Block-decoupling vibration control using eigenstructure assignment

Xiaojun Wei and John E Mottershead

Centre for Engineering Dynamics, School of EngimegrUniversity of Liverpool,
Liverpool L69 3GH, United Kingdom

E:j.e.emottershead@liverpool.ac.uk
T: +44 (0)151 794 4827

Abstract

A theoretical study is presented on the feasibdityapplying active control for the purpose of wition
isolation in lightweight structures by block diagdisation of the system matrices and at the same ti
assigning eigenvalues (natural frequencies and ueyhpo the chosen substructures separately. The
methodology, based on eigenstructure assignmeng ube method of receptances, is found to work
successfully when the eigenvalues of the open-$yspem are controllable and the open- and closgg-lo
eigenvalues are distinct. In the first part of gaper results are obtained under the restrictian ttie
mass matrix is diagonal (lumped). This is certaiapyplicable in the case of numerous engineering
systems consisting of discrete masses with flexitikrconnections of negligible mass. Later inphger

this restriction is lifted to allow bandedness lné imass matrix. Several numerical examples are tased

illustrate the working of the proposed algorithm.

Keywords. Structural vibration isolation; block decouplingigenstructure assignment; method of
receptances.

1. Introduction

The classical vibration isolation method is weldarstood and its application is ubiquitous. It isllw
suited to industrial problems where a relativelysaige piece of engineering hardware, such as aneng
block or a heavy machine tool is to be isolatednfrits surroundings. Spacecraft structures, such as
deployable antennae or solar arrays, and lighthteigulti degree of freedom structures generallg, ar

much more difficult in terms of isolating one subisture from the vibration of another. In this pape
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consider from a purely theoretical point of viewe tfeasibility of decoupling multi degree of freato
systems to form substructures that are compleseliated from one another by active vibration cdntro
This problem appears to be one that has receiwgdittee attention in the vibrations control litgure to
date.

A related, but different problem is that of inputtout decoupling in linear time-invariant (LTI)
multivariable control. The purpose here is simgéifion to form a number of single variable systdms
the elimination of cross-couplings between thealads of the system. There is an extensive litezain
this topic spanning several decades using statibéel (Morgan [1], Falb and Wolovich [2], Gilbe8][
and Descusse et al. [4]) and output feedback (Karapoulos and Koumboulis [5], Howze [6], Denham
[7] and Descusse [8]). The combined problem of #immeous decoupling and pole placement in LTI
multivariable systems was addressed by severabeuffi, 9-11] and the block decoupling problem was
investigated [12-18]. A transfer function matrixpapach with block-decoupling was proposed by Hautus
and Heymann [19] and Commault and Dion [19, 20] anitly-output feedback systems with decoupling
and stability was investigated using a transfection matrix approach [21-24]. Q.-G. Wang provides

detailed account of input-output decoupling conitndhe research monograph [25].

Although there are considerable volumes of litetdevoted to the development of theoretical input-
output decoupling methods, far less attention e kpaid to the application of decoupling to strcadt
vibration control. Zacharenakis [26, 27] investaghtthe decoupling problems of civil engineering
structures via state/output feedback with the apsiomthat the number of inputs is equal to the bem
of outputs. Li et al [28] proposed decoupling cohtaw for vibration control of multi-story buildm
using a diagonal mass matrix and tri-diagonal dam@ind stiffness matrices. The control laws were

based on the second-order matrix differential égoatdirectly.

With the state space formulation, pole placemeanisntrinsically ill-conditioned problem and becesn
increasingly ill conditioned with the dimensiontbe system [29] . Another obvious drawback of using
first-order realisation is that the system magiibecome2nx2n, which is computationally expensive if
the order of the system is large [30]. Furthermore, in terms of structurddration control, converting
the equations of motion into a first-order stataesp formulation, the bandedness, definiteness and
symmetry, of the mass damping and stiffness matace lost [31]. The transfer function matrix aguto
which requires much algebraic manipulation of maiofunctions, becomes increasingly complicated as

the dimension of the system increases, especallyilfration control of industrial-scale structures

The research reported in this article is a prelanjnstudy, which might be deemed timely in view of
contemporary interest in lightweight and deployagtieictures, piezo-based actuators and sensors with
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proven capability and a related literature on &cthput-output decoupling. In this research, a béek
decoupling control algorithm based on eigenstrgcassignment using measured receptances is proposed
for structural vibration control. Modal degree afddom constraints are imposed such that the ntrix
closed-loop right eigenvectors is block-diagonaljseading to block diagonal matrices of the seeond

order system in physical coordinates.

For the purpose of simplicity, we limit the invegttion in this article to the problem of block depbing

to form two independent substructures from a limealti degree of freedom system. It is straightfargv

to show that the approach can be extended to the @limultiple independent substructures and also
diagonal decoupling in physical coordinates. Sitloe main objective is the introduction of a new
conceptual idea eigenvalue assignment is limitethéocase of distinct eigenvalues in both open and
closed loops. The block-diagonal receptance masiintroduced in Section 2 and eigenstructure
assignment by the method of receptances is brfiewed in Section 3. In Sections 4 and 5, block
decoupling vibration control algorithm for undampadd damped systems with lumped masses is
explained. The number of actuators and sensordregjin the case of banded damping and stiffness
matrices is considered in Section 6, and in Seclitine methodology is extended to cope with damped
systems with inertia coupling using a hybrid blatdcoupling vibration control law by the applicatioh
acceleration, velocity and displacement feedbackrob Several numerical examples are used to show

how the block decoupling control method works.
2. Theclosed-loop block-diagonal receptance matrix
The equation of motion of the degree of freedom linear system may be cast iongkorder form as,

M +Cx +Kx =0 (1)

where M ,CandK OR™ are symmetric matricesyl is positive definite andCand K are positive

semi-definite.

Now, velocity and displacement feedback is appitedecouple and control the system so that theedlos

loop system may be written as,
Mx +(C-BF")%+(K -BG")x=0 )

where BOR™is the force distribution matrixr and G OR" are velocity and displacement feedback

control gain matrices respectively.



The dynamic stiffness matrix of the closed-loopeysis denoted by,

I(s)=Ms*+(C-BF')s+(K -BG") 3)
Correspondingly, the closed-loop receptance mattilke inverse of the dynamic stiffness,
H(s)=T"(s) (4)
where(¢) denotes the closed-loop system.

