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Abstract

We study local invariants of planar caustics, that is, invariants of Lagrangian maps
from surfaces to R2 whose increments in generic homotopies are determined entirely
by diffeomorphism types of local bifurcations of the caustics. Such invariants are dual
to trivial codimension 1 cycles supported on the discriminant in the space L of the
Lagrangian maps.

We obtain a description of the spaces of the discriminantal cycles (possibly non-
trivial) for the Lagrangian maps of an arbitrary surface, both for the integer and mod2
coefficients. It is shown that all integer local invariants of caustics of Lagrangian maps
without corank 2 points are essentially exhausted by the numbers of various singular
points of the caustics and the Ohmoto-Aicardi linking invariant of ordinary maps. As an
application, we use the discriminantal cycles to establish non-contractibility of certain
loops in L.

Keywords: Lagrangian map, caustic, local bifurcation, normal form, local invariant, dis-
criminantal cycle.

Mathematics Subject Classification 2010: 58K65, 53D12

1. Introduction

Vassiliev’s famous singularity theory approach to knot invariants [17] has been

successfully applied to the study of invariants of various types of generic curves on

surfaces.

The interest in this direction was initiated by Arnold’s introduction in [4] of

three order 1 Vassiliev-type invariants of regular planar curves. Two of Arnold’s

invariants, those dual to triple point and direct self-tangency bifurcations, were

then generalised to the higher order settings [18,13,10].

Arnold gave also a classification of order 1 invariants of planar wave fronts [5],

which was refined by Aicardi in [1]. A few years later followed Chernov’s classifica-

tion of similar invariants of fronts on arbitrary surfaces [16].
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To add to this list, we must mention the Ohmoto-Aicardi classification of order

1 invariants of maps of surfaces to a plane done in [14] in terms of bifurcations of

the critical value curves.

Our paper concerns invariants of another natural set of surficial curves, which

are caustics, that is, the critical value sets of Lagrangian maps between two sur-

faces. Shapes of generic caustics on surfaces are similar to those of wave fronts

or of the critical value sets in the Ohmoto-Aicardi case, but the set of generic 1-

and 2-parameter bifurcations involved is richer, which makes the situation more

interesting.

We are considering the space L = L(M,E,N) of all Lagrangian immersions

of a closed (that is, compact without boundary) surface M to the space E of a

Lagrangian fibration E → N, where N is another surface. In most cases we are

assuming both surfaces oriented. We are looking for invariants of such Lagrangian

maps whose increments along generic paths in L are completely determined by

diffeomorphism types of the local bifurcations of the caustics in N . These are what

should be called local order 1 invariants of the caustics, but we call them just local

since no higher-order invariants will be considered. We denote by Ξ ⊂ L the set of

Lagrangian maps at which the caustics bifurcate, and call this set the discriminant.

We should remark that Ξ is not what one would consider as a complete discriminant

in the space of all Lagrangian maps since it ignores bifurcations of self-intersection

points in E of the immersed surfaces M. Respectively, our space of local invariants

of caustics is a subset of the space of all local order 1 invariants of Lagrangian maps.

Up to a choice of an additive constant (individual for each connected component

of L), any numerical local invariant I is defined by its derivative I ′ =
∑
xiXi,

where the Xi ⊂ Ξ are discriminantal strata of codimension 1 in L, and the xi are

the increments of I across them. This linear combination is a trivial codimension 1

cycle in L. Therefore, construction of such linear combinations (without an a priori

knowledge of the invariants) splits into two parts:

i) establishing conditions on linear combinations of the codimension 1 strata

to be cycles (we call them discriminantal cycles), and

ii) checking the triviality of the discriminantal cycles.

The first part is approachable via an appropriate development of singularity the-

ory methods, and does not depend on the choice of M,E and N (except for the

orientability) and of a particular connected component of L(M,E,N). The second

part is either sufficiently straightforward (when an integral, that is, homotopy-free

interpretation of a relevant invariant is available), or quite hard (when there is no

such interpretation, and this is a general situation). In the latter case, knowledge of

the fundamental group of a particular connected component of L(M,E,N) could be

helpful, but calculation of this group is a even more complicated task. On the other

hand, discriminantal cycles themselves may be used for testing non-contractibility

of certain loops in L, and we are giving examples of this in Section 5.
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The main result of this paper is a complete description of the spaces of discrimi-

nantal cycles for caustics on surfaces. Translation of this description to a description

of the local invariants themselves has turned out to be the most complete for the

target N = R2 and the subset L1 of L(M,E,R2) consisting of maps without corank

2 singularities. For such a setting, up to a choice of additive constants on connected

components of L1, all rational local invariants of caustics are linear combinations of

the numbers of various singular points of the caustics and of the linking invariant of

ordinary maps from [14]. In all the other cases, the question of triviality of certain

discriminantal cycles is open, which allows to only bound the dimensions of the

invariant spaces.

The structure of the paper is as follows.

Section 2 reminds the generalities about Lagrangian maps, describes stable sin-

gularities of planar caustics and gives examples of their local invariants. Section

3 lists discriminantal strata of codimension 1 in L, and its Subsection 3.4 states

our main results. Section 4 proves our main theorems via analysis of generic 2-

parameter families of caustics. Its Subsection 4.4 considers adjustments needed if

at least one of the source and target surfaces is not oriented. Finally, in Section 5,

we use the discriminantal cycles corresponding to corank 2 degenerations of maps

to prove non-contractibility of certain loops in the spaces of Lagrangian maps of

the 2-sphere. It would be very interesting to see to what extent the results of this

section could be generalised to loops in other connected components of L(S2, E,N)

and to the source different from S2.

2. Lagrangian maps

2.1. General definitions

We start with recalling a series of standard definitions which may be found, for

example, in [6] or [3].

A symplectic structure on a manifold E2n is a closed non-degenerate differential

2-form ω.

A Lagrangian submanifold of a symplectic manifold (E2n, ω) is its n-dimensional

submanifold the restriction to which of the symplectic form vanishes.

