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Abstract
In this paper, a non-stationary random vibration problem of an elastic half-space under a moving stochastic load modelling the dynamic characteristic of the train load is studied. An analytical method combining the pseudo-excitation method (PEM) and Fourier transformation method (FTM) is proposed. Because the load is moving and random, the responses at fixed locations in the half-space have characteristics of evolutionary non-stationary randomness. By means of the FEM, the non-stationary random vibration analysis is transformed into a conventional moving pseudo harmonic load problem. A closed-form solution of random vibration responses is derived in an integral form, which avoids step-by-step integration in time domain and thus leads to great saving in computational time. An adaptive quadrature method is adopted in order to obtain the desired numerical results of the singular integrand with non-stationary power spectral density. Through numerical examples, the proposed method is first validated, and then the dynamics characteristics of the non-stationary random responses of the half-space in all subsonic, transonic and supersonic cases are analysed. 
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1. Introduction
With the continuous increase in the velocity of trains worldwide, the effects of the high-speed train on the environment have recently received special attention. Although vibration induced by travelling trains may not result in the collapse of buildings as earthquakes do, it may cause malfunction of sensitive equipment, and affect the quality and comfort of people’s life given that nowadays people are more conscious of environmental impact. 
Lamb [1] investigated the disturbance of an elastic medium induced by an impulsive force acting along a line or at a point on the semi-infinite surface or inside an unbounded full space. Using the double Fourier transformation method, Eason [2] studied a three-dimensional steady-state problem for a uniform half-space subjected to both point loads and distributed circular or rectangular loads moving at a constant velocity. Gakenheimer and Miklowitz [3] analysed the transient displacements in the interior of an elastic half-space induced by a moving point load. Fryba [4] examined the steady-state response of an unbounded elastic space due to a point load moving at or beyond the Rayleigh wave velocity, and all the subsonic, transonic and supersonic cases were studied, in which the inverse transform was evaluated by the Carniard-de Hoop technique. Alabi [5] studied the response of a half-space subjected to a moving oblique point load for speed up to half the Rayleigh wave velocity, and analysed the effects of the load’s velocity or distance or observation depth based on numerical results. De Barrors and Luco [6, 7] investigated the response of a layered viscous elastic half-space under a point load moving at constant subsonic, transonic or supersonic velocity, and the effect of layering was considered by using a layer transfer matrix approach to obtain an exact factorization for the displacement and stress fields. Krylov [8, 9] and Takemiya [10] studied ground vibration induced by train loads moving at Rayleigh wave velocity, in which the loads from the track acting on the half-space were modelled as distributed loads. Using a layer stiffness approach, Gunaratne [11] studied the deformations of a layered half-space subjected to a live load modelled as uniformly distributed normal or shear stresses. Dieterman and Metrikine [12] considered a harmonically varying load moving along an elastic layer resting on a rigid foundation to study the parameters which had an influence on the critical speed of wave propagation in the layer. 
Lieb et al. [13, 14] presented a fast numerical algorithm to study the response of a half-space under surface loads, in which the inverse transformation of the response was obtained by using wavelet decomposition. Jones [15, 16], and Lefeuve-Mesgouez [17, 18] investigated the transmission of vibration by utilising a semi-analytical approach, in which the numerical results were obtained with the FFT algorithm. The model was a half-space or a half-space coupled with a layer on the top, whilst the excitation was a moving harmonic rectangular or strip load. Sheng et al. [19-21] investigated the propagation of ground vibration by using a transfer matrix approach and Fourier transformation method. The ground was modelled as layers coupled with a half-space or a rigid foundation, whilst the track was modelled as a beam structure consisting of a rail, a rail pad, a sleeper mass and a ballast layer. Hung and Yang [22] analysed the response of a viscoelastic half-space due to several types of vehicle loads moving with subsonic, transonic and supersonic velocity. Using the Green’s function approach, Bierer [23] presented a semi-analytical, discretized model for investigating ground motion excited by moving loads distributed uniformly over a rectangular area. Koziol and his colleagues [24, 25] studied the surface vibration induced by a point load moving along an infinitely long beam resting on the surface of or embedded in a two-dimensional viscous elastic layer, and obtained the steady-state response by a special approximation based on the wavelet theory.