A list of integers(n;, n,,---,n, ) is called a partition of if n 21,i=1,2,-- v and ) n =n.

i=1

The closed-loop dynamic system is said to be bthalgonal with respect to the partiti(énl, nz,---,n,)

if the receptance matrix takes the form,

A(s)= H(s) )

whereH, (s) Q%™ (s),i =12, v, QV" (s)is the ring of proper rational functions. In theesial
case wherv=n andn, =1, i=1, 2,-- v, the closed-loop system is said to be diagonabodpled. For a

linear system with closed-loop receptance (5)dyreamic behaviour may be expressed as,
H(s)f () =x(s) (6)

wheref (s) andx(s) are the external forces and displacement respaespsctively, indicating that a

substructure with receptance matFi (s) is independent of other substructures under therread force
f(s).

In the paper, we show how a multi degree of freedmmar structure can be decoupled into two
independent substructures £ 2andn, +n, =n) by a new block decoupling algorithm. The algarith

can be extended straightforwardly to the case dfiphel independent substructures and also diagonal

decoupling in terms of physical coordinates.



3. Padleplacement by the method of receptances

Multi-input active vibration control is proposed ihis article by pole placement using the method of
receptances proposed by Ram and Mottershead [B2ly $howed that when the open-loop system is
controllable, there exists a solution to the systémquations,

A )
T T T
KW, W, |(F —| %2 @)
: - G :
T T T
Mo Won W LS

thereby assigning closed-loop eigenvah@ge@}izl, closed under conjugation, by the application of

displacement and velocity feedback control gdnG .

Terms appearing in (7) are given by Ram and Mditsad [32] as,

Wi Sy Ny at @y Fy ot 0, = R,Ukak, k=12:-,n (8)
-1
R, =l Tyo = Ta]=HLB  H, =[MpZ+Cpy +K] (9)
3 T
ak_[aﬂkvl Ao aﬂkq] (10

and a, ; are arbitrary parametersi, are open-loop receptance matrices which may be ureas

experimentally andv, are the closed-loop right eigenvectors. Constaimay be applied at the'

degree of freedom of tH&" mode by the choice af, ;.
ejw, =€jR, a, =0 (11)
where e, denotes thej-th unit vector.

It is assumed in the following sections that equaij7) is solvable and the closed-loop eigenvahares

closed under conjugation - to ensure strictly freab .



4. Block-decoupling control for undamped structures
To illustrate the idea of block-decoupling contwek begin with the problem of undamped systems. The
equations of motion of the open-loop and closeg-lnadegree-of-freedom undamped systeras=(Q,

F=0) may be written as ,
MX+Kx=0 (12)
and
MX+(K—BGT)x:O (13)

The closed-loop eigenvalue problem is

((K—BGT)—UKM)WK:O, k=12;--n (14)

or
(kK -BGT)W-MWA =0 (15)

We consider the problem of block decoupling thesetbloop system with respect to the partition

(nl nz). By choice of parameters, ; to satisfy equation (11), modal degree of freedmmstraints

may be imposed on right eigenvectey,

ij:O,j:nl+1,n1+ 2,--n, k=12 n (16)

Wy =0,j=12;-n, k=n+1n+ 2 n
wherew,,, is the i entry of thek™right eigenvector of the closed-loop system. Thimls to the block-
diagonal matrix of mode shapes,

W = (17)
0 W,

andwQOC™, w,0C™™, W,,OC™™and zero matrices inside are of proper dimension.

Lemma 1. The closed-loopstiffness and receptance matrices will be bloclgalel with partition

(n1 nz) with assigned closed-loop system eigenvalues wherclosed-loop right eigenvector matrix
W is block diagonal with the same partition alvidis a lumped mass matrix.
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Proof: Since the system is controllable, distinct eigeneal{Lpl, ,uz,---,,un} may be assigned with block-

diagonal constraints oMV by the method of receptances using equation @3cfibed in full by Ram

and Mottershead [32]). When block-diagoWlhas partitiofin, n,), then
-1
w0 (18)
0 W,

Hence, from equation (15), the closed-loop stiffnesitrix

K-BG")=MWAW™ (19)
( )

is block diagonal with respect to the partiti(m] nz). Consequently, the closed-loop dynamic stiffness

and receptance matrices are block diagonal anglydtem is block decoupled.

O

Remark 1. Equation (19) admits the use of a block diagonaksnmatrixM with partition(nl nz).

However, for reasons of physical practicality, wecdss only the case of the diagonal (lumped) mass

matrix.

O

Therefore, the block-decoupling vibration contrigagithm for undamped systems may be summarised

as:

1. Decouple the open-loop undamped system to formutwemupled substructures. This is achieved by

the imposition of modal degree of freedom constsafih6) on the closed-loop right eigenvectars

by the choice of parameteus, ; to satisfy equation (11).

2. Assign desired eigenvalues,, =diag(x,);", and A, =diag(,uk)zznl+lto the two substructures by

the choice of control gain matri@ based on the method of receptances using equadion

The eigenpairdA,, W,} and{A,, W,,} are then assigned to the two independent substesctu

respectively.

If W is block diagonal with partitim@nl, nz,---,m), then it is straightforward to show that the clibse

loop stiffness matrix is also block diagonal witkspect to the partitio(ml,nz,---,nv). The system

becomes strictly diagonal when=n.



4.1. Examplel

Consider the two degree-of-freedom mass-springsyst

10 2 -1
M:[ } and K:[ }
0 1 -1 1

The open-loop eigenvalues are,

A, =0.3820
A, =2.618C

and the eigenvector matrix is,

-0.5257 - 0.850
-0.8507 0.5257|

Now, a two-input proportional feedback controllsrused to decouple the system into two independent
single-degree-of-freedom systems. The prescribgehgalues of the two independent subsystems are

4, =05
M, =3.0.