A fibration p : E2n → Nn of a symplectic manifold E over a base N is called

Lagrangian if all its fibres are Lagrangian submanifolds. A composition M
i→ E

p→
N where i is an embedding of a manifold Mn into E2n as a Lagrangian submanifold

is what is usually called a Lagrangian map. However, in this paper we allow i to be

a Lagrangian immersion.

The critical value set C ⊂ N of a Lagrangian map p ◦ i in called the caustic of

the map.

All Lagrangian fibrations of the same dimension are locally isomorphic. In this

paper we will be mostly considering the n = 2 case, and in all our local normal
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forms, we will be using the standard local model of T ∗R2 fibred over R2. The

symplectic form here is ω = dU ∧du+dV ∧dv, where u, v and U, V are coordinates

respectively on the plane and along the fibres of the fibration.

A germ of a Lagrangian surface L ⊂ T ∗R2
u,v is defined by its generating family

of functions F (x, u, v):

L = {(u, v, U, V ) | ∃x : Fx = 0, U = Fu, V = Fv} .

The minimal dimension of the variable x here is the corank of the derivative of the

projection L→ R2
u,v at the base point. The smoothness of L requires that the rank

of the matrix (Fx)x,u,v of the second derivatives at the base point must be equal to

the dimension of x. The caustic C ⊂ R2
u,v consists of those points (u, v) for which

the member F (·, u, v) of the generating family has non-Morse critical points.

An equivalence of two Lagrangian maps Lj → Ej → Nj , j = 1, 2, is a commu-

tative diagram

L1 → E1 → N1

↓ ϕ ↓ ↓
L2 → E2 → N2

in which all vertical arrows are diffeomorphisms, and ϕ∗(ω2) = ω1 holds for the cor-

responding symplectic structures. In terms of the local generating families F (x, u, v)

of functions this corresponds to the stable R+-equivalence preserving the fibration

(x, u, v) 7→ (u, v) (see [6]). The stability here is in the sense of addition of non-

degenerate quadratic forms in extra x-variables.

In our exposition, we will be using N = R2 for the target surface and T ∗R2 → R2

for the Lagrangian fibration. The differences existing with more general settings will

be addressed in the remarks. All the local normal forms of maps or families of maps

that we will be using will be considered near the origins of the source, target and

parameter spaces.

2.2. Generic planar caustics and their local invariants

According to the classical result of Whitney [20], the critical point set of a

generic C∞ map (not necessarily Lagrangian) between surfaces is a smooth curve.

At isolated points on this curve the map has the pleat singularity, for which

one can choose local coordinates in the source and target so that the map is

(z1, z2) 7→ (t1, t2) = (z31 + z1z2, z2). At all other points of the critical curve, the

map has the fold singularity, with the local normal form (z1, z2) 7→ (z21 , z2). See

Fig. 1. Fold singularities correspond to regular branches of the critical value set,

while pleat points provide semi-cubical cusps of this set. If both the source and

target surfaces are oriented, we distinguish two types of pleats, of local degrees +1

and −1. Regular branches of a generic critical value set meet transversally.

Similarly, in the case of Lagrangian maps from surfaces to the plane, a generic

caustic C (that is, the critical value set) is a planar curve whose only singularities
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Figure 1. Pleat and fold singularities.

are points of transversal self-intersection and semi-cubical cusps. Translating the

above normal forms of maps to the Lagrangian language of local generating families

and using the standard notations of the corresponding function singularities (see

[3]), we introduce the following notations for the points of C:

A2, regular points of a caustic, with a local generating family x3 + ux;

A2
2, points of transversal intersection of two regular local branches;

As,σ3 , s = ±, σ = ±, semi-cubical cusps, with a local generating family sx4 +

ux2 + vx, and the sign σ indicating the local degree ±1 of the Lagrangian

map.

Remark 2.1. We emphasise that the Lagrangian pleats A3 with different choices

of the sign s = ± are not Lagrangian equivalent, in spite of being equivalent in the

oriented Whitney setting. The reason is that the function x4 cannot be transformed

to −x4 by a change of the real coordinate x (see [3] for details).

Following [14], we co-orient a caustic C ⊂ R2 to its side with a higher number of

local pre-images. We will also show the same information by orienting C so that its

(orientation, co-orientation) frame gives the orientation of the plane, as in Fig. 2.

s,σ

2 2
A

2

3
A

s,σ
A

Figure 2. Singularities of generic caustics.
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Consider the space L = L(M,T ∗R2,R2) of all Lagrangian maps M # T ∗R2 →
R2, where the first arrow is a Lagrangian immersion and the second the canonical

projection. Maps whose caustics have more complicated singularities than those

described above form the discriminantal hypersurface Ξ in L.
Consider connected components of L \ Ξ. A numerical invariant is a way to

assign numbers to each of them. Along a generic path in L, the values of an invariant

change at the moments of discriminant crossings.

Definition 2.2. We say that an invariant is local if every increment of the invariant

is completely determined by the diffeomorphism type of the local bifurcation of the

caustic at the crossing.

For non-Z2-valued invariants, the discriminant should be locally co-oriented.

A local invariant I defines its derivative I ′ =
∑
i xiXi, where the Xi ⊂ Ξ are the

strata of codimension 1 in L we are able to distinguish for the needs of Definition

2.2, and the xi are the local increments of I along generic paths in L crossing the

Xi in the co-orienting direction. On the other hand, I is defined by I ′ on each

connected component Lj of L up to an arbitrary choice of the value of I at a

non-discriminantal base point in Lj .
Since the total increment of I along any loop in Lj vanishes, the derivative∑
i xiXi must be a trivial codimension 1 cycle in Lj . The vanishing of the total

increment on contractible loops (that is, the derivative being a cycle, maybe non-

trivial) is equivalent to its vanishing on small loops in L around codimension 2 strata

of the discriminant. Finding the relevant cyclicity constraints on the increments xi
is the problem we are mainly concentrating on in this paper. Cycles of the form∑
i xiXi will be called discriminantal .

To establish the non-triviality of a discriminantal cycle, one should point out

a loop in L with a non-zero index of intersection with the cycle. The loop itself is

then non-contractible. We will give examples of this in Section 5.

On the other hand, one of the ways to establish the triviality of a cycle

I ′ =
∑
i xiXi is to find an integral (that is, path-independent) interpretation of

its antiderivative I in terms of the geometry of individual caustics.

