multiple of a
primitive x. This is defined by decorating the embedded curve x by the element P, from
the skein C of the annulus. (See Definition 2.5.)
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When x,y and x +y are all primitive the commutator [P, Py] may be regarded as the
difference of a switch of the curves x and y, with Px,, appearing as the simultaneous
smoothing at the k crossings.

The proof of Theorem 1 relies on a result in [MMO8] to establish that

[Pim,0), Poy] = (8™ = 57™) P,y
Direct skein manipulation shows that

[Po,-1), Panpy] = (8™ = 57™) Pim,oy,
using Aiston’s representation of P,,. The full theorem is proved from these two cases in
Section 3 using induction on det[x y]. Using a theorem of Przytycki in [Prz92], we prove
the following (see Corollary 3.3).

Theorem 2. As an abstract algebra, H(T?) has a presentation with generators Py for
x € Z? and relations given by equation (1.1).

In general, if M is a 3-manifold, then H(M) is a module over the algebra H(OM).
In particular, the skein module H(S®\ K) of a knot complement is a module over the
algebra H(T?). In the case where K is the trivial knot we use earlier work of Morton and
coauthors [MH02, HMO06] to give an explicit description of C := H(S! x D?) as a module
over H(T?). In particular, as a module over the (commutative) ‘horizontal’ subalgebra
generated by { P, | m € Z} it is simultaneously diagonalizable with distinct eigenvalues.
Over the ‘vertical’ subalgebra generated by {F%, | n € Z} the module C is free of rank
1. It can be viewed as an analogue of the polynomial module over the Weyl algebra, a
Verma module in Lie theory, or the polynomial representation of a double affine Hecke
algebra. We give explicit formulas for the action of H on C in Theorem 4.6.

These theorems can be viewed as analogues of the work of Frohman and Gelca in
[FGO00]. They give a presentation of the Kauffman bracket skein algebra K,(T?) of the
torus 72 and describe its action on the (Kauffman bracket) skein of the annulus. It turns
out that the algebra K,(T?) is the t = ¢ specialization of the sly spherical double affine
Hecke algebra introduced by Cherednik in [Che95]. Analogously, we show that the Homfly
skein algebra H is isomorphic to the o = 57! specialization of the elliptic Hall algebra of
Burban and Schiffmann [BS12]. This algebra can be viewed as the gl spherical DAHA
by work of Schiffmann and Vasserot [SV11].

1.2. The elliptic Hall algebra. Let X be a smooth elliptic curve over a finite field. In
[BS12], Burban and Schiffmann gave an explicit presentation for the elliptic Hall algebra
&,.t, which is the Drinfeld double of the Hall algebra of the category Coh(X) of coherent
sheaves over X. They show that the structure constants are Laurent polynomials in
q,t, where ¢2,t72 are the eigenvalues 0,5 of the Frobenius operator on the first l-adic
cohomology group of X. We may therefore view ¢, t as formal parameters.

It turns out that the algebra &, (or one of its cousins') has several interpretations:

e a generalized quantum affine algebra in [DI97],
e ‘a (q,v) analog of the Wy, ., algebra’ in [Mik07]
e the ‘shuffle algebra’ of [FT11], (see also [Negl4])

1By ‘cousin’ we mean either the ‘positive half’ é'gft or a central extension of & ;.
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e the ‘spherical gl double affine Hecke algebra’ in [SV11], (see also [FFJ*11])
e the ‘quantum continuous gl in [FFJT11]
e an algebra acting on &K (Hilb,(C?)) in [SV13] (see also [FT11], [FFJT11], [Negl5])

As a consequence of Theorem 2, we add a new interpretation to this list (see Theorem
5.6).

Theorem 3. The skein algebra H is isomorphic to &,,, and the SLo(Z) actions agree.
In particular, any knot K C S® provides a module over the algebra &,,.

This theorem may seem surprising because the definitions of £, ; and H seem completely
unrelated. One rough heuristic explanation for this isomorphism is as follows. When all
parameters are set equal® to 1, the Homflypt skein algebra of a surface F surjects onto
Opn = O(Char(m (F),GLyN(C)), the ring of functions on the scheme parameterizing
representations of 71 (F') up to equivalence. The gl spherical double affine Hecke algebra
Sﬁév,t is an algebra depending on 2 parameters ¢,t € C*, and when ¢ =t = 1, this algebra
is isomorphic to Or2 y. Finally, Schiffmann and Vasserot show in [SV11] that &, surjects
onto Sﬂé\ft for any N. Summarizing, when the parameters are set to 1, both H and &;
surject onto the (commutative) algebras Orz y for any N.

We also remark that Theorem 3 seems analogous to Kontsevitch’s homological mirror
symmetry for an elliptic curve (see [PZ98] for a precise statement and proof in this case).
Very roughly, in this case mirror symmetry predicts that the derived category D®(Coh(X))
of coherent sheaves over an elliptic curve X over C is equivalent to the Fukaya category
of the symplectic torus S' x S1. Objects in this Fukaya category are simple closed curves
‘decorated’ by a representation of U (k) (for some k), and under this equivalence, a sheaf on
X of slope m/n is sent to the (m, n) curve on S'x S*, decorated by a certain representation
of U(ged(m,n)). This is reminiscent of the isomorphism in Theorem 3. However, it seems
that there are significant difficulties (at best) in attempting to prove this isomorphism
using mirror symmetry, so this picture is still rather vague. In particular, the elliptic Hall
algebra is actually the “spherical” subalgebra of the Hall algebra of an elliptic curve (i.e.
it only contains certain linear combinations of sheaves), and the elliptic curve is over a
finite field. However, the work of Lekili and Perutz in [LP12] may shed some light on this
situation.

1.3. Algebraic knots. We next discuss an application of the isomorphism H = &, ,. If
K is an iterated cable of the unknot, then it is straightforward to give a cabling formula
that computes the A\-colored Homflypt polynomial J# (K, \) of K in terms of four objects:

e the skein algebra H,

e the action of SLy(Z) on H,

e the action of H on C, the skein module of the annulus,
e the evaluation map ev?” : C — H(S®) = R.

(See Proposition 7.13). Using the isomorphism of Theorem 5.6 and a theorem in [SV13],
we show that all objects used in the cabling formula have t-deformations. This allows
us to define 3-variable polynomials J¢(K, ) (see Definition 7.16) that specialize to the

2«Qetting all parameters equal to one” is a statement that requires some care to be made precise, but
we will not discuss this.
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colored Homflypt polynomials J# (K, )\). (Technically, these are rational functions — see
Remark 7.20.)

In [Sam14] similar polynomials were defined using the sly spherical double affine Hecke
algebra, and Cherednik and Danilenko generalized these to arbitrary g shortly afterwards
in [CD14] (with a slightly simpler construction). For g = gl,, we recall their definition of
the polynomials JV (K, \) in Definition 7.19. We prove the following in Theorem 7.4:

Theorem 4. If K is an iterated cable of the unknot, we have the following specializations:

JE(K, X\ q,t,u) = v*s"JH (K, )\, s)

q=s"2t=5"2 u=0v2

u'Jg(K, A q,t,u) = q't'JN(K, A\ q,t)

u=t

(where the powers denoted by “e” depend on K and |\|, but not on N ). In particular, the
Connection Conjecture [CD14, Conj. 2.4(1)] is true.

We remark that the definition of J¢(K) depends a priori on a choice of presentation
of K as an iterated cable of the unknot. It isn’'t clear whether different choices for this
presentation produce the same polynomials. (However, it was shown that certain different
choices do produce the same polynomials JV (K) in [CD14, Thm. 2.1(i)].)

At this point, one natural question is whether the modules over &, , associated to knots
can be deformed to modules over &, for any ¢t € C* (in the style of [BS14]). A positive
answer may be interesting even for the module C associated to the unknot. A central
extension £, of & ; acts on A, which is the ‘Fock space’” with basis given by the set of all
partitions (see, e.g., [FFJ*11] or [SV13]). The module C has a natural basis indexed by
pairs of partitions, and so can be identified with A®cA as a vector space. It does not seem
that a module of this ‘size’ has appeared in the recent literature about the representation
theory of &,, but it does seem reasonable to expect that C deforms. We hope to address
this question in future work.

1.4. Summary. We now summarize the contents of the paper. In Section 2 we provide
brief background and definitions. We then give a presentation for the algebra H in
Section 3. The module C associated to the solid torus is described explicitly in Section
4. In Section 5 we prove that H is the t = ¢ specialization of the elliptic Hall algebra
&g+~ In Section 6 we describe different specializations of the Homflypt skein relations and
their relation to other knot invariants. In Section 7 we use the elliptic Hall algebra to
construct a 3-variable polynomial that specializes to the Homflypt polynomial for iterated
torus knots and to the 2-variable polynomials for gl constructed in [CD14].
Acknowledgments: We would like to thank the referees for a careful reading of the
manuscript and for a suggestion which helped clarify the proof of Theorem 4.6. We thank
I. Cherednik for helpful discussions about [CD14], and D. Muthiah for help with using
Sage and for several enthusiastic conversations. We also thank Y. Berest, F. Bergeron,
A. Oblomkov, V. Shende, O. Schiffmann, and E. Vasserot for enlightening discussions of
their work and/or the present paper. The authors also benefited from the Research in
Pairs program in Oberwolfach, where final editing on this paper was completed.
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2. BACKGROUND

In this section we first establish notation for ‘quantum numbers’ and partitions, and
we then give definitions and background for Homflypt skein modules.

2.1. Notation. In this paper we will use the coefficient ring R = Clv*!, s*1, (s — s71)7#]
(where k ranges over N), and we use the following ‘quantum numbers:’
s — 574
[d] = P {d} = s — 57, {d}t =54 57

Let A = (Aq, -+, Ax) be a partition of length k. We will represent partitions by Young
diagrams using the continental convention, so that a nonempty partition always has a
box in its lower left corner. We will write A both for a partition and for its representation
as a Young diagram. If z is a box in A in row ¢ and column 7, we will use the standard

notations
(2.1) a(z) =XNi—j, Uz)=Kn|A 2j} —i, d(z)=j U(z)=i
Here a(x), I(z), d/(z), and I'(z) are the arm length, leg length, coarm length, and coleg

length of x, respectively. Graphically, they are the number of cells strictly to the right,
strictly above, weakly to the left, and weakly below x, respectively.

I(x)

armleg.pdf
x
’ ale)
J
We will also use the content c(x) and hook length hl(x), which are defined by
(2.2) c(z):=j—1i, hl(z):=a(z)+(z)+1

2.2. Homflypt skein modules. Let M be an oriented 3-manifold. A framed oriented
link in M is (an ambient isotopy class of ) a smooth embedding LI(S* x [0, 1]) < M, where
each copy of S* is oriented. Let £(M) be the free R-module spanned by framed oriented
links in M, and let £'(M) C L(M) be the R-submodule generated by the skein relations
in Figure 1. (A skein relation is a formal linear combination of links differing only inside
a 3-ball as shown in the figure.)

