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Abstract 6 

The ideal cycle concept is poorly defined yet implicit and potentially useful in many 7 

stratigraphic analyses. A new method provides a quantitative definition of ideal cycles, and a 8 

simple, robust method to analyse stratal order and quantify stratigraphic interpretations. 9 

The method calculates transition probability (TP) matrices from a vertical succession of 10 

strata for all possible permutations of facies class row numbering in the matrices. The 11 

ordering of facies classes that gives highest transition probabilities along a diagonal of the 12 

TP matrix can be taken as a quantitative definition an ideal cycle for the strata being 13 

analysed. Application to a synthetic example shows how an ideal cycle can be identified, 14 

even in noisy strata, without any assumptions about or knowledge of cyclicity. Application 15 

of the method to two outcrop examples shows how it can be useful to define the most 16 

optimal cycle and determine how much evidence is present for ordered and cyclical strata.  17 

Introduction 18 

In stratigraphic analysis there is a long history of attempts to identify cyclical strata based on 19 

bed-by-bed analysis of facies successions (Miall, 2010), but so long as methods are 20 

qualitative and poorly defined, progress in understanding facies cyclicity will be limited. 21 

Understanding what order and cyclicity are present in strata is fundamentally important 22 



because strata record the history of Earth surface processes, including long term climate 23 

change. Identification of order and cyclicity can help resolve patterns of Earth surface 24 

processes. Understanding order and cyclicity is also important for predictive models of 25 

stratal heterogeneity, useful for example in evaluation of subsurface water and hydrocarbon 26 

resources.  27 

In the context of a succession of sedimentary facies, a cycle is a series of connected events, 28 

for example depositional facies, which return to a particular starting point (Schwarzacher, 29 

1975; Goldhammer, 2003;). Parasequences and high-frequency sequences are examples of 30 

cycles, often defined on the basis of facies, indicating depositional environment linked to 31 

changes in external forcing factors such as relative sea-level or climate change (e.g. 32 

Catnuneanu, 2006). This approach is a continuation of much older ideas of an ideal cycle 33 

(Duff and Walton, 1962; Duff et al. 1967). Identifying characteristic or idealised cycles has 34 

often been based on an optimistic assumption that underlying order is present, even if 35 

partly or mostly obscured by noise (Pearn, 1964; Schwarzacher, 1975; Burgess, 2006), with a 36 

few notable more quantitative exceptions (e.g. Powers and Easterling, 1982; Xu and 37 

Maccarthy, 1998, and see techniques described in Sadler, 2004). This paper introduces a 38 

method to quantitatively define ideal cycles as the arrangement of facies classes in a vertical 39 

succession that best represents any ordered cyclical repetition of facies present. This 40 

optimised most cyclic arrangement of facies classes can be used to determine the degree of 41 

evidence present for order in the strata.  42 

 43 



Identifying order using transition probability matrices 44 

Burgess (2016) presented a method to calculate the degree or order present in a vertical 45 

succession of strata by constructing a facies transition probability (TP) matrix T (Fig 1) and 46 

calculating a value m that summarises the matrix structure.  47 

 48 

𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑗=1..𝐹−1 {
∑𝑑𝑖𝑎𝑔(𝑇𝑗) + ∑𝑑𝑖𝑎𝑔(𝑇−(𝐹−𝑗))

𝐹
}

− 𝑎𝑟𝑔𝑚𝑖𝑛𝑗=1..𝐹−1 {
∑𝑑𝑖𝑎𝑔(𝑇𝑗) + ∑𝑑𝑖𝑎𝑔(𝑇−(𝐹−𝑗))