Example 2.3. The number of isolated singularities of C of a particular type is, of

course, a local invariant. We have five such invariants:

Id, the number of double points A2
2;

Ics,σ, s, σ = ±, the numbers of (s, σ)-cusps.

For Lagrangian maps to a plane but not to a more complicated surface, we

have a sixth local invariant. It is the restriction to the set of Lagrangian maps

L(M,T ∗R2,R2) of the self-linking invariant of the critical value sets of generic

smooth maps from M to the plane, as introduced by Ohmoto and Aicardi in [14].

Basically, this Bennequin-type invariant is the writhe of a ribbon defined by the



January 20, 2016 11:2 WSPC/INSTRUCTION FILE
Goryunov-Gallagher-jktr

On planar caustics 7

critical value set in PT ∗R2 which is then embedded into R3. We recall its exact

definition now.

Let C be this time the critical value set of a generic C∞ map from a surface

M to oriented R2. The curve C is oriented in the way we oriented caustics earlier.

Considering each point of C with its normal direction to the curve, we lift C to a

link C̃ in PT ∗R2 ' R2 × S1. Now, for a fixed small ε > 0 and each point c ∈ C,
take the two points on the normal to C at c at the distance ε from c. Let Cε ⊂ R2

be the curve formed by all such points, and C̃ε ⊂ PT ∗R2 the corresponding link.

Choose a small ε0 > 0. The union C̃ of all the C̃ε for 0 ≤ ε ≤ ε0 is an oriented

multi-component ribbon in PT ∗R2 with the core C̃.
We orient the solid torus PT ∗R2 as R2×S1, with the circular factor oriented by

the positive rotational direction in the plane. We embed PT ∗R2 unknottedly into

R3 which we take with the orientation coming from the solid torus, and define the

linking number `(C) as the writhe of the ribbon C̃ ⊂ R3. For this we consider the

diagram of C̃ obtained from a generic projection of the R3 to a plane. We calculate

the linking number `0(C̃) as the usual algebraic sum of positive and negative cross-

ings in the link diagram of C̃, and we also calculate the algebraic number `1(C̃)

of signed half-twists by which the ribbon diagram differs from the blackboard one.

Finally, `(C) := `0(C̃) + `1(C̃)/2.

3. Generic codimension 1 bifurcations of planar caustics

We will now describe the strata from which we will be building up discriminan-

tal cycles in L = L(M,T ∗R2,R2). They correspond to bifurcations met in generic

one-parameter families of caustics. Wherever the letters s or σ appear in the nota-

tions below, they always mean ± like in the previous section. The indices e and h

distinguish between the elliptic and hyperbolic versions of similar bifurcations.

3.1. Corank 1 multi- and uni-germs

First of all we list all bifurcations in generic 1-parameter families which involve only

corank 1 singularities of the corresponding Lagrangian maps.

We start with bifurcations of multi-germs. In each of them, one of the partici-

pating local components is a smooth A2 branch of the caustic. We illustrate such a

bifurcation in Fig. 3 only with the final curve (that is, the one to the positive side of

the corresponding discriminantal stratum in L) and indicate the shift of the smooth

branch during the transition. The notations we are introducing are self-explanatory,

with the letter T staying for the tangency of the caustic components.

We have (see Fig. 3):

A3,k
2 , k = 2, 3, triple point of a caustic. The post-bifurcational triangular region

has k sides co-oriented outwards. Respectively, for the pre-bifurcational

triangle, this number is 3− k.
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TA2,k
2 , k = 0, 1, 2, tangency of two smooth branches. Here k is the number of sides

of the new-born bi-gon co-oriented outwards.

As,σ3 Ak2 , k = 0, 1, an (s, σ)-cusp passes through a smooth branch of a caustic. Here

the value of k distinguishes between the two co-orientation possibilities of

the regular curve.

s,σ s,σ

2

3,3

2,1

s,σ 0

3

2

TA

2
A

3,2

2

2,2

A
s,σ

2
A

TA
2

2,0

2
A

1

3
A

TA

A

Figure 3. Generic bifurcations of multi-germ caustics.

For the uni-germs, we have the following transformations of the caustics (see

Fig. 4 where the directions of the positive moves are from the left to the right):

As,σ;e3 , birth of a lips component, with two (s, σ)-cusps.

As,σ;h3 , a beaks bifurcation of the caustic, with two (s, σ)-cusps appearing.

As,σ4 , a swallowtail bifurcation. The (s, σ)-cusp is the first of the two cusps on

the local post-bifurcational curve if we follow its conventional orientation.

Normal forms of the generating family bifurcations in the last three cases re-

spectively are

s(x4 + (v2 − λ)x2) + ux , s(x4 + (λ− v2)x2) + ux , x5 − λx3 + vx2 + ux ,

where λ is the parameter increasing in the bifurcation (see [2,21]).

3.2. Corank 2 bifurcations in one-parameter families

According to [21], any local bifurcation of caustics in this case may be obtained

as a generic one-parameter family of planar sections of the spatial caustics of the

R+-miniversal deformations of the D±4 function singularities:

F (x, y;u, v, w) = ±x2y +
1

3
y3 +

1

2
wy2 + vy + ux .
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3
A

s,  ;eσ

3
A

s,  ;hσ

A

Figure 4. Generic corank 1 bifurcations of uni-germ caustics.

These two caustics are shown in Fig. 5. The parameter of such a sectional family

reduces to λ = w + αu+ βv, α, β ∈ R, α2 ∓ β2 6= 0. The inequality condition here

means that the sectional surface passing through the origin should not be tangent

to the self-intersection locus (real for D+
4 and imaginary for D−4 ) of the spatial

caustic. The families are actually uni-modular: if one of the coefficients α and β is

not zero, it may be normalised to ±1, the other staying arbitrary.

D
4

+ −

4
D

Figure 5. The D±
4 caustics in R3.

We co-orient the corresponding discriminantal strata in L by the decrease of the

above parameter λ, which means that in the sectional planar caustics the (−, σ)-

cusps change to the (+, σ)-cusps. We distinguish five pairs of corank 2 bifurcations

shown in Fig. 6. The subscripts in the notations of the first four of them store the

information about the post-bifurcational double points: either their number, or the

right/left position of the only point.

