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Abstract. We give a generators and relations presentation of the Homflypt skein alge-
bra H of the torus T 2, and we give an explicit description of the module corresponding
to the solid torus. Using this presentation, we show that H is isomorphic to the σ = σ̄−1

specialization of the elliptic Hall algebra of Burban and Schiffmann [BS12].
As an application, for an iterated cable K of the unknot, we use the elliptic Hall

algebra to construct a 3-variable polynomial that specializes to the λ-colored Homflypt
polynomial of K. We show that this polynomial also specializes to one constructed by
Cherednik and Danilenko using the glN double affine Hecke algebra. This proves one of
the Connection Conjectures in [CD14].
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1. Introduction

In this paper we compare an algebra coming from knot theory with an algebra defined
using elliptic curves over finite fields. We use this to derive results about polynomials
associated to algebraic knots, which are iterated torus knots that arise from a singular
point of a planar algebraic curve. Below we briefly introduce both algebras and then give
precise statements of the results.

1.1. The Homflypt skein algebra. The framed Homflypt skein module H(M) of an
oriented 3-manifold M consists of R-linear combinations of framed oriented links in M
up to isotopy, modulo the linear ‘skein relations’

− = (s− s−1) (Switch and smooth)

= v−1 , = v (Framing change)
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using the ring R = Z[v±1, s±1] with denominators sr − s−r, r > 0 as coefficient ring.
In these relations we use the convention that the framing is defined by a ribbon for

each component of the link, and the skein relations apply in a ball in which the framing
ribbons lie parallel to the strands as seen. This is sometimes termed the ‘local blackboard
framing’. The second framing relation then introduces v±1 when a framing ribbon acquires
a single extra twist.

Remark 1.1. The term skein module indicates that H(M) is a module over R. Since
many skeins are also modules over more complicated R-algebras, Morton and his co-
workers often simply use the term skein, and suppress the qualifications framed Homflypt
also when the context is clear.

When F is an orientable surface and M = F × I we adopt the notation H(F ) in place
of H(F × I), and refer to H(F ) as the skein (module) of the surface F . Framed links in
F × I can be represented by diagrams in F , with the global ‘blackboard framing’ from F ,
up to isotopy and Reidemeister moves RII , RIII . We can then regard elements of H(F )
as diagrams in F modulo RII , RIII and the skein relations.

The skein H(F ) forms an algebra over R under the product induced by placing one copy
of F × I containing an element D ∈ H(F ) on top of another copy containing E ∈ H(F )
to determine their product DE (see Section 2.3).

In the case C = H(F ) where F is the annulus S1 × I this algebra is commutative and
has been studied for some time. A recent account of some of its properties can be found in
[MM08]. It has an interpretation as the algebra of symmetric functions in a large number
of commuting variables x1, . . . , xN , and contains an element Pm for each m corresponding
to the power sum xm1 + · · · + xmN . One representation of this element, due originally to
Aiston [Ais96], is a multiple of the sum of m explicit closed m-braids (see Section 2.4).

The case of primary interest to us is the skein H = H(T 2) for the surface T 2. As
an algebra H is non-commutative, and can be generated by elements Px, one for each
x ∈ Z2 \ {0}, corresponding to free homotopy classes of curves in T 2.

For a primitive x = (m,n) ∈ Z2 we represent Px by the oriented embedded (m,n) curve
on T 2. It is an immediate consequence of the switch and smooth skein relation that the
commutator [P(1,0), P(0,1)] satisfies

[P(1,0), P(0,1)] = (s− s−1)P(1,1).

The same switching and smoothing relation shows that [Px, Py] = (s − s−1)Px+y when
the primitive curves x and y cross once in the positive direction. Our main result is the
following simple extension of these commutation relations (see Theorem 3.2).

Theorem 1. (Global switch and smooth). The commutator [Px, Py] in H satisfies

(1.1) [Px, Py] = (sd − s−d)Px+y

where d = det[x y] is the signed crossing number of x with y. In particular, if x and y
are collinear, then Px and Py commute.

In making the statement of Theorem 1 we must also specify Pmx for any multiple of a
primitive x. This is defined by decorating the embedded curve x by the element Pm from
the skein C of the annulus. (See Definition 2.5.)
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When x,y and x + y are all primitive the commutator [Px, Py] may be regarded as the
difference of a switch of the curves x and y, with Px+y appearing as the simultaneous
smoothing at the k crossings.

The proof of Theorem 1 relies on a result in [MM08] to establish that

[P(m,0), P(0,1)] = (sm − s−m)P(m,1).

Direct skein manipulation shows that

[P(0,−1), P(m,1)] = (sm − s−m)P(m,0),

using Aiston’s representation of Pm. The full theorem is proved from these two cases in
Section 3 using induction on det[x y]. Using a theorem of Przytycki in [Prz92], we prove
the following (see Corollary 3.3).

Theorem 2. As an abstract algebra, H(T 2) has a presentation with generators Px for
x ∈ Z2 and relations given by equation (1.1).

In general, if M is a 3-manifold, then H(M) is a module over the algebra H(∂M).
In particular, the skein module H(S3 \ K) of a knot complement is a module over the
algebra H(T 2). In the case where K is the trivial knot we use earlier work of Morton and
coauthors [MH02,HM06] to give an explicit description of C := H(S1 ×D2) as a module
over H(T 2). In particular, as a module over the (commutative) ‘horizontal’ subalgebra
generated by {Pm,0 | m ∈ Z} it is simultaneously diagonalizable with distinct eigenvalues.
Over the ‘vertical’ subalgebra generated by {P0,n | n ∈ Z} the module C is free of rank
1. It can be viewed as an analogue of the polynomial module over the Weyl algebra, a
Verma module in Lie theory, or the polynomial representation of a double affine Hecke
algebra. We give explicit formulas for the action of H on C in Theorem 4.6.

These theorems can be viewed as analogues of the work of Frohman and Gelca in
[FG00]. They give a presentation of the Kauffman bracket skein algebra Kq(T

2) of the
torus T 2 and describe its action on the (Kauffman bracket) skein of the annulus. It turns
out that the algebra Kq(T

2) is the t = q specialization of the sl2 spherical double affine
Hecke algebra introduced by Cherednik in [Che95]. Analogously, we show that the Homfly
skein algebra H is isomorphic to the σ = σ̄−1 specialization of the elliptic Hall algebra of
Burban and Schiffmann [BS12]. This algebra can be viewed as the gl∞ spherical DAHA
by work of Schiffmann and Vasserot [SV11].

1.2. The elliptic Hall algebra. Let X be a smooth elliptic curve over a finite field. In
[BS12], Burban and Schiffmann gave an explicit presentation for the elliptic Hall algebra
Eq,t, which is the Drinfeld double of the Hall algebra of the category Coh(X) of coherent
sheaves over X. They show that the structure constants are Laurent polynomials in
q, t, where q2, t−2 are the eigenvalues σ, σ̄ of the Frobenius operator on the first l-adic
cohomology group of X. We may therefore view q, t as formal parameters.

It turns out that the algebra Eq,t (or one of its cousins1) has several interpretations:

• a generalized quantum affine algebra in [DI97],
• ‘a (q, γ) analog of the W1+∞ algebra’ in [Mik07]
• the ‘shuffle algebra’ of [FT11], (see also [Neg14])

1By ‘cousin’ we mean either the ‘positive half’ E+q,t or a central extension of Eq,t.
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• the ‘spherical gl∞ double affine Hecke algebra’ in [SV11], (see also [FFJ+11])
• the ‘quantum continuous gl∞’ in [FFJ+11]
• an algebra acting on⊕KT (Hilbn(C2)) in [SV13] (see also [FT11], [FFJ+11], [Neg15])

As a consequence of Theorem 2, we add a new interpretation to this list (see Theorem
5.6).

Theorem 3. The skein algebra H is isomorphic to Eq,q, and the SL2(Z) actions agree.
In particular, any knot K ⊂ S3 provides a module over the algebra Eq,q.

This theorem may seem surprising because the definitions of Eq,t and H seem completely
unrelated. One rough heuristic explanation for this isomorphism is as follows. When all
parameters are set equal2 to 1, the Homflypt skein algebra of a surface F surjects onto
OF,N := O(Char(π1(F ),GLN(C)), the ring of functions on the scheme parameterizing
representations of π1(F ) up to equivalence. The glN spherical double affine Hecke algebra
SḦN

q,t is an algebra depending on 2 parameters q, t ∈ C∗, and when q = t = 1, this algebra
is isomorphic to OT 2,N . Finally, Schiffmann and Vasserot show in [SV11] that Eq,t surjects

onto SḦN
q,t for any N . Summarizing, when the parameters are set to 1, both H and E1,1

surject onto the (commutative) algebras OT 2,N for any N .
We also remark that Theorem 3 seems analogous to Kontsevitch’s homological mirror

symmetry for an elliptic curve (see [PZ98] for a precise statement and proof in this case).
Very roughly, in this case mirror symmetry predicts that the derived category Db(Coh(X))
of coherent sheaves over an elliptic curve X over C is equivalent to the Fukaya category
of the symplectic torus S1×S1. Objects in this Fukaya category are simple closed curves
‘decorated’ by a representation of U(k) (for some k), and under this equivalence, a sheaf on
X of slope m/n is sent to the (m,n) curve on S1×S1, decorated by a certain representation
of U(gcd(m,n)). This is reminiscent of the isomorphism in Theorem 3. However, it seems
that there are significant difficulties (at best) in attempting to prove this isomorphism
using mirror symmetry, so this picture is still rather vague. In particular, the elliptic Hall
algebra is actually the “spherical” subalgebra of the Hall algebra of an elliptic curve (i.e.
it only contains certain linear combinations of sheaves), and the elliptic curve is over a
finite field. However, the work of Lekili and Perutz in [LP12] may shed some light on this
situation.

1.3. Algebraic knots. We next discuss an application of the isomorphism H ∼= Eq,q. If
K is an iterated cable of the unknot, then it is straightforward to give a cabling formula
that computes the λ-colored Homflypt polynomial JH(K,λ) of K in terms of four objects:

• the skein algebra H,
• the action of SL2(Z) on H,
• the action of H on C, the skein module of the annulus,
• the evaluation map evH : C → H(S3) = R.

(See Proposition 7.13). Using the isomorphism of Theorem 5.6 and a theorem in [SV13],
we show that all objects used in the cabling formula have t-deformations. This allows
us to define 3-variable polynomials JE(K,λ) (see Definition 7.16) that specialize to the

2“Setting all parameters equal to one” is a statement that requires some care to be made precise, but
we will not discuss this.
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colored Homflypt polynomials JH(K,λ). (Technically, these are rational functions – see
Remark 7.20.)

In [Sam14] similar polynomials were defined using the sl2 spherical double affine Hecke
algebra, and Cherednik and Danilenko generalized these to arbitrary g shortly afterwards
in [CD14] (with a slightly simpler construction). For g = glN , we recall their definition of
the polynomials JN(K,λ) in Definition 7.19. We prove the following in Theorem 7.4:

Theorem 4. If K is an iterated cable of the unknot, we have the following specializations:

JE(K,λ; q, t, u)
∣∣∣
q=s−2,t=s−2,u=v2

= v•s•JH(K,λ; v, s)

u•JE(K,λ; q, t, u)
∣∣∣
u=tN

= q•t•JN(K,λ; q, t)

(where the powers denoted by “•” depend on K and |λ|, but not on N). In particular, the
Connection Conjecture [CD14, Conj. 2.4(i)] is true.

We remark that the definition of JE(K) depends a priori on a choice of presentation
of K as an iterated cable of the unknot. It isn’t clear whether different choices for this
presentation produce the same polynomials. (However, it was shown that certain different
choices do produce the same polynomials JN(K) in [CD14, Thm. 2.1(i)].)

At this point, one natural question is whether the modules over Eq,q associated to knots
can be deformed to modules over Eq,t for any t ∈ C∗ (in the style of [BS14]). A positive
answer may be interesting even for the module C associated to the unknot. A central
extension Ecq,t of Eq,t acts on Λ, which is the ‘Fock space’ with basis given by the set of all
partitions (see, e.g., [FFJ+11] or [SV13]). The module C has a natural basis indexed by
pairs of partitions, and so can be identified with Λ⊗CΛ as a vector space. It does not seem
that a module of this ‘size’ has appeared in the recent literature about the representation
theory of Eq,t, but it does seem reasonable to expect that C deforms. We hope to address
this question in future work.