— =(s—s71 (Switch and smooth)

=v !, =0 (Framing change)

F1GUuRE 1. The Homflypt skein relations



It is an immediate consequence that
(2.3) = 0,
-1 _

where § = This relation allows an unknotted component with framing 0 con-

s— 571
tained in a 3-ball disjoint from the rest of the link to be removed at the expense of the
constant multiple 9.

Definition 2.1. The framed Homflypt skein module H(M) of the manifold M is the
quotient L(M)/L'(M).

In general, the Homflypt skein H (M) has four important properties:

(1) The skein H (M) is graded by the homology group H; (M), since each skein relation
involves only links in the same homology class.

(2) If M = F x [0,1], then H(M) is an algebra (which is typically noncommutative).
The product is given by stacking links (see Section 2.3 for an example). The
grading is additive under the product.

(3) If OM = F, then H(M) is a module over the algebra H(F x [0,1]). The action
is given by “pushing links from the boundary into M.” If a € H(F x [0,1])
and m € H(M) are homogeneous, then deg(a - m) = t(deg(a)) + deg(m), where
Ly : Hi(F) — Hy(M) is the map on homology induced by the inclusion ¢ : F' < M.

(4) An oriented embedding f : M — N induces an R-linear map f. : H(M) — H(N).
When f is a homeomorphism the map f, is an isomorphism.

Definition 2.2. Write H := H(T?) for the (framed Homflypt) skein of the torus 7%, and
C := H(S' x I?) for the skein of the solid torus, with a choice of explicit homeomorphism
from the solid torus to (S' x I) x I to specify C as an algebra (see the beginning of
Section 4). The skein C is an algebra, where the product is given by stacking in the third
coordinate of (S x I') x I. The algebra H also acts on C, since the boundary of (S x I') x I
is a torus. However, this action is not by algebra morphisms of C. (This action is roughly
analogous to the action of the Weyl algebra of differential operators on Clx].)

In this paper we study the algebra structure of H and the H-module structure of C.
The algebra H is graded by x € Z* = H,(T?). Set

H = @X€Z2HX
where the degree of a link is given by its homology class. Similarly the algebra C has a

Z grading. There is an action of SLy(Z) by algebra automorphisms on H induced by the
mapping class group action on 772

2.3. Diagrammatic representations of links in 72. Use the classical presentation of
T? as a square with pairs of edges identified,

as indicated by the coloured edges in the diagram above. Then a link in 7 can be drawn
as a diagram in the square with some arcs meeting the coloured edges in matching pairs.
For example here are diagrams in T2 of a 2-component link

D =
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and a 1l-component link
I D——
along with diagrams for the products
DE = and ED =

Elements in H are linear combinations of diagrams, so for example the commutator
[D, E] is the element DE — ED € H.

Using the convention that the square has sides along the usual axes we can draw the

embedded (m,n) curve in T? as
P, =

meeting the vertical edges in m points and the horizontal edges in n points. Here (m,n) =
(—1,k) = x € Z* is the homology class of the curve, so that Py lies in the graded subspace
H, C H. The curve will cross the edges of the square according to the signs of m and n;
in this diagram m = —1 and n =k > 0.

This defines elements Py for each primitive x € Z?, in other words where m and n are
coprime. As a simple example we have

PI,O = 5 PO,l =
Their commutator then satisfies
[Pl,07 PO,l] = -

= (S — Sil)PLl,

using the switch and smooth skein relation.

Clearly if the embedded curve P crosses the embedded curve P, once positively® then
the switch and smooth relation applied at the crossing results in the embedded curve
Py+y and their commutator satisfies the equation

[P, Py = (s = 57") Pery-

Remark 2.3. The signed number of crossings of curves with homology x and y is equal
to the determinant det[x y] of the 2 x 2 matrix with columns x and y.

Before giving the definition of the elements P, ,y € H where m and n are not coprime
we use diagrams in the square meeting the edges in matched pairs to represent elements
of some other skeins.

2.4. The skein C of the annulus. If we identify the two horizontal edges only we get
an annulus. Elements of its skein C can be represented by diagrams which do not meet
the vertical edges. Any such diagram also gives a diagram in 72 by identifying the two
vertical edges. The elements arising in this way in H will lie in the graded part H )
where k is the signed number of crossings with the horizontal edge.

3A crossing is positive if the tangent vector of the upper curve is rotated clockwise from tangent vector
of the lower one (i.e. the left-most term of the skein relation is a positive crossing).



For 7,7 > 0, define elements A; ; € C diagrammatically by

Az‘,j = |aijannulusduke.pdf

We will use the following k-strand elements in Hj:

k—1

Xy = ZAi,k—i—l ecC
i=0

Remark 2.4. By repeatedly applying the skein relation, it is clear that X = kA o+ -,
where the ellipses refer to diagrams with fewer numbers of crossings. Since A,y = Xj,
this upper-triangularity implies that in the algebra C, any polynomial in the Ao can be
written uniquely as a polynomial in the X;. We will use the X because they satisfy nicer
commutation relations.

Aiston [Ais96] showed that X} represents a multiple of the kth power sum when in-
terpreting C in terms of symmetric functions. Further work by Aiston, Morton and
subsequent collaborators has identified other nice algebraic and skein theoretic properties
of X, and more particularly the exact power sum P, := (s — s7!)/(s¥ — s7%) X}, which
we shall also use in this paper.

Definition 2.5. For & > 0 we define P to be the result of decorating the (0, 1) curve
in T2 by P, from C, or equivalently
s—s1 &
Poy = ok 2 Aij

after identifying the vertical edges as well in the square to give diagrams in 7.

To define Py in general write x = k(m,n) with m and n coprime and k£ > 0. Then
decorate the embedded (m,n) curve by the element Pj, € C from the skein of the annulus
to specify Py. By definition, for v € SLy(Z) we have - Py = Py .«.

2.5. Decoration and framing. The term decoration in our definition above has been
used widely by Morton and others in describing satellite invariants of framed knots and
links in manifolds.

What is meant by decorating a framed oriented curve K in M by a framed curve @) in
S x Iis to embed the thickened annulus S* x I on the neighbourhood of K, respecting
orientation and framing. The image of () in M is the satellite of K with pattern @), and is
referred to as K decorated by (). It carries a framing which is determined by the framing

of Q.



10 HUGH MORTON AND PETER SAMUELSON

The embedding from S' x I to M depends on the framing and orientation of K. It
induces a linear map of skeins from C = H(S! x I) to H(M), with image denoted by Cp.

In the case where M = F' x I and K is an embedded curve in the surface F, which is
framed by its neighbourhood in F', the induced linear map is an algebra homomorphism.
The image Ck is then a subalgebra of H(F').

When F' = T? there is an embedded curve Py for each primitive x € Z?. We have
defined Py above to be the image of P, € C under the homomorphism C — H determined
by the framed embedded curve Pk.

Remark 2.6. When k = 1 the result Py is just the oriented x = (m,n) curve, as defined
earlier. For B, with n < 0 we decorate the (0, —1) curve by P_,. Also, since SL(2,Z)
acts on T preserving the framing annuli of embedded curves we see that its action on H
permutes the elements Py.

2.6. Hecke algebras of type A. There is a family of algebras modelled by the skein of
the square with diagrams meeting the horizontal edges in matching pairs, but not meeting
the vertical edges. Where there are n meeting points on each edge, all oriented upwards,
this skein models the Hecke algebra H,, as in [MT90] and [AM98]. With n upwardly and
p downwardly oriented meeting points the skein is the mixed algebra H(n,p) in [KM93]
and in [MHO02]. In both cases the algebra product comes from placing one square above
another.

2.7. Affine Hecke algebras of type A. Use the square with the vertical edges identified,
to give a cylinder, and take diagrams meeting the horizontal edges in n matching pairs,
oriented upwards, to give an algebra closely related to the affine Hecke algebra H,,.

A description of the affine Hecke algebra in this way is given by Graham and Lehrer
[GLO03]. They restrict the diagrams to be braids in the cylinder, without closed curves,
and with all strings running monotonically in the vertical direction. They then have no
need for the parameter v, nor the framing change relation. In their work the regular
elementary braids o; represent the elements conventionally called T; in presentations of
H,. They give cylindrical braid representatives for the commuting elements in H, known
as X;, and for the element 7 which realizes a 1/n turn around the cylinder.

Because we are using X; in this paper in a different context, following the terminology
of [MMO8], we refer here to Graham and Lehrer’s braids as Y;, for i = 1,...,n:

Y, = Murphycylinderduke.pdf

)
FIGURE 2. The commuting elements Y; in the affine Hecke algebra Hn.

Symmetric functions in these are central elements in H,. (In fact, the whole center
Z(H,) is generated by symmetric functions in the Y;, see [Lus89], but we won’t use this
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fact.) In this context, it is worth extending to the full skein of the cylinder without
restricting to the use of braids. In the full skein there is a nice model of the sum ) Y; as
a sort of commutator of the identity braid with the closed curve P, . The exact result is

the equation
- - (S - 8_1) Z 3/1 )
i=1

proved by applying the switch and smooth relations on the n crossing points of the first
diagram in sequence. Both diagrams on the left hand side are then clearly central in the
full skein.

Remark 2.7. The full skein of the cylinder with n = 1 is used by Lukac [Luk01], and
by Morton and Hadji [HMO06], under the name A, in proving results about C. One
relevant result from [MMOS§] is illustrated below, with the cylinder drawn as an annulus,
in Equation (3.3). This leads immediately to the representation of (s* —s™*) 5" Y/ for
every n > 1.

Very close analogues of Y; in H,, are used in [Mor02a, Mor02b] where they represent the
Murphy operators. The notation 7; is used in that paper, where a similar construction

gives a quick proof that symmetric polynomials in the commuting elements 7; are central
in H,,.

It is also worth considering the algebras Hm, where the vertical edges are again identified
to give a cylinder, and diagrams meet the horizontal edges in n upward and p downward
matched pairs of points. By work of Turaev [Tur88| the elements X, generate H(S' x
[0,1]) as an algebra over R.

3. A PRESENTATION FOR H

In this section we give a presentation of H using the elements Py of Definition 2.5.
Lemma 3.1. The algebra H is generated by the elements Px.

Proof. Any element of H can be reduced to a sum of products of knots using the skein
relations. Then a knot in H is in some graded piece Hjj, and it follows from [Prz92]
that the skein module of the annulus surjects onto any particular graded piece H, by
embedding the annulus onto a neighborhood of the (j/d, k/d) curve (where d = gcd(j, k)).
The claim then follows from the fact that the X, generate the skein module of the annulus,
which was proved by Turaev in [Tur88|, and the fact that over R the X,, can be written

in terms of the Py. (See Remark 2.4.) O
Theorem 3.2. The elements Py for x € Z? satisfy the following commutation relation:
(3.1) [P Py) = {det(xy]} Presy

Proof. We separate this proof into two subsections. In Section 3.1 we prove the following
relations using methods and results of [MMOS]:

[kaa ij] =0
(3.2) [Pro, P_1i] = {k}Po
[(Pro, Por] ={k} Pk
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Then in Section 3.2 we show that the relations (3.2) imply (3.1). O

Before we prove this theorem, we use a theorem in [Prz92] to show that this gives a
presentation of H. More precisely, let A be the abstract algebra generated by P;j subject
to the relations in Theorem 3.2.