3.3. Derivatives of the standard invariants

In what follows, it will be convenient for us to operate with sums of the above

elementary discriminantal strata differing only in certain indices in their notation.

In such cases we will omit the corresponding signs or letter and assume that the
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+;σ

4,2

D

D
+;σ

4,

−;σ

D
+;σ

D
+;σ

4,0

4,r

D

4

Figure 6. Generic corank 2 bifurcations of caustics. All cusps of the curves on the left are (−, σ),
and all of the curves on the right are (+, σ).

summation is done across the whole range of the omitted symbols, for example:

A3
2 = A3,3

2 +A3,2
2 , A3A2 =

∑
s,σ=±

(As,σ3 A1
2 +As,σ3 A0

2) , D+
4,2 = D+;+

4,2 +D+;−
4,2 .

However, to avoid notational confusion, we will use

A
s,σ;e/h
3 = As,σ;e3 +As,σ;h3 and A

e/h
3 = Ae3 +Ah3 .

Within these settings we have the following summary of the increments of the

invariants introduced in Section 2.2.

Lemma 3.1. The derivatives of the invariants counting the double points and var-

ious cusps of planar caustics, and of their linking invariant are

I ′d = 2TA2
2 + 2A3A2 +A4 + 2D+

4,2 − 2D+
4,0 ,

Ics,σ
′ = 2A

s,σ;e/h
3 +As,σ4 +A−s,−σ4 + sD+;σ

4 + 3sD−;σ4 ,

I ′` = 2TA2,2
2 − 2TA2,1

2 + 2TA2,0
2 +A

e/h
3 − 2D+

4,2 + 2D+
4,0 .

Proof. The expressions for the first five derivatives are provided by a simple in-

spection of the bifurcation figures.

The A-part of the linking derivative is a translation to our notations of the

increment count done in [14] for the linking invariant of critical value sets of maps

from surfaces to the plane.
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To obtain the D-part, we consider the set of all Lagrangian maps M # T ∗R2 →
R2 as a subset of the space Ω(M,R2) of all smooth maps from M to R2. In Ω,

the bifurcations of Fig. 6 are no longer stable as one-parameter families, and we

deform them into generic paths along which the planar critical value sets undergo

sequences of local corank 1 transitions shown in Fig. 7 (deformed D+
4,0 and D+

4,`

paths are opposite to the two in the Figure). Now the D-part of the expression

follows from its A-part.

A

+;σ

A
h

A
4

3

A
h

3

4,2
D

A
4

A

A
h

3

h

3

D
+;σ

4,r

A
44

Figure 7. The D-moves of the caustics as sequences of transitions of the critical value sets of
arbitrary (not necessarily Lagrangian) smooth maps. The notation of the steps is in terms of their
Lagrangian analogues. Notice that the s signs of the cusps should not be used now since they are
not defined in Ω(M,R2) (see Remark 2.1).

Remark 3.2. The D±4 caustics of Fig. 5 are stable as critical value sets of La-

grangian maps between 3-manifolds. However, the corresponding local singularities

of maps are of codimension 1 in the space of all smooth maps between these mani-

folds. In particular, a small generic perturbation within smooth maps deforms the

D+
4 caustic to the left surface in Fig. 8 [7,11]. The sequences in Fig. 7 are generic

1-parameter families of planar sections of this surface.

Figure 8. Stable perturbation of the D+
4 caustic via a smooth non-Lagrangian deformation of a

map between 3-manifolds. The surface has the axial symmetry which produces the whole surface
from its swallowtail half shown on the right.
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3.4. Classification of the discriminantal cycles and invariants

All statements in this section refer to any closed oriented surface M and any con-

nected component of L(M,T ∗R2,R2). The target plane is oriented. All invariants

are considered up to a choice of additive constants on connected components of the

spaces of maps.

The main result of this paper is

Theorem 3.3. The space of rational discriminantal cycles in L(M,T ∗R2,R2) has

rank 8. It is spanned by the derivatives of the six invariants Id, I
c
s,σ, I` and the two

cycles

D±;σ4 = D+;σ
4,2 +D+;σ

4,0 +D+;σ
4,r +D+;σ

4,` +D−;σ4 , σ = ± .

For a basis of the discriminantal cycles in L(M,T ∗R2,R2) in the integer case

one can, for example, take the derivatives of

Ic/2 = (Ic+,+ + Ic+,− + Ic−,+ + Ic−,−)/2, (Id − Ic+,+ − Ic−,+)/2,

(I` − Ic/2 + Ic+,+ + Ic−,+)/2, Ic+,+, Ic+,−,

(3.1)

and the cycles

((Ic+,− − Ic−,+)′ −D±;+4 −D±;−4 )/2, D±;+4 , D±;−4 . (3.2)

Passing to the mod2 coefficients, we have

Theorem 3.4. The space of Z2 discriminantal cycles in L(M,T ∗R2,R2) has

rank 9. It is spanned by the mod2 reductions of the above eight integer cycles and

A3
2 +A±,+3 A2.

Among the cycles appearing in these two theorems, the triviality of the D±;σ4

and A3
2 + A±,+3 A2 is not known. Their triviality may also depend on the choice

of a particular connected component of L(M,T ∗R2,R2). Therefore, passing from

discriminantal cycles to invariants, we have only estimates:

Corollary 3.5. The rank of the space of integer local invariants on a particular

connected component of L(M,T ∗R2,R2) is at least 6 and at most 8. For mod2-

valued invariants, the bounds are respectively 6 and 9.

In Section 5 we will have an example when the rank in the integer case is less

than 8.

The minimal invariant spaces guaranteed by the corollary are spanned, for ex-

ample, by the five invariants in (3.1) and Ic−,+.