1.4. Summary. We now summarize the contents of the paper. In Section 2 we provide
brief background and definitions. We then give a presentation for the algebra H in
Section 3. The module C associated to the solid torus is described explicitly in Section
4. In Section 5 we prove that H is the t = q specialization of the elliptic Hall algebra
Eq,t. In Section 6 we describe different specializations of the Homflypt skein relations and
their relation to other knot invariants. In Section 7 we use the elliptic Hall algebra to
construct a 3-variable polynomial that specializes to the Homflypt polynomial for iterated
torus knots and to the 2-variable polynomials for glN constructed in [CD14].
Acknowledgments: We would like to thank the referees for a careful reading of the
manuscript and for a suggestion which helped clarify the proof of Theorem 4.6. We thank
I. Cherednik for helpful discussions about [CD14], and D. Muthiah for help with using
Sage and for several enthusiastic conversations. We also thank Y. Berest, F. Bergeron,
A. Oblomkov, V. Shende, O. Schiffmann, and E. Vasserot for enlightening discussions of
their work and/or the present paper. The authors also benefited from the Research in
Pairs program in Oberwolfach, where final editing on this paper was completed.
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2. Background

In this section we first establish notation for ‘quantum numbers’ and partitions, and
we then give definitions and background for Homflypt skein modules.

2.1. Notation. In this paper we will use the coefficient ring R = C[v±1, s±1, (s− s−1)−k]
(where k ranges over N), and we use the following ‘quantum numbers:’

[d] :=
sd − s−d

s− s−1
, {d} := sd − s−d, {d}+ := sd + s−d

Let λ = (λ1, · · · , λk) be a partition of length k. We will represent partitions by Young
diagrams using the continental convention, so that a nonempty partition always has a
box in its lower left corner. We will write λ both for a partition and for its representation
as a Young diagram. If x is a box in λ in row i and column j, we will use the standard
notations

(2.1) a(x) = λi − j, l(x) = |{n | λn ≥ j}| − i, a′(x) = j, l′(x) = i

Here a(x), l(x), a′(x), and l′(x) are the arm length, leg length, coarm length, and coleg
length of x, respectively. Graphically, they are the number of cells strictly to the right,
strictly above, weakly to the left, and weakly below x, respectively.

armleg.pdf

i

j

x

a(x)

l(x)

We will also use the content c(x) and hook length hl(x), which are defined by

(2.2) c(x) := j − i, hl(x) := a(x) + l(x) + 1

2.2. Homflypt skein modules. Let M be an oriented 3-manifold. A framed oriented
link in M is (an ambient isotopy class of) a smooth embedding t(S1× [0, 1]) ↪→M , where
each copy of S1 is oriented. Let L(M) be the free R-module spanned by framed oriented
links in M , and let L′(M) ⊂ L(M) be the R-submodule generated by the skein relations
in Figure 1. (A skein relation is a formal linear combination of links differing only inside
a 3-ball as shown in the figure.)

− = (s− s−1) (Switch and smooth)
= v−1 , = v (Framing change)

Figure 1. The Homflypt skein relations
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It is an immediate consequence that

(2.3) = δ ,

where δ =
v−1 − v
s− s−1

. This relation allows an unknotted component with framing 0 con-

tained in a 3-ball disjoint from the rest of the link to be removed at the expense of the
constant multiple δ.

Definition 2.1. The framed Homflypt skein module H(M) of the manifold M is the
quotient L(M)/L′(M).

In general, the Homflypt skein H(M) has four important properties:

(1) The skein H(M) is graded by the homology group H1(M), since each skein relation
involves only links in the same homology class.

(2) If M = F × [0, 1], then H(M) is an algebra (which is typically noncommutative).
The product is given by stacking links (see Section 2.3 for an example). The
grading is additive under the product.

(3) If ∂M = F , then H(M) is a module over the algebra H(F × [0, 1]). The action
is given by “pushing links from the boundary into M .” If a ∈ H(F × [0, 1])
and m ∈ H(M) are homogeneous, then deg(a ·m) = ι(deg(a)) + deg(m), where
ι∗ : H1(F )→ H1(M) is the map on homology induced by the inclusion ι : F ↪→M .

(4) An oriented embedding f : M ↪→ N induces an R-linear map f∗ : H(M)→ H(N).
When f is a homeomorphism the map f∗ is an isomorphism.

Definition 2.2. Write H := H(T 2) for the (framed Homflypt) skein of the torus T 2, and
C := H(S1× I2) for the skein of the solid torus, with a choice of explicit homeomorphism
from the solid torus to (S1 × I) × I to specify C as an algebra (see the beginning of
Section 4). The skein C is an algebra, where the product is given by stacking in the third
coordinate of (S1×I)×I. The algebra H also acts on C, since the boundary of (S1×I)×I
is a torus. However, this action is not by algebra morphisms of C. (This action is roughly
analogous to the action of the Weyl algebra of differential operators on C[x].)

In this paper we study the algebra structure of H and the H-module structure of C.
The algebra H is graded by x ∈ Z2 = H1(T 2). Set

H = ⊕x∈Z2Hx

where the degree of a link is given by its homology class. Similarly the algebra C has a
Z grading. There is an action of SL2(Z) by algebra automorphisms on H induced by the
mapping class group action on T 2.

2.3. Diagrammatic representations of links in T 2. Use the classical presentation of
T 2 as a square with pairs of edges identified,

as indicated by the coloured edges in the diagram above. Then a link in T 2 can be drawn
as a diagram in the square with some arcs meeting the coloured edges in matching pairs.

For example here are diagrams in T 2 of a 2-component link

D =
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and a 1-component link

E =

along with diagrams for the products

DE = and ED = .

Elements in H are linear combinations of diagrams, so for example the commutator
[D,E] is the element DE − ED ∈ H.

Using the convention that the square has sides along the usual axes we can draw the
embedded (m,n) curve in T 2 as

Px =

meeting the vertical edges in m points and the horizontal edges in n points. Here (m,n) =
(−1, k) = x ∈ Z2 is the homology class of the curve, so that Px lies in the graded subspace
Hx ⊂ H. The curve will cross the edges of the square according to the signs of m and n;
in this diagram m = −1 and n = k > 0.

This defines elements Px for each primitive x ∈ Z2, in other words where m and n are
coprime. As a simple example we have

P1,0 = , P0,1 = .

Their commutator then satisfies

[P1,0, P0,1] = −

= (s− s−1)

= (s− s−1)P1,1,

using the switch and smooth skein relation.
Clearly if the embedded curve Px crosses the embedded curve Py once positively3 then

the switch and smooth relation applied at the crossing results in the embedded curve
Px+y and their commutator satisfies the equation

[Px, Py] = (s− s−1)Px+y.

Remark 2.3. The signed number of crossings of curves with homology x and y is equal
to the determinant det[x y] of the 2× 2 matrix with columns x and y.

Before giving the definition of the elements P(m,n) ∈ H where m and n are not coprime
we use diagrams in the square meeting the edges in matched pairs to represent elements
of some other skeins.

2.4. The skein C of the annulus. If we identify the two horizontal edges only we get
an annulus. Elements of its skein C can be represented by diagrams which do not meet
the vertical edges. Any such diagram also gives a diagram in T 2 by identifying the two
vertical edges. The elements arising in this way in H will lie in the graded part H(0,k)

where k is the signed number of crossings with the horizontal edge.

3A crossing is positive if the tangent vector of the upper curve is rotated clockwise from tangent vector
of the lower one (i.e. the left-most term of the skein relation is a positive crossing).
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For i, j ≥ 0, define elements Ai,j ∈ C diagrammatically by

Ai,j = aijannulusduke.pdf

i j

.

We will use the following k-strand elements in H0,k:

Xk :=
k−1∑
i=0

Ai,k−i−1 ∈ C

Remark 2.4. By repeatedly applying the skein relation, it is clear that Xk = kAk,0 + · · · ,
where the ellipses refer to diagrams with fewer numbers of crossings. Since A1,0 = X1,
this upper-triangularity implies that in the algebra C, any polynomial in the Ak,0 can be
written uniquely as a polynomial in the Xk. We will use the Xk because they satisfy nicer
commutation relations.

Aiston [Ais96] showed that Xk represents a multiple of the kth power sum when in-
terpreting C in terms of symmetric functions. Further work by Aiston, Morton and
subsequent collaborators has identified other nice algebraic and skein theoretic properties
of Xk and more particularly the exact power sum Pk := (s − s−1)/(sk − s−k)Xk, which
we shall also use in this paper.

Definition 2.5. For k > 0 we define P0,k to be the result of decorating the (0, 1) curve
in T 2 by Pk from C, or equivalently

P0,k =
s− s−1

sk − s−k
k−1∑
i=0

Ai,j

after identifying the vertical edges as well in the square to give diagrams in T 2.
To define Px in general write x = k(m,n) with m and n coprime and k > 0. Then

decorate the embedded (m,n) curve by the element Pk ∈ C from the skein of the annulus
to specify Px. By definition, for γ ∈ SL2(Z) we have γ · Px = Pγ·x.

2.5. Decoration and framing. The term decoration in our definition above has been
used widely by Morton and others in describing satellite invariants of framed knots and
links in manifolds.

What is meant by decorating a framed oriented curve K in M by a framed curve Q in
S1 × I is to embed the thickened annulus S1 × I on the neighbourhood of K, respecting
orientation and framing. The image of Q in M is the satellite of K with pattern Q, and is
referred to as K decorated by Q. It carries a framing which is determined by the framing
of Q.
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The embedding from S1 × I to M depends on the framing and orientation of K. It
induces a linear map of skeins from C = H(S1× I) to H(M), with image denoted by CK .

In the case where M = F × I and K is an embedded curve in the surface F , which is
framed by its neighbourhood in F , the induced linear map is an algebra homomorphism.
The image CK is then a subalgebra of H(F ).

When F = T 2 there is an embedded curve Px for each primitive x ∈ Z2. We have
defined Pkx above to be the image of Pk ∈ C under the homomorphism C → H determined
by the framed embedded curve Px.

Remark 2.6. When k = 1 the result Px is just the oriented x = (m,n) curve, as defined
earlier. For P0,n with n < 0 we decorate the (0,−1) curve by P−n. Also, since SL(2,Z)
acts on T 2 preserving the framing annuli of embedded curves we see that its action on H
permutes the elements Px.

2.6. Hecke algebras of type A. There is a family of algebras modelled by the skein of
the square with diagrams meeting the horizontal edges in matching pairs, but not meeting
the vertical edges. Where there are n meeting points on each edge, all oriented upwards,
this skein models the Hecke algebra Hn as in [MT90] and [AM98]. With n upwardly and
p downwardly oriented meeting points the skein is the mixed algebra H(n, p) in [KM93]
and in [MH02]. In both cases the algebra product comes from placing one square above
another.

2.7. Affine Hecke algebras of type A. Use the square with the vertical edges identified,
to give a cylinder, and take diagrams meeting the horizontal edges in n matching pairs,
oriented upwards, to give an algebra closely related to the affine Hecke algebra Ḣn.

A description of the affine Hecke algebra in this way is given by Graham and Lehrer
[GL03]. They restrict the diagrams to be braids in the cylinder, without closed curves,
and with all strings running monotonically in the vertical direction. They then have no
need for the parameter v, nor the framing change relation. In their work the regular
elementary braids σi represent the elements conventionally called Ti in presentations of
Ḣn. They give cylindrical braid representatives for the commuting elements in Ḣn known
as Xi, and for the element τ which realizes a 1/n turn around the cylinder.

Because we are using Xi in this paper in a different context, following the terminology
of [MM08], we refer here to Graham and Lehrer’s braids as Yi, for i = 1, . . . , n:

Yi := Murphycylinderduke.pdf

i

Figure 2. The commuting elements Yi in the affine Hecke algebra Ḣn.

Symmetric functions in these are central elements in Ḣn. (In fact, the whole center
Z(Ḣn) is generated by symmetric functions in the Yi, see [Lus89], but we won’t use this
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fact.) In this context, it is worth extending to the full skein of the cylinder without
restricting to the use of braids. In the full skein there is a nice model of the sum

∑
Yi as

a sort of commutator of the identity braid with the closed curve P1,0. The exact result is
the equation

− = (s− s−1)
n∑
i=1

Yi ,

proved by applying the switch and smooth relations on the n crossing points of the first
diagram in sequence. Both diagrams on the left hand side are then clearly central in the
full skein.