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]The above papers mainly deal with deterministic dynamic response problems where both the system models and the loads are given in a prescribed form. Actually the moving loads produced by vehicles are somehow random due to track irregularity and other uncertainties, and hence the vibration at any specific ground location induced by the loads is a non-stationary random process. To solve such problems is quite difficult although it is very useful. Assuming the ground vibration was a random and statistically stationary process, Hunt [26, 27] presented an analytical method to obtain the power spectrum of ground vibration due to traffic loads. Sun and Greenberg [28] introduced a method named follow-up spectral analysis procedure to overcome the difficulty that the dynamic responses of linear systems subjected to moving stochastic sources were a non-stationary process. Metrikine [29] studied the steady-state surface ground vibration duo to a point load moving along a beam embedded in a layer. A constant or harmonically varying load and a stationary random load was investigated, in which the randomness was represented by a random phase angle uniformly distributed over the range of . Sheng et al. [30] developed a theoretical model for investigating the ground vibration induced by trains running on tracks with vertical irregularities, and obtained its power spectrum density (PSD) whose computational cost did not vary with time as a result of using Fast Fourier Transformation (FFT). Lu et al. [31] adopted Sheng’s track and soil models to study the random response of ground subjected to random moving harmonic loads in a subcritical case by using the pseudo-excitation method [32] and the precise integration algorithm [33]. Lombaert et al. [34] studied the deterministic and random responses of a track-soil system due to quasi-static and dynamic excitation in subcritical cases. The quasi-static excitation was related to the static component of the axle loads, whilst the dynamic excitation was due to random track unevenness.
There are plenty of research works for solving deterministic dynamic response problems of structures or solids subjected to moving loads [35], but stochastic dynamic responses excited by moving loads are still difficult to deal with, especially in the critical and supercritical cases, and the efficiency of obtaining the second-order statistics of the random responses by conventional computational methods is low in particular. The objective of this paper is to present an novel method to obtain the non-stationary random vibration response of a half-space subjected to a moving stochastic load based on the PEM. The PEM is a well-established algorithm for analysing the responses of linear time-independent systems under stationary or non-stationary random excitations [36, 37]. By PEM the stationary random vibration analysis is translated into a harmonic analysis, and the non-stationary random vibration analysis is translated into a step by step integration analysis. Due to the PEM’s simplicity and high efficiency, it has been widely used in many engineering fields [38-40]. 
For the non-stationary random vibration analysis, usually the PEM was directly used to yield the required results by a step-by-step integration method in time domain for each frequency point analysed and responses of a large number of frequency points must be computed. In some situations, such as under high frequency excitation, to obtain accurate response of structure requires small integration time steps, which is very time consuming. In order to overcome aforementioned difficulties, in this paper a novel method to deal with the problem of a half-space subjected to a moving stochastic load is proposed. In the mechanical model, the load acting on the half-space is modelled as a moving stochastic load which becomes an elastically distributed line load acting on the elastic half-space through the beam on the top of the half-space. Using the PEM the moving random load is transformed into a moving pseudo harmonic load. Then, the dynamic equations of the half-space in the combined frequency and wavenumber domain are obtained using FTM. When the PEM and inverse Fourier transformation method (IFTM) are integrated, the close-form solutions of random vibration responses are derived in an integral form. 
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]When the half-space is subjected to the moving stochastic loads, the critical velocity is dependent on the load's velocity and the load fluctuation frequency spectrum, and the mechanism of resonance phenomenon in time domain is complicated. However, the integrand kernel of the responses is singular and highly oscillatory. In addition, the integration interval is infinite. It is quite difficult to obtain the desired numerical results to solve engineering problems. In order to avoid calculating the singular integral, a hysteretic damping is introduced to shift the singular points of the integrand from real numbers to complex numbers. The difficulty in numerical integration of the high oscillatory integrand is overcome by using an adaptive numerical integration algorithm [41,42]. In the numerical examples, the PSDs of displacement, stress and velocity of the half-space are obtained in all subsonic, transonic and supersonic cases. The influence of load's velocity and the load fluctuation frequency spectrum to the PSDs is studied. A series of comparisons between the PSDs induced by a stochastic load and a constant load are made, in which some interesting phenomena can be observed. Based on the numerical results, some conclusions are drawn. The work conducted in the paper provides a useful method to estimate the ground vibration caused by random loads.
2 Model and governing equations for elastic half-space subjected to moving loads
A homogenous isotropic elastic half-space subjected to moving loads is shown in fig.1. The loads acting vertically on the surface are moving at a constant velocity from the infinite negative x direction to the positive one, and they pass through the origin at time instant  [22, 24, 25, 29, 31]. The governing equations of motion can be written as 
[image: ]
Fig. 1. Elastic half-space subjected to moving loads.
	
