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Abstract 

A theoretical study is presented on the feasibility of applying active control for the purpose of vibration 

isolation in lightweight structures by block diagonalisation of the system matrices and at the same time 

assigning eigenvalues (natural frequencies and damping) to the chosen substructures separately. The 

methodology, based on eigenstructure assignment using the method of receptances, is found to work 

successfully when the eigenvalues of the open-loop system are controllable and the open- and closed-loop 

eigenvalues are distinct. In the first part of the paper results are obtained under the restriction that the 

mass matrix is diagonal (lumped). This is certainly applicable in the case of numerous engineering 

systems consisting of discrete masses with flexible interconnections of negligible mass. Later in the paper 

this restriction is lifted to allow bandedness of the mass matrix. Several numerical examples are used to 

illustrate the working of the proposed algorithm. 

Keywords:  Structural vibration isolation;  block decoupling;  eigenstructure assignment;  method of 

receptances. 

 

1. Introduction 

The classical vibration isolation method is well understood and its application is ubiquitous. It is well 

suited to industrial problems where a relatively massive piece of engineering hardware, such as an engine-

block or a heavy machine tool is to be isolated from its surroundings. Spacecraft structures, such as 

deployable antennae or solar arrays, and light-weight multi degree of freedom structures generally, are 

much more difficult in terms of isolating one substructure from the vibration of another. In this paper we 
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consider from a purely theoretical point of view, the feasibility of decoupling multi degree of freedom 

systems to form substructures that are completely isolated from one another by active vibration control. 

This problem appears to be one that has received very little attention in the vibrations control literature to 

date. 

A related, but different problem is that of input-output decoupling in linear time-invariant (LTI) 

multivariable control. The purpose here is simplification to form a number of single variable systems by 

the elimination of cross-couplings between the variables of the system. There is an extensive literature on 

this topic spanning several decades using state feedback (Morgan [1], Falb and Wolovich [2], Gilbert [3] 

and Descusse et al. [4]) and output feedback (Paraskevopoulos and Koumboulis [5], Howze [6], Denham 

[7] and Descusse [8]). The combined problem of simultaneous decoupling and pole placement in LTI 

multivariable systems was addressed by several authors [2, 9-11] and the block decoupling problem was 

investigated [12-18]. A transfer function matrix approach with block-decoupling was proposed by Hautus 

and Heymann [19] and Commault and Dion [19, 20] and unity-output feedback systems with decoupling 

and stability was investigated using a transfer function matrix approach [21-24]. Q.-G. Wang provides a 

detailed account of input-output decoupling control in the research monograph [25]. 

Although there are considerable volumes of literature devoted to the development of theoretical input-

output decoupling methods, far less attention has been paid to the application of decoupling to structural 

vibration control. Zacharenakis [26, 27] investigated the decoupling problems of civil engineering 

structures via state/output feedback with the assumption that the number of inputs is equal to the number 

of outputs. Li et al [28] proposed decoupling control law for vibration control of multi-story building 

using a diagonal mass matrix and tri-diagonal damping and stiffness matrices. The control laws were 

based on the second-order matrix differential equations directly. 

With the state space formulation, pole placement is an intrinsically ill-conditioned problem and becomes 

increasingly ill conditioned with the dimension of the system [29] . Another obvious drawback of using a 

first-order realisation is that  the system matrices become 2 2n n× , which is computationally expensive if 

the order of the system n  is large [30]. Furthermore, in terms of structural vibration control, converting 

the equations of motion into a first-order state-space formulation, the bandedness, definiteness and 

symmetry, of the mass damping and stiffness matrices are lost [31]. The transfer function matrix approach, 

which requires much algebraic manipulation of rational functions, becomes increasingly complicated as 

the dimension of the system increases, especially for vibration control of industrial-scale structures.  

The research reported in this article is a preliminary study, which might be deemed timely in view of 

contemporary interest in lightweight and deployable structures, piezo-based actuators and sensors with 
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proven capability and a related literature on active input-output decoupling. In this research, a new block 

decoupling control algorithm based on eigenstructure assignment using measured receptances is proposed 

for structural vibration control. Modal degree of freedom constraints are imposed such that the matrix of 

closed-loop right eigenvectors is block-diagonalised, leading to block diagonal matrices of the second-

order system in physical coordinates.  

For the purpose of simplicity, we limit the investigation in this article to the problem of block decoupling 

to form two independent substructures from a linear multi degree of freedom system. It is straightforward 

to show that the approach can be extended to the case of multiple independent substructures and also 

diagonal decoupling in physical coordinates. Since the main objective is the introduction of a new 

conceptual idea eigenvalue assignment is limited to the case of distinct eigenvalues in both open and 

closed loops. The block-diagonal receptance matrix is introduced in Section 2 and eigenstructure 

assignment by the method of receptances is briefy reviewed in Section 3. In Sections 4 and 5, block 

decoupling vibration control algorithm for undamped and damped systems with lumped masses is 

explained. The number of actuators and sensors required in the case of banded damping and stiffness 

matrices is considered in Section 6, and in Section 7 the methodology is extended to cope with damped 

systems with inertia coupling using a hybrid block-decoupling vibration control law by the application of 

acceleration, velocity and displacement feedback control. Several numerical examples are used to show 

how the block decoupling control method works.  

2. The closed-loop block-diagonal receptance matrix 

The equation of motion of the n  degree of freedom linear system may be cast in second-order form as, 

 + + =Mx Cx Kx 0ɺɺ ɺ  (1) 

where M , CandK  ×∈ℝn n are symmetric matrices, M is positive definite and Cand K are positive 

semi-definite.  

Now, velocity and displacement feedback is applied to decouple and control the system so that the closed-

loop system may be written as, 

 ( ) ( )T T+ − + − =Mx C BF x K BG x 0ɺɺ ɺ   (2) 

where ×∈ℝn qB is the force distribution matrix, and n q×∈F G ℝ are velocity and displacement feedback 

control gain matrices respectively. 
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The dynamic stiffness matrix of the closed-loop system is denoted by, 

 ( ) ( ) ( )2ˆ T Ts s s= + − + −Γ M C BF K BG  (3) 

Correspondingly, the closed-loop receptance matrix is the inverse of the dynamic stiffness, 

 ( ) ( )1ˆ ˆs s−=H Γ  (4) 

where ( )•̂  denotes the closed-loop system.  

A list of integers ( )1 2, , , vn n n⋯ is called a partition of n  if 1, =1, 2, ,in i v≥ ⋯  and 
1

v

i
i

n n
=

=∑ .  