Remark 2.7. The full skein of the cylinder with n = 1 is used by Lukac [Luk01], and
by Morton and Hadji [HM06], under the name A, in proving results about C. One
relevant result from [MM08] is illustrated below, with the cylinder drawn as an annulus,
in Equation (3.3). This leads immediately to the representation of (sk− s−k)

∑n
i=1 Y

k
i for

every n > 1.
Very close analogues of Yi in Hn are used in [Mor02a,Mor02b] where they represent the

Murphy operators. The notation Ti is used in that paper, where a similar construction
gives a quick proof that symmetric polynomials in the commuting elements Ti are central
in Hn.

It is also worth considering the algebras Ḣn,p where the vertical edges are again identified
to give a cylinder, and diagrams meet the horizontal edges in n upward and p downward
matched pairs of points. By work of Turaev [Tur88] the elements Xm generate H(S1 ×
[0, 1]) as an algebra over R.

3. A presentation for H

In this section we give a presentation of H using the elements Px of Definition 2.5.

Lemma 3.1. The algebra H is generated by the elements Px.

Proof. Any element of H can be reduced to a sum of products of knots using the skein
relations. Then a knot in H is in some graded piece Hj,k, and it follows from [Prz92]
that the skein module of the annulus surjects onto any particular graded piece Hj,k by
embedding the annulus onto a neighborhood of the (j/d, k/d) curve (where d = gcd(j, k)).
The claim then follows from the fact that the Xm generate the skein module of the annulus,
which was proved by Turaev in [Tur88], and the fact that over R the Xm can be written
in terms of the Px. (See Remark 2.4.) �

Theorem 3.2. The elements Px for x ∈ Z2 satisfy the following commutation relation:

(3.1) [Px, Py] = {det[x y]}Px+y

Proof. We separate this proof into two subsections. In Section 3.1 we prove the following
relations using methods and results of [MM08]:

[Pkx, Pjx] = 0

[P1,0, P−1,k] = {k}P0,k(3.2)

[P1,0, P0,k] = {k}P1,k
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Then in Section 3.2 we show that the relations (3.2) imply (3.1). �

Before we prove this theorem, we use a theorem in [Prz92] to show that this gives a
presentation of H. More precisely, let A be the abstract algebra generated by Pj,k subject
to the relations in Theorem 3.2.

Corollary 3.3. The natural surjection A� H is an isomorphism.

Proof. We begin by recalling a basis for H constructed in [Prz92]. We pick a linear
ordering ≤ of elements in π0 := Z2 \ {0} according to the angle with the positive x-
axis. Then for each w = (m,n) ∈ π0 we pick a representative diagram B(w), which is
defined to be the curve Ak,0 (defined in Section 2.4) inserted on the (m/d, n/d) curve
on the torus, where d = gcd(m,n). If Sym(π0) is the symmetric algebra of R[π0], then
Przytycki defines a map Sym(π0)→ H which takes a monomial w1 · · ·wn to the product
B(w1)B(w2) · · ·B(wn), where w1 ≤ w2 · · · ≤ wn. Then [Prz92, Thm. 6.2] states that this
is an R-isomorphism.

We then note that over R, the diagram B(w) can be written uniquely in terms of
diagrams Pcm/d, cn/d, where c ∈ N and d = gcd(m,n) (this follows from Remark 2.4).
Then the commutation relations in Theorem 3.2 allow one to order the Px according to
the angle between x and the positive x-axis. This completes the proof of the corollary. �

3.1. Certain commutation relations.

Proof. The first equation of (3.2) is obvious because the two elements in question lie in
parallel annuli.

To prove the second equation, we work with diagrams in the square with edges identified,
as discussed above. The commutator [P1,0, P−1,k] is represented by the torus diagrams

− .

We introduce intermediate torus diagrams Cj,k−j for j = 0, . . . k in which the first j
crossings on the (1, 0) curve are switched from over to under. Thus

Cj,k−j := cijtorusduke.pdf

j k − j

.

Then C0,k = P1,0P−1,k and Ck,0 = P−1,kP1,0.
The skein relation applied at the circled crossing on Cj,k−j gives

Cj,k−j − Cj+1,k−j−1 = (s− s−1)Dj,k−j−1.

Here
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Dj,i := smoothedtorusduke.pdf

j i

is the smoothed diagram with j crossings on the string from the left-hand vertical edge
and i crossings on the string to the right-hand vertical edge.

Then the commutator [P1,0, P−1,k] is represented by

C0,k − Ck,0 =
k−1∑
j=0

(Cj,k−j − Cj+1,k−j−1)

= (s− s−1)
k−1∑
j=0

Dj,k−j−1.

Now the diagram Dj,i in T 2 can be isotoped by moving j crossings horizontally to the
left to get an equivalent diagram which does not meet the vertical edge. The result is the
closed braid diagram

aijtorusduke.pdf

i j

This is the element Ai,j ∈ C described earlier, running in the direction of the (0, 1) curve
on T 2. This establishes that [P1,0, P−1,k] is represented by the sum of closed braids.

(s− s−1)
∑

i+j=k−1

Ai,j

following the (0, 1) curve in T 2. By definition, in the annulus∑
i+j=k−1

Ai,j = (sk − s−k)/(s− s−1)Pk

The element Pk decorating the (0, 1) curve in T 2 represents P0,k in our current notation,
and this proves the equation

[P1,0, P−1,k] = {k}P0,k.

To prove the final equation of (3.2), we first note that a diagram on T 2 cut open along a
(0, 1) curve gives a diagram in the annulus with some matched point on the two boundary
curves. The product P1,0P0,k can thus be represented by the diagram
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Ahe.pdf

Pk

in the annulus with one input on the left boundary and one output on the right boundary.
The commutator [P1,0, P0,k] is then represented in the annulus by

Ahe.pdf

Pk

− Aeh.pdf

Pk

We then apply directly Theorem 4.2 of [Mor02b] which gives an equation in the skein
of the annulus with one point on each boundary curve. In diagrammatic form, Theorem
4.2 of that paper shows that

(3.3) Ahe.pdf

Pk

− Aeh.pdf

Pk

= (sk − s−k) .

The curve in the right-hand diagram circles the annulus k times, here shown in the
case k = 2. When the annulus follows the (0, 1) curve in T 2, and its boundary curves
are rejoined to form T 2 the curve in the right-hand diagram becomes the (1, k) curve
in T 2 while the other two diagrams yield P1,0P0,k and P0,kP1,0 respectively. This leads
immediately to the equation

[P1,0, P0,k] = {k}P1,k.

�

3.2. All commutation relations. In this section we prove Proposition 3.7, which shows
that the equations (3.1) follow from equations (3.2). In what follows, we write d(x,y) =
det [x y] for x,y ∈ Z2 and d(x) = gcd(m,n) when x = (m,n). We will also use the
following terminology:

(x,y) ∈ Z2 × Z2 satisfies (3.1) if [Px, Py] = {d(x,y)}Px+y

The idea of the proof is to induct on the determinant of the matrix with columns x
and y. To induct, we write x = a + b for carefully chosen vectors a,b and then use the
following lemma. We have indicated an example choice of the vectors x, y, a and b in
Figure 3. It is easy to see that Lemma 3.4 applies to the vectors in this example.
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vector.pdf

y =

(
1
6

)

x
a =

(
1
2

)
b

x =

(
3
3

)

b =

(
2
1

)

Figure 3. A choice of x, y, a, and b

Lemma 3.4. Assume a + b = x and that (a,b) satisfies (3.1). Further assume that the
four pairs of vectors (y, a), (y,b), (y + a,b), and (y + b, a) satisfy (3.1). Then the pair
(x,y) satisfies (3.1).

Proof. By the first assumption, we have [Pa, Pb] = {d(a,b)}Px. We then use the Jacobi
identity and the remaining assumptions to compute

−{d(a,b)}[Px, Py] = −[[Pa, Pb], Py]

= [[Py, Pa], Pb] + [[Pb, Py], Pa]

= {d(y, a)}[Py+a, Pb] + {d(b,y)}[Pb+y, Pa]

=
(
{d(y, a)}{d(y + a,b)}+ {d(b,y)}{d(b + y, a)}

)
Px+y

=: cPx+y

Using the identity {m}{n} = {m+ n}+ − {m− n}+ it is straightforward to show

c = −{d(a,b)}{d(x,y)}
This completes the proof of the lemma. �

We next prove the following elementary lemma (which is a slight modification of [FG00,
Lemma 1]). This lemma is used to make a careful choice of vectors a,b so that the previous
lemma can be applied.

Lemma 3.5. Suppose p, q ∈ Z are relatively prime with 0 < q < p and p > 1. Then there
exist u, v, w, z ∈ Z such that the following conditions hold:

u+ w = p, v + z = q

0 < u,w < p(3.4)

uz − wv = 1

Proof. Since p and q are relatively prime, there exist a, b ∈ Z with bq − ap = 1. This
solution can be modified to give another solution a′ = a + q and b′ = b + p, so we may
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assume 0 ≤ b < p. We then define

u = b, v = a, w = p− b, z = q − a

By definition, u, v, w, z satisfy the first condition of (3.4), and the inequalities 0 ≤ b < p
and p > 1 imply the second condition. To finish the proof, we compute

uz − wv = b(q − a)− a(p− b) = bq − ap = 1

�

It might be helpful to point out that the numbers in the previous lemma satisfy[
u w
v z

] [
1
1

]
=

[
p
q

]
Remark 3.6. There is a natural R-linear anti-automorphism σ : H → H which “flips
T 2 × [0, 1] across the y-axis and inverts [0, 1].” In terms of the elements Pa,b, we have
σ(Pa,b) = Pa,−b. We therefore have an a priori action of GL2(Z) on H, where elements
of determinant 1 act by algebra automorphisms, and elements of determinant −1 act by
algebra anti-automorphisms.

Proposition 3.7. Suppose A is an algebra with elements Px for x ∈ Z2 that satisfy equa-
tions (3.2). Furthermore, suppose that there is a GL2(Z) action by (anti-)automorphisms
on A as in Remark 3.6, and that the action of GL2(Z) is given by γ(Px) = Pγ(x) for
γ ∈ GL2(Z). Then the Px satisfy the equations (3.1).

Proof. The proof proceeds by induction on |d(x,y)|, and the base case d(x,y) = ±1 is
immediate from Remark 3.6 and the assumption (3.2) for x = (1, 0) and y = (0, 1). We
now make the following inductive assumption:

(3.5) For all x′,y′ ∈ Z2 with |d(x′,y′)| < d(x,y), we have [Px′ , Py′ ] = {d(x′,y′)}Px′+y′

We would like to show that [Px, Py] = {d(x,y)}Px+y. By Remark 3.6, we may assume

y =

(
0
r

)
, x =

(
p
q

)
, d(x) ≤ d(y), 0 ≤ q < p

If p = 1, then this equation follows from (3.2), so we may also assume p > 1.

Case 1: Assume 0 < q.
Let p′ = p/d(x) and q′ = q/d(x). By the assumption 0 < q, we see that d(x) < p, so

p′ > 1. We can therefore apply Lemma 3.5 to p′, q′ to obtain u, v, w, z ∈ Z satisfying

(3.6) uz − vw = 1, uq′ − vp′ = 1, u+ w = p′, v + z = q′, 0 < u,w < p′

We then define vectors a and b as follows (the properties listed follow from (3.6)):

(3.7) a :=

(
d(x)u
d(x)v

)
, b :=

(
d(x)w
d(x)z

)
, a + b = x, d(a,b) = d(x)2
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Using Lemma 3.4 and Assumption (3.5), it is sufficient to show that the absolute
values of each of d(a,b), d(y,b), d(y, a), d(y +a,b), and d(y +b, a) are strictly less than
|pr| = d(x,y). First,

d(a,b) = d(x)2 ≤ d(x)d(y) = d(x)r < pr

where the last inequality follows from the assumption 0 < q < p. Second, the absolute
values of d(y,b) = d(x)rw and d(y, a) = d(x)ru are strictly less than pr by the inequalities
in (3.6). Third, we compute

−d(y + a,b) = −d(y,b)− d(a,b)

= d(x)wr − d(x)2

< d(x)wr

≤ pr

Finally, we compute

−d(y + b, a) = −d(y, a)− d(b, a)

= d(x)ur + d(x)2

≤ (d(x)u+ d(x)) d(y)

= (u+ 1)d(x)r

Therefore, we will be finished once we show that the absolute value of (u + 1)d(x) is
strictly less than p. We now split into subcases:

Subcase 1a: If u+ 1 < p′, then (u+ 1)d(x)r < p′d(x)r = pr, and we are done.
Subcase 1b: Assume u+ 1 = p′. By equation (3.6), we have

1 = uq′ − vp′ = (p′ − 1)q′ − vp′ =⇒ p′(q′ − v) = 1 + q′ < 1 + p′

Since p′ > 1, the last inequality implies q′ − v = 1, which implies v = q′ − 1 and z = 1.
Since uz − vw = 1, this implies (p′ − 1) − (q′ − 1) = 1, which implies q′ = p′ − 1. If we
write g = d(x), we then have

−d(y + b, a) = − det

[
g p− g

g + r p− 2g

]
= rp+ g(g − r) = rp+ d(x)(d(x)− r)

We already assumed that d(x) ≤ r, and if this inequality is strict, then we are done.
Subcase 1c: In this subcase, we are reduced to showing the following vectors satisfy (3.1):

y = (0, r), x = (rp′, rp′ − r)

First, suppose r = 1. Then there is a matrix in SL2(Z) that fixes y and sends x 7→ (p′,−1).
Therefore, if r = 1, the second equation of (3.2) implies that (x,y) satisfies (3.1).