Corollary 3.3. The natural surjection A — H is an isomorphism.

Proof. We begin by recalling a basis for H constructed in [Prz92]. We pick a linear
ordering < of elements in 7° := Z? \ {0} according to the angle with the positive -
axis. Then for each w = (m,n) € n° we pick a representative diagram B(w), which is
defined to be the curve Ay (defined in Section 2.4) inserted on the (m/d,n/d) curve
on the torus, where d = ged(m,n). If Sym(x°) is the symmetric algebra of R[n°], then
Przytycki defines a map Sym(n®) — H which takes a monomial wy - - - w,, to the product
B(wy)B(ws) - - - B(wy,), where w; < wsg -+ < w,. Then [Prz92, Thm. 6.2] states that this
is an R-isomorphism.

We then note that over R, the diagram B(w) can be written uniquely in terms of
diagrams Py, /4, cn/a, Wwhere ¢ € N and d = ged(m,n) (this follows from Remark 2.4).
Then the commutation relations in Theorem 3.2 allow one to order the Py according to
the angle between x and the positive z-axis. This completes the proof of the corollary. [J

3.1. Certain commutation relations.

Proof. The first equation of (3.2) is obvious because the two elements in question lie in
parallel annuli.

To prove the second equation, we work with diagrams in the square with edges identified,
as discussed above. The commutator [P o, P—1 ] is represented by the torus diagrams

We introduce intermediate torus diagrams Cj;_; for 7 = 0,...k in which the first j
crossings on the (1,0) curve are switched from over to under. Thus

Cjk-j = |cijtorusduke.pdf|-

J k—j
Then CO,k = Pl,OP—Lk and Ck,O = P—l,kPI,O-
The skein relation applied at the circled crossing on Cj;_; gives

-1
Cik—j = Civrp—j-1= (s =) Djk—j1.

Here
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Dji = |smoothedtorusduke.pdf

J i
is the smoothed diagram with j crossings on the string from the left-hand vertical edge
and ¢ crossings on the string to the right-hand vertical edge.
Then the commutator [Py, P_; ] is represented by
k—1

Cok—Cro = Y _(Cirej = Cisrh-j1)

7=0

= (s—s~ E Djp_j1.

Now the diagram D;; in T? can be isotoped by moving J crossings horizontally to the
left to get an equivalent diagram which does not meet the vertical edge. The result is the
closed braid diagram

aijtorusduke.pdf

i J
This is the element A; ; € C described earlier, running in the direction of the (0,1) curve
on T2. This establishes that [Py, P_; x| is represented by the sum of closed braids.

(s — s~ Z Aij
H—] k—1
following the (0,1) curve in T2. By definition, in the annulus
Z Aij=(s" =58 /(s —s Py
i+j=k—1

The element P, decorating the (0, 1) curve in T? represents Py in our current notation,
and this proves the equation
[Pro, P-1i] = {k} Po .

To prove the final equation of (3.2), we first note that a diagram on T? cut open along a
(0,1) curve gives a diagram in the annulus with some matched point on the two boundary
curves. The product P, oFp can thus be represented by the diagram
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Py

Ahe.pdf

in the annulus with one input on the left boundary and one output on the right boundary.
The commutator [P o, Py is then represented in the annulus by

Py P,

Ahe.pdf — |Aeh.pdf

We then apply directly Theorem 4.2 of [Mor02b] which gives an equation in the skein
of the annulus with one point on each boundary curve. In diagrammatic form, Theorem
4.2 of that paper shows that

Py P,

(3.3) Ahe.pdf —| Aeh.pdf =(s"—s7%) .

The curve in the right-hand diagram circles the annulus k£ times, here shown in the
case k = 2. When the annulus follows the (0,1) curve in 72, and its boundary curves
are rejoined to form T2 the curve in the right-hand diagram becomes the (1,%) curve
in 72 while the other two diagrams yield PyoPy and Py P o respectively. This leads
immediately to the equation

[P1o, Poi) = {k} P g
L]

3.2. All commutation relations. In this section we prove Proposition 3.7, which shows
that the equations (3.1) follow from equations (3.2). In what follows, we write d(x,y) =
det [x y] for x,y € Z* and d(x) = gcd(m,n) when x = (m,n). We will also use the
following terminology:

(x,y) € Z*® x Z? satisfies (3.1) if [Py, Py] = {d(X,¥)} Pasy

The idea of the proof is to induct on the determinant of the matrix with columns x
and y. To induct, we write x = a + b for carefully chosen vectors a, b and then use the
following lemma. We have indicated an example choice of the vectors x, y, a and b in
Figure 3. It is easy to see that Lemma 3.4 applies to the vectors in this example.
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vector.pdf

FIGURE 3. A choice of x, y, a, and b

Lemma 3.4. Assume a+ b = x and that (a,b) satisfies (3.1). Further assume that the
four pairs of vectors (y,a), (y,b), (y +a,b), and (y + b, a) satisfy (3.1). Then the pair
(x,y) satisfies (3.1).

Proof. By the first assumption, we have [P,, P,] = {d(a,b)}P,. We then use the Jacobi
identity and the remaining assumptions to compute

_{d(av b>}[PX> py] = _Hpav Pb]’ Py}
= [Py, Pa], Bo] + [Py, Py, Pal
= {d(y,a)}[Py+a, Po] +{d(b,¥)}[Pory, Fal
= ({dty. a)Hd(y +a,b)} + {d(b,y)Ha(b +y,a)} ) Pery
=: CPX+y
Using the identity {m}{n} = {m +n}* — {m — n} 7T it is straightforward to show
c= _{d(a’ b)}{d(xu Y>}
This completes the proof of the lemma. ([l
We next prove the following elementary lemma (which is a slight modification of [FGO0O,

Lemma 1]). This lemma is used to make a careful choice of vectors a, b so that the previous
lemma can be applied.

Lemma 3.5. Suppose p,q € Z are relatively prime with 0 < g < p and p > 1. Then there
exist u,v,w,z € Z such that the following conditions hold:
ut+w = p, v+z=gq
(3.4) O<u,w < p
uz —wv = 1

Proof. Since p and ¢ are relatively prime, there exist a,b € Z with bg — ap = 1. This
solution can be modified to give another solution ¢’ = a + ¢ and & = b+ p, so we may
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assume 0 < b < p. We then define
u="b, v=a, w=p—>b, z=q—a

By definition, u, v, w, z satisfy the first condition of (3.4), and the inequalities 0 < b < p
and p > 1 imply the second condition. To finish the proof, we compute

uz—wv=>bqg—a)—a(p—>b)=bg—ap=1

It might be helpful to point out that the numbers in the previous lemma satisfy

EIHEH

Remark 3.6. There is a natural R-linear anti-automorphism o : H — H which “flips
T? x [0,1] across the y-axis and inverts [0,1].” In terms of the elements P,;,, we have
0(Pap) = Ps_p. We therefore have an a priori action of GLy(Z) on H, where elements
of determinant 1 act by algebra automorphisms, and elements of determinant —1 act by
algebra anti-automorphisms.

Proposition 3.7. Suppose A is an algebra with elements Py for x € Z* that satisfy equa-
tions (3.2). Furthermore, suppose that there is a GLy(Z) action by (anti- Jautomorphisms
on A as in Remark 3.6, and that the action of GLy(Z) is given by v(Px) = Pyx) for
v € GLy(Z). Then the Py satisfy the equations (3.1).

Proof. The proof proceeds by induction on |d(x,y)|, and the base case d(x,y) = +1 is
immediate from Remark 3.6 and the assumption (3.2) for x = (1,0) and y = (0,1). We
now make the following inductive assumption:

(3.5) For all X', y’ € Z* with |d(x,y’)| < d(x,y), we have [Py, Py] = {d(x,¥')} Py
We would like to show that [Py, Py| = {d(x,y)}Px+y. By Remark 3.6, we may assume

y= (). x= (1), dw<iw). 0<a<y

r q

If p = 1, then this equation follows from (3.2), so we may also assume p > 1.

Case 1: Assume 0 < q.
Let p’ = p/d(x) and ¢’ = ¢/d(x). By the assumption 0 < ¢, we see that d(x) < p, so
p' > 1. We can therefore apply Lemma 3.5 to p’, ¢’ to obtain u, v, w, z € Z satisfying

(3.6) uz—ovw=1 u¢d —vp' =1, ut+tw=p, v+z=q¢, 0<uw<yp

We then define vectors a and b as follows (the properties listed follow from (3.6)):

(3.7) a = (ZE’;%Z) , b= (fl((’;))@ , a+b=x, d(ab)=dx)’
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Using Lemma 3.4 and Assumption (3.5), it is sufficient to show that the absolute
values of each of d(a,b), d(y,b), d(y,a), d(y +a,b), and d(y + b, a) are strictly less than
lpr| = d(x,y). First,

d(a,b) = d(x)* < d(x)d(y) = d(x)r < pr

where the last inequality follows from the assumption 0 < ¢ < p. Second, the absolute
values of d(y,b) = d(x)rw and d(y, a) = d(x)ru are strictly less than pr by the inequalities
n (3.6). Third, we compute

—d(y +a,b) = —d(y,b)—d(a,b)
= d(x)wr — d(x)?
< d(x)wr
< pr

Finally, we compute

—d(y +b,a) = —d(y,a)—d(b,a)
= d(x)ur + d(x)?
< (dx)u+d(x))d(y)

= (u+ 1)d(x)r

Therefore, we will be finished once we show that the absolute value of (u 4 1)d(x) is
strictly less than p. We now split into subcases:

Subcase 1a: If u+ 1 < p/, then (u+ 1)d(x)r < p'd(x)r = pr, and we are done.
Subcase 1b: Assume u + 1 = p’. By equation (3.6), we have

l=uqd —vp =@ —1)¢d —vp = p(d—v)=1+¢ <1+
Since p’ > 1, the last inequality implies ¢ — v = 1, which implies v = ¢ — 1 and z = 1.
Since uz — vw = 1, this implies (p’ — 1) — (¢’ — 1) = 1, which implies ¢’ = p' — 1. If we
write g = d(x), we then have
—dly+ba)=—det| T PTI N _pppg(g—r)=rp+dx)(d(x)—7)
’ g+r p—2g

We already assumed that d(x) < r, and if this inequality is strict, then we are done.
Subcase 1c: In this subcase, we are reduced to showing the following vectors satisfy (3.1):

= (Oa 7”), X = (T’p/, Tp, - T)
First, suppose r = 1. Then there is a matrix in SLy(Z) that fixes y and sends x — (p/, —1).
Therefore, if = 1, the second equation of (3.2) implies that (x,y) satisfies (3.1).