The closed-loop dynamic system is said to be block diagonal with respect to the partition ( )1 2, , , vn n n⋯  

if the receptance matrix takes the form, 

 ( )

( )
( )

( )

11

22

ˆ

ˆ
ˆ

ˆ

s

s
s

sνν

 
 
 =  
 
 
 

H 0

H
H

0 H

⋱
 (5) 

where ( ) ( )ˆ , 1, 2, ,i in n
ii ps s i v×∈ =H ℚ ⋯  , ( )i in n

p s×ℚ is the ring of proper rational functions. In the special 

case when v n=  and 1, =1, 2, ,in i v= ⋯ , the closed-loop system is said to be diagonally decoupled. For a 

linear system with closed-loop receptance (5), the dynamic behaviour may be expressed as, 

 ( ) ( ) ( )ˆ =s s sH f x  (6) 

where ( )sf  and ( )sx  are the external forces and displacement responses respectively, indicating that a 

substructure with receptance matrix ( )ˆ
ii sH  is independent of other substructures under the external force 

( )sf .  

In the paper, we show how a multi degree of freedom linear structure can be decoupled into two 

independent substructures ( 2v = and 1 2n n n+ = ) by a new block decoupling algorithm. The algorithm 

can be extended straightforwardly to the case of multiple independent substructures and also diagonal 

decoupling in terms of physical coordinates. 
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3. Pole placement by the method of receptances 

Multi-input active vibration control is proposed in this article by pole placement using the method of 

receptances proposed by Ram and Mottershead [32]. They showed that when the open-loop system is 

controllable, there exists a solution to the system of equations,  

 

1 1 1 1

2 2 2 2

2 2 2 2

T T T

T T T

T T T
n n n n

µ
µ

µ

   
  

     =     
    

   

w w α

Fw w α

G

w w α

⋮ ⋮ ⋮
 (7) 

thereby assigning closed-loop eigenvalues { }2

1

n

k k
µ

=
, closed under conjugation, by the application of 

displacement and velocity feedback control gains ,F G .  

Terms appearing in (7) are given by Ram and Mottershead [32] as, 

 ,1 ,1 ,2 ,2 , , , 1,2, ,2
k k k k k k kk q q k k nµ µ µ µ µ µ µα α α= + + + = =w r r r R α⋯ ⋯  (8) 

 
12

,1 ,2 , ;
k k k k k kq k kµ µ µ µ µ µ µ µ

−
   = = = + +  R r r r H B H M C K⋯  (9) 

 ,1 ,2 ,k k k

T

k qµ µ µα α α =  α ⋯  (10) 

and ,k jµα are arbitrary parameters. 
kµH are open-loop receptance matrices which may be measured 

experimentally and kw  are the closed-loop right eigenvectors. Constraints may be applied at the jth  

degree of freedom of the kth mode by the choice of ,k jµα , 

 0
k

T T
j k j kµ= =e w e R α  (11) 

where je denotes the -thj unit vector. 

It is assumed in the following sections that equation (7) is solvable and the closed-loop eigenvalues are 

closed under conjugation - to ensure strictly real ,F G . 
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4. Block-decoupling control for undamped structures 

To illustrate the idea of block-decoupling control, we begin with the problem of undamped systems. The 

equations of motion of the open-loop and closed-loop n  degree-of-freedom undamped systems (=C 0, 

=F 0 )  may be written as , 

 + =Mx Kx 0ɺɺ  (12) 

and 

 ( )T+ − =Mx K BG x 0ɺɺ   (13) 

The closed-loop eigenvalue problem is  

 ( )( ) , 1,2, ,T
k k k nη− − = =K BG M w 0 ⋯   (14) 

or 

 ( )T− − =K BG W MWΛ 0   (15) 

We consider the problem of block decoupling the closed-loop system with respect to the partition

( )1 2n n . By choice of parameters ,k jµα  to satisfy equation (11), modal degree of freedom constraints 

may be imposed on right eigenvector kw , 

 
1 1 1

1 1 1

0, 1, 2, , , 1, 2, ,

0, 1, 2, , , 1, 2, ,
jk

jk

w j n n n k n

w j n k n n n

= = + + =

= = = + +

⋯ ⋯

⋯ ⋯
 (16) 

where jkw , is the thj  entry of the thk right eigenvector of the closed-loop system. This leads to the block-

diagonal matrix of mode shapes, 

 11

22

 
=  
 

W 0
W

0 W
  (17) 

and n n×∈W ℂ , 1 1
11

n n×∈W ℂ ,  2 2
22

n n×∈W ℂ and zero matrices inside are of proper dimension. 

Lemma 1: The closed-loop stiffness and receptance matrices will be block diagonal with partition 

( )1 2n n  with assigned closed-loop system eigenvalues when the closed-loop right eigenvector matrix 

W is block diagonal with the same partition and M is a lumped mass matrix.   
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Proof: Since the system is controllable, distinct eigenvalues { }1 2, , , nµ µ µ⋯  may be assigned with block-

diagonal constraints on W by the method of receptances using equation (7) (described in full by Ram 

and Mottershead [32]). When block-diagonalW  has partition( )1 2n n , then 

 
1

1 11
1

22

−
−

−

 
=  
 

W 0
W

0 W
 (18) 

Hence, from equation (15), the closed-loop stiffness matrix  

 ( ) 1T −− =K BG MWΛW  (19) 

is block diagonal with respect to the partition ( )1 2n n . Consequently, the closed-loop dynamic stiffness 

and receptance matrices are block diagonal and the system is block decoupled. 

□ 

Remark 1: Equation (19) admits the use of a block diagonal mass matrix M  with partition ( )1 2n n . 

However, for reasons of physical practicality, we discuss only the case of the diagonal (lumped) mass 

matrix. 

□   

Therefore, the block-decoupling vibration control algorithm for undamped systems may be summarised 

as: 

1. Decouple the open-loop undamped system to form two uncoupled substructures. This is achieved by 

the imposition of modal degree of freedom constraints (16) on the closed-loop right eigenvectors kw

by the choice of parameters ,k jµα  to satisfy equation (11). 

2. Assign desired eigenvalues ( ) 1

11 1

n

k k
diag µ

=
=Λ  and ( )

1
22 1

n

k k n
diag µ

= +
=Λ to the two substructures by 

the choice of control gain matrix G  based on the method of receptances using equation (7). 

The eigenpairs { }11 11Λ W  and { }22 22Λ W are then assigned to the two independent substructures 

respectively. 

If W is block diagonal with partition ( )1 2, , , vn n n⋯ , then it is straightforward to show that the closed-

loop stiffness matrix is also block diagonal with respect to the partition ( )1 2, , , vn n n⋯ . The system 

becomes strictly diagonal when v n= . 
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4.1. Example 1 

Consider the two degree-of-freedom mass-spring system,  

 
1 0 2 1

and
0 1 1 1

−   
= =   −   

M K . 

The open-loop eigenvalues are, 

 1

2

0.3820

2.6180

λ
λ

=
=

 

and the eigenvector matrix is, 

 
0.5257 0.8507

0.8507 0.5257

− − 
=  − 

Φ . 

Now, a two-input proportional feedback controller is used to decouple the system into two independent 

single-degree-of-freedom systems. The prescribed eigenvalues of the two independent subsystems are  

 1

2

0.5

3.0.

µ
µ

=
=

 

According to the above analysis, modal nodal constraints are imposed to the closed-loop right 

eigenvectors so that the second entry of the first eigenvector and the first entry of the second eigenvector 

are zero. The force distribution matrix is chosen as, 

 [ ]1 2

2 2

2 3
b b

 
= =  

 
B . 