Now we assume r > 1 and replace our previous choice of a and b with a choice which
is better adapted to this particular subcase. We define

a :=

(
0
−1

)
, b :=

(
rp′

rp′ − r + 1

)
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Since r > 1, it is clear that the absolute values of the determinants of the matrices [a,b],
[y, a], [y + a,b], and [y + b, a] are all less than r2p′. This together with Assumption (3.5)
shows that these pairs of vectors satisfy (3.1). Finally, since rp′ − r and rp′ − r + 1 have
different parities, we see that d(b) 6= d(x) = r. This together with Subcase 1b shows that
(y,b) satisfies (3.1). Then Lemma 3.4 finishes the proof of this subcase, which finishes
the proof of Case 1.

Case 2: In this case we assume q = 0. We define a,b similarly to Subcase 1c, so we have

y =

(
0
r

)
, x =

(
p
0

)
, a :=

(
0
−1

)
, b :=

(
p
1

)
If r = 1, then the third equation of (3.2) implies that the pair (x,y) satisfies (3.1). If
r > 1, then an identical argument to Subcase 1c finishes the proof of this case and of the
theorem. �

4. The skein of the annulus as a module over the algebra H.

We now describe the action of the algebra H on the skein C of the annulus. Draw
the torus T 2 as the boundary of a standardly embedded solid torus V ⊂ R3. Once an
orientation and a framing for the core of V have been chosen, by choosing an oriented
annular neighbourhood of the core curve, we can regard V as a thickened annulus and get
an explicit identification of the skein H(V ) of V with the skein C. In the diagram below

we indicate the relation of the torus and the framed core of V .
Parametrize T 2 so that the core lies in the direction of the (0, 1) curve, and the framing

of the core is chosen to agree with the neighbourhood framing of the (0, 1) curve in T 2.
The (1, 0) curve in T 2 is then a meridian of the solid torus V .

As remarked in Section 2, the skein H(V ) ∼= C is a module over the algebra H(∂V ) ∼= H.
To describe h ·c ∈ C explicitly for h ∈ H and c ∈ C, we represent c by a framed diagram in
the core annulus, and h by a framed diagram in ∂V = T 2. The union of these two framed
diagrams in V then represents h·c inH(V ) = C. (Properly h and c are represented by some
R-linear combination of framed diagrams, and we extend the construction bilinearly).

4.1. The action. We now give precise statements about the action of H on C. Because
the core annulus of V is parallel to the (0, 1) curve in T 2 the action of P0,n on C is simply
multiplication by Pn in C.

By results of Morton and Hadji [MH02, HM06], the module C has an R-linear basis
given by elements Qλ,µ, where λ, µ range over the set of partitions. The basis elements
Qλ,µ are shown there to be eigenvectors of the ‘meridian maps’ from C to itself defined
for each m by c 7→ Pm,0 · c. We will describe the action of H in this basis. Then at the
end of the section we will collect from the literature several facts about the Qλ,µ for the
reader’s convenience.
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For partitions λ, µ write

sλ,µ := (s− s−1)

(
v−1

∑
x∈λ

s2c(x) − v
∑
x∈µ

s−2c(x)

)
+
v−1 − v
s− s−1

where c(x) = j − i is the content of the cell x in row i and column j. We will use the
continental convention for Young diagrams, so that the unique partition of 1 corresponds
to a cell in the lower-left corner of the diagram, which is in row and column 0.

For a partition λ define its content polynomial Cλ(t) ∈ Z[t±1] by

Cλ(t) =
∑
x∈λ

tc(x).

Then sλ,µ = (s− s−1)(v−1Cλ(s
2)− vCµ(s−2)) +

v−1 − v
s− s−1

.

Theorem 4.1. In the basis Qλ,µ of C described in [MH02, HM06], the action of H is
determined by the equations

P1,0 ·Qλ,µ = sλ,µQλ,µ

P−1,0 ·Qλ,µ = sµ,λQλ,µ

P0,1 ·Qλ,µ =
∑
α∈λ+1

Qα,µ +
∑
β∈µ−1

Qλ,β

P0,−1 ·Qλ,µ =
∑
β∈λ−1

Qβ,µ +
∑
α∈µ+1

Qλ,α

where λ + 1, λ − 1 are the set of partitions where one cell has been added to (subtracted
from) λ, respectively.

Proof. The first two equations are the meridian map formulae in [HM06, Thm. 3.9], and
the last two are the product formulae in [MR10]. �

Lemma 4.2. The statements in Theorem 4.1 completely determine the module structure
of C.

Proof. Since the Qλ,µ form a basis for C the action of P±1,0 and P0,±1 on C is completely de-
scribed by Theorem 4.1. Over R these elements generate the algebra H, which completes
the claim. �

Remark 4.3. The skein C has a multiplicative identity 1, represented by the empty
diagram. Then h · 1 is the element h regarded as lying in the solid torus V . In particular,
when h is a meridian element, meaning that h is P1,0 decorated by some element c ∈ C,
the element h · 1 is represented by the zero framed unknot in a ball inside V decorated by
c. Its value in C is the scalar multiple ev(c)1 of the identity, where ev(c) is the Homflypt
polynomial of the unknot decorated by c.

Thus Pm,0 · 1 = ev(Pm)1, and it is known, [Ais96, section 4.9.9], that

ev(Pm) =
v−m − vm

sm − s−m
.
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This follows quickly from the definition of Pm in section 2.4 in terms of closed braids.
The framing relation shows that ev(Ai,j) = vi−jev(A0,0), where A0,0 is the simple 1-string
closed braid representing the unknot with zero framing. Then

ev(Pm) =
s− s−1

sm − s−m
(vm−1 + vm−3 + · · ·+ v−(m−1)) δ =

(s− s−1)(vm − v−m)

(sm − s−m)(v − v−1)
δ,

where δ = ev(A0,0) =
v−1 − v
s− s−1

, as in eq(2.3).

Our commutation relation [Pm,0, P0,n] = {mn}Pm,n leads to the calculation in [MM08]
of the effect in C of putting a meridian decorated by Pm around the core decorated by
Pn. The core decorated by Pn is P0,n · 1 ∈ C. Hence putting a meridian decorated by Pm
around this gives

Pm,0 · (P0,n · 1) = Pm,0P0,n · 1 = {mn}Pm,n · 1 + P0,nPm,0 · 1
= {mn}Pm,n · 1 + ev(Pm)P0,n · 1
= {mn}Pm,n · 1 + ev(Pm)Pn.

In fact it was this equation in [MM08, Thm. 18], illustrated there in figure 14, with N,M
in place of our m,n respectively, which encouraged us to conjecture (and then prove) the
commutation relations of Theorem 3.2 in their complete generality. (The original goal
was to prove the relations (3.2) and then use these to prove the isomorphism with the
elliptic Hall algebra.)

We now deduce formulae for the action of Pm,n on the elements Qλ,µ. We first establish
some notation.

Definition 4.4. We will use several statistics on pairs of partitions.

(1) For λ ⊂ α, write α − λ for the skew partition consisting of the cells contained in
α but not in λ.

(2) Write λ+ n for the set of partitions α ⊃ λ where α− λ is an n-ribbon4. Similarly
λ− n is the set of partitions β ⊂ λ where λ− β is an n-ribbon.

(3) Write ht(γ) for the height of an n-ribbon γ, defined as the number of rows in γ
minus 1.

(4) Extend the definition of content polynomial to cover skew partitions α − λ by
setting

Cα−λ(t) :=
∑
x∈α−λ

tc(x) = Cα(t)− Cλ(t).

Replace s and v by sm and vm in sλ,µ to define

sλ,µ(m) := {m}(v−mCλ(s2m)− vmCµ(s−2m)) +
v−m − vm

sm − s−m
.

(5) For a skew partition γ write

b(m, γ) := v−mCγ(s
2m)

b−(m, γ) := (−1)ht(γ)v−mCγ(s
2m)

4An n-ribbon is a (skew) partition with n boxes that is connected and contains no 2× 2 squares.
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Using these definitions, we have the immediate relations that

sλ,µ(m) = {m}b(m,λ) + {−m}b(−m,µ) +
v−m − vm

sm − s−m

and sλ,µ(−m) = sµ,λ(m).

Remark 4.5. If γ is an n-ribbon it consists of a sequence of n cells, each adjacent to
the previous one, starting with a cell of least content k, say. The content increases by
one for each cell in the sequence, so that Cγ(t) = tk(1 + t + · · · + tn−1). Then b(1, γ) =
v−1s2k(s2n − 1)/(s2 − 1) = v−1s2k+n−1{n}/{1}. A similar calculation shows

{m}
{mn}

b(m, γ) = (v−1s2k+n−1)m = v−ms
m
n

∑
x∈γ c(x)

In particular, this last equality shows that the quantity {m}b(m, γ)/{mn} is the same for
any two n-ribbons γ whose upper-left box is the same, and changes by a factor of sm if
the ribbon is translated right or down by one box.

The following formulae generalise those of Theorem 4.1. They apply even in the case
of n < 0, provided that when α ⊂ λ we set ht(α− λ) = ht(λ− α), and still take Cα−λ(t)
to mean Cα(t)− Cλ(t), so that b(m,α− λ) = −b(m,λ− α).

Theorem 4.6. For m,n ∈ Z− {0} we have the following equalities:

Pm,0 ·Qλ,µ = sλ,µ(m)Qλ,µ(4.1)

P0,n ·Qλ,µ =
∑
α∈λ+n

(−1)ht(α−λ)Qα,µ +
∑
β∈µ−n

(−1)ht(µ−β)Qλ,β(4.2)

Pm,n ·Qλ,µ =
{m}
{mn}

[ ∑
α∈λ+n

b−(m,α− λ)Qα,µ +
∑
β∈µ−n

b−(−m,µ− β)Qλ,β

]
(4.3)

=
∑
α∈λ+n
α′=α−λ

(−1)ht(α′)v−ms
m
n
Cα′ (1)Qα,µ +

∑
β∈µ−n
β′=µ−β

(−1)ht(β′)vms−
m
n
Cβ′ (1)Qλ,β

Remark 4.7. Before proving the theorem, we remark that when µ = ∅, these formulas
were already known. The first follows from the identification of P0,n with the power sum
function in [Mor02a,MM08], and the second appears as [MM08, Lemma 17]. For a closely
related statement (also when µ = ∅), see [Ste10].

Proof. We know the first two equations for m = ±1 and n = ±1. Equation (4.3) follows
from (4.1) and (4.2) by a straightforward calculation using the commutation relation of
Theorem 3.2, and the final equality follows from (4.3) by Remark 4.5.

