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field theories has been proposed. The same method can be applied to theories at finite density
affected by the notorious sign problem, reducing a high-dimensional oscillating integral to a more
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1. Introduction

Non perturbative phenomena play a relevant role in many aspects of modern quantum field
theory. The most developed tool to probe quantitatively these phenomena is the Markov Chain
Monte-Carlo simulations of the theory discretised on a space-time lattice. However, this method
has several limitations, one of the most severe being the so called sign problem.
The method relies on the interpretation of the Euclidean path integral measure as a probability
measure; in which case it is possible to build a Markov Chain that will reproduce the Boltzmann
weight in the long run. However, in many interesting theories the Euclidean action is not real and
the method becomes very inefficient.
Recently, a new simulation method based on the density of states has been proposed [1] and tested
successfully in few models [2, 3, 4, 5].
We feel that the method deserves further testing in order to properly assess its performance. So
far, the method has been probed in discrete models and far from phase transitions. Our aim is to
study a model with continuous degrees of freedom and in the neighboring of a phase transition.
The relativistic Bose gas at finite density is very well suited for these kind of tests; it is known to
undergo a second order phase transition and it is relatively fast to simulate.

2. The density of states

Let us consider an Euclidean quantum field theory described by the variables φ , the properties
of the system can be derived from the partition function

Z(β ) =
∫

[Dφ ]eβS[φ ]. (2.1)

The density of states is defined by the integral

ρ(s) =
∫

[Dφ ]δ (s−S[φ ]), (2.2)

and its geometrical interpretation is the volume of phase-space available to the system at fixed
action. From which it is possible to compute partition functions and observables

Z(β ) =
∫

dsρ(s)eβ s. (2.3)

An algorithm to compute the log-derivative of the density of states was proposed in [1], and the
convergence of the algorithm was proved in [2].
It was tested in 4d compact U(1) lattice gauge theory, which is known to undergo a first order phase
transition with remarkable results. In fig.(1) a plot of the log-derivative of the density of states is
shown, and in tab.(1) we report a comparison between the critical value of the coupling computed
using the density of states method and a traditional Monte-Carlo.

3. Generalized density of states

The case of complex action can be treated in the same fashion; eq.(2.1) becomes

Z(β ,µ) =
∫

[Dφ ]eβSR[φ ]+iµSI [φ ] (3.1)
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Figure 1: The log-derivative of the density of states for different volumes in 4d U(1) LGT

Lmin kmax βCv(∞) χ2
red

14 1 1.011125(3) 0.91
12 1 1.011121(3) 2.42
12 2 1.011129(4) 0.67
10 1 1.011116(5) 7.44
10 2 1.011127(3) 0.60
8 1 1.011093(5) 90.26
8 2 1.011126(2) 0.62

Table 1: Comparison between the critical value of β computed using the density of states and using a
traditional Monte-Carlo CITAZ

where SR,SI are the real and imaginary parts of the action and µ is the Lagrange multiplier cor-
respondent to the complex part of the action. The generalized density of states [3] is introduced
by

Pβ (s) =
∫

[Dφ ]δ (s−SIm[φ ])eβSRe[φ ]. (3.2)

If β = 0, P0(s) is the volume of phase-space available to the system at given imaginary part of the
action. At finite β there is an additional weight proportional to eβSR[φ ]. The partition function is the
Fourier transform of the generalized density of states

Z(β ,µ) =
∫

dsPβ (s)e
iµs. (3.3)

It is worth to notice that the integrand in eq.(3.2) is real and that the difficulties due to the oscillating
phase are present only in the 1-dimensional integral in eq.(5.4). Using the LLR algorithm it is
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possible to compute Pβ (s) with very high precision over many order of magnitude, thus the sign
problem is reduced to the computation of a 1-dimensional fastly oscillating integral.

4. Relativistic Bose gas at finite chemical potential

The Bose gas at finite chemical potential is a perfect toy-model to test new algorithms for
simulating systems affected by a sign problem. It has been studied extensively with different ap-
proaches i.e. complex Langevin dynamics, Lefschetz thimble, dual formulation and mean field
theory[6, 7, 8, 9].
In the continuum formulation the action has the form

S[φ ] =
∫

d4x∂µφ∂µφ +(m2−µ
2)|φ |2 +µ(φ ∗∂4φ −φ∂4φ

∗)+λ |φ |4. (4.1)

The discretization of this action poses no difficulties as long as the chemical potential is treated as
a vector potential. This leads to

S[φ ] = ∑
x
(2d +m2)φ ∗x φx +λ (φ ∗x φx)

2−
4

∑
ν=1

(
φ
∗
x e−µδν ,4φx+ν +φ

∗
x+νeµδν ,4φx

)
. (4.2)

The latter can be written in term of the real and imaginary part of the fields φa =
1√
2
(φ1 + iφ2)