To impose the required modal nodal constraints, the parameters ,k jµα are chosen as,  

 2 1,2 1,2 1 2,2 2,2
1,1 2,1

2 1,1 1 2,1

;
T T

T T

α α
α α= − = −

e r e r

e r e r
 

Where, 

 [ ] [ ]1,2 2,2 2 11, 0 1 , 1 0T Tα α= = = =e e  

This leads to the matrix of control gains, 
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3.25 2.5

0.5 1.0

− 
=  − 

G . 

The resulting closed-loop eigenvalues are found to be, 

 1

2

0.5

3.0

µ
µ

=
=

 

and the eigenvectors are  

 1 2

1 0
and .

0 1

   
= =   
   

w w  

The closed-loop systems matrices are   

 
1 0 0.5 0

and
0 1 0 3.0CL CL

   
= =   
   

M K . 

Hence, the closed-loop system is found to be decoupled into two independent single-degree-of-freedom 

systems with desired eigenvalues. 

5. Block-decoupling control for damped structures with lumped masses 

The closed-loop  right- and left-eigenvalue problems may be written as, 

 ( ) ( )( )2 T T
k k kµ µ+ − + − =M C BF K BG w 0 . (20) 

and, 

 ( ) ( )( )2 , 1,2, ,2T T T
k k k k nµ µ+ − + − = =z M C BF K BG 0 ⋯   (21) 

By combining all the modes into a single expression the right eigenvalue problem (20) becomes, 

 ( ) ( )2 T T+ − + − =MWΛ C BF WΛ K BG W 0  (22) 

and the left eigenvalue problem (21) is, 

 ( ) ( )2 T T T T T+ − + − =Λ Z M ΛZ C BF Z K BG 0   (23) 
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In these expressions 2n n×∈W ℂ is the matrix of right eigenvectors, 2n n×∈Z ℂ is the matrix of left 

eigenvectors, ( ) 2 2
1 2diag n n

nµ µ ×= ∈Λ ⋯ ℂ is the spectral matrix.  

We partition matrices Λ , W  and Z  as follows, 

 

( ) ( )

1

2

1 1 2 1 2diag ; diagn n n n
n n nµ µ µ µ× ×

+

 
=  
 

= ∈ = ∈

Λ
Λ

Λ

Λ Λ⋯ ℂ ⋯ ℂ

  (24) 

 
[ ]

[ ] [ ]
L R

L 1 2 R 1 2 2;n n n n
n n n n

× ×
+ +

=
= ∈ = ∈

W W W

W w w w W w w w⋯ ℂ ⋯ ℂ
  (25)   

and 

 
[ ]

[ ] [ ]
L R

L 1 2 R 1 2 2;n n n n
n n n n

× ×
+ +

=
= ∈ = ∈

Z Z Z

Z z z z Z z z z⋯ ℂ ⋯ ℂ
 (26) 

In the case of complex eigenvalues, n i nµ µ ∗
+ =  where ( )∗•  denotes complex conjugation. Real 

eigenvalues are grouped equally in 1Λ  and 2Λ  at the same diagonal locations.  

Then by choice of  ,k jµα in (11), modal degree of freedom constraints on the closed-loop right 

eigenvectors kw may be imposed, 

 
( )

( )

1 1 1

1 1 1

0, 1, 2, , , 1, 2, ,

0, 1, 2, , , 1, 2, ,

jk j k n

jk j k n

w w j n n n k n

w w j n k n n n

+

+

= = = + + =

= = = = + +

⋯ ⋯

⋯ ⋯
 (27) 

Thus, LW  and RW  are block diagonalised with respect to the partition ( )1 2n n  as, 

 L11 R11
L R

L22 R22

;
   

= =   
   

W 0 W 0
W W

0 W 0 W
  (28) 

where 1 1
L11 R11, n n×∈W W ℂ  and 2 2

L22 R22, n n×∈W W ℂ . 

We now write equations (22) and (23) in first-order form as, 

 =AX XΛ   (29) 
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 T T=Y A ΛY   (30) 

where (from Appendix 1), 

 
( )

[ ] [ ]

1
U

L

U U1 U2 U2 L L1 L2 L2

;

;

TT

n n

−    −
 = = =         

= =

YW K BG ZΛ
X Y

YWΛ MZ

Y y y y Y y y y⋯ ⋯

  (31) 

and, 

 ( ) ( )1 1T T− −

 
=  

− − − −  

0 I
A

M K BG M C BF
 (32) 

Pre-multiplying and post-multiplying equations (29) and  (30) by  TY and X  respectively  -lead to,  

 T T T= =Y AX ΛY X Y XΛ  (33) 

It can be seen from (33) that TY Xcommutes withΛ  so that, 

 T =Y X D  (34) 

where 2 2n n×∈D ℂ  is diagonal. 

Then by normalising the left and right eigenvectors, 

 T =Y X I  (35) 

or, 

 1T −=Y X   (36) 

where I  is the identity matrix. 

From equations (28) and (31), 

 
( ) ( )

( ) ( )

L11 R11

L22 R 22

L11 R111 11 2 11

L22 R 221 22 2 22

 
 
 =  
 
  

W 0 W 0

0 W 0 W
X W Λ 0 W Λ 0

0 W Λ 0 W Λ

 (37) 
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where 

 
( )

( )

( )

( )

1 11 2 11

1 2

1 22 2 22

;
   

= =   
      

Λ 0 Λ 0
Λ Λ

0 Λ 0 Λ
 (38) 

and ( ) ( )
1 1

1 11 2 11, n n×∈Λ Λ ℂ ; ( ) ( )
2 2

1 22 2 22, n n×∈Λ Λ ℂ .  

The matrix TY  may be written as 

 

UL11 UL21 LL11 LL21

UL LL UL12 UL22 LL12 LL22
U L

UR LR UR11 UR21 LR11 LR21

UR12 UR22 LR12 LR22

T T T T

T T T T T T
T T T

T T T T T T

T T T T

 
 

    = = =       
  

Y Y Y Y

Y Y Y Y Y Y
Y Y Y

Y Y Y Y Y Y

Y Y Y Y

 (39) 

where 

 

[ ] [ ]U UL UR L LL LR

UL11 UL12 LL11 LL12
UL LL

UL21 UL22 LL21 LL22

UR11 UR12 LR11 LR12
UR LR

UR21 UR22 LR21 LR22

, ,

, ,

,

= =

   
= =   

  

   
= =   

  

Y Y Y Y Y Y

Y Y Y Y
Y Y

Y Y Y Y

Y Y Y Y
Y Y

Y Y Y Y

 (40) 

with UL UR LL LR, , , n n×∈Y Y Y Y ℂ ; 1 1
UL11 LL11 UR11 LR11, , , n n×∈Y Y Y Y ℂ ; 1 2

UL12 LL12 UR12 LR12, , , n n×∈Y Y Y Y ℂ ;

2 1
UL21 LL21 UR21 LR21, , , n n×∈Y Y Y Y ℂ ; 2 2

UL22 LL22 UR22 LR22, , , n n×∈Y Y Y Y ℂ .  