𝐹
} 

 49 

where F is the number of facies classes, in this case 5, j is the offset value from the main matrix 50 

diagonal, diag is a function to find all elements in a diagonal of T with offset j, and argmin and 51 

argmax are mathematical functions to find the minimum and maximum values in a series composed 52 

ofall cells in the jth offset diagonal (Burgess, 2016). The value m ranges from 0 (perfectly 53 

disordered) to 1 (perfectly asymmetrically cyclical) and usefully summarizes the degree of 54 

order present in a TP matrices constructed from a facies succession. Comparison between m 55 

from the observed strata and m calculated for TP matrices from many shuffled realizations 56 

of the same strata indicates how ordered or otherwise the strata are.  57 

Very importantly, the m value calculated for a TP matrix depends on how facies classes are 58 

numbered and therefore how they are arranged in the matrix rows and columns. This 59 

dependence can be used in an optimization process to show what arrangement of facies 60 

classes best represents any cyclicity present in the strata. 61 



Identifying an Ideal Cyclothem: A Synthetic Example 62 

Matlab code to perform the analysis described below and worked examples are available 63 

from the GSA data repository entry number ###.  64 

A synthetic example of a plausible perfectly cyclical facies succession (Fig. 1B) starts with 65 

medium sandstone, passes upwards into fine sandstone siltstone, limestone and mudstone, 66 

then repeats. If row numbering in a TP matrix constructed from these strata reflects this 67 

cyclicity, such that the row order for the facies classes in the TP matrix is the same as the 68 

order of the facies classes in the cycles, then the transition probabilities in the j=1 j=-4 TP 69 

matrix diagonal would be 1, and the m value for the matrix would be 1 (Fig. 1A) (Burgess, 70 

2016). However, different row orders for the facies classes may lead to lower values of m. 71 

Note that the stratal succession does not change with different row orders, only the facies 72 

numbering and therefore which row in the TP matrix each facies class occupies.  73 

Knowing the nature of the cyclicity a priori would allow facies coding and therefore row 74 

order for the TP matrix to be selected to best represent the cyclicity, to generate a TP matrix 75 

with the highest probabilities aligned along the j=1 j=-4 matrix diagonal, and a m value as 76 

close as obtainable to one. However, to avoid a priori assumptions about the cyclicity 77 

thought to be present, all possible facies class codings can be explored to determine which 78 

produces the TP matrix or matrices with the greatest number of the highest transition 79 

probabilities aligned along the j=1 j=-4 offset diagonal. For n facies classes there are factorial 80 

n (n!) possible arrangements of the facies classes on the TP matrix rows and columns, so for 81 

n≤10 it is computationally inexpensive (i.e. minutes) to calculate all of the TP matrices to 82 

find those with the highest m values. Note that for n>10 a refined algorithm or a powerful 83 

computer will be required. 84 



To demonstrate how this method works a synthetic 15m thick succession of strata 85 

composed of fifty lithological units classified as five distinct facies (Fig. 1B) has been 86 

analysed. The succession was generated initially with a perfectly cyclical arrangement of 87 

facies, as described above, but then random variation was introduced by changing the 88 

lithology of ten units distributed approximately evenly through the succession. The result is 89 

a succession of synthetic strata containing five lithofacies that are variable in terms of their 90 

up-section transitions, but which nevertheless appears to show some evidence for cyclicity. 91 

For example, at 7m and 10m in the vertical succession, there are clear fining-upward 92 

arrangements of facies from medium sandstone to mudstone, and at 13m there is also a 93 

clear coarsening-upward arrangement of facies (Fig. 1B). If observed in nature caution 94 

would be necessary because such apparent order can arise by chance, requiring careful 95 

comparison with random models (Burgess, 2016). Here however we know the origin of the 96 

strata, so it is possible to assess how remnant cyclicity present in the synthetic strata can be 97 

extracted despite being obscured by imposed noise. 98 

Calculating a TP matrix for the strata based on a facies coding and row ordering that does 99 

not reflect the cyclicity present in the strata (Fig. 1D) generates a m statistic of 0.199. This 100 

low m value occurs because there is little concentration of highest probabilities on the 101 

offset-one diagonal of the matrix (Fig. 1C). Calculating TP matrices for all 5! 120 row 102 

ordering permutations of the TP matrix shows that 5 of 120 permutations have the highest 103 

m values of 0.679 arising from high transition probability values concentrated along the  j=1 104 

j=-4 offset diagonal (Fig. 1E). These 5 permutations all have an arrangement of facies classes 105 