Now we assume r > 1 and replace our previous choice of a and b with a choice which
is better adapted to this particular subcase. We define

_ (0 _ rp/
a= <—1) L (Tp/—r—{—l)
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Since r > 1, it is clear that the absolute values of the determinants of the matrices [a, b],
ly,a], [y +a,b|, and [y + b, a] are all less than r?p’. This together with Assumption (3.5)
shows that these pairs of vectors satisfy (3.1). Finally, since rp’ — r and rp’ — r + 1 have
different parities, we see that d(b) # d(x) = r. This together with Subcase 1b shows that
(y,b) satisfies (3.1). Then Lemma 3.4 finishes the proof of this subcase, which finishes
the proof of Case 1.

Case 2: In this case we assume ¢ = 0. We define a, b similarly to Subcase 1lc, so we have

() 6 - () )

If r = 1, then the third equation of (3.2) implies that the pair (x,y) satisfies (3.1). If
r > 1, then an identical argument to Subcase 1c finishes the proof of this case and of the
theorem. ]

4. THE SKEIN OF THE ANNULUS AS A MODULE OVER THE ALGEBRA H.

We now describe the action of the algebra H on the skein C of the annulus. Draw
the torus T2 as the boundary of a standardly embedded solid torus V' C R®. Once an
orientation and a framing for the core of V' have been chosen, by choosing an oriented
annular neighbourhood of the core curve, we can regard V' as a thickened annulus and get
an explicit identification of the skein H (V') of V' with the skein C. In the diagram below

we indicate the relation of the torus and the framed core of V.

Parametrize T? so that the core lies in the direction of the (0,1) curve, and the framing
of the core is chosen to agree with the neighbourhood framing of the (0,1) curve in T2
The (1,0) curve in 72 is then a meridian of the solid torus V.

As remarked in Section 2, the skein H (V') = C is a module over the algebra H(0V) = H.
To describe h-c € C explicitly for h € H and ¢ € C, we represent ¢ by a framed diagram in
the core annulus, and A by a framed diagram in OV = T2. The union of these two framed
diagrams in V' then represents h-cin H(V') = C. (Properly h and ¢ are represented by some
R-linear combination of framed diagrams, and we extend the construction bilinearly).

4.1. The action. We now give precise statements about the action of H on C. Because
the core annulus of V' is parallel to the (0,1) curve in T2 the action of Py, on C is simply
multiplication by P, in C.

By results of Morton and Hadji [MH02, HMO06], the module C has an R-linear basis
given by elements @)y ,, where A, u range over the set of partitions. The basis elements
@, are shown there to be eigenvectors of the ‘meridian maps’ from C to itself defined
for each m by ¢ +— P, - c. We will describe the action of H in this basis. Then at the
end of the section we will collect from the literature several facts about the @, , for the
reader’s convenience.
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For partitions A\, u write

-1
u_ 1 -1 2¢(z) —2¢(z) v —v
Sap = (s—5 )(v E s UE 5 )+5—s—1

TEA TEN

where ¢(x) = j — i is the content of the cell x in row ¢ and column j. We will use the
continental convention for Young diagrams, so that the unique partition of 1 corresponds
to a cell in the lower-left corner of the diagram, which is in row and column 0.

For a partition A\ define its content polynomial C\(t) € Z[t*'] by

NOED A

TEN

v —w

Then sy, = (s — s ) (v 'CA(s*) —vC,(s7?)) + 1

s— s~
Theorem 4.1. In the basis Qy, of C described in [MH02, HM06], the action of H is
determined by the equations
}ﬁi]'CQMu - S&MCQXM
PA,O‘Q,\,M = SH,AQ,\,;L

}%J,'CQXM = 2{: (2a¢b+' 2{: C?Aﬁ

acX+1 Bep—1
Po1-Qyp = Z Qs+ Z Qxra
BeEA—1 acpu+1

where X+ 1, A — 1 are the set of partitions where one cell has been added to (subtracted
from) A, respectively.

Proof. The first two equations are the meridian map formulae in [HM06, Thm. 3.9], and
the last two are the product formulae in [MR10]. O

Lemma 4.2. The statements in Theorem 4.1 completely determine the module structure

of C.

Proof. Since the Q) , form a basis for C the action of P, ¢ and Fp +; on C is completely de-
scribed by Theorem 4.1. Over R these elements generate the algebra H, which completes
the claim. ]

Remark 4.3. The skein C has a multiplicative identity 1, represented by the empty
diagram. Then h -1 is the element h regarded as lying in the solid torus V. In particular,
when h is a meridian element, meaning that h is P, o decorated by some element ¢ € C,
the element h -1 is represented by the zero framed unknot in a ball inside V' decorated by
c. Its value in C is the scalar multiple ev(c)1 of the identity, where ev(c) is the Homflypt
polynomial of the unknot decorated by c.

Thus P, -1 =ev(P,)1, and it is known, [Ais96, section 4.9.9], that

—m __ gym



20 HUGH MORTON AND PETER SAMUELSON

This follows quickly from the definition of P,, in section 2.4 in terms of closed braids.
The framing relation shows that ev(4; ;) = v Jev(Agy), where Ay is the simple 1-string
closed braid representing the unknot with zero framing. Then

o1 _ o1 m o__ ,,—m
ev(P) = T8 (g ey g 2 (B ST)WT Z0T)
M —gTm (sm—sm)(v— v
vi—w _
where § = ev(Agg) = ———, as in eq(2.3).
s—8
Our commutation relation [P, ¢, Py,] = {mn} Py, leads to the calculation in [MMOS]
of the effect in C of putting a meridian decorated by P,, around the core decorated by
P,. The core decorated by P, is F;, -1 € C. Hence putting a meridian decorated by P,

around this gives
Pm,O'(-PO,n'l):Pm,OPO,n'l - {mn}Pm,n'1+PO,an,0'1
= {mn}P,, - 1+ev(P,) P, -1
{mn}P,, -1+ ev(Py)P,.
In fact it was this equation in [MMO08, Thm. 18], illustrated there in figure 14, with N, M
in place of our m, n respectively, which encouraged us to conjecture (and then prove) the
commutation relations of Theorem 3.2 in their complete generality. (The original goal

was to prove the relations (3.2) and then use these to prove the isomorphism with the
elliptic Hall algebra.)

We now deduce formulae for the action of P, ,, on the elements Q5 ,. We first establish
some notation.

Definition 4.4. We will use several statistics on pairs of partitions.

(1) For A C a, write o — A for the skew partition consisting of the cells contained in
a but not in A.
(2) Write A + n for the set of partitions o D A where o — X is an n-ribbon®. Similarly
A —n is the set of partitions § C A where A\ — 3 is an n-ribbon.
(3) Write ht(v) for the height of an n-ribbon ~, defined as the number of rows in ~
minus 1.
(4) Extend the definition of content polynomial to cover skew partitions o — A by
setting
Coca(t) == Y 170 = Cu(t) — CA(1).
TEQA—A
Replace s and v by s™ and v™ in s, , to define

sau(m) = {m}(u="CA(s™") — v Cp(s7*™)) +

(5) For a skew partition v write
bim,vy) = v "C,(s*")
b= (m,y) = (=1)"DuTmCO (™)

4An n-ribbon is a (skew) partition with n boxes that is connected and contains no 2 x 2 squares.
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Using these definitions, we have the immediate relations that

—m m

v — v

Snu(m) = {mpb(m, A) + {=m}b(=m, p) +

Sm J— S—m
and sy ,(—m) = s, (m).

Remark 4.5. If v is an n-ribbon it consists of a sequence of n cells, each adjacent to
the previous one, starting with a cell of least content k, say. The content increases by
one for each cell in the sequence, so that C,(t) = t*(1 + ¢+ --- +¢""'). Then b(1,7) =
vk (s —1)/(s? — 1) = v~ ts?n1n) /{1}. A similar calculation shows

{m} b(m,’}/) _ (U—1$2k+n—1)m _ ,U—ms% Peey (@)

{mn}

In particular, this last equality shows that the quantity {m}b(m,~)/{mn} is the same for
any two n-ribbons v whose upper-left box is the same, and changes by a factor of s™ if
the ribbon is translated right or down by one box.

The following formulae generalise those of Theorem 4.1. They apply even in the case
of n < 0, provided that when a@ C A we set ht(aw — \) = ht(A — «), and still take C,_()
to mean C,(t) — C\(t), so that b(m,a — ) = —=b(m, A — «).

Theorem 4.6. For m,n € Z — {0} we have the following equalities:

(41) Pm,[) ) Q)MM = S/\y,u(m)Q/\,u
(4.2) Py, - Qr, = Z (—l)ht(a_)\)Qa,# + Z (_]-)ht(‘u_ﬁ)Q)\’g

aEX+n Bepn—n
_ Am} b (m, a — A b (—m, p—
(4.3) Py - Q)\,“ = W Z (ma a )Qa,u + Z ( m, 5)@)\,5
aEXN Beu—n
— Z (_1)ht(a/)v_m8%0a,(l)Qa7u + Z (_1)ht(6’)vms—%c ,(I)Q)\76
aEX+N BeEu—n
a'=a=X B'=n—p

Remark 4.7. Before proving the theorem, we remark that when p = (), these formulas
were already known. The first follows from the identification of F, with the power sum
function in [Mor02a,MMO8|, and the second appears as [MMO08, Lemma 17|. For a closely
related statement (also when p = (), see [Stel0].

Proof. We know the first two equations for m = £1 and n = +1. Equation (4.3) follows
from (4.1) and (4.2) by a straightforward calculation using the commutation relation of
Theorem 3.2, and the final equality follows from (4.3) by Remark 4.5.

To prove equation (4.1), we proceed by induction on m, where in the inductive step we
assume that the first and third equations are true for 0 < m < M and for n € {—1,1},
and prove the first equation for m = M + 1. (The case m < 0 follows by symmetry.) By
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the inductive assumption, we have

Puy-Qap = D bmya=NQau+ Y b(—m,pu—B)Qxp

aEA+] Beu—1
Pl,—l : Q)\,u - Z b(la A— a)Qmu + Z b(_la 6 - H’)Q)\,B
acr—1 Beu+1

From these, we can compute the action of P, using the commutation relation
—1
{m+ 1}
To shorten the following computation, we first note that in the formula for P, ;P _1-Qx,
there will be 4 types of terms corresponding to whether each operator adds cells to A\ or
remove cells from p. The “cross terms” where both A\ and p change will cancel with the
analogous cross terms from —P; _1 Py, 1- Q) .. Also, equality (4.4) for the terms where just
A changes is equivalent to the equality of the terms where just p changes, by symmetry.