To prove equation (4.1), we proceed by induction on m, where in the inductive step we
assume that the first and third equations are true for 0 ≤ m ≤ M and for n ∈ {−1, 1},
and prove the first equation for m = M + 1. (The case m < 0 follows by symmetry.) By
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the inductive assumption, we have

Pm,1 ·Qλ,µ =
∑
α∈λ+1

b(m,α− λ)Qα,µ +
∑
β∈µ−1

b(−m,µ− β)Qλ,β

P1,−1 ·Qλ,µ =
∑
α∈λ−1

b(1, λ− α)Qα,µ +
∑
β∈µ+1

b(−1, β − µ)Qλ,β

From these, we can compute the action of Pm+1,0 using the commutation relation

(4.4) Pm+1,0 ·Qλ,µ =
−1

{m+ 1}
[Pm,1, P1,−1] ·Qλ,µ

To shorten the following computation, we first note that in the formula for Pm,1P1,−1 ·Qλ,µ

there will be 4 types of terms corresponding to whether each operator adds cells to λ or
remove cells from µ. The “cross terms” where both λ and µ change will cancel with the
analogous cross terms from −P1,−1Pm,1 ·Qλ,µ. Also, equality (4.4) for the terms where just
λ changes is equivalent to the equality of the terms where just µ changes, by symmetry.
Therefore, in the following computation we will just write the terms of the right hand
side of (4.4) where only λ changes, and denote the rest of the terms by “· · · ”.

Pm,1P1,−1 ·Qλ,µ =
∑
α∈λ−1

b(1, λ− α)
∑

α′∈α+1

b(m,α′ − α)Qα′,µ + · · ·(4.5)

P1,−1Pm,1 ·Qλ,µ =
∑
β∈λ+1

b(m,β − λ)
∑

β′∈β−1

b(1, β − β′)Qβ′,µ + · · ·(4.6)

We now examine the coefficients of Qγ,µ in −[Pm,1, P1,−1] · Qλ,µ, which is (4.6) minus
(4.5). Since Pm,1 acts by adding one box, the terms where γ 6= λ appear exactly once
in both (4.5) and (4.6) with equal coefficients, so they cancel. The coefficient of Qλ,µ in
(4.5) comes from the cases where a cell x is removed from λ to give α ∈ λ− 1, and then
restored to get α′ = λ. Therefore, the coefficient of Qλ,µ in (4.5) is∑

{x |α=λ−x}

b(1, x)b(m,x) = v−m−1
∑

{x |α=λ−x}

s2(m+1)c(x)

In (4.6) we need β′ = λ, so β arises by adding (and then removing) one cell y to λ. This
shows that the coefficient of Qλ,µ in (4.6) is∑

{y |β=λ+y}

b(1, y)b(m, y) = v−m−1
∑

{y |β=λ+y}

s2(m+1)c(y)

The difference (4.6) minus (4.5) is then

(4.7) v−m−1

 ∑
{y |β=λ+y}

s2(m+1)c(y) −
∑

{x |α=λ−x}

s2(m+1)c(x)


(In other words, the two sums in this expression are over boxes y that can be added to
λ, and boxes x that can be removed from λ, respectively.)

It is now enough to show that the expression in (4.7) is equal to the terms with coefficient
v−m−1 in {m+ 1}sλ,µ(m+ 1). (The terms with coefficient vm+1 will come from the terms
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where a cell is added and subtracted from µ, by symmetry). In other words, we must
show that (4.7) is equal to

(4.8) v−m−1 + {m+ 1}2b(m+ 1, λ) = v−m−1

[
1 + (sm+1 − s−m−1)2

∑
z∈λ

s2(m+1)c(z)

]
Finally, the equality of the expressions (4.7) and (4.8) is a well-known combinatorial iden-
tity. It can be proved by elementary means by first expanding the right hand side of (4.8)
along the rows and then along the columns of λ. The two factors of {m + 1} turn these
two expansions into telescoping sums, and the leftover terms are exactly the ones in (4.7).
This completes the proof of equation (4.1) in Theorem 4.6.

We now proceed to the proof of equation (4.2), using a similar induction on n. Precisely,
we assume the claimed relations for (m,n) with m ∈ {−1, 1} and 0 ≤ n ≤ N and prove
(4.2) for n = N + 1. In this case we use the commutation relation

(4.9) P0,n+1 ·Qλ,µ =
1

{n+ 1}
[P1,n, P−1,1] ·Qλ,µ

The induction assumption shows that

{n}
{1}

P1,n ·Qλ,µ =
∑
α∈λ+n

b−(1, α− λ)Qα,µ +
∑
β∈µ−n

b−(−1, µ− β)Qλ,β

P−1,1 ·Qλ,µ =
∑
α∈λ+1

b−(−1, α− λ)Qα,µ +
∑
β∈µ−1

b−(1, µ− β)Qλ,β

When P1,nP−1,1 is applied to Qλ,µ there will be four types of terms, depending on how
cells are added to λ or subtracted from µ. Thus

{n}
{1}

P1,nP−1,1 ·Qλ,µ =
∑

α1∈λ+1
γ∈α1+n

b−(−1, α1 − λ)b−(1, γ − α1)Qγ,µ(4.10)

+
∑

α1∈λ+1
βn∈µ−n

b−(−1, α1 − λ)b−(1, µ− βn)Qα1,βn

+
∑

αn∈λ+n
β1∈µ−1

b−(−1, αn − λ)b−(1, µ− β1)Qαn,β1

+
∑

β1∈µ−1
δ∈β1−n

b−(−1, µ− β1)b−(1, β1 − δ)Qλ,δ

(The subscripts indicate the number of boxes added or removed, e.g. the subscript on αn
indicates that n boxes have been added to λ to obtain αn.) There is a similar formula for
{n}
{1}P−1,1P1,n ·Qλ,µ, and it is clear that the “cross terms” Qα1,βn and Qαn,β1 will cancel in

the expansion of [P1,n, P−1,1] · Qλ,µ. It is also clear that symmetry between the first and
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last terms on the right hand side of (4.10) shows that it is sufficient to prove our claim
for the coefficient of Qγ,µ.

To simplify notation in the rest of this proof, we will write

expS(m) := sm

We now simplify the coefficients of Qγ,µ by rescaling and using Remark 4.5.

P1,nP−1,1 ·Qλ,µ

=
{1}
{n}

∑
α1∈λ+1
γ∈α1+n

b−(−1, α1 − λ)b−(1, γ − α1)Qγ,µ + · · ·(4.11)

=
∑

α1∈λ+1
γ∈α1+n

(−1)ht(γ−α1)expS

(
−2c(α1 − λ) +

2

n
Cγ−α1(1)

)
Qγ,µ + · · ·

Similarly, in the other term of the commutator we obtain

P−1,1P1,n ·Qλ,µ

=
{1}
{n}

∑
αn∈λ+n
γ∈αn+1

b−(−1, αn − λ)b−(1, γ − αn)Qγ,µ + · · ·(4.12)

=
∑

αn∈λ+n
γ∈αn+1

(−1)ht(αn−λ)expS

(
−2c(γ − αn) +

2

n
Cαn−λ(1)

)
Qγ,µ + · · ·

We now examine the coefficient of Qγ,µ in [P1,n, P−1,1] · Qλ,µ based on the topology of
the skew partition γ − µ. We first note that there are at most 2 components in this skew
partition. Then there are 3 cases.
Case 1: The skew partition γ − λ has 2 components.

In this case, the boxes α1 − λ and γ − αn in (4.11) and (4.12) are the same box, and
the n-ribbons γ−α1 and αn− λ are also the same. This means the coefficients of Qγ,µ in
(4.11) and (4.12) are equal, which means this term cancels in the commutator.
Case 2: The skew partition γ − λ has a 2× 2 square. (There is at most 1 such square.)

In this case, the box α1−λ must be the lower-left box in the square, and the box γ−αn
is the upper-right box. Since the content of these two boxes is the same, and the heights
of the complementary n-ribbons are the same, the coefficients of these terms are equal,
and they cancel in the commutator.
Case 3: The skew partition γ − λ is an n+ 1-ribbon.

Write γ′ := γ−λ. There are exactly two ways to write the n+1-ribbon γ′ as a union of
a box and a ribbon, which means that Qγ,µ will appear exactly twice in the commutator
[P1,n, P−1,1] · Qλ,µ. However, whether these terms appear in (4.11) or (4.12) depends on
the shape of γ′.
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To be more precise, let x be the upper-left box of γ′ and y be the lower-right box of γ′.
Given a box z ∈ γ′, we define

sign(z) :=

 1 if λ+ z is a partition
−1 if λ+ γ′ − z is a partition

undefined otherwise

Alternatively, we could say that sign(x) = 1 if γ′ contains a box to the right of x, and
sign(x) = −1 if γ′ contains a box below x. Similarly, sign(y) = 1 if γ′ contains a box
above y, and −1 otherwise. The point is that if sign(x) = 1, then x must be added to λ
before the n-ribbon γ′ − x is added to λ, so this term appears in (4.11) with x = α1 − λ.
Conversely, if sign(x) = −1, then x must be added to λ after the n-ribbon γ′ − x, and
this term appears in (4.12) with x = γ − αn.

We may therefore write the coefficient c of Qγ,µ in the commutator [P1,n, P−1,1] · Qλ,µ

as follows:

c =sign(x)(−1)ht(γ′−x)expS

(
−2c(x) +

2

n
Cγ′−x(1)

)
(4.13)

+sign(y)(−1)ht(γ′−y)expS

(
−2c(y) +

2

n
Cγ′−y(1)

)
We now note that sign(x)(−1)ht(γ′−x) = (−1)ht(γ′), and similarly sign(y)(−1)ht(γ′−y) =
−(−1)ht(γ′). We can therefore simplify (4.13) as follows:

c = (−1)ht(γ′)

[
expS

(
−2c(x) +

2

n
Cγ′−x(1)

)
− expS

(
−2c(y) +

2

n
Cγ′−y(1)

)]
Finally, since x is the leftmost box of the n+ 1-ribbon γ′, we have the equality

−2c(x) +
2

n
Cγ′−x(1) = −2c(x) +

2

n

(
nc(x) +

n(n+ 1)

2

)
= n+ 1

and similar for y. We can therefore finally simplify the coefficient c as

c = (−1)ht(γ′)(sn+1 − s−n−1)

This completes the proof of equation (4.2) and the proof of the theorem.
�

4.2. Further properties of C. We collect here some results about C as an algebra over
R, and about its basis Qλ,µ. The subalgebra C+ spanned by Qλ,∅ is isomorphic to the
ring Λ of symmetric functions. The Schur function sλ corresponds to Qλ,∅. The identity
element 1 of C, represented by the empty diagram, is given by Q∅,∅. The element Pn ∈ C
lies in C+ for n > 0, and corresponds to the power sum pn ∈ Λ. This interpretation of C as
symmetric functions was suggested in [AM98], with details established in [Luk01,Luk05]
and [Mor02a].

Remark 4.8. In the case µ = ∅, the formulae in theorem 4.6 were already known.
Equation (4.1) appears in the context of meridian maps as [MM08, Lemma 17].

A known result in the theory of symmetric polynomials is the expansion of the product
of the nth power sum pn and the Schur function sλ as a signed sum of Schur functions
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sα where α − λ is an n-ribbon. Equation (4.2) then follows from the interpretation in
[MM08] of C+ as symmetric polynomials in which Pn corresponds to pn, and Qλ,∅ to sλ.

The subalgebra C+ is spanned by closed braid diagrams in the annulus where all the
strings go in the same direction. Closed braids with strings in the reverse direction span
an isomorphic subalgebra C−, which is also spanned by Q∅,µ. Reversing string direction
carriesQλ,µ toQµ,λ. Now C can be written as C ∼= C+⊗C−, using Turaev’s early description
[Tur88] of C as a polynomial algebra. His generators An are P1,n · 1 in the notation above,
giving C+ for n > 0 and C− for n < 0.

We can then present the whole algebra C as Λ ⊗R Λ. We have already noted that
Pk ∈ C+ represents pk when k > 0 and hence pk⊗ 1 in Λ⊗Λ while P−k for k > 0 becomes
1⊗ pk.

The construction of the elements Qλ,µ makes use of elements hn ∈ C+ corresponding
to the complete symmetric functions in Λ⊗ 1 and h∗n ∈ C−, given by reversing the string
direction, which become the complete symmetric functions in 1⊗ Λ.

The formula in [HM06] for Qλ,µ is an extension of the classical Jacobi-Trudy formula
for sλ as a polynomial in the complete symmetric functions. The general construction
can be illustrated by the case when λ has parts 2, 2, 1 and µ has parts 3, 2. Take a matrix
with diagonal entries as shown, corresponding to the parts of λ and µ.

h∗2
h∗3

h2

h2

h1


Complete the rows by shifting indices upwards for the parts of λ, and downwards for

the parts of µ, to get

M =


h∗2 h∗1 1 0 0
h∗4 h∗3 h∗2 h∗1 1
1 h1 h2 h3 h4

0 1 h1 h2 h3

0 0 0 1 h1


Then Qλ,µ = detM .