According to the above analysis, modal nodal caiss are imposed to the closed-loop right
eigenvectors so that the second entry of the diggnvector and the first entry of the second eigetor

are zero. The force distribution matrix is chossn a

2 2
B= b,|= .
(5 b {2 3}
To impose the required modal nodal constraintsptitametersy, ; are chosen as,

21

T T
&b, a _ &4,
T 1 Y2, T

&l SLPYY

al,lz
Where,
al,2:a2,2:1’ eTZZ[O ]] ’e-lzl:[l q

This leads to the matrix of control gains,



3.25 -25
G= :
05 -1.0
The resulting closed-loop eigenvalues are fourtukto

M4, =05
M, =3.0

and the eigenvectors are

] el

The closed-loop systems matrices are

v <[t 9 agk -[05 O
o 1 ¢l o 3.0

Hence, the closed-loop system is found to be ddedupto two independent single-degree-of-freedom

systems with desired eigenvalues.

5. Block-decoupling control for damped structureswith lumped masses

The closed-loop right- and left-eigenvalue protdemay be written as,
2 _ T _ T —

(M,uk +(C-BF )y +(K -BG ))wk =0. (20)

and,
z! (M,u,f +(c-BFT) 4 +(K —BGT)) =0, k=1,2;--, (1)

By combining all the modes into a single expressimnright eigenvalue problem (20) becomes,

MWA? +(C-BF")WA +(K -BG" )W =0 (22)
and the left eigenvalue problem (21) is,

A’Z™M +AZ" (C-BF")+Z"(K -BG")=0 (23)



nx2n

In these expression/ JC™" is the matrix of right eigenvectorZ OC™" is the matrix of left

eigenvectorsA =diag(fy -+ b, ) DC**is the spectral matrix.
We partition matrices\ , W and Z as follows,

Sl
A=
A, (24)

A, =diag(g, - p4,)0C™; A,=diadg,,, - Uy)OC™

W=[W, W] (25)
Wo=[w, w, - ow,|OC™; We=[w,, w,, w,,]O0C™
and
2=z, Z] x (26)
Z, =z, z, - z,|OC™; Zg=[Zp1 Zm z,|OC™

In the case of complex eigenvalues,, = u. where (-)D denotes complex conjugation. Real

eigenvalues are grouped equallyAn and A, at the same diagonal locations.

Then by choice of a, ; in (11), modal degree of freedom constraints on ¢hesed-loop right

!

eigenvectorsy, may be imposed,

Wik WJ(k+n):O' j=n+Ln+ 2. n, k=12 n 27)
ij:Wj(k-m):O' j:1'2!“"n1’k:nl+ ln1+ 2 N
Thus, W, and W, are block diagonalised with respect to the parti(in1 n2) as,
W, 0 W, 0
W|_ :|: L11 :|’ WR :|: R11 :| (28)
0 WL22 0 WR22
whereW,,;, Wg,,OCY™ and W ,,, W, 0C™*"%.
We now write equations (22) and (23) in first-orém as,
AX =XA (29)
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YTA =AYT (30)

where (from Appendix 1),

e,

YU:[yUl Yuo yUZn]; YLz[yLl Yo yLG]

and,

0 I
A{—M*(K -BG") -M ‘1(C—BFT)} (32)
Pre-multiplying and post-multiplying equations (28)d (30) by Y™ and X respectively -lead to,
Y'TAX=AY'X=YTXA (33)
It can be seen from (33) that' X commutes withA so that,
Y'X=D (34)

where DOC®™™ is diagonal.

Then by normalising the left and right eigenvectors

YTX =1 (35)
or,
YT =X" (36)
where| is the identity matrix.
From equations (28) and (31),
WLll 0 WRll 0
X _ 0 WL22 0 WR22 (37)
- WLllA(l)ll 0 WR11A(2)11 0

0 WL22A(1) 22 0 We 22A(2) 22
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where

A 0 A 0
Al _ ()11 : A2 _ (911 (38)
0 A(1)22 0 A(z)zz
and A(1)11’ A(2)11|:|(Crlixnl : A(1)22' A(2) 22D Cree.

The matrixY™ may be written as

T T T T
Your Yoor Yo Yoo
T T T T T T
VT = I:YT YT:| _ |:YUL Y } | Yo Yo Yu Yoz
L L7 | vT T || wvT T T T
Yor  Yir Yora Yurar Yirn Y Rt

T T T T
YUR12 YUR22 YLR12 YLR22

(39)

where
Yu =[YUL YUR]'YL =[YLL YLR ]v
YUL - |:YUL11 YUL12j| , Y|_|_ - |:YLL11 YLL12j| , (40)
YUL21 YUL22 YLL21 YLL22
YUR - |:YUR11 YUR12:| , YLR - |:YLR11 YLR12:|
YUR21 YUR22 YLR21 YLR22

Wlth YUL 7YUR ’YLL 7YLR D Can ’ YULll’ YLLll’ YURll’ Y LRll[| (Cnlxnl ’ YULlZ’ YLL12’ YURlZ’ Y LRlZ[| (Cnlxnz ’

nyxny . nyxn,
YUL21’ YLL21’ YURZl’ Y LR21[| C ’ YUL22’ YLL22’ YUR22’ Y LRZZD (C .

Lemma 2: The closed-loop damping and stiffness matriceisbeiblock diagonal with partitim(nnl nz)
with assigned closed loop eigenvalues when theediisop right eigenvector matric&¥, and W, are

block diagonal with the same partition aMil is a lumped mass matrix.

Proof: Sincethe system is controllablalistinct eigenvalue%,ul,/,12,---,,um}, may be assigned with

block-diagonal constraints oW by the method of receptances using equation €5¢ribed in full by

Ram and Mottershead [32].

By using elementary transformations, the right igetor matrixX may be expressed as,
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X =

W

W
A

0
0

L11

(111

W

R11

A

R1Y (2)11

0 0
0 0
Wiz Wh2

WL22A(1)22 WR 22A( 2) 22

The left eigenvector matri¥ may then be written, using the relationship (36), a

so that,

Therefore

with

T
YLLll

v {

T
YUL21

T
YUL12
YT

uL21

YT =

=0, Y
=0, Y/,

LL21

T
YLL21

T
YULll

0

T
YURll

T
YLLll

It

T
LL12

0

T
LL22

block diagonal with respect to the partition n,).

From (31),

13

-1
Wi Wea
|_11A(1)11 WRllA( 211

00
00
=0, Yiriz=0, Y{p,=0
=0, Yirn=0, Y{r=0
0 YITLll 0
YJLZZ 0 YELzz
0 YIRll 0
YJRZZ 0 YIRZZ
A 0

:| and YLTR :{ LR11 ;

0 Yk

.