Therefore, in the following computation we will just write the terms of the right hand
side of (4.4) where only A changes, and denote the rest of the terms by “--”.

(4.5) PP Q= Z b(L, A —a) Z b(m, o' — a)Qary + -

(4.4) Prg1o- Qap = [Pty Pr—1] - Qg

ael—1 o’ a+1
(46) Pl,—lpm,l : Q/\7H = Z b(m, /6 — )\) Z b(l, /8 — 6’)@5/7M “+ .-
BeEX1 p'ep-1

We now examine the coefficients of ), , in —[Pp, 1, Pi—1] - Qxp, which is (4.6) minus
(4.5). Since P,,; acts by adding one box, the terms where v # X appear exactly once
in both (4.5) and (4.6) with equal coefficients, so they cancel. The coefficient of @), , in
(4.5) comes from the cases where a cell z is removed from A to give & € A — 1, and then
restored to get o = A. Therefore, the coefficient of @y, in (4.5) is

Z b(l, .T)b(m, ZL’) — L Z SQ(m—i—l)c(:c)
{z|a=A—z} {z|a=A—=a}

In (4.6) we need §’ = A, so [ arises by adding (and then removing) one cell y to A. This
shows that the coefficient of @y, in (4.6) is

Y. bLyb(my)=vmt Y S
tylB=A+y} {ylB=A+y}
The difference (4.6) minus (4.5) is then

(47) v—m—l Z 82(m+1)c(y) _ Z S2(m+1)c(m)

{y|B=2+y} {z|a=A-z}

(In other words, the two sums in this expression are over boxes y that can be added to
A, and boxes x that can be removed from A, respectively.)

It is now enough to show that the expression in (4.7) is equal to the terms with coefficient
v in {m +1}sy . (m+1). (The terms with coefficient v™*! will come from the terms
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where a cell is added and subtracted from g, by symmetry). In other words, we must
show that (4.7) is equal to

(48) o™ b {m A+ 1Pb(m A 1) =0T L (s = T2y g
ZEA

Finally, the equality of the expressions (4.7) and (4.8) is a well-known combinatorial iden-
tity. It can be proved by elementary means by first expanding the right hand side of (4.8)
along the rows and then along the columns of A. The two factors of {m + 1} turn these
two expansions into telescoping sums, and the leftover terms are exactly the ones in (4.7).
This completes the proof of equation (4.1) in Theorem 4.6.

We now proceed to the proof of equation (4.2), using a similar induction on n. Precisely,
we assume the claimed relations for (m,n) with m € {—1,1} and 0 < n < N and prove
(4.2) for n = N + 1. In this case we use the commutation relation

1
(4.9) Pony1 - Qap =

E;;t;j[?[}%”n’fszl]‘CQAJi

The induction assumption shows that

%plm.Q/\# = Y 0 (La-NQuut+ Y b (~Lu—B)Qus

aEX+n Bep—n

Pai-Quu = Y, b (-La=NQau+ > b (Lu—PH)Qxs

aEA+1 psep—1

When P, P_,; is applied to @), there will be four types of terms, depending on how
cells are added to A or subtracted from p. Thus

(4.10) @PLnP—Ll Qi = Z b= (=100 = )b (1,7 — 1) Qe
{1} a1 EAF]

yEai+n

+ > b (=L = b (1L — Ba)Qa g,
a1 €N+
BrnEp—mn

+ D b (=Lay = Nb (1, n = B1)Qa,.s
anEXFN
Brep—1

+ 3 b (=L = BB (L, B — 0) Qs

B1ep—1
5€ﬁ1 —n

(The subscripts indicate the number of boxes added or removed, e.g. the subscript on a,,
indicates that n boxes have been added to A to obtain «,.) There is a similar formula for
%P_MPM - Qxp, and it is clear that the “cross terms” @, g, and Q,, g, will cancel in
the expansion of [P, P_11] - Qx,. It is also clear that symmetry between the first and
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last terms on the right hand side of (4.10) shows that it is sufficient to prove our claim
for the coefficient of @, ,.
To simplify notation in the rest of this proof, we will write

m

expS(m) :=s
We now simplify the coefficients of @), , by rescaling and using Remark 4.5.

}2Ln}?71J,'(2A#

(4.11) _ > b (=Lar=b (1,y = a)Qyu + -+
{n} a1 EAF1
YEQ1+N

= Z (—1)r0—*expS (—20(@1 — A+ %C’V_al(l)) Qypt+ -

a1 EAF]
YEQ1+N

Similarly, in the other term of the commutator we obtain

P 1Py Qxp

(4.12) :%% ST b (Lan = 0Ly — a)Qy

anEAXn
YEan+1

= Z (—1)htlen=NexpS (—20(7 —ay) + %C’an_A(l)> Qypt+ -

an €A+
YEan+1

We now examine the coefficient of Q. , in [P, P_11] - Qx, based on the topology of
the skew partition v — pu. We first note that there are at most 2 components in this skew
partition. Then there are 3 cases.

Case 1: The skew partition v — A has 2 components.

In this case, the boxes oy — A and v — «, in (4.11) and (4.12) are the same box, and
the n-ribbons v — a; and a,, — A are also the same. This means the coefficients of @), in
(4.11) and (4.12) are equal, which means this term cancels in the commutator.

Case 2: The skew partition v — A has a 2 x 2 square. (There is at most 1 such square.)

In this case, the box a; — A must be the lower-left box in the square, and the box v —«,
is the upper-right box. Since the content of these two boxes is the same, and the heights
of the complementary n-ribbons are the same, the coefficients of these terms are equal,
and they cancel in the commutator.

Case 3: The skew partition v — A is an n + 1-ribbon.

Write 4" := «v— A. There are ezxactly two ways to write the n+ 1-ribbon 4 as a union of
a box and a ribbon, which means that @, , will appear exactly twice in the commutator
[Pin, P_11] - Qx,. However, whether these terms appear in (4.11) or (4.12) depends on
the shape of +'.
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To be more precise, let z be the upper-left box of 4" and y be the lower-right box of +'.
Given a box z € v/, we define

1 if A + z is a partition
sign(z) := -1 if A ++' — z is a partition
undefined otherwise

Alternatively, we could say that sign(z) = 1 if 7/ contains a box to the right of z, and
sign(z) = —1 if 4/ contains a box below x. Similarly, sign(y) = 1 if 7' contains a box
above y, and —1 otherwise. The point is that if sign(z) = 1, then z must be added to A
before the n-ribbon +' — z is added to A, so this term appears in (4.11) with x = a3 — \.
Conversely, if sign(x) = —1, then = must be added to A after the n-ribbon 4" — z, and
this term appears in (4.12) with x = v — «,.

We may therefore write the coefficient ¢ of (), , in the commutator [P ,, P_11] - Qx,
as follows:

(4.13) ¢ =sign(z)(—1)"*0""expS (—2c(x) + %C’V/_x(l))

+sign(y) (—1)"O"Yexps (—2C(y) + %Cw—yﬂ))

We now note that sign(x)(—1)"*0"=2) = (=1)"0" and similarly sign(y)(—1)"*0"~%) =
—(—=1)"0") . We can therefore simplify (4.13) as follows:

= (1 fexps (=20t + 20,00) ) — e (=2000) + 20,0

Finally, since z is the leftmost box of the n + 1-ribbon 4/, we have the equality

“2e(r) + 2 Cya(1) = ~2e(a) + (nc(x) + @) S

and similar for y. We can therefore finally simplify the coefficient ¢ as
c = (_1)ht('y’)(8n+1 _ S—n—l)

This completes the proof of equation (4.2) and the proof of the theorem.
O

4.2. Further properties of C. We collect here some results about C as an algebra over
R, and about its basis @5 ,. The subalgebra C* spanned by @, is isomorphic to the
ring A of symmetric functions. The Schur function s, corresponds to @ y. The identity
element 1 of C, represented by the empty diagram, is given by (Jpp. The element P, € C
lies in C* for n > 0, and corresponds to the power sum p,, € A. This interpretation of C as
symmetric functions was suggested in [AM98], with details established in [Luk01, Luk05]
and [Mor02a).

Remark 4.8. In the case y = (), the formulae in theorem 4.6 were already known.
Equation (4.1) appears in the context of meridian maps as [MMO08, Lemma 17].

A known result in the theory of symmetric polynomials is the expansion of the product
of the nth power sum p, and the Schur function s, as a signed sum of Schur functions
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So Where a — X is an n-ribbon. Equation (4.2) then follows from the interpretation in
[MMO8] of C* as symmetric polynomials in which P, corresponds to p,, and Qg to s.

The subalgebra C* is spanned by closed braid diagrams in the annulus where all the
strings go in the same direction. Closed braids with strings in the reverse direction span
an isomorphic subalgebra C~, which is also spanned by @y ,. Reversing string direction
carries @y, to Q. Now C can be written as C = CT®C~, using Turaev’s early description
[Tur88] of C as a polynomial algebra. His generators A,, are P, -1 in the notation above,
giving C* for n > 0 and C~ for n < 0.

We can then present the whole algebra C as A ®z A. We have already noted that
P, € C* represents p when k& > 0 and hence p, ® 1 in A® A while P_;, for £ > 0 becomes

The construction of the elements @), makes use of elements h, € C* corresponding
to the complete symmetric functions in A ® 1 and h) € C™, given by reversing the string
direction, which become the complete symmetric functions in 1 ® A.

The formula in [HMO06] for @), is an extension of the classical Jacobi-Trudy formula
for s, as a polynomial in the complete symmetric functions. The general construction
can be illustrated by the case when A has parts 2,2, 1 and p has parts 3, 2. Take a matrix
with diagonal entries as shown, corresponding to the parts of A and u.

hs
hs
ha
ha
hy

Complete the rows by shifting indices upwards for the parts of A\, and downwards for
the parts of u, to get
hy hy 1 0 O
h; hY hy hy 1
M=|1 hy hy hg hy
0 1 hy hy hs
0O 0 0 1 M

Then @y, = det M.

There is a further interesting interpretation for the whole of C, where we can consider
A ® A as symmetric functions in two sets of commuting variables x and y, with the
symmetric functions of x representing the first copy of A and the symmetric functions of
y representing the second copy.

In this context there is a body of results stemming from work of King [Kin70], Koike
[K0i89] and subsequent authors in which such functions are studied, both as functions of
two sets of variables, and in the special setting with y; = x; ' that deals with characters
of gl(N) for large N.

Besides the Schur functions s)(x) and s,(y) King [Kin70] defines ‘compound’ Schur
functions syz(x;y) by determinants that closely resemble those for @, , in [HMOG6], or
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their counterpart in terms of elementary symmetric functions. As a result we can identify
@, with the compound Schur function syz of [Kin70].
Here are a few further facts about C and its isomorphism with A ® A:

(1) The symmetry a ® b+ b ® a of C sends @y, — Q.

(2) The products Q. 3Q p expand as positive integer combinations in the basis Q5 ,.