Lemma 2: The closed-loop damping and stiffness matrices will be block diagonal with partition ( )1 2n n  

with assigned closed loop eigenvalues when the closed-loop right eigenvector matrices RW and LW are 

block diagonal with the same partition and M  is a lumped mass matrix. 

Proof:  Since the system is controllable, distinct eigenvalues { }1 2 2, , , nµ µ µ⋯ , may be assigned with 

block-diagonal constraints on W  by the method of receptances using equation (7), described in full by 

Ram and Mottershead [32].  

By using elementary transformations, the right eigenvector matrix X  may be expressed as,  
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( ) ( )

( ) ( )

L11 R11

L11 R111 11 2 11

L22 R22

L22 R221 22 2 22

 
 
 =  
 
  

W W 0 0

W Λ W Λ 0 0
X

0 0 W W

0 0 W Λ W Λ

ɶ  (41) 

The left eigenvector matrix Y may then be written, using the relationship (36), as  

 
( ) ( )

( ) ( )

1

L11 R11
UL11 LL11 UL21 LL21

L11 R111 11 2 11
UR11 LR11 UR21 LR21

UL12 LL12 UL22 LL22 L22 R 22

UR12 LR12 UR22 LR22 L22 R 221 22 2 22

T T T T

T T T T

T T T T

T T T T

−
    
    
     = =

     
         

W W 0 0Y Y Y Y
W Λ W Λ 0 0Y Y Y Y

Y
Y Y Y Y W W0 0
Y Y Y Y W Λ W Λ0 0

ɶ
1−

 
 
 
 
 
 
  

 (42) 

so that, 

 UL12 LL12 UR12 LR12

UL21 LL21 UR21 LR21

, , ,

, , ,

T T T T

T T T T

= = = =

= = = =

Y 0 Y 0 Y 0 Y 0

Y 0 Y 0 Y 0 Y 0
 (43) 

Therefore 

 

UL11 LL11

UL22 LL22

UR11 LR11

UR22 LR22

T T

T T
T

T T

T T

 
 
 =
 
 
  

Y 0 Y 0

0 Y 0 Y
Y

Y 0 Y 0

0 Y 0 Y

 (44) 

with 

 LL11 LR11
LL LR

LL22 LR22

and 
T T

T T

T T

   
= =   
   

Y 0 Y 0
Y Y

0 Y 0 Y
 (45) 

block diagonal with respect to the partition( )1 2n n . 

From (31), 

 LL L LR R;= =Y MZ Y MZ  (46) 
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Since M  is the lumped mass matrix it follows from equation (46) that L RandZ Z  are block diagonal 

with respect to the partition( )1 2n n . 

It is known that the receptance matrix may be expressed as, 

 
( ) [ ] ( )

( )
( ) ( )

1

1 L
L R 1

R2

1 1

L 1 L R 2 R

ˆ
T

n

T

n

T T
n n

s
s

s

s s

−

−

− −

 −  
 =  
 −   

= − + −

I Λ 0 Z
H W W

Z0 I Λ

W I Λ Z W I Λ Z

 (47) 

so that ( )ˆ sH is block diagonal with respect to the partition( )1 2n n : so too is the dynamic stiffness 

matrix, i.e. the inverse of ( )ˆ sH . 

When 0s = ,  

 ( ) ( )ˆ 0 T= −Γ K BG  (48) 

which shows that the closed-loop stiffness matrix is block diagonal with respect to the partition( )1 2n n . 

The dynamic stiffness may be recast as 

 ( )
( ) ( )
( ) ( )

( )
( )

11 12 111 2

2
21 22 22

ˆ
T T T

T T T
s s s

C BF C BF K BG 0M 0
Γ

0 M C BF C BF 0 K BG

   − − −     = + +     − − −     

 (49) 

so that, 

 ( ) ( )
12 21

0 and 0T Ts s− = − =C BF C BF  (50) 

for arbitrary s . Hence the closed-loop damping matrix ( )T−C BF is block diagonal with respect to the 

partition( )1 2n n . 

Thus, if the sub-matrices of the right eigenvector, L RandW W , are block diagonal with respect to the 

partition( )1 2n n , then the closed-loop damping and stiffness matrices will also be block decoupled with 

respect to the partition( )1 2n n . 

□ 
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Remark 2: Equations (46) admit the use of a block diagonal mass matrix M  with partition ( )1 2n n . For 

the same reasons as given before, we only consider the case of the diagonal (lumped mass matrix).  

□   

Therefore, the block-decoupling vibration control algorithm for damped systems may be summarised as: 

1. Decouple the open-loop damped system into two uncoupled substructures. This is achieved by the 

imposition of modal degree of freedom constraints (27) on the closed-loop right eigenvectors kw

by choice of  parameters ,k jµα  to satisfy equation (11). 

2. Assign desired eigenvalues ( ) ( ){ } ( ) ( ){ }1 1

1 11 2 11 1 1

n n n

k kk k n
diag diagµ µ +

= = +
=Λ Λ  and 

( ) ( ){ } ( ) ( ){ }
1 1

2

1 22 2 22 1 1

n n

k kk n k n n
diag diagµ µ

= + = + +
=Λ Λ to the two substructures by the choice of 

control gain matrices ,F G  based on the method of receptances described by (7). 

The eigenpairs ( ) ( ) [ ]{ }L11 R111 11 2 11
 
 
Λ Λ W W  and ( ) ( ) [ ]{ }L22 R221 22 2 22

 
 
Λ Λ W W are then assigned 

to the two independent substructures respectively. 

If L RandW W are block diagonal with respect to the partition( )1 2, , , vn n n⋯ , then the closed-loop 

stiffness and damping matrices are also block diagonal with respect to the partition( )1 2, , , vn n n⋯ . The 

system becomes strictly diagonal when v n= .  

5.1. Example 2 

Consider the three degree-of-freedom system shown in Fig. 1.  

 

Fig. 1 The three degree-of-freedom system 

The system matrices of the open-loop system are , 
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2 1 0 2 1 0

, 1 2 1 and 1 2 1

0 1 1 0 1 1

m c k

− −   
   = = − − = − −   
   − −   

M I C K . 

If 1m= , 1c =  and 5k = , the open-loop eigenvalues are, 

 
1,4

2,5

3,6

0.0990 0.9902i

0.7775 2.6777i

1.6235 3.6877i

λ
λ
λ

= − ±
= − ±
= − ±

. 

Now, the block decoupling control method is used to decouple the three degree-of-freedom system into 

two independent substructures as shown in Fig. 1 . The eigenvalues of the first substructure are prescribed 

as, 

 
1,4

2,5

0.1 1.0i

0.8 2.8i

µ
µ

= − ±
= − ±

 

and the second substructure  

 3,6 1.6 3.7iµ = − ± . 