	(1)


where  and  are the displacement vector and body force vector in the three-dimensional rectangular coordinate system, respectively,  and  are Lamé’s constants, and  denotes the mass density of the elastic solid.
The boundary conditions at the free surface are given as follows:
	
	(2)


where  is the normal stress,  and  are the shear stresses, and  denote the forces acting on the surface.
3 Non-stationary random vibration analysis by PEM
Dynamic properties of the half-space can be characterised by Green’s function. The Green’s function  represents the dynamic response at point  at time t when the half-space is subjected to an impulse at point  at time s. For a time-independent system, the Green’s function degenerates to . Based on the principle of superposition, the displacement of the system can be obtained in the form of 
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Here  is the domain occupied by the system, and  is the moving loads.
To demonstrate how to solve the problem, the formulation for horizontal displacement  is given below, and the response in the other two directions can be obtained similarly. The correlation function of  can be obtained as 
	
	(6)


in which  is the expectation operator, , and  is the autocorrelation function of the loads. According to Wiener-Khintchine theorem, the autocorrelation function  can be expressed by the PSD  in the form of
	
	(7)


where  reflects the energy distribution of a stationary random process in the frequency domain. Substituting Eq. (7) into (6), the correlation function can be written as
	
	(8)

	
	(9)



where ‘’ represents complex conjugate.
The time-dependent variance can be obtained by letting  in Eq. (8):
	
	(10)


Here  is standard deviation. Obviously, the integrand in Eq. (10) is the response’s PSD which has a non-stationary property. That is 
	
	(11)


Notice that in Eq. (9)  is the response of the elastic half-space due to a moving harmonic load of . So if there is a pseudo-excitation  applied to the elastic half-space, the corresponding response will be . Thus 
	
	(12)


Therefore the PSD of the random vibration response is now obtained by the PEM.
4 Random vibration analysis of a half-space induced by a moving stochastic load
4.1 A moving stochastic load which is elastically distributed
As shown in Fig. 2, a rail track is modelled as an infinitely long beam resting on a Winkler foundation, if it is subjected to a concentrated load , the deflection of the beam can be written as [8-10]
[image: ]
Fig. 2. Infinitely long beam on Winkler foundation.
	
	(13)


where  is the equivalent stiffness of the foundation,  is the distance from the load, and  is the characteristic length of the load’s distribution. Considering that the load is moving, the elastically distributed load on rigid foundation can be written as
	
	(14)


Now assume that the half-space is subjected to a elastically distributed moving load on the surface, and considering the load to be nonzero only along line , the load is given as
	
	(15)


Eq.(15) gives the characteristics of the load including moving velocity, distribution form and the spatial interval length over which the load is acting.
Suppose  is the PSD of , the mathematical expression of the pseudo-excitation due to the moving load can be written as [32]
	
	(16)


where  is the Dirac delta function.
4.2 The close-form solution for non-stationary random vibration
According to Helmholtz decomposition of a vector field, the solution of Eq. (1) can be expressed as 
	
	(17)


where  is a scalar potential, and  is a vector potential in which .
Substituting Eq. (17) into Eq. (1) and ignoring the body force leads to the wave equations below
	
	(18)


in which  and  are the velocities of the compression wave and of the shear wave, respectively. 
Transforming Eq. (18) into the combined frequency and wavenumber domain (, , ) gives ordinary differential equations below
	
	(19)


where , .
The analytical solution of Eq. (19) can be easily obtained as
	
	(20)


Due to the requirement of convergence at infinity, the real parts of  and  in Eq. (20) must be positive. In order to obtain constants ,  and  from stress boundary condition, the stress components are now expressed by the displacement components; and combing with Eq. (17), yields 
	
	(21)

	
	(22)
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By applying a double Fourier transform with respect to x and y, Eqs. (21)-(23) are transformed as
	
	(24)

	
	(25)
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Substituting Eq. (20) into (24-26), the stresses components in wavenumber domain can be written as 
	
	(27)


in which
	
	(28)


Transforming Eq. (16) into the combined frequency and wavenumber domain the load has the form of
	
	(29)