There is a further interesting interpretation for the whole of C, where we can consider
Λ ⊗ Λ as symmetric functions in two sets of commuting variables x and y, with the
symmetric functions of x representing the first copy of Λ and the symmetric functions of
y representing the second copy.

In this context there is a body of results stemming from work of King [Kin70], Koike
[Koi89] and subsequent authors in which such functions are studied, both as functions of
two sets of variables, and in the special setting with yi = x−1

i that deals with characters
of gl(N) for large N .

Besides the Schur functions sλ(x) and sλ(y) King [Kin70] defines ‘compound’ Schur
functions sλ;µ(x; y) by determinants that closely resemble those for Qλ,µ in [HM06], or
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their counterpart in terms of elementary symmetric functions. As a result we can identify
Qλ,µ with the compound Schur function sλ:µ of [Kin70].

Here are a few further facts about C and its isomorphism with Λ⊗ Λ:

(1) The symmetry a⊗ b 7→ b⊗ a of C sends Qλ,µ 7→ Qµ,λ.
(2) The products Qα,βQα′,β′ expand as positive integer combinations in the basis Qλ,µ.
(3) The set {Qλ,µ | |λ| ≤ n, |ν| ≤ p, |λ|− |µ| = n−p} spans the subspace Cn,p defined

as the closure of (n, p) diagrams in the square.
(4) C = ⊕Cn,p, where Cn,p ⊂ Cn+1,p+1 and Cn,p ∩ Cn′,p′ = 0 if n− p 6= n′ − p′.
(5) Qλ,∅ = sλ ⊗ 1, and Q∅,µ = 1⊗ sµ.
(6) We have Qλ,µ = Qλ,∅Q∅,µ + x = (sλ ⊗ 1)(1⊗ sµ) + x, for some x ∈ C|λ|−1,|µ|−1.

Remark 4.9. Fact 5 is established by Lukac, [Luk01, Ch. 3] or [Luk05]. The other facts
appear in [HM06] and [MH02]. Fact 1 is immediate from the determinantal formula on
reversing the orientations of all curves and rotating the matrix. Fact 2 is theorem 3.5 in
[HM06], while facts 3,4 and 6 are in [MH02]. Fact 6, along with a more detailed expression
for x, can also be deduced from [Kin70] (see also [Koi89]), when Qλ,µ is interpreted in
terms of compound Schur functions.

5. The elliptic Hall algebra

In this section we recall from [BS12] a presentation of the elliptic Hall algebra Eq,t, which
depends on two parameters q, t ∈ C∗. For the convenience of the next section, we will
switch t 7→ t−1 from the notation of [BS12]. We then prove that the t = q specialization5

Eq,q is isomorphic to the Homflypt algebra Hs=q−1/2,v.

Remark 5.1. Before giving a presentation, we recall a short description of the construc-
tion of the algebra Eq,t from the introduction of [BS12]. First, we consider a smooth
elliptic curve X over Fp, and the category Coh(X) of coherent sheaves over X. The Hall
algebra of this category is a (topological) bialgebra E+

σ,σ̄, where σ, σ̄ are the Frobenius

eigenvalues on the l-adic cohomology group H1(XF̄p ,Ql). It is proved in [BS12] that the
relations can be written entirely in terms of Laurent polynomials in these parameters, so
we rename the parameters q, t and allow them to be formal (i.e. E+

q,t is an algebra over

C[q±1, t±1]). Then Eq,t is the Drinfeld double of the algebra E+
q,t.

As before, we will write d(x) = gcd(a, b) if x = (a, b), and d(x,y) = det[x y] for
x,y ∈ Z2. Define the constant

αi := (1− qi)(1− t−i)(1− q−iti)/i
We will also write ∆x,y for the triangle with corners 0, x, and x + y.

Definition 5.2. By [BS12, Thm. 5.4], the elliptic Hall algebra Eq,t is generated by elements
ux for x ∈ Z2, with relations

(1) If x,y belong to the same line in Z2, then

[ux, uy] = 0

5In terms of the Frobenius eigenvalues, this specialization is σ = σ̄−1.
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(2) If x,y ∈ Z2 are such that d(x) = 1 and ∆x,y has no interior lattice points, then

(5.1) [uy, ux] = ε(x,y)
θx+y

α1

Here ε(x,y) := sign(d(x,y)) and the elements θx are polynomials in the ukx defined for
d(x0) = 1 by equating the following series:

(5.2) 1 +
∑
i>0

θix0z
i = exp

(∑
r≥1

αrurx0z
r
)

where z is a formal variable.

Remark 5.3. By [BS12, Lemma 5.3], the group SL2(Z) acts on Eq,t via γ(ux) = uγ(x).

These relations look somewhat similar to the commutation relations for H, but they
are complicated by the definition of θx. The key observation is that if t = q, then the
element θx defined in (5.2) simplifies substantially.

Lemma 5.4. If t = q, then
θx
α1

=
(
[d(x)]q1/2

)2
ux

Proof. Each constant αi has a zero of order 1 at t = q. If we write the RHS of (5.2)
as exp(a), then only the terms of degree 1 in a have a simple zero at t = q. Therefore,
if we specialize t = q, the only surviving term in exp(a)/α1 is a/α1, so the identity

(αi/α1) |t=q =
(
[i]q1/2

)2
shows the claim. �

Corollary 5.5. If t = q, then the following relations are satisfied:

[u1,0, u−1,k] = −sign(k)
(
[k]q1/2

)2
u0,k

[u1,0, u0,k] = −sign(k)u1,k

We now define renormalized generators wx :=
(
qd(x)/2 − q−d(x)/2

)
ux.

Theorem 5.6. If we specialize q = t and identify t = q = s−2, then the map Px 7→ wx

extends to an SL2(Z)-equivariant Z2-graded isomorphism of algebras Hs,v → Eq=s−2,t=s−2.

Proof. We first remark that SL2(Z) acts by permutation on the generators wx by Remark
5.3 (since it preserves the gcd of the entries of vectors). If we rewrite the relations of
Corollary 5.5 in terms of wx and the parameter s, we obtain

[w1,0, w−1,k] = {k}sw0,k

[w1,0, w0,k] = {k}sw1,k

These are the same as the relations (3.2), so Remark 5.3 combined with Proposition 3.7
shows that the wx also satisfy the relations (3.1). The map is clearly surjective, and it is
injective because the description of the basis of H in Corollary 3.3 agrees with the PBW
basis of Eq,t described in [BS12, Thm. 4.8]. �
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Remark 5.7. There is S3 symmetry in the parameters {q, t, qt−1} ∈ (C∗)3, so if we
specialize s2 = q−1 and t = 1 the previous theorem remains true. We also note that
Theorem 3.2 shows that the skein algebra Hs,v(T

2) actually does not depend on the
parameter v, although the action of Hs,v on C does depend on v. The meaning of this
parameter in terms of the Hall algebra or its action on symmetric functions remains
unclear.

6. Adaptations of the Homflypt skein relations

There are a number of instances, for example in the context of families of Hecke algebras
of type A, or in relation to quantum SLN modules and associated invariants, where
Homflypt skeins can be used as models after a simple adaptation.

The simplest model of the Hecke algebra Hn of type An−1 is the Homflypt skein of
oriented framed n-tangles, using diagrams in a rectangle with n inputs at the bottom
and n outputs at the top [MT90]. Composition is induced by stacking diagrams and the
algebra is generated by the elementary n-braids

σi = Sigmaior.pdf

i i+ 1

.

Write Ti for the element of the skein represented by σi. The basic skein relation gives
the equation Ti − T−1

i = (s− s−1)Id, and hence the quadratic relation

(Ti − s)(Ti + s−1) = 0,

with roots s,−s−1.
Many algebraic accounts use a version of the Hecke algebra where the quadratic has

roots q,−1, so it is useful to adapt the skein theory to allow for roots xs,−xs−1 with an
extra parameter x. This is done by Aiston and Morton in [AM98] for the Hecke algebra,
and subsequently used in the form below for other skeins.

6.1. The adaptable Homflypt skein. Use R[x±1]-linear combinations of framed ori-
ented curves in a 3-manifold M , possibly including arcs with fixed input and output points
on ∂M , subject to the relations

x−1 − x = (s− s−1) (Switch and smooth)

= xv−1 , = x−1v (Framing change)

with the local blackboard framing convention. The resulting skein Hx(M) provides the
relations x−1Ti−xT−1

i = (s−s−1)Id and hence the quadratic relation with roots xs,−xs−1.
This is useful in several instances.

• Take x = s and set q = s2 to recover the algebraic version of the Hecke algebra
with roots q,−1.
• Take x = v to eliminate the framing dependence.
• Take s = eh/2, v = s−N , x = e−h/2N = s−1/N to adjust for the quadratic relation

satisfied by the fundamental R-matrix of the SLN quantum group, and the effect
of framing change when constructing knot invariants. [Ais96,MM08]
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Much of Aiston’s original work uses these adaptable relations, with x as an indetermi-
nate alongside v and s in the coefficient ring.

Clearly, knowing the skein Hx(M) we can find the basic skein H(M) = H1(M) by
setting x = 1. Lukac suggested how to reverse the process in many instances and recover
Hx(M) from H(M), so that we can work without x, while still being in a position to
adapt if needed.

Theorem 6.1. When M = F × I is a thickened surface there is a linear isomorphism
fx : H(M)→ Hx(M).

Proof. Represent each union of framed curves in M by a diagram D on F with the
blackboard framing. The allowed changes in the curves alter D by isotopy in F and
Reidemeister moves RII , RIII . The writhe of D, w(D), defined as the sum of the signs
of the crossings in D, then depends only on the curves in M and not on the choice of
representing diagram.

Define fx on diagrams by

fx(D) = x−w(D)D.

To prove that this induces a well-defined map on H(M) we must show that the skein
relations are respected.

For the switch and smooth relation we must show that

fx(D+)− fx(D−) = (s− s−1)fx(D0)

in Hx(M), where three diagrams D+, D−, D0 differ only by switching or smoothing a
crossing.

Now the writhes of D±, D0 satisfy w(D+) = w + 1, w(D−) = w − 1 where w = w(D0),
so

fx(D+)− fx(D−) = x−w−1D+ − x−w+1D− = x−w(s− s−1)D0 = (s− s−1)fx(D0)

in Hx(M).
Similarly, for the framing change, w () = w + 1 where w = w (), so in Hx(M) we have

fx () = x−w−1 = x−wv−1 = v−1fx () .

�

For example, if we need to adapt the element Pm = (s− s−1)/(sm − s−m)Xm from our
algebra H above to Hx we replace Xm =

∑
Ai,j by

∑
xj−iAi,j as in Aiston’s original

version. The product PxPy in H is replaced by x−kPxPy on passing to Hx where we use
the adapted Px, Py in Hx, and set k = det[x y]. This implies the following corollary of
Theorem 3.2:

Corollary 6.2. Using the general Homflypt skein relations in this section (with parame-
ters x, s, v), the algebra H is generated by elements Px with relations

x−kPxPy − xkPyPx = {d}Px,y

where d = det[x y].
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The quadratic relations used by Schiffman, Vasserot, and Cherednik correspond to
the basic skein, so there is largely no need for adaptation. However, comparison with the
results of Frohman and Gelca [FG00] for the Kauffman bracket skein needs the adaptation,
after orienting, of x = −A−1, s = A−2 and v = A−4.

7. Iterated Cables

Let K be an iterated cable of the unknot and λ a partition. In this section we use the
isomorphism between the elliptic Hall algebra and the Homflypt skein algebra to construct
a 3-variable polynomial that specializes to the λ-colored Homflypt polynomial of K (up
to a monomial s•v•). This can be considered to be an sl∞ version of the construction in
[Sam14] for g = sl2, which was generalized in [CD14] to arbitrary g. Our construction uses
the work of Schiffmann and Vasserot [SV13,SV11] in an essential way, and when restricted
to torus knots, it is essentially the same as the construction of Gorsky and Negut [GN15].
We will use our construction to prove a conjecture of Cherednik and Danilenko in [CD14].

The key idea of this construction is the following. First, we prove a cabling formula
which computes the colored Homfly polynomial of an iterated cable of the unknot in terms
of the algebra H, the SL2(Z) action on H, the action of H on C, and the evaluation map
evH : C → R. (See Proposition 7.13.) We then show that all four of these objects have
natural t-deformations, so the cabling formula can be deformed.