Let L1(M,T ∗R2,R2) ⊂ L(M,T ∗R2,R2) be the set of all Lagrangian maps with-

out corank 2 points. Discriminantal cycles in L1 do not contain any D-summands.
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Theorem 3.6. The space of integer discriminantal cycles in L1(M,T ∗R2,R2) has

rank 6. Its basis is formed, for example, by the derivatives of the invariants (3.1)

and (Ic+,− − Ic−,+)/2. Respectively, these six invariants form a basis of the space of

all integer local invariants on L1(M,T ∗R2,R2).

The mod2 setting adds here two linearly independent cycles, A3
2 +A±,+3 A2 and

A+,+
3 A2 +A−,−3 A2, whose triviality is not known.

Remark 3.7. All statements of the above three theorems about the discriminantal

cycles stay valid if we replace Lagrangian maps M # T ∗R2 → R2 with Lagrangian

maps M # E4 → N, where N is an arbitrary oriented surface. The upper bounds

for the ranks of the invariant spaces stated in the corollary and last theorem also

stay true, but the lower bounds should be reduced by 1 since the cycle I ′` may no

longer be trivial.

Theorems 3.3, 3.4 and 3.6 are proved in Section 4.3, with the preparations

occupying Sections 4.1 and 4.2.

4. Bifurcations in 2-parameter families of Lagrangian maps

Our proof of the classification theorems of the previous section is based on the

study of bifurcations in generic 2-parameter families of caustics in the next two

subsections. The bifurcation diagram of each family yields a linear equation on the

increments of our local invariants across the codimension 1 strata: the equation

states that the total increment along a small generic loop in L around the codimen-

sion 2 stratum must vanish. The whole system of these equations guarantees that

the corresponding linear combination of codimension 1 strata is a discriminantal

cycle in L.

The generating families will now depend on four parameters: local coordinates u

and v on the target plane, and bifurcational parameters λ1 and λ2. The value range

for the variables s and σ is always {+,−}, tracing the (s, σ)-types of the cusps in

the bifurcations.

In Section 3 we singled out 35 discriminantal strata which we will call elemen-

tary. A part of our strategy to choose a particular sequence of bifurcations will be

to show as soon as possible that the increments across some of them must coin-

cide and, therefore, such strata may be united into sums like those used in Lemma

3.1. We call these sums big strata. We denote the increment across a particular

elementary or big stratum as the stratum itself, but in small characters.

Quite a few bifurcations in our analysis will be of the form S ·A2, by which we

mean a generic A2 line passing through a generic codimension 1 bifurcation S. The

co-orientation of the A2 line will not be important.
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4.1. Corank 1 maps

The bifurcations we are considering in this subsection differ from those considered

in [14] for non-Lagrangian maps by the involvement of the sign σ of the cusps.

a) The simplest S·A2 bifurcations have the diagram shown in the left of Fig. 9,

which gives us the equation g = h. In particular, this happens if the codimension

1 bifurcation S is of types 1 or 2 of the table below. Our conclusion in case 1 is

that the triple point stratum A3
2 may participate in discriminantal cycles only over

Z2, which will be noted by the square brackets in the formulas (but not in the

diagrams).

The middle bifurcation diagram in Fig. 9 is of the As,σ4 ·A2 degeneration, corre-

sponding to case 3 of the table.

2

4
A

s,σ

4
A

s,σS S

HG G3 HA
σ−s,−

2
A

0

2
A

1

3
A

s,σ A
3

Figure 9. The diagrams of the simplest S ·A2 singularities, of the As,σ4 ·A2 bifurcations, and of
the simplest cubic degenerations. They correspond to the equations 1–5.

The last diagram of Fig. 9 serves the codimension 2 cubic versions of the codi-

mension 1 ‘quadratic’ degenerations As,σ;e3 and TA2,1
2 . Namely, the first cubic bi-

furcation has generating family sx4 +(v3 +λ2v+λ1)x2 +ux, while the second is the

interaction of the curves v = 0 and v = u3 +λ2u+λ1 with opposite co-orientations.

The conclusions derived from these two cases are in lines 4 and 5 of the table. The

superscripts opp and dir are used there for opposite and direct tangencies.

S equation big stratum

1. TA2,2
2 a3,32 = a3,22

TA2,1
2 2a3,22 = 0

[
A3

2

]
= A3.3

2 +A3,2
2

2. As,σ;e3 as,σ3 a12 = as,σ3 a02 As,σ3 A2 = As,σ3 A1
2 +As,σ3 A0

2

3. As,σ4 as,σ3 a2 − a−s,−σ3 a2 =
[
a32
]

A
±(+,σ)
3 A2 = A+,σ

3 A2 +A−,−σ3 A2 over Z
4. As,σ;e3 as,σ;e3 = as,σ;h3 A

s,σ;e/h
3 = As,σ;e3 +As,σ;h3

5. TA2,1
2 ta2,22 = ta2,02 TA2,opp

2 = TA2,2
2 + TA2,0

2

TA2,dir
2 = TA2,1

2

b) In Figs. 10 and 11, we show bifurcation diagrams of three more codimension

2 degeneration. The corresponding incremental equations are 6–8 below.
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s,σ

σ

A
s,σ

4
A

σ−s,−

2
A

1

3
A

s,σ

2

3
A

s,σ

2
A

3
A

s,σ

2
A

A
1TA

2

2,2

TA
2

2,1

3
A

s,

4

Figure 10. The line-and-cusp tangency bifurcation, and a family F = sx6+λ1x4+λ2x3+vx2+ux
of planar sections of the A5 caustic in R4.

σ−s,−σ s,

3

s,  ;h
A

3
A

σ−s,−   ;h

2,1
TA

2

4
A

s,σ

4
A

σ−s,−

σ

Figure 11. Bifurcations of a swallowtail section by a smooth surface tangent to the self-
intersection line.

equation big stratum

6. 2as,σ3 a2 = ta2,opp2 + ta2,dir2 A3A2 =
∑
s,σ=±A

s,σ
3 A2 over Z

7. as,σ4 = a−s,−σ4 A
±(+,σ)
4 = A+,σ

4 +A−,−σ4

8. 2a
±(+,σ)
4 = a+,σ;h3 + a−,−σ;h3 + ta2,dir2

4.2. Corank 2 bifurcations

a) The D+;σ
4,r ·A2 family. Comparing the events on the left and on the right in Fig. 12

during the motion of the additional A2 component and recalling from equations 1

above that 2a32 = 0, we conclude that the incremental equation here reduces to

9. a−,σ3 a2 = a+,σ3 a2 .