Notice that in Eq. (29)  corresponds to time by a Fourier transform of the pseudo moving load, while  is the frequency of excitation. In the following, by inverse Fourier transform, the Dirac delta function helps reduce the threefold integrand of the displacement into a twofold one, and  will be replaced by . This method ensures that close-form analytical solutions can be obtained, which cannot be achieved by the original form of the PEM.
According to stress boundary conditions, the constants in Eq. (27) can be obtained as
	
	(30)


in which
	
	(31)


Substituting Eq. (30) and Eq. (20) into Eq. (17), the displacement components in the combined frequency and wavenumber domain can be determined as
	
	(32)

	
	(33)

	
	(34)


By applying a triple inverse Fourier transform, the pseudo displacement component  in the physical domain is derived as 
	


	(35)


In Eq. (35), due to the properties of Dirac delta function, the threefold integral is reduced into a twofold one, and variable  is replaced by .
Accordingly, the other two displacement components are deduced as
	
	(36)

	
	(37)


Assuming  will give two singular points , where  is the phase velocity in the  direction. When the phase velocity is larger than the Rayleigh wave velocity, a ground vibration boom will be generated. Notice that the phase velocity is determined by both load fluctuation frequency spectrum and velocity of the moving load. These two parameters are key factors to ground resonance, however, the mechanism of resonance in time domain is complicated. It is worth mentioning that  corresponds to a constant moving load, and the boom depend sole on load’s velocity.
In order to avoid singularity in calculation, complex Lamé’s constants are adopted by introducing structural damping [43, 44]:
	
	(38)


where  is the hysteretic damping ratio.
By using the PEM, the non-stationary PSD and the time-dependent standard deviations of displacement components can be computed as 
	
	(39)

	
	(40)


So far the method to obtain the PSD and standard deviation of displacement responses are given. The statistical properties of responses in terms of velocity, acceleration and stress can be obtained in a similar manner.
5 Numerical examples and discussions
5.1 Verification of present method
The analytical formulas given above usually cannot be used directly to solve engineering problems because it is difficult to obtain the required numerical results using these analytical formulas. However, the integral kernel quickly vanishes as  and  reach infinity, and numerical investigation shows that the interval of (-25, 25) is sufficient for both  and  for the numerical integration.The authors have computed the response of a half-space subjected to the moving random load by using an adaptive numerical integration algorithm. For the verification of the present method, a Monte Carlo method is adopted by assuming the moving load is constituted by a series of trigonometric functions with a random component 
	
	(41)


where  is the value of  at the kth frequency  and  is a discretised small regular interval (one hundredth of) within the load’s frequency band of ,  is the corresponding phase of  and is regarded as a uniformly distributed number over the range of . Given that there is no standard PSD data available for the moving random load at present, a band-limited white noise below is taken to represent the loads’ PSD:
	
	(42)


The characteristic length of the load’s distribution  was set as .
Three groups of soil parameters from [17] and [22] are chosen, in which the parameters of soil A were measured at a particular British Rail site, and soil B is a little softer than soil A, whilst soil C, is much more softer than soils A and B, as shown in table 1. 
Table 1 Soil parameters.
	Parameters
	Soil A
	Soil B
	Soil C

	
	
	
	