00
00

W

L22

|

W

(41)

R22

1
|_22A(1)22 WR221\(2)22:| )

(42)

(43)

(44)

(45)

(46)




SinceM is the lumped mass matrix it follows from equati@®) thatz, and Z, are block diagonal

with respect to the partitiqm, n,).

It is known that the receptance matrix may be esgeé as,

H(s)=[w, W] (les=Ay)” 0 MZI}

0 (1.s-A,)" | Z& (47)

=W, (I,5=A,) " Z] + W, (I,s-A,) " ZF,

o] thatl:l(s) is block diagonal with respect to the partit(mp nz): so too is the dynamic stiffness

matrix, i.e. the inverse dfi(s).
Whens=0,
r(0)=(k -BG") (48)

which shows that the closed-loop stiffness masiklock diagonal with respect to the partit@ap nz).

The dynamic stiffness may be recast as

.M, 07, (c:—EsFT)11 (c:—BFT)12 (K—BGT)ll 0
s e e )

21 22

so that,

(C—BFT)lzs:O and (C-BF") s=C (50)

21

for arbitrary s. Hence the closed-loop damping ma(r&—BFT) is block diagonal with respect to the
partition(n, n,).
Thus, if the sub-matrices of the right eigenvect, and W, , are block diagonal with respect to the

partition(n1 nz) , then the closed-loop damping and stiffness nednill also be block decoupled with

respect to the partitigm, n,).

O
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Remark 2: Equations (46) admit the use of a block diagonass matrixM with partition (nl nz) . For

the same reasons as given before, we only consid@ase of the diagonal (lumped mass matrix).

O

Therefore, the block-decoupling vibration contrigloaithm for damped systems may be summarised as:

1.

2.

Decouple the open-loop damped system into two ysiedwsubstructures. This is achieved by the

imposition of modal degree of freedom constrai@®) ©n the closed-loop right eigenvectovs

by choice of parametews, ; to satisfy equation (11).

Assign desired eigenvalues {A(l)ll A(Z)lj}:{diag(/,lk)rk‘l:l diag(,uk)mnl} and

k=n+1
{A(l)22 A(z)zz}:{diag(,uk)::nl+l diag(pk)izmnlﬂ} to the two substructures by the choice of

control gain matrice§,G based on the method of receptances described.by (7

The eigenpair{A(l)11 A(z)n] (Wi, WRM} and{[A(l)22 A(Z)ZJ [W,, WRzz}are then assigned

to the two independent substructures respectively.

If W_and W; are block diagonal with respect to the partiﬁnp nz,---,nv), then the closed-loop

stiffness and damping matrices are also block aiabwith respect to the partiti(@nl, nz,---,r\,). The

system becomes strictly diagonal wher n.

5.1. Example 2

Consider the three degree-of-freedom system showigi 1.

Fig. 1 The three degree-of-freedom system

The system matrices of the open-loop system are ,
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2 -1 0 2 -1 0
M=ml,C=c|-1 2 -1 andK=k|-1 2 -
0 -1 1 0 -1 1

If m=1, c=1 andk=5, the open-loop eigenvalues are,

A, =-0.0990+ 0.9902
Ays = —0.7775 2.6771.
Ay =-1.6235 3.6877

Now, the block decoupling control method is usedi@couple the three degree-of-freedom system into

two independent substructures as shown in Fig.He.eigenvalues of the first substructure are piteesd

as,
H,=-01+1.0i
s =-0.8% 2.8i
and the second substructure
Uy o =—1.6x 3.70.

Modal degree of freedom constraints are imposetheright eigenvectors of the closed-loop system so
that the first two entries of the eigenvectors ld tast mode and the last entry of the eigenvectors
corresponding to the first two modes are zero. thiege inputs are used and the force distributiotrima

is chosen as
123
B=[b b, b]={0 1 3
2 00
The parameterg, ; are chosen as,
aﬂk~2:05’ a,UkB: 1’ k: 112,41!
a,s=1 k=3,6

Q.= inv(rﬂkyl(s)) ><(—r”k 49%2 T g 3crﬂks), k=1,2,4,t
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Hi:2

{Zuk,lJ = inV(R,uk(l:Z,lzz)) ><(—r#k p 1:2)09,%3),|< =36.

and the control gains are found to be,

0 3.0559 6.1117 0 0.6617 1.323'
G=| -25 -1.9910 - 3.9820 an&#=| - 05 - 04426 0.88.
-5.6250 10.6250 - 5.2083 - 1.1000 2.1006- 1.0f

The closed-loop system is found to have eigenvalues

4, =-0.1+1.0i
M, s =-0.8% 2.8i
Uy =—1.6% 3.7i
and eigenvectors
0.7122+0.0948) 0.0683+0.1660i 0
w, =| 0.8198+0.1091} w, =| 0.1245+0.2759w, = 0
0 0 -0.1062 - 0.2082

W, =W, W, =W5,W =W}

The closed-loop system matrices are

-3.2939 3.0359 0 - 14.4469 134281 0
M. =I, C, =|-5.6322 50939 0 | ank. =|- 26.3910 23.9371 0
0 0 3.200 0 0  16.250

which are decoupled to form two independent subttras with desired eigenvalues.

6. Thenumber of actuatorsand sensors

We have seen that the application of modal degfédeedom constraints to block diagonalise thetrigh
eigenvector matrix with respect to the partil@np n2) will cause the closed-loop stiffness and damping
matrices to be block decoupled with the same pmrtitRam and Mottershead [32] showed that the
number of required control inputs should be no thas 1+ maxn, ,n,} . In this section, it will be shown

that the number of required control inputs may educed for structures with banded damping and

stiffness matrices with semi-bandwidth
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For practical engineering structures, the connestibetween components are in general localised. If
discretised by finite element methods, it appdaas the damping and stiffness matrices are bandkd w
non-zero entries confined to a diagonal band aacttilupling in general exists between adjacent ésgre
of freedom. Hence, the original structure may beodipled into two independent substructures if the

coupling effect is eliminated in the connectiorttad two substructures.