(Fig. 1F) that is the same as the order in the fining-upward cycle originally defined in these 106 

synthetic strata before the random noise was added.  107 



This example demonstrates how this method can extract the most cyclical arrangement of 108 

facies classes from synthetic strata, even when the strata include a substantial random 109 

component. The arrangement of facies classes extracted in this way can be considered an 110 

optimised, or ideal cycle. The next section shows how the method can be applied for the 111 

same purpose to outcropping vertical successions, or to vertical succession from boreholes. 112 

 113 

Identifying an Ideal Cycle: Outcrop Examples 114 

Pennsylvanian siliciclastic strata, Illinois – order revealed 115 

Pennsylvanian (Upper Carboniferous) strata around the world have been repeatedly 116 

interpreted as cyclical and forced by glacioeustasy, and were one of the original sources of 117 

the concept of an ideal cycle (Duff and Walton, 1962; Duff et al. 1967; Olszewski and 118 

Patzkowsky, 2003). Pennsylvanian strata in the continental USA include classic sections in 119 

Illinois studied by Weller (1930) and interpreted as cyclical. Wanless (1957) logged ~70 m of 120 

strata composed of 48 lithofacies units and ten distinct lithofacies classes, (Fig. 2A). 121 

Lithofacies analysis defined an ideal cycle with an overall fining-upward pattern, passing 122 

from terrestrial to marine deposition (Fig. 2B). More recently Wilkinson et al. (2003) and 123 

Burgess (2016) suggested via two independent quantitative analyses of the observed facies 124 

succession that there is not strong evidence to support this interpretation; an m value of 125 

0.187 fell within the range generated from the randomly shuffled strata giving a probability 126 

(p) value of 0.6, providing no evidence for order in the strata. 127 

Strata from Wanless (1957) are reanalysed here to calculate optimized transition probability 128 

matrix permutations. Initial lithofacies coding and hence initial matrix row positions are as 129 



defined by the ideal cycle of Wanless (1957) shown in Wilkinson et al. (2003) (Fig. 2B) except 130 

that three intervals of no exposure have been assumed to be a continuation of the fine-131 

grained lithology either above or below.  Analysis of the vertical succession as logged gives a 132 

m value of 0.206 (Fig 2C&D), slightly higher than the value of 0.187 given in Burgess (2016) 133 

which did not re-code the intervals of no exposure. Since there are 10 lithofacies there are 134 

3628800 facies arrangement permutations. For each permutation a TP matrix and 135 

associated m value was calculated. Of the 3628800 permutations tested, ten showed 136 

maximum m values of 0.489 arising from high probabilities concentrated along the j=1 j=-4 137 

offset diagonal (Fig. 2E). Although each of these ten permutations has a different row 138 

numbering for the facies classes, the order of facies classes is the same (Fig. 2F). These 139 

permutations could represent a quantitatively derived definition of the ideal cycle for these 140 

strata. 141 

The Wanless (1957) ideal cycle (Fig 2B) and this optimized version have similarities; the first 142 

five facies in both cycles are identical, with the same transitions through sandstone to coal 143 

in each case. Differences arise in the limestones and shales where optimization has 144 

identified the highest transition probabilities. Carrying out the same analysis previously 145 

performed in Burgess (2016) but using the optimised facies ordering gives a m value of 146 