	
	1550
	1250
	2000

	
	0.257
	0.257
	0.25

	
	0.05
	0.05
	0.02

	
	242
	232
	92

	
	263
	252
	100

	
	459
	411
	173.2


The standard deviations of vertical displacement at point S (0, 0, 1m) computed both by the proposed method and the Monte Carlo method are shown in Fig. 3. As can be observed, the numerical results from the two methods agree well. It should be noted that with more samples, the results obtained by Monte Carlo method will agree even better with those computed by the proposed method. The results show that at the same load velocity, softer soils are easier to result in larger vibration.
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Fig. 3. The standard deviations of vertical displacement at point S: (a) soil A, . (b) soil A, . (c) soil B, . (d) soil B, . (e) soil C, . (f) soil C, .
5.2 Examples
As it is well known, for a half-space subjected to moving loads, the vertical displacement is much larger than the lateral displacements, so this paper focuses on the vertical displacement. As soil C has the most representative properties (significantly softer than soils A and B), a parametric study of the response’s PSD for soil C is carried out in this paper. Examples 1 and 2 give the non-stationary PSD of vertical displacement and normal stress inside the soil, respectively. Example 3 provides the spatial distribution of the non-stationary PSD of vertical displacement on the surface and example 4 shows the response of vertical velocity. The final example 5 gives the spatial distribution of the non-stationary PSD of normal stress inside the soil. 
Example 1: The non-stationary PSD of vertical displacement
To evaluate the effect of the velocity of the moving load and its frequency, the distributions of non-stationary PSD of vertical displacements computed at the observation point S (0, 0, 1m) for the half-space subjected to the load moving at various velocity are shown in Fig. 4. As already stated, the load moves forward from the negative  side, for simple description, the starting time begins at a negative value, and the instant  corresponds to the moment at which the moving load passes through the origin. As shown in Fig. 4(a)-(d), the power of PSD is concentrated on the interval of  and has a large magnitude in low frequency range when the velocity is below the shear wave velocity (). The response magnitude increases with growing load velocity until it reaches its maximum, and this maximum occurs when the load velocity is in the vicinity of the Rayleigh wave velocity, in Fig. 4(b). Then the response magnitude will decrease with larger velocity in Fig. 4(c) and (d). On the other hand，it can be observed that along the frequency axis, first the response amplitude decreases rapidly, and then it increases slowly, in Fig. 4(a)-(d). Due to the propagation of waves, the response of the observation point S (0, 0, 1m) will reach a maximum value immediately after the instant when the load passes through the origin O (0, 0, 0). As shown in Fig. 4(e) and (f), in the case that the load velocity exceeds the shear wave velocity (), oscillation of the PSD is apparent. On both sides of the time axis there exists an amplified area. This phenomenon is generally known as ground vibration boom. The load velocity and load fluctuation frequency spectrum are the key factors, but it is difficult to identify the mechanism of the boom in time domain. Nonetheless, some measures can be taken to alleviate the boom. For a specific half-space, a series of numerical experiments can be carried out to determine at which load velocity and vibration frequency the strongest boom occurs. Then this load velocity or vibration frequency should be avoided. On the other hand, if the load velocity and vibration frequency cannot be changed, some measures may be taken to make the soil harder and this may avoid the boom because the Rayleigh wave velocity would become greater accordingly.
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Fig. 4. Non-stationary PSD of vertical displacement for point S: (a) . (b) . (c) . (d) . (e) . (f).
Example 2: The non-stationary PSD of vertical normal stress
The non-stationary PSD of vertical normal stress at point S is shown in Fig. 5. The numerical results show that the responses have a maximum value when the vibration frequency is low and the load velocity is near the Rayleigh wave velocity (Fig. 5(b)). When the load velocity is far away from the Rayleigh wave velocity, first the response magnitude increases with growing frequency, then after the peak it will decrease to almost zero when the frequency is about . The response magnitude changes with the load velocity in a similar way to that in Fig 4, and it reaches the maximum value also when the load passes after the origin. 
As can be observed, low frequency plays an important role in shaping the response. Thus the limiting case that corresponds to a constant load should be considered. Asume  as a circular frequency point of the stochastic load in Eq. (16), the virtual PSD on this single frequency point induced by a constant load can be obtained in a similar way as the stochastic case. In the following examples, the spatial distributions of the non-stationary PSD of vertical displacement, velocity and stress of the half-space are discussed separately. The PSD depends on many variables. For simplicity, the PSD at  and at  is chosen for a detailed analysis.
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Fig. 5. Non-stationary PSD of vertical normal stress for point S: (a) . (b) . (c) . (d) . (e) . (f).
Example 3: The spatial distribution of the non-stationary PSD of vertical displacement on the surface
The spatial distribution of non-stationary PSD of vertical displacement on the surface by a constant moving load is shown in Fig. 6, and the stochastic case ( is selected) is show in Fig. 7. In Fig. 6(a) and (b), corresponding to the case of , the PSD is almost symmetrical with respect to the  plane. The power of displacement is mainly concentrated in the loading area, which indicates that wave propagation induced by the moving load is not strong. The influenced areas become larger with increasing load velocity, so is the magnitude. The magnitude reaches the maximum value when the load velocity is very close to the Rayleigh wave velocity. In Fig. 6(c)-(f), corresponding to the case of , the PSD is no longer symmetrical with respect to the  plane due to hysteretic damping. The strongly influenced areas are mainly concentrated around the load, and wave phenomenon is obviously observed. There is a V-shaped region of oscillation behind the load, and most energy of the vibration is restricted in this region. The V-shaped region becomes smaller as  increases, so does the maximum magnitude. At the whole load velocity range, the PSD is completely symmetrical with respect to the  plane, so are the spatial distributions of PSD of velocity, acceleration and stress discussed below. 