(3) The set {Qx, | |A] < n, [v] < p, |A|—]|p| =n—p} spans the subspace C™P defined

as the closure of (n,p) diagrams in the square.

(4) C = @C™P, where C™P C C**1PHl and C"P NCY P =0if n —p #n' —p.

(5) Qrp =52 ® 1, and Qy, = 1 ® s,.

(6) We have Qx, = Q) 9Qp, +2 = (5) ®1)(1 ®s,) + z, for some z € CAI=Llul=1,

Remark 4.9. Fact 5 is established by Lukac, [Luk01, Ch. 3] or [Luk05]. The other facts
appear in [HMO06] and [MHO02]. Fact 1 is immediate from the determinantal formula on
reversing the orientations of all curves and rotating the matrix. Fact 2 is theorem 3.5 in
[HMO6], while facts 3,4 and 6 are in [MHO02]. Fact 6, along with a more detailed expression
for =, can also be deduced from [Kin70] (see also [Koi89]), when @, , is interpreted in
terms of compound Schur functions.

5. THE ELLIPTIC HALL ALGEBRA

In this section we recall from [BS12] a presentation of the elliptic Hall algebra &, ;, which
depends on two parameters ¢,t € C*. For the convenience of the next section, we will
switch ¢ — ¢~! from the notation of [BS12]. We then prove that the ¢ = ¢ specialization®
&q,q 1s isomorphic to the Homflypt algebra H,_ -1/2 .

Remark 5.1. Before giving a presentation, we recall a short description of the construc-
tion of the algebra &,; from the introduction of [BS12]. First, we consider a smooth
elliptic curve X over F,, and the category Coh(X) of coherent sheaves over X. The Hall
algebra of this category is a (topological) bialgebra E;C 5, where 0,0 are the Frobenius

eigenvalues on the l-adic cohomology group H' (XFP,@). It is proved in [BS12] that the
relations can be written entirely in terms of Laurent polynomials in these parameters, so
we rename the parameters ¢,t and allow them to be formal (i.e. S;“ , is an algebra over
Clg*', t*']). Then &, is the Drinfeld double of the algebra &£

As before, we will write d(x) = gcd(a,b) if x = (a,b), and d(x,y) = det[xy] for
X,y € Z2. Define the constant
;= (1=¢)1—-t7)(1-q't")/i
We will also write Ay y for the triangle with corners 0, x, and x +y.

Definition 5.2. By [BS12, Thm. 5.4], the elliptic Hall algebra &, is generated by elements
uy for x € Z?%, with relations

(1) If x,y belong to the same line in Z?, then
[uw uy] =0

®In terms of the Frobenius eigenvalues, this specialization is o = 3~ !.
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(2) If x,y € Z? are such that d(x) =1 and Ay has no interior lattice points, then

6.0) ] = l06.3) 2

Here €(x,y) := sign(d(x,y)) and the elements 6, are polynomials in the ugy defined for
d(xp) = 1 by equating the following series:

(5.2) 1+ Z Oix, 2" = exp ( Z ozruerZT>
i>0 r>1

where 2 is a formal variable.
Remark 5.3. By [BS12, Lemma 5.3], the group SLy(Z) acts on &, via v(ux) = Uy(x)-

These relations look somewhat similar to the commutation relations for H, but they
are complicated by the definition of #x. The key observation is that if ¢ = ¢, then the
element 0y defined in (5.2) simplifies substantially.

Lemma 5.4. Ift = q, then

Ox _ ([d(x)]g172) ux

aq

Proof. Each constant «; has a zero of order 1 at ¢t = ¢. If we write the RHS of (5.2)
as exp(a), then only the terms of degree 1 in a have a simple zero at t = ¢q. Therefore,
if we specialize t = ¢, the only surviving term in exp(a)/aq is a/ayq, so the identity

(aifon) |i=q = ([i]q1/2)2 shows the claim. O
Corollary 5.5. If t = q, then the following relations are satisfied:

[Ul,oa U—l,kz] = —sign(k) ([k‘]ql/z)z Uo k

[u1,0, Ug ] = —sign(k)uy k
We now define renormalized generators wy := (/2 — g=49/2) y,.

Theorem 5.6. If we specialize ¢ = t and identify t = q = s 2, then the map Py — wy
extends to an SLy(Z)-equivariant Z*-graded isomorphism of algebras Hy, — Ejmg—2 4—s-2.

Proof. We first remark that SLy(7Z) acts by permutation on the generators wy by Remark
5.3 (since it preserves the ged of the entries of vectors). If we rewrite the relations of
Corollary 5.5 in terms of wy, and the parameter s, we obtain

[w1,0, w—l,k] = {k}swo,k

[w1,07w0,k] = {k}swl,k
These are the same as the relations (3.2), so Remark 5.3 combined with Proposition 3.7
shows that the wy also satisfy the relations (3.1). The map is clearly surjective, and it is

injective because the description of the basis of H in Corollary 3.3 agrees with the PBW
basis of &, described in [BS12, Thm. 4.8]. O
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Remark 5.7. There is S3 symmetry in the parameters {q,¢,qt™'} € (C*)3, so if we
specialize s> = ¢~ and t = 1 the previous theorem remains true. We also note that
Theorem 3.2 shows that the skein algebra H,,(T?) actually does not depend on the
parameter v, although the action of H,, on C does depend on v. The meaning of this
parameter in terms of the Hall algebra or its action on symmetric functions remains
unclear.

6. ADAPTATIONS OF THE HOMFLYPT SKEIN RELATIONS

There are a number of instances, for example in the context of families of Hecke algebras
of type A, or in relation to quantum SLy modules and associated invariants, where
Homflypt skeins can be used as models after a simple adaptation.

The simplest model of the Hecke algebra H, of type A,_; is the Homflypt skein of
oriented framed n-tangles, using diagrams in a rectangle with n inputs at the bottom
and n outputs at the top [MT90]. Composition is induced by stacking diagrams and the
algebra is generated by the elementary n-braids

0i = |Sigmaior.pdf

i 141
Write T; for the element of the skein represented by o;. The basic skein relation gives
the equation T; — T, ' = (s — s~ 1)Id, and hence the quadratic relation

(T; - S)(T'l + 571) = 07

with roots s, —s 1.

Many algebraic accounts use a version of the Hecke algebra where the quadratic has
roots ¢, —1, so it is useful to adapt the skein theory to allow for roots xs, —xs~! with an
extra parameter x. This is done by Aiston and Morton in [AM98] for the Hecke algebra,
and subsequently used in the form below for other skeins.

6.1. The adaptable Homflypt skein. Use R[r*!]-linear combinations of framed ori-
ented curves in a 3-manifold M, possibly including arcs with fixed input and output points
on OM, subject to the relations

rl—z=(s—s1) (Switch and smooth)
-

1

=xv =gt

v (Framing change)

with the local blackboard framing convention. The resulting skein H,(M) provides the
relations 21T, —aT; ' = (s—s~!)Id and hence the quadratic relation with roots s, —zs™!.

This is useful in several instances.

e Take z = s and set ¢ = s? to recover the algebraic version of the Hecke algebra
with roots ¢, —1.

e Take x = v to eliminate the framing dependence.

o Take s = "2 v = sV z = e "2V = s71/N t0 adjust for the quadratic relation
satisfied by the fundamental R-matrix of the SLy quantum group, and the effect
of framing change when constructing knot invariants. [Ais96, MMOS]
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Much of Aiston’s original work uses these adaptable relations, with x as an indetermi-
nate alongside v and s in the coefficient ring.

Clearly, knowing the skein H,(M) we can find the basic skein H(M) = H,(M) by
setting x = 1. Lukac suggested how to reverse the process in many instances and recover
H,(M) from H(M), so that we can work without x, while still being in a position to
adapt if needed.

Theorem 6.1. When M = F x I is a thickened surface there is a linear isomorphism
fo: HM) — H.(M).

Proof. Represent each union of framed curves in M by a diagram D on F with the
blackboard framing. The allowed changes in the curves alter D by isotopy in F and
Reidemeister moves Ry, Ryrr. The writhe of D, w(D), defined as the sum of the signs
of the crossings in D, then depends only on the curves in M and not on the choice of
representing diagram.

Define f, on diagrams by

fo(D) =27 P)D.

To prove that this induces a well-defined map on H (M) we must show that the skein
relations are respected.
For the switch and smooth relation we must show that

fo(D1) = fu(D-) = (s — Sil)f:t(DO)
in H,(M), where three diagrams Dy, D_, Dy differ only by switching or smoothing a
crossing.
Now the writhes of Dy, Dy satisfy w(Dy) = w + 1,w(D_) = w — 1 where w = w(Dy),
S0
fo(Ds) = fo(D-) =277 'Dy a7 D_ =2 (s — s )Do = (s — ') fu(Do)
in H,(M).
Similarly, for the framing change, w () = w + 1 where w = w (), so in H,(M) we have
0= —at — (),

O

For example, if we need to adapt the element P, = (s —s71)/(s™ — s7™)X,, from our
algebra H above to H, we replace X,,, = Y A;; by >, a?7"4;; as in Aiston’s original
version. The product PP, in H is replaced by P, P, on passing to H, where we use
the adapted Py, Py in H,, and set k = det[x y]. This implies the following corollary of
Theorem 3.2:

Corollary 6.2. Using the general Homflypt skein relations in this section (with parame-
ters x,s,v), the algebra H is generated by elements Py with relations

1" PPy — 2" Py Py = {d}Pxy
where d = det[x y].
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The quadratic relations used by Schiffman, Vasserot, and Cherednik correspond to
the basic skein, so there is largely no need for adaptation. However, comparison with the
results of Frohman and Gelca [FG00] for the Kauffman bracket skein needs the adaptation,
after orienting, of 1 = —A!, s = A2 and v = A%

7. ITERATED CABLES

Let K be an iterated cable of the unknot and A a partition. In this section we use the
isomorphism between the elliptic Hall algebra and the Homflypt skein algebra to construct
a 3-variable polynomial that specializes to the A-colored Homflypt polynomial of K (up
to a monomial s*v®). This can be considered to be an sl version of the construction in
[Sam14] for g = sly, which was generalized in [CD14] to arbitrary g. Our construction uses
the work of Schiffmann and Vasserot [SV13,SV11] in an essential way, and when restricted
to torus knots, it is essentially the same as the construction of Gorsky and Negut [GN15].
We will use our construction to prove a conjecture of Cherednik and Danilenko in [CD14].

The key idea of this construction is the following. First, we prove a cabling formula
which computes the colored Homfly polynomial of an iterated cable of the unknot in terms
of the algebra H, the SLy(Z) action on H, the action of H on C, and the evaluation map
evll : C — R. (See Proposition 7.13.) We then show that all four of these objects have
natural t-deformations, so the cabling formula can be deformed.