This provides us with a big stratum A±,σ3 A2 = A+,σ
3 A2 +A−,σ3 A2 over Z2. (We al-

ready have A3A2 over the integers.) All the other versions of the D+
4 ·A2 bifurcations

yield the same.

b) Degenerate sections of the D+
4 caustic. In Section 3.2 we quoted the normal

form of a generic function on R3 in presence of the D+
4 caustic. We will now denote

this caustic C(D+
4 ). A standard argument using the description from [21] of the

vector fields tangent to C(D+
4 ) shows that the functions next in the hierarchy in
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D
+,σ

4,r
A

2
+,σ−,σ

λ 2

1

λ

λ0

2

Figure 12. The D+;σ
4,r ·A2 bifurcation.

this case can be reduced to the normal forms

w ± u± v + γv2 , γ ∈ R \ {0} .

Here γ is a modular coefficient. The zero level of such a function is tangent at the

origin to one of the two rays of the self-intersection locus of C(D+
4 ). Making use

of a natural notion of a versal deformation of a function germ on R3 with respect

to the group of diffeomorphisms preserving the caustic, we see that the functions

above give us two-parameter families of caustics defined by generating families of

functions depending on two additional parameters (λ1, λ2):

x2y +
1

3
y3 +

1

2
(±u± v + γv2 + λ2v + λ1)y2 + vy + ux . (4.1)

Various choices of the signs in this formula (including the sign of γ) give us the

bifurcation diagrams in the (λ1, λ2)-plane shown in Fig. 13. Comparison of the first

two diagrams there implies d+;σ
4,r = d+;σ

4,` , which allows us to introduce a big stratum

D+;σ
4,r/` = D+;σ

4,r +D+;σ
4,` .

2 2

4,r
D

+;σ

D

+;σ

TA
2

2,1

D
+;σ

4,2

+;σ

D
+;σ

4,

4,

4,0

TA
2

+;σ

2,1
TA

D

2,1

DD
4,2

+;σ

4,r

D
+;σ

4,0

TA
2,1

Figure 13. Bifurcation diagrams of the families (4.1). In each diagram, the cusp on the left of
the vertical strata is (−, σ) and the cusps on the right are (+, σ). The opposite cusp option is not
shown since it yields the same set of four incremental equations.

Now Fig. 13 provides two linearly independent incremental equations for each

σ = ±:

10. ta2,12 = d+;σ
4,r/` − d

+;σ
4,0

= d+;σ
4,2 − d

+;σ
4,r/`

We remark that we are not considering here functions on (R3, C(D4)) whose zero

level is tangent at the origin to the cuspidal edge of the caustic since such functions
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would correspond to the change of topology of the source surface of our Lagrangian

maps. However, such functions will appear in Section 5 where they will be used for

constructing non-contractible loops in the spaces of Lagrangian maps.

c) The D5 family. In Fig. 14 we are showing the bifurcation diagrams of two-

parameter families of caustics coming from the deformations

x2y ± y4 + λ1y
3 + λ2y

2 + vy + ux

of the D±5 function singularities. Since each diagram has two pairs of double strata,

these two-parameter families of planar caustics are infinitely degenerate. However,

these families are the principal quasi-homogeneous parts of generic two-parameter

slicings of the big D±5 caustics in R4, and yield the same incremental equations as

such generic slicings do, namely:

11. d+;σ
4,2 − d

−;σ
4 + a+,σ;e3 + a+.−σ;h3 − 2a+,−σ4 = 0

−d+;σ
4,0 + d−;σ4 + a−,σ;e3 + a−.−σ;h3 − 2a−,−σ4 = 0

2

λ

λ1

2λ

1λ

2

2

3
A

+,−   ;hσ
4

A    ,
−,σ

4
A

σ

A
2

A
3

−,σ A
2

A
3

−,σ

σ+;
D

4,2

σ−;
D

4

3
A

σ+,  ;e

A
2

+,σ
A

3

+,−

A
2

A
3

−,σ

A
2

A
3

+,σ

A
2

A
3

+,σ

σ−;
D

4
σ+;

D
4,0

3
A

σ−,  ;e

3
A

−,−   ;hσ
4

A    ,
+,σ

4

−,−
A

σ

Figure 14. The D+
5 and D−

5 bifurcation diagrams.

This finishes the process of deriving the incremental equations. It is not very

difficult to show that no other stable codimension 2 bifurcation of planar caustics

delivers an equation linearly independent (both mod2 and over the integers) from

the equations already listed.

4.3. Proofs of the classification theorems

We initially had 35 elementary discriminantal strata. Over the previous two subsec-

tions we have been able to join them, both over Z and Z2, into 19 bigger. Equations

on the increments of the invariants across these 19 strata obtained during the bi-

furcation analysis are collected in the columns of the first half of Table 1 below.

Equations which are integer linear combinations of the others are not included there.

That is why only one of the equations 6 and only the first pair of the equations 11

are in the table. We are using dots instead of zeros.

With 11 linearly independent equations in 19 unknowns, we have a rank 8

solution space. The 8 columns of the second half of Table 1 contain the coefficients
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of the discriminantal cycles mentioned in Theorem 3.3. They are easily seen to form

a basis of the solution space over the rationals, which proves the theorem.

The rank of the mod2 solutions matrix in Table 1 is 5. This yields a few parity

conservation laws for appropriate linear combinations of numbers of double points

and various cusps of caustics in homotopies. The most obvious one is that the parity

of the total number of cusps stays the same.

To produce an integer solution basis from the rational one we can, for example,

consider its modification (3.1–3.2) from Section 3.4.

The mod2 reduction of the incremental equations drops the rank of the coef-

ficient matrix by 1, due to the elimination of the equation 1. Therefore, a mod2

solution basis may be obtained by addition to the reduced basis (3.1–3.2) of one

cycle, for example, A3
2 +A±,+3 A2 (or A3

2 +A±,−3 A2). This proves Theorem 3.4.