0.489. This lies well outside the range of m values generated from randomly shuffled 147 

otherwise equivalent successions (Fig. 2G), leading to a p value of 0.0 which indicates that 148 

the observed arrangement of strata is unlikely to occur by chance so can be considered to 149 

contain significant order. This demonstrates how application of this new method, in 150 

combination with the comparison against randomly shuffled successions (Burgess, 2016), 151 

can work well to identify ordered strata. 152 



 153 

Santonian carbonate strata, northern Spain – disorder prevails 154 

Carbonate strata in the Rio Carreu river gorge on the flanks of the San Corneli anticline in 155 

the Spanish Pyrenees have been previously interpreted by Pomar et al. (2005) as “simple 156 

sequences and parasequences according to internal lithofacies arrangement and inferred 157 

sea-level cyclicity”. Pomar et al. (2005) defined these stratal units on the basis of “persistent 158 

occurrence of lithofacies grouped into two facies assemblages” defining rudist buildups that 159 

form parasequences and sequences (Figure 5 in Pomar et al., 2005). Subsequent analysis 160 

Burgess (2016) showed no evidence of preferred transitions between facies, suggesting no 161 

preferred arrangement of lithofacies and hence raising doubts about identification of 162 

sequences and parasequences on that basis.  163 

The Rio Carreu vertical succession is 163m thick, with 61 stacked facies units composed of 6 164 

distinct lithofacies classes (Pomar et al., 2005; Burgess, 2016) (Fig. 3A).  The top 80m of the 165 

succession is composed of alternations of just two facies representing more distal strata, so 166 

this analysis is limited to the lower 80m that represent platform margin strata interpreted as 167 

cyclical by Pomar et al. (2005). Construction of a TP matrix for these strata following the 168 

facies coding from Burgess (2016) gives a m value of 0.242 which is well within the range of 169 

what is likely to occur by chance (Fig 3F). Since there are six distinct lithofacies there are 6! 170 

or 720 possible permutations for TP matrix row numbering. Calculating these 720 TP 171 

matrices shows that the highest m value of 0.291 occurs in 48 permutations, of which 18 172 

have a highest sum concentration of probabilities along the j=1 j=-4 offset diagonal. 173 



A key difference with the previous Pennsylvanian cyclothem example is that in this case the 174 

m values are lower because transition probabilities in the optimised matrices are lower. 175 

Certain transitions occur more frequently than others in these 18 optimised arrangements, 176 

for example sheetstone to benthic-foraminifer-rich grainstones, and rudist grainstone to 177 

pillarstone. However, overall each of the 18 optimal facies arrangements are different, so it 178 

is not possible to identify any single ideal cycle (Fig 3C, D and E). Analysing the Rio Carreu 179 

strata encoded with one of the optimized facies codings (Fig. 3C) gives an m value that falls 180 

within the range of m values generated by randomly shuffled but otherwise equivalent 181 

strata (Fig. 3F), giving a p value of 0.201 and providing no evidence for order in the strata. In 182 

this case the optimization process supports the original analysis in Burgess (2016) that cast 183 

substantial doubt on the interpretations of ordered vertical successions of strata presented 184 

by Pomar et al. (2005). 185 

 186 

Conclusions 187 

1. This new method defines optimised or ideal cycles using quantitative analyses of a 188 

vertical facies succession to identify the most ordered cyclical repetition of facies 189 

present in strata.  190 

2. The analysis is an optimization method calculating all possible permutations of TP 191 

matrices, given different facies codings and hence facies class row ordering in the 192 

matrices. Permutations with the highest m values arising from concentrations of high 193 

transition probabilities along the j=1 j=-4 offset diagonal of the TP matrix indicate facies 194 

codings representing the most ordered arrangement of facies classes in the TP matrix, 195 

and may define an ideal cycle.  196 



3. Application to two outcrop examples shows how the method can be useful either to 197 

reveal order that was previously not apparent, or to demonstrate a lack of evidence for 198 

order.  199 

4. Since robust identification of order in strata provides key evidence to underpin 200 

interpretations of controls on strata, for example climatic or relative sea-level 201 

variations, this new method should be a useful quantitative addition to sequence 202 

stratigraphic analysis.  203 

 204 
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Figure Captions 249 

Figure 1. A. A TP matrix for perfectly ordered cyclical strata. Transition probabilities are 250 

shown in each cell; the top left cell shows the probability of a transition from mudstone 251 