In Fig. 7, the responses are almost lower than those in Fig. 6 in corresponding cases, and the PSD is totally symmetrical with respect to plane  at the whole load velocity range. The response magnitude changes with growing load velocity in a similar way to those in Fig. 6. Whether  is smaller or bigger than , the strongly influenced areas are mainly concentrated around the load. The magnitude reaches the maximum value when the load velocity is near the Rayleigh wave velocity. In Fig. 7(c)-(f), corresponding to the case of , the influenced areas are restricted around an X-shaped region surrounding the origin. 
The wave phenomenon observed on the surface is mainly the Ryleigh type. In order to investigate the phenomenon induced by shear wave and compressive wave, the responses within the half-space must be studied. 
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Fig. 6. The spatial distribution of the non-stationary PSD of vertical displacement on the surface by a constant load: (a) . (b) . (c) . (d) . (e) . (f).
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Fig. 7. The spatial distribution of the non-stationary PSD of vertical displacement on the surface by stochastic load: (a) . (b) . (c) . (d) . (e) . (f).
Example 4: The spatial distribution of the non-stationary PSD of vertical velocity on the surface 
The spatial distribution of non-stationary PSD of vertical velocity on the surface under a constant moving load is shown in Fig. 8, and the stochastic case is shown in Fig. 9. In Fig. 8(a) and (b), corresponding to the case of , the power of velocity is mainly concentrated in the load area and has two very similar peaks, but their magnitudes are quite different as  is near . The influenced areas become larger as  increases, and the magnitude grows quickly. The magnitude reaches a maximum value when the load velocity is very close to the Rayleigh wave velocity. In Fig. 8(c)-(f), the responses have multiple different peaks. As load velocity grows, first the magnitude decreases when , and then it increase slowly when . The V-shaped region of oscillation becomes smaller with growing load velocity, and wave phenomenon is apparent.
In Fig. 9, the responses are higher than those in Fig. 8 at various velocities. Actually the responses increase nonlinearly with the increasing vibration frequency at a same velocity. Two peaks have similar magnitudes when  is beyond , but they can be quite different if  is close to . The magnitude reaches a maximum value when the load velocity is around the Rayleigh wave velocity, and the magnitude changes with growing load velocity follow a similarly way as those in Fig. 8. In Fig. 9(c)-(f), corresponding to the case of , most energy of the vibration is mainly restricted in the X-shaped region, and wave phenomenon is apparent. Compared with Fig. 7, the responses in Fig. 9 are no longer symmetrical with respect to the  plane. The wave phenon- menon observed on the surface is mainly the Ryleigh type, too. 
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Fig. 8. The spatial distribution of the non-stationary PSD of vertical velocity on the surface by a constant load: (a) . (b) . (c) . (d) . (e) . (f).
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Fig. 9. The spatial distribution of the non-stationary PSD of vertical velocity on the surface by the stochastic load: (a) . (b) . (c) . (d) . (e) . (f).
Example 5: The spatial distribution of the non-stationary PSD of normal stress on plane  
The spatial distribution of non-stationary PSD of normal stress on plane  by a constant moving load is shown in Fig. 10, and the stochastic case is shown in Fig. 11. In Fig. 10(a) and (b), corresponding to the case of , the magnitude becomes larger with increasing load velocity, so does the influenced area. When the load velocity approaches the Rayleigh wave velocity, the magnitude reaches the maximum value. No wave phenomenon is obviously observed because the power of stress is mainly concentrated in the loading area. The magnitude does not continuously increase or decrease with growing load velocity when , which is different from the cases in examples 3 and 4. Wave propagation is also apparent.
In Fig. 11, corresponding to moving stochastic load, the distribution of the responses are very different from those of in Fig. 10 in the case of , which means that shear wave has an important impact on the response induced by dynamic load, and this impact will be magnified in the case of . The shear wave and compressive wave make the influenced area induced by stochastic load larger than that by constant load. In the high velocity case (), the magnitude of response induced by stochastic load is lower than that induced by constant load, and the stochastic load makes the response spread further. 
[image: ][image: ]
	(a)	(b)
[image: ][image: ]
	(c)	(d)
[image: ][image: ]
	(e)	(f)
Fig. 10. The spatial distribution of the non-stationary PSD of vertical stress on plane z=1 by a constant load: (a) . (b) . (c) . (d) . (e) . (f).
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Fig. 11. The spatial distribution of the non-stationary PSD of vertical stress on plane z=1 by the stochastic load: (a) . (b) . (c) . (d) . (e) . (f).
The proposed method relies on the load's pseudo form and its Fourier transform, which can  treat the problem of a half-space subjected to a moving stochastic load analytically, and only brings in numerical treatment when evaluating the integrals. It can be predicted that if a half-space is subjected to other types of moving load, such as a concentrated load, a linear distributed load and an area-distributed load, one can obtain the response in a similar manner. A more realistic track structure coupled with the half-space under moving random loads is a challenging problem. It is believed that this method can be adapted for this problem. 