Table 1 1 3 6 8 8 10 10 10 10 11 11 I ′d I
c
+,+
′ Ic+,−

′ Ic−,+
′ Ic−,−

′ I ′` D
±;+
4 D±;−4

A3
2 2 1 . . . . . . . . . . . . . . . . .

TA2,opp
2 . . −1 . . . . . . . . 2 . . . . 2 . .

TA2,dir
2 . . −1−1−1 1 1 1 1 . . 2 . . . . −2 . .

A±,+3 A2 . 1 2 . . . . . . . . 2 . . . . . . .

A±,−3 A2 . −1 . . . . . . . . . 2 . . . . . . .

A
+,+;e/h
3 . . . −1 . . . . . 1 1 . 2 . . . 1 . .

A
+,−;e/h
3 . . . . −1 . . . . 1 1 . . 2 . . 1 . .

A
−,+;e/h
3 . . . . −1 . . . . . . . . . 2 . 1 . .

A
−,−;e/h
3 . . . −1 . . . . . . . . . . . 2 1 . .

A
±(+,+)
4 . . . 2 . . . . . . −2 1 1 . . 1 . . .

A
±(+,−)
4 . . . . 2 . . . . −2 . 1 . 1 1 . . . .

D+;+
4,2 . . . . . . . −1 . 1 . 2 1 . −1 . −2 1 .

D+;−
4,2 . . . . . . . . −1 . 1 2 . 1 . −1−2 . 1

D+;+
4,r/` . . . . . −1 . 1 . . . . 1 . −1 . . 1 .

D+;−
4,r/` . . . . . . −1 . 1 . . . . 1 . −1 . . 1

D+;+
4,0 . . . . . 1 . . . . . −2 1 . −1 . 2 1 .

D+;−
4,0 . . . . . . 1 . . . . −2 . 1 . −1 2 . 1

D−;+4 . . . . . . . . . −1 . . 3 . −3 . . 1 .

D−;−4 . . . . . . . . . . −1 . . 3 . −3 . . 1

For Theorem 3.6, avoiding corank 2 maps, we have to restrict our attention

to the A-strata and equations 1–8 only. To cover the integer and mod2 options

simultaneously we have to consider this time all four strata As,σ3 A2 individually. The

equation-cycle table for this case is Table 2 below. We have 7 linearly independent

equations in 13 unknowns. The set of the discriminantal cycles suggested for an

integer basis in the theorem occupies the second half of the table, and is indeed
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linearly independent. In the table we set

Îd = (Id − Ic+,+ − Ic−,+)/2, Îc−,+ = (Ic−,+ − Ic+,−)′/2,

Ic/2 = (Ic+,+ + Ic+,− + Ic−,+ + Ic−,−)/2, Î` = (I` − Ic/2 + Îc+,+ + Ic−,+)/2.

The mod2 reduction reduces this time the rank of the equation matrix by 2.

Therefore, two extra basic cycles should be added to obtained a Z2-basis, for ex-

ample, A3
2 +A±,+3 A2 and A+,+

3 A2 +A−,−3 A2. This finishes our proofs.

Table 2 (L1) 1 3 3 6 6 8 8 Î ′d Ic+,+
′ Ic+,−

′ Îc−,+
′ Ic ′/2 Î ′`

A3
2 2 1 1 . . . . . . . . . .

TA2,opp
2 . . . −1 −1 . . 1 . . . . 1

TA2,dir
2 . . . −1 −1 −1 −1 1 . . . . −1

A+,+
3 A2 . 1 . 2 . . . 1 . . . . .

A+,−
3 A2 . . 1 . 2 . . 1 . . . . .

A−,+3 A2 . . −1 . . . . 1 . . . . .

A−,−3 A2 . −1 . . . . . 1 . . . . .

A
+,+;e/h
3 . . . . . −1 . −1 2 . . 1 1

A
+,−;e/h
3 . . . . . . −1 . . 2 −1 1 .

A
−,+;e/h
3 . . . . . . −1 −1 . . 1 1 1

A
−,−;e/h
3 . . . . . −1 . . . . . 1 .

A
±(+,+)
4 . . . . . 2 . . 1 . . 1 .

A
±(+,−)
4 . . . . . . 2 . . 1 . 1 .

4.4. Non-oriented source or target

Assume first of all that the source surface M is not oriented while the target plane

has an orientation chosen. This means gluing together discriminantal strata of codi-

mension 1 in L(M,T ∗R2,R2) differing only by the sign σ in their notation. The

modified equations and basic cycles are collected in Table 3. The sign σ is now gone
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from the notations.

Table 3 1 3 6 8 10 10 11 I ′d Ic+
′ Ic−

′ I ′` D±4

A3
2 2 1 . . . . . . . . . .

TA2,opp
2 . . −1 . . . . 2 . . 2 .

TA2,dir
2 . . −1 −1 1 1 . 2 . . −2 .

A+
3 A2 . 1 2 . . . . 2 . . . .

A−3 A2 . −1 . . . . . 2 . . . .

A
+;e/h
3 . . . −1 . . 2 . 2 . 1 .

A
−;e/h
3 . . . −1 . . . . . 2 1 .

A4 . . . 2 . . −2 1 1 1 . .

D+
4,2 . . . . . −1 1 2 1 −1 −2 1

D+
4,r/` . . . . −1 1 . . 1 −1 . 1

D+
4,0 . . . . 1 . . −2 1 −1 2 1

D−4 . . . . . . −1 . 3 −3 . 1

Analysis of Table 3 and comparison with the oriented case show that in the

space L(M,E,N) for non-oriented source M and oriented target N ,

i) a rational basis of discriminantal cycles is formed by the cycles in the second

half of Table 3;

ii) for a basis over the integers one can take

Ic ′/2, Ic+
′, (I ′d + I ′` − Ic ′/2)/2, (I ′d − Ic+′ +D±4 )/2, D±4 ;

iii) to obtain a Z2-basis one should add A3
2 + A+

3 A2 to the mod2 reductions of

the integer basis.

We see that, depending on the triviality of the linear combinations of the I ′`,

D±4 and A3
2 +A+

3 A2 cycles, the rational or integer local invariant spaces have ranks

at least 3 and at most 5, with the upper bound goes up to 6 over Z2.