Consider an degree-of-freedom system structure whose dynariffoests matrix is banded with equal

lower and upper semi-bandwidth1<t< min{n,,n,}, as shown in Fig. 2.

ni-t

y
nﬂrl

f’i['ﬂ‘

Fig. 2 The banded dynamic stiffness matrix

Now, the control objective is to decouple the dtite into independent substructure 1 of dimension

n,xn, and substructure 2 of dimensioanxn,. It can be seen that the two substructures arelocélly
coupled from the(n —t+1)" degree of freedom to thig, +t)" degree of freedom. Hence, the two
substructures can be decoupled if the cross-caughom the(nl—t+1)th degree of freedom to the
(nl +t)th degree of freedom is removed by using feedbackraorrhis may be achieved by applying
neutralising feedback forces from t(]lq -t +1)th degree of freedom to tr(enl +t)lh degree of freedom.

Lemma 3: The n degree of freedom open-loop dynamic system witpled mass and banded damping

and stiffness matrices having equal lower and ugperi-bandwidthl<t < min{nl,nz} may always be

decoupled into two independent subsystems vifiectuators are located at the coupled degrees of

freedom and the number of inpujs 2t .
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Proof: Let us begin by assuming there @fteactuators at the coupled degrees of freedom. Gtee f

distribution matrixB may then be written as

O(nl-l)xq
B=| B
0

andq= 2 (51)

2txq

(n~t)=q

where B, is real parameter matrix chosen so that all opep-&igenvalues are controllable.

2txq

We have seen that the closed-loop damping andesi$f matrices become block diagonal when the right

eigenvector matrice®V, and W, are made block diagonal with the same partifion n,) by choice

of parametera, JC%*, k=1,2,--,2h. From equations (9) and (11, should be chosen such that,

Wk(nl+1:n) = H,Uk(n1+l:n,:)Bak = H,uk(n1+ln ,nl—t+1n1+t)B2t><qak = On2><1' k= 1,2, nn +1n+ 2. n+ n, (52)

and

w,, ,=H Ba, =H B

kan) = Hugan,) aq® = Oy K=Ny 10+ 2:-- nn+n+ 1n+n,+ 2.+ ,A(53)

Hi(Ing ,ny—t+LInp+t) n <11

Strang and Nguyen [33] showed if a symmetric miﬁr]x is banded with semi-bandwidth then above
the t-th subdiagonal every submatrix {)'f]_l has rank<t, and below the-th superdiagonal every

submatrix of[-]_lhas rank t . Therefore

rank(H #k(nlﬂ:n'nl_m:nlﬂ)) <t (54)
and
rank( H, (-t 151 ) <t (55)
Since
rank(H #k(wmnl_tmlﬂ)ém) < ranl(H #k(nﬂn'nl_m:nlﬂ)) <t (56)
and
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rank(H i (l:nl,nl—t+l:n1+t)BZt><q ) s rani( H He(Ing ny—t+1ng+) ) =t (57)

it follows that there always exists nontrivia) satisfying equations (52) and (53)

a, :null(Hﬂk(nlﬂ:nvnl_ﬁmlﬂ)émq)y, K=1,2;-- n n+ In+ 2, n+n, (58)

and

a, =null (Hﬂk(l:m’nl_m:nlﬂ)Bthq)y, k=n+1n+2;--nn+n+1n+n,+ 2,-- A (59)

wherey is an arbitrary non-zero vector.

O

Remark 3: It may be proved similarly thatifin{n,,n,} <t < maxn, n,}, thenmin{n,, n,} +t actuators

are sufficient for decoupling control of the opeo system.

O

Lemma 4: A necessary condition for block decoupling is teahsors should be placed at the coupled

degrees of freedom of the system.

Proof: The force distribution and control gain matricesyrbe partitioned as

Bl I:1 G1
B=|B,|, F=|F,| andG=|G, (60)
B3 FS GS

Let the degrees of freedom associated With F, and G, be the coupled degrees of freedom. If there

are no sensors placed on the coupled degreesealoirg thenF, =0 andG, =0 and

BlFir BlF;— B 1F-£ B pTl B pTZ B GTS
BFF=l 0 0 0 | andBG'=| 0 0 0 (61)
B3F]T B3F-2r B J:-l?: B QTl B QTZ B §T3

Consequently, the coupling between the coupledessgof freedom cannot be eliminated by feedback
control.

O
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When the mass matrix is diagonal and the dampinigséiffness matrices are banded, certain degrees of
freedom may be free of actuation and the eigensataa be assigned exactly by using full state fagdb

which is illustrated in the following example.

6.1. Example 3.

Consider a five-degree-of-freedom system with roafi

2 -1 20 -10
-1 2 -1 -10 15 -5
M=Il,C= -1 2 -1 andK = -5 10 -5
-1 2 -1 -5 10 -5
i -1 1] i -5 5]

The open-loop eigenvalues are

A s =—0.0462+ 0.7706i
A, ,=-0.3550¢ 2.0897
Ay =-0.905% 3.0365i
Ay = —1.6249+ 3.7653
Js10= —1.5688+ 5.019C

The open-loop system is to be decoupled into twepupled subsystems. The first subsystem consists of

the first three degrees of freedom with prescridigenvalues,

f4 s = =0.05% 0.60i
{4, =—0.35% 1.80i
[, = —0.90% 2.80

and the second subsystem consists of the lastageds of freedom with prescribed eigenvalues,

Uy o = —1.42% 3.50i
Ys 1o = —1.90% 3.90i

Modal degree of freedom constraints are imposetth@might eigenvectors so that the first threeiestof
the eigenvectors corresponding to the last two moaled the last two entries of the eigenvectors
corresponding to the first three modes are zere Iémi-bandwidth of the damping and stiffness
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matrices is one. Hence, it is possible to havditeetwo and the last degrees of freedom freeatimn.

Here, two inputs are used and the force distriloutiatrix is chosen as,

B:[bl bz]:

o o1 » O O
o AN OO

The parameters'ﬂk ;are chosen as,

o, =Nl (R, o19)e0 K=1,2,3,6,7,¢

and,
o, =null(R, ;.0)en  k=4,59,1C

where g, is the1® unit vector.