S[φ ] =∑
x
(2d+m2)φ 2

a,xφx+λφ
4
a,x−

3

∑
ν=1

φ
a,x

φa,x+ν−cosh µφa,xφa,x+4̂+ isinh µεabφa,xφb,x+4̂. (4.3)

In the discrete case the Lagrange multiplier µ is coupled on both the real and imaginary part of the
action, and as a consequence the generalized density of states will depend also on µ ,

Pm,λ ,µ(s) =
∫

[Dφ ]δ (s−SIm[φ ])eSRe(m,λ ,µ)[φ ] (4.4)

We are particularly interested in the expectation value of the oscillating phase, which quantifies the
severity of the sign problem

〈e−SIm〉= e−V F , (4.5)

where V is the volume and F is the variation of the free energy due to the oscillating phase.
Another interesting observable is the density of particles 〈n〉, given by

〈n〉= d logZ
dµ

. (4.6)

5. The oscillating integral

It is fairly easy to compute the generalized density of states using the LLR algorithm; an
example is shown in fig.(2). The LLR algorithm delivers a very high precision over different
orders of magnitude. In fig.(2) it is clear that the DOS deviates from a pure Gaussian distribution.
Deviations from a Gaussian function are clearly visible despite these are suppressed by a factor of
order e−100; which is well beyond the precision of a standard Monte-Carlo procedure.
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Figure 2: The log-derivative of the generalized DOS with m = λ = 1 and V = 84. A straight line would be
a purely Gaussian DOS, it is very remarkable that using the LLR is possible to clearly see deviations from
gaussianity.

In order to extract physical quantities from the theory we need to carry out the Fourier trans-
form of the generalized DOS, eq.(5.4). The natural approach would be to use a fast Fourier trans-
form algorithm, however this method is too naive and would break down at very low chemical
potential. In order to illustrate why this approach is not adequate let us assume that, in first approx-
imation, the DOS is a Gaussian plus some white noise η(s),

Pm,λ ,µ(s)∼ e−s2σ(m,λ )+η(s). (5.1)

The partition function is the Fourier transform of the latter

Z(m,λ ,µ)∼ e−
µ2π2

σ(m,λ ,µ) + c, (5.2)

where c is the Fourier transform of the noise. Therefore, the signal is exponentially suppressed with
µ2 while the noise give a constant contribution to the partition function. A much better alternative
is to filter the noise by interpolating the log-derivative of the DOS with a polynomial of degree 2n,

Pm,λ ,µ(s)∼ e∑i cis2i
. (5.3)

In this case the statistical errors affect the coefficients and the Fourier transform of P is a fast
decaying function. We found our results to be very stable whenever we avoid over-fitting; in
practice we use a Bayesian evidence criterion [11] to decide the degree of the polynomia in order
to limit over-fitting.
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Once a polynomial interpolant of the DOS is obtained, we are left with the computation of the
following fastly oscillating integral

Z(m,λ ,µ) =
∫

dse∑i cis2i+iµs. (5.4)

The most straightforward approach is to use a simple numerical integration routine with multiple
precision. The number of digits needed for the calculation increases with volume and chemical
potential as the cancellations become more violent. It will eventually grow to a very large number.
To give an idea, we needed 50 digits to compute the partition function with volume 84 and µ = 1.
Another approach is the numerical steepest descent or Lefschetz Thimble [10] method. Let us
consider an integral of the type

Z =
∫ +∞

−∞

e−S(x)dx, (5.5)

where S(x) is holomorphyic. It is possible to show that

Z = ∑
k

mke−iSIm(zk)
∫

Jk

dze−SRe(z), (5.6)

here zk are critical points ∂zS = 0. And
∫

Jk
are integrals over the curves of steepest descent. These

are parametric curves given by the ordinary differential equation

ẋ =−Re{∂zS(z)} , ẏ =+Im{∂zS(z)} . (5.7)

mk is an integer number that counts the number of intersection between the curves of steepest ascent
and the original domain of integration. Notice that the sign problem did not disappear completely,
there is a residual oscillating phase coming from the Jacobian of the transformation dz

dt and each
curve of steepest descent contributes with a global phase e−iSIm(zk). This residual sign problem is
very mild and computation in double precision are sufficient.

In Fig(5) we show the average free energy difference between the full and the quenched theory
eq.(4.5). Our results are compared with a mean field calculation in the framework of complex
Langevin dynamics [8], courtesy of the author.
The results are in very good agreement with each other.

6. Conclusions

We presented an application of the LLR algorithm to a system affected by a severe sign prob-
lem. We found that the method is able to extract meaningful results at finite density even in regions
of the parameter space where the sign problem is severe. The main drawback is that it relies on a
polynomial fit of the log-derivative of the DOS, this might be difficult if the shape of the density
of states is not very regular. On the other hand, in all the system studied with this approach the
density of states turned out to be a remarkably smooth function, which gives hope that this is the
case also for physically more relevant systems.
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Figure 3: Comparison between LLR method and mean field theory for µ = λ = 1
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