(mst) to medium sandstone (msst). The j values indicate the offset of matrix diagonals from 252 

the main matrix diagonal. Cells on the main diagonal do not contain probability values 253 

because no transitions are allowed between the same facies in this method. Note the offset-254 

one diagonal cells (j=1) contain probability values of 1 because this is a TP matrix for 255 

perfectly cyclical strata. B. The15m thick synthetic succession composed of 50 lithofacies 256 

units classified into five facies classes was generated as perfectly cyclical repetitions of the 257 

five classes, but random variation was added, with on-average 1-2 out of order facies units 258 

occurring in each cycle. An arbitrary start point defines cycles as medium sandstone (msst), 259 

fine sandstone (fsst) siltstone (slt), limestone (lst), mudstone (mst), and repeat.  Resulting 260 

strata are variable in terms of up-section transitions, but still show some evidence for 261 

cyclicity. C. A TP matrix calculated for the succession with facies ordering shown in D. The 262 

matrix has a low m value of 0.199 because high transition probability cells are not aligned 263 

along a j=1 j=-4 diagonal. E. In contrast, one of the five permutations of the facies coding 264 

that aligns high transition probabilities along the j=1 j=-4 diagonal leading to a higher m 265 

value of 0.679. The facies class arrangement (F) represents the most cyclical order present 266 

in the strata, successfully revealed by the optimization method. 267 

 268 

Figure 2. A. Pennsylvanian strata from section number 5, Sangamon River in Illinois, from 269 

Wanless (1957). Eleven distinct lithofacies are recognized in the strata, including clean 270 

sandstones, sandy shales, shale, coal, and both freshwater and marine limestones. These 271 



facies classes can be arranged in an ideal cycle (B) according to Wanless (1957). Using this 272 

ordering (D) generates a transition probability matrix (C) with little concentration of high 273 

probabilities on any diagonal and consequently m=0.206. (E) is the TP matrix from one of 10 274 

permutation generated by the optimization process with an m value of 0.489 due to a 275 

concentration of high transition probabilities along the offset-one diagonal. G. When tested 276 

against randomly shuffled versions of the same strata this facies coding (vertical red line) 277 

reveals good evidence for order in the strata, suggesting the facies class order shown in F 278 

can be considered optimum for this succession. 279 

 280 

Figure 3. A. A vertical section from Santonian carbonate strata in the Rio Carreu river gorge, 281 

northern Spain, showing six facies classes described in Pomar et al. (2005). Wpst is 282 

wackestone-packstone, bfgst is benthic foram grainstone, shst is coral-sponge-rudist 283 

sheetstone, mxst is coral-rudist mixstone, pillst is dense hippuritid pillarstone, and rgst is 284 

rudist bearing grainstone. B. TP matrix calculated using the facies class order indicated by 285 

Pomar et al. (2005) has a low m value of 0.242 and highest probability values are not 286 

clustered on the  j=1 j=-4  offset diagonal. In this case, a random selection of the 18 TP 287 

matrices showing the highest m values with the most j=1 j=-4 offset diagonal clustering from 288 

the 720 possible row ordering permutations (C, D, and E) have m values of only 0.291, show 289 

little clustering on the j=1 j=-4 offset diagonal, and all show different vertical arrangements 290 

of the facies. F. Comparing one of the highest scoring facies class orders (vertical red line) 291 

with randomly shuffled versions of the strata coded in the same way indicates that the 292 

strata fall within the range of successions that could occur by chance, confirming that there 293 

is no evidence from this analysis for order in these strata. 294 
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