Modal degree of freedom constraints are imposed on the right eigenvectors of the closed-loop system so 

that the first two entries of the eigenvectors of the last mode and the last entry of the eigenvectors 

corresponding to the first two modes are zero. The three inputs are used and the force distribution matrix 

is chosen as 

 [ ]1 2 3

1 2 3

0 1 3

2 0 0

b b b

 
 = =  
  

B . 

The parameters ,k jµα are chosen as, 

 ,2 ,30.5, 1, 1,2,4,5
k k

kµ µα α= = =  

 ,3 1, 3,6
k

kµα = =   

 ( )( ) ( ) ( )( ),1 ,2 ,3,1 3 ,2 3 ,3 3inv , 1,2,4,5
k k kk k k

kµ µ µµ µ µα α α= × − − =r r r  
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 ( )( ) ( )( ),1

,31:2,1:2 ,3 1:2
,2

inv , 3,6k

kk k

k

k
µ

µµ µ
µ

α
α

α
 

= × − =  
 

R r . 

and the control gains are found to be,   

 

0 3.0559 6.1117 0 0.6617 1.3235

2.5 1.9910 3.9820 and 0.5 0.4420 0.8840

5.6250 10.6250 5.2083 1.1000 2.1000 1.0333

   
   = − − − = − − −   
   − − − −   

G F . 

The closed-loop system is found to have eigenvalues, 

 
1,4

2,5

3,6

0.1 1.0i

0.8 2.8i

1.6 3.7i

µ
µ
µ

= − ±
= − ±
= − ±

 

and eigenvectors  

 1 2 3

4 1 5 2 6 3

0.7122+0.0948i 0.0683+0.1660i 0

0.8198+0.1091i , 0.1245+0.2759i , 0 ,

0 0 0.1062 - 0.2082i

, ,

w w w

w w w w w w∗ ∗ ∗

     
     = = =     
     −     

= = =

 

The closed-loop system matrices are 

 

3.2939 3.0359 0 14.4469 13.4281 0

, 5.6322 5.0939 0 and 26.3910 23.9371 0

0 0 3.2000 0 0 16.2500
CL CL CL

− −   
   = = − = −   
      

M I C K  

which are decoupled to form two independent substructures with desired eigenvalues. 

6. The number of actuators and sensors 

We have seen that the application of modal degree of freedom constraints to block diagonalise the right 

eigenvector matrix with respect to the partition( )1 2n n  will cause the closed-loop stiffness and damping 

matrices to be block decoupled with the same partition. Ram and Mottershead [32] showed that the 

number of required control inputs should be no less than { }1 21 max ,n n+ . In this section, it will be shown 

that the number of required control inputs may be reduced for structures with banded damping and 

stiffness matrices with semi-bandwidtht . 
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For practical engineering structures, the connections between components are in general localised. If 

discretised by finite element methods, it appears that the damping and stiffness matrices are banded with 

non-zero entries confined to a diagonal band and the coupling in general exists between adjacent degrees 

of freedom.  Hence, the original structure may be decoupled into two independent substructures if the 

coupling effect is eliminated in the connection of the two substructures. 

Consider a n degree-of-freedom system structure whose dynamic stiffness matrix is banded with equal 

lower and upper semi-bandwidth t , { }1 21 min ,t n n≤ ≤ , as shown in Fig. 2.  

 

Fig. 2 The banded dynamic stiffness matrix 

Now, the control objective is to decouple the structure into independent substructure 1 of dimension 

1 1n n×  and substructure 2 of dimension 2 2n n× . It can be seen that the two substructures are only locally 

coupled from the ( )th

1 1n t− +  degree of freedom to the ( )th

1n t+  degree of freedom. Hence, the two 

substructures can be decoupled if the cross-coupling from the ( )th

1 1n t− +  degree of freedom to the 

( )th

1n t+  degree of freedom is removed by using feedback control. This may be achieved by applying 

neutralising feedback forces from the ( )th

1 1n t− +  degree of freedom to the ( )th

1n t+  degree of freedom.  

Lemma 3: The n  degree of freedom open-loop dynamic system with lumped mass and banded damping 

and stiffness matrices having equal lower and upper semi-bandwidth { }1 21 min ,t n n≤ ≤  may always be 

decoupled into two independent subsystems when2t actuators are located at the coupled degrees of 

freedom and the number of inputs 2q t≥ . 
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Proof: Let us begin by assuming there are 2t  actuators at the coupled degrees of freedom. The force 

distribution matrix B may then be written as 

 

( )

( )

1

2

2 and 2

n t q

t q

n t q

q t

− ×

×

− ×

 
 

= ≥ 
 
 

0

B B

0

ɶ  (51) 

where 2t q×Bɶ is real parameter matrix chosen so that all open-loop eigenvalues are controllable. 

We have seen that the closed-loop damping and stiffness matrices become block diagonal when the right 

eigenvector matrices LW  and RW  are made block diagonal with the same partition ( )1 2n n  by choice 

of parameters 1q
k

×∈α ℂ , 1,2, ,2k n= ⋯ . From equations (9) and (11), kα  should be chosen such that, 

 ( ) ( ) ( ) 21 1 1 1 1 2 1 1 11: 1: , : 1: , 1: , 1,2, , , 1, 2, ,
k kk t q k nk n n n n n n n t n t k n n n n nµ µ × ×+ + + − + += = = = + + +w H Bα H B α 0ɶ ⋯ ⋯  (52) 

and 

 ( ) ( ) ( ) 11 1 1 1 1 2 1 1 1 1 11: 1: , : 1: , 1: , 1, 2, , , 1, 2, ,2
k kk t q k nk n n n n t n t

k n n n n n n n nµ µ × ×− + += = = = + + + + + +w H Bα H B α 0ɶ ⋯ ⋯ (53) 

Strang and Nguyen [33] showed if a symmetric matrix [ ]•   is banded with semi-bandwidth t , then above 

the -tht subdiagonal every submatrix of [ ] 1−• has rank t≤ , and below the -tht superdiagonal every 

submatrix of [ ] 1−• has rank t≤ . Therefore 

 ( )( )
1 1 11: , 1:rank

k n n n t n t tµ + − + + ≤H  (54) 

and 

 ( )( )
1 1 11: , 1:rank

k n n t n t tµ − + + ≤H  (55) 

Since  

 ( )( ) ( )( )
1 1 1 1 1 121: , 1: 1: , 1:rank rank

k kt qn n n t n t n n n t n t tµ µ×+ − + + + − + +≤ ≤H B Hɶ  (56) 

and 
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 ( )( ) ( )( )
1 1 1 1 1 121: , 1: 1: , 1:rank rank

k kt qn n t n t n n t n t tµ µ×− + + − + +≤ ≤H B Hɶ  (57) 

it follows that there always exists nontrivial kα satisfying equations (52) and (53) 

 ( )( )
1 1 1 2 1 11: , 1: , 1,2, , , 1, 2, ,

kk t qn n n t n t k n n n n nµ ×+ − + += = + + +α null H B γɶ ⋯ ⋯  (58) 

and 

 ( )( )
1 1 1 2 1 1 1 11: , 1: , 1, 2, , , 1, 2, ,2

kk t qn n t n t k n n n n n n n nµ ×− + += = + + + + + +α null H B γɶ ⋯ ⋯  (59) 

where γ  is an arbitrary non-zero vector. 