The control gains are found to be,

[3.3447 -4.1809 [- 75.1354 93.918:
-0.2537 0.3172 63.8172 - 79.771
F=|-2.6000 3.000Q and G =| - 19.7563 23.445
~0.5467 - 0.2267 - 2.6953 - 1.152
| -2.0508 1.0254 |- 10.2043  5.1021

and the closed-loop eigenvalues are,

t4 ¢ = =0.05% 0.60i
1y ;= =0.35+ 1.80i
155 = ~0.90+ 2.80i
Hy o =—1.42+ 3.50i
Ys 1o = ~1.90+ 3.90

with eigenvectors,
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0.1970+ 0.0071) 0.0057 0.178%i - 0.0143 0.18pi
0.3869+ 0.0131 - 0.0026 0.2974i - 0.0651 0.202!
w, = 0.7384 ,W, =| —0.0636 0.3240jw, =| - 0.0706 + 0.143f
0 0 0
0 0 0
0 0
0 0
w, = 0 Wy = 0
-0.0846- 0.2086 - 0.0926+0.190
0.0452 + 0.1130j 0.0340-0.0681i
Weg :W?!W7 :WDZ,WSZW%,WQZWD4,W 10:WD5
The closed-loop system matrices are,
M =1
2 -1 0 0 0 |
-1 2 -1 0 0
C. =/5.0170 -1.3806 — 1.4000 0 0
0 0 0 5.6400 5.152f
0 0 0 -1 1 |
20 -10 0 0 0 |
-10 15 -5 0 0
Ko =|-112.7032 90.7257- 17.1343 O 0
0 0 0 28.09 25.612¢
i 0 0 0 -5 5 |

Thus, two independent subsystems are achieveesaed with given eigenvalues.

7. Decoupling of linear structureswith banded mass matrix

In the preceding analysis the mass matrix was asgumbe diagonal (or lumped). This is an unredalist
assumption and in this section we seek to replaedth the more practical representation of a bande
mass matrix. The coupling between system degreeBeeflom may reasonably be assumed to be

localised, as in the case of the finite-elementsistant mass matrix. Here we introduce acceleration
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feedback (in addition to displacement and velofggdback) to decouple the linear dynamic systeth wi
inertia interaction.

In this case, the equations of motion of the cldseg system may be expressed as,
(M -BD")%+(C-BF")x+(K -BG")x=0 (62)

whereD , F and G OOR™ are the acceleration, velocity and displacementifaek gain matrices
respectively. BOR™ is the force distribution matrix. If the open-loapynamic stiffness matrix
Z(s)=Ms*+Cs+K is of semi-bandwidth, 1<t < min{n;,n,}, then the minimum number of inputs is

g=2t and the force distribution matrix may be given(s%).

O(nl—t)XZt
B = BZtXZt (63)
O(nz—t)XZt
where B, is chosen to be invertible.
If the acceleration gain matrix is of the form,
o(nrt)x2t
D=| D, (64)
(ny-t)x2t

then,

o(nl—t)X(nl—t) y O(nl—i)XZt O(nl—t)X(n o)
BD' = Oth(nl—t) BthztDthxz 02tx(n2—t) (65)
Optromy Oy Oometny

The open-loop mass matrix may be written as

(Lt 1 -t) M (Lny=t ,n~t+1ny) O( Ing-t ngt Ingt) O( In it ngt+ In)
M = (np=t+2ny, Liny—t) (ny=t+1ng ,np~t+1ny) (nrt+1Ingng n gt) O(n Tt+ Inpy ++ln) (66)
O(q+1: n+t, 1ny-t) M (n+Lng+t n-t+1ny) M (ng+In gt n g In#t) M (n+Lng+t, ny+t+1n)
L O(q+t+1- n,Ln-t) 0(n1+t+l:n ny-t+1n,) M (nptt+1n no+ dn ) M (ngt+ In ngt+ In) |
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where we denote the central sub-matrix as,

M
M. =

1

(m—t+1ng, ny—t+1iny) M (ny—t+2ing,n g+ In )

(ny+L:ng+t, ny=t+1iny) M (ngtLingkt n g+ In )
Acceleration feedback is now applied to modifl, such that

1 —BAT
M,-M,=BD

where

0

(ny=t+L:ny, ny=t+1n,) (ngmt+1ing,n g+ In )

<

(np+Lng+t, ny—t+1:ny) (nrLngtt g+ In )

is prescribed to be symmetric and to make the disep mass matrill nonsingular.

M (Lt 1iny—t) M (L=t ,n;~t+1ny) 0( Ingt gk Ingt) O( Inrt ngt+ In)
M _ (np-t+Ling, Liny—t) M (ng=t+1:ny, ny=t+1ny) o(nl—t+ Lng,ng1n ) 0(nl—t+1: ny, n+t+1n)
(ng+2:ng+t, Lng—t) O(nl+1; ng+t, ng-t+1ny) '\7| (ng+tLingrt ,n gk 1n ) M (m+L:ng+t, n+t+1in)
(ny+t+1:n, Ly ~t) O(n1+t+1:n ny=t+1n,) M (ngt+1In n gt In #t) M (n#t+ In npt+ In) |

From equation (68), the acceleration feedback gali:matrixﬁ is seen to be given by,

Now, the eigenvalue problem associated with theeddoop linear system becomes
(M,ulf +Cl, +K)wk =B(,uk2DT + F' +GT)Wk, k=12,
Then,

— — T
Wi =By Fp 2 Oy Iy 2 ¥ 0y oy g =R, 0

where

a, =(,u,fd{ +ufl +g{)wk, k=12;-,0, j=12q
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(68)

(69)

(70)

(71)

(72)

(73)

(74)



-1

R, =(M#Z+Cy +K) B, k=12;, 2 (75)
. . T
anda, ;are arbitrary variables ang, are nonzero vectors.

Equations (74) may be rewritten as,

By i=a, —#dw, =(ufl +9])w,, k=122, j= 1,2 g (76)
or,
B: =a, —£w,D, k=1,2;--,2 (77)
where,
Bi = Bus Bz = Bua (78)

Hence, the velocity and displacement feedback obg#ins are obtained by solving,

F
P =A 79
M 19
where,

W Wy B

T T T
p=| Helte Wl Az P2, (50)

NZnW;n Wzn B-;n

The closed-loop system will be block decoupled whewdal degree of freedom constraints (27) are
imposed onw, in (80). It is seen that the decoupling algorittsrbasically similar to that presented in

Section 5 except for the additional of acceleratedback to generate a block diagonal closed-ags

matrix.