We first establish some notation. Throughout the section, m = (mq,...,m;) and
n = (ng,...,ng) will be sequences of integers with m;, n; relatively prime and m; > 0.
We will write AN := Clxy,- -+ ,2n5]V for the graded ring of symmetric polynomials, and
A for the (graded) ring of symmetric functions, which is N — oo limit of the AY. We
write Ty : A — A for the natural projection.

There are three algebras that we will use in this section: the Homflypt skein algebra H,
the elliptic Hall algebra £, and the double affine Hecke algebra H), (defined below). In
general we will use superscripts H, £, and N to distinguish between objects associated to
these three algebras. For example, associated to the sequences m, n and a partition A\ we

will define two polynomials using the representation theory of &, ; and I:Ifl\ft, respectively:

JE(m,n, X q,t,u) € Clg™ 7w, J¥(m,m, X q,t) € Clg™, 7]
(Technically, we actually define rational functions - see Remark 7.20.) We will relate
these polynomials to the colored Homflypt polynomial of the iterated cable K (m,n) of

the unknot determined by the sequences m and n. We first define the notion of iterated
cable that we will use:

Definition 7.1. Let K be a framed knot, let T" be the torus which bounds a neighborhood
of K, and let Ly, be the longitude in 7" determined by the framing of K.

(1) The algebraic (m,n) cable of K is the framed knot in T such that
K(m,n) ~mLy, +nM

(In this notation, the symbol ~ means ‘is homologous to’ and M is the meridian
of K.) The framing of K(m,n) is defined to be parallel to the torus 7'
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(2) We then define a framed knot K (m,n) inductively as follows: K(mq,nq) is the
algebraic (my,n,) cable of the O-framed unknot, and K (my, ny) is the algebraic
(myg,ng) cable of K(my_q,n5_1).

Remark 7.2. We note that the algebraic cabling procedure uses a different framing
convention than the standard topological construction of a cable of a knot. However, the
resulting cabling formula (Prop. 7.13) is particularly simple, which makes it convenient for
our purposes. In our cabling convention, the framing of the cable is parallel to the torus
in which it is embedded. However, the standard topological framing of a knot K in S3
is the O-framing (which means the two boundary components of the annulus determining
the framing of K have 0 linking number). It is clear that the same set of knots is produced
by either cabling procedure (even though their framings are different). Since changing
the framing of a knot changes its (colored) Homfly polynomials by an overall power of g,
our choice of framing convention will not affect the proof of Theorem 7.4 below.

Our cabling procedure is related to algebraic knots, which are the knots obtained by
intersecting a (singular) irreducible algebraic curve in C? with a small copy of S?® around
the singularity. In particular, if the m and n are the Newton pairs of an algebraic plane
curve (see [EN85, Appendix to Ch. 1]), then the algebraic knot obtained from this curve
is K(m,n). The knots that arise this way are exactly those with n; > 0. (These knots
are determined by their Alexander polynomial.)

We will not need to discuss algebraic knots, but it is worth calling attention to [CD14,
Conj. 2.4(iii)], which states that if the m, n are the Newton pairs of an algebraic knot,
then the specialization J¢((;q = 1,t,u = 0) is related to the Betti numbers of the
Jacobian factor of the curve. (These numbers were first conjectured to be related to
Homfly homology in [ORS12]. Homfly homology was conjectured to also be related the
stable polynomials in [CD14].) It is not clear if the skein-theoretic point of view in this
paper can say anything about these conjectures.

We will use the following as our definition of the Homflypt polynomial of K(m,n).
Because of our framing conventions (see Remark 7.2), our definition differs from the
standard definition of the Homflypt polynomial of K by a monomial s*v® depending on
m, n and |A\|. We will ignore this difference since the conjecture in [CD14] is stated up
to an overall constant.

Definition 7.3. The evaluation in the skein of S* of the framed knot K (m,n) colored
by the element @ € C* will be denoted as follows:

JH(m,n, \;v,8) € Hom flypt(S?) = Clv*!, s, (s — s7%) 7]
In this section we will prove the following theorem:

Theorem 7.4. For m,n, \ as above, we have the following specializations:

(7.1) v*s°JE (m,n, \; ¢, t, ) = J"(m,n, \;v, s)

q=s"2t=5"2 u=v2

(7'2) u.Jg(m7 n? A7q?2l:7 u) = q.t.JN<m7 n? A7q72l:)

u=t
(where the powers denoted by “@” depend on m,n, and |A|, but not on N ). In particular,
the Connection Conjecture [CD14, Conj. 2.4(1)] is true.
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Remark 7.5. The existence of a polynomial J¢ satisfying the second specialization was
announced as a theorem in [CD14]. The proof of this is essentially identical to the proof
in [GN15] (which used the results in [SV11] and [SV13]). For the sake of completeness
we will include this proof in Section 7.3. We also remark that the stabilization variable
a in the Connection Conjecture of [CD14] is —u for us, so their specialization a = —tV
becomes our specialization v = tV.

7.1. Homflypt cabling formula. In this section we give a cabling formula for the Hom-
flypt polynomial J(m,n, \;v, s) of the A-colored framed knot K (m,n). In particular,
this will give a algebraic formula for J# in terms of the action of H on the skein C of the
annulus. This formula will later be compared to a specialization of the formula given in
Section 7.2 which defines J¢, and this will imply the first equality of Theorem 7.4.

To simplify comparison to the elliptic Hall algebra, we will need to twist the action of
H on C by an automorphism. To try to make this section self-contained, we will recall
the necessary facts about H and C before giving the cabling formula.

7.1.1. Notation. We will twist the action of H on C by the automorphism F,, ,, — P_;, .
To compare with the constructions in the following sections we will use the following
definitions.

Definition 7.6. We define the following subalgebras of H:
H= = (P, | m>0), H” := (P, | m>0)
We also will use the following R-submodule of C
=R{Qao} = A, Qo sa

The map C* = A is an algebra isomorphism by [Luk05, Thm. 8.2]. The action of H=
preserves the subspace Ct C C, so we can identify A as an HZ-module. This module
structure is described as follows.

Lemma 7.7. The action of H on A is given by
Pm,O SN = PmSa

_v_" — "
Pop-sy = |——+0v"(s" —s") E s72@) | g
STL _ S n

TEA

o (U n —n —2n>\ Qni
= R E S\
s — s

e

where A = (A, ..., A\p).

Proof. The first equality follows from the fact that when ;. = (), the second equation of
Theorem 4.6 agrees with the Murnaghan-Nakayama rule for the product p,,s, of a power
sum times a Schur function. The second equality is translated from Theorem 4.6, and the
third equality follows from the fact that the sum for each row is a telescoping sum. [J

Remark 7.8. These equations have been proved previously by Morton and coauthors.
The first follows from the identification of P, o with the power sum function in [Mor02a,
MMO8], and the second appears as [MMO08, Lemma 17].
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Definition 7.9. If K is a framed knot, then the inclusion Ng < S? induces the following
R-linear evaluation map

evit :C— H(S*) =R

For later use we recall an explicit formula for the evaluation map ev# restricted to the
subspace A C C when U is the O-framed unknot.

Lemma 7.10 ([MLO03, eq. (12)]). For the 0-framed unknot U, the evaluation map is
—180(1‘) _ Us—c(x)
ghi(z) — g—hi(z)

evil A = R, evg(sA):HU

TEX

(If z € A is a box, then ¢(x) and hl(zx) are its content and hook length, see Section 2.1.)

Remark 7.11. It was shown in [Mor07, Thm. 1] that the evaluation evi£(Q, ) is divis-
ible by the evaluation evf (Q, ). (The latter evaluation is typically called the quantum
dimension.)

7.1.2. The cabling formula. Let K be a framed knot with Ny a tubular neighborhood of
K and Tk the boundary of Ni. We use the framing of K to identify 7" with the standard
torus, and we use this to identify H with the skein of Tx and C with the skein of Ng.
Under these identifications, the framed knot K is isotopic to P,y € H and is also isotopic
to Q(l),@ eCtccC.

Let K (m,n) be the algebraic (m, n) cable of K and let N,,,, be a tubular neighborhood
of K(m,n). We identify C with the skein of N, , using the framing of K(m,n) - in
particular, under this identification, the element Q) is isotopic to K(m,n).

Finally, let I', , : Ny.n — Ni be the inclusion, let Lﬁm : C — H be the inclusion given
by inserting the annulus along the (m,n) curve. We choose

(7.3) Ymm € SLo(Z) such that vy, ((1)) = (7:)

We will write

rr.:c—c¢C
for the R-linear map induced by I',,, ,, (where we have identified H(N,,,,) and H(Ng) with
C as described above). Then the following lemma follows immediately from our choices
of identification. (See, e.g. [Sam14, Lemma 2.20].)

Lemma 7.12. Under the identifications above, the R-linear map Fg,n :C—=Cis

Fg,n(lt) = Y (1,0(2)) - 1= typ() - 1
Given sequences m, n as before, we will use the composition

H ._pH H
Pon =T 00l o

Proposition 7.13. If U is the O-framed unknot we have the following equality:
JH(K(m7 Il), >\7 8, U) = eVg(m,n) (Q)\) = (evg © Fﬁl,n) (QA)

In particular, the \-colored Homflypt polynomial J¥ (m,n, \;v,s) of the iterated cable
K(m,n) (in our normalization, see Definition 7.3) is equal to the right hand side.
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Proof. This follows from Lemma 7.12 and our choices of identification. First, the left hand
side of the equation is induced from the inclusion of Ngmn) — S3, and this inclusion
defines the (A-colored) Homflypt polynomial. Then the right hand side is induced from
the sequence of inclusions

NK(mk,nk) - NK(mkfl’nkfl) = NK(ml,nl) — Ny — S?
and the composition of these inclusions is equal to the inclusion Ngmn) = S 3, O

Remark 7.14. This proposition shows that the colored Homflypt polynomials of an
iterated cable of the unknot can be evaluated using the skein algebra H, the SLo(Z)
action on H, the action of H on A, and the evaluation map on A. The more standard
way of writing the cabling formula gives an expression for the polynomials of the cable
of K in terms of the polynomials of K. Such an expression could be derived from our
cabling formula, but we will not need to do this. However, in the simpler case of the
Kauffman bracket skein module, both versions of the cabling formula have appeared in
multiple places. (Precise statements appear in [Sam14, Cor. 2.15, Cor. 2.16], together
with references to other versions.)

In [CD14, Prop. 4.2], the sly version of the latter cabling formula was used to prove the
analogue of the specialization in equation (7.1), and the same specialization was proved in
[Sam14, Thm. A.8] using the former cabling formula (again for sly). It therefore should not
be surprising that our version of the Homflypt cabling formula implies the specialization
in equation (7.1), after the Homflypt skein algebra and elliptic Hall algebra have been
shown to be isomorphic.