We first establish some notation. Throughout the section, m = (m1, . . . ,mk) and
n = (n1, . . . , nk) will be sequences of integers with mi, ni relatively prime and mi > 0.
We will write ΛN := C[x1, · · · , xN ]SN for the graded ring of symmetric polynomials, and
Λ for the (graded) ring of symmetric functions, which is N → ∞ limit of the ΛN . We
write πN : Λ→ ΛN for the natural projection.

There are three algebras that we will use in this section: the Homflypt skein algebra H,
the elliptic Hall algebra Eq,t, and the double affine Hecke algebra ḦN

q,t (defined below). In
general we will use superscripts H, E , and N to distinguish between objects associated to
these three algebras. For example, associated to the sequences m,n and a partition λ we
will define two polynomials using the representation theory of Eq,t and ḦN

q,t, respectively:

JE(m,n, λ; q, t, u) ∈ C[q±1, t±1, u±1], JN(m,n, λ; q, t) ∈ C[q±1, t±1]

(Technically, we actually define rational functions - see Remark 7.20.) We will relate
these polynomials to the colored Homflypt polynomial of the iterated cable K(m,n) of
the unknot determined by the sequences m and n. We first define the notion of iterated
cable that we will use:

Definition 7.1. Let K be a framed knot, let T be the torus which bounds a neighborhood
of K, and let Lfr be the longitude in T determined by the framing of K.

(1) The algebraic (m,n) cable of K is the framed knot in T such that

K(m,n) ∼ mLfr + nM

(In this notation, the symbol ∼ means ‘is homologous to’ and M is the meridian
of K.) The framing of K(m,n) is defined to be parallel to the torus T .
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(2) We then define a framed knot K(m,n) inductively as follows: K(m1, n1) is the
algebraic (m1, n1) cable of the 0-framed unknot, and K(mk,nk) is the algebraic
(mk, nk) cable of K(mk−1,nk−1).

Remark 7.2. We note that the algebraic cabling procedure uses a different framing
convention than the standard topological construction of a cable of a knot. However, the
resulting cabling formula (Prop. 7.13) is particularly simple, which makes it convenient for
our purposes. In our cabling convention, the framing of the cable is parallel to the torus
in which it is embedded. However, the standard topological framing of a knot K in S3

is the 0-framing (which means the two boundary components of the annulus determining
the framing of K have 0 linking number). It is clear that the same set of knots is produced
by either cabling procedure (even though their framings are different). Since changing
the framing of a knot changes its (colored) Homfly polynomials by an overall power of q,
our choice of framing convention will not affect the proof of Theorem 7.4 below.

Our cabling procedure is related to algebraic knots, which are the knots obtained by
intersecting a (singular) irreducible algebraic curve in C2 with a small copy of S3 around
the singularity. In particular, if the m and n are the Newton pairs of an algebraic plane
curve (see [EN85, Appendix to Ch. 1]), then the algebraic knot obtained from this curve
is K(m,n). The knots that arise this way are exactly those with ni > 0. (These knots
are determined by their Alexander polynomial.)

We will not need to discuss algebraic knots, but it is worth calling attention to [CD14,
Conj. 2.4(iii)], which states that if the m, n are the Newton pairs of an algebraic knot,
then the specialization JE(�; q = 1, t, u = 0) is related to the Betti numbers of the
Jacobian factor of the curve. (These numbers were first conjectured to be related to
Homfly homology in [ORS12]. Homfly homology was conjectured to also be related the
stable polynomials in [CD14].) It is not clear if the skein-theoretic point of view in this
paper can say anything about these conjectures.

We will use the following as our definition of the Homflypt polynomial of K(m,n).
Because of our framing conventions (see Remark 7.2), our definition differs from the
standard definition of the Homflypt polynomial of K by a monomial s•v• depending on
m, n and |λ|. We will ignore this difference since the conjecture in [CD14] is stated up
to an overall constant.

Definition 7.3. The evaluation in the skein of S3 of the framed knot K(m,n) colored
by the element Qλ ∈ C+ will be denoted as follows:

JH(m,n, λ; v, s) ∈ Homflypt(S3) = C[v±1, s±1, (sk − s−k)−1]

In this section we will prove the following theorem:

Theorem 7.4. For m,n, λ as above, we have the following specializations:

v•s•JE(m,n, λ; q, t, u)
∣∣∣
q=s−2,t=s−2,u=v2

= JH(m,n, λ; v, s)(7.1)

u•JE(m,n, λ; q, t, u)
∣∣∣
u=tN

= q•t•JN(m,n, λ; q, t)(7.2)

(where the powers denoted by “•” depend on m,n, and |λ|, but not on N). In particular,
the Connection Conjecture [CD14, Conj. 2.4(i)] is true.
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Remark 7.5. The existence of a polynomial JE satisfying the second specialization was
announced as a theorem in [CD14]. The proof of this is essentially identical to the proof
in [GN15] (which used the results in [SV11] and [SV13]). For the sake of completeness
we will include this proof in Section 7.3. We also remark that the stabilization variable
a in the Connection Conjecture of [CD14] is −u for us, so their specialization a = −tN
becomes our specialization u = tN .

7.1. Homflypt cabling formula. In this section we give a cabling formula for the Hom-
flypt polynomial JH(m,n, λ; v, s) of the λ-colored framed knot K(m,n). In particular,
this will give a algebraic formula for JH in terms of the action of H on the skein C of the
annulus. This formula will later be compared to a specialization of the formula given in
Section 7.2 which defines JE , and this will imply the first equality of Theorem 7.4.

To simplify comparison to the elliptic Hall algebra, we will need to twist the action of
H on C by an automorphism. To try to make this section self-contained, we will recall
the necessary facts about H and C before giving the cabling formula.

7.1.1. Notation. We will twist the action of H on C by the automorphism Pm,n 7→ P−n,m.
To compare with the constructions in the following sections we will use the following
definitions.

Definition 7.6. We define the following subalgebras of H:

H≥ := 〈Pm,n | m ≥ 0〉, H> := 〈Pm,n | m > 0〉
We also will use the following R-submodule of C

C+ := R{Qλ,∅}
∼→ Λ, Qλ,∅ 7→ sλ

The map C+ ∼→ Λ is an algebra isomorphism by [Luk05, Thm. 8.2]. The action of H≥

preserves the subspace C+ ⊂ C, so we can identify Λ as an H≥-module. This module
structure is described as follows.

Lemma 7.7. The action of H on Λ is given by

Pm,0 · sλ = pmsλ

P0,n · sλ =

[
v−n − vn

sn − s−n
+ vn(s−n − sn)

∑
x∈λ

s−2c(x)

]
sλ

=

[
v−n − vn

sn − s−n
+ vns−n

k∑
i=1

(s−2nλi − 1)s2ni

]
sλ

where λ = (λ1, . . . , λk).

Proof. The first equality follows from the fact that when µ = ∅, the second equation of
Theorem 4.6 agrees with the Murnaghan-Nakayama rule for the product pmsλ of a power
sum times a Schur function. The second equality is translated from Theorem 4.6, and the
third equality follows from the fact that the sum for each row is a telescoping sum. �

Remark 7.8. These equations have been proved previously by Morton and coauthors.
The first follows from the identification of Pm,0 with the power sum function in [Mor02a,
MM08], and the second appears as [MM08, Lemma 17].
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Definition 7.9. If K is a framed knot, then the inclusion NK ↪→ S3 induces the following
R-linear evaluation map

evHK : C → H(S3) = R

For later use we recall an explicit formula for the evaluation map evHU restricted to the
subspace Λ ⊂ C when U is the 0-framed unknot.

Lemma 7.10 ([ML03, eq. (12)]). For the 0-framed unknot U , the evaluation map is

evHU : Λ→ R, evHU (sλ) =
∏
x∈λ

v−1sc(x) − vs−c(x)

shl(x) − s−hl(x)

(If x ∈ λ is a box, then c(x) and hl(x) are its content and hook length, see Section 2.1.)

Remark 7.11. It was shown in [Mor07, Thm. 1] that the evaluation evHK(Qλ,µ) is divis-
ible by the evaluation evHU (Qλ,µ). (The latter evaluation is typically called the quantum
dimension.)

7.1.2. The cabling formula. Let K be a framed knot with NK a tubular neighborhood of
K and TK the boundary of NK . We use the framing of K to identify T with the standard
torus, and we use this to identify H with the skein of TK and C with the skein of NK .
Under these identifications, the framed knot K is isotopic to P1,0 ∈ H and is also isotopic
to Q(1),∅ ∈ C+ ⊂ C.

Let K(m,n) be the algebraic (m,n) cable of K and let Nm,n be a tubular neighborhood
of K(m,n). We identify C with the skein of Nm,n using the framing of K(m,n) - in
particular, under this identification, the element Q(1),∅ is isotopic to K(m,n).

Finally, let Γm,n : Nm,n → NK be the inclusion, let ιHm,n : C → H be the inclusion given
by inserting the annulus along the (m,n) curve. We choose

(7.3) γm,n ∈ SL2(Z) such that γm,n

(
1
0

)
=

(
m
n

)
We will write

ΓHm,n : C → C
for the R-linear map induced by Γm,n (where we have identified H(Nm,n) and H(NK) with
C as described above). Then the following lemma follows immediately from our choices
of identification. (See, e.g. [Sam14, Lemma 2.20].)

Lemma 7.12. Under the identifications above, the R-linear map ΓHm,n : C → C is

ΓHm,n(x) = γm,n(ι1,0(x)) · 1 = ιm,n(x) · 1

Given sequences m,n as before, we will use the composition

ΓHm,n := ΓHm1,n1
◦ · · · ◦ ΓHmk,nk

Proposition 7.13. If U is the 0-framed unknot we have the following equality:

JH(K(m,n), λ; s, v) = evHK(m,n)(Qλ) =
(
evHU ◦ ΓHm,n

)
(Qλ)

In particular, the λ-colored Homflypt polynomial JH(m,n, λ; v, s) of the iterated cable
K(m,n) (in our normalization, see Definition 7.3) is equal to the right hand side.
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Proof. This follows from Lemma 7.12 and our choices of identification. First, the left hand
side of the equation is induced from the inclusion of NK(m,n) ↪→ S3, and this inclusion
defines the (λ-colored) Homflypt polynomial. Then the right hand side is induced from
the sequence of inclusions

NK(mk,nk) ↪→ NK(mk−1,nk−1) ↪→ · · · ↪→ NK(m1,n1) ↪→ NU ↪→ S3

and the composition of these inclusions is equal to the inclusion NK(m,n) ↪→ S3. �

Remark 7.14. This proposition shows that the colored Homflypt polynomials of an
iterated cable of the unknot can be evaluated using the skein algebra H, the SL2(Z)
action on H, the action of H on Λ, and the evaluation map on Λ. The more standard
way of writing the cabling formula gives an expression for the polynomials of the cable
of K in terms of the polynomials of K. Such an expression could be derived from our
cabling formula, but we will not need to do this. However, in the simpler case of the
Kauffman bracket skein module, both versions of the cabling formula have appeared in
multiple places. (Precise statements appear in [Sam14, Cor. 2.15, Cor. 2.16], together
with references to other versions.)

In [CD14, Prop. 4.2], the sl2 version of the latter cabling formula was used to prove the
analogue of the specialization in equation (7.1), and the same specialization was proved in
[Sam14, Thm. A.8] using the former cabling formula (again for sl2). It therefore should not
be surprising that our version of the Homflypt cabling formula implies the specialization
in equation (7.1), after the Homflypt skein algebra and elliptic Hall algebra have been
shown to be isomorphic.

7.2. The Hall algebra. In this section we define a 3-variable polynomial that specializes
to the Homflypt polynomial evHK(m,n)(sλ) of Proposition 7.13. The key idea is that all the
objects on the right hand side of the equality in Proposition 7.13 have t-deformations
that come from the elliptic Hall algebra Eq,t. We will use the work of Schiffmann and
Vasserot in [SV11, SV13], where they constructed an action of a subalgebra of Eq,t on Λ.
However, to simplify comparison to double affine Hecke algebras we will change t 7→ t−1

(as in Section 5). We also use their renormalized generators vx := (qd(x) − 1)ux.
We first define subalgebras

E≥q,t := 〈vm,n | m ≥ 0〉, E>q,t := 〈vm,n | m > 0〉

We now recall from [SV13, Prop. 1.4] an action of E≥q,t on Λ. The action will be written
in terms of Macdonald polynomials Pλ ∈ Λ, which form a basis for Λ. The element v1,0

acts by multiplication by the power sum p1, and for k ≥ 1 we have

v0,k · Pλ :=

(∑
i

(qkλi − 1)t−k(i−1)

)
Pλ(7.4)

v0,−k · Pλ := qk

(∑
i

(q−kλi − 1)tk(i−1)

)
Pλ

Remark 7.15. The Macdonald polynomials Pλ are a homogeneous basis of Λ. Then
equation (7.4) combined with the presentation of Eq,t implies that the operators vm,n are
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graded operators, in the sense that they take homogeneous elements to homogeneous
elements. In particular, the action of E+

q,t on Λ is graded, which generalizes property (4)
under Definition 2.1.