□ 

Remark 3: It may be proved similarly that if { } { }1 2 1 2min , max ,n n t n n< < , then { }1 2min ,n n t+  actuators 

are sufficient for decoupling control of the open-loop system. 

□   

Lemma 4: A necessary condition for block decoupling is that sensors should be placed at the coupled 

degrees of freedom of the system. 

Proof: The force distribution and control gain matrices may be partitioned as 

 
1 1 1

2 2 2

3 3 3

,   and  

     
     = = =
     
          

B F G

B B F F G G

B F G

 (60) 

Let the degrees of freedom associated with 2B , 2F  and 2G be the coupled degrees of freedom. If there 

are no sensors placed on the coupled degrees of freedom, then 2 =F 0  and 2 =G 0  and 

 
1 1 1 2 1 3 1 1 1 2 1 3

3 1 3 2 3 3 3 1 3 2 3 3

  and  

T T T T T T

T T

T T T T T T

   
   = =   
   
   

B F B F B F B G B G B G

BF 0 0 0 BG 0 0 0

B F B F B F B G B G B G

 (61) 

Consequently, the coupling between the coupled degrees of freedom cannot be eliminated by feedback 

control. 

□ 
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When the mass matrix is diagonal and the damping and stiffness matrices are banded, certain degrees of 

freedom may be free of actuation and the eigenvalues can be assigned exactly by using full state feedback, 

which is illustrated in the following example.  

6.1. Example 3. 

Consider a five-degree-of-freedom system with matrices  

=M I , 

2 1

1 2 1

1 2 1

1 2 1

1 1

− 
 − −
 

= − − 
 − − 
 − 

C  and 

20 10

10 15 5

5 10 5

5 10 5

5 5

− 
 − −
 

= − − 
 − − 
 − 

K . 

The open-loop eigenvalues are 

 

1,6

2,7

3,8

4,9

5,10

0.0462 0.7706i

0.3550 2.0897i

0.9051 3.0365i

1.6249 3.7653i

1.5688 5.0190i

λ
λ
λ
λ
λ

= − ±
= − ±
= − ±
= − ±
= − ±

 

The open-loop system is to be decoupled into two uncoupled subsystems. The first subsystem consists of 

the first three degrees of freedom with prescribed eigenvalues, 

 

1,6

2,7

3,8

0.05 0.60i

0.35 1.80i

0.90 2.80i

µ
µ
µ

= − ±
= − ±
= − ±

 

and the second subsystem consists of the last two degrees of freedom with prescribed eigenvalues, 

 
4,9

5,10

1.42 3.50i

1.90 3.90i.

µ
µ

= − ±
= − ±

 

Modal degree of freedom constraints are imposed on the right eigenvectors so that the first three entries of 

the eigenvectors corresponding to the last two modes and the last two entries of the eigenvectors 

corresponding to the first three modes are zero. The semi-bandwidth of the damping and stiffness 
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matrices is one. Hence, it is possible to have the first two and the last degrees of freedom free actuation. 

Here, two inputs are used and the force distribution matrix is chosen as, 

 [ ]1 2

0 0

0 0

1 2

5 4

0 0

b b

 
 
 

= =  
 
 
  

B  

The parameters ,k jµα are chosen as,   

 ( )( ) 14:5,1:2 , 1,2,3,6,7,8
kk kµ= =α null R e  

and, 

 ( )( ) 11:3,1:2 , 4,5,9,10
kk kµ= =α null R e  

where 1e is the 1st unit vector. 

The control gains are found to be, 

 

3.3447 4.1809 75.1354 93.9193

0.2537 0.3172 63.8172 79.7715

and  2.6000  3.0000 19.7563  23.4453

0.5467 0.2267 2.6953 1.1523

2.0508 1.0254 10.2043 5.1021

− −   
   − −   
   = =− −
   − − − −   
   − −   

F G  

and the closed-loop eigenvalues are, 

 

1,6

2,7

3,8

4,9

5,10

0.05 0.60i

0.35 1.80i

0.90 2.80i

1.42 3.50i

1.90 3.90i

µ
µ
µ
µ
µ

= − ±
= − ±
= − ±
= − ±
= − ±

 

with eigenvectors, 
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 1 2 3

0.1970 0.0071i 0.0057 0.1784i 0.0113 0.1808i

0.3869 0.0131i 0.0026 0.2974i 0.0651 0.2025i

, , ,0.7384 0.0630 0.3240i 0.0706 + 0.1435i

0 0 0

0 0 0

+ − − −     
     + − − − −     
     = = =− − −
     
     
     
     

w w w  

 
4 5

6 1 7 2 8 3 9 4 10 5

0  0

0 0

,0 0

0.0846 0.2086i 0.0926+0.1900i

0.0452 + 0.1130i 0.0340-0.0681i

, , , ,

w w

w w w w w w w w w w∗ ∗ ∗ ∗ ∗

   
   
   
   = =
   

− − −   
   
   

= = = = =

 

The closed-loop system matrices are, 

 =M I  

 

 2 1 0 0 0

1 2 1 0  0

5.0170 1.3806 1.4000 0 0

0 0 0 5.6400 5.1525

0 0 0 1 1

CL

− 
 − − 
 = − −
 
 
 − 

C  

 

20 10 0 0 0

10 15 5 0  0

112.7032 90.7257 17.1343 0 0

0 0 0 28.09 25.6128

0 0 0 5 5

CL

− 
 − − 
 = − −
 
 
 − 

K  

Thus, two independent  subsystems are achieved as desired with given eigenvalues.  

7. Decoupling of linear structures with banded mass matrix 

In the preceding analysis the mass matrix was assumed to be diagonal (or lumped). This is an unrealistic 

assumption and in this section we seek to replace it with the more practical representation of a banded 

mass matrix. The coupling between system degrees of freedom may reasonably be assumed to be 

localised, as in the case of the finite-element consistent mass matrix. Here we introduce acceleration 
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feedback (in addition to displacement and velocity feedback)  to decouple the linear dynamic system with 

inertia interaction. 

In this case, the equations of motion of the closed-loop system may be expressed as, 

 ( ) ( ) ( )T T T− + − + − =M BD x C BF x K BG x 0ɺɺ ɺ  (62) 

whereD , F and G n q×∈ℝ are the acceleration, velocity and displacement feedback gain matrices 

respectively. n q×∈B ℝ is the force distribution matrix. If the open-loop dynamic stiffness matrix 

( ) 2s s s= + +Z M C K  is of semi-bandwidtht , { }1 21 min ,t n n≤ ≤ , then the minimum number of inputs is 

2q t=  and the force distribution matrix may be given by (51).  

 

( )

( )

1

2

2

2 2

2

n t t

t t

n t t

− ×

×

− ×

 
 

=  
 
 

0

B B

0

ɶ  (63) 

where 2 2t t×Bɶ is chosen to be invertible. 