7.2. The Hall algebra. In this section we define a 3-variable polynomial that specializes
to the Homflypt polynomial evg(mm)(s,\) of Proposition 7.13. The key idea is that all the
objects on the right hand side of the equality in Proposition 7.13 have t-deformations
that come from the elliptic Hall algebra &;;. We will use the work of Schiffmann and
Vasserot in [SV11,SV13], where they constructed an action of a subalgebra of &,; on A.
However, to simplify comparison to double affine Hecke algebras we will change ¢ + ¢!
(as in Section 5). We also use their renormalized generators vy := (q%®) — 1)u,.
We first define subalgebras

= 1= (U | M > 0), Er = (Umm | m > 0)

We now recall from [SV13, Prop. 1.4] an action of E(ft on A. The action will be written
in terms of Macdonald polynomials Py € A, which form a basis for A. The element v;
acts by multiplication by the power sum p;, and for £ > 1 we have

(7.4) vok - Py o= (Z(q“i —1)t—k<i—1>> Py

Vo - Py 1= qk (Z(qmi — 1)tk(il)> Py
Remark 7.15. The Macdonald polynomials Py are a homogeneous basis of A. Then
equation (7.4) combined with the presentation of &,; implies that the operators vy, ,, are
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graded operators, in the sense that they take homogeneous elements to homogeneous
elements. In particular, the action of E(I , on A is graded, which generalizes property (4)
under Definition 2.1.

In fact, the subalgebra £ := (vgo | k > 0) is isomorphic to A as a graded algebra, and
it acts by multiplication operators. Given m,n € Z relatively prime, we let v, , € SLy(Z)
be as in equation (7.3). By [BS12], the group SLy(Z) acts on &, and we let 5, : A — &,
be the composition of the isomorphism A — 5;"? with the automorphism 7y, », : Eqr — &yt

Since Liw is a map of algebras, it is uniquely determined by the following formula:

(7.5) i (P) = Vi € Eq
We recall Macdonald’s evaluation map [Mac95, eq. VI.6.17 and VI.8.8] in terms of Pj:

tl/(r) — uqa/(x)
1— qa(x)tl(x)Jrl

(7.6) ev® i A — Clg*!, !, u™, evi(Py) = H

TEA

Definition 7.16. Given m,n relatively prime and m, n as above, define maps A — A via

an,n(x) = Lfn,n(x) -1
& R E
Fm,n T le,m 00 Ffﬂk,nk

We then define the polynomial
JE(m,m, A; g, t,u) = evE (g, 1 (Pr))

Before we prove the first equality of Theorem 7.4 we prove a proposition relating the
actions of £-242 and H on A. We recall that Theorem 5.6 states that there is an
isomorphism H — &;-2 4 uniquely determined by Py sy, We twist this by a
graded automorphism of H to obtain the isomorphism

(7.7) @ H S Eg2 e, &(Pn) = v"s_mJ“d(m’")vmm
Proposition 7.17. For x € A and P € H”, we have
P-x=¢(P) x
Proof. We first compare the actions of P, ,, and ¢(P,,,) on A for certain m,n. First,

Pm,O SN = PmS)

—0 _,—m—+0+m _ _
v S Um0 = Um,05x = PmS)

Second, from Lemma 7.7, for all n we have

n k
. 4+ E :(572n)\i o 1)827” Sx

=1

v —w
Po,n'S,\: —

s — s
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It is well-known that when ¢ = ¢, the Macdonald polynomials specialize to the Schur
functions. Then for n > 0, the t = ¢ = s72 specialization of equation (7.4) states

Un80+n?}07n L8y = Vs E (S—Qn)\i o 1)82711

UfnSOJrnUO’in N v " § <S2n)\¢ o 1)872111

We have therefore shown that P, - sx = @(Ph) - sx and that

v — "

(78) PO,n ) |: n

st — g

+ @(Po,n)} £ 8)

Using the commutation relations in H, it is clear that any element in H~ can be written
as sums of products of commutators of P, and Fy,. In the commutator the constant
term on the right hand side of equation (7.8) drops out, which shows that

(7.9) P-sy=p(P)- sy, forall P € H”
which completes the proof of the proposition. O

Proof. (of equality (7.1) of Theorem 7.4) We first use the cabling formula in Proposition
7.13 to reduce the equality that we are supposed to prove to the following:
(7.10) evg(Fim(PA))‘ = v's'evH(Fin(s,\))

q=5"2t=5"2 u=02

where the powers depend on m, n, and |A|. We recall that if p, € A is a power sum, then

H o = Penn € H> and Lfnm(pk) = Ugmn € €2 .». Then Proposition 7.17 implies

(k) = Vs 0 (i) € Endg(A)
where the equality is equality of operators in Endg(A). Now the assignments py
vhns=Fmgkp, induce a graded algebra isomorphism A — A, which shows that for any
homogeneous = € A (and in particular for z = s,), we have the equality of operators

M (:U) = U'x‘n57|x|mslx‘U|z|m7‘$|n(£€) € EndR(A)

m,n

Since this equality is as operators on A, this shows that ' (z) = v*s°T%,  (z), where
the powers depend on m, n, and |z|. Finally, the actions of H and £ on A are graded: if
ac€ H”,be 8; ,, and © € A are homogeneous, then a - x and b - x are also homogeneous.
(See Remark 7.15.) This implies that T2 and T'¢,  are homogeneous maps, which implies
that for homogeneous = € A, 7 7

(7.11) Ffm(x) = U.S.an’n(ilf)

where the powers depend on m, n, and |z|.
Now to finish the proof of equation (7.10), all that remains is to compare the evaluation
maps ev® and evf. We then equate parameters t = ¢ = s~2 and v = v? in the formula
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(7.6) and compute

I I
g( ) 872l —1)2872(1
eV (Sy = H
1 — 8—2a8—2l—2
TEN
—1a’ =1 U'—a’
_ v H Sl*llfa/JrCL‘Fl v S — US
8_a_l_1 _ Sa+l+1
TEA

flsc(m) _ Usfc(a:)

_ v
= Us |Ml—[ il 7l
S (1’)—5_ (=)
TEA

= s PMevl(sy)

where we have written [ = [(x), etc. (The third equality is a straightforward combinatorial
identity.) Since the s, are a homogeneous linear basis of A and the maps T[], and T%, |
are homogeneous, this shows equality (7.10) and completes the proof. 0

7.3. Double affine Hecke algebras. We now briefly recall the construction of [CD14].
Since the main theorem of this section will follow from comparing to [SV13], we will only
introduce the notation necessary to make this comparison. (As in the previous section,
the ¢ of [SV13] is our ¢71.)

The double affine Hecke algebra I:If]\ft, of GLy, abbreviated DAHA, is the algebra gen-
erated by elements Tfl for1 <:< N -1, and X;El, YjjEl for 1 < j < N, subject to some
relations which we will not write down. This algebra is Z?-graded, with deg(X;) = (1,0),
deg(Y;) = (0,1), and deg(T;) = 0.

Let S be the symmetrizing idempotent in the finite Hecke algebra (which is generated
by the Tj’s), which is characterized by T;S = ST = t'/?e for all j. The spherical DAHA

is the subalgebra Sﬁé\ft = Sﬁé\;S of HY,, and it is also Z*-graded. There is an SLy(Z)

.o q7t7
action on the subalgebra SHY, (see the paragraph above Lemma 2.1 in [SV11]).

Following [SV11, Sec. 2.2], for k > 0 we define elements
P =8Y YFs

Elements P for x € Z? are defined using the SLy(Z) action. We define SH;” to be the
subalgebra of SI:Ith generated by P. with m > 0.

Cherednik defined an action of SICIQ; on AV using Demazure-Lusztig operators (see,
e.g. [Che95]). Instead of defining these operators, we recall the following theorem of
Schiffmann and Vasserot. (This determines the action of Sﬂfxf on AN uniquely up to
scalars, which is enough for our purposes.)

Theorem 7.18 ([SV13,SV11]). The assignment vy — PY extends uniquely to a Z*-graded
SLy(Z)-equivariant surjective algebra homomorphism

¢N : Sq,t - SHé\,[t
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Furthermore, under the projection my : A — AN, the actions of the subalgebras Eor and
SHgf are related via the formula

o 0 o N
(¢t u’mN © V) o =PhnomN

where vy, , and PWJX ., are viewed as endomorphisms of A and AN, respectively, and where

the powers denoted ‘e’ depend on m and n but not on N or on |A|.

Proof. The first statement is [SV11, Thm. 3.1]. The second statement follows from [SV13,
Lemma 1.3] and the discussion directly preceding [SV13, Prop. 1.4]. We remark that the
definition of the P differs in [SV13] and [SV11] - we have chosen the latter because
these make the map ¢V equivariant under the SLy(Z) action. The analogous surjection
used in [SV13] is a twist of " by a graded automorphism, which accounts for the factor

¢*® in our statement. The factors u® and ¢* come from the two formulas below [SV13, eq.
(2.12)]. O

There is a natural algebra map ¥ : ANV — Sﬂfxf which takes the power sum functions
pr to the element P,g\fo. Given m,n € Z relatively prime with m > 0, we will write

N . N
[’m,n T Pym7n ol

where 7, ,, € SLy(Z) is as in equation (7.3). We remark that the automorphism ~,,,, of
SHf]\ft does not preserve the subalgebra SHfo. However, since m > 0, the image of the
elements P,% is contained in the subalgebra Sﬂfx i

Definition 7.19 ([CD14, eq. (2.13)]). Given m, n relatively prime with m > 0, sequences
m, n as above, and a partition A with at most IV parts, define maps AY — A" via

Ton(®) = (@)1
1—‘ﬁ,l’l = F%hnl ©--0 F%k,nk

We then define the polynomial
TV (m,n, X q,t) == ev™ (T o (PY))
where P € AV is the Macdonald polynomial associated to the partition \.

Remark 7.20. The Macdonald polynomials are actually rational functions in ¢ and ¢, so
the definition above actually produces a rational function. The definition in [CD14] is a
renormalization of the definition above (they divide by the evaluation of P{¥), and in their
normalization the output of their formula is actually a polynomial, which is important for
their purposes. The effect of this normalization is that the polynomials for the unknot are
all 1. Since we work with the skein-theoretic normalization of the Homflypt polynomial,
our choice of normalization is slightly more convenient for our purposes.

Proof. (of equation (7.2) of Theorem 7.4) We need to prove the equality
g*tutevt (T (Py)|  =ev™ (I o (RY))
’ t k)

where the powers “o” do not depend on N. We will do this by relating the various maps
involving A and A" with the projection my : A — AY and ¢ : £, — SHY,.
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First, it is well known that my(Py) = P{. Since the surjection ¢ is SLy(Z)-equivariant,
we see that ¢y (i, ,(z)) = o, (mn(z)) for 2 € A. This combined with the assumption
m > 0 and the second statement of Theorem 7.18 shows the equality

(7.12) (q"t*umy o TE,) ‘ =TN omy

u=t
where the powers depend on m,n but not on N. Finally, the equality

£

ev N

= eV OTN
u=tN

completes the proof of the theorem. O
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