In fact, the subalgebra Ehorq,t := 〈vk,0 | k ≥ 0〉 is isomorphic to Λ as a graded algebra, and
it acts by multiplication operators. Given m,n ∈ Z relatively prime, we let γm,n ∈ SL2(Z)
be as in equation (7.3). By [BS12], the group SL2(Z) acts on Eq,t, and we let ιEm,n : Λ→ Eq,t
be the composition of the isomorphism Λ→ Ehorq,t with the automorphism γm,n : Eq,t → Eq,t.
Since ιEm,n is a map of algebras, it is uniquely determined by the following formula:

(7.5) ιEm,n(pk) = vkm,kn ∈ Eq,t

We recall Macdonald’s evaluation map [Mac95, eq. VI.6.17 and VI.8.8] in terms of Pλ:

(7.6) evE : Λ→ C[q±1, t±1, u±1], evE(Pλ) :=
∏
x∈λ

tl
′(x) − uqa′(x)

1− qa(x)tl(x)+1

Definition 7.16. Given m,n relatively prime and m,n as above, define maps Λ→ Λ via

ΓEm,n(x) := ιEm,n(x) · 1
ΓEm,n := ΓEm1,n1

◦ · · · ◦ ΓEmk,nk

We then define the polynomial

JE(m,n, λ; q, t, u) := evE(ΓEm,n(Pλ))

Before we prove the first equality of Theorem 7.4 we prove a proposition relating the
actions of Es−2,s−2 and H on Λ. We recall that Theorem 5.6 states that there is an
isomorphism H → Es−2,s−2 uniquely determined by Px 7→ sd(x)vx. We twist this by a
graded automorphism of H to obtain the isomorphism

(7.7) ϕ̃ : H
∼→ Es−2,s−2 , ϕ̃(Pm,n) = vns−m+d(m,n)vm,n

Proposition 7.17. For x ∈ Λ and P ∈ H>, we have

P · x = ϕ̃(P ) · x

Proof. We first compare the actions of Pm,n and ϕ̃(Pm,n) on Λ for certain m,n. First,

Pm,0 · sλ = pmsλ

v−0s−m+0+mvm,0 = vm,0sλ = pmsλ

Second, from Lemma 7.7, for all n we have

P0,n · sλ =

[
v−n − vn

sn − s−n
+ vns−n

k∑
i=1

(s−2nλi − 1)s2ni

]
sλ
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It is well-known that when t = q, the Macdonald polynomials specialize to the Schur
functions. Then for n > 0, the t = q = s−2 specialization of equation (7.4) states

vns0+nv0,n · sλ = vns−n

[∑
i

(s−2nλi − 1)s2ni

]

v−ns0+nv0,−n · sλ = v−nsn

[∑
i

(s2nλi − 1)s−2ni

]
We have therefore shown that Pm,0 · sλ = ϕ̃(Pm,0) · sλ and that

(7.8) P0,n · sλ =

[
v−n − vn

sn − s−n
+ ϕ̃(P0,n)

]
· sλ

Using the commutation relations in H, it is clear that any element in H> can be written
as sums of products of commutators of Pm,0 and P0,n. In the commutator the constant
term on the right hand side of equation (7.8) drops out, which shows that

(7.9) P · sλ = ϕ̃(P ) · sλ, for all P ∈ H>

which completes the proof of the proposition. �

Proof. (of equality (7.1) of Theorem 7.4) We first use the cabling formula in Proposition
7.13 to reduce the equality that we are supposed to prove to the following:

(7.10) evE(ΓEm,n(Pλ))
∣∣
q=s−2,t=s−2,u=v2

= v•s•evH(ΓHm,n(sλ))

where the powers depend on m, n, and |λ|. We recall that if pk ∈ Λ is a power sum, then
ιHm,n = Pkm,kn ∈ H> and ιEm,n(pk) = vkm,kn ∈ E>s−2,s−2 . Then Proposition 7.17 implies

ιHm,n(pk) = vkns−kmskvkm,kn(pk) ∈ EndR(Λ)

where the equality is equality of operators in EndR(Λ). Now the assignments pk 7→
vkns−kmskpk induce a graded algebra isomorphism Λ → Λ, which shows that for any
homogeneous x ∈ Λ (and in particular for x = sλ), we have the equality of operators

ιHm,n(x) = v|x|ns−|x|ms|x|v|x|m,|x|n(x) ∈ EndR(Λ)

Since this equality is as operators on Λ, this shows that ΓHm,n(x) = v•s•ΓEm,n(x), where
the powers depend on m, n, and |x|. Finally, the actions of H and E on Λ are graded: if
a ∈ H>, b ∈ E>q,t, and x ∈ Λ are homogeneous, then a · x and b · x are also homogeneous.

(See Remark 7.15.) This implies that ΓHm,n and ΓEm,n are homogeneous maps, which implies
that for homogeneous x ∈ Λ,

(7.11) ΓHm,n(x) = v•s•ΓEm,n(x)

where the powers depend on m, n, and |x|.
Now to finish the proof of equation (7.10), all that remains is to compare the evaluation

maps evE and evH . We then equate parameters t = q = s−2 and u = v2 in the formula
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(7.6) and compute

evE(sλ) =
∏
x∈λ

s−2l′ − v2s−2a′

1− s−2as−2l−2

= v
∏
x∈λ

(
s1−l′−a′+a+l

) v−1sa
′−l′ − vsl′−a′

s−a−l−1 − sa+l+1

= vs−|λ|
∏
x∈λ

v−1sc(x) − vs−c(x)

shl(x) − s−hl(x)

= vs−|λ|evH(sλ)

where we have written l = l(x), etc. (The third equality is a straightforward combinatorial
identity.) Since the sλ are a homogeneous linear basis of Λ and the maps ΓHm,n and ΓEm,n

are homogeneous, this shows equality (7.10) and completes the proof. �

7.3. Double affine Hecke algebras. We now briefly recall the construction of [CD14].
Since the main theorem of this section will follow from comparing to [SV13], we will only
introduce the notation necessary to make this comparison. (As in the previous section,
the t of [SV13] is our t−1.)

The double affine Hecke algebra ḦN
q,t, of GLN , abbreviated DAHA, is the algebra gen-

erated by elements T±1
i for 1 ≤ i ≤ N − 1, and X±1

j , Y ±1
j for 1 ≤ j ≤ N , subject to some

relations which we will not write down. This algebra is Z2-graded, with deg(Xi) = (1, 0),
deg(Yi) = (0, 1), and deg(Ti) = 0.

Let S be the symmetrizing idempotent in the finite Hecke algebra (which is generated
by the Ti’s), which is characterized by TjS = STj = t1/2e for all j. The spherical DAHA

is the subalgebra SḦN
q,t := SḦN

q,tS of ḦN
q,t, and it is also Z2-graded. There is an SL2(Z)

action on the subalgebra SḦN
q,t (see the paragraph above Lemma 2.1 in [SV11]).

Following [SV11, Sec. 2.2], for k > 0 we define elements

PN
0,k = S

∑
i

Y k
i S

Elements PN
x for x ∈ Z2 are defined using the SL2(Z) action. We define SḦN,>

q,t to be the

subalgebra of SḦN
q,t generated by PN

m,n with m > 0.

Cherednik defined an action of SḦN
q,t on ΛN using Demazure-Lusztig operators (see,

e.g. [Che95]). Instead of defining these operators, we recall the following theorem of

Schiffmann and Vasserot. (This determines the action of SḦN,>
q,t on ΛN uniquely up to

scalars, which is enough for our purposes.)

Theorem 7.18 ([SV13,SV11]). The assignment vx 7→ PN
x extends uniquely to a Z2-graded

SL2(Z)-equivariant surjective algebra homomorphism

φN : Eq,t � SḦN
q,t
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Furthermore, under the projection πN : Λ → ΛN , the actions of the subalgebras E>q,t and

SḦN,>
q,t are related via the formula

(q•t•u•πN ◦ vm,n)
∣∣∣
u=tN

= PN
m,n ◦ πN

where vm,n and PN
m,n are viewed as endomorphisms of Λ and ΛN , respectively, and where

the powers denoted ‘•’ depend on m and n but not on N or on |λ|.
Proof. The first statement is [SV11, Thm. 3.1]. The second statement follows from [SV13,
Lemma 1.3] and the discussion directly preceding [SV13, Prop. 1.4]. We remark that the
definition of the PN

m,n differs in [SV13] and [SV11] - we have chosen the latter because

these make the map φN equivariant under the SL2(Z) action. The analogous surjection
used in [SV13] is a twist of φN by a graded automorphism, which accounts for the factor
q• in our statement. The factors u• and t• come from the two formulas below [SV13, eq.
(2.12)]. �

There is a natural algebra map ιN : ΛN → SḦN,>
q,t which takes the power sum functions

pk to the element PN
k,0. Given m,n ∈ Z relatively prime with m > 0, we will write

ιNm,n := γm,n ◦ ιN

where γm,n ∈ SL2(Z) is as in equation (7.3). We remark that the automorphism γm,n of

SḦN
q,t does not preserve the subalgebra SḦN,>

q,t . However, since m > 0, the image of the

elements PN
k,0 is contained in the subalgebra SḦN,>

q,t .

Definition 7.19 ([CD14, eq. (2.13)]). Given m,n relatively prime with m > 0, sequences
m,n as above, and a partition λ with at most N parts, define maps ΛN → ΛN via

ΓNm,n(x) := ιNm,n(x) · 1
ΓNm,n := ΓNm1,n1

◦ · · · ◦ ΓNmk,nk
We then define the polynomial

JN(m,n, λ; q, t) := evN(ΓNm,n(PN
λ ))

where PN
λ ∈ ΛN is the Macdonald polynomial associated to the partition λ.

Remark 7.20. The Macdonald polynomials are actually rational functions in q and t, so
the definition above actually produces a rational function. The definition in [CD14] is a
renormalization of the definition above (they divide by the evaluation of PN

λ ), and in their
normalization the output of their formula is actually a polynomial, which is important for
their purposes. The effect of this normalization is that the polynomials for the unknot are
all 1. Since we work with the skein-theoretic normalization of the Homflypt polynomial,
our choice of normalization is slightly more convenient for our purposes.

Proof. (of equation (7.2) of Theorem 7.4) We need to prove the equality

q•t•u•evE(ΓEm,n(Pλ))
∣∣∣
u=tN

= evN(ΓNm,n(PN
λ ))

where the powers “•” do not depend on N . We will do this by relating the various maps
involving Λ and ΛN with the projection πN : Λ→ ΛN and φN : Eq,t → SḦN

q,t.
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First, it is well known that πN(Pλ) = PN
λ . Since the surjection φN is SL2(Z)-equivariant,

we see that φN(ιEm,n(x)) = ιNm,n(πN(x)) for x ∈ Λ. This combined with the assumption
m > 0 and the second statement of Theorem 7.18 shows the equality

(7.12)
(
q•t•u•πN ◦ ΓEm,n

) ∣∣∣
u=tN

= ΓNm,n ◦ πN

where the powers depend on m,n but not on N . Finally, the equality

evE
∣∣∣
u=tN

= evN ◦ πN

completes the proof of the theorem. �
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[FG00] Charles Frohman and Răzvan Gelca, Skein modules and the noncommutative torus, Trans. Amer.
Math. Soc. 352 (2000), no. 10, 4877–4888. MR MR1675190 (2001b:57014)

[FT11] B. L. Feigin and A. I. Tsymbaliuk, Equivariant K-theory of Hilbert schemes via shuffle algebra,
Kyoto J. Math. 51 (2011), no. 4, 831–854. MR 2854154 (2012m:14018)

[GL03] J. J. Graham and G. I. Lehrer, Diagram algebras, Hecke algebras and decomposition numbers
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