 If the acceleration gain matrix is of the form, 

 

( )

( )

1

2

2

2 2

2

n t t

t t

n t t

− ×

×

− ×

 
 

=  
 
 

0

D D

0

ɶ  (64) 

then, 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1 2

1 2

2 1 2 2 2

2

2 2 2 22 2

2

n t n t n t t n t n t

T T
t t t tt n t t n t

n t n t n t t n t n t

− × − − × − × −

× ×× − × −

− × − − × − × −

 
 
 =
 
  

0 0 0

BD 0 B D 0

0 0 0

ɶ ɶ  (65) 

The open-loop mass matrix may be written as 

 

( ) ( ) ( ) ( )

( )

( )

( ) ( )

( ) ( )

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1: ,1: 1: , 1: 1: , 1: 1: , 1:

1: ,1: 1: , 1: 1: , 1: 1: ,

1: ,1: 1: , 1: 1: , 1:

n t n t n t n t n n t n n t n t n t n

n t n n t n t n n t n n t n n n t n t n n

n n t n t n n t n t n n n t n n t

− − − − + − + + − + +

− + − − + − + − + + + − +

+ + − + + − + + + + +

 
=  

  

M M 0 0

M M M 0
M

0 M M
( )

( )

( ) ( ) ( ) ( )

1

1 1 1

1 1 1 1 1 1 1 1 1 1

1:

1: , 1:

1: , 1: 1: , 1: 1: , 1: 1: , 1:

t n

n n t n t n

n t n n t n t n n t n n t n n n t n t n n t n

+ +

+ + + +

+ + − + + − + + + + + + + + +

 
 
 
 
 
 
  

M

0 0 M M

 (66) 
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where we denote the central sub-matrix as, 

 
( ) ( )

( ) ( )

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1: , 1: 1: , 1:

1

1: , 1: 1: , 1:

n t n n t n n t n n n t

n n t n t n n n t n n t

− + − + − + + +

+ + − + + + + +

 
=  
  

M M
M

M M
 (67) 

Acceleration feedback is now applied to modify 1M  such that 

 1 1
T− =M M BDɶ ɶ ɶ  (68) 

where  

 
( ) ( )

( ) ( )

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1: , 1: 1: , 1:

1

1: , 1: 1: , 1:

n t n n t n n t n n n t

n n t n t n n n t n n t

− + − + − + + +

+ + − + + + + +

 
 =
  

M 0
M

0 M

ɶ
ɶ

ɶ
 (69) 

is prescribed to be symmetric and to make the closed-loop mass matrixMɶ nonsingular. 

 

( ) ( ) ( ) ( )

( )

( )

( ) ( )

( ) ( )

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1: ,1: 1: , 1: 1: , 1: 1: , 1:

1: ,1: 1: , 11: , 1: 1: , 1:

1: ,1: 1: , 1: 1: , 1:

n t n t n t n t n n t n n t n t n t n

n t n n t n t n n tn t n n t n n t n n n t

n n t n t n n t n t n n n t n n t

− − − − + − + + − + +

− + − − + + +− + − + − + + +

+ + − + + − + + + + +

=

M M 0 0

M 0M 0
M

0 0 M

ɶ
ɶ

ɶ

( )

( )

( ) ( ) ( ) ( )

1 1 1

1 1 1 1 1 1 1 1 1 1

:

1: , 1:

1: , 1: 1: , 1: 1: , 1: 1: , 1:

n

n n t n t n

n t n n t n t n n t n n t n n n t n t n n t n

+ + + +

+ + − + + − + + + + + + + + +

 
 
 
 
 
 
  

M

0 0 M M

 (70) 

From equation (68), the acceleration feedback gain submatrix Dɶ  is seen to be given by, 

 ( ) ( ) 1

1 1
T −

= −D M M Bɶ ɶ ɶ  (71) 

Now, the eigenvalue problem associated with the closed-loop linear system becomes 

 ( ) ( )2 2 , 1,2, ,2T T T
k k k k k k k nµ µ µ µ+ + = + + =M C K w B D F G w ⋯  (72) 

Then, 

 ,1 ,1 ,2 ,2 , ,k k k k k k k

T
k q q kµ µ µ µ µ µ µα α α= + + + =w r r r R α⋯  (73) 

where 

 ( )2
, , 1,2, ,2 , 1,2, ,

k

T T T
j k j k j j k k n j qµα µ µ= + + = =d f g w ⋯ ⋯  (74) 
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 ( ) 12 , 1,2, ,2
k k k k nµ µ µ

−
= + + =R M C K B ⋯  (75) 

and ,k jµα are arbitrary variables and Tkα are nonzero vectors. 

Equations (74) may be rewritten as, 

 ( )2
, , , 1,2, ,2 , 1,2, ,

k k

T T T
j j k j k k j j k k n j qµ µβ α µ µ= − = + = =d w f g w ⋯ ⋯  (76) 

or, 

 2 , 1,2, ,2T T T
k k k k k nµ= − =β α w D ⋯  (77) 

where, 

 ,1 ,2 ,k k k

T
k qµ µ µβ β β =  β ⋯  (78) 

Hence, the velocity and displacement feedback control gains are obtained by solving,  

 
 

= 
 

F
P A

G
 (79) 

where, 

 

1 1 1 1

2 2 2 2

2 2 2 2

,

T T T

T T T

T T T
n n n n

µ
µ

µ

   
   
   = =
   
   
      

w w β

w w β
P Α

w w β

⋮ ⋮ ⋮
, (80) 

The closed-loop system will be block decoupled when modal degree of freedom constraints (27) are 

imposed on kw in (80). It is seen that the decoupling algorithm is basically similar to that presented in 

Section 5 except for the additional of acceleration feedback to generate a block diagonal closed-loop mass 

matrix.  

7.1. Example 4 

Consider the structure shown in Fig. 3, which consists of a beam of length 5 5 ml = fixed at both ends. 

Assume the cross section of the beam to be rectangular with width 2cmb =  and height 1cmh =
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respectively and the material of the beam to be steel with Young’s modulus, 112.0 10 Pa,E = ×  and mass 

density, 37,800 kg/mρ = . 

 

Fig. 3 A beam with both ends fixed 

The beam is discretised into five beam elements of equal length, with the joints undergoing lateral and 

rotational displacements. The consistent-mass matrix is employed to include the inertia coupling effect. 

That is, the mass matrix of each beam element eM is 

 
2 2

2 2

156 22 54 13

22 4 13 3

54 13 156 22420

13 3 22 4

e

l l

l l l lAl

l l

l l l l

ρ
− 

 − =
 −
 − − − 

M . 

For the sake of illustration, proportional damping 1 2C M Kζ ζ= + , ( 1 0.001ζ =  and 2 0.0002ζ = ) is 

assumed.  