7.1. Example 4

Consider the structure shown in Fig. 3, which cetssof a beam of lengthl =5 mfixed at both ends.

Assume the cross section of the beam to be redmnguith width b=2cm and heighth=1cm
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respectively and the material of the beam to bel stith Young's modulusg = 2.0x 1G* Pa and mass

density,0 = 7,800 kg/ni.

|
ELA p 51 | b
[ ]

cross section

Fig. 3 A beam with both endsfixed

The beam is discretised into five beam elementsqofal length, with the joints undergoing lateratl an
rotational displacements. The consistent-mass xnatremployed to include the inertia coupling effec

That is, the mass matrix of each beam elenwepis

156 22 54 - 1B

_pAl22 47 13 -3

©7 420 54 13 156 - 2p|
-13 -32 -22 42

For the sake of illustration, proportional dampi6g{,M +{,K , ({, =0.001 and {, =0.000Z) is

assumed.

The open-loop eigenvalues are

Ao =107 x(-0.0002t 0.1309i ;4,,,= T0<(- 0.00%3 0.3630
Agg1 =10°x(-0.005% 0.7167i ;4,,,= FO<(- 0.0143 1.19%C
As13=10° x(~0.0402 2.0045i A, = FO<(- 0.0821 2.9830
A5 =107 x(~0.1940 4.4003i A= Fox(- 0.3882 .H.86)) .

Now, as shown in Fig. 3, the beam is to be decadupleh that beam 1 of lengthd with prescribed

eigenvalues

fho =107 x(-0.00% 0.1 ;11,,,= 1bx(- 0.002 0.38
My, =107 x(=0.007t 0.60i ;1,,,= 10x(- 0.02 1.0pi

is independent from beam 2 of lendttf with eigenvalues.
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Yo 15 =107 x(-0.04t 2.20) ;14,,= 10x(- 0.08 3.5pi
15 =10° x(-0.22t 4.00) ;44.,= 10x(- 0.48 6.0Di

The closed-loop mass submatrix is given as,

1.2 02 0 O
M=K _ 02 01 0 O
U g 0 1.2 0.2
0O 0 02 0.
and the force distribution matrix is chosen to be,
) 0 0 0]
0 0O 0 O
2 -18 -5 7
-1 8 3 17
B= .
-19 -9 -6 -2
-4 1 5 -21
0 0O 0 O
| 0 0O 0 0]
Then the acceleration feedback gain matrix is foiorige
0 0 0 0 |
0 0 0 0
0.0001 0.0126 - 0.0496- 0.008
D= 0.0003 0.0178 - 0.0334- 0.006
0.0059 -0.0065 - 0.0044 0.007(
0.0111 0.0066 - 0.0112- 0.001
0 0 0 0
0 0 0 0 |

By using the proposed method, the arbitrary pararsetre chosen as

o, =N (R, o101 K=14,9; 12

and

a, :nuII(Rﬂk(l:MA))el, k=5,--,813;-- ,1¢
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where e is the1® unit vector.
The velocity and displacement feedback matrice$caned to be,

[ -0.0437 - 0.1278 0.3051  0.0%
-0.2646 — 1.8709 3.3882  0.76¢

0.3407 2.3008- 4.0814  0.94¢
-0.0180 - 0.0095 0.1289  0.02
-5.1846 18.462F 64.9532 2.4458
-1.5823  4.5051- 16.0528 0.6
-22.9302 66.8830- 237.2810 9.0

0.1412 - 0.5029 1.7722 0.0§

[-0.0012 0.0026- 0.0003  0.00(
-0.0014 0.0123- 0.0132 0.00:
0.0030 - 0.0111 0.0135 0.Q0:
-0.0004 0.0043- 0.0018- 0.0d
0.4696 - 0.1181  0.5902-0.0221
0.1085 - 0.0226  0.1165 0.0Q
15801 - 0.4320 2.0866- 0.07:
| -0.0121 0.0035- 0.0168  0.0Q(

G =10 x

and the closed-loop matrices are,

[1.1589 0 0.2006 -0.0483

0 0.0297 0.0483 -0.0111
0.2006 0.0483 1.2000 0.2000
-0.0483 -0.0111 0.2000 0.1000
- 1.2000 0.2000 0.2006 -0.04
0.2000 0.1000 0.0483 -0.01
0.2006 0.0483 1.1589 0
-0.0483 -0.0111 0 0.029

=00

=T
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[ 0.0080 0 - 0.0040 0.0020
0 0.0027 - 0.0020 0.0007
0.0006 0.0154 - 0.0066 0.0072
-0.0006 -0.0015 0.0031 0.0005

Kq =10 x ]
1.1436 0.2551 3.8470 - 0.02Y
-0.1419 -0.0165- 0.5212 0.00%5:
-0.0040 -0.0020 0.0080 0
i 0.0020 0.0007 0 0.002y
[ 0.0016 0 - 0.0008 0.0004 ]

0 0.0005 -0.0004 0.0001
-0.0020 -0.0220 0.0286 0.0003
-0.0008 -0.0084 0.0103 - 0.0003

-0.3156 - 0.0846 - 1.2401 0.009:
0.3369 0.0831 1.2174- 0.00
-0.0008 - 0.0004 0.0016 0
0.0004 0.0001 0 0.000%

Cy =10 x

(<o)

T

with the prescribed eigenvalues. The two indepenideams are obtained with given eigenvalues.