Switching to the space L1(M,E,N) of corank at most 1 maps, we need to drop

every mentioning of the D±4 cycle in the above items. In particular, this reduces all

the rank bounds by 1. In particular, we have

Proposition 4.1. The space of integer local invariants of Lagrangian maps of a

non-oriented surface M to oriented R2 is 4-dimensional. Its basis is formed by the

invariants

Ic/2, Ic+, (Id + I` − Ic/2)/2 and (Id − Ic+)/2.

Assume now the target surface N non-oriented making no assumption on ori-

entability of the source M. In addition to the loss of the local degree index σ in

the notations of the strata in Section 3 we have had so far in the current section,

this condition allows for only one type of the A4 bifurcation and also makes no

difference between the D+
4,r and D+

4,` transitions. However, this does not imply any
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further amendment to Table 3. Therefore, all our observations about the spaces

of discriminantal cycles stay true if at least one of the surfaces M and N is not

oriented.

5. Non-trivial discriminantal cycles

In this section we are showing that some of the integer discriminantal cycles we

have found are non-trivial in perhaps the simplest possible situations, namely in

the space of Lagrangian mappings of a 2-sphere, in its component of contractible

maps (the contractibility requirement includes the contractibility of the induced

map to the Lagrangian Grassmannian). The idea is to construct a loop in a space

of Lagrangian maps having a non-zero intersection number with a cycle. The loop

in its turn will be non-contractible.

We start with a two-parameter family of caustics formed by the bifurcations

of the section of the D+
4 caustic in R3 by a smooth sheet tangent to the cuspidal

edge at the D+
4 point, as illustrated in Fig. 15. The corresponding generating family

depending on two additional parameters λ is

F (x, y, u, v, λ) = x2y +
1

3
y3 + (v + λ1)y2 + (av2 + λ2)y + ux ,

where a > 1 is a constant. The equation Fy = 0 shows that the source bifurcates

between a sphere in the xyv-coordinate space and the empty set. The local degrees

of the Lagrangian maps at all pleat points are the same, and we are assuming them

to be +1 at this moment.

Consider now a path γ in L(S2, T ∗R2,R2) that may be described in appropri-

ate coordinates as induced from the generating family F as shown in Fig. 15. A

more complicated version of the same homotopy of planar caustics appeared in [15]

(without any relation to the sections of the D+
4 caustic) as a candidate for a non-

trivial loop in L(S2, T ∗R2,R2) in assumption that the orientation of S2 is ignored.

We are going to show that γ is indeed a non-trivial loop in such a setting provided

the space of the Lagrangian maps is interpreted correctly.

γ

λ1
λ2

u

v

A
+,+;e

4,0

+;+
D+

D
4

3

−,+;e
A

4,2

+;+
D

3

Figure 15. Sections of the D+
4 caustic by a smooth sheet non-transversal to its cuspidal edge.

In the bifurcation diagram, all the cusps in its left half are of (−,+)-type, while all those in the
right half are (+,+)-cusps.
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A Lagrangian map of a surface M → T ∗R2 → R2
u,v, defined by a global generat-

ing family F of functions in the way considered for map germs in Section 2.1, lifts to

a map M → R3
u,v,F if we use the values of the family as the third coordinate in the

target. The image of such a map is called a wave front (see [3] or [6] for the theory

of Legendrian maps and other related topics). Using this lifting, the homotopy of

the Lagrangian maps in L(S2, T ∗R2,R2) corresponding to the path γ in Fig. 15

may be understood via the homotopy of the corresponding wave fronts in R2
u,v,F .

The latter is an eversion of a flying saucer front: starting γ with the saucer with

the inward co-orientation, we are changing it to the outward one. See Fig. 16.

γ

F

Figure 16. Eversion of a flying saucer front, and the sequence of bifurcations of its sections by
the planes v = const during the homotopy of the planar caustics along the path γ in Fig. 15.

From Fig. 16 we see that the final Lagrangian map γ1 of the path γ is in the same

connected component of the complement to the discriminant Ξ in L(S2, T ∗R2,R2)

as the composition γ0 ◦ j of the initial map with an orientation-reversing involu-

tion j of the sphere, for example, with the reflection (x, y, v) 7→ (−x, y, v). In our

construction, we will be interested only in how γ and Ξ meet, and therefore we can

assume that γ1 and γ0 ◦ j coincide.

Let γ̄ be a path in L(S2, T ∗R2,R2) formed by all the compositions γt ◦ j, where

γ = {γt, 0 ≤ t ≤ 1}. The path Γ = γ̄γ is a loop in L(S2, T ∗R2,R2).

Proposition 5.1. (conjectured by Ohmoto) The loop Γ is not contractible.

Proof. According to Fig. 15, the indices of intersection of Γ with the discriminantal

cycles D±,+4 and D±,−4 , contributed respectively by γ and γ̂, are both +2.

Corollary 5.2. Consider the space of integer discriminantal cycles in the connected

component of L(S2, T ∗R2,R2) containing maps for which the induced maps of S2

to the Lagrangian Grassmannian of 2-planes in R4 are contractible. In its subspace

spanned by the cycles D±,+4 and D±,−4 , only the difference D±,+4 −D±,−4 may be the

derivative of an integer-valued local invariant.

The version of the above for a non-oriented sphere is as follows. Elimination of

the orientation of S2 means that we do not distinguish between the two orientation

options, that is, the space L(S2
nonor, T

∗R2,R2) is the quotient L(S2, T ∗R2,R2)/Z2
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where the Z2-action is by composing with any fixed orientation-reversing involu-

tion of the sphere. Within such a setting, the path γ in Fig. 15 is closed in this

quotient. As it was noticed in Section 4.4, the strata in Fig. 15 lose now the second

superscript in their notation, and we see that the intersection index of γ with the

D±4 discriminantal cycle is 2. Hence this cycle may be the derivative of a mod2

local invariant, but not of an integer or rational one. This addresses the question

from [15].

Due to the local nature of all the constructions of this section, all the claims we

have done here stay valid for any Legendrian fibration E4 → N2, not just for the

cotangent bundle of R2.
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