The open-loop eigenvalues are  

 

( ) ( )
( ) ( )
( ) ( )
( )

2 2
1,9 2,10

2 2
3,11 4,12

2 2
5,13 6,14

2 2
7,15 8,16

10 0.0002 0.1309i ; 10 0.0013 0.3620i ;

10 0.0051 0.7167i ; 10 0.0143 1.1940i ;

10 0.0402 2.0045i ; 10 0.0891 2.9830i ;

10 0.1940 4.4003i ; 10 0.3882 6

λ λ

λ λ

λ λ

λ λ

= × − ± = × − ±

= × − ± = × − ±

= × − ± = × − ±

= × − ± = × − ±( ).2186i .

 

Now, as shown in Fig. 3, the beam is to be decoupled such that beam 1 of length 2.5l  with prescribed 

eigenvalues 

 
( ) ( )
( ) ( )

2 2
1,9 2,10

2 2
3,11 4,12

10 0.001 0.12i ; 10 0.002 0.38i ;

10 0.007 0.60i ; 10 0.02 1.00i ;

µ µ

µ µ

= × − ± = × − ±

= × − ± = × − ±
 

is independent from beam 2 of length 2.5l  with eigenvalues. 
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( ) ( )
( ) ( )

2 2
5,13 6,14

2 2
7,15 8,16

10 0.04 2.20i ; 10 0.09 3.50i ;

10 0.22 4.00i ; 10 0.40 6.00i .

µ µ

µ µ

= × − ± = × − ±

= × − ± = × − ±
 

The closed-loop mass submatrix is given as, 

 ( )1 3:6,3:6

1.2 0.2 0 0

0.2 0.1 0 0

0 0 1.2 0.2

0 0 0.2 0.1

 
 
 = =
 
 
 

M Mɶ ɶ  

and the force distribution matrix is chosen to be, 

 

0 0 0 0

0 0 0 0

2 18 5 7

1 8 3 17

19 9 6 2

4 1 5 21

0 0 0 0

0 0 0 0

 
 
 
 − −
 − =
 − − − −
 − − 
 
 
  

B . 

Then the acceleration feedback gain matrix is found to be 

 

0 0 0 0

0 0 0 0

0.0001 0.0126 0.0496 0.0089

0.0003 0.0178 0.0334 0.0066

0.0059 0.0065 0.0044 0.0070

0.0111 0.0066 0.0112 0.0011

0 0 0 0

0 0 0 0

 
 
 
 − −
 − − =
 − −
 − − 
 
 
  

D . 

By using the proposed method, the arbitrary parameters are chosen as 

 ( )( ) 15:8,1:4 , 1, 4,9, ,12
kk kµ= =α null R e ⋯ ⋯  

and 

( )( ) 11:4,1:4 , 5, ,8,13, ,16
kk kµ= =α null R e ⋯ ⋯  
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where 1e is the 1st unit vector. 

The velocity and displacement feedback matrices are found to be,  

 

0.0437   0.1278      0.3051       0.0749

0.2646   1.8709      3.3882       0.7680

  0.3407      2.3008   4.0814   0.9461

0.0180   0.0095      0.1289       0.0273

5.1846     18.4621 64.9532    

− −
− −

− −
− −

=
− −

F
  2.4458

1.5823       4.5051  16.0528      0.6276

22.9302   66.8830  237.2810    9.0499

    0.1412  0.5029        1.7722  0.0678

 
 
 
 
 
 
 
 

− − 
 − −
 

− −  

 

 5

0.0012      0.0026   0.0003      0.0003

0.0014      0.0123   0.0132   0.0023

  0.0030   0.0111      0.0135      0.0012

0.0004      0.0043   0.0018   0.0005
10

  0.4696   0.1181      0.5902   

− −
− − −

−
− − −

= ×
−

G
0.0221

  0.1085   0.0226      0.1165   0.0031

  1.5801   0.4320      2.0866   0.0720

0.0121       0.0035  0.0168      0.0006

 
 
 
 
 
 
 −
 

− − 
 − −
 
− −  

 

and the closed-loop matrices are, 

 

1.1589 0 0.2006 -0.0483

0 0.0297 0.0483 -0.0111

0.2006 0.0483 1.2000 0.2000

-0.0483 -0.0111 0.2000 0.1000

1.2000 0.2000 0.2006 -0.0483

0.2000 0.1000 0.0483 -0.0111

0.2006 0.0483 1.1589 0

-0.0483 -0.0111 0 0.0297

CL

 
 



=





 

M











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 6

0.0080 0 0.0040 0.0020

0 0.0027 0.0020 0.0007

0.0006 0.0154 0.0066 0.0072

0.0006 0.0015 0.0031 0.0005
10

 1.1436 0.2551 3.8470 0.0279

0.1419 0.0165 0.5212 0.0051

0.0040 0.0020 0.0080 0

0.0020 0.0007 0 0.0027

CL

−
 −

 −
− −= ×
 −

− − −
− −



K









 
 
 
 
 

 

 3

0.0016 0 0.0008 0.0004

0 0.0005 0.0004 0.0001

0.0020 0.0220 0.0286 0.0003

0.0008 0.0084 0.0103 0.0003
10

0.3156 0.0846 1.2401 0.0091

0.3369 0.0831 1.2174 0.0091

0.0008 0.0004 0.0016 0

0.0004 0.0001 0 0.0005

CL

−
 −

− −
− − −= ×

− − −
−

− −



C








 
 
 
 
 
 

 

with the prescribed eigenvalues. The two independent beams are obtained with given eigenvalues. 

8. Conclusion 

In the theoretical study reported here, it is found that block diagonalisation of the system damping and 

stiffness matrices is achievable when the open-loop eigenvalues are controllable. In the case of velocity 

and displacement feedback, the mass matrix is practically restricted to the diagonal (lumped mass) form. 

This restriction can be lifted to allow for bandedness of the mass matrix when acceleration feedback is 

included together with velocity and displacement feedback. In both cases the closed-loop system is 

decoupled to form independent substructures and it is demonstrated that eigenvalues can be assigned to 

the substructures separately. The procedure is based on eigenstructure assignment using the method of 

receptances. In the case of banded system matrices, the number of actuators required can be reduced to 

twice of the semi-bandwidth.  
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Appendix One:  Left eigenvalue problem 

From equation (30) 

 ( ) ( )1 1
T T
k k kT T µ− −

 
= 

− − − −  

0 I
y y

M K BG M C BF
 (81) 

where ( )U L
T T T
k k k=y y y . Thus,  

 ( ) ( )( ) ( )1 1
L U L U L
T T T T T T T

k k k k k k kµ µ− −− − − − =y M K BG y y M C BF y y  (82) 

 ( )1
U L
T T T

k k kµ −= − −y y M K BG  (83) 

and  

 ( )1
L U L
T T T T

k k k kµ −= − −y y y M C BF  (84) 

Combining equations (83) and (84) leads to  

 ( ) ( )( ) ( )( )1 2 1 1
L L L
T T T T T

k k k k kµ µ− − −+ − + − =y M M y M C BF y M K BG 0  (85) 

Hence 1
L
T

k
−y M is the left eigenvector associated with kµ , i.e. 

 1
L
T T

k k
− =y M z  (86) 
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