8. Conclusion

In the theoretical study reported here, it is fotnat block diagonalisation of the system dampind a
stiffness matrices is achievable when the open-kigpnvalues are controllable. In the case of wgioc
and displacement feedback, the mass matrix isipafigtrestricted to the diagonal (lumped massjfor
This restriction can be lifted to allow for bandeds of the mass matrix when acceleration feedlsack i
included together with velocity and displacemergdfeack. In both cases the closed-loop system is
decoupled to form independent substructures areddemonstrated that eigenvalues can be assigned to
the substructures separately. The procedure iddh@seigenstructure assignment using the method of
receptances. In the case of banded system matitieesumber of actuators required can be reduced to

twice of the semi-bandwidth.
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Appendix One: Left eigenvalue problem

From equation (30)

0 I

YI _M—l(K_BGT) _M—l(C_BFT) :/'[kyl (81)

wherey, = (YLk y[k) . Thus,

and

(_yIkM_l(K _BGT) Y bk _yIkM_l(C_BFT )) :(ﬂkyLk ﬂkyIk) (82)
HY ok ==Y LM _1(K - BGT) (83)
Yk =Y ~YuM ™ (C - BFT) (84)

Combining equations (83) and (84) leads to

(YiM )M +(y[M ) (C-BFT ) g4, +(yl,M ) (K =BGT) =0 (85)

Hencey|,M ™is the left eigenvector associated wjtf, i.e.

[1]
(2]
(3]
[4]
[5]
[6]

yuM =z (86)

References

B. Morgan, Jr., The synthesis of linear multishle systems by state-variable feedback,
Automatic Control, IEEE Transactions on, 9 (196a%411.

P.L. Falb, W. Wolovich, Decoupling in the dasignd synthesis of multivariable control systems,
Automatic Control, IEEE Transactions on, 12 (1965)-659.

E. Gilbert, The Decoupling of Multivariable Sgsns by State Feedback, SIAM Journal on
Control, 7 (1969) 50-63.

J. Descusse, J.F. Lafay, M. Malabre, SolutiorMorgan's problem, Automatic Control, IEEE

Transactions on, 33 (1988) 732-739.

P.N. Paraskevopoulos, F.N. Koumboulis, A newprapch to the decoupling problem of linear
time-invariant systems, Journal of the Franklirtitoge, 329 (1992) 347-369.

J.W. Howze, Necessary and sufficient conditicies decoupling using output feedback,

Automatic Control, IEEE Transactions on, 18 (1948}46.

31



[7]

[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]
[20]

[21]
[22]

[23]
[24]

[25]
[26]
[27]
[28]

[29]

[30]
[31]

[32]

M.J. Denham, A necessary and sufficient condifior decoupling by output feedback, Automatic
Control, IEEE Transactions on, 18 (1973) 535-536.

J. Descusse, A necessary and sufficient camditior decoupling using output feedback,
International Journal of Control, 31 (1980) 833-840

A. Morse, W. Wonham, Decoupling and Pole Asaigmt by Dynamic Compensation, SIAM
Journal on Control, 8 (1970) 317-337.

M.M. Bayoumi, T. Duffield, Output feedback dmgling and pole placement in linear time-
invariant systems, Automatic Control, IEEE Trangaxt on, 22 (1977) 142-143.

P.N. Paraskevopoulos, F.N. Koumboulis, Decimgphnd pole assignment in generalised state
space systems, Control Theory and Applications, PEateedings D, 138 (1991) 547-560.

S. Sato, P.V. Lopresti, On the generalizatadnstate feedback decoupling theory, Automatic
Control, IEEE Transactions on, 16 (1971) 133-139.

P.N. Paraskevopoulos, S.G. Tzafestas, Grougouding theory for a generalized linear
multivariable control system, International JouroBBystems Science, 6 (1975) 239-248.

H. Hikita, Block decoupling and arbitrary paasignment for a linear right-invertible system by
dynamic compensation, International Journal of @dnd5 (1987) 1641-1653.

J. Descusse, Block noninteracting control witlon)regular static state feedback: A complete
solution, Automatica, 27 (1991) 883-886.

G. Basile, G. Marro, A state space approachaminteracting controls, Ricerchi di Automatica, 1
(1970) 68-77.

S.M. Sato, P.V. Lopresti, New results in mudtiable decoupling theory, Automatica, 7 (1971)
499-508.

M. Malabre, J.A. Torres-Munoz, Block Decougjinby Precompensation Revisited, IEEE
Transactions on Automatic Control, 52 (2007) 928-92

M.J. Hautus, M. Heyman, I.E.E.E. Trans, aut@untrol, 28 (1983) 823.

C. Commault, J.M. Dion, J.A. Torres, Minimdtugture in the block decoupling problem with
stability, Automatica, 27 (1991) 331-338.

Q.-G. Wang, Decoupling with internal stabilitgr unity output feedback systems, Automatica,
28 (1992) 411-415.

Q.-G. Wang, Y. Yang, Transfer function mateagproach to decoupling problem with stability,
Systems & Control Letters, 47 (2002) 103-110.

Q.-G. Wang, Decoupling Control, Heidelbergorigger, 2006.

L. Ching-An, Necessary and sufficient condisofor existence of decoupling controllers,
Automatic Control, IEEE Transactions on, 42 (199¥%7-1161.

Q.-G. Wang, Decoupling Control in: Lecturetd® in Control and Information Sciences: 285,
Heidelberg : Springer, 2006., 2006.

E.C. Zacharenakis, Input-output decoupling afisturbance rejection problems in structural
analysis, Computers & Structures, 55 (1995) 441-451

E.C. Zacharenakis, On the input-output decimgplvith simultaneous disturbance attenuation and
he= optimization problem in structural analysis, Congps & Structures, 60 (1996) 627-633.
Q.S. Li, J.Q. Fang, A.P. Jeary, D.K. Liu, Dapting control law for structural control
implementation, International Journal of Solids &tdictures, 38 (2001) 6147-6162.

C. He, AJ. Laub, V. Mehrmann, Placing plemty poles is pretty preposterous, in: DFG-
Forschergruppe Scientific Parallel Computing, Hre@5-17, Fak. f. Mathematik. TU Chemnitz-
Zwickau, D-09107, Chemnitz, FRG, 1995.

B.N. Datta, F. Rincon, Feedback stabilizatadna second-order system: A nonmodal approach,
Linear Algebra and its Applications, 188-189 (1993%-161.

D.J. Inman, Active modal control for smartustiures, Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineeringefces, 359 (2001) 205-219.

Y.M. Ram, J.E. Mottershead, Multiple-input iget vibration control by partial pole placement
using the method of receptances, Mechanical Sysamoh$Signal Processing, 40 (2013) 727-735.

32



[33] G. Strang, T. Nguyen, The interplay of ranksubmatrices, SIAM Review, 46 (2004) 637-646.

33