6. Conclusions
In this paper, the analytical expressions and numerical results for the responses of a half-space subjected to a stochastic load moving on its surface are presented. The main conclusions of this paper can be drawn as follows:
i. An analytical solution method for studying a half-space subjected to a moving stochastic load is proposed. The function of pseudo-excitation is transformed from time domain into frequency domain, and the inverse transformation ensures that the analytical solutions can be found. The effect of a random load moving at subsonic (lower than the Rayleigh wave velocity), transonic (between the Rayleigh and Compression wave velocity) and supersonic (larger than compression wave velocity) ranges is studied.
ii. Low frequency load plays an important role in shaping the response. The PSD of displacement has a large magnitude in low frequency range when the load velocity is below the shear wave velocity. When the load velocity exceeds the shear wave velocity, ground vibration boom occurs, and on both sides of the time axis there exists an amplified area. Due to the propagation of waves, the response of point S (0, 0, 1m) under the origin will reach a maximum value when the load has passed the origin.
iii. Under a moving constant load, the maximum response is entirely determined by the load velocity. Therefore the responses have the maximum value when the load velocity is almost equal to the Rayleigh wave velocity. On the other hand, under a moving random load with a limited frequency band, the maximum response is determined by both the load velocity and load fluctuation frequency spectrum, and hence in contrast with the previous case of load moving at a constant speed, it may not occur when the load velocity is close to the Rayleigh wave velocity. Whether the moving load is constant or stochastic, the responses and the influenced areas increase with increasing load velocity in the subsonic case, but the responses decrease with load velocity when it is between the Rayleigh wave velocity and shear wave velocity. No wave propagation is detactable when the load velocity is below the shear wave velocity .
iv. When the load velocity is higher than the shear wave velocity, the influenced areas on the surface are restricted in V-shaped areas for a constant moving load, while the influenced areas are restricted in X-shaped areas for a moving random load. For both constant and random loads, the influenced areas decrease with growing load velocity. Wave propagation is apparent. For high load velocity (larger than the shear wave velocity), the wave induced by a random load is more obvious than that induced by a constant load, especially for the point S (0, 0, 1m) inside the half-space.
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Figure captions
Fig. 1. Elastic half-space subjected to moving loads.
Fig. 2. Infinitely long beam on Winkler foundation.
Fig. 3. The standard deviations of vertical displacement at point S: (a) soil A, . (b) soil A, . (c) soil B, . (d) soil B, . (e) soil C, . (f) soil C, .
Fig. 4. Non-stationary PSD of vertical displacement for point S: (a) . (b) . (c) . (d) . (e) . (f).
Fig. 5. Non-stationary PSD of vertical normal stress for point S: (a) . (b) . (c) . (d) . (e) . (f).
Fig. 6. The spatial distribution of the non-stationary PSD of vertical displacement on the surface by a constant load: (a) . (b) . (c) . (d) . (e) . (f).
Fig. 7. The spatial distribution of the non-stationary PSD of vertical displacement on the surface by stochastic load: (a) . (b) . (c) . (d) . (e) . (f).
Fig. 8. The spatial distribution of the non-stationary PSD of vertical velocity on the surface by a constant load: (a) . (b) . (c) . (d) . (e) . (f).
Fig. 9. The spatial distribution of the non-stationary PSD of vertical velocity on the surface by the stochastic load: (a) . (b) . (c) . (d) . (e) . (f).
Fig. 10. The spatial distribution of the non-stationary PSD of vertical stress on plane z=1 by a constant load: (a) . (b) . (c) . (d) . (e) . (f).
Fig. 11. The spatial distribution of the non-stationary PSD of vertical stress on plane z=1 by the stochastic load: (a) . (b) . (c) . (d) . (e) . (f).

Table captions
Table 1 Soil